Electron Inelastic-Mean-Free-Path Database
National Institute of Standards and Technology Data Gateway
SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge) This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.
Electron mean free path in elemental metals
NASA Astrophysics Data System (ADS)
Gall, Daniel
2016-02-01
The electron mean free path λ and carrier relaxation time τ of the twenty most conductive elemental metals are determined by numerical integration over the Fermi surface obtained from first-principles, using constant λ or τ approximations and wave-vector dependent Fermi velocities vf (k). The average vf deviates considerably from the free-electron prediction, even for elements with spherical Fermi surfaces including Cu (29% deviation). The calculated product of the bulk resistivity times λ indicates that, in the limit of narrow wires, Rh, Ir, and Ni are 2.1, 1.8, and 1.6 times more conductive than Cu, while various metals including Mo, Co, and Ru approximately match the Cu resistivity, suggesting that these metals are promising candidates to replace Cu for narrow interconnect lines.
Electron Mean Free Path in Epitaxial Ta(001) Layers
NASA Astrophysics Data System (ADS)
Guan, Daniel
Epitaxial tantalum layers were grown on MgO(001) by ultrahigh vacuum magnetron sputter deposition at 650 °C to thicknesses d ranging from 5 nm to 2 mum. X-ray diffraction including o-2theta, o rocking curve, and φ scans confirm that the layers are Ta(001) single crystals, while X-ray reflectivity indicates that their roughness is < 0.1 nm for short lateral length scales. The measured room temperature resistivity increases from 12.6+/-0.6 muO-cm for large d to 42.1+/-0.9 muO-cm for d = 5 nm. This increase is well described by the Fuchs-Sondheimer model, yielding a Ta room temperature bulk electron mean free path of lambda294K = 28+/-1 nm. Corresponding measurements in liquid nitrogen yield lambda77K = 65+/-5 nm. These values are approximately an order of magnitude larger than 2.35 and 8.36 nm, respectively, expected from the free electron model. This large discrepancy is attributed to the highly non-spherical Ta Fermi surface. More importantly, the ratio of the measured mean free path lambda77K/ lambda 294K= 2.32 is 1.5x smaller than the ratio of the measured bulk resistivities rho294Krho77K. This suggests that either (i) the mean free path is strongly band dependent, (ii) surface roughness contributes greatly to electron scattering at low temperatures in films of thickness on the order of the mean free path, or (iii) the electron mean free path at low temperature is restricted by the presence of impurities, evidenced by a measured residual resistivity.
Electron Mean Free Path in PbTe Quantum Wires
NASA Astrophysics Data System (ADS)
Bhattacharya, Sitangshu; Raju, Ch.; Mallik, Ramesh Chandra
2011-07-01
We present a simplified analytical formulation of the acoustic phonon dominated electron mean free path (MFP) in PbTe quantum wires. We use a second order non-parabolic electron energy band structure to demonstrate that the MFP can reach at the order of 35 nm at room temperature for a 10 nm wide PbTe quantum wire. Discontinuous behavior due to the quantum size effect has been exhibited in the scattering rate and MFP, when plotted against temperature. The results as presented in this paper find extensive use in determining various thermal transport phenomena in PbTe and related one-dimensional electron devices.
Low-energy electron inelastic mean free path in materials
NASA Astrophysics Data System (ADS)
Nguyen-Truong, Hieu T.
2016-04-01
We show that the dielectric approach can determine electron inelastic mean free paths in materials with an accuracy equivalent to those from first-principle calculations in the GW approximation of many-body theory. The present approach is an alternative for calculating the hot-electron lifetime, which is an important quantity in ultrafast electron dynamics. This approach, applied here to solid copper for electron energies below 100 eV, yields results in agreement with experimental data from time-resolved two-photon photoemission, angle-resolved photoelectron spectroscopy, and X-ray absorption fine structure measurements in the energy ranges 2-3.5, 10-15, and 60-100 eV, respectively.
Electron inelastic mean free paths in solids: A theoretical approach
NASA Astrophysics Data System (ADS)
Siddharth, H. Pandya; G. Vaishnav, B.; N. Joshipura, K.
2012-09-01
In the present paper, the inelastic mean free path (IMFP) of incident electrons is calculated as a function of energy for silicon (Si), oxides of silicon (SiO2), SiO, and Al2O3 in bulk form by employing atomic/molecular inelastic cross sections derived by using a semi-empirical quantum mechanical method developed earlier. A general agreement of the present results is found with most of the available data. It is of great importance that we have been able to estimate the minimum IMFP, which corresponds to the peak of inelastic interactions of incident electrons in each solid investigated. New results are presented for SiO, for which no comparison is available. The present work is important in view of the lack of experimental data on the IMFP in solids.
Electron inelastic mean free paths in cerium dioxide
NASA Astrophysics Data System (ADS)
Krawczyk, M.; Holdynski, M.; Lisowski, W.; Sobczak, J. W.; Jablonski, A.
2015-06-01
Electron transport properties in CeO2 powder samples were studied by elastic-peak electron spectroscopy (EPES). Prior to EPES measurements, the CeO2 sample surface was pre-sputtered by 0.5 keV Ar ion etching. As a result, an altered layer with thickness of 1.3 nm was created. X-ray photoelectron spectroscopy (XPS) analysis revealed two chemical states of cerium Ce4+ (68%) and Ce3+ (32%) at the surface region of CeO2 sample after such treatment. The inelastic mean free path (IMFP), characterizing electron transport, was evaluated as a function of energy within the 0.5-2 keV range. Experimental IMFPs were corrected for surface excitations and approximated by the simple function λ = kEp, where λ was the IMFP, E denoted the energy (in eV), and k = 0.207 and p = 0.6343 were the fitted parameters. The IMFPs measured here were compared with IMFPs resulting from the TPP-2M predictive equation for the measured composition of oxide surface. The measured IMFPs were found to be from 3.1% to 20.3% smaller than the IMFPs obtained from the predictive formula in the energy range of 0.5-2 keV. The EPES IMFP value at 500 eV was related to the altered layer of sputtered CeO2 samples.
Ionization By Impact Electrons in Solids: Electron Mean Free Path Fitted Over A Wide Energy Range
Ziaja, B; London, R A; Hajdu, J
2005-06-09
We propose a simple formula for fitting the electron mean free paths in solids both at high and at low electron energies. The free-electron-gas approximation used for predicting electron mean free paths is no longer valid at low energies (E < 50 eV), as the band structure effects become significant at those energies. Therefore we include the results of the band structure calculations in our fit. Finally, we apply the fit to 9 elements and 2 compounds.
Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles
Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth
2015-06-14
We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.
Ghosh, T; Bardhan, M; Bhattacharya, M; Satpati, B
2015-06-01
We report a simple method for measuring the inelastic mean free path of nanostructures of known geometry using energy filtered transmission electron microscopy imaging. The mean free path of inelastic electrons was measured by using systems having known symmetry, such as cylindrical or cubic, combined with Poisson statistics without employing the knowledge of microscope parameters, namely the convergence angle and the collection angle. Having inherent symmetry of such systems, their absolute thickness can be measured from their two-dimensional projection images. We have calculated mean free path of inelastic scattering of electrons in gold, silver and nickel doing case study research by employing gold nanorod, silver nanocube and nickel nanorod lying on a carbon-coated TEM grid at two different electron energies (viz. 200 and 300 keV) following this alternative approach. Results obtained using such alternative approach were verified using microscope parameters. PMID:25787717
Energy losses and mean free paths of electrons in silicon dioxide
Ashley, J.C.; Anderson, V.E.
1981-01-01
Theoretical models and calculations are combined with experimental optical data to determine a model energy-loss function for SiO/sub 2/. Sumrule checks and comparisons with experimental information are made to insure overall consistency of the model. The model energy-loss function is employed to calculate electron inelastic mean free paths and stopping powers for electrons with energies less than or equal to 10 keV in SiO/sub 2/.
Mapping the density of scattering centers limiting the electron mean free path in graphene.
Giannazzo, Filippo; Sonde, Sushant; Nigro, Raffaella Lo; Rimini, Emanuele; Raineri, Vito
2011-11-01
Recently, giant carrier mobility μ (>10(5) cm(2) V(-1) s(-1)) and micrometer electron mean free path (l) have been measured in suspended graphene or in graphene encapsulated between inert and ultraflat BN layers. Much lower μ values (10000-20000 cm(2) V(-1) s(-1)) are typically reported in graphene on common substrates (SiO(2), SiC) used for device fabrication. The debate on the factors limiting graphene electron mean free path is still open with charged impurities (CI) and resonant scatterers (RS) indicated as the most probable candidates. As a matter of fact, the inhomogeneous distribution of such scattering sources in graphene is responsible of nanoscale lateral inhomogeneities in the electronic properties, which could affect the behavior of graphene nanodevices. Hence, high resolution two-dimensional (2D) mapping of their density is very important. Here, we used scanning capacitance microscopy/spectroscopy to obtain 2D maps of l in graphene on substrates with different dielectric permittivities, that is, SiO(2) (κ(SiO2) = 3.9), 4H-SiC (0001) (κ(SiC) = 9.7) and the very-high-κ perovskite strontium titanate, SrTiO(3) (001), briefly STO (κ(STO) = 330). After measuring l versus the gate bias V(g) on an array of points on graphene, maps of the CI density (N(CI)) have been determined by the neutrality point shift from V(g) = 0 V in each curve, whereas maps of the RS density (N(RS)) have been extracted by fitting the dependence of l on the carrier density (n). Laterally inhomogeneous densities of CI and RS have been found. The RS distribution exhibits an average value ∼3 × 10(10) cm(-2) independently on the substrate. For the first time, a clear correlation between the minima in the l map and the maxima in the N(CI) map is obtained for graphene on SiO(2) and 4H-SiC, indicating that CI are the main source of the lateral inhomogeneity of l. On the contrary, the l and N(CI) maps are uncorrelated in graphene on STO, while a clear correlation is found between l and N(RS) maps. This demonstrates a very efficient dielectric screening of CI in graphene on STO and the role of RS as limiting factor for electron mean free path. PMID:21981146
The interplanetary scattering mean free path from 1 to 3 x 1000 MV. [for solar protons and electrons
NASA Technical Reports Server (NTRS)
Zwickl, R. D.; Webber, W. R.
1978-01-01
The paper reports a statistical study of published intensity-time profiles of proton and electron solar particle events from 1967 to 1974. The purpose of the study was to examine systematically the temporal and rigidity dependence of the interplanetary scattering mean free path from approximately 1000 to 3000 MV. The observed t-max, the time from release of particles at the sun to the time of maximum flux at the spacecraft, were interpreted in terms of a propagation model to obtain the average radial scattering mean-free path. This path (1) appears to be species independent when it is derived from proton and electron solar particle events, (2) varies less than a factor of 2 from solar maximum to solar minimum, and (3) is nearly rigidity independent below approximately 500 MV. The path values obtained at low rigidities are inconsistent with path values derived theoretically from the interplanetary magnetic field fluctuations.
Measurement of the hot electron mean free path and the momentum relaxation rate in GaN
Suntrup, Donald J.; Gupta, Geetak; Li, Haoran; Keller, Stacia; Mishra, Umesh K.
2014-12-29
We present a method for measuring the mean free path and extracting the momentum relaxation time of hot electrons in GaN using the hot electron transistor (HET). In this device, electrons are injected over a high energy emitter barrier into the base where they experience quasi-ballistic transport well above the conduction band edge. After traversing the base, high energy electrons either surmount the base-collector barrier and become collector current or reflect off the barrier and become base current. We fabricate HETs with various base thicknesses and measure the common emitter transfer ratio (α) for each device. The mean free path is extracted by fitting α to a decaying exponential as a function of base width and the relaxation time is computed using a suitable injection velocity. For devices with an injection energy of ∼1 eV, we measure a hot electron mean free path of 14 nm and calculate a momentum relaxation time of 16 fs. These values are in agreement with theoretical calculations where longitudinal optical phonon scattering is the dominant momentum relaxation mechanism.
Nagatomi, T.; Goto, K.
2007-06-15
An analytical approach is proposed for simultaneously determining the inelastic mean-free path (IMFP), the surface excitation parameter (SEP), and the differential SEP (DSEP) in absolute units from an absolute reflection electron energy loss spectroscopy (REELS) spectrum under the assumption that the normalized differential inelastic mean-free path for bulk excitations and the elastic scattering cross section are known. This approach was applied to an analysis of REELS spectra for Ni, and the IMFP, SEP, and DSEP in Ni for 300-3000 eV electrons were determined. The resulting IMFPs showed good agreement with those calculated using the TPP-2M predictive equations and with those calculated from optical data. The deduced DSEPs show a reasonable agreement with those theoretically predicted. The obtained SEPs were compared with those calculated using several predictive equations. The present SEP results agreed well with the Chen formula with a material parameter proposed for Ni. The present approach has high potential for the experimental determination of IMFPs, SEPs, and DSEPs in absolute units.
NASA Technical Reports Server (NTRS)
Karasik, B. S.; Sergeev, A. V.
1998-01-01
Recent paper has raised again a question about the electron-phonon (EP) relaxation rate in impure metals. From weak localization (WL) measurements the authors have found that the dephasing rate in AuPd disordered films follows the T(sup 2)el-law (el is the mean free path).
Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen
2015-11-01
Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. PMID:26433027
NASA Astrophysics Data System (ADS)
Jana, R. N.; Sinha, S.; Meikap, A. K.
2015-05-01
We have reported a comprehensive study on temperature and disorder dependence of inelastic electron dephasing scattering rate in disordered V82Al18-xFex alloys. The dephasing scattering time has been measured by analysis of low field magnetoresistance using the weak localization theory. In absence of magnetic field the variation of low temperature resistivity rise follows the relation Δ ρ ( T ) ∝ - ρ0 5 / 2 √{ T } , which is well described by three-dimensional electron-electron interactions. The temperature-independent dephasing rate strongly depends on disorder and follows the relation τ0 - 1 ∝ l e , where le is the electron elastic mean free path. The inelastic electron-phonon scattering rate obeying the anomalous relation τe - p h - 1 ∝ T 2 l e . This anomalous behavior of τe - p h - 1 cannot be explained in terms of current theories for electron-phonon scattering in impure dirty conductors.
Lubk, A.; Wolf, D.; Kern, F.; Röder, F.; Lichte, H.; Prete, P.; Lovergine, N.
2014-10-27
Electron holography at medium resolution simultaneously probes projected electrostatic and magnetostatic potentials as well as elastic and inelastic attenuation coefficients with a spatial resolution of a few nanometers. In this work, we derive how the elastic and inelastic attenuation can be disentangled. Using that result, we perform the first three dimensional tomographic reconstruction of potential and (in)elastic attenuation in parallel. The technique can be applied to distinguish between functional potentials and composition changes in nanostructures, as demonstrated using the example of a GaAs—Al{sub 0.33}Ga{sub 0.67}As core-shell nanowire.
NASA Astrophysics Data System (ADS)
Peters, R. P.; Bergmann, Gerd
1985-09-01
Magneto-resistance measurements on thin disordered films yield the phase-coherence time τi of the conduction electrons (weak localization). The dependence of τi on film thickness and residual resistivity are reported for disordered Au, Ag and Mg films in the temperature range between 4.5 and 20 K. The resistivity of the films was varied between .13 and 1.1× 10-6 Ωm. The temperature dependence of 1/τi follows a Tp-law. The exponent is essentially two, but varies slightly with the resistivity. 1/τj depends much less on the resistivity than the linear prediction of the theory. No direct influence of the film thickness on τi was observed. This excludes the impurity induced Coulomb interaction as the relevant mechanism and suggests that τi is essentially determined by electron-phonon interaction. However, at the present time there is no theory available that reproduces the experimental results. Measurements of the (temperature independent) Hall-constant suggest that the thin films are rather homogeneous despite their small thickness.
Stopping powers and inelastic mean free path of 200eV-50keV electrons in polymer PMMA, PE, and PVC.
Tahir, Dahlang; Suarga; Sari, Nur Harmila; Yulianti
2014-10-14
The stopping power (SP) and inelastic mean free path (IMFP) of three polymers: polymethyl methacrylate (PMMA), polyethylene (PE), and polyvinyl chloride (PVC) for electron energies from 200eV to 50keV have been determined based on dielectric models. The energy loss function (ELF) is the main input in the calculation of the SP and IMFP for the dielectric models. ELF in this study was determined from a previously published quantitative analysis of reflection electron energy loss spectroscopy (REELS) spectra. The SP of PMMA, PE and PVC decreases and the IMFP increases with increasing electron energies up to 50keV. For comparison, data from the National Institute of Standards and Technology (NIST) database for electron energies from 10 to 50keV were used and show that SP in this study is lowered by 10-15%. The obtained IMFP for PE was compared with those calculated using the TPP2M predictive equations and shows that a reasonable agreement with a root-mean-square (rms) is 7.01Å. The present approach has high potential for the experimental determination of SP and IMFP from the REELS spectra. PMID:25464178
Photon mean free path in the metal nanoparticle system
NASA Astrophysics Data System (ADS)
Panamarev, Nikolay S.; Zemlyanov, Aleksey A.; Samokhvalov, Ignatiy V.; Panamaryova, Anna N.
2015-11-01
In the paper comparative evaluation of the photon mean free path in the system of metal nanoparticles and dielectric matrix is performed by means of numerical simulations. As a material of nanoparticles both metals (Ag, Cu) in which the frequency of plasmon resonance falls in the range under study and metals (Al, Ni) in which the plasmon resonance frequency is far from the investigated range have been used. The research has shown that for the studied metals the media based on Al nanoparticles satisfy best the Ioffe-Regel criterion for photons of visible wavelength range.
The scattering mean free path in the Uranian atmosphere
NASA Technical Reports Server (NTRS)
Price, M. J.
1973-01-01
New measurements of the equivalent widths of the 4.0 S(0) and S(1) H2 quadrupole lines in the Uranian spectrum have been obtained using high dispersion (4.12 A/mm) image-tube spectrography. The measured equivalent widths are 62 plus or minus 19 mA and 58 plus or minus 13 mA for the S(0) and S(1) lines, respectively. Curve-of-growth analysis in terms of a reflecting layer model yields an H2 column density of 780 (+940 or -330) km amagat and a temperature of 78 (+80 or -24) K. Interpretation using a semiinfinite, homogeneous, isotropically scattering model for line formation yields a scattering mean free path at 6400 A of 550 plus or minus 250 km amagat. Quoted errors for both the H2 column density and the scattering mean free path include the effect of uncertainty in the choice of atmospheric temperature. The results are discussed in terms of current models for the Uranian atmosphere.
Inelastic interaction mean free path of negative pions in tungsten
NASA Technical Reports Server (NTRS)
Cheshire, D. L.; Huggett, R. W.; Jones, W. V.; Rountree, S. P.; Schmidt, W. K. H.; Kurz, R. J.; Bowen, T.; Delise, D. A.; Krider, E. P.; Orth, C. D.
1975-01-01
The inelastic interaction mean free paths lambda of 5, 10, and 15 GeV/c pions were measured by determining the distribution of first interaction locations in a modular tungsten-scintillator ionization spectrometer. In addition to commonly used interaction signatures of a few (2-5) particles in two or three consecutive modules, a chi2 distribution is used to calculate the probability that the first interaction occurred at a specific depth in the spectrometer. This latter technique seems to be more reliable than use of the simpler criteria. No significant dependence of lambda on energy was observed. In tungsten, lambda for pions is 206 plus or minus 6 g/sq cm.
Liu, Qixin; Cai, Zhiyong
2014-01-01
This paper presents studies on the characteristics of gas molecular mean free path in nanopores by molecular dynamics simulation. Our study results indicate that the mean free path of all molecules in nanopores depend on both the radius of the nanopore and the gas-solid interaction strength. Besides mean free path of all molecules in the nanopore, this paper highlights the gas molecular mean free path at different positions of the nanopore and the anisotropy of the gas molecular mean free path at nanopores. The molecular mean free path varies with the molecule’s distance from the center of the nanopore. The least value of the mean free path occurs at the wall surface of the nanopore. The present paper found that the gas molecular mean free path is anisotropic when gas is confined in nanopores. The radial gas molecular mean free path is much smaller than the mean free path including all molecular collisions occuring in three directions. Our study results also indicate that when gas is confined in nanopores the gas molecule number density does not affect the gas molecular mean free path in the same way as it does for the gas in unbounded space. These study results may bring new insights into understanding the gas flow’s characteristic at nanoscale. PMID:25046745
Jana, R. N.; Sinha, S.; Meikap, A. K.
2015-05-15
We have reported a comprehensive study on temperature and disorder dependence of inelastic electron dephasing scattering rate in disordered V{sub 82}Al{sub 18-x}Fe{sub x} alloys. The dephasing scattering time has been measured by analysis of low field magnetoresistance using the weak localization theory. In absence of magnetic field the variation of low temperature resistivity rise follows the relation Δρ(T)∝−ρ{sub 0}{sup 5/2}√(T), which is well described by three-dimensional electron-electron interactions. The temperature-independent dephasing rate strongly depends on disorder and follows the relation τ{sub 0}{sup −1}∝l{sub e}, where l{sub e} is the electron elastic mean free path. The inelastic electron-phonon scattering rate obeying the anomalous relation τ{sub e−ph}{sup −1}∝T{sup 2}l{sub e}. This anomalous behavior of τ{sub e−ph}{sup −1} cannot be explained in terms of current theories for electron-phonon scattering in impure dirty conductors.
Nucleon mean free path in asymmetric nuclear matter at finite temperature
NASA Astrophysics Data System (ADS)
Bao, X. J.; Zhang, H. F.; Lombardo, U.; Dong, J. M.; Zuo, W.
2014-10-01
The nucleon mean free path in symmetric and asymmetric nuclear matter is investigated in the framework of the finite temperature Brueckner theory. The realistic Bonn B two-body nucleon-nucleon interaction in combination with a consistent microscopic three-body force is adopted in the calculations. The results of the nucleon mean free path at zero temperature are in good agreement with the experimental data. The temperature and density and isospin dependence of the mean free path are studied systematically in asymmetric nuclear matter.
Mean free paths of energetic particles at very large heliodistances (Pioneer 11 at 20 AU)
NASA Technical Reports Server (NTRS)
Moussas, X.; Quenby, J. J.; Theodossiou-Ekaterinidi, Z.; Valdes-Galicia, J. F.; Drillia, A. G.; Roulias, D.; Smith, E. J.
1992-01-01
The parallel mean free path and the diffusion coefficient parallel to the magnetic field line are derived from magnetic field data at 20 AU to characterize heliospheric modulation and energetic-particle/magnetic-field interaction. The computational method of Moussas et al. (1975, 1982) is employed, and the values of the parallel mean free path are shown to be significantly larger than the values estimated in studies of up to 6 AU. The distance dependence of the parallel diffusion mean free path is found to follow a power law, and the diffusion coefficient dependence upon energy is determined by a constant mean free path and the velocity of the particle. The contribution of the diffusion coefficient perpendicular to the magnetic field is expected to dominate the radial diffusion coefficient of cosmic rays, although the contribution of the diffusion parallel to the field is important with respect to the small-scale structure of intensity gradients.
Zeng, Lingping; Collins, Kimberlee C; Hu, Yongjie; Luckyanova, Maria N; Maznev, Alexei A; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A; Chen, Gang
2015-01-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; et al
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less
NASA Astrophysics Data System (ADS)
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-11-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-01-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
NASA Astrophysics Data System (ADS)
Wei, Gaosheng; Wang, Lixin; Chen, Lin; Du, Xiaoze; Xu, Chao; Zhang, Xinxin
2015-11-01
This study comprehensively analyzes the mean free path of gas molecules and gaseous thermal conductivity in confined nanoporous structures through a wide range of temperatures and pressures. A simplified unit cell cubic array structure of nanospheres is used to correlate microstructure features with specific surface area and density of nanoporous materials. Zeng's model is used to describe the mean free path of the gas molecules and the gaseous thermal conductivity in confined nanoporous structures, and experimental gaseous thermal conductivity data from the literature is used to validate the model. The results show that a material's nanoporous structure features are directly related to specific surface area and density. The mean free path of gas molecules in a confined nanoporous structure decreases with increasing specific surface area and density. Thus, nanoporous materials with a relatively high specific surface area and a higher density are more favorable for confining gaseous thermal conductivity in nanopores. This work shows that p=104{ Pa} and 106{ Pa} are two characteristic pressures at ambient temperatures for the investigated silica aerogel materials. When p<104{ Pa}, the mean free path of the gas molecules remains constant with varying pressure, while gaseous thermal conductivity approaches zero due to the restrictive effect of the nanoporous structure and the diluted gas molecules. When {p}>106{ Pa}, the limiting effect of the nanoporous structure on the movement of gas molecules can be ignored, and so the mean free path of gas molecules in the nanoporous material approaches the mean free path of gas molecules in free space, while the gaseous thermal conductivity approaches the gaseous thermal conductivity in free space. As temperature increases, there exists a maximum value for gaseous thermal conductivity in confined nanoporous materials, but this maximum increases as pressure increases. The maximum gaseous thermal conductivity for the material is also determined in the paper.
Neutrino mean free path in neutron matter with Brussels-Montreal Skyrme functionals
NASA Astrophysics Data System (ADS)
Pastore, A.; Martini, M.; Davesne, D.; Navarro, J.; Chamel, N.; Goriely, S.
2016-01-01
We calculate the neutrino mean free path in cold neutron matter with some modern Brussels-Montreal functionals. The three typical functionals used in this article produce quite different results implying a possible impact on the cooling mechanism of neutron stars.
Measurements of hadron mean free path for the particle-producing collisions in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
It is not obvious a priority that the cross-section for a process in hadron collisions with free nucleons is the same as that for the process in hadron collisions with nucleons inside a target nucleus. The question arises: what is the cross-section for a process in a hadron collision with nucleon on inside the atomic nucleus. The answer to it must be found in experiments. The mean free path for particle-producing collisions of pions in nuclear matter is determined experimentally using pion-xenon nucleus collisions at 3.5 GeV/c momentum. Relation between the mean free path in question lambda sub in nucleons fm squared and the cross-section in units of fm squared/nucleon for collisions of the hadron with free nucleon is: lambda sub i = k/cross section sub i, where k = 3.00 plus or minus 0.26.
Scattering mean free path in continuous complex media: beyond the Helmholtz equation.
Baydoun, Ibrahim; Baresch, Diego; Pierrat, Romain; Derode, Arnaud
2015-09-01
We present theoretical calculations of the ensemble-averaged (or effective or coherent) wave field propagating in a heterogeneous medium considered as one realization of a random process. In the literature, it is usually assumed that heterogeneity can be accounted for by a random scalar function of the space coordinates, termed the potential. Physically, this amounts to replacing the constant wave speed in Helmholtz' equation by a space-dependent speed. In the case of acoustic waves, we show that this approach leads to incorrect results for the scattering mean free path, no matter how weak the fluctuations. The detailed calculation of the coherent wave field must take into account both a scalar and an operator part in the random potential. When both terms have identical amplitudes, the correct value for the scattering mean free paths is shown to be more than 4 times smaller (13/3, precisely) in the low-frequency limit, whatever the shape of the correlation function. Based on the diagrammatic approach of multiple scattering, theoretical results are obtained for the self-energy and mean free path within Bourret's and on-shell approximations. They are confirmed by numerical experiments. PMID:26465578
Universal phonon mean free path spectra in crystalline semiconductors at high temperature
Freedman, Justin P.; Leach, Jacob H.; Preble, Edward A.; Sitar, Zlatko; Davis, Robert F.; Malen, Jonathan A.
2013-01-01
Thermal conductivity in non-metallic crystalline materials results from cumulative contributions of phonons that have a broad range of mean free paths. Here we use high frequency surface temperature modulation that generates non-diffusive phonon transport to probe the phonon mean free path spectra of GaAs, GaN, AlN, and 4H-SiC at temperatures near 80 K, 150 K, 300 K, and 400 K. We find that phonons with MFPs greater than 230 ± 120 nm, 1000 ± 200 nm, 2500 ± 800 nm, and 4200 ± 850 nm contribute 50% of the bulk thermal conductivity of GaAs, GaN, AlN, and 4H-SiC near room temperature. By non-dimensionalizing the data based on Umklapp scattering rates of phonons, we identified a universal phonon mean free path spectrum in small unit cell crystalline semiconductors at high temperature. PMID:24129328
Scattering mean free path in continuous complex media: Beyond the Helmholtz equation
NASA Astrophysics Data System (ADS)
Baydoun, Ibrahim; Baresch, Diego; Pierrat, Romain; Derode, Arnaud
2015-09-01
We present theoretical calculations of the ensemble-averaged (or effective or coherent) wave field propagating in a heterogeneous medium considered as one realization of a random process. In the literature, it is usually assumed that heterogeneity can be accounted for by a random scalar function of the space coordinates, termed the potential. Physically, this amounts to replacing the constant wave speed in Helmholtz' equation by a space-dependent speed. In the case of acoustic waves, we show that this approach leads to incorrect results for the scattering mean free path, no matter how weak the fluctuations. The detailed calculation of the coherent wave field must take into account both a scalar and an operator part in the random potential. When both terms have identical amplitudes, the correct value for the scattering mean free paths is shown to be more than 4 times smaller (13/3, precisely) in the low-frequency limit, whatever the shape of the correlation function. Based on the diagrammatic approach of multiple scattering, theoretical results are obtained for the self-energy and mean free path within Bourret's and on-shell approximations. They are confirmed by numerical experiments.
NASA Astrophysics Data System (ADS)
Obermann, Anne; Larose, Eric; Margerin, Ludovic; Rossetto, Vincent
2014-05-01
We analyze the statistics of phase fluctuations of seismic signals obtained from a temporary small aperture array deployed on a volcano in the French Auvergne. We demonstrate that the phase field satisfies Circular Gaussian statistics. We then determine the scattering mean free path of Rayleigh waves from the spatial phase decoherence. This phenomenon, observed for diffuse wavefields, is found to yield a good approximation of the scattering mean free path. Contrary to the amplitude, spatial phase decoherence is free from absorption effects and provides direct access to the scattering mean free path. Our method may find applications in various areas of seismology where the effects of scattering are prominent and a knowledge of the scattering properties is necessary to describe the propagation. As an example, an unbiased estimate of the scattering mean free path is crucial for the localization of changes in multiply scattering media, where a sensitivity kernel based on diffusion theory is used (Larose et al. 2010; Obermann et al. 2013a,b). Our experimental approach may also provide independent estimates of the scattering mean free path in volcanic areas where particularly strong scattering has been proposed, based on the fitting of energy envelopes using energy transport approaches (Wegler & Lühr 2001; Yamamoto & Sato 2010). References: Larose, E., Planès, T., Rossetto, V. & Margerin, L., 2010. Locating a small change in a multiple scattering environment, Appl. Phys. Lett., 96(204101), 1-3. Obermann, A., Planès, T., Larose, E. & Campillo, M., 2013a. Imaging pre and co-eruptive structural and mechanical changes on a volcano with ambient seismic noise, J. geophys. Res., 118, 1-10. Obermann, A., Planès, T., Larose, E., Sens-Schönfelder, C. & Campillo,M., 2013b. Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium, Geophys. J. Int., 194(1), 372-382. Wegler, U. & Lühr, B.G., 2001. Scattering behaviour at Merapi volcano (Java) revealed from an active seismic experiment, Geophys. J. Int., 145(3), 579-592. Yamamoto, M. & Sato, H., 2010. Multiple scattering and mode conversion revealed by an active seismic experiment at Asama volcano, Japan, J. geophys. Res., 115(B7), doi:10.1029/2009JB007109.
Heat transport by long mean free path vibrations in amorphous silicon nitride near room temperature
NASA Astrophysics Data System (ADS)
Sultan, Rubina; Avery, A. D.; Underwood, J. M.; Mason, S. J.; Bassett, D.; Zink, B. L.
2013-06-01
We present measurements of thermal transport in 500-nm-thick, 35-μm-wide, and 806-μm-long micromachined suspended silicon nitride (Si-N) bridges over the temperature range of 77 to 325 K. The measured thermal conductivity of Si-N (for material grown by low-pressure chemical vapor deposition in two different furnaces) deviates somewhat from previously reported measurements and also shows surprising dependence on surface variation at these relatively high temperatures. Addition of discontinuous gold films causes the thermal conductance of Si-N bridges to drop through the entire measured temperature range, before rising again when thicker, continuous films are added. Similar effects occur when continuous but very low-thermal-conductivity alumina films are deposited. The reduction in thermal conductance upon modification of the Si-N surface is strong evidence that vibrational excitations with long mean free paths carry significant heat even at these high temperatures. By measuring a series of film thicknesses the surface-scattering effects can be mitigated, and the resulting experimental values of the thermal conductivity of alumina and Au thin films compare very well to known values or to predictions of the Wiedemann-Franz law. We also present a modified model for the phonon mean free path in thin-film geometries, and use it along with atomic force microsope scans to show that a very small population of phonons with mean free path on the order of 1 μm and wavelength much longer than the expected thermal wavelengths carry up to 50% of the heat in Si-N at room temperature.
Photon Mean Free Paths, Scattering, and Ever-Increasing Telescope Resolution
NASA Astrophysics Data System (ADS)
Judge, P. G.; Kleint, L.; Uitenbroek, H.; Rempel, M.; Suematsu, Y.; Tsuneta, S.
2015-03-01
We revisit an old question: what are the effects of observing stratified atmospheres on scales below a photon mean free path ?? The mean free path of photons emerging from the solar photosphere and chromosphere is ? 102 km. Using current 1 m-class telescopes, ? is on the order of the angular resolution. But the Daniel K. Inoue Solar Telescope will have a diffraction limit of 0.020? near the atmospheric cutoff at 310 nm, corresponding to 14 km at the solar surface. Even a small amount of scattering in the source function leads to physical smearing due to this solar "fog", with effects similar to a degradation of the telescope point spread function. We discuss a unified picture that depends simply on the nature and amount of scattering in the source function. Scalings are derived from which the scattering in the solar atmosphere can be transcribed into an effective Strehl ratio, a quantity useful to observers. Observations in both permitted ( e.g., Fe i 630.2 nm) and forbidden (Fe i 525.0 nm) lines will shed light on both instrumental performance as well as on small-scale structures in the solar atmosphere.
Estimation of the Mean Free Path using Cross-Correlations in the Seismic Coda
NASA Astrophysics Data System (ADS)
Clerc, V.; Roux, P.; Campillo, M.; Maynard, R.; Chaput, J. A.
2014-12-01
We present recent results concerning the extraction of Green's functions from coda waves. Campillo and Paul 2003 used earthquakes codas and found that the causal and anticausal parts of the cross-correlation are asymmetrical for some stations, depending on the earthquake source region. The lapse time in the coda window is a key parameter to understand causal to anticausal amplitude ratio. We show that this ratio result from the competition between the source signature (non-symmetric cross-correlations when the distribution of sources is non-isotropic around the receivers) and the scattering processes which tend to restore the time symmetry of the correlations. The theoretical analysis is derived from wave propagation theory for single scattering and multiple scattering as initiated by Roux 2005. We propose to use the temporal evolution of cross-correlation function amplitude in coda waves to estimate the value of the mean free path in the propagation medium. The equipartition of the energy is clearly observed in the numerical simulations conducted in a two-dimensional acoustic medium. The cross-correlations between the distinct time windows in synthetic coda records at two points are measured for a set of events for which we obtain a good estimate of the medium mean free path. We perform the same analysis on a set of icequakes recorded at Mount Erebus. The correlations averaged over sources and time exhibit a temporal evolution that obeys to convergence patterns similar to those observed in numerical studies.
Shaing, K. C.
2006-09-15
It is illustrated that plasma transport processes in the direction of the magnetic field are local in the vicinity of the magnetic island in the long mean-free-path regime where the collisionality parameter {nu}{sub *} is larger than 10{sup -2}, and the width of the island is about 3% of the minor radius or smaller. This is because the plasma temperature variation on the magnetic surface that results from the magnetic reconnection is gentle. Both the electron and the ion parallel transport fluxes including parallel heat flow in the banana regime where {nu}{sub *}<1 are calculated using a model Coulomb collision operator that conserves momentum.
Zhang, Hang; Hua, Chengyun; Ding, Ding; Minnich, Austin J
2015-01-01
Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method to obtain MFP spectra of nanostructures from variable-length thermal conductivity measurements. Using this method, we investigate recently reported length-dependent thermal conductivity measurements on SiGe alloy nanowires and suspended graphene ribbons. We find that the recent measurements on graphene imply that 70% of the heat in graphene is carried by phonons with MFPs longer than 1 micron. PMID:25764977
NASA Astrophysics Data System (ADS)
Zhang, Hang; Hua, Chengyun; Ding, Ding; Minnich, Austin J.
2015-03-01
Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method to obtain MFP spectra of nanostructures from variable-length thermal conductivity measurements. Using this method, we investigate recently reported length-dependent thermal conductivity measurements on SiGe alloy nanowires and suspended graphene ribbons. We find that the recent measurements on graphene imply that 70% of the heat in graphene is carried by phonons with MFPs longer than 1 micron.
NASA Astrophysics Data System (ADS)
Chiloyan, Vazrik; Zeng, Lingping; Huberman, Samuel; Maznev, Alexei A.; Nelson, Keith A.; Chen, Gang
2016-04-01
The phonon Boltzmann transport equation (BTE) is a powerful tool for studying nondiffusive thermal transport. Here, we develop a new universal variational approach to solving the BTE that enables extraction of phonon mean free path (MFP) distributions from experiments exploring nondiffusive transport. By utilizing the known Fourier heat conduction solution as a trial function, we present a direct approach to calculating the effective thermal conductivity from the BTE. We demonstrate this technique on the transient thermal grating experiment, which is a useful tool for studying nondiffusive thermal transport and probing the MFP distribution of materials. We obtain a closed form expression for a suppression function that is materials dependent, successfully addressing the nonuniversality of the suppression function used in the past, while providing a general approach to studying thermal properties in the nondiffusive regime.
Phonon mean free path of graphite along the c-axis
Wei, Zhiyong; Yang, Juekuan; Chen, Weiyu; Bi, Kedong; Chen, Yunfei
2014-02-24
Phonon transport in the c-axis direction of graphite thin films has been studied using non-equilibrium molecular dynamics (MD) simulation. The simulation results show that the c-axis thermal conductivities for films of thickness ranging from 20 to 500 atomic layers are significantly lower than the bulk value. Based on the MD data, a method is developed to construct the c-axis thermal conductivity as an accumulation function of phonon mean free path (MFP), from which we show that phonons with MFPs from 2 to 2000 nm contribute ∼80% of the graphite c-axis thermal conductivity at room temperature, and phonons with MFPs larger than 100 nm contribute over 40% to the c-axis thermal conductivity. These findings indicate that the commonly believed value of just a few nanometers from the simple kinetic theory drastically underestimates the c-axis phonon MFP of graphite.
Zhang, Hang; Hua, Chengyun; Ding, Ding; Minnich, Austin J.
2015-01-01
Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method to obtain MFP spectra of nanostructures from variable-length thermal conductivity measurements. Using this method, we investigate recently reported length-dependent thermal conductivity measurements on SiGe alloy nanowires and suspended graphene ribbons. We find that the recent measurements on graphene imply that 70% of the heat in graphene is carried by phonons with MFPs longer than 1 micron. PMID:25764977
Effect of polarization field on mean free path of phonons in indium nitride
NASA Astrophysics Data System (ADS)
Sahoo, Sushant Kumar
2016-05-01
The effect of built-in-polarization field on mean free path of acoustic phonons in bulk wurtzite indium nitride (InN) has been theoretically investigated. The elastic constant of the material gets modified due to the existence of polarization field. As a result velocity and Debye frequency of phonons get enhanced. The various scattering rates of phonons are suppressed by the effect of polarization field, which implies an enhanced combined relaxation time. Thus phonons travel freely for a longer distance between two successive scatterings. This would enhance the thermal transport properties of the material when built-in-polarization field taken into account. Hence by the application of electric field the transport properties of such materials can be controlled as and when desired.
He, H.-Q.; Wan, W. E-mail: wanw@mail.iggcas.ac.cn
2012-03-01
The parallel mean free path of solar energetic particles (SEPs), which is determined by physical properties of SEPs as well as those of solar wind, is a very important parameter in space physics to study the transport of charged energetic particles in the heliosphere, especially for space weather forecasting. In space weather practice, it is necessary to find a quick approach to obtain the parallel mean free path of SEPs for a solar event. In addition, the adiabatic focusing effect caused by a spatially varying mean magnetic field in the solar system is important to the transport processes of SEPs. Recently, Shalchi presented an analytical description of the parallel diffusion coefficient with adiabatic focusing. Based on Shalchi's results, in this paper we provide a direct analytical formula as a function of parameters concerning the physical properties of SEPs and solar wind to directly and quickly determine the parallel mean free path of SEPs with adiabatic focusing. Since all of the quantities in the analytical formula can be directly observed by spacecraft, this direct method would be a very useful tool in space weather research. As applications of the direct method, we investigate the inherent relations between the parallel mean free path and various parameters concerning physical properties of SEPs and solar wind. Comparisons of parallel mean free paths with and without adiabatic focusing are also presented.
Scaling laws of cumulative thermal conductivity for short and long phonon mean free paths
NASA Astrophysics Data System (ADS)
Aketo, Daisuke; Shiga, Takuma; Shiomi, Junichiro
2014-09-01
Cumulative thermal conductivity (CTC), an accumulation function of lattice thermal conductivity with respect to the phonon mean free path (PMFP), is a useful single-crystal property to gain insight into how much nanostructuring can potentially reduce thermal conductivity. While the details of the CTC profile depend on each material, we have identified that the profile has universal features in the short and long PMFP regimes with each characteristic length scale. In each PMFP regime, by scaling the PMFP with the characteristic length derived using phenomenological models, CTC calculated based on first principles for various materials collapse on a master curve. We also find an empirical relation between the short and long PMFP characteristic length scales, which allows us to roughly estimate the onset/offset PMFP of CTC (i.e., PMFP when CTC are 10%/90% of the total thermal conductivity) only with the knowledge of bulk thermal conductivity and averaged group velocity. The finding provides a facile way to estimate the range of PMFP with noticeable contribution to lattice thermal conductivity, which is useful for designing nanostructured materials with low thermal conductivity, particularly in developing thermoelectric materials.
Temperature-Dependent Mean Free Path Spectra of Thermal Phonons Along thec-Axis of Graphite
NASA Astrophysics Data System (ADS)
Zhang, Hang; Chen, Xiangwen; Jho, Young-Dahl; Minnich, Austin J.
2016-03-01
Heat conduction in graphite has been studied for decades because of its exceptionally large thermal anisotropy. While the bulk thermal conductivities along the in-plane and cross-plane directions are well known, less understood are the microscopic properties of the thermal phonons responsible for heat conduction. In particular, recent experimental and computational works indicate that the average phonon mean free path (MFP) along the c-axis is considerably larger than that estimated by kinetic theory, but the distribution of MFPs remains unknown. Here, we report the first quantitative measurements of c-axis phonon MFP spectra in graphite at a variety of temperatures using time-domain thermoreflectance measurements of graphite flakes with variable thickness. Our results indicate that c-axis phonon MFPs have values of a few hundred nanometers at room temperature and a much narrower distribution than in isotropic crystals. At low temperatures, phonon scattering is dominated by grain boundaries separating crystalline regions of different rotational orientation. Our study provides important new insights into heat transport and phonon scattering mechanisms in graphite and other anisotropic van der Waals solids.
Phonon Mean Free Path Spectra Measured by Broadband Frequency Domain Thermoreflectance
NASA Astrophysics Data System (ADS)
Malen, Jonathan
2014-03-01
Nonmetallic crystalline materials conduct heat by the transport of quantized atomic lattice vibrations called phonons. Thermal conductivity depends on how far phonons travel between scattering events -- their mean free paths (MFPs). Due to the breadth of the phonon MFP spectrum, nanostructuring of materials and devices can reduce thermal conductivity from bulk by scattering long MFP phonons, while short MFP phonons are unaffected. We have developed a novel approach called Broadband Frequency Domain Thermoreflectance (BB-FDTR) that uses high-frequency laser heating to generate non-Fourier heat conduction that can sort phonons based on their MFPs. BB-FDTR outputs thermal conductivity as a function of heating frequency. Through non-equilibrium Boltzmann Transport Equation models this data can be converted to thermal conductivity accumulation, which describes how thermal conductivity is summed from phonons with different MFPs. Relative to alternative approaches, BB-FDTR yields order-of-magnitude improvements in the resolution and breadth of the thermal conductivity accumulation function. We will present data for GaAs, GaN, AlN, Si, and SiC that show interesting commonalities near their respective Debye temperatures and suggest that there may be a universal phonon MFP spectrum for small unit cell non-metals in the high temperature limit. At the time of this abstract submission we are also working on measurements of semiconductor alloys and select metals that will be presented if completed by the conference.
NASA Astrophysics Data System (ADS)
Wang, S.-Y.; Boyanovsky, D.; de Vega, H. J.; Lee, D.-S.; Ng, Y. J.
2000-03-01
We study the transport coefficients, damping rates, and mean free paths of soft fermion collective excitations in a hot fermion-gauge-scalar plasma with the goal of understanding the main physical mechanisms that determine transport of chirality in scenarios of nonlocal electroweak baryogenesis. The focus is on identifying the different transport coefficients for the different branches of soft collective excitations of the fermion spectrum. These branches correspond to collective excitations with opposite ratios of chirality to helicity and different dispersion relations. By combining results from the hard thermal loop (HTL) resummation program with a novel mechanism of fermion damping through heavy scalar decay, we obtain a robust description of the different damping rates and mean free paths for the soft collective excitations to leading order in HTL and lowest order in the Yukawa coupling. The space-time evolution of wave packets of collective excitations unambiguously reveals the respective mean free paths. We find that whereas both the gauge and scalar contribution to the damping rates are different for the different branches, the difference of mean free paths for both branches is mainly determined by the decay of the heavy scalar into a hard fermion and a soft collective excitation. We argue that these mechanisms are robust and are therefore relevant for nonlocal scenarios of baryogenesis either in the standard model or extensions thereof.
NASA Astrophysics Data System (ADS)
Rukolaine, Sergey A.
2016-05-01
In classical kinetic models a particle free path distribution is exponential, but this is more likely to be an exception than a rule. In this paper we derive a generalized linear Boltzmann equation (GLBE) for a general free path distribution in the framework of Alt's model. In the case that the free path distribution has at least first and second finite moments we construct an asymptotic solution to the initial value problem for the GLBE for small mean free paths. In the special case of the one-speed transport problem the asymptotic solution results in a diffusion approximation to the GLBE.
NASA Astrophysics Data System (ADS)
He, H.-Q.; Schlickeiser, R.
2014-09-01
The cosmic ray mean free path in a large-scale nonuniform guide magnetic field with superposed magnetostatic turbulence is calculated to clarify some conflicting results in the literature. A new, exact integro-differential equation for the cosmic-ray anisotropy is derived from the Fokker-Planck transport equation. A perturbation analysis of this integro-differential equation leads to an analytical expression for the cosmic ray anisotropy and the focused transport equation for the isotropic part of the cosmic ray distribution function. The derived parallel spatial diffusion coefficient and the associated cosmic ray mean free path include the effect of adiabatic focusing and reduce to the standard forms in the limit of a uniform guide magnetic field. For the illustrative case of isotropic pitch angle scattering, the derived mean free path agrees with the earlier expressions of Beeck & Wibberenz, Bieber & Burger, Kota, and Litvinenko, but disagrees with the result of Shalchi. The disagreement with the expression of Shalchi is particularly strong in the limit of strong adiabatic focusing.
He, H.-Q.; Schlickeiser, R. E-mail: rsch@tp4.rub.de
2014-09-10
The cosmic ray mean free path in a large-scale nonuniform guide magnetic field with superposed magnetostatic turbulence is calculated to clarify some conflicting results in the literature. A new, exact integro-differential equation for the cosmic-ray anisotropy is derived from the Fokker-Planck transport equation. A perturbation analysis of this integro-differential equation leads to an analytical expression for the cosmic ray anisotropy and the focused transport equation for the isotropic part of the cosmic ray distribution function. The derived parallel spatial diffusion coefficient and the associated cosmic ray mean free path include the effect of adiabatic focusing and reduce to the standard forms in the limit of a uniform guide magnetic field. For the illustrative case of isotropic pitch angle scattering, the derived mean free path agrees with the earlier expressions of Beeck and Wibberenz, Bieber and Burger, Kota, and Litvinenko, but disagrees with the result of Shalchi. The disagreement with the expression of Shalchi is particularly strong in the limit of strong adiabatic focusing.
Parallel transport of long mean-free-path plasma along open magnetic field lines: Parallel heat flux
Guo Zehua; Tang Xianzhu
2012-06-15
In a long mean-free-path plasma where temperature anisotropy can be sustained, the parallel heat flux has two components with one associated with the parallel thermal energy and the other the perpendicular thermal energy. Due to the large deviation of the distribution function from local Maxwellian in an open field line plasma with low collisionality, the conventional perturbative calculation of the parallel heat flux closure in its local or non-local form is no longer applicable. Here, a non-perturbative calculation is presented for a collisionless plasma in a two-dimensional flux expander bounded by absorbing walls. Specifically, closures of previously unfamiliar form are obtained for ions and electrons, which relate two distinct components of the species parallel heat flux to the lower order fluid moments such as density, parallel flow, parallel and perpendicular temperatures, and the field quantities such as the magnetic field strength and the electrostatic potential. The plasma source and boundary condition at the absorbing wall enter explicitly in the closure calculation. Although the closure calculation does not take into account wave-particle interactions, the results based on passing orbits from steady-state collisionless drift-kinetic equation show remarkable agreement with fully kinetic-Maxwell simulations. As an example of the physical implications of the theory, the parallel heat flux closures are found to predict a surprising observation in the kinetic-Maxwell simulation of the 2D magnetic flux expander problem, where the parallel heat flux of the parallel thermal energy flows from low to high parallel temperature region.
NASA Astrophysics Data System (ADS)
Davies, Frederick B.; Furlanetto, Steven R.
2016-04-01
Extremely large opaque troughs in the Lyα forest have been interpreted as a sign of an extended reionization process below z ˜ 6. Such features are impossible to reproduce with simple models of the intergalactic ionizing background that assume a uniform mean free path of ionizing photons. We build a self-consistent model of the ionizing background that includes fluctuations in the mean free path due to the varying strength of the ionizing background and large-scale density field. The dominant effect is the suppression of the ionizing background in large-scale voids due to "self-shielding" by an enhanced number of optically thick absorbers. Our model results in a distribution of 50 Mpc/h Lyα forest effective optical depths that significantly improves agreement with the observations at z ˜ 5.6. Extrapolation to z ˜ 5.4 and z ˜ 5.8 appears promising, but matching the mean background evolution requires evolution in the absorber population beyond the scope of the present model. We also demonstrate the need for extremely large volumes ( > 400 Mpc on a side) to accurately determine the incidence of rare large-scale features in the Lyα forest.
NASA Astrophysics Data System (ADS)
Bingi, J.; Hemalatha, M.; Anita, R. W.; Vijayan, C.; Murukeshan, V. M.
2015-11-01
Light transport and the physical phenomena related to light propagation in random media are very intriguing, they also provide scope for new paradigms of device functionality, most of which remain unexplored. Here we demonstrate, experimentally and by simulation, a novel kind of asymmetric light transmission (diffusion) in a stack of random media (SRM) with graded transport mean free path. The structure is studied in terms of transmission, of photons propagated through and photons generated within the SRM. It is observed that the SRM exhibits asymmetric transmission property with a transmission contrast of 0.25. In addition, it is shown that the SRM works as a perfect optical low-pass filter with a well-defined cutoff wavelength at 580 nm. Further, the photons generated within the SRM found to exhibit functionality similar to an optical diode with a transmission contrast of 0.62. The basis of this functionality is explained in terms of wavelength dependent photon randomization and the graded transport mean free path of SRM.
Anomalous mean free path of Z = 2 fragments from 4. 5A-GeV/c /sup 12/C projectiles in emulsion
El-Nadi, M.; Badawy, O.E.; Moussa, A.M.; Khalil, E.I.; El-Hamalaway, A.A.
1984-05-28
An anomalously short mean free path of 10.93 +- 2.00 cm is found for secondary Z = 2 fragments of 4.5A-GeV/c..cap alpha.. /sup 12/C projectiles at distances D< or =2.5 cm from their production in nuclear emulsions. The largest contribution to this anomalous short--mean-free-path component comes from N/sub h/ = 0 interactions of /sup 12/C in emulsion.
NASA Astrophysics Data System (ADS)
Worseck, Gábor; Prochaska, J. Xavier; O'Meara, John M.; Becker, George D.; Ellison, Sara L.; Lopez, Sebastian; Meiksin, Avery; Ménard, Brice; Murphy, Michael T.; Fumagalli, Michele
2014-12-01
We have obtained spectra of 163 quasars at zem > 4.4 with the Gemini Multi Object Spectrometers, the largest publicly available sample of high-quality, low-resolution spectra at these redshifts. From this data set, we generated stacked quasar spectra in three redshift intervals at z ˜ 5 to model the average rest-frame Lyman continuum flux and to assess the mean free path λ _mfp^{912} of the intergalactic medium to H I-ionizing radiation. At mean redshifts zq = (4.56, 4.86, 5.16), we measure λ _mfp^{912}=(22.2 ± 2.3, 15.1 ± 1.8, 10.3 ± 1.6)h_{70}^{-1} proper Mpc with uncertainties dominated by sample variance. Combining our results with measurements from lower redshifts, the data are well modelled by a power law λ _mfp^{912}=A[(1+zright)/5]^η with A=(37 ± 2)h_{70}^{-1} Mpc and η = -5.4 ± 0.4 at 2.3 < z < 5.5. This rapid evolution requires a physical mechanism - beyond cosmological expansion - which reduces the effective Lyman limit opacity. We speculate that the majority of H I Lyman limit opacity manifests in gas outside galactic dark matter haloes, tracing large-scale structures (e.g. filaments) whose average density and neutral fraction decreases with cosmic time. Our measurements of the mean free path shortly after H I reionization serve as a valuable boundary condition for numerical models thereof. Our measured λ _mfp^{912}≈ 10 Mpc at z = 5.2 confirms that the intergalactic medium is highly ionized without evidence for a break that would indicate a recent end to H I reionization.
Wang, Mingchao; Lin, Shangchao
2015-01-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30–110 ps and mean free path of 0.5–2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices. PMID:26658143
Wang, Mingchao; Lin, Shangchao
2015-01-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30-110 ps and mean free path of 0.5-2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices. PMID:26658143
NASA Astrophysics Data System (ADS)
Wang, Mingchao; Lin, Shangchao
2015-12-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30-110 ps and mean free path of 0.5-2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices.
Friedlander, E.M.; Gimpel, R.W.; Heckman, H.H.; Karant, Y.J.; Judek, B.; Ganssauge, E.
1982-08-01
We present in detail the description and the analysis of two independent experiments using Bevalac beams of {sup 16}O and {sup 56}Fe. From their results it is concluded that the reaction mean free paths of relativistic projectile fragments, 3 {<=} Z {<=} 26, are shorter for a few centimeters after emission than at large distances where they are compatible with values predicted from experiments on beam nuclei. The probability that this effect is due to a statistical fluctuation is <10{sup -3}. The effect is enhanced in later generations of fragments, the correlation between successive generations suggesting a kind of "memory" for the anomaly. Various systematic and spurious effects as well as conventional explanations are discussed mainly on the basis of direct experimental observations internal to our data, and found not to explain our results. The data can be interpreted by the relatively rare occurrence of anomalous fragments that interact with an unexpectedly large cross section. The statistical methods used in the analysis of the observations are fully described.
Temperature-Dependent Mean Free Path Spectra of Thermal Phonons Along the c-Axis of Graphite.
Zhang, Hang; Chen, Xiangwen; Jho, Young-Dahl; Minnich, Austin J
2016-03-01
Heat conduction in graphite has been studied for decades because of its exceptionally large thermal anisotropy. While the bulk thermal conductivities along the in-plane and cross-plane directions are well-known, less understood are the microscopic properties of the thermal phonons responsible for heat conduction. In particular, recent experimental and computational works indicate that the average phonon mean free path (MFP) along the c-axis is considerably larger than that estimated by kinetic theory, but the distribution of MFPs remains unknown. Here, we report the first quantitative measurements of c-axis phonon MFP spectra in graphite at a variety of temperatures using time-domain thermoreflectance measurements of graphite flakes with variable thickness. Our results indicate that c-axis phonon MFPs have values of a few hundred nanometers at room temperature and a much narrower distribution than in isotropic crystals. At low temperatures, phonon scattering is dominated by grain boundaries separating crystalline regions of different rotational orientation. Our study provides important new insights into heat transport and phonon scattering mechanisms in graphite and other anisotropic van der Waals solids. PMID:26840052
Guo Zehua; Tang Xianzhu
2012-08-15
Parallel transport of long mean-free-path plasma along an open magnetic field line is characterized by strong temperature anisotropy, which is driven by two effects. The first is magnetic moment conservation in a non-uniform magnetic field, which can transfer energy between parallel and perpendicular degrees of freedom. The second is decompressional cooling of the parallel temperature due to parallel flow acceleration by conventional presheath electric field which is associated with the sheath condition near the wall surface where the open magnetic field line intercepts the discharge chamber. To the leading order in gyroradius to system gradient length scale expansion, the parallel transport can be understood via the Chew-Goldbeger-Low (CGL) model which retains two components of the parallel heat flux, i.e., q{sub n} associated with the parallel thermal energy and q{sub s} related to perpendicular thermal energy. It is shown that in addition to the effect of magnetic field strength (B) modulation, the two components (q{sub n} and q{sub s}) of the parallel heat flux play decisive roles in the parallel variation of the plasma profile, which includes the plasma density (n), parallel flow (u), parallel and perpendicular temperatures (T{sub Parallel-To} and T{sub Up-Tack }), and the ambipolar potential ({phi}). Both their profile (q{sub n}/B and q{sub s}/B{sup 2}) and the upstream values of the ratio of the conductive and convective thermal flux (q{sub n}/nuT{sub Parallel-To} and q{sub s}/nuT{sub Up-Tack }) provide the controlling physics, in addition to B modulation. The physics described by the CGL model are contrasted with those of the double-adiabatic laws and further elucidated by comparison with the first-principles kinetic simulation for a specific but representative flux expander case.
Jiang Weizhou; Li Baoan; Chen Liewen
2007-10-15
The mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter are investigated using the nucleon optical potential obtained within the relativistic impulse approximation with the empirical nucleon-nucleon scattering amplitudes and the nuclear densities obtained in the relativistic mean-field model. It is found that the isospin-splitting of nucleon mean free paths, sensitive to the imaginary part of the symmetry potential, changes its sign at certain high kinetic energy. The in-medium nucleon-nucleon cross sections are analytically and numerically demonstrated to be essentially independent of the isospin asymmetry of the medium and increase linearly with density in the high-energy region where the relativistic impulse approximation is applicable.
NASA Astrophysics Data System (ADS)
Sakai, Takasuke
For the case of a long scattering mean free path, the solution of pitch angle transport equation using the method of KOTA et al. (1982) (KMJKGO) is compared with the simulation which follows the trajectories of particles in a simulated random magnetic field. The comparison shows that the KMJKGO method gives similar time profiles of the intensity to those obtained by the simulation, even with the anisotropic injection of particle at the source. It is found that the time profile is very sensitive to the direction of the velocity cone with respect to the ambient magnetic field at the point of injection, even though the same scattering mean free path is used. Thus, the direction of the velocity cone at the injection of the particles may be an important parameter when interpreting the propagation of solar cosmic rays from the time profile of intensity.
Karant, Y.J.
1981-07-01
From an analysis of 1460 projectile fragment collisions in nuclear research emulsion exposed to 2.1 A GeV /sup 16/O and 1.9 A GeV /sup 56/Fe at the Bevalac, evidence is presented for the existence of an anomalously short interaction mean free path of projectile fragments for the first several cm after emission. The result is significant to beyond the 3 standard deviation confidence level.
ERIC Educational Resources Information Center
Jakoby, Bernhard
2009-01-01
The collision model is frequently introduced to describe electronic conductivity in solids. Depending on the chosen approach, the introduction of the collision time can lead to erroneous results for the average velocity of the electrons, which enters the expression for the electrical conductivity. In other textbooks, correct results are obtained…
NASA Astrophysics Data System (ADS)
Tang, M. J.; Shiraiwa, M.; Poschl, U.; Cox, R. A.; Kalberer, M.
2015-05-01
Diffusion of organic vapours to the surface of aerosol or cloud particles is an important step for the formation and transformation of atmospheric particles. So far, however, a database of gas phase diffusion coefficients for organic compounds of atmospheric interest has not been available. In this work we have compiled and evaluated gas phase diffusivities (pressure-independent diffusion coefficients) of organic compounds reported by previous experimental studies, and we compare the measurement data to estimates obtained with Fuller's semi-empirical method. The difference between measured and estimated diffusivities are mostly < 10%. With regard to gas-particle interactions, different gas molecules, including both organic and inorganic compounds, exhibit similar Knudsen numbers (Kn) although their gas phase diffusivities may vary over a wide range. This is because different trace gas molecules have similar mean free paths in air at a given pressure. Thus, we introduce the pressure-normalised mean free path, λP ~ 100 nm atm, as a near-constant generic parameter that can be used for approximate calculation of Knudsen numbers as a simple function of gas pressure and particle diameter to characterise the influence of gas phase diffusion on the uptake of gases by aerosol or cloud particles. We use a kinetic multilayer model of gas-particle interaction to illustrate the effects of gas phase diffusion on the condensation of organic compounds with different volatilities. The results show that gas phase diffusion can play a major role in determining the growth of secondary organic aerosol particles by condensation of low-volatility organic vapours.
Mean Free Path in Soccer and Gases
ERIC Educational Resources Information Center
Luzuriaga, J.
2010-01-01
The trajectories of the molecules in an ideal gas and of the ball in a soccer game are compared. The great difference between these motions and some similarities are discussed. This example could be suitable for discussing many concepts in kinetic theory in a way that can be pictured by students for getting a more intuitive understanding. It could…
Mean Free Path in Soccer and Gases
ERIC Educational Resources Information Center
Luzuriaga, J.
2010-01-01
The trajectories of the molecules in an ideal gas and of the ball in a soccer game are compared. The great difference between these motions and some similarities are discussed. This example could be suitable for discussing many concepts in kinetic theory in a way that can be pictured by students for getting a more intuitive understanding. It could
NASA Astrophysics Data System (ADS)
Kurudirek, Murat; Özdemir, Yüksel
2011-01-01
The gamma ray energy absorption ( EABF) and exposure buildup factors ( EBF) have been calculated for some essential amino acids, fatty acids and carbohydrates in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). The five parameter geometric progression (G-P) fitting approximation has been used to calculate both EABF and EBF. Variations of EABF and EBF with incident photon energy, penetration depth and weight fraction of elements have been studied. While the significant variations in EABF and EBF for amino acids and fatty acids have been observed at the intermediate energy region where Compton scattering is the main photon interaction process, the values of EABF and EBF appear to be almost the same for all carbohydrates in the continuous energy region. It has been observed that the fatty acids have the largest EABF and EBF at 0.08 and 0.1 MeV, respectively, whereas the maximum values of EABF and EBF have been observed for aminoacids and carbohydrates at 0.1 MeV. At the fixed energy of 1.5 MeV, the variation of EABF with penetration depth appears to be independent of the variations in chemical composition of the amino acids, fatty acids and carbohydrates. Significant variations were also observed between EABF and EBF which may be due to the variations in chemical composition of the given materials.
Liu, Qixin; Cai, Zhiyong
2014-01-01
This paper presents studies on the characteristics of gas molecular mean freepath in nanopores by molecular dynamics simulation. Our study results indicate that themean free path of all molecules in nanopores depend on both the radius of the nanoporeand the gas-solid interaction strength. Besides mean free path of all molecules in thenanopore, this paper highlights the gas molecular mean free path at different positions ofthe nanopore and the anisotropy of the gas molecular mean free path at nanopores. Themolecular mean free path varies with the molecule's distance from the center of thenanopore. The least value of the mean free path occurs at the wall surface of the nanopore.The present paper found that the gas molecular mean free path is anisotropic when gas isconfined in nanopores. The radial gas molecular mean free path is much smaller than themean free path including all molecular collisions occuring in three directions. Our studyresults also indicate that when gas is confined in nanopores the gas molecule number densitydoes not affect the gas molecular mean free path in the same way as it does for the gas inunbounded space. These study results may bring new insights into understanding the gasflow's characteristic at nanoscale. PMID:25046745
A DRIFT ORDERED SHORT MEAN-FREE DESCRIPTION FOR PARTIALLY IONIZED MAGNETIZED PLASMA
SIMAKOV, ANDERI N.
2007-02-08
Effects of neutral particles, most prominently the associated heat flux and viscosity, can be very important or even dominant at the edge of a tokamak and so must be self-consistently accounted for in a description of magnetized tokamak edge plasma. To the best of our knowledge, this has only been done so far for short mean-free path plasma under MHD-like Braginskii's orderings i.e. assuming that species velocities are on the order of the ion thermal speed. Since plasma flows in modern tokamaks are usually slow compared with the ion thermal speed (at least in the absence of strong external momentum sources) it is more appropriate to use drift orderings in which the plasma flow velocity is instead comparable with the diamagnetic heat flow divided by pressure. Employing drift orderings and evaluating species distribution functions through second order in the small gyroradius and mean-free path expansion parameters allows accounting for the important effects of heat fluxes on species momentum transport (viscosities), which are missing from the large flow ordered treatments. In this work we consider short mean-free path plasma consisting of electrons and single species of singly-charged ions and neutrals. We neglect neutral-neutral and elastic electron-neutral collisions and approximate the neutral-ion charge-exchange cross-section with a constant. We employ drift orderings to evaluate ion, neutral, and electron heat fluxes, viscosity tensors, and momentum and energy exchange terms and formulate a self-consistent system of electron, ion, and neutral fluid equations, thereby generalizing the drift-ordered treatment of fully ionized plasma.
Electronic Stroke CarePath: Integrated Approach to Stroke Care.
Katzan, Irene L; Fan, Youran; Speck, Micheal; Morton, Johanna; Fromwiller, Lauren; Urchek, John; Uchino, Ken; Griffith, Sandra D; Modic, Michael
2015-10-01
We describe the development, implementation, and outcomes of the first 2 years of the Electronic Stroke CarePath, an initiative developed for management of ischemic stroke patients in an effort to improve efficiency and quality of care for patients. The CarePath consists of care pathways for ischemic stroke that are integrated within the electronic health record. Patient-reported outcomes are collected using an external software platform. Documentation tools, order sets, and clinical decision support were designed to improve efficiency, optimize process measure adherence, and produce clinical data as a byproduct of care that are available for future analyses. Inpatient mortality and length of stay were compared before and after CarePath implementation in ischemic stroke patients after adjustment for case-mix. Postdischarge functional outcomes of patients with ischemic stroke were compared between the first 3 months of rollout and remainder of the study period. From January 2011 to December 2012, there were 1106 patients with ischemic stroke on the CarePath. There was a decline in inpatient mortality in patients with ischemic stroke, but not in control patients with intracerebral or subarachnoid hemorrhage. Completion rate of patient-reported questionnaires at postdischarge stroke follow-up was 72.9%. There was a trend toward improved functional outcomes at follow-up with CarePath implementation. Implementation of the Electronic Stroke CarePath is feasible and may be associated with a benefit in multiple different outcomes after ischemic stroke. This approach may be an important strategy for optimizing stroke care in the future. PMID:26515207
Path integral Monte Carlo and the electron gas
NASA Astrophysics Data System (ADS)
Brown, Ethan W.
Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational principle inherent in the path integral Monte Carlo method to optimize the nodal surface. By using a ansatz resembling a free particle density matrix, we make a unique connection between a nodal effective mass and the traditional effective mass of many-body quantum theory. We then propose and test several alternate nodal ansatzes and apply them to single atomic systems. Finally, we propose a method to tackle the sign problem head on, by leveraging the relatively simple structure of permutation space. Using this method, we find we can perform exact simulations this of the electron gas and 3He that were previously impossible.
Energy loss of fast electrons impinging upon polymethylmethacrylate
NASA Astrophysics Data System (ADS)
Dapor, Maurizio
2015-06-01
This paper deals with the calculation of the differential inverse inelastic mean free path, the inelastic mean free path, the stopping power, the range of penetration, and the distribution function for inelastic collisions causing energy losses less than or equal to given values, for fast electrons impinging upon polymethylmethacrylate. Numerical tables are provided along with the comparison with computations of other investigators.
NASA Astrophysics Data System (ADS)
Hanasaki, Kota; Takatsuka, Kazuo
2010-05-01
Real-time dynamics in electron-nucleus coupled systems in molecules is studied using the path-integral formalism, with a special emphasis on nonadiabatic interactions. We first establish a formal path-integral description of the entire system. Applying the stationary phase approximation, we then derive coupled equations for the mixed quantum-classical treatment of the system: the equations of motion for electron wave-packet dynamics and those for nuclear dynamics driven by what we call the force form. Thus the present theory also serves as a general theory for dynamics in mixed quantum and classical systems. On this theoretical foundation, we analyze two theories of nonadiabatic electron-nucleus coupled systems from the viewpoint of path branching: the semiclassical Ehrenfest theory and the recently developed method of phase-space averaging and natural branching [T. Yonehara, S. Takahashi, and K. Takatsuka, J. Chem. Phys.JCPSA60021-960610.1063/1.3151684 130, 214113 (2009)]. We give a unified account of the essential feature of their physical implications and limitations. Path-integral formalism leads to further refinement of the idea of path branching caused by nonadiabatic coupling, thus giving deeper insight into the nonadiabatic dynamics. Further, we study the conservation laws for energy, linear momentum, and angular momentum in the general mixed quantum-classical representation. We also extend the present path-integral formulation so as to handle nonadiabatic dynamics in laser fields.
NASA Technical Reports Server (NTRS)
Tan, Lun C.; Malandraki, Olga E.; Reames, Donald; NG, Chee K.; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios
2013-01-01
We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of plus or minus 10% the deduced path length of low-energy (approximately 27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons.We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.
Tan, Lun C.; Malandraki, Olga E.; Patsou, Ioanna; Papaioannou, Athanasios; Reames, Donald V.; Ng, Chee K.; Wang, Linghua
2013-05-01
We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of {+-}10% the deduced path length of low-energy ({approx}27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons. We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.
NASA Astrophysics Data System (ADS)
Tan, Lun C.; Malandraki, Olga E.; Reames, Donald V.; Ng, Chee K.; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios
2013-05-01
We have examined the Wind/3DP/SST electron and Wind/EPACT/LEMT ion data to investigate the path length difference between solar electrons and ions in the ground-level enhancement (GLE) events in solar cycle 23. Assuming that the onset time of metric type II or decameter-hectometric (DH) type III radio bursts is the solar release time of non-relativistic electrons, we have found that within an error range of ±10% the deduced path length of low-energy (~27 keV) electrons from their release site near the Sun to the 1 AU observer is consistent with the ion path length deduced by Reames from the onset time analysis. In addition, the solar longitude distribution and IMF topology of the GLE events examined are in favor of the coronal mass ejection-driven shock acceleration origin of observed non-relativistic electrons. We have also found an increase of electron path lengths with increasing electron energies. The increasing rate of path lengths is correlated with the pitch angle distribution (PAD) of peak electron intensities locally measured, with a higher rate corresponding to a broader PAD. The correlation indicates that the path length enhancement is due to the interplanetary scattering experienced by first arriving electrons. The observed path length consistency implies that the maximum stable time of magnetic flux tubes, along which particles transport, could reach 4.8 hr.
Wang, Shuo; Maillet, Yoann; Wang, Fei; Lai, Rixin; Luo, Fang; Boroyevich, Dushan
2010-01-01
High-frequency common-mode (CM) electromagnetic-interference (EMI) noise is difficult to suppress in electronics systems. EMI filters are used to suppress CM noise, but their performance is greatly affected by the parasitic effects of the grounding paths. In this paper, the parasitic effects of the grounding paths on an EMI filter's performance are investigated in a motor-drive system. The effects of the mutual inductance between two grounding paths are explored. Guidelines for the grounding of CM EMI filters are derived. Simulations and experiments are finally carried out to verify the theoretical analysis.
Burke, TImothy P.; Kiedrowski, Brian C.; Martin, William R.; Brown, Forrest B.
2015-11-19
Kernel Density Estimators (KDEs) are a non-parametric density estimation technique that has recently been applied to Monte Carlo radiation transport simulations. Kernel density estimators are an alternative to histogram tallies for obtaining global solutions in Monte Carlo tallies. With KDEs, a single event, either a collision or particle track, can contribute to the score at multiple tally points with the uncertainty at those points being independent of the desired resolution of the solution. Thus, KDEs show potential for obtaining estimates of a global solution with reduced variance when compared to a histogram. Previously, KDEs have been applied to neutronics for one-group reactor physics problems and fixed source shielding applications. However, little work was done to obtain reaction rates using KDEs. This paper introduces a new form of the MFP KDE that is capable of handling general geometries. Furthermore, extending the MFP KDE to 2-D problems in continuous energy introduces inaccuracies to the solution. An ad-hoc solution to these inaccuracies is introduced that produces errors smaller than 4% at material interfaces.
NASA Technical Reports Server (NTRS)
Mason, G. M.; Reames, D. V.; Ng, C. K.
1991-01-01
Observations of two flares which fit the diffusive model by Beeck et al. (1987) are employed to determine whether large solar-particle events can be explained by the mechanisms of small impulsive events. It is shown that the injection of particles at the source is extended in time and lasts more than approximately 10 hours. The extended injection at the sun is hypothesized to be the reason that large solar particles do not demonstrate the 'pulse/wake' behavior associated with the small impulsive events.
Assurance of Complex Electronics. What Path Do We Take?
NASA Technical Reports Server (NTRS)
Plastow, Richard A.
2007-01-01
Many of the methods used to develop software bare a close resemblance to Complex Electronics (CE) development. CE are now programmed to perform tasks that were previously handled in software, such as communication protocols. For instance, Field Programmable Gate Arrays (FPGAs) can have over a million logic gates while system-on-chip (SOC) devices can combine a microprocessor, input and output channels, and sometimes an FPGA for programmability. With this increased intricacy, the possibility of "software-like" bugs such as incorrect design, logic, and unexpected interactions within the logic is great. Since CE devices are obscuring the hardware/software boundary, we propose that mature software methodologies may be utilized with slight modifications to develop these devices. By using standardized S/W Engineering methods such as checklists, missing requirements and "bugs" can be detected earlier in the development cycle, thus creating a development process for CE that will be easily maintained and configurable based on the device used.
Dephasing of an electronic two-path interferometer
NASA Astrophysics Data System (ADS)
Gurman, Itamar; Sabo, Ron; Heiblum, Moty; Umansky, Vladimir; Mahalu, Diana
2016-03-01
This Rapid Communication was motivated by the quest for observing interference of fractionally charged quasiparticles. Here, we study the behavior of an electronic Mach-Zehnder interferometer at the integer quantum Hall effect regime at filling factors greater than 1. Both the visibility and the velocity were measured and found to be highly correlated as a function of the filling factor. As the filling factor approached unity, the visibility quenched, not to recover for filling factors smaller than unity. Alternatively, the velocity saturated around a minimal value at the unity filling factor. We highlight the significant role interactions between the interfering edge and the bulk play as well as that of the defining potential at the edge. Shot-noise measurements suggest that phase averaging (due to phase randomization), rather than single-particle decoherence, is likely to be the cause of the dephasing in the fractional regime.
Yamazaki, Kaoru; Niitsu, Naoyuki; Nakamura, Kosuke; Kanno, Manabu; Kono, Hirohiko
2012-11-26
We investigated the reaction paths of Stone-Wales rearrangement (SWR), i.e., π/2 rotation of two carbon atoms with respect to the midpoint of the bond, in graphene and carbon nanotube quantum chemically. Our particular attention is focused on the roles of electronic excitations and conical intersections (CIs) in the reaction mechanism. We used pyrene as a model system. The reaction paths were determined by constructing potential energy surfaces at the MS-CASPT2//SA-CASSCF level of theory. We found that there are no CIs involved in SWR when both of C-C bond cleavage and formation occur simultaneously (concerted mechanism). In contrast, for the reaction path with stepwise cleavage and formation of C-C bonds, C-C bond breaking and making processes proceed through two CIs. When SWR starts from the ground (S(0)) state, the concerted and stepwise paths have an equivalent reaction barrier ΔE(‡) (9.5-9.6 eV). For the reaction path starting from excited states, only the stepwise mechanism is energetically preferable. This path contains a nonadabatic transition between the S(1) and S(0) states via a CI associated with the first stage of C-C bond cleavage and has ΔE(‡) as large as in the S(0) paths. We confirmed that the main active molecular orbitals and electron configurations for the low-lying electronic states of larger nanocarbons are the same as those in pyrene. This result suggests the importance of the nonadiabatic transitions through CIs in the photochemical reactions in large nanocarbons. PMID:22994422
Effects of elastic and inelastic scattering in giving electrons tortuous paths in matter
Turner, J.E.; Hamm, R.N.
1995-09-01
Heavy charged particles travel in essentially straight lines in matter, while electrons travel in tortuous paths. Frequent multiple elastic Coulomb scattering by atomic nuclei is often cited as the reason for this electron behavior. Heavy charged particles also undergo multiple Coulomb scattering. However, because they are massive, significant deflections occur only in rare, close encounters with nuclei. In contrast to heavy particles, the inelastic interaction of an electron with an atomic electron represents a collision with a particle of equal mass. In principle, therefore, repeated inelastic scattering of an electron can also produce large-angle deflections and thus contribute to the tortuous nature of an electron`s track. To investigate the relative importance of elastic and inelastic scattering on determining the appearance of electron tracks, detailed Monte Carlo transport computations have been carried out for monoenergetic pencil beams of electrons normally incident on a water slab with initial energies from 1 keV to 1 MeV. The calculations have been performed with deflections due to (1) inelastic scattering only, (2) elastic scattering only, and (3) both types of scattering. Results are presented to show the spreading of the pencil beams with depth in the slab, the transmission through slabs of different thicknesses, and back-scattering from the slab. The results show that elastic nuclear scattering is indeed the principal physical process that causes electron paths to be tortuous; however, the smaller effect of inelastic electronic scattering is far from negligible. 7 refs., 16 figs., 1 tab.
Electron paths and double-slit interference in the scanning gate microscopy
NASA Astrophysics Data System (ADS)
Kolasiński, K.; Szafran, B.
2015-06-01
We analyze electron paths in a solid-state double-slit interferometer based on two-dimensional electron gas and mapping by scanning gate microscopy (SGM). A device with a quantum point source contact of a split exit and a drain contact for electron detection is considered. We study the SGM maps of source-drain conductance (G) as functions of the probe position, and we find that for a narrow drain, the classical electron paths are clearly resolved without any trace of double-slit interference. The latter is only present in the SGM maps of backscattering (R) probability. Double-slit interference is found in the G maps for a wider drain contact, but at the expense of a loss of information on the electron trajectories. We discuss the interplay of Young's interference and interference effects between various electron paths introduced by the tip and the electron detector. The stability of the G and R maps versus the geometry parameters of the scattering device is also discussed.
Putz, Mihai V.
2009-01-01
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467
Effects of elastic and inelastic scattering in giving electrons tortuous paths in matter.
Turner, J E; Hamm, R N
1995-09-01
Heavy charged particles travel in essentially straight lines in matter, while electrons travel in tortuous paths. Frequent multiple elastic Coulomb scattering by atomic nuclei is often cited as the reason for this electron behavior. Heavy charged particles also undergo multiple Coulomb scattering. However, because they are massive, significant deflections occur only in rare, close encounters with nuclei. In contrast to heavy particles, the inelastic interaction of an electron with an atomic electron represents a collision with a particle of equal mass. In principle, therefore, repeated inelastic scattering of an electron can also produce large-angle deflections and thus contribute to the tortuous nature of an electron's track. To investigate the relative importance of elastic and inelastic scattering on determining the appearance of electron tracks, detailed Monte Carlo transport computations have been carried out for monoenergetic pencil beams of electrons normally incident on a water slab with initial energies from 1 keV to 1 MeV. The calculations have been performed with deflections due to (1) inelastic scattering only, (2) elastic scattering only, and (3) both types of scattering. Results are presented to show the spreading of the pencil beams with depth in the slab, the transmission through slabs of different thicknesses, and back-scattering from the slab. The results show that elastic nuclear scattering is indeed the principal physical process that causes electron paths to be tortuous; however, the smaller effect of inelastic electronic scattering is far from negligible. PMID:7635734
Weak measurement from the electron displacement current: new path for applications
NASA Astrophysics Data System (ADS)
Marian, D.; Colomés, E.; Zanghì, N.; Oriols, X.
2015-10-01
The interest on weak measurements is rapidly growing during the last years as a unique tool to better understand and predict new quantum phenomena. Up to now many theoretical and experimental weak-measurement techniques deal with (relativistic) photons or cold atoms, but there is much less investigation on (non-relativistic) electrons in up-to-date electronics technologies. We propose a way to perform weak measurements in nanoelectronic devices through the measurement of the total current (particle plus displacement component) in such devices. We study the interaction between an electron in the active region of a electron device with a metal surface working as a sensing electrode by means of the (Bohmian) conditional wave function. We perform numerical (Monte Carlo) simulations to reconstruct the Bohmian trajectories in the iconic double slit experiment. This work opens new paths for understanding the quantum properties of an electronic system as well as for exploring new quantum engineering applications in solid state physics.
NASA Astrophysics Data System (ADS)
Malandraki, Olga; Tan, Lun; Reames, Donald; Ng, Chee; Wang, Linghua; Patsou, Ioanna; Papaioannou, Athanasios
2014-05-01
The inconsistency of electron and ion path lengths during Solar Energetic Particle (SEP) events remains an open issue. In order to investigate the difference between the electron and ion path lengths during the Ground-Level Enhancement (GLE) events in solar cycle 23, electron and ion data from the WIND/3DP/SST and WIND/EPACT/LEMT instruments respectively have been used. The electron path lengths were determined for the GLEs in solar cycle 23 assuming that the solar release time of non-relativistic electrons is well represented by the onset time of metric type II or decametre-hectometric (DH) type III radio bursts. The values estimated for low-energy electrons (~ 27 keV) were compared to the ion path lengths deduced by Reames for the GLEs in solar cycle 23 based on the onset-time analysis and consistency within an error range of 10% was found. In addition, the electron path lengths were found to increase with increasing electron energies, with the increasing rate of path lengths corresponding to broader position angle distribution (PAD) of electrons, which suggests that electron path length enhancement is due to interplanetary scattering experienced by first-arriving electrons. Furthermore, the solar longitude distribution and IMF topology of the GLE events examined support that the non-relativistic electrons observed have been accelerated in shocks driven by CMEs. Finally, it should be stressed that the observed path length consistency leads to stability of magnetic flux tubes along which particles travel, with a maximum stability time of ~ 4.8 hours, which could be very important for forecasting since, based on the observed onset time of the electron event, it is possible to observe the arrival and duration of the proton event.
Painter, L.R.
1980-01-01
Progress is reviewed on the following research areas: (1) electron mean free paths in liquid formamide; (2) yields and mean free paths of photoelectrons from liquid hexamethylphosphorictricamide; (3) evidence for collective electronic oscillations in electron bombarded liquid siloxane; (4) a new technique for measuring the reflectance of high vapor pressure liquids; (5) construction of soft x-ray monochromator; (6) electronic properties of benzene and methyl benzene derivatives; (7) optical and dielectric functions of squalane and squalene; and (8) photoemission of squalene and tetraglyme. Separate abstracts were prepared for the two papers included, and are entered in the data base separately. (WHK)
NASA Technical Reports Server (NTRS)
Ko, H. C.
1973-01-01
The wave-normal emissivity and the ray emissivity formulas for an electron moving along a helical path in a magnetoactive medium are presented. Simplified formulas for the case of an isotropic plasma are also given. Because of the helical motion of the electron, a difference exists between the radiated power per unit solid angle and the received power per unit solid angle. The relation between these two quantities in a magnetoactive medium is shown. Results are compared with those obtained by others, and the sources of discrepancies are pointed out.
Huo, Pengfei; Miller, Thomas F; Coker, David F
2013-10-21
A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime. PMID:24160492
Huo, Pengfei; Miller, Thomas F. III; Coker, David F.
2013-10-21
A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime.
NASA Astrophysics Data System (ADS)
Dornheim, Tobias; Schoof, Tim; Groth, Simon; Filinov, Alexey; Bonitz, Michael
2015-11-01
The uniform electron gas (UEG) at finite temperature is of high current interest due to its key relevance for many applications including dense plasmas and laser excited solids. In particular, density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently, the only existing first-principle results had been obtained for N = 33 electrons with restricted path integral Monte Carlo (RPIMC), for low to moderate density, r s = r ¯ / a B ≳ 1 . These data have been complemented by configuration path integral Monte Carlo (CPIMC) simulations for rs ≤ 1 that substantially deviate from RPIMC towards smaller rs and low temperature. In this work, we present results from an independent third method—the recently developed permutation blocking path integral Monte Carlo (PB-PIMC) approach [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] which we extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density range down to half the Fermi temperature (θ = kBT/EF = 0.5) and, therefore, to compare our results to both aforementioned methods. While we find excellent agreement with CPIMC, where results are available, we observe deviations from RPIMC that are beyond the statistical errors and increase with density.
Dornheim, Tobias; Schoof, Tim; Groth, Simon; Filinov, Alexey; Bonitz, Michael
2015-11-28
The uniform electron gas (UEG) at finite temperature is of high current interest due to its key relevance for many applications including dense plasmas and laser excited solids. In particular, density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently, the only existing first-principle results had been obtained for N = 33 electrons with restricted path integral Monte Carlo (RPIMC), for low to moderate density, rs=r¯/aB≳1. These data have been complemented by configuration path integral Monte Carlo (CPIMC) simulations for rs ≤ 1 that substantially deviate from RPIMC towards smaller rs and low temperature. In this work, we present results from an independent third method-the recently developed permutation blocking path integral Monte Carlo (PB-PIMC) approach [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] which we extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density range down to half the Fermi temperature (θ = kBT/EF = 0.5) and, therefore, to compare our results to both aforementioned methods. While we find excellent agreement with CPIMC, where results are available, we observe deviations from RPIMC that are beyond the statistical errors and increase with density. PMID:26627944
Electron relaxation in disordered gold films
NASA Astrophysics Data System (ADS)
Belevtsev, B. I.; Komnik, Yu. F.; Beliayev, E. Yu.
1998-09-01
The analysis of quantum corrections to magnetoconductivity of thin Au films responsible for the effect of weak electron localization has made it possible to determine the temperature dependences of electron phase relaxation time in the temperature range 0.5-50 K for different degrees of crystal lattice disorder. The disorder was enhanced by irradiating the films in vacuum with 3.5-keV Ar ions. The experimental data clearly demonstrate that the contribution of electron-electron interaction to electron phase relaxation increases with disorder and support the theoretical prediction that the frequency of electron-phonon scattering tends to diminish upon a decrease in electron mean free path. It is found that the spin-orbit scattering rate decreases with disorder. In our opinion, such unusual behavior can take place for thin films upon decreasing the electron mean free path, provided that the surface electron scattering contributes significantly to the total spin-orbit scattering.
Motion of Electrons in Electric and Magnetic Fields: Introductory Laboratory and Computer Studies.
ERIC Educational Resources Information Center
Huggins, Elisha R.; Lelek, Jeffrey J.
1979-01-01
Describes a series of laboratory experiments and computer simulations of the motion of electrons in electric and magnetic fields. These experiments, which involve an inexpensive student-built electron gun, study the electron mean free path, magnetic focusing, and other aspects. (Author/HM)
2011-01-01
In this article, a scanning probe method based on nanoscale capacitance measurements was used to investigate the lateral homogeneity of the electron mean free path both in pristine and ion-irradiated graphene. The local variations in the electronic transport properties were explained taking into account the scattering of electrons by charged impurities and point defects (vacancies). Electron mean free path is mainly limited by charged impurities in unirradiated graphene, whereas an important role is played by lattice vacancies after irradiation. The local density of the charged impurities and vacancies were determined for different irradiated ion fluences. PMID:21711643
All-Electron Path Integral Simulations of Warm, Dense Matter: Application to Water and Carbon
NASA Astrophysics Data System (ADS)
Driver, Kevin; Militzer, Burkhard
2012-02-01
We develop an all-electron path integral Monte Carlo (PIMC) method for warm dense matter and apply it to study water and carbon. PIMC pressures, internal energies, and pair-correlation functions compare well with density functional theory molecular dynamics (DFT-MD) at lower temperatures and enable the construction of a coherent equation of state over a density-temperature range of 3--12 g/cm^3 and 10^2--10^9 K. PIMC results converge to the Debye-Huckel limiting law at high-temperatures and illuminate the breakdown of DFT pseudopotentials due to core excitations.
Fermionic path-integral Monte Carlo results for the uniform electron gas at finite temperature
NASA Astrophysics Data System (ADS)
Filinov, V. S.; Fortov, V. E.; Bonitz, M.; Moldabekov, Zh.
2015-03-01
The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data, accurate theoretical models for high-density plasmas are needed that depend crucially on the quality of the thermodynamic properties of the quantum degenerate nonideal electrons and of the treatment of their interaction with the positive background. Recent fixed-node path-integral Monte Carlo (RPIMC) data are believed to be the most accurate for the UEG at finite temperature, but they become questionable at high degeneracy when the Brueckner parameter rs=a /aB —the ratio of the mean interparticle distance to the Bohr radius—approaches 1. The validity range of these simulations and their predictive capabilities for the UEG are presently unknown. This is due to the unknown quality of the used fixed nodes and of the finite-size scaling from N =33 simulated particles (per spin projection) to the macroscopic limit. To analyze these questions, we present alternative direct fermionic path integral Monte Carlo (DPIMC) simulations that are independent from RPIMC. Our simulations take into account quantum effects not only in the electron system but also in their interaction with the uniform positive background. Also, we use substantially larger particle numbers (up to three times more) and perform an extrapolation to the macroscopic limit. We observe very good agreement with RPIMC, for the polarized electron gas, up to moderate densities around rs=4 , and larger deviations for the unpolarized case, for low temperatures. For higher densities (high electron degeneracy), rs≲1.5 , both RPIMC and DPIMC are problematic due to the increased fermion sign problem.
Turn on of new electronic paths in Fe-SiO{sub 2} granular thin film
Boff, M. A. S. E-mail: marcoaureliosilveiraboff@gmail.com; Canto, B.; Mesquita, F.; Fraga, G. L. F.; Pereira, L. G.; Hinrichs, R.; Baptista, D. L.
2014-10-06
The electrical properties of Fe-SiO{sub 2} have been studied in the low-field regime (eΔV ≪ k{sub B}T), varying the injected current and the bias potential. Superparamagnetism and a resistance drop of 4400 Ω (for a voltage variation of 15 V) were observed at room temperature. This resistance drop increased at lower temperatures. The electrical properties were described with the “Mott variable range hopping” model explaining the behavior of the electrical resistance and the electronic localization length as due to the activation of new electronic paths between more distant grains. This non-ohmic resistance at room temperature can be important for properties dependent of electrical current (magnetoresistance, Hall effect, and magnetoimpedance).
Discrete Diffusion Monte Carlo for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory
2014-10-01
The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.
All-Electron Path Integral Simulations of Warm, Dense Matter: Application to Water and Carbon
NASA Astrophysics Data System (ADS)
Driver, K. P.; Militzer, B.
2012-12-01
We develop an all-electron path integral Monte Carlo (PIMC) method for warm dense matter and apply it to study water and carbon. PIMC pressures, internal energies, and pair-correlation functions compare well with density functional theory molecular dynamics (DFT-MD) at lower temperatures and enable the construction of a coherent equation of state over a density-temperature range of 3--12 g/cm3 and 102--109 K. PIMC results converge to the Debye-Huckel limiting law at high-temperatures and illuminate the breakdown of DFT pseudopotentials due to core excitations. Funding provided by the NSF (DMS-1025370). Computational resources provided by the National Center for Atmospheric Research and Lawrence Berkeley National Laboratory.
Electron avalanche and spark evolution along laser path in resonant laser-induced ignition
NASA Astrophysics Data System (ADS)
Adams, Steven; Tolson, Boyd; Hensley, Amber
2014-10-01
A multi-photon ionization scheme is studied that could provide laser-induced ignition within a high-voltage gap across an aircraft combustion chamber. The multi-photon resonant enhanced ionization (REMPI) technique could potentially be applied as a laser trigger from a compact low power laser source leading to breakdown and ignition of an aircraft air-fuel flow. In this experiment, an ultraviolet laser is passed through an aperture in the anode and into the flow chamber. The REMPI process forms an ionized channel between the electrodes and, with an applied electric field, eventually leads to breakdown precisely along the laser path. A delay time of 200 to 1000 ns between the laser pulse and breakdown event is typical for our range of conditions. High speed imaging and spectroscopic data reveal evidence of space charge regions and local field distortion within the interelectrode space during the delay time and a model is applied to simulate the electron avalanche process. Spatially resolved spectroscopic analysis identifies various regions and degrees of laser photoionization, electron impact ionization, radical species and gas heating during the delay time.
Sansone, G.; Benedetti, E.; Caumes, J.-P.; Stagira, S.; Vozzi, C.; De Silvestri, S.; Nisoli, M.
2006-05-15
In this work we report on the first experimental demonstration of selection of the long electron quantum paths in the process of high-order harmonic generation by phase-stabilized multiple-cycle light pulses. A complete experimental investigation of the role of intensity and carrier-envelope phase of the driving pulses on the spectral characteristics of the long quantum paths is performed. Simulations based on the nonadiabatic saddle-point method and on a complete nonadiabatic three-dimensional model reproduce the main features of the experimental results. The use of phase-stabilized driving pulses allows one to control, on an attosecond temporal scale, the spectral and temporal characteristics associated with the electron quantum paths involved in the harmonic generation process.
Choi, N. N.; Jiang, T. F.; Morishita, T.; Lee, M.-H.; Lin, C. D.
2010-07-15
We study theoretically the electron wave packet generated by an attosecond pulse train (APT) which is probed with a time-delayed infrared (IR) laser pulse. The APT creates an excited state and a continuum electron wave packet. By ionizing the excited state with an IR, a delayed new continuum electron wave packet is created. The interference of the wave packets from the two paths, as reflected in angle-resolved photoelectron spectra, is analyzed analytically. Using the analytical expressions, we examine the possibility of retrieving information on the electron wave packet generated by the APT.
Han, Sang Eon
2016-02-01
Nanostructured metals have been intensively studied for optical applications over the past few decades. However, the intrinsic loss of metals has limited the optical performance of the metal nanostructures in diverse applications. In particular, light concentration in metals by surface plasmons or other resonances causes substantial absorption in metals. Here, we avoid plasmonic excitations for low loss and investigate methods to further suppress loss in nanostructured metals. We demonstrate that parasitic absorption in metal nanostructures can be significantly reduced over a broad band by increasing the Faraday inductance and the electron path length. For an example structure, the loss is reduced in comparison to flat films by more than an order of magnitude over most of the very broad spectrum between short and long wavelength infrared. For a photodetector structure, the fraction of absorption in the photoactive material increases by two orders of magnitude and the photoresponsivity increases by 15 times because of the selective suppression of metal absorption. These findings could benefit many metal-based applications that require low loss such as photovoltaics, photoconductive detectors, solar selective surfaces, infrared-transparent defrosting windows, and other metamaterials. PMID:26906830
Shaing, K. C.
2007-11-15
In Part I [Phys. Fluids B 2, 1190 (1990)] and Part II [Phys. Plasmas 12, 082508 (2005)], it was emphasized that the equilibrium plasma viscous forces when applied for the magnetohydrodynamic (MHD) modes are only rigorously valid at the mode rational surface where m-nq=0. Here, m is the poloidal mode number, n is the toroidal mode number, and q is the safety factor. This important fact has been demonstrated explicitly by calculating the viscous forces in the plateau regime in Parts I and II. Here, the effective viscous forces in the banana regime are calculated for MHD modes by solving the linear drift kinetic equation that is driven by the plasma flows first derived in Part I. At the mode rational surface, the equilibrium plasma viscous forces are reproduced. However, it is found that away from the mode rational surface, the viscous forces for MHD modes decrease, a behavior similar to that observed in the viscous forces for the plateau regime. The proper form of the momentum equation that is appropriate for the modeling of the MHD modes is also discussed.
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio
2015-09-01
Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.
NASA Astrophysics Data System (ADS)
Filinov, V. S.; Fortov, V. E.; Bonitz, M.; Moldabekov, Zh
2015-11-01
The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data accurate theoretical models for high density plasmas are needed which crucially depend on treatment of quantum effects in electron-electron interaction as well as in the interaction of electrons with uniform positive background. To comply with these requirements we have developed the new quantum path integral model of the UEG and present the results of related direct path integral Monte-Carlo (DPIMC) simulations. Contrary to the known in literature approaches treating the electron-background interaction classically our simulations take into account the quantum effects in this interaction. We have observed very good agreement with known in literature results only up to moderate densities when the ratio of the average interparticle distance to the Bohr radius is of order four (rs ≥ 4) and observe deviations for higher densities. At very high electron density (rs ≈ 1) presented in literature approaches as well as our simulations are problematic due to the strong degeneracy of electrons and increasing fermion sign problem.
Thrapsaniotis, E. G.
2012-08-15
We model in a fully quantum mechanical way the dynamics of an atom of one optically active electron interacting with a pulsed Fock state which is linearly polarized. We use path integral methods. We derive the system's sign solved propagator which gives full information on its dynamics. We apply our method to the ionization of atomic hydrogen by a one-photon pulsed Fock state and study the contribution of the electromagnetic fluctuations.
Mangaud, E; de la Lande, A; Meier, C; Desouter-Lecomte, M
2015-12-14
The quantum dynamics of electron transfer in mixed-valence organic compounds is investigated using a reaction path model calibrated by constrained density functional theory (cDFT). Constrained DFT is used to define diabatic states relevant for describing the electron transfer, to obtain equilibrium structures for each of these states and to estimate the electronic coupling between them. The harmonic analysis at the diabatic minima yields normal modes forming the dissipative bath coupled to the electronic states. In order to decrease the system-bath coupling, an effective one dimensional vibronic Hamiltonian is constructed by partitioning the modes into a linear reaction path which connects both equilibrium positions and a set of secondary vibrational modes, coupled to this reaction coordinate. Using this vibronic model Hamiltonian, dissipative quantum dynamics is carried out using Redfield theory, based on a spectral density which is determined from the cDFT results. In a first benchmark case, the model is applied to a series of mixed-valence organic compounds formed by two 1,4-dimethoxy-3-methylphenylene fragments linked by an increasing number of phenylene bridges. This allows us to examine the coherent electron transfer in extreme situations leading to a ground adiabatic state with or without a barrier and therefore to the trapping of the charge or to an easy delocalization. PMID:26041466
Liu, I-Lin; Li, Peng-Cheng; Chu, Shih-I
2011-09-15
We report a mechanism and a realizable approach for the coherent control of the generation of an isolated and ultrashort atto second (as) laser pulse from atoms by optimizing the two-color laser fields with a proper time delay. Optimizing the laser pulse shape allows the control of the electron quantum paths and enables high-harmonic generation from the long- and short-trajectory electrons to be enhanced and split near the cutoff region. In addition, it delays the long-trajectory electron emission time and allows the production of extremely short atto second pulses in a relatively narrow time duration. As a case study, we show that an isolated 30 as pulse with a bandwidth of 127 eV can be generated directly from the contribution of long-trajectory electrons alone.
Transport and relaxation of hot conduction electrons in an organic dielectric
NASA Astrophysics Data System (ADS)
Cartier, E.; Pfluger, P.
1986-12-01
Effective mean free paths of hot electrons in the energy range 0.5 eV<=Ekin<=20 eV are determined experimentally for the paraffin n-C36H74 with the internal photoemission for transport analysis method. The hot-electron transport parameters are discussed in terms of fundamental scattering mechanisms in organic dielectrics. The influence of hot-electron-induced trap formation on the transport properties is investigated. The consequences for dielectric breakdown are pointed out.
Tesoriero, A.J.; Liebscher, H.; Cox, S.E.
2000-01-01
The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third-order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon-based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from < 0.01 to 0.14 mM of N per year; rates at the redoxcline along the shallow flow path range from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third-order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon-based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from <0.01 to 0.14 mM of N per year; rates at the redoxcline along the shallow flow path range from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.
Feynman Path Integral Approach to Electron Diffraction for One and Two Slits: Analytical Results
ERIC Educational Resources Information Center
Beau, Mathieu
2012-01-01
In this paper we present an analytic solution of the famous problem of diffraction and interference of electrons through one and two slits (for simplicity, only the one-dimensional case is considered). In addition to exact formulae, various approximations of the electron distribution are shown which facilitate the interpretation of the results.
Feynman Path Integral Approach to Electron Diffraction for One and Two Slits: Analytical Results
ERIC Educational Resources Information Center
Beau, Mathieu
2012-01-01
In this paper we present an analytic solution of the famous problem of diffraction and interference of electrons through one and two slits (for simplicity, only the one-dimensional case is considered). In addition to exact formulae, various approximations of the electron distribution are shown which facilitate the interpretation of the results.…
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Tarasenko, Viktor F.; Shao, Tao; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Wang, Ruixue; Sorokin, Dmitry A.; Yan, Ping
2015-03-01
Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05-0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08-0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%-50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.
Zhang, Cheng; Shao, Tao Wang, Ruixue; Yan, Ping; Tarasenko, Viktor F.; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Sorokin, Dmitry A.
2015-03-15
Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.
Monte Carlo Transport for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2015-11-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
Implications of the reported low energy electron gradients. [in cosmic rays
NASA Technical Reports Server (NTRS)
Lezniak, J. A.; Webber, W. R.
1974-01-01
A recently reported measurement of a small electron gradient in the energy range from 1.9 to 8.4 MeV by Webber et al. (1973) is interpreted in terms of a large local value of the scattering mean free path for these particles. The possibility that the scattering mean free path may be large throughout the modulation region is then investigated under the assumption of an azimuthally symmetric modulation region of 5 AU extent, the applicability of the diffusion-convection-adiabatic energy loss transport equation, and a galactic origin for the low-energy electrons. The implications for the solar modulation of electrons and the interstellar electron spectrum are discussed.
Silicon electronics on silk as a path to bioresorbable, implantable devices
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Kim, Yun-Soung; Amsden, Jason; Panilaitis, Bruce; Kaplan, David L.; Omenetto, Fiorenzo G.; Zakin, Mitchell R.; Rogers, John A.
2009-09-01
Many existing and envisioned classes of implantable biomedical devices require high performance electronics/sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications.
Ma, Jie; Yang, Jihui; Da Silva, J. L.F.; Wei, Su-Huai
2014-10-30
Using first-principles calculations, we study the diffusions of interstitial defects Cd, Cu, Te, and Cl in CdTe. We find that the diffusion behavior is strongly correlated with the electronic structure of the interstitial diffuser. For Cd and Cu, because the defect state is the non-degenerated slike state under T_{d} symmetry, the diffusions are almost along the [111] directions between the tetrahedral sites, although the diffusion of Cu shows some deviation due to the s - d coupling. The diffusions of the neutral and charged Cd and Cu follow similar paths. However, for Te and Cl atoms, because the defect state is the degenerated p-like state under T_{d} symmetry, large distortions occur. Therefore, the diffusion paths are very different from those of Cd and Cu interstitials, and depend strongly on the charge states of the interstitial atoms. For Te, we find that the distortion is mostly stabilized by the crystal-field splitting, but for Cl, the exchange splitting plays a more important role.
Ma, Jie; Yang, Jihui; Da Silva, J. L.F.; Wei, Su-Huai
2014-10-30
Using first-principles calculations, we study the diffusions of interstitial defects Cd, Cu, Te, and Cl in CdTe. We find that the diffusion behavior is strongly correlated with the electronic structure of the interstitial diffuser. For Cd and Cu, because the defect state is the non-degenerated slike state under Td symmetry, the diffusions are almost along the [111] directions between the tetrahedral sites, although the diffusion of Cu shows some deviation due to the s - d coupling. The diffusions of the neutral and charged Cd and Cu follow similar paths. However, for Te and Cl atoms, because the defect statemore » is the degenerated p-like state under Td symmetry, large distortions occur. Therefore, the diffusion paths are very different from those of Cd and Cu interstitials, and depend strongly on the charge states of the interstitial atoms. For Te, we find that the distortion is mostly stabilized by the crystal-field splitting, but for Cl, the exchange splitting plays a more important role.« less
Theoretical study of electron tunneling through the spiral molecule junctions along spiral paths.
Xu, Xiaodong; Li, Weiqi; Zhou, Xin; Wang, Qiang; Feng, Jikang; Tian, Wei Quan; Jiang, Yongyuan
2016-02-01
The electronic transport properties of carbohelicenes and heterohelicenes absorbed between two metal electrodes have been investigated by using the nonequilibrium Green's function in combination with the density function theory. The transport properties of the molecular junctions are mainly dependent on the nature of spiral molecules. The detailed analyses of the transmission spectra, the energy levels as well as the spatial distribution of molecular projected self-consistent Hamiltonian explain how the geometry of molecules affects the intra-molecular electronic coupling. The spiral current in the configurations can be achieved by tuning the outer edge states of spiral-shaped molecules. Furthermore, the symmetric current-voltage characteristics are investigated with the bias changing for all devices as well as an negative differential resistance behavior is observed. PMID:26762548
Free-path distribution and Knudsen-layer modeling for gaseous flows in the transition regime.
To, Quy Dong; Lonard, Cline; Lauriat, Guy
2015-02-01
In this paper, we use molecular dynamics (MD) simulations to study the mean free path distribution of nonequilibrium gases in micronanochannel and to model the Knudsen (Kn) layer effect. It is found that the mean free path is significantly reduced near the wall and rather insensitive to flow types (Poiseuille or Couette). The Cercignani relation between the mean free path and the viscosity is adopted to capture the velocity behavior of the special zone in the framework of the extended Navier-Stokes (NS) equations. MD simulations of flows are carried out at different Kn numbers. Results are then compared with the theoretical model. PMID:25768605
Inhibition of electron thermal conduction by electromagnetic instabilities. [in stellar coronas
NASA Technical Reports Server (NTRS)
Levinson, Amir; Eichler, David
1992-01-01
Heat flux inhibition by electromagnetic instabilities in a hot magnetized plasma is investigated. Low-frequency electromagnetic waves become unstable due to anisotropy of the electron distribution function. The chaotic magnetic field thus generated scatters the electrons with a specific effective mean free path. Saturation of the instability due to wave-wave interaction, nonlinear scattering, wave propagation, and collisional damping is considered. The effective mean free path is found self-consistently, using a simple model to estimate saturation level and scattering, and is shown to decrease with the temperature gradient length. The results, limited to the assumptions of the model, are applied to astrophysical systems. For some interstellar clouds the instability is found to be important. Collisional damping stabilizes the plasma, and the heat conduction can be dominated by superthermal electrons.
Electron-interface scattering in thin metal films.
Hopkins, Patrick E.
2010-04-01
Electron-interface scattering during electron-phonon nonequilibrium in thin films creates another pathway for electron system energy loss as characteristic lengths of thin films continue to decrease. As power densities in nanodevices increase, excitations of electrons from sub-conduction-band energy levels will become more probable. These sub-conduction-band electronic excitations significantly affect the material's thermophysical properties. In this work, the effects of d-band electronic excitations are considered in electron energy transfer processes in thin metal films. In thin films with thicknesses less than the electron mean free path, ballistic electron transport leads to electron-interface scattering. The ballistic component of electron transport, leading to electron-interface scattering, is studied by a ballistic-diffusive approximation of the Boltzmann Transport Equation. The effect of d-band excitations on electron-interface energy transfer is analyzed during electron-phonon nonequilibrium after short pulsed laser heating in thin films.
Magnetic turbulent electron transport in a reversed field pinch
Schoenberg, K.; Moses, R.
1990-01-01
A model of magnetic turbulent electron transport is presented. The model, based on the thermal conduction theory of Rechester and Rosenbluth, entails a Boltzmann description of electron dynamics in the long mean-free-path limit and quantitatively describes the salient features of superthermal electron measurements in the RFP edge plasma. Included are predictions of the mean superthermal electron energy, current density, and power flux asymmetry. A discussion of the transport model, the assumptions implicit in the model, and the relevance of this work to more general issue of magnetic turbulent transport in toroidal systems is presented. 32 refs., 3 figs.
NASA Astrophysics Data System (ADS)
Medvedev, N. A.; Rymzhanov, R. A.; Volkov, A. E.
2013-11-01
Complex dielectric function formalism is applied to obtain the cross-sections, mean free path of electrons, and energy losses of swift heavy ions (SHI) in solid LiF and Y2O3 out of the experimentally known loss function. The calculated electron inelastic mean free paths in these materials agree very well with the NIST database; the inelastic energy losses of swift Pb and Au ions agree well with those calculated with the widely used SRIM and CasP codes. The obtained cross-sections are used in Monte Carlo simulations of the electronic kinetics after SHI impacts. The radial distributions of the electron and valence hole densities as well as their energy densities were calculated.
Transport of fast electrons through thin foils
Lencinas, S. ); Burgdoerfer, J. Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6377 ); Kemmler, J.; Heil, O.; Kroneberger, K.; Keller, N.; Rothard, H.; Groeneveld, K.O. )
1990-02-01
We investigate both experimentally and theoretically the energy and angular distribution of fast monoenergetic electrons penetrating very thin foils with a thickness of the order of a few {lambda}{sub {ital f}}, the mean free path for free-electron scattering. The measured distribution functions display three distinctive components of zero scattering, single scattering, and multiple scattering, in both angle and energy. The description in terms of a kinetic equation (or equivalently, phase-space master equation) is discussed. Its numerical application is facilitated by a multiple-scattering expansion. Good agreement between experiment and theory is found.
Rigdon, J. Brian; Smith, Marcus Daniel; Mulder, Samuel A
2014-01-07
PathFinder is a graph search program, traversing a directed cyclic graph to find pathways between labeled nodes. Searches for paths through ordered sequences of labels are termed signatures. Determining the presence of signatures within one or more graphs is the primary function of Path Finder. Path Finder can work in either batch mode or interactively with an analyst. Results are limited to Path Finder whether or not a given signature is present in the graph(s).
NASA Astrophysics Data System (ADS)
Grach, Savely; Ryabov, Alexander; Kotik, Dmitry; Sergeev, Evgeny; Shindin, Alexey
Recently several authors reported experimental evidences total electron content (TEC) varia-tions along the paths of GPS satellite signals caused by the HF heating of the F2 region of the ionosphere [1,2]. Here we present results on TEC variations caused by the vertical pumping of the ionosphere by radiation of the SURA facility at a frequency 4.3 MHz. In our experiments we used differ-ent pump radiation schedules, like [30 s "on", 30 s "off"]; [2 minutes "on" 2 minutes "off"]; [2 min "on" 4 minutes "off"]; and continuous pumping. The most reliable evidence of the pump-induced TEC variations was obtained on August 27, 2009. During the experiment the continuous pumping of the ionosphere with effective radiated power 60 MW started approxi-mately 5 minutes prior to Ionospheric Penetration Point (IPP) for GPS G21 signal entrance to the heated volume of the ionosphere (at (-3) dB level of the heater beam). The TEC variations were observed during whole IPP pass across the heated volume (from 17:45 to 18:22 UT, LT DST=UT+4 hours) despite of the switch of the pumping schedule from continuous one to [2 minutes "on", 4 minutes "off"] after the IPP passed the culmination point (18:05 UT, 6° to the South from zenith above the SURA facility). The TEC variations achieved a value 0.3 TECU (1 TEC Unit = 1.0 · 1016 el/m2 ), which was approximately 0.7% of the average measured TEC. Estimations performed with the use of ionograms, IRI 2007 model and existing knowledge of the large scale pump induced irregularities in the F2 region of the ionosphere have shown that the TEC variations observed can be attributed to the irregularities with the scales ˜ 5-15 km along the IPP track (i.e. across the pump beam) and 100 km along the geomagnetic field. The work is supported by RFBR grants 10-02-00642, 09-02-01150 and Federal Special-purpose Program "Scientific and pedagogical personnel of innovative Russia". [1] G. Milikh, A.Gurevich, K. Zybin, J. Secan, Geophys. Res. Lett., 2008, 35, L22102, doi:10.1029/2008GL035527. [2] E.D. Tereshchenko, A.N. Milichenko, V.L. Frolov, R.Yu. Yurik., Radiophys and Quantum Electron, 2008, 51, 842-846.
Electron cyclotron resonance microwave ion sources for thin film processing
Berry, L.A.; Gorbatkin, S.M.
1990-01-01
Plasmas created by microwave absorption at the electron cyclotron resonance (ECR) are increasingly used for a variety of plasma processes, including both etching and deposition. ECR sources efficiently couple energy to electrons and use magnetic confinement to maximize the probability of an electron creating an ion or free radical in pressure regimes where the mean free path for ionization is comparable to the ECR source dimensions. The general operating principles of ECR sources are discussed with special emphasis on their use for thin film etching. Data on source performance during Cl base etching of Si using an ECR system are presented. 32 refs., 5 figs.
NASA Astrophysics Data System (ADS)
Echternach, P. M.; Gershenson, M. E.; Bozler, H. M.
1993-05-01
The temperature dependence of the resistivity ρ of thin gold films (thickness d=100-400 Å) has been measured at T=30 mK-300 K. In a wide temperature range below ΘD/15 (ΘD is the Debye temperature) Δρ(T)/ρ is proportional to T2 and does not depend on the mean free path of electrons. Experimental determinations of the dependences Δρ(T)/ρ in this temperature range are in good agreement with the correction to the impurity resistivity of a normal metal due to the quantum interference between the electron-phonon and electron-impurity interactions.
Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.
2005-03-01
The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.
A new MetaPath information system was developed through a collaborative effort between the Laboratory of Mathematical Chemistry (Bourgas, Bulgaria), EPAs Office of Research and Development (NHEERL, MED, Duluth, MN and NERL, ERD, Athens, GA), and EPAs Office of Chemical Safety a...
A new MetaPath information system was developed through a collaborative effort between the Laboratory of Mathematical Chemistry (Bourgas, Bulgaria), EPA’s Office of Research and Development (NHEERL, MED, Duluth, MN and NERL, ERD, Athens, GA), and EPA’s Office of Chemical Safety a...
A Deterministic Transport Code for Space Environment Electrons
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.
2010-01-01
A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.
Simple Metals, Electronic Structure
NASA Astrophysics Data System (ADS)
Harrison, Walter A.
1999-06-01
The roots of our understanding of the electronic structure of metals are very old. Only a few years after the discovery of the electron by J. J. Thomson (1897) Drude (1900) suggested that the electrons in a metal form a gas of free electrons. This accounted for the conductivity of the metal, but gave the incorrect prediction that the electrons contribute 3/2kBT per electron to the heat capacity of the metal. It was only with quantum-mechanics and the Pauli principle, that this error was rectified in the work of Sommerfeld (1928). Also with quantum mechanics came the demonstration by Bloch (1928) that electrons would not be scattered by a perfectly periodic crystalline array of atoms, explaining why the mean free path between scattering events could be many times the inter-atomic distance. Somewhat later, Landau's Fermi-liquid theory (Landau (1957)) clarified why electron-electron collisions did not preclude the view that electronic "quasiparticles" only weakly interacted with each other. These last two contributions made the free-electron view understandable, but did not necessitate a free-electron dispersion of the electrons, E = h'^2 k^2 /2m. That aspect of free-electron theory was generally viewed as very naive until the time of the Fermi Surface Conference of 1960 (Harrison and Webb (1960)), when it became apparent that the dispersion in real metals was indeed close to that for free electrons. This was learned both from experimental studies of Fermi surfaces and from detailed calculations of energy bands for metals. It was made understandable in terms of pseudopotential theory (Harrison (1963), (1966)). This pseudopotential theory also could be applied to liquid metals, yielding a conductivity only slightly higher than that of the crystal, indicating that it was really the weakness of the pseudopotential - not the periodicity of the lattice - which made metallic mean-free paths so long. Considerably later (Wills and Harrison (1984)) it was realized that the opposite view, tight-binding theory, also provided a meaningful description of metals. We made that comparison in Section 1-3 and we shall make use of it here.
Snell, Mark K.
2007-07-14
The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes during courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.
Energy Science and Technology Software Center (ESTSC)
2007-07-14
The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes duringmore » courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.« less
Bizarro, J.P.; Belo, J.H.; Figueiredo, A.C.
1997-06-01
Knowing that short-time propagators for Fokker{endash}Planck equations are Gaussian, and based on a path-sum formulation, an efficient and simple numerical method is presented to solve the initial-value problem for electron kinetics during rf heating and current drive. The formulation is thoroughly presented and discussed, its advantages are stressed, and general, practical criteria for its implementation are derived regarding the time step and grid spacing. The new approach is illustrated and validated by solving the one-dimensional model for lower-hybrid current drive, which has a well-known steady-state analytical solution. {copyright} {ital 1997 American Institute of Physics.}
Conditions for Aeronomic Applicability of the Classical Electron Heat Conduction Formula
NASA Technical Reports Server (NTRS)
Cole, K. D.; Hoegy, W. R.
1998-01-01
Conditions for the applicability of the classical formula for heat conduction in the electrons in ionized gas are investigated. In a fully ionised gas ( V(sub en) much greater than V(sub ei)), when the mean free path for electron-electron (or electron-ion) collisions is much larger than the characteristic thermal scale length of the observed system, the conditions for applicability break down. In the case of the Venus ionosphere this breakdown is indicated for a large fraction of the electron temperature data from altitudes greater than 180 km, for electron densities less than 10(exp 4)/cc cm. In a partially ionised gas such that V(sub en) much greater than V(sub ei) there is breakdown of the formula not only when the mean free path of electrons greatly exceeds the thermal scale length, but also when the gradient of neutral particle density exceeds the electron thermal gradient. It is shown that electron heat conduction may be neglected in estimating the temperature of joule heated electrons by observed strong 100 Hz electric fields when the conduction flux is limited by the saturation flux. The results of this paper support our earlier aeronomical arguments against the hypothesis of planetary scale whistlers for the 100 Hz electric field signal. In turn this means that data from the 100 Hz signal may not be used to support the case for lightning on Venus.
Auger electron intensity variations in oxygen-exposed large grain polycrystalline silver
NASA Astrophysics Data System (ADS)
Lee, W. S.; Outlaw, R. A.; Hoflund, G. B.; Davidson, M. R.
Auger electron spectroscopic studies of the grains in oxygen-charged polycrystal-line silver show significant intensity variations as a function of crystallographic orientation. These intensity variations were observed by studies of the Auger images and line scans of the different grains (randomly selected) for each silver transition energy. The results can be attributed to the diffraction of the ejected Auger electrons and interpreted by corresponding changes in the electron mean-free path for inelastic scattering and by oxygen atom accumulation in the subsurface. The subsurface (second layer) octahedral sites increased in size because of surface relaxation and serve as a stable reservoir for the dissolved oxygen.
Influence of emitted electrons transiting between surfaces on plasma-surface interaction
Campanell, Michael; Wang, Hongyue
2013-09-02
Emitted electrons are accelerated back into the plasma by the sheath. If their mean free path is large, they can propagate directly to another surface without suffering collisions. We analyze the effects of “transit” on plasma-surface interaction. When transit occurs, surfaces exchanging electrons are intricately coupled. All surfaces float more negatively than they would if the emission collisionally remixed with the bulk plasma. Asymmetries of the system drive a net “transit current” between the surfaces, which influences their potential difference. The larger the initial energy spread of the emitted electrons, the larger the potential difference.
Auger electron intensity variations in oxygen-exposed large grain polycrystalline silver
NASA Technical Reports Server (NTRS)
Lee, W. S.; Outlaw, R. A.; Hoflund, G. B.; Davidson, M. R.
1989-01-01
Auger electron spectroscopic studies of the grains in oxygen-charged polycrystal-line silver show significant intensity variations as a function of crystallographic orientation. These intensity variations were observed by studies of the Auger images and line scans of the different grains (randomly selected) for each silver transition energy. The results can be attributed to the diffraction of the ejected Auger electrons and interpreted by corresponding changes in the electron mean-free path for inelastic scattering and by oxygen atom accumulation in the subsurface. The subsurface (second layer) octahedral sites increased in size because of surface relaxation and serve as a stable reservoir for the dissolved oxygen.
Photoemission electron microscopy of graphene
NASA Astrophysics Data System (ADS)
Saliba, Sebastian; Wardini, Jenna; Fitzgerald, J. P. S.; Word, Robert C.; Kevek, Josh; Minot, Ethan; Koenenkamp, Rolf
2012-10-01
A study of chemical vapor deposited graphene on copper foil is conducted using an aberration-corrected photoemission electron microscope (PEEM). We demonstrate the efficacy such a PEEM has in identifying multi-layer graphene, defects and cracking. A model is developed to describe the observed reduction in photoemission rate where electrons originate from the copper foil and scatter through the graphene. A survey of several multi-layer feature line profiles demonstrates the reduced photoemission rate as the number of graphene layers increases. A mean-free-path length of l=3.8±0.8 nm is inferred assuming the layer spacing in graphene is δz=0.35 nm. The PEEM's high spatial resolution and surface sensitivity combined with no electron beam damage are promising for characterizing biosensors and other nanoscale graphene devices.
NASA Astrophysics Data System (ADS)
Samolyuk, German; Daene, Markus; Stocks, George Malcolm; Caro, Jose Alfredo; Stoller, Roger
2015-03-01
High-entropy alloys (HEAs) have recently been developed as nontraditional alloy systems. They are composed of multiple elements at or near equiatomic ratios that form random solid solutions on simple underlying fcc or bcc lattices. In recent years HEAs have attracted significant attention due to their high strength, ductility and possible high radiation resistance. The complexity of the alloys results in very interesting electronic system behavior. Even in thermal equilibrium, disorder, especially extreme disorder, has important impacts on all electronic, atomic, and magnetic properties. In the current work we present results of first principle investigation of the electronic and magnetic properties of Ni-based multicomponent concentrated alloys using the coherent potential approximation (CPA). The influence of electronic structure modifications on the electron mean free path and values of electron-phonon coupling are calculated, together with preliminary results on similar quantities obtained by Time Dependent DFT. We discuss possible effects of tuning the mean free path and energy dissipation mechanisms to defect production and recombination in HEAs under irradiation.
NASA Technical Reports Server (NTRS)
Campbell, R. H.; Kolstad, R. B.; Holle, D. F.; Miller, T. J.; Krause, P.; Horton, K.; Macke, T.
1983-01-01
Path Pascal is high-level experimental programming language based on PASCAL, which incorporates extensions for systems and real-time programming. Pascal is extended to treat real-time concurrent systems.
NASA Technical Reports Server (NTRS)
Larosa, T. N.; Moore, R. L.; Shore, S. N.
1994-01-01
We recently proposed that a magnetohydrodynamic (MHD) turbulent cascade produces the bulk energization of electrons to approximately 25 keV in the impulsive phase of solar flares (LaRosa & Moore 1993). In that scenario, (1) the cascading MHD turbulence is fed by shear-unstable Alfvenic outflows from sites of strongly driven reconnection in the low corona, and (2) the electrons are energized by absorbing the energy that flows down through the cascade. We did not specify the physical mechanism by which the cascading energy is ultimately transferred to the electrons. Here we propose that Fermi acceleration is this mechanism, the process by which the electrons are energized and by which the cascading MHD turbulence is dissipated. We point out that in the expected cascade MHD fluctuations of scale 1 km can Fermi-accelerate electrons from 0.1 keV to approximately 25 keV on the subsecond timescales observed in impulsive flares, provided there is sufficient trapping and scattering of electrons in the MHD turbulence. We show that these same fluctuations provide the required trapping; they confine the electrons within the turbulent region until the turbulence eis dissipated. This results in the energization of all of the lectrons in each large-scale (5 x 10(exp 7)cm) turbulent eddy to 25 keV. The Fermi process also requires efficient scattering so that the pitch-angle distribution of the accelerating electrons remains isotropic. We propose that the electrons undergo resonant scattering by high-frequency plasma R-waves that, as suggested by others (Hamilton & Petrosian 1992), are generated by the reconnection. Ions are not scattered by R-waves. Provided that there is negligible generation of ion-scattering plasma turbulence (e.g., L-waves) by the reconnection or the MHD turbulence, the ions will not Fermi-accelerate and the cascading energy is transferred only to the electrons. We conclude that, given this situation, electron Fermi acceleration can plausibly account for the electron bulk energization in impulsive solar flares.
Current driven due to localized electron power deposition in DIII-D
Harvey, R.W.; Lin-Liu, Y.R.; Luce, T.C.; Prater, R.; Sauter, O.; Smirnov, A.P.
1999-05-01
Due to spatial localization of electron cyclotron wave injection in DIII-D, electrons heated in an off-axis region must toroidally transit the tokamak 25--50 times before re-entering the heating region. This distance is of the order of the mean free path. The effect of such RF localization is simulated with a time-dependent Fokker-Planck code which is 2D-in-velocity, 1D-in-space-along-B, and periodic in space. An effective parallel electric field arises to maintain continuity of the driven current. Somewhat surprisingly, the localized current drive efficiency remains equal to that for a uniform medium.
Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys.
Gandi, Appala Naidu; Schwingenschlögl, Udo
2016-05-18
We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit. PMID:27156360
NASA Technical Reports Server (NTRS)
Bell, L. D.
1996-01-01
Ballistic-Electron-Emission Microscopy (BEEM) spectroscopy has been performed on Au/Si(111) structures as a function of Au thickness and temperature. At 77 K a direct signature of parallel momentum conservation at the Au/Si interface is observed in the BEEM spectra. The variation in spectral shape with both Au thickness and temperature places restrictions on allowable values of inelastic and elastic mean-free paths in the metal, and also requires the presence of multiple electron passes within the Au layer. An independent indication of multiple reflections is directly observed in the attenuation of BEEM current with Au thickness.
Liang, Xian-Ting
2014-07-28
A framework for simulating electronic spectra from photon-echo experiments is constructed by using a numerical path integral technique. This method is non-Markovian and nonperturbative and, more importantly, is not limited by a fixed form of the spectral density functions of the environment. Next, a two-dimensional (2D) third-order electronic spectrum of a dimer system is simulated. The spectrum is in agreement with the experimental and theoretical results previously reported [for example, M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003)]. Finally, a 2D third-order electronic spectrum of the Fenna-Matthews-Olson (FMO) complex is simulated by using the Debye, Ohmic, and Adolphs and Renger spectral density functions. It is shown that this method can clearly produce the spectral signatures of the FMO complex by using only the Adolphs and Renger spectral density function. Plots of the evolution of the diagonal and cross-peaks show that they are oscillating with the population time.
NASA Astrophysics Data System (ADS)
Zhang, R. F.; Legut, D.; Wen, X. D.; Veprek, S.; Rajan, K.; Lookman, T.; Mao, H. K.; Zhao, Y. S.
2014-09-01
The energetically most stable orthorhombic structure of OsB2 and IrB2 is dynamically stable for OsB2 but unstable for IrB2. Both diborides have substantially lower shear strength in their easy slip systems than their metal counterparts. This is attributed to an easy sliding facilitated by out-of-plane weakening of metallic Os-Os bonds in OsB2 and by an in-plane bond splitting instability in IrB2. A much higher shear resistance of Os-B and B-B bonds than Os-Os ones is found, suggesting that the strengthened Os-B and B-B bonds are responsible for hardness enhancement in OsB2. In contrast, an in-plane electronic instability in IrB2 limits its strength. The electronic structure of deformed diborides suggests that the electronic instabilities of 5d orbitals are their origin of different bond deformation paths. Neither IrB2 nor OsB2 can be intrinsically superhard.
Transport Properties of III-N Hot Electron Transistors
NASA Astrophysics Data System (ADS)
Suntrup, Donald J., III
Unipolar hot electron transistors (HETs) represent a tantalizing alternative to established bipolar transistor technologies. During device operation electrons are injected over a large emitter barrier into the base where they travel along the device axis with very high velocity. Upon arrival at the collector barrier, high-energy electrons pass over the barrier and contribute to collector current while low-energy electrons are quantum mechanically reflected back into the base. Designing the base with thickness equal to or less than the hot electron mean free path serves to minimize scattering events and thus enable quasi-ballistic operation. Large current gain is achieved by increasing the ratio of transmitted to reflected electrons. Although III-N HETs have undergone substantial development in recent years, there remain ample opportunities to improve key device metrics. In order to engineer improved device performance, a deeper understanding of the operative transport physics is needed. Fortunately, the HET provides fertile ground for studying several prominent electron transport phenomena. In this thesis we present results from several studies that use the III-N HET as both emitter and analyzer of hot electron momentum states. The first provides a measurement of the hot electron mean free path and the momentum relaxation rate in GaN; the second relies on a new technique called electron injection spectroscopy to investigate the effects of barrier height inhomogeneity in the emitter. To supplement our analysis we develop a comprehensive theory of coherent electron transport that allows us to model the transfer characteristics of complex heterojunctions. Such a model provides a theoretical touchstone with which to compare our experimental results. While these studies are of potential interest in their own right, we interpret the results with an eye toward improving next-generation device performance.
Tan, Lun C.; Shao, Xi; Reames, Donald V.; Ng, Chee K.; Wang, Linghua
2014-05-10
Three magnetic cloud events, in which solar impulsive electron events occurred in their outer region, are employed to investigate the difference of path lengths L {sub 0eIII} traveled by non-relativistic electrons from their release site near the Sun to the observer at 1 AU, where L {sub 0eIII} = v {sub l} × (t {sub l} – t {sub III}), v {sub l} and t {sub l} being the velocity and arrival time of electrons in the lowest energy channel (∼27 keV) of the Wind/3DP/SST sensor, respectively, and t {sub III} being the onset time of type III radio bursts. The deduced L {sub 0eIII} value ranges from 1.3 to 3.3 AU. Since a negligible interplanetary scattering level can be seen in both L {sub 0eIII} > 3 AU and ∼1.2 AU events, the difference in L {sub 0eIII} could be linked to the turbulence geometry (slab or two-dimensional) in the solar wind. By using the Wind/MFI magnetic field data with a time resolution of 92 ms, we examine the turbulence geometry in the dissipation range. In our examination, ∼6 minutes of sampled subintervals are used in order to improve time resolution. We have found that, in the transverse turbulence, the observed slab fraction is increased with an increasing L {sub 0eIII} value, reaching ∼100% in the L {sub 0eIII} > 3 AU event. Our observation implies that when only the slab spectral component exists, magnetic flux tubes (magnetic surfaces) are closed and regular for a very long distance along the transport route of particles.
Guo, Hongxuan E-mail: msxu@zju.edu.cn; Gao, Jianhua; Ishida, Nobuyuki; Xu, Mingsheng E-mail: msxu@zju.edu.cn; Fujita, Daisuke
2014-01-20
Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.
NASA Astrophysics Data System (ADS)
DeSmedt, B.; Reynaert, N.; Flachet, F.; Coghe, M.; Thompson, M. G.; Paelinck, L.; Pittomvils, G.; DeWagter, C.; DeNeve, W.; Thierens, H.
2005-12-01
A new method is presented to decouple the parameters of the incident e- beam hitting the target of the linear accelerator, which consists essentially in optimizing the agreement between measurements and calculations when the difference filter, which is an additional filter inserted in the linac head to obtain uniform lateral dose-profile curves for the high energy photon beam, and flattening filter are removed from the beam path. This leads to lateral dose-profile curves, which depend only on the mean energy of the incident electron beam, since the effect of the radial intensity distribution of the incident e- beam is negligible when both filters are absent. The location of the primary collimator and the thickness and density of the target are not considered as adjustable parameters, since a satisfactory working Monte Carlo model is obtained for the low energy photon beam (6 MV) of the linac using the same target and primary collimator. This method was applied to conclude that the mean energy of the incident e- beam for the high energy photon beam (18 MV) of our Elekta SLi Plus linac is equal to 14.9 MeV. After optimizing the mean energy, the modelling of the filters, in accordance with the information provided by the manufacturer, can be verified by positioning only one filter in the linac head while the other is removed. It is also demonstrated that the parameter setting for Bremsstrahlung angular sampling in BEAMnrc ('Simple' using the leading term of the Koch and Motz equation or 'KM' using the full equation) leads to different dose-profile curves for the same incident electron energy for the studied 18 MV beam. It is therefore important to perform the calculations in 'KM' mode. Note that both filters are not physically removed from the linac head. All filters remain present in the linac head and are only rotated out of the beam. This makes the described method applicable for practical usage since no recommissioning process is required.
Thermoelectric Measurements of Electronic Diffusivity in Bad Metals
NASA Astrophysics Data System (ADS)
Zhang, Jiecheng; Levenson-Falk, Eli; Kapitulnik, Aharon
2015-03-01
Many interesting materials, including cuprate superconductors and heavy-fermion systems, exhibit ``bad metal'' behavior at high temperatures, where the electronic mean free path is shorter than the de Broglie wavelength. Recent theory postulates that conduction in such systems is best described by collective incoherent transport, instead the standard quasiparticle model. This has implications for the temperature dependence of electronic diffusivity in these systems. We present a setup for measuring electronic diffusivity: a laser beam is focused onto a material surface and chopped, creating a periodic, concentrated heat source. The resulting thermoelectric signal is measured at various positions on the same surface with sharp voltage probes. By sweeping temperature in the range 10-450 K, we are able to measure the temperature dependence and anisotropy of the electronic diffusivity of the material. We discuss experimental improvements and measurements of cuprate superconductors. This work was funded by the Department of Energy.
Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles
NASA Astrophysics Data System (ADS)
Jain, Ankit; McGaughey, Alan J. H.
2016-02-01
Mode-dependent phonon and electron transport properties in Al, Ag, and Au are predicted using density functional theory and lattice dynamics calculations. The predicted thermal conductivities, electrical conductivities, electron-phonon coupling coefficients, and electron-phonon mass enhancement parameters are in agreement with experimental measurements. At a temperature of 100 K, the phonon contribution to the total thermal conductivity of Al is 5% in bulk and increases to 15% for a 50 nm thick film. In all three metals, phonons with mean free paths between 1 and 10 nm are the dominate contributors to the thermal conductivity at a temperature of 300 K, while the relevant electron mean free paths are 10-100 nm. Despite similar atomic masses, the phonon thermal conductivity of Al is an order of magnitude smaller than that of silicon due to a larger three-phonon phase space and stronger anharmonicity. These results will impact the interpretation of thermoreflectance experiments that can resolve carrier-level contributions to thermal conductivity.
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-21
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions. PMID:20019398
NASA Astrophysics Data System (ADS)
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-01
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.
Modeling Evaporative Electron Cooling in an Ultracold Neutral Plasma
NASA Astrophysics Data System (ADS)
Witte, Craig; Roberts, Jacob
2015-11-01
Ultracold plasmas (UCPs) are formed by photoionizing a collection of laser cooled atoms. Once formed, these plasmas expand, cooling over the course of their expansion. In theory, further cooling should be obtainable by forcibly inducing electron evaporation by applying DC electric fields to extract electrons. However, this cooling is difficult to quantify experimentally. Any attempt to obtain such a measurement requires a firm knowledge of evaporation dynamics in the system. For UCPs, electron mean free paths are smaller than the width of the plasma, resulting in significant transport effects that are not included in standard evaporation treatments. We have developed a simple Monte Carlo model that incorporates these effects. This talk will discuss this model, and how it can be utilized to measure evaporation and cooling in UCPs. This work was supported by the Air Force Office of Scientific Research.
A Deterministic Computational Procedure for Space Environment Electron Transport
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamcyk, Anne M.
2010-01-01
A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.
Chandra, Bhupesh; Perebeinos, Vasili; Berciaud, Stéphane; Katoch, Jyoti; Ishigami, Masa; Kim, Philip; Heinz, Tony F; Hone, James
2011-09-30
We have performed temperature-dependent electrical transport measurements on known structure single wall carbon nanotubes at low bias. The experiments show a superlinear increase in nanotube resistivity with temperature, which is in contradiction with the linear dependence expected from nanotube acoustic-phonon scattering. The measured electron mean free path is also much lower than expected, especially at medium to high temperatures (>100 K). A theoretical model that includes scattering due to surface polar phonon modes of the substrates reproduces the experiments very well. The role of surface phonons is further confirmed by resistivity measurements of nanotubes on aluminum nitride. PMID:22107221
NASA Astrophysics Data System (ADS)
Thompson, William; Stern, Lewis; Ferranti, Dave; Huynh, Chuong; Scipioni, Larry; Notte, John; Sanford, Colin
2010-06-01
Recent helium ion microscope (HIM) imaging studies have shown the strong sensitivity of HIM induced secondary electron (SE) yields [1] to the sample physical and chemical properties and to its surface topography. This SE yield sensitivity is due to the low recoil energy of the HIM initiated electrons and their resulting short mean free path. Additionally, a material's SE escape probability is modulated by changes in the material's work function and surface potential. Due to the escape electrons' roughly 2eV mean energy and their nanometer range mean free path, HIM SE mode image contrast has significant material and surface sensitivity. The latest generation of HIM has a 0.35 nanometer resolution specification and is equipped with a plasma cleaning process to mitigate the effects of hydrocarbon contamination. However, for surfaces that may have native oxide chemistries influencing the secondary electron yield, a new process of low energy, shallow angle argon sputtering, was evaluated. The intent of this work was to study the effect of removing pre-existing native oxides and any in-situ deposited surface contaminants. We will introduce the sputter yield predictions of two established computer models and the sputter yield and sample modification forecasts of the molecular dynamics program, Kalypso. We will review the experimental technique applied to copper samples and show the copper grain contrast improvement that resulted when argon cleaned samples were imaged in HIM SE mode.
NASA Technical Reports Server (NTRS)
Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison
2005-01-01
Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.
A Hot-Electron Far-Infrared Direct Detector
NASA Technical Reports Server (NTRS)
Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.
2000-01-01
A new approach is proposed to improve the sensitivity of direct-detection bolometers at millimeter, submillimeter and far-infrared wavelengths. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or super-conductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature (Nb, Pb etc.) then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as T(sup 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10-100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant about 10(exp -3) to 10(exp -5) s at T approximately equals 0.1-0.3 K will exhibit photon-noise limited performance in millimeter and submillimeter range. The choice of the bolometer material is a tradeoff between a low electron heat capacity and fabrication. A state-of-the-art bolometer currently offers NEP = 10(exp -17) W(Square root of (Hz)) at 100 mK along with a approximately equals 2 msec time constant. The bolometer we propose will have a figure-of-merit, NEP(square root (r)), which is 10(exp 3) times smaller. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity. This device can significantly increase a science return and reduce the cost for future observational missions. This research was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by NASA, Office of Space Science.
ERIC Educational Resources Information Center
Fanaro, Maria de los Angeles; Arlego, Marcelo; Otero, Maria Rita
2012-01-01
This work comprises an investigation about basic Quantum Mechanics (QM) teaching in the high school. The organization of the concepts does not follow a historical line. The Path Integrals method of Feynman has been adopted as a Reference Conceptual Structure that is an alternative to the canonical formalism. We have designed a didactic sequence…
Inelastic electron dephasing scattering times in disordered metals
NASA Astrophysics Data System (ADS)
Lin, J. J.
2000-04-01
We have studied and compared the inelastic electron dephasing scattering times in disordered metals with significantly different characteristics. Both the temperature dependence and electron elastic mean-free-path ( l) dependence of the electron-phonon scattering times, τep, are determined from weak-localization studies. Our experimental results suggest that τep-1∼ T2 in numerous crystalline disordered dilute Ti 1- xAl x, dilute Ti 1- xSn x, Au 50Pd 50, and Ti 73Al 27 alloys. However, our results do not support a universal dependence of τep-1 on l among these various metals. Our observation of the T2-law is in disagreement with current theoretical concept for electron-phonon interaction in disordered metals. In addition, we have inferred the critical electron-electron scattering times, τEE, in a number of very low-diffusivity thick Sc, RuO 2, and IrO 2 films. We find that τEE-1∼ T and also that τEE-1 is independent of l. This observation is understood in terms of the current theory for inelastic electron-electron scattering in bulk metals near the mobility edge. Our results altogether establish a crossover of the inelastic electron dephasing from electron-phonon scattering to electron-electron scattering as the amounts of disorder greatly increase and the systems move significantly toward the Anderson transition.
NASA Astrophysics Data System (ADS)
Diot, Emilie; Gavoille, Cyril
In this paper we investigate the structural properties of k-path separable graphs, that are the graphs that can be separated by a set of k shortest paths. We identify several graph families having such path separability, and we show that this property is closed under minor taking. In particular we establish a list of forbidden minors for 1-path separable graphs.
Electron transport in the solar wind -results from numerical simulations
NASA Astrophysics Data System (ADS)
Smith, Håkan; Marsch, Eckart; Helander, Per
A conventional fluid approach is in general insufficient for a correct description of electron trans-port in weakly collisional plasmas such as the solar wind. The classical Spitzer-Hürm theory is a not valid when the Knudsen number (the mean free path divided by the length scale of tem-perature variation) is greater than ˜ 10-2 . Despite this, the heat transport from Spitzer-Hürm a theory is widely used in situations with relatively long mean free paths. For realistic Knud-sen numbers in the solar wind, the electron distribution function develops suprathermal tails, and the departure from a local Maxwellian can be significant at the energies which contribute the most to the heat flux moment. To accurately model heat transport a kinetic approach is therefore more adequate. Different techniques have been used previously, e.g. particle sim-ulations [Landi, 2003], spectral methods [Pierrard, 2001], the so-called 16 moment method [Lie-Svendsen, 2001], and approximation by kappa functions [Dorelli, 2003]. In the present study we solve the Fokker-Planck equation for electrons in one spatial dimension and two velocity dimensions. The distribution function is expanded in Laguerre polynomials in energy, and a finite difference scheme is used to solve the equation in the spatial dimension and the velocity pitch angle. The ion temperature and density profiles are assumed to be known, but the electric field is calculated self-consistently to guarantee quasi-neutrality. The kinetic equation is of a two-way diffusion type, for which the distribution of particles entering the computational domain in both ends of the spatial dimension must be specified, leaving the outgoing distributions to be calculated. The long mean free path of the suprathermal electrons has the effect that the details of the boundary conditions play an important role in determining the particle and heat fluxes as well as the electric potential drop across the domain. Dorelli, J. C., and J. D. Scudder, J. D. 2003, J. Geophys. Res. 108, 1294. Landi, S., and Pantellini, F. G. E. 2003, Astron. Astrophys., 400, 769. Lie-Svendsen, Ø., Leer, E., and Hansteen, V. H. 2001, J. Geophys. Res., 106, 8217. Pierrard, V., Maksimovic, M., and Lemaire, J. 2001, J. Geophys. Res., 106, 29305.
NASA Technical Reports Server (NTRS)
Kim, Jeong-Hee; Rapp, Richard H.
1990-01-01
In June 1986 a 1 x 1 deg/mean free-air anomaly data file containing 48955 anomalies was completed. In August 1986 a 30 x 30 min mean free-air anomaly file was defined containing 31787 values. For the past three years data has been collected to upgrade these mean anomaly files. The primary emphasis was the collection of data to be used for the estimation of 30 min means anomalies in land areas. The emphasis on land areas was due to the anticipated use of 30 min anomalies derived from satellite altimeter data in the ocean areas. There were 10 data sources in the August 1986 file. Twenty-eight sources were added based on the collection of both point and mean anomalies from a number of individuals and organizations. A preliminary 30 min file was constructed from the 38 data sources. This file was used to calculate 1 x 1 deg mean anomalies. This 1 x 1 deg file was merged with a 1 x 1 deg file which was a merger of the June 1986 file plus a 1 x 1 deg file made available by DMA Aerospace Center. Certain bad 30 min anomalies were identified and deleted from the preliminary 30 min file leading to the final 30 min file (the July 1989 30 min file) with 66990 anomalies and their accuracy. These anomalies were used to again compute 1 x 1 deg anomalies which were merged with the previous June 86 DMAAC data file. The final 1 x 1 deg mean anomaly file (the July 89 1 x 1 deg data base) contained 50793 anomalies and their accuracy. The anomaly data files were significantly improved over the prior data sets in the following geographic regions: Africa, Scandinavia, Canada, United States, Mexico, Central and South America. Substantial land areas remain where there is little or no available data.
Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.
2011-08-16
The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.
Grew, Kyle N.; Izzo, Jr., John R.; Chiu, W. K. S.
2011-01-01
The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC’s performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell’s microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.
Effects of Electron Emission on Plasma-Surface Interaction
NASA Astrophysics Data System (ADS)
Campanell, Michael; Wang, Hongyue; Khrabrov, Alexander; Kaganovich, Igor
2013-10-01
Most models of sheaths facing emitting surfaces invoke assumptions that the sheath is time-independent, the wall potential is negative, ions enter the sheath at Bohm velocity, the presheath is weakly affected, and one wall is considered. We present theory and PIC simulations showing that these assumptions can break down in practice. When emission is strong, the sheath potential can become positive, repelling ions from the wall. Emitted electrons entering the plasma can drastically affect the presheath structure too. If their mean-free-path is large, emitted electrons can transit the plasma and impact the opposite wall; hence wall charging becomes a complex global problem. Secondary emission can trigger sheath instabilities preventing plasma-wall systems from reaching steady state. Implications are discussed for tokamaks, Hall thrusters, dusty plasmas, hot cathodes, RF discharges and spacecraft. This work was supported by the U.S. DOE under contract no. DE-AC02-09CH11466, and by AFOSR.
Unsymmetrical hot electron heating in quasi-ballistic nanocontacts
Tsutsui, Makusu; Kawai, Tomoji; Taniguchi, Masateru
2012-01-01
Electrons are allowed to pass through a single atom connected to two electrodes without being scattered as the characteristic size is much smaller than the inelastic mean free path. In this quasi-ballistic regime, it is difficult to predict where and how power dissipation occurs in such current-carrying atomic system. Here, we report direct assessment of electrical heating in a metallic nanocontact. We find asymmetric electrical heating effects in the essentially symmetric single-atom contact. We simultaneously identified the voltage polarity independent onset of the local heating by conducting the inelastic noise spectroscopy. As a result, we revealed significant heat dissipation by hot electrons transmitting ballistically through the junction that creates a hot spot at the current downstream. This technique can be used as a platform for studying heat dissipation and transport in atomic/molecular systems. PMID:22355731
A Hot-electron Direct Detector for Radioastronomy
NASA Technical Reports Server (NTRS)
Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.
2000-01-01
A new approach is proposed to improve the sensitivity of direct-detection bolometers. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or superconductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as 7(exp 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10 - 100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant approx. 10(exp -3) to 10(exp -5) S at T approx. = 0.1 - 0.3 K will exhibit photon-noise limited performance in millimeter and subn-millimeter range. The bolometer will have a figure-of-merit NEk square root of tau approx. = 10(exp -22) 10(exp -21) W/Hz at 100 mK which is 10(exp 3) times smaller than that of a state-of-the-art bolometer. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity This research was performed by the Center for Space Microelectronics Technology, JPL, California Institute of Technology, under the contract for NASA.
A Hot-electron Direct Detector for Radioastronomy
NASA Astrophysics Data System (ADS)
Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.
2000-01-01
A new approach is proposed to improve the sensitivity of direct-detection bolometers. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or superconductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as 74l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10 - 100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant approx. 10-3 to 10-5 S at T approx. = 0.1 - 0.3 K will exhibit photon-noise limited performance in millimeter and subn-millimeter range. The bolometer will have a figure-of-merit NEk square root of tau approx. = 10-22 10-21 W/Hz at 100 mK which is 103 times smaller than that of a state-of-the-art bolometer. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity This research was performed by the Center for Space Microelectronics Technology, JPL, California Institute of Technology, under the contract for NASA.
Energy Science and Technology Software Center (ESTSC)
2012-05-11
The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less
Effects of macroscopic inhomogeneities on electron mobility in semi-insulating GaAs
NASA Technical Reports Server (NTRS)
Walukiewicz, W.; Wang, L.; Pawlowicz, L. M.; Lagowski, J.; Gatos, H. C.
1986-01-01
It is shown that defect inhomogeneities of sizes larger than the electron mean free path are responsible for the low values and anomalous temperature dependence of the electron mobility in semi-insulating (SI) GaAs. The room-temperature electron mobility values below about 6000 sq cm/V s cannot be uniquely used for the determination of the concentration of ionized defects, since the contribution from inhomogeneities usually exceeds that from scattering by ionized impurities. The effects of the macroscopically inhomogeneous distribution of residual acceptors and the major deep donor EL2 diminish at elevated temperatures between 600 and 900 K, which offers a means for identification of inhomogeneities, and furthermore explains recently reported steplike mobility versus temperature behavior in SI-GaAs.
NASA Astrophysics Data System (ADS)
Han, Jaeheon; Yoo, Seungjin
2005-06-01
Ultrashort channel GaAs metal semiconductor field effect transistors were fabricated with gate lengths ranging from 30 nm to 1 05 nm, by electron beam lithography, in order to examine the scaling characteristics of transconductance. For gate lengths in sub-100 nanometer range, where gradual channel approximation is no longer valid, it was observed that the transconductance varies with a variety of small-dimension-related, nonequilibrium electron dynamics phenomena such as gate fringing effect, electron velocity overshoot, and short channel tunneling. Short channel tunneling was suggested experimentally for the first time to explain the degradation of transistor performance, overriding an enhancement due to electron velocity overshoot for a gate length smaller than the average inelastic mean free path of an electron.
NASA Astrophysics Data System (ADS)
Han, Jaeheon; Ferry, David
1998-09-01
Ultrashort channel GaAs metal semiconductor field effect transistors were fabricated with gate lengths ranging from 30 nm to 105 nm, by electron beam lithography, in order to examine the scaling characteristics of transconductance. For gate lengths in sub-100 nanometer range, where gradual channel approximation is no longer valid, it was observed that the transconductance varies with a variety of small-dimension-related, nonequilibrium electron dynamics phenomena such as gate-fringing effect, electron velocity overshoot, and short-channel tunneling. Short-channel tunneling was suggested experimentally for the first time to explain the degradation of transistor performance, overriding an enhancement due to electron velocity overshoot for a gate length smaller than the average inelastic mean free path of an electron.
Optimal paths through downbursts
NASA Technical Reports Server (NTRS)
Zhao, Yiyuan; Bryson, A. E.
1989-01-01
The control of an aircraft's takeoff path through a downburst is presently formulated as a dynamic optimization problem with minimum-altitude constraint and two different performance measures; a landing path through a downburst is also discussed. Paths are determined which, in addition to maximizing an airspeed/altitude combination immediately after downburst penetration, minimize deviation from the intended flight path. For mild-to-moderate downbursts, the performance strategy maintains altitude at the expense of airspeed loss, while the survival strategy involves a descent of the aircraft to the minimum altitude in order to obtain greater airspeed. For a severe downburst, both optimal paths maintain minimum altitude.
Solar Modulation of 50-500 Mev Cosmic Ray Electrons and the Electron Spectrum from 1964-1994
NASA Astrophysics Data System (ADS)
Huber, David M.
1998-11-01
Cosmic ray electrons have been directly measured since 1960. Over the last four decades a wealth of data has been collected on these particles, but perhaps none as valuable as the measurements made by the University of Chicago MEH experiment on the ISEE-3/ICE spacecraft and the University of Chicago/Bartol Research Institute Low Energy Electron (LEE) balloon experiment. These data span parts of four solar cycles and cover three solar polarity reversals. The MEH dataset itself has continuous electron coverage spanning seventeen years and two polarity reversals. A new analysis has been done on the MEH dataset to determine the spectrum of electrons with energies from about 30 to 500 MeV and interpret the evolution of the spectrum in the context of the modulation of cosmic electrons over the last four solar cycles. The spectral index for electrons between 30 and 500 MeV was observed to be at all times negative between the years 1979 and 1994. This observation supports recent theoretical calculations that predict fundamental differences between the behavior of electrons and protons at low energies, namely that electrons have a much longer mean free path at low energies than previously assumed. Recent modulation calculations have focused attention on the A-positive solar polarity state, but the compilation of electron spectrum observations and calculations in this work provides a basis for future exploration of the A-negative solar cycle.
Yannello, Vincent J; Fredrickson, Daniel C
2014-10-01
Valence electron count is one of the key factors influencing the stability and structure of metals and alloys. However, unlike in molecular compounds, the origins of the preferred electron counts of many metallic phases remain largely mysterious. Perhaps the clearest-cut of such electron counting rules is exhibited by the Nowotny chimney ladder (NCL) phases, compounds remarkable for their helical structural motifs in which transition metal (T) helices serve as channels for a second set of helices formed from main group (E) elements. These phases exhibit density of states pseudogaps or band gaps, and thus special stability and useful physical properties, when their valence electron count corresponds to 14 electrons per T atom. In this Article, we illustrate, using DFT-calibrated Hückel calculations and the reversed approximation Molecular Orbital analysis, that the 14-electron rule of the NCLs is, in fact, a specific instance of an 18 - n rule emerging for T-E intermetallics, where n is the number of E-supported T-T bonds per T atom. The structural flexibility of the NCL series arises from the role of the E atoms as supports for these T-T bonds, which simply requires the E atoms to be as uniformly distributed within the T sublattice as possible. This picture offers a strategy for identifying other intermetallic structures that may be amenable to incommensurability between T and E sublattices. PMID:25215958
Joyce, G.; Lampe, M.; Manheimer, W.M.
1996-12-31
The authors have recently developed an axisymmetric quasi-neutral particle simulation code to study heating and transport of plasma in an ECR reactor configuration in which the electrons are always strongly magnetized, but the degree of magnetization of the ions varies spatially. for this system with pressures on the order of a few milliTorr, the plasma is considered to be weakly collisional, with mean free paths on the order of a few centimeters. Electrons may collide with the neutral gas in various states, and with each other. Electron-electron (e-e) collisions are especially important since these collisions are responsible for forming the tail of the electron distribution function and for redistributing the energy toward a Maxwellian. The energy distribution is determined by a competition between e-e collisions, which tend to Maxwellianize the distribution, and inelastic electron-atom collisions, which deplete the high energy tail. Therefore it is important to use the right rate coefficients to represent e-e collisions. In plasmas, electrons collide mainly through multiple shielded small angle scattering and should be described by a Fokker-Planck collision formulation. For particle simulations, Fokker-Planck collisions may be cast in the form of a grid based force in the form of the Langevin equation. The authors have implemented a more exact Langevin equation based on diffusion and drag coefficients appropriate for electrons in a plasma.
NASA Astrophysics Data System (ADS)
Lloyd, Seth; Dreyer, Olaf
2016-02-01
Path integrals calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness. The probabilities for events corresponding to sub-integrals can be calculated using the method of decoherent histories. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.
Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M
2016-02-18
We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles. PMID:26807653
Path integral simulations for nanoelectronics
NASA Astrophysics Data System (ADS)
Shumway, John
2007-10-01
As computer circuits shrink, devices are entering the nanoscale regime and quantum physics is becoming important. The biggest barrier to further decreases in size and increases in clock speed is excessive heat generation. Some physicists are proposing that many-body correlated quantum states of electrons may be exploited to make more energy efficient switches. In our research we are developing new simulation techniques to study highly correlated electron states in realistic device geometries and finite temperatures. The simulations are based on Feynman path integrals, which cast quantum statistical mechanics as a sum over worldlines, a mathematically equivalent alternative Schroedinger's differetial equation. Using Monte Carlo sampling on dozens to hundreds of electrons, we can simulate properties of an interacting electron fluid in a nanowire. Linear response theory relates fluctuations about equilibrium to conductivity. This gives us a new perspective on quantum phenomena, including quantized conductance steps and spin-charge separation.
NASA Astrophysics Data System (ADS)
Engelbrecht, N. E.; Burger, R. A.
2010-04-01
The effect of various models presented by Leamon et al. (2000) for the dissipation range cutoff wavenumber on the 26-day variations of galactic cosmic-ray electrons in a Fisk-Parker hybrid field is investigated, by means of a three-dimensional steady-state numerical modulation code. Analytical expressions for the mean free paths parallel and perpendicular to the heliospheric magnetic field are adapted from the works of Teufel and Schlickeiser (2003) and Shalchi et al. (2004), respectively. Note that only solar minimum conditions are considered, and that only qualitative agreement with data is sought. Effective diffusion for galactic electrons pertaining to 26-day variations is found to be dominated by the ratio of the perpendicular to parallel mean free paths at low energies, and the relationship between changes in cosmic-ray intensities and the modulation parameter postulated by Zhang (1997) is found to no longer hold when this ratio drops below a critical value. Use of ion inertial scale dependent models for the dissipation range cutoff leads to possible second linearities in the relative amplitudes as functions of latitude gradient.
Miraglia, J. E.
2003-08-01
We introduce a distorted wave method to calculate the nonlinear excitation effects occurring when a fast bare ion penetrates a free-electron gas. The central scheme of this work is to replace the undistorted plane waves leading to the Lindhard dielectric response function (or random phase approximation) by Coulomb waves with an effective charge. This impulse-type approximation is valid for velocities larger than the Fermi velocity. Stopping and mean free path are presented for impact of bare multicharged ions on aluminum free-electron gas. The Barkas effect is theoretically found, i.e., negative heavy particles lose energy at the lower rate than positive particles of the same velocity do. As the projectile charge increases, the single differential cross section per unit energy presents two effects: the plasmon peak sharpens and the binary peak starts to be increasingly noticeable.
The effects of excited state densities on the radially resolved electron energy distribution
Hartig, M.J.; Kushner, M.J.
1992-12-01
In cylindrical low pressure glow discharges the shape of the radially resolved electron energy distribution (RREED) is determined by the disparity in mean free paths of electrons as a function of energy, and by the radial ambipolar electric field. Transport of excited states of the gas, however, can provide a {open_quotes}nonlocal{close_quotes} power input to the RREED by superelastic relaxation from locations where the RREED provides a higher rate of excitation. The authors have developed a model for the RREED taking into account energy resolved drift and diffusion in the ambipolar field, and applied it to the study of the effects of excited state densities on the RREED. In their example system (He/Hg) they found that the RREED, normally cooled by the ambipolar field near the walls, is heated by superlastic relaxation from excited states generated near the axis.
NASA Astrophysics Data System (ADS)
Villaume, Sbastien; Ottosson, Henrik
2009-10-01
The ?-contribution to the electron localization function (ELF?) was used to analyze changes in the aromaticity of annulenyl-substituted olefins in their lowest triplet state (T1) when the structure around the olefin C?C bond is twisted from planar to a structure (3p*) at which the planes of the two RR'C units are perpendicular. The ring closure bifurcation value and the range in the bifurcation values of the ELF? basins serve as (anti)aromaticity indicators directly linked to the electronic structure. Both Hckel's 4n + 2 ?-electron rule for aromaticity in the singlet ground state (S0) and Baird's 4n ?-electron rule for aromaticity in the lowest ??* triplet state are applied. Three olefins with S0 aromatic (T1 antiaromatic) substituents and four olefins with T1 aromatic (S0 antiaromatic) substituents were studied using the ELF? topology at the OLYP/6-311G(d,p) density functional theory level. The changes in the substituent ELF? bifurcation values upon rotation about the olefin bond in the T1 state reveal that aromatic character is recovered for the first three olefins and that it is reduced for the latter ones. These changes in aromatic character are reflected in the shapes of the T1 potential energy surfaces as a twist away from planar structures in olefins with T1 antiaromatic substituents is energetically favorable, but that in olefins with T1 aromatic substituents is unfavorable. Hence, aromaticity change is a driver for a photochemical reaction as for many ground-state reactions.
Conditions for electron runaway under leader breakdown of long gaps
Ul'yanov, K. N.
2008-04-15
An original hydrodynamic model in which inelastic collisions in the equations of motion and energy balance play a decisive role is developed and applied to simulate electron avalanches in strong electric fields. The mean energy and drift velocity of electrons, as well as the ionization coefficient and electric field in a wide range of mean electron energies, are determined for helium and xenon. A criterion is derived for the runaway of the average electron in discharges with ionization multiplication. It is shown that runaway can take place at any value of E/p, provided that the momentum mean free path exceeds the gap length. The voltage corresponding to electron runaway is found for helium, xenon, and air as a function of the electric field, the electron mean energy, and the parameter pd. Conditions for the formation of a precursor in electronegative gases are analyzed. It is shown that the presence of a precursor with a high electric conductance is necessary for the formation of a new leader step. The voltage and time ranges corresponding to efficient electron runaway and X-ray generation during leader breakdown in air are determined.
Time-resolved electron kinetics in swift heavy ion irradiated solids
NASA Astrophysics Data System (ADS)
Medvedev, N. A.; Rymzhanov, R. A.; Volkov, A. E.
2015-09-01
The event-by-event Monte Carlo model, TREKIS, was developed to describe the excitation of the electron subsystems of various solids by a penetrating swift heavy ion (SHI), the spatial spreading of generated fast electrons, and secondary electron and hole cascades. Complex dielectric function formalism is used to obtain relevant cross sections. This allows the recognition of fundamental effects resulting from the collective response of the electron subsystem of a target for excitation that is not possible within the binary collision approximation of these cross sections, e.g. the differences in the electronic stopping of an ion and in the electron mean free paths for different structures (phases) of a material. A systematic study performed with this model for different materials (insulators, semiconductors and metals) revealed effects which may be important for an ion track: e.g. the appearance of a second front of excess electronic energy propagation outwards from the track core following the primary front of spreading of generated electrons. We also analyze how the initial ballistic spatial spreading of fast electrons generated in a track turns to the diffusion ~10 fs after ion passage. Detailed time-resolved simulations of electronic subsystem kinetics helped in understanding the reasons behind enhanced silicon resistance to SHI irradiation in contrast to easily produced damage in this material by femtosecond laser pulses. We demonstrate that the fast spreading of excited electrons from the track core on a sub-100 fs timescale prevents the Si lattice from nonthermal melting in a relaxing SHI track.
ERIC Educational Resources Information Center
Wolfle, Lee M.
The purpose of this paper is to illuminate the advantages of path analysis for the exposition of results in data analytic papers. Probably the greatest advantage is that it provides a means by which the nature of the problem may be handily summarized. The method of path analysis, although conceived over sixty years ago by Sewell Wright, has only…
NASA Astrophysics Data System (ADS)
Adjizian, Jean-Joseph; Lherbier, Aurélien; M.-M. Dubois, Simon; Botello-Méndez, Andrés Rafael; Charlier, Jean-Christophe
2016-01-01
Two-dimensional (2D) conjugated polymers exhibit electronic structures analogous to that of graphene with the peculiarity of π-π* bands which are fully symmetric and isolated. In the present letter, the suitability of these materials for electronic applications is analyzed and discussed. In particular, realistic 2D conjugated polymer networks with a structural disorder such as monomer vacancies are investigated. Indeed, during bottom-up synthesis, these irregularities are unavoidable and their impact on the electronic properties is investigated using both ab initio and tight-binding techniques. The tight-binding model is combined with a real space Kubo-Greenwood approach for the prediction of transport characteristics for monomer vacancy concentrations ranging from 0.5% to 2%. As expected, long mean free paths and high mobilities are predicted for low defect densities. At low temperatures and for high defect densities, strong localization phenomena originating from quantum interferences of multiple scattering paths are observed in the close vicinity of the Dirac energy region while the absence of localization effects is predicted away from this region suggesting a sharp mobility transition. These predictions show that 2D conjugated polymer networks are good candidates to pave the way for the ultimate scaling and performances of future molecular nanoelectronic devices.Two-dimensional (2D) conjugated polymers exhibit electronic structures analogous to that of graphene with the peculiarity of π-π* bands which are fully symmetric and isolated. In the present letter, the suitability of these materials for electronic applications is analyzed and discussed. In particular, realistic 2D conjugated polymer networks with a structural disorder such as monomer vacancies are investigated. Indeed, during bottom-up synthesis, these irregularities are unavoidable and their impact on the electronic properties is investigated using both ab initio and tight-binding techniques. The tight-binding model is combined with a real space Kubo-Greenwood approach for the prediction of transport characteristics for monomer vacancy concentrations ranging from 0.5% to 2%. As expected, long mean free paths and high mobilities are predicted for low defect densities. At low temperatures and for high defect densities, strong localization phenomena originating from quantum interferences of multiple scattering paths are observed in the close vicinity of the Dirac energy region while the absence of localization effects is predicted away from this region suggesting a sharp mobility transition. These predictions show that 2D conjugated polymer networks are good candidates to pave the way for the ultimate scaling and performances of future molecular nanoelectronic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06825h
Behaviour of microscale gas flows based on a power-law free path distribution function
NASA Astrophysics Data System (ADS)
Dongari, Nishanth; Zhang, Yonghao; Reese, Jason M.
2011-05-01
We investigate a power-law form for the probability distribution function of free paths of dilute gas molecules in a confined region. A geometry-dependent effective molecular mean free path (MFP) model is then derived for a planar wall confinement, by taking into account the boundary limiting effects on the molecular paths. The power-law based effective MFP is validated against molecular dynamics simulation data and compared with exponential effective MFP models. The Navier-Stokes constitutive relations are then modified according to the kinetic theory of gases i.e. transport properties can be described in terms of the free paths which the molecules describe between collisions. Results for isothermal pressure-driven Poiseuille gas flows in micro-channels are reported, and we compare results with conventional hydrodynamic models, solutions of the Boltzmann equation and experimental data.
The passage of fast electrons through matter
NASA Astrophysics Data System (ADS)
Sorini, Adam P.
This work regards the passage of fast electrons through matter, and in particular how electrons scatter and lose energy within a solid. The basic quantum theory of these scattering processes was first considered in the early- to mid-20th century by Bohr, Bethe, Fermi, and others. This work extends our understanding of how a relativistic electron scatters off, and loses energy to, a complex many-body system. The main idea of this work is that it is now possible to calculate, from first-principles, the inelastic losses of relativistic electrons in condensed matter. We present ab initio calculations based on a real-space Green's function approach, implemented in the FEFF8 computer program[1]. Our work focuses on three topics: Relativistic stopping power and associated loss parameters, electron energy loss spectroscopy in high energy transmission electron microscopes, and the inelastic electron scattering mixed dynamic form factor. We calculate, for the first time, ab initio stopping powers and inelastic mean free paths in real materials. The stopping powers are calculated over a broad energy range, from ten eV to above ten MeV. We also present the first ab initio calculations of the "mean excitation energy". We develop a relativistic theory of inelastic electron scattering, based on ab initio calculations of dielectric response, and the generalized Lorenz gauge. Using our relativistic dielectric theory, we calculate the EELS magic angle ratio for boron nitride and for graphite. In these anisotropic materials we find large relativistic corrections to the magic angle for high energy electron microscopes. We also predict and calculate large deviations in the EELS magic angle from the relativistic vacuum predictions in the low energy-loss regime. Finally, we present calculations of mixed dynamic form factor.
Igor D. Kaganovich; Oleg Polomarov
2003-05-19
In low-pressure discharges, when the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially non-local. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the non-local conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, non-uniform, nearly collisionless plasmas of low-pressure discharges is derived. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. The importance of accounting for the non-uniform plasma density profile on both the current density profile and the EEDF is demonstrated.
ERIC Educational Resources Information Center
Stegemoller, William; Stegemoller, Rebecca
2004-01-01
The path taken and the turns made as a turtle traces a polygon are examined to discover an important theorem in geometry. A unique tool, the Angle Adder, is implemented in the investigation. (Contains 9 figures.)
Tortuous path chemical preconcentrator
Manginell, Ronald P.; Lewis, Patrick R.; Adkins, Douglas R.; Wheeler, David R.; Simonson, Robert J.
2010-09-21
A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.
NASA Astrophysics Data System (ADS)
Rogal, Jutta; Lechner, Wolfgang; Juraszek, Jarek; Ensing, Bernd; Bolhuis, Peter G.
2010-11-01
We introduce a reweighting scheme for the path ensembles in the transition interface sampling framework. The reweighting allows for the analysis of free energy landscapes and committor projections in any collective variable space. We illustrate the reweighting scheme on a two dimensional potential with a nonlinear reaction coordinate and on a more realistic simulation of the Trp-cage folding process. We suggest that the reweighted path ensemble can be used to optimize possible nonlinear reaction coordinates.
Kolkowitz, S; Safira, A; High, A A; Devlin, R C; Choi, S; Unterreithmeier, Q P; Patterson, D; Zibrov, A S; Manucharyan, V E; Park, H; Lukin, M D
2015-03-01
Thermally induced electrical currents, known as Johnson noise, cause fluctuating electric and magnetic fields in proximity to a conductor. These fluctuations are intrinsically related to the conductivity of the metal. We use single-spin qubits associated with nitrogen-vacancy centers in diamond to probe Johnson noise in the vicinity of conductive silver films. Measurements of polycrystalline silver films over a range of distances (20 to 200 nanometers) and temperatures (10 to 300 kelvin) are consistent with the classically expected behavior of the magnetic fluctuations. However, we find that Johnson noise is markedly suppressed next to single-crystal films, indicative of a substantial deviation from Ohm's law at length scales below the electron mean free path. Our results are consistent with a generalized model that accounts for the ballistic motion of electrons in the metal, indicating that under the appropriate conditions, nearby electrodes may be used for controlling nanoscale optoelectronic, atomic, and solid-state quantum systems. PMID:25636797
Particle-in-cell simulations of discharges with intense electron emission
NASA Astrophysics Data System (ADS)
Sydorenko, Dmytro
2013-09-01
In many plasma devices, the plasma is bounded by walls which emit electrons due to secondary electron emission or thermionic emission. At low pressures, the electron mean free path exceeds the plasma dimensions, and the emitted electrons accelerated by the intense electric field of the near-wall sheath propagate through the plasma as an electron beam. The beam dynamics in a finite length system is different from theoretical predictions for infinite or periodic plasmas. This presentation gives a summary of numerical studies of beam-plasma interaction in Hall thrusters and dc discharges carried out with a particle-in-cell code. The code resolves one spatial coordinate and three velocity components, it is based on the direct implicit algorithm, the electron-to-ion mass ratio is realistic, numerous collisions between electrons and neutrals and the Coulomb collisions are included, code performance is enhanced with the help of MPI parallelization. The following effects are discussed: vanishing of the two-stream instability due to modification of the bulk electron velocity distribution, sheath instability in Hall thrusters, intermittency and multiple regimes of the two-stream instability in dc discharges. In collaboration with I. D. Kaganovich, Y. Raitses, A. V. Khrabrov (Princeton Plasma Physics Laboratory, Princeton, NJ), P. L. G. Ventzek, L. Chen (Tokyo Electron America, Austin, TX), A. Smolyakov (University of Saskatchewan, Saskatoon, SK, Canada).
Generation and accretion of electrons in complex plasmas with cylindrical particles
Sodha, Mahendra Singh; Misra, Shikha; Mishra, S. K.
2009-12-15
This paper presents an analytical model for the physical understanding of the charging of cylindrical dust particles in an open complex plasma system. Two different mechanisms, viz., thermionic emission and photoelectric emission have been considered for the electron generation from the charged cylindrical dust particles; the corresponding expressions for the rate of emission of electrons and their mean energy have been derived. A simple approach has been adopted to derive the expression for the rate of electron accretion to the dust particle. Further a new expression for the mean energy associated with the accreted electrons due to cylindrical dust particle has been derived and presented. An interesting comparison of results obtained in the case of spherical and cylindrical dust particles has also been made. Using these expressions, a formalism has been developed for the electronic processes in an illuminated dust cloud with cylindrical particles, on the basis of charge neutrality condition and number and energy balance of electrons; the charge carried by the cylindrical dust particles, electron temperature, and electron density corresponding to a given situation have been determined. The limitation of the applicability of the theory, viz., that the mean free path of an electron for accretion by dust particles be less than the dimension of the dust cloud has been pointed out.
Electron conduction mechanism and band diagram of sputter-deposited Al/ZrO{sub 2}/Si structure
Chiu, F.-C.; Lin, Z.-H.; Chang, C.-W.; Wang, C.-C.; Chuang, K.-F.; Huang, C.-Y.; Lee, Joseph Yamin; Hwang, H.-L.
2005-02-01
Metal-oxide-semiconductor capacitors that incorporate ZrO{sub 2} gate dielectrics were fabricated by radio frequency magnetron sputtering. In this work, the essential structures and electrical properties of ZrO{sub 2} thin films were investigated. C-V, energy dispersive x-ray spectrometry, and transmission electron microscopy analyses reveal that an interfacial layer was formed, subsequently reducing the k value of the annealed ZrO{sub 2} thin films. Additionally, the mechanisms of conduction of the Al/ZrO{sub 2}/p-Si metal/zirconium oxide/semiconductor structure were studied with reference to plots of standard Schottky emission, modified Schottky emission, and Poole-Frenkel emission. According to those results, the dominant mechanisms at high temperatures (>425 K) are Poole-Frenkel emission and Schottky emission in low electric fields (<0.6 MV/cm) and high electric fields (>1 MV/cm), respectively. Experimental results indicate that the Al/ZrO{sub 2} barrier height is 0.92 eV and the extracted trap level is about 1.1 eV from the conduction band of ZrO{sub 2}. The modified Schottky emission can be applied in an electric field to ensure that the electronic mean free path of the insulator is less than its thickness. According to the modified Schottky emission model, the extracted electronic mobility of ZrO{sub 2} thin films is around 13 cm{sup 2}/V s at 475 K. The mean free path of transported electrons in ZrO{sub 2} thin films is between 16.2 and 17.4 nm at high temperatures (425-{approx}475 K)
ELECTRON HEAT CONDUCTION IN THE SOLAR WIND: TRANSITION FROM SPITZER-HAeRM TO THE COLLISIONLESS LIMIT
Bale, S. D.; Quataert, E.; Pulupa, M.; Salem, C.; Chen, C. H. K.
2013-06-01
We use a statistically significant set of measurements to show that the field-aligned electron heat flux q{sub Parallel-To} in the solar wind at 1 AU is consistent with the Spitzer-Haerm collisional heat flux q{sub sh} for temperature gradient scales larger than a few mean free paths L{sub T} {approx}> 3.5{lambda}{sub fp}. This represents about 65% of the measured data and corresponds primarily to high {beta}, weakly collisional plasma ({sup s}low solar wind{sup )}. In the more collisionless regime {lambda}{sub fp}/L{sub T} {approx}> 0.28, the electron heat flux is limited to q{sub Parallel-To }/q{sub 0} {approx} 0.3, independent of mean free path, where q{sub 0} is the ''free-streaming'' value; the measured q{sub Parallel-To} does not achieve the full q{sub 0}. This constraint q{sub Parallel-To }/q{sub 0} {approx} 0.3 might be attributed to wave-particle interactions, effects of an interplanetary electric potential, or inherent flux limitation. We also show a {beta}{sub e} dependence to these results that is consistent with a local radial electron temperature profile T{sub e} {approx} r {sup -{alpha}} that is a function of the thermal electron beta {alpha} = {alpha}({beta}{sub e}) and that the {beta} dependence of the collisionless regulation constraint is not obviously consistent with a whistler heat flux instability. It may be that the observed saturation of the measured heat flux is a simply a feature of collisional transport. We discuss the results in a broader astrophysical context.
Effect of secondary electron emission on the plasma sheath
Langendorf, S. Walker, M.
2015-03-15
In this experiment, plasma sheath potential profiles are measured over boron nitride walls in argon plasma and the effect of secondary electron emission is observed. Results are compared to a kinetic model. Plasmas are generated with a number density of 3 × 10{sup 12} m{sup −3} at a pressure of 10{sup −4} Torr-Ar, with a 1%–16% fraction of energetic primary electrons. The sheath potential profile at the surface of each sample is measured with emissive probes. The electron number densities and temperatures are measured in the bulk plasma with a planar Langmuir probe. The plasma is non-Maxwellian, with isotropic and directed energetic electron populations from 50 to 200 eV and hot and cold Maxwellian populations from 3.6 to 6.4 eV and 0.3 to 1.3 eV, respectively. Plasma Debye lengths range from 4 to 7 mm and the ion-neutral mean free path is 0.8 m. Sheath thicknesses range from 20 to 50 mm, with the smaller thickness occurring near the critical secondary electron emission yield of the wall material. Measured floating potentials are within 16% of model predictions. Measured sheath potential profiles agree with model predictions within 5 V (∼1 T{sub e}), and in four out of six cases deviate less than the measurement uncertainty of 1 V.
Electron-phonon mediated heat flow in disordered graphene
NASA Astrophysics Data System (ADS)
Chen, Wei; Clerk, Aashish A.
2012-09-01
We calculate the heat flux and electron-phonon thermal conductance in a disordered graphene sheet, going beyond a Fermi’s golden rule approach to fully account for the modification of the electron-phonon interaction by disorder. Using the Keldysh technique combined with standard impurity averaging methods in the regime kFl≫1 (where kF is the Fermi wave vector and l is the mean free path), we consider both scalar potential (i.e., deformation potential) and vector-potential couplings between electrons and phonons. We also consider the effects of electronic screening at the Thomas-Fermi level. We find that the temperature dependence of the heat flux and thermal conductance is sensitive to the presence of disorder and screening, and reflects the underlying chiral nature of electrons in graphene and the corresponding modification of their diffusive behavior. In the case of weak screening, disorder enhances the low-temperature heat flux over the clean system (changing the associated power law from T4 to T3), and the deformation potential dominates. For strong screening, both the deformation potential and vector-potential couplings make comparable contributions, and the low-temperature heat flux obeys a T5 power law.
Modified predictive formula for the electron stopping power
Jablonski, A.; Powell, C. J.
2008-03-15
We report an improved predictive formula for the electron stopping power (SP) based on an analysis and fit of SPs and electron inelastic mean free paths (IMFPs) calculated from optical data for 37 elemental solids and energies between 200 eV and 30 keV. The formula is a function of energy, density, and IMFP, and is recommended for solids with atomic numbers larger than 6. While the mean deviation between predicted and calculated SPs was 7.25%, larger deviations were found for four additional materials, Li (22.2%), Be (17.9%), graphite (15.3%), and diamond (15.7%). The predictive SP formula can be applied to multicomponent materials. Test comparisons for two compounds, guanine and InSb, showed average deviations of 16.0% and 19.1%, respectively. The improved SP formula is expected to be useful in simulations of electron trajectories in solids with the continuous slowing-down approximation (e.g., in Auger-electron spectroscopy and electron microprobe analysis)
Nonlocal electron transport in magnetized plasmas with arbitrary atomic number
Bennaceur-Doumaz, D.; Bendib, A.
2006-09-15
The numerical solution of the steady-state electron Fokker-Planck equation perturbed with respect to a global equilibrium is presented in magnetized plasmas with arbitrary atomic number Z. The magnetic field is assumed to be constant and the electron-electron collisions are described by the Landau collision operator. The solution is derived in the Fourier space and in the framework of the diffusive approximation which captures the spatial nonlocal effects. The transport coefficients are deduced and used to close a complete set of nonlocal electron fluid equations. This work improves the results of A. Bendib et al. [Phys. Plasmas 9, 1555 (2002)] and of A. V. Brantov et al. [Phys. Plasmas 10, 4633 (2003)] restricted to the local and nonlocal high-Z plasma approximations, respectively. The influence of the magnetic field on the nonlocal effects is discussed. We propose also accurate numerical fits of the relevant transport coefficients with respect to the collisionality parameter {lambda}{sub ei}/L and the atomic number Z, where L is the typical scale length and {lambda}{sub ei} is the electron-ion mean-free-path.
Sampling diffusive transition paths
F. Miller III, Thomas; Predescu, Cristian
2006-10-12
We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.
Conductance of one-dimensional quantum wires with anomalous electron wave-function localization
NASA Astrophysics Data System (ADS)
Amanatidis, Ilias; Kleftogiannis, Ioannis; Falceto, Fernando; Gopar, Víctor A.
2012-06-01
We study the statistics of the conductance g through one-dimensional disordered systems where electron wave functions decay spatially as |ψ|˜exp(-λrα) for 0<α<1, λ being a constant. In contrast to the conventional Anderson localization where |ψ|˜exp(-λr) and the conductance statistics is determined by a single parameter, the mean free path, here we show that when the wave function is anomalously localized (α<1), the full statistics of the conductance is determined by the average
NASA Astrophysics Data System (ADS)
Giannazzo, F.; Deretzis, I.; Nicotra, G.; Fisichella, G.; Ramasse, Q. M.; Spinella, C.; Roccaforte, F.; La Magna, A.
2014-05-01
In this paper, the structural and electronic properties of epitaxial graphene (EG) grown on 8-off 4H-SiC (0001) by high temperature thermal processes have been extensively investigated by a combination of several high resolution characterization techniques. The increase in the number of graphene layers with the growth temperature (from 1600 to 1700 C) was studied by microRaman spectroscopy and high resolution transmission electron microscopy (HRTEM) on cross-sectioned samples. The few layers of graphene reside on a stepped SiC surface with alternating (0001) terraces and (11-2n) facets. Peculiar corrugations (wrinkles) in the graphene membrane preferentially oriented perpendicularly to the substrate steps were also observed. Motivated by recent atomic resolution studies of the EG/SiC interface revealing a local delamination of the interfacial C buffer from the (11-2n) facets, we searched for a correlation of these interfacial structural properties with the macroscopic electronic transport in EG field effect transistors (FETs). In particular, electrical characterization of EG top gated FETs fabricated with the channel length parallel or perpendicular to the substrate steps revealed a peculiar anisotropy of the channel conductance with respect to the steps' orientation. This effect was explained in terms of a local enhancement of EG resistance on the (11-2n) facets with respect to the (0001) basal plane, which is consistent with a reduced doping due to the local buffer layer delamination from those facets. Furthermore, scanning probe microscopy-based local electron mean free path measurements on EG showed a ~3 enhancement of mean free path on the buffer-layer-free (11-2n) facets with respect to (0001) terraces, probably associated to a strong reduction of Coulomb scattering effects on graphene's electrons.
Mobile transporter path planning
NASA Technical Reports Server (NTRS)
Baffes, Paul; Wang, Lui
1990-01-01
The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.
NASA Astrophysics Data System (ADS)
Ohya, Satoshi
2012-06-01
We propose path integral description for quantum mechanical systems on compact graphs consisting of N segments of the same length. Provided the bulk Hamiltonian is segment-independent, scale-invariant boundary conditions given by the self-adjoint extension of a Hamiltonian operator turn out to be in one-to-one correspondence with N × N matrix-valued weight factors on the path integral side. We show that these weight factors are given by N-dimensional unitary representations of the infinite dihedral group.
Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.
2012-07-01
A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.
Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.
2012-07-01
A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.
ERIC Educational Resources Information Center
Lee, John B.; Clery, Suzanne B.; Presley, Jennifer B.
This report uses the national Baccalaureate and Beyond longitudinal database to look at the early career paths of 1993 college graduates. The results provide information on which college graduates became teachers, where they taught, and whether they left teaching within 3 years. Overall, it is not easy to predict who may be potential teachers when…
NASA Technical Reports Server (NTRS)
Bill, R. C.; Johnson, R. D. (Inventor)
1979-01-01
A gas path seal suitable for use with a turbine engine or compressor is described. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor shrouds the rotor bades. A compliant backing surrounds the shroud. The backing is a yieldingly deformable porous material covered with a thin ductile layer. A mounting fixture surrounds the backing.
ERIC Educational Resources Information Center
McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.
2013-01-01
The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and
ERIC Educational Resources Information Center
McGarvey, Lynn M.; Sterenberg, Gladys Y.; Long, Julie S.
2013-01-01
The authors elucidate what they saw as three important challenges to overcome along the path to becoming elementary school mathematics teacher leaders: marginal interest in math, low self-confidence, and teaching in isolation. To illustrate how these challenges were mitigated, they focus on the stories of two elementary school teachers--Laura and…
Improved initial guess for minimum energy path calculations
Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt
2014-06-07
A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used.
Improved initial guess for minimum energy path calculations.
Smidstrup, Sren; Pedersen, Andreas; Stokbro, Kurt; Jnsson, Hannes
2014-06-01
A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used. PMID:24907989
A Hot-electron Direct Detector for Radioastronomy
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; McGrath, William R.; LeDuc, Henry G.; Gershenson, Michael E.
1999-01-01
A hot-electron transition-edge superconducting bolometer with adjustable thermal relaxation speed is proposed. The bolometer contacts are made from a superconductor with high critical temperature which blocks the thermal diffusion of hot carriers into the contacts. Thus electron-phonon interaction is the only mechanism for heat removal. The speed of thermal relaxation for hot electrons in a nanometer-size superconducting bolometer with T(sub c) = 100-300 mK is controlled by the elastic electron mean free path l. The relaxation rate behaves as T(sup 4)l at subkelvin temperatures and can be reduced by a factor of 10-100 by decreasing 1. Then an antenna- or wave guide-coupled bolometer with a time constant approx. = 10(exp -3) to 10(exp -4) s will exhibit photon-noise limited performance at millimeter and submillimeter wavelengths. The bolometer will have a figure-of-merit NEPtau = 10(exp -22) - 10(exp -21) W/Hz at 100 mK which is 10(exp 3) to 10(exp 4) times better (ie: smaller) than that of a state-of-the-art bolometer. A tremendous increase in speed and sensitivity will have a significant impact for observational mapping applications.
NASA Astrophysics Data System (ADS)
Pilgrim, Ian; Scannell, Billy; See, Andrew; Montgomery, Rick; Morse, Peter; Fairbanks, Matt; Marlow, Colleen; Linke, Heiner; Farrer, Ian; Ritchie, David; Hamilton, Alex; Micolich, Adam; Eaves, Laurence; Taylor, Richard
2013-03-01
Since the 1950s, materials scientists have pursued the fabrication of solid-state heterostructure (HS) devices of sufficient purity to replicate electron interference effects originally observed in vacuum. The ultimate goal of HS engineering is to create a semiconductor ``billiard table'' in which electrons travel ballistically in a 2-D plane--that is, with scattering events minimized such that the electron's mean free path exceeds the device size. For the past two decades, the modulation-doped (MD) HS architecture has yielded devices supporting very high electron mobilities. In this architecture, ionized dopants are spatially removed from the plane of the electrons, such that their influence on electron trajectories is felt through presumably negligible small-angle scattering events. However, we observe that thermally induced charge redistribution in the doped layers of AlGaAs/GaAs and GaInAs/InP MD heterostructures significantly alters electron transport dynamics as measured by magnetoconductance fluctuations. This result demonstrates that small-angle scattering plays a far larger role than expected in influencing conduction properties. Funded by the Office of Naval Research, US Air Force, Australian Research Council, and Research Corporation for Science Advancement
Low-voltage electron microscopy of polymer and organic molecular thin films.
Drummy, Lawrence F; Yang, Junyan; Martin, David C
2004-06-01
We have demonstrated the capabilities of a novel low-voltage electron microscope (LVEM) for imaging polymer and organic molecular thin films. The LVEM can operate in transmission electron microscopy, scanning transmission electron microscopy, scanning electron microscopy, and electron diffraction modes. The microscope operates at a nominal accelerating voltage of 5 kV and fits on a tabletop. A detailed discussion of the electron-sample interaction processes is presented, and the mean free path for total electron scattering was calculated to be 15 nm for organic samples at 5 kV. The total end point dose for the destruction of crystallinity at 5 kV was estimated at 5 x 10(-4) and 3.5 x 10(-2) C/cm2 for polyethylene and pentacene, respectively. These values are significantly lower than those measured at voltages greater than 100 kV. A defocus series of colloidal gold particles allowed us to estimate the experimental contrast transfer function of the microscope. Images taken of several organic materials have shown high contrast for low atomic number elements and a resolution of 2.5 nm. The materials studied here include thin films of the organic semiconductor pentacene, triblock copolymer films, single-molecule dendrimers, electrospun polymer fibers and gold nanoparticles. PMID:15149719
Dynamics of the electric current in an ideal electron gas: A sound mode inside the quasiparticles
NASA Astrophysics Data System (ADS)
Grozdanov, Sašo; Polonyi, Janos
2015-09-01
We study the equation of motion for the Noether current in an electron gas within the framework of the Schwinger-Keldysh closed-time-path formalism. The equation is shown to be highly nonlinear and irreversible even for a noninteracting, ideal gas of electrons at nonzero density. We truncate the linearized equation of motion, written as the Laurent series in Fourier space, so that the resulting expressions are local in time, both at zero and at small finite temperatures. Furthermore, we show that the one-loop Coulomb interactions only alter the physical picture quantitatively, while preserving the characteristics of the dynamics that the electric current exhibits in the absence of interactions. As a result of the composite nature of the Noether current, composite sound waves are found to be the dominant IR collective excitations at length scales between the inverse Fermi momentum and the mean free path that would exist in an interacting electron gas. We also discuss the difference and the transition between the hydrodynamical regime of an ideal gas, defined in this work, and the hydrodynamical regime in phenomenological hydrodynamics, which is normally used for the description of interacting gases.
Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion
NASA Astrophysics Data System (ADS)
Ressler, S. M.; Tchekhovskoy, A.; Quataert, E.; Chandra, M.; Gammie, C. F.
2015-12-01
Simple assumptions made regarding electron thermodynamics often limit the extent to which general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations of low-luminosity accreting black holes. We present, implement, and test a model that self-consistently evolves an entropy equation for the electrons and takes into account the effects of spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic field lines. We neglect the backreaction of electron pressure on the dynamics of the accretion flow. Our model is appropriate for systems accreting at ?10-5 of the Eddington accretion rate, so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates in the future by including electron cooling and proton-electron Coulomb collisions. We present a suite of tests showing that our method recovers the correct solution for electron heating under a range of circumstances, including strong shocks and driven turbulence. Our initial applications to axisymmetric simulations of accreting black holes show that (1) physically motivated electron heating rates that depend on the local magnetic field strength yield electron temperature distributions significantly different from the constant electron-to-proton temperature ratios assumed in previous work, with higher electron temperatures concentrated in the coronal region between the disc and the jet; (2) electron thermal conduction significantly modifies the electron temperature in the inner regions of black hole accretion flows if the effective electron mean free path is larger than the local scaleheight of the disc (at least for the initial conditions and magnetic field configurations we study). The methods developed in this work are important for producing more realistic predictions for the emission from accreting black holes such as Sagittarius A* and M87; these applications will be explored in future work.
Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang Im, Hyunsik
2014-07-28
We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable to the carrier's mean free path in the channel.
NASA Astrophysics Data System (ADS)
Han, Jaeheon
2011-12-01
Short channel GaAs Metal Semiconductor Field Effect Transistors (MESFETs) have been fabricated with gate length to 20 nm, in order to examine the characteristics of sub-50 nm MESFET scaling. Here the rise in the measured transconductance is mainly attributed to electron velocity overshoot. For gate lengths below 40 nm, however, the transconductance drops suddenly. The behavior of velocity overshoot and its degradation is investigated and simulated by using a transport model based on the retarded Langevin equation (RLE). This indicates the existence of a minimum acceleration length needed for the carriers to reach the overshoot velocity. The argument shows that the source resistance must be included as an internal element, or appropriate boundary condition, of relative importance in any model where the gate length is comparable to the inelastic mean free path of the carriers.
NASA Astrophysics Data System (ADS)
Rymzhanov, R. A.; Medvedev, N. A.; Volkov, A. E.
2014-05-01
The Monte-Carlo (MC) model simulating the femto-second kinetics of the electron subsystem in a track of a swift heavy ion decelerated in the electronic stopping regime is developed. The complex dielectric function (CDF) formalism is used to calculate the cross sections of interactions of an ion and fast electrons with the electron subsystem of a target. It accounts for all collective modes in the electron ensemble. The applied method of CDF reconstruction from the experimental optical data provided a very good agreement of the calculated electron inelastic mean free paths with the NIST database as well as of the calculated SHI energy loss with those from SRIM and CasP codes. The MC model was applied to determine the radial distributions of delocalized electrons and their energy density in tracks of Au (2187 MeV) ions in insulators (Al2O3 and polyethylene) at different times. The femtosecond electron kinetics reveals two fronts of the spatial propagation: the primary fast delta-electrons form the front of excitations while electrons appearing due to decay of plasmons generated in a track form the second slow front following behind.
Da, B.; Li, Z. Y.; Chang, H. C.; Ding, Z. J.; Mao, S. F.
2014-09-28
It has been experimentally found that the carbon surface contamination influences strongly the spectrum signals in reflection electron energy loss spectroscopy (REELS) especially at low primary electron energy. However, there is still little theoretical work dealing with the carbon contamination effect in REELS. Such a work is required to predict REELS spectrum for layered structural sample, providing an understanding of the experimental phenomena observed. In this study, we present a numerical calculation result on the spatially varying differential inelastic mean free path for a sample made of a carbon contamination layer of varied thickness on a SrTiO{sub 3} substrate. A Monte Carlo simulation model for electron interaction with a layered structural sample is built by combining this inelastic scattering cross-section with the Mott's cross-section for electron elastic scattering. The simulation results have clearly shown that the contribution of the electron energy loss from carbon surface contamination increases with decreasing primary energy due to increased individual scattering processes along trajectory parts carbon contamination layer. Comparison of the simulated spectra for different thicknesses of the carbon contamination layer and for different primary electron energies with experimental spectra clearly identifies that the carbon contamination in the measured sample was in the form of discontinuous islands other than the uniform film.
NASA Astrophysics Data System (ADS)
Chen, Y. F.; Su, P.; Kwei, C. M.; Tung, C. J.
1994-12-01
The influence of surface excitations on electrons elastically backscattered from solid surfaces is investigated. Elastic-scattering differential cross sections are calculated using the partial-wave expansion method and the finite difference techique for solid atoms with the Hartree-Fock-Wigner-Seitz potential. An extended Drude dielectric function which allows the characteristic oscillator strength, damping constant, and critical-point energy for each subband of valence electrons is employed to estimate electron inelastic mean free paths for volume excitations. The same dielectric function is applied to evaluate the probability of surface excitations for incident and escape electrons by including the recoil effect without the small-angle approximation. Results of Monte Carlo simulations on the elastic reflection coefficient and the angular distribution of electrons elastically backscattered from Cu and Ag surfaces are presented. It is revealed that surface excitations significantly reduce the elastic reflection coefficient for low-energy electrons, but less significantly influence the angular distribution for large escape angles. Our results agree very well with experimental data.
Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems
NASA Astrophysics Data System (ADS)
Khaetskii, A.
Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.
Collisionless electron heating in periodic arrays of inductively coupled plasmas
Czarnetzki, U.; Tarnev, Kh.
2014-12-15
A novel mechanism of collisionless heating in large planar arrays of small inductive coils operated at radio frequencies is presented. In contrast to the well-known case of non-local heating related to the transversal conductivity, when the electrons move perpendicular to the planar coil, we investigate the problem of electrons moving in a plane parallel to the coils. Two types of periodic structures are studied. Resonance velocities where heating is efficient are calculated analytically by solving the Vlasov equation. Certain scaling parameters are identified. The concept is further investigated by a single particle simulation based on the ergodic principle and combined with a Monte Carlo code allowing for collisions with Argon atoms. Resonances, energy exchange, and distribution functions are obtained. The analytical results are confirmed by the numerical simulation. Pressure and electric field dependences are studied. Stochastic heating is found to be most efficient when the electron mean free path exceeds the size of a single coil cell. Then the mean energy increases approximately exponentially with the electric field amplitude.
Fast Advection of Magnetic Fields by Hot Electrons
Willingale, L.; Thomas, A. G. R.; Krushelnick, K.; Nilson, P. M.; Kaluza, M. C.; Dangor, A. E.; Evans, R. G.; Fernandes, P.; Haines, M. G.; Kamperidis, C.; Kingham, R. J.; Ridgers, C. P.; Sherlock, M.; Wei, M. S.; Najmudin, Z.; Bandyopadhyay, S.; Notley, M.; Minardi, S.; Tatarakis, M.; Rozmus, W.
2010-08-27
Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 10{sup 15} W cm{sup -2} and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A. Nishiguchi et al., Phys. Rev. Lett. 53, 262 (1984)] at significantly higher velocities than the fluid velocity. Two-dimensional implicit Vlasov-Fokker-Planck modeling shows that the Nernst effect allows advection and self-generation transports magnetic fields at significantly faster than the ion fluid velocity, v{sub N}/c{sub s{approx_equal}}10.
NASA Technical Reports Server (NTRS)
Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)
2000-01-01
Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decisionmaker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content include program managers and administrators who track the program and are involved in decisions regarding resource allocation and program evaluation.
NASA Technical Reports Server (NTRS)
Robinson, Judith L.; Charles, John B.; Rummel, John A. (Technical Monitor)
2000-01-01
Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decision maker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content include program managers and administrators who track the program and are involved in decisions regarding resource allocation and program evaluation.
NASA Technical Reports Server (NTRS)
Mehhtz, Peter
2005-01-01
JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.
Path Integrals and Supersolids
NASA Astrophysics Data System (ADS)
Ceperley, D. M.
2008-11-01
Recent experiments by Kim and Chan on solid 4He have been interpreted as discovery of a supersolid phase of matter. Arguments based on wavefunctions have shown that such a phase exists, but do not necessarily apply to solid 4He. Imaginary time path integrals, implemented using Monte Carlo methods, provide a definitive answer; a clean system of solid 4He should be a normal quantum solid, not one with superfluid properties. The Kim-Chan phenomena must be due to defects introduced when the solid is formed.
Bleakley, Hoyt; Lin, Jeffrey
2012-05-01
We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217
Bleakley, Hoyt; Lin, Jeffrey
2012-01-01
We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217
Hardwick, R D
1989-01-01
The design and implementation of an Intrusion Path Analysis (IPA) function came about as a result of the upgrades to the security systems at the Savannah River Site (SRS), near Aiken, South Carolina. The stated requirements for IPA were broad, leaving opportunity for creative freedom during design and development. The essential elements were that it: be based on alarm and sensor state data; consider insider as well as outsider threats; be flexible and easily enabled or disabled; not be processor intensive; and provide information to the operator in the event the analysis reveals possible path openings. The final design resulted from many and varied conceptual inputs, and will be implemented in selected test areas at SRS. It fulfils the requirements and: allows selective inclusion of sensors in the analysis; permits the formation of concentric rings of protection around assets; permits the defining of the number of rings which must be breached before issuing an alert; evaluates current sensor states as well as a recent, configurable history of sensor states; considers the sensors' physical location, with respect to the concentric rings; and enables changes for maintenance without software recompilation. 3 figs.
Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet
NASA Astrophysics Data System (ADS)
Principi, Alessandro; Vignale, Giovanni; Carrega, Matteo; Polini, Marco
2016-03-01
Hydrodynamic flow occurs in an electron liquid when the mean free path for electron-electron collisions is the shortest length scale in the problem. In this regime, transport is described by the Navier-Stokes equation, which contains two fundamental parameters, the bulk and shear viscosities. In this paper, we present extensive results for these transport coefficients in the case of the two-dimensional massless Dirac fermion liquid in a doped graphene sheet. Our approach relies on microscopic calculations of the viscosities up to second order in the strength of electron-electron interactions and in the high-frequency limit, where perturbation theory is applicable. We then use simple interpolation formulas that allow to reach the low-frequency hydrodynamic regime where perturbation theory is no longer directly applicable. The key ingredient for the interpolation formulas is the "viscosity transport time" τv, which we calculate in this paper. The transverse nature of the excitations contributing to τv leads to the suppression of scattering events with small momentum transfer, which are inherently longitudinal. Therefore, contrary to the quasiparticle lifetime, which goes as -1 /[T2ln(T /TF) ] , in the low-temperature limit we find τv˜1 /T2 .
Vlasov-Fokker-Planck Simulation of a Collisional Ion-Electron Shockwave
NASA Astrophysics Data System (ADS)
Taitano, William; Knoll, Dana; Prinja, Anil
2012-10-01
There has been recent increased interest in a range of kinetic plasma physics phenomena which may be important in simulating ICF pellet performance. [1] have numerically demonstrated the limitations of the classic Spitzer, Braginski fluid closures in collisional plasmas for shockwave problems. [1] has shown the importance of modeling kinetic effects for scale lengths of shockwave much larger than the ion collision mean free path. In [1], the ions were modeled kinetically using the Fokker-Planck approximation while the electrons were modeled as a fluid. An investigation of a full kinetic treatment of electron with collision is computationally intractable with standard explicit schemes due to collision CFL limitation that requires resolving the electron-electron collision timescale. [2] has developed a new, fully implicit and discretely consistent moment based accelerator method to solve the full ion-electron kinetic Vlasov-Ampere system. A similar moment based accelerator will be extended to a collisionless shock problem in order to accelerate the Fokker-Planck collision source in the kinetic equations. In the presentation, we provide some preliminary results. [4pt] [1] M. Casanova and O. Larroche, Phys. Rev. Let. 67-(16), 1991. [0pt] [2] W.T. Taitano et al. SISC in review.
Low-energy electron (0-100eV) interaction with resists using LEEM
NASA Astrophysics Data System (ADS)
Thete, A.; Geelen, D.; Wuister, S.; van der Molen, S. J.; Tromp, R. M.
2015-03-01
Extreme Ultra Violet (EUV) lithography is a next generation lithographic technique using 13.5 nm wavelength light (91.7eV photon energy) to define sub-20 nm features. This high energy radiation generates lower energy electrons (LEEs) after being absorbed. The mean free path of LEEs increases rapidly below ca. 30 eV allowing them to migrate several nanometers from their point of origin. As LEEs can still have sufficient energy to react with the surrounding resist, this may give rise to pattern blurring, posing a challenge for sub 10 nm features. Here, we introduce Low Energy Electron Microscopy (LEEM) as an extremely useful technique to investigate the interactions of LEEs with EUV resists. Using LEEM we can expose the resist with precise electron energies and doses. We also report the initial results of LEE exposures on poly(methyl methacrylate) PMMA. We have studied the LEE-PMMA interaction depth as a function of electron energy; a distinct exposure threshold is found at ~15 eV, below which the resist responds only very weakly to electron exposure.
Interactive cutting path analysis programs
NASA Technical Reports Server (NTRS)
Weiner, J. M.; Williams, D. S.; Colley, S. R.
1975-01-01
The operation of numerically controlled machine tools is interactively simulated. Four programs were developed to graphically display the cutting paths for a Monarch lathe, Cintimatic mill, Strippit sheet metal punch, and the wiring path for a Standard wire wrap machine. These programs are run on a IMLAC PDS-ID graphic display system under the DOS-3 disk operating system. The cutting path analysis programs accept input via both paper tape and disk file.
Numerical evidence of mixing in rooms using the free path temporal distribution.
Billon, Alexis; Embrechts, Jean-Jacques
2011-09-01
The ergodic propriety of a room has strong effects on its reverberation. If the room is ergodic, the reverberation can be broken up in two steps: a deterministic process followed by a stochastic one. The late reverberation can be then modeled by a reverberation algorithm instead of more computationally consuming methods. In this study, the free path temporal distribution obtained by ray-tracing is used as an indicator of the room's mixing: the energetic average of the path lengths is computed at each time step. Ergodic rooms are thus characterized by rapidly convergent distributions. The free path value becomes independent of time. On the other hand, path selection mechanism and orbits are observed in non-ergodic rooms. The transition time from the deterministic process to the stochastic one is also studied through the evaluation of the room's time constant. It is shown that its value depends only on the mean free path and the boundaries scattering value. An empirical expression is obtained which agrees well with simulations carried out in a concert hall. This transition time from a deterministic model to a stochastic one can be used to speed up the acoustical predictions and auralizations in ergodic rooms. PMID:21895079
Handbook of Feynman Path Integrals
NASA Astrophysics Data System (ADS)
Grosche, Christian, Steiner, Frank
The Handbook of Feynman Path Integrals appears just fifty years after Richard Feynman published his pioneering paper in 1948 entitled "Space-Time Approach to Non-Relativistic Quantum Mechanics", in which he introduced his new formulation of quantum mechanics in terms of path integrals. The book presents for the first time a comprehensive table of Feynman path integrals together with an extensive list of references; it will serve the reader as a thorough introduction to the theory of path integrals. As a reference book, it is unique in its scope and will be essential for many physicists, chemists and mathematicians working in different areas of research.
Electron-phonon scattering times in crystalline disordered titanium alloys between 3 and 15 K
NASA Astrophysics Data System (ADS)
Wu, C. Y.; Jian, W. B.; Lin, J. J.
1998-05-01
We have successfully fabricated bulk crystalline disordered titanium alloys (Ti1-xSnx,Ti1-xGex,and Ti0.97-xSn0.03Scx) with nominal concentration x of the order of a few at. %. The impurity atoms are gradually introduced into a titanium host to tune the degree of disorder, resulting in residual resistivities ρ0 varying from ~ 40 to 160 μΩ cm (corresponding to values of kFl~5-20, with kF being the Fermi wave number and l being the electron elastic mean free path). With this wide range of experimentally accessible ρ0, we are able to perform systematic studies of the disorder ρ0, or electron elastic mean free path l, behavior of the electron-phonon scattering time τph. We have measured the magnetoresistivities of these alloys between 3 and 15 K, and compared our results with weak-localization theoretical predictions to extract τph(T,l). Unexpectedly, we obtain a rather diversified temperature dependence and disorder dependence of τph as follows. (a) In Ti1-xSnx alloys with ρ0>~100 μΩ cm we find 1/τph~T2/l. (b) In Ti1-xSnx alloys with ρ0<~70 μΩ cm we find 1/τph~T3/l. (c) In Ti1-xGex alloys with 50<~ρ0<~130 μΩ cm we find 1/τph~T3 in some alloys and 1/τph~T4 in others, while at a given temperature 1/τph is essentially independent of disorder. (d) In Ti0.97-xSn0.03Scx alloys with 55<~ρ0<~75 μΩ cm we obtain 1/τph~T2. These experimental observations altogether imply that electron-phonon interactions in the presence of strong impurity scattering are very sensitive to the local material environment (the microscopic quality) of a particular sample system, which might be variously modulated with the doping of different kinds of impurity atoms. Our results are compared with existing theoretical predictions for electron-phonon scattering in disordered conductors.
Reconfigurable data path processor
NASA Technical Reports Server (NTRS)
Donohoe, Gregory (Inventor)
2005-01-01
A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
NASA Astrophysics Data System (ADS)
Lu, T. M.; Laroche, D.; Huang, S.-H.; Chuang, Y.; Li, J.-Y.; Liu, C. W.
2016-02-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 1010 cm-2 to 1.8 × 1011 cm-2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. This result is then compared to a conventional lateral superlattice model potential.
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
Lu, T. M.; Laroche, D.; Huang, S.-H.; Chuang, Y.; Li, J.-Y.; Liu, C. W.
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 1010 cm−2 to 1.8 × 1011 cm−2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. This result is then compared to a conventional lateral superlattice model potential. PMID:26865160
Thermal flux limited electron Kapitza conductance in copper-niobium multilayers
Cheaito, Ramez; Gaskins, John T.; Duda, John C.; Hopkins, Patrick E.; Hattar, Khalid; Beechem, Thomas E.; Ihlefeld, Jon F.; Piekos, Edward S.; Yadav, Ajay K.; Baldwin, Jon K.; Misra, Amit
2015-03-02
We study the interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. Our results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.
Thermal flux limited electron Kapitza conductance in copper-niobium multilayers
Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, III, Thomas Edwin; Ihlefeld, Jon; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; et al
2015-03-05
The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffusemore » mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.« less
A deterministic computational model for the two dimensional electron and photon transport
NASA Astrophysics Data System (ADS)
Badavi, Francis F.; Nealy, John E.
2014-12-01
A deterministic (non-statistical) two dimensional (2D) computational model describing the transport of electron and photon typical of space radiation environment in various shield media is described. The 2D formalism is casted into a code which is an extension of a previously developed one dimensional (1D) deterministic electron and photon transport code. The goal of both 1D and 2D codes is to satisfy engineering design applications (i.e. rapid analysis) while maintaining an accurate physics based representation of electron and photon transport in space environment. Both 1D and 2D transport codes have utilized established theoretical representations to describe the relevant collisional and radiative interactions and transport processes. In the 2D version, the shield material specifications are made more general as having the pertinent cross sections. In the 2D model, the specification of the computational field is in terms of a distance of traverse z along an axial direction as well as a variable distribution of deflection (i.e. polar) angles θ where -π/2<θ<π/2, and corresponding symmetry is assumed for the range of azimuth angles (0<φ<2π). In the transport formalism, a combined mean-free-path and average trajectory approach is used. For candidate shielding materials, using the trapped electron radiation environments at low Earth orbit (LEO), geosynchronous orbit (GEO) and Jupiter moon Europa, verification of the 2D formalism vs. 1D and an existing Monte Carlo code are presented.
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential.
Lu, T M; Laroche, D; Huang, S-H; Chuang, Y; Li, J-Y; Liu, C W
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 10(10) cm(-2) to 1.8 × 10(11) cm(-2), with a peak mobility of 6.4 × 10(5) cm(2)/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. This result is then compared to a conventional lateral superlattice model potential. PMID:26865160
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; Chuang, Y.; Li, J. -Y.; Liu, C. W.
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned overmore » a wide range, from 4.4 × 1010 cm–2 to 1.8 × 1011 cm–2, with a peak mobility of 6.4 × 105 cm2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.« less
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; Chuang, Y.; Li, J. -Y.; Liu, C. W.
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned over a wide range, from 4.4 × 10^{10} cm^{–2} to 1.8 × 10^{11} cm^{–2}, with a peak mobility of 6.4 × 10^{5} cm^{2}/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.
Thermal flux limited electron Kapitza conductance in copper-niobium multilayers
Cheaito, Ramez; Hattar, Khalid Mikhiel; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, III, Thomas Edwin; Ihlefeld, Jon; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; Hopkins, Patrick E.
2015-03-05
The interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers was studied. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. The results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.
NASA Astrophysics Data System (ADS)
Voronkov, R. A.; Rymzhanov, R. A.; Medvedev, N. A.; Volkov, A. E.
2015-12-01
Monte Carlo code TREKIS is applied to trace kinetics of excitation of the electron subsystem of ZnO and MgO after an impact of a swift heavy ion (SHI). The event-by-event simulations describe excitation of the electron subsystems by a penetrating SHI, spatial spreading of generated electrons and secondary electron cascades. Application of the complex dielectric function (CDF) formalism for calculation of the cross sections of charged particle interaction with a solid target allows to consider collective response of the target to perturbation, which arises from the spatial and temporal correlations in the target electrons ensemble. The method of CDF reconstruction from the experimental optical data is applied. Electron inelastic mean free paths calculated within the CDF formalism are in very good agreement with NIST database. SHI energy losses agree well with those from SRIM and CasP codes. The radial distributions of valence holes, core holes and delocalized electrons as well as their energy densities in SHI tracks are calculated. The analysis of these distributions is presented.
Collabortive Authoring of Walden's Paths
Li, Yuanling; Bogen II, Paul Logasa; Pogue, Daniel; Furuta, Richard Keith; Shipman, Frank Major
2012-01-01
This paper presents a prototype of an authoring tool to allow users to collaboratively build, annotate, manage, share and reuse collections of distributed resources from the World Wide Web. This extends on the Walden’s Path project’s work to help educators bring resources found on the World Wide Web into a linear contextualized structure. The introduction of collaborative authoring feature fosters collaborative learning activities through social interaction among participants, where participants can coauthor paths in groups. Besides, the prototype supports path sharing, branching and reusing; specifically, individual participant can contribute to the group with private collections of knowledge resources; paths completed by group can be shared among group members, such that participants can tailor, extend, reorder and/or replace nodes to have sub versions of shared paths for different information needs.
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.
2014-01-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
NASA Astrophysics Data System (ADS)
Wutich, A.; White, A. C.; Roberts, C. M.; White, D. D.; Larson, K. L.; Brewis, A.
2013-06-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences based on development status and, to a lesser extent, water scarcity. People in less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in more developed sites. Thematically, people in less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community based solutions, while people in more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in water-rich sites. Thematically, people in water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S.
2015-01-01
PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797
Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S
2015-07-01
PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797
Local electronic functionality in carbon nanotube devices
NASA Astrophysics Data System (ADS)
Freitag, Marcus
Single-wall carbon nanotubes (SWNTs) are unique molecular conductors that can act as quantum wires or field-effect transistors. Theory gives us detailed understanding about their one-dimensional electronic structure, but very little is known about the internal functioning of real-world devices made of nanotubes. In particular the role of defects and electronic contacts is poorly understood. Here, we use scanning probe techniques to measure electronic properties of SWNTs on nanometer lengthscales. Atomic resolution scanning tunneling microscopy (STM) shows standing waves that form due to backscattering and interference of electrons. Different patterns are ascribed to scattering with large and small momentum transfer. Electronic transport through SWNT bundles is analyzed locally by tunneling AFM (T-AFM) and scanning gate microscopy (SGM). We resolve the electrochemical potential of individual nanotubes within bundles and find that electron hopping between nanotubes limits the conductivity in metallic bundles. Semiconducting bottlenecks have a profound influence on transport along thin bundles. Electronic devices at junctions between two one-dimensional wires are the ultimate goal in miniaturization. We characterize the 1D Schottky barrier at a metal-semiconductor nanotube cross junction by SGM and find a 10 nm depletion width in reverse bias. Nanotube field-effect transistors (FETs) exhibit two back-to-back Schottky barriers at the contacts to Cr/Au leads. They are responsible for the p-type character of the device. Potential modulations due to disorder along the nanotube length determine the turn-off potential for the FET. We are able to characterize defects one by one and find turn-off surface potentials between 250 mV and 800 mV, corresponding to local Fermi levels between 20 meV and 65 meV. Cobalt-contacted nanotube FETs are found to be n-type due to small Schottky barriers for electrons. They behave complementary to the Cr/Au contacted p-type FETs and have experimentally observable conduction band modulations. Finally, CVD-grown metallic SWNTs have a high contact transparency T ˜ 1/2 and large mean-free path lm ˜ 0.43 mum. At high bias we observe energy dissipation along the nanotube, supporting the theory of optical phonon emission.
NASA Astrophysics Data System (ADS)
vanden-Eijnden, E.
The dynamical behavior of many systems arising in physics, chemistry, biology, etc. is dominated by rare but important transition events between long lived states. For over 70 years, transition state theory (TST) has provided the main theoretical framework for the description of these events [17,33,34]. Yet, while TST and evolutions thereof based on the reactive flux formalism [1, 5] (see also [30,31]) give an accurate estimate of the transition rate of a reaction, at least in principle, the theory tells very little in terms of the mechanism of this reaction. Recent advances, such as transition path sampling (TPS) of Bolhuis, Chandler, Dellago, and Geissler [3, 7] or the action method of Elber [15, 16], may seem to go beyond TST in that respect: these techniques allow indeed to sample the ensemble of reactive trajectories, i.e. the trajectories by which the reaction occurs. And yet, the reactive trajectories may again be rather uninformative about the mechanism of the reaction. This may sound paradoxical at first: what more than actual reactive trajectories could one need to understand a reaction? The problem, however, is that the reactive trajectories by themselves give only a very indirect information about the statistical properties of these trajectories. This is similar to why statistical mechanics is not simply a footnote in books about classical mechanics. What is the probability density that a trajectory be at a given location in state-space conditional on it being reactive? What is the probability current of these reactive trajectories? What is their rate of appearance? These are the questions of interest and they are not easy to answer directly from the ensemble of reactive trajectories. The right framework to tackle these questions also goes beyond standard equilibrium statistical mechanics because of the nontrivial bias that the very definition of the reactive trajectories imply - they must be involved in a reaction. The aim of this chapter is to introduce the reader to the probabilistic framework one can use to characterize the mechanism of a reaction and obtain the probability density, current, rate, etc. of the reactive trajectories.
NASA Technical Reports Server (NTRS)
Chandler, J. A.
1983-01-01
Long helical vent path cools and releases hot pyrotechnical gas that exits along its spiraling threads. Current design uses 1/4-28 threads with outer diameter of stud reduced by 0.025 in. (0.62 mm). To open or close gassampler bottle, pyrotechnic charges on either one side or other of valve cylinder are actuated. Gases vented slowly over long path are cool enough to present no ignition hazard. Vent used to meter flow in refrigeration, pneumaticcontrol, and fluid-control systems by appropriately adjusting size and length of vent path.
Improving path planning with learning
Chen, P.C.
1991-12-16
We present a learning algorithm designed to improve robot path planning. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, it learns a sparse network of useful robot subgoals which guide and support fast planning. We analyze the algorithm theoretically by developing some general techniques useful in characterizing behaviors of probabilistic learning. We also demonstrate the effectiveness of the algorithm empirically with an existing path planner in practical environments. The learning algorithm not only reduces the time cost of existing planners, but also increases their capability in solving difficult tasks. 7 refs.
Design of III-Nitride Hot Electron Transistors
NASA Astrophysics Data System (ADS)
Gupta, Geetak
III-Nitride based devices have made great progress over the past few decades in electronics and photonics applications. As the technology and theoretical understanding of the III-N system matures, the limitations on further development are based on very basic electronic properties of the material, one of which is electron scattering (or ballistic electron effects). This thesis explores the design space of III-N based ballistic electron transistors using novel design, growth and process techniques. The hot electron transistor (HET) is a unipolar vertical device that operates on the principle of injecting electrons over a high-energy barrier (φBE) called the emitter into an n-doped region called base and finally collecting the high energy electrons (hot electrons) over another barrier (φBC) called the collector barrier. The injected electrons traverse the base in a quasi-ballistic manner. Electrons that get scattered in the base contribute to base current. High gain in the HET is thus achieved by enabling ballistic transport of electrons in the base. In addition, low leakage across the collector barrier (I BCleak) and low base resistance (RB) are needed to achieve high performance. Because of device attributes such as vertical structure, ballistic transport and low-resistance n-type base, the HET has the potential of operating at very high frequencies. Electrical measurements of a HET structure can be used to understand high-energy electron physics and extract information like mean free path in semiconductors. The III-Nitride material system is particularly suited for HETs as it offers a wide range of DeltaEcs and polarization charges which can be engineered to obtain barriers which can inject hot-electrons and have low leakage at room temperature. In addition, polarization charges in the III-N system can be engineered to obtain a high-density and high-mobility 2DEG in the base, which can be used to reduce base resistance and allow vertical scaling. With these considerations in mind, III-N HETs had been explored in our research group earlier and gave us encouraging common base IV characteristics. Common emitter transistor operation was, however, not observed due to high RB and IBCleak. This thesis discusses several design and process challenges associated with the HET in general and specific to the III-N system. Many of these challenges like RB, IBCleak, and high energy injection were solved using novel combinations of hetero-structure and polarization engineering, device fabrication, and growth. Common-Emitter operation (with current gain ˜ 0.1) was demonstrated in III-N HETs for the first time using injection and collector barriers induced by AlGaN and InGaN polarization-dipoles. In order to improve current gain, different parts of the III-N HET base which contribute to scattering, were identified. A novel base contact methodology using selective etching of GaN with respect to AlN was developed to enable base scaling. Aggressive scaling of all parts of the base was then used to increase current gain. A maximum gain of ˜3.5 was demonstrated using a 1.5nm AlN layer as the emitter, 2nm GaN base and 2nm In0.2Ga0.8N as the collector P-D. This is the highest reported DC current gain in III-N HETs to date. The III-N HET structure was also used to extract the mean free path of hot-electrons (lambdamfp = 6nm) in GaN. The extracted value of mean free path has significant implications for any scaled devices which use ballistic or quasi-ballistic electron transport. We believe that the work presented in this dissertation provides a pathway for high gain in III-N HETs and eventual realization of their high frequency potential.
NASA Astrophysics Data System (ADS)
Kyriakou, Ioanna; Emfietzoglou, Dimitris; Garcia-Molina, Rafael; Abril, Isabel; Kostarelos, Kostas
2011-09-01
The effect of bulk and surface excitations to inelastic scattering in low-energy electron beam irradiation of multi-walled carbon nanotubes (MWNTs) is studied using the dielectric formalism. Calculations are based on a semiempirical dielectric response function for MWCNTs determined by means of a many-pole plasmon model with parameters adjusted to available experimental spectroscopic data under theoretical sum-rule constrains. Finite-size effects are considered in the context of electron gas theory via a boundary correction term in the plasmon dispersion relations, thus, allowing a more realistic extrapolation of the electronic excitation spectrum over the whole energy-momentum plane. Energy-loss differential and total inelastic scattering cross sections as a function of electron energy and distance from the surface, valid over the energy range 50-30,000 eV, are calculated with the individual contribution of bulk and surface excitations separated and analyzed for the case of normally incident and escaping electrons. The sensitivity of the results to the various approximations for the spatial dispersion of the electronic excitations is quantified. Surface excitations are shown to have a strong influence upon the shape and intensity of the energy-loss differential cross section in the near surface region whereas the general notion of a spatially invariant inelastic mean free path inside the material is found to be of good approximation.
Formal language constrained path problems
Barrett, C.; Jacob, R.; Marathe, M.
1997-07-08
In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.
Primary cosmic ray electrons above 10 GeV: Evidence for a spectral break
NASA Technical Reports Server (NTRS)
Silverberg, R. F.; Ormes, J. F.; Balasubrahmanyan, V. K.
1973-01-01
A balloon borne measurement of the cosmic ray electron spectrum from 10 to 200 GeV is reported in which two new techniques have been used to remove proton background contamination. First, the depth of the spectrometer was more than 25 radiation lengths, the equivalent of more than 2 mean free paths of material, enabling hadronically and electromagnetically induced cascades to be differentiated for a subset of the data. Second, electromagnetic cascade starting points were determined to within + or - 0.1 radiation lengths based upon a calibration with electrons from 5.4 to 18 GeV at the Stanford Linear Accelerator, greatly reducing the chances for a proton to simulate an electron. The resulting spectrum, when fitted with a power law, is quite steep, -3.2 + or - 0.1, but the chi-square fit is marginal. A significantly better fit is achieved assuming a transition region model in which the source spectral index is 2.7 with a break occurring at about 50 GeV.
Surface excitations in electron spectroscopy. Part I: dielectric formalism and Monte Carlo algorithm
Salvat-Pujol, F; Werner, W S M
2013-01-01
The theory describing energy losses of charged non-relativistic projectiles crossing a planar interface is derived on the basis of the Maxwell equations, outlining the physical assumptions of the model in great detail. The employed approach is very general in that various common models for surface excitations (such as the specular reflection model) can be obtained by an appropriate choice of parameter values. The dynamics of charged projectiles near surfaces is examined by calculations of the induced surface charge and the depth- and direction-dependent differential inelastic inverse mean free path (DIIMFP) and stopping power. The effect of several simplifications frequently encountered in the literature is investigated: differences of up to 100% are found in heights, widths, and positions of peaks in the DIIMFP. The presented model is implemented in a Monte Carlo algorithm for the simulation of the electron transport relevant for surface electron spectroscopy. Simulated reflection electron energy loss spectra are in good agreement with experiment on an absolute scale. Copyright 2012 John Wiley & Sons, Ltd. PMID:23794766
Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra
NASA Astrophysics Data System (ADS)
Calliari, L.; Filippi, M.; A. Varfolomeev
2011-08-01
We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it into bulk and surface contributions, respectively referred to as the differential inverse inelastic mean free path (DIIMFP) and the differential surface excitation parameter (DSEP). As compared to [1] and [2], we have implemented a modified approach, and we have applied it to the specific geometry of the cylindrical mirror analyzer (CMA), used to acquire the REEL spectra shown here. Silicon, a material with well-defined surface and bulk plasmons, is taken as a case study to investigate the approach as a function of electron energy over the energy range typical of REELS, i.e. from 250 eV to 2 keV. Our goal is, on the one hand, to examine possible limits for the applicability of the approach and, on the other hand, to test a basic assumption of the PIA, namely that a unique DIIMFP and a unique DSEP account for REEL spectra, whatever the acquisition conditions (i.e. electron energy or angle of surface crossing) are. We find that a minimum energy exists below which the PIA cannot be applied and that the assumption of REEL spectra accounted for by unique DIIMFP and DSEP is indeed an approximation.
A DATABASE OF >20 keV ELECTRON GREEN'S FUNCTIONS OF INTERPLANETARY TRANSPORT AT 1 AU
Agueda, N.; Sanahuja, B.; Vainio, R.
2012-10-15
We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.
Short paths in expander graphs
Kleinberg, J.; Rubinfeld, R.
1996-12-31
Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratio in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.
Peters, John W; Miller, Anne-Frances; Jones, Anne K; King, Paul W; Adams, Michael Ww
2016-04-01
Electron bifurcation is the recently recognized third mechanism of biological energy conservation. It simultaneously couples exergonic and endergonic oxidation-reduction reactions to circumvent thermodynamic barriers and minimize free energy loss. Little is known about the details of how electron bifurcating enzymes function, but specifics are beginning to emerge for several bifurcating enzymes. To date, those characterized contain a collection of redox cofactors including flavins and iron-sulfur clusters. Here we discuss the current understanding of bifurcating enzymes and the mechanistic features required to reversibly partition multiple electrons from a single redox site into exergonic and endergonic electron transfer paths. PMID:27016613
Park, Jeong Y.; Lee, Hyunjoo; Renzas, J. Russell; Zhang, Yawen; Somorjai, G.A.
2008-05-01
Hot electron flow generated on colloid platinum nanoparticles during exothermic catalytic carbon monoxide oxidation was directly detected with Au/TiO{sub 2} diodes. Although Au/TiO{sub 2} diodes are not catalytically active, platinum nanoparticles on Au/TiO{sub 2} exhibit both chemicurrent and catalytic turnover rate. Hot electrons are generated on the surface of the metal nanoparticles and go over the Schottky energy barrier between Au and TiO{sub 2}. The continuous Au layer ensures that the metal nanoparticles are electrically connected to the device. The overall thickness of the metal assembly (nanoparticles and Au thin film) is comparable to the mean free path of hot electrons, resulting in ballistic transport through the metal. The chemicurrent and chemical reactivity of nanoparticles with citrate, hexadecylamine, hexadecylthiol, and TTAB (Tetradecyltrimethylammonium Bromide) capping agents were measured during catalytic CO oxidation at pressures of 100 Torr O{sub 2} and 40 Torr CO at 373-513 K. We found that chemicurrent yield varies with each capping agent, but always decreases with increasing temperature. We suggest that this inverse temperature dependence is associated with the influence of charging effects due to the organic capping layer during hot electron transport through the metal-oxide interface.
Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7–xTex
Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.
2015-12-07
Phonon properties of Mo3Sb7–xTex (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassingmore » the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.« less
Shortest Paths between Shortest Paths and Independent Sets
NASA Astrophysics Data System (ADS)
Kamiński, Marcin; Medvedev, Paul; Milanič, Martin
We study problems of reconfiguration of shortest paths in graphs. We prove that the shortest reconfiguration sequence can be exponential in the size of the graph and that it is NP-hard to compute the shortest reconfiguration sequence even when we know that the sequence has polynomial length. Moreover, we also study reconfiguration of independent sets in three different models and analyze relationships between these models, observing that shortest path reconfiguration is a special case of independent set reconfiguration in perfect graphs, under any of the three models. Finally, we give polynomial results for restricted classes of graphs (even-hole-free and P 4-free graphs).
Multiple paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene; Wiegand, Thomas; Mark, Gloria
1987-01-01
The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.
Optical Path, Phase, and Interference
NASA Astrophysics Data System (ADS)
Newburgh, Ronald
2005-11-01
A powerful tool in wave optics is the concept of optical path length, a notion usually introduced with Fermat's principle.1-3 The analysis of Fermat's principle requires the application of the calculus of variations and the concept of an extremum, ideas too advanced for beginning students. However, the concept has proven its usefulness in the analysis4 of interference experiments such as those of Michelson and Fabry-Perot. In this paper we shall show how optical path length can aid in the analysis of a modified two-slit Young experiment.
Speckle imaging over horizontal paths
NASA Astrophysics Data System (ADS)
Carrano, Carmen J.
2002-09-01
Atmospheric aberrations reduce the resolution and contrast in surveillance images recorded over horizontal or slant paths. This paper describes our recent horizontal and slant-path imaging experiments of extended scenes as well as the results obtained using speckle imaging. The experiments were performed with an 8-inch diameter telescope placed on either a rooftop or hillside and cover ranges of interest from 0.5 km up to 10 km. The scenery includes resolution targets, people, vehicles, and other structures. The improvement in image quality using speckle imaging is dramatic in many cases, and depends significantly upon the atmospheric conditions. We quantify resolution improvement through modulation transfer function measurement comparisons.
Speckle Imaging Over Horizontal Paths
Carrano, C J
2002-05-21
Atmospheric aberrations reduce the resolution and contrast in surveillance images recorded over horizontal or slant paths. This paper describes our recent horizontal and slant path imaging experiments of extended scenes as well as the results obtained using speckle imaging. The experiments were performed with an 8-inch diameter telescope placed on either a rooftop or hillside and cover ranges of interest from 0.5 km up to 10 km. The scenery includes resolution targets, people, vehicles, and other structures. The improvement in image quality using speckle imaging is dramatic in many cases, and depends significantly upon the atmospheric conditions. We quantify resolution improvement through modulation transfer function measurement comparisons.
NASA Astrophysics Data System (ADS)
Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon; Vilmer, Nicole
2014-01-01
Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high-energy electrons are confined to the coronal region of the source, we consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E) depending directly on the mean free path λ associated with the non-collisional scattering mechanism. Comparing the predictions of the model with observations, we find that λ ~ (108-109) cm for ~30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.
Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon; Vilmer, Nicole E-mail: emslieg@wku.edu
2014-01-10
Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high-energy electrons are confined to the coronal region of the source, we consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E) depending directly on the mean free path λ associated with the non-collisional scattering mechanism. Comparing the predictions of the model with observations, we find that λ ∼ (10{sup 8}-10{sup 9}) cm for ∼30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.
Jovian modulation of interplanetary electrons as observed with Voyagers 1 and 2
NASA Technical Reports Server (NTRS)
Schardt, A. W.; Mcdonald, F. B.; Trainor, J. H.
1982-01-01
The release of magnetospheric electrons from Jupiter into interplanetary space is modulated by the Jovian rotation period. The Voyager 1 and 2 observations showed that the modulation period agrees on the average with the synodic period of Jupiter (9h 55m 33.12s), but over intervals of weeks it can differ from the synodic period by several minutes. The lack of exact synchronization is attributed to changes of the plasma population in the Jovian magnetosphere. The Jovian modulation appears to be a persistent feature of the interaction between the solar wind and the magnetosphere and the disappearance of the modulation away from Jupiter is attributed to interplanetary propagation conditions. This leads to the following limits on the diffuse coefficient for interplanetary electrons: kappa perpendicular is or = 8 x 10 to the 19th power sq cm/s and kappa parallel is or = 10 to the 21st power sq cm/s. Modulation was still detectable at 3.8 A.U. behind Jupiter in the far magnetotail. This requires a mean free path in the tail 0.75 A.U. and good field connection along the tail to Jupiter.
Perceived Shrinkage of Motion Paths
ERIC Educational Resources Information Center
Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart
2009-01-01
We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require
Career Paths in Environmental Sciences
Career paths, current and future, in the environmental sciences will be discussed, based on experiences and observations during the author's 40 + years in the field. An emphasis will be placed on the need for integrated, transdisciplinary systems thinking approaches toward achie...
ERIC Educational Resources Information Center
Arredondo, Michael
2002-01-01
The author describes the difficulties of achieving his life-long dream of going to an Ivy League college, and how his Shawnee grandfather advised him to acquire the white man's skills and bring them back to his people. He advises young Native Americans to choose the more difficult, yet honorable path of serving their own people. (TD)
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudeep; Paul, Samit
2009-10-01
The average number of collisions N of seed electrons with neutral gas atoms during random walk in escaping from a given volume, in the presence of polarized electromagnetic waves, is found to vary as N =B(Λ /λ)2/[1+C(Λ /λ)]2, indicating a modification to the conventional field free square law N =A(Λ /λ)2, where Λ is the characteristic diffusion length and λ the mean free path. It is found that for the field free case A =1.5 if all the electrons originate at the center and is 1.25 if they are allowed to originate at any random point in the given volume. The B and C coefficients depend on the wave electric field and frequency. Predictions of true discharge initiation time τc can be made from the temporal evolution of seed electrons over a wide range of collision frequencies. For linearly polarized waves of 2.45 GHz and electric field in the range (0.6-1.0)×105 V/m, τc=5.5-1.6 ns for an unmagnetized microwave driven discharge at 1 Torr argon.
Gusenleitner, S.; Hauschild, D.; Reinert, F.; Handick, E.
2014-03-28
Ruthenium capped multilayer coatings for use in the extreme ultraviolet (EUV) radiation regime have manifold applications in science and industry. Although the Ru cap shall protect the reflecting multilayers, the surface of the heterostructures suffers from contamination issues and surface degradation. In order to get a better understanding of the effects of these impurities on the optical parameters, reflection electron energy loss spectroscopy (REELS) measurements of contaminated and H cleaned Ru multilayer coatings were taken at various primary electron beam energies. Experiments conducted at low primary beam energies between 100 eV and 1000 eV are very surface sensitive due to the short inelastic mean free path of the electrons in this energy range. Therefore, influences of the surface condition on the above mentioned characteristics can be appraised. In this paper, it can be shown that carbon and oxide impurities on the mirror surface decrease the transmission of the Ru cap by about 0.75% and the overall reflectance of the device is impaired as the main share of the non-transmitted EUV light is absorbed in the contamination layer.
Bhattacharjee, Sudeep; Paul, Samit
2009-10-15
The average number of collisions N of seed electrons with neutral gas atoms during random walk in escaping from a given volume, in the presence of polarized electromagnetic waves, is found to vary as N=B({lambda}/{lambda}){sup 2}/[1+C({lambda}/{lambda})]{sup 2}, indicating a modification to the conventional field free square law N=A({lambda}/{lambda}){sup 2}, where {lambda} is the characteristic diffusion length and {lambda} the mean free path. It is found that for the field free case A=1.5 if all the electrons originate at the center and is 1.25 if they are allowed to originate at any random point in the given volume. The B and C coefficients depend on the wave electric field and frequency. Predictions of true discharge initiation time {tau}{sub c} can be made from the temporal evolution of seed electrons over a wide range of collision frequencies. For linearly polarized waves of 2.45 GHz and electric field in the range (0.6-1.0)x10{sup 5} V/m, {tau}{sub c}=5.5-1.6 ns for an unmagnetized microwave driven discharge at 1 Torr argon.
Bhattacharjee, Sudeep; Paul, Samit; Dey, Indranuj
2013-04-15
This paper deals with random walk of electrons and collisional crossover in a gas evolving toward a plasma, in presence of electromagnetic (EM) waves and magnetostatic (B) fields, a fundamental subject of importance in areas requiring generation and confinement of wave assisted plasmas. In presence of EM waves and B fields, the number of collisions N suffered by an electron with neutral gas atoms while diffusing out of the volume during the walk is significantly modified when compared to the conventional field free square law diffusion; N=1.5({Lambda}/{lambda}){sup 2}, where {Lambda} is the characteristic diffusion length and {lambda} is the mean free path. There is a distinct crossover and a time scale associated with the transition from the elastic to inelastic collisions dominated regime, which can accurately predict the breakdown time ({tau}{sub c}) and the threshold electric field (E{sub BD}) for plasma initiation. The essential features of cyclotron resonance manifested as a sharp drop in {tau}{sub c}, lowering of E{sub BD} and enhanced electron energy gain is well reproduced in the constrained random walk.
Enzymatic reaction paths as determined by transition path sampling
NASA Astrophysics Data System (ADS)
Masterson, Jean Emily
Enzymes are biological catalysts capable of enhancing the rates of chemical reactions by many orders of magnitude as compared to solution chemistry. Since the catalytic power of enzymes routinely exceeds that of the best artificial catalysts available, there is much interest in understanding the complete nature of chemical barrier crossing in enzymatic reactions. Two specific questions pertaining to the source of enzymatic rate enhancements are investigated in this work. The first is the issue of how fast protein motions of an enzyme contribute to chemical barrier crossing. Our group has previously identified sub-picosecond protein motions, termed promoting vibrations (PVs), that dynamically modulate chemical transformation in several enzymes. In the case of human heart lactate dehydrogenase (hhLDH), prior studies have shown that a specific axis of residues undergoes a compressional fluctuation towards the active site, decreasing a hydride and a proton donor--acceptor distance on a sub-picosecond timescale to promote particle transfer. To more thoroughly understand the contribution of this dynamic motion to the enzymatic reaction coordinate of hhLDH, we conducted transition path sampling (TPS) using four versions of the enzymatic system: a wild type enzyme with natural isotopic abundance; a heavy enzyme where all the carbons, nitrogens, and non-exchangeable hydrogens were replaced with heavy isotopes; and two versions of the enzyme with mutations in the axis of PV residues. We generated four separate ensembles of reaction paths and analyzed each in terms of the reaction mechanism, time of barrier crossing, dynamics of the PV, and residues involved in the enzymatic reaction coordinate. We found that heavy isotopic substitution of hhLDH altered the sub-picosecond dynamics of the PV, changed the favored reaction mechanism, dramatically increased the time of barrier crossing, but did not have an effect on the specific residues involved in the PV. In the mutant systems, we observed changes in the reaction mechanism and altered contributions of the mutated residues to the enzymatic reaction coordinate, but we did not detect a substantial change in the time of barrier crossing. These results confirm the importance of maintaining the dynamics and structural scaffolding of the hhLDH PV in order to facilitate facile barrier passage. We also utilized TPS to investigate the possible role of fast protein dynamics in the enzymatic reaction coordinate of human dihydrofolate reductase (hsDHFR). We found that sub-picosecond dynamics of hsDHFR do contribute to the reaction coordinate, whereas this is not the case in the E. coli version of the enzyme. This result indicates a shift in the DHFR family to a more dynamic version of catalysis. The second inquiry we addressed in this thesis regarding enzymatic barrier passage concerns the variability of paths through reactive phase space for a given enzymatic reaction. We further investigated the hhLDH-catalyzed reaction using a high-perturbation TPS algorithm. Though we saw that alternate reaction paths were possible, the dominant reaction path we observed corresponded to that previously elucidated in prior hhLDH TPS studies. Since the additional reaction paths we observed were likely high-energy, these results indicate that only the dominant reaction path contributes significantly to the overall reaction rate. In conclusion, we show that the enzymes hhLDH and hsDHFR exhibit paths through reactive phase space where fast protein motions are involved in the enzymatic reaction coordinate and exhibit a non-negligible contribution to chemical barrier crossing.
Electron-phonon coupling and thermal transport in the thermoelectric compound Mo_{3}Sb_{7–x}Te_{x}
Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.
2015-12-07
Phonon properties of Mo_{3}Sb_{7–x}Te_{x} (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassing the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.
Safont, Vicent S; González-Navarrete, Patricio; Oliva, Mónica; Andrés, Juan
2015-12-28
A detailed study on all stages associated with the reaction mechanisms for the denitrogenation of 2,3-diazabicyclo[2.2.1]hept-2-ene derivatives (DBX, with X substituents at the methano-bridge carbon atom, X = H and OH) is presented. In particular, we have characterized the processes leading to cycloalkene derivatives through migration-type mechanisms as well as the processes leading to cyclopentil-1,3-diradical species along concerted or stepwise pathways. The reaction mechanisms have been further analysed within the bonding evolution theory framework at B3LYP and M05-2X/6-311+G(2d,p) levels of theory. Analysis of the results allows us to obtain the intimate electronic mechanism for the studied processes, providing a new topological picture of processes underlying the correlation between the experimental measurements obtained by few-optical-cycle visible pulse radiation and the quantum topological analysis of the electron localization function (ELF) in terms of breaking/forming processes along this chemical rearrangement. The evolution of the population of the disynaptic basin V(N1,N2) can be related to the experimental observation associated with the N=N stretching mode evolution, relative to the N2 release, along the reaction process. This result allows us to determine why the N2 release is easier for the DBH case via a concerted mechanism compared to the stepwise mechanism found in the DBOH system. This holds the key to unprecedented insight into the mapping of the electrons making/breaking the bonds while the bonds change. PMID:26584857
Small Aircraft RF Interference Path Loss
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.
2007-01-01
Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.
Small Aircraft RF Interference Path Loss Measurements
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.
2007-01-01
Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.
Physarum can compute shortest paths.
Bonifaci, Vincenzo; Mehlhorn, Kurt; Varma, Girish
2012-09-21
Physarum polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by Tero et al. (Journal of Theoretical Biology, 244, 2007, pp. 553-564) to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foraging two food sources s(0) and s(1). We prove that, under this model, the mass of the mold will eventually converge to the shortest s(0)-s(1) path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by Tero et al. and can be seen as an example of a "natural algorithm", that is, an algorithm developed by evolution over millions of years. PMID:22732274
Computing geodesic paths on manifolds.
Kimmel, R; Sethian, J A
1998-07-21
The Fast Marching Method is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid points. In this paper we extend the Fast Marching Method to triangulated domains with the same computational complexity. As an application, we provide an optimal time algorithm for computing the geodesic distances and thereby extracting shortest paths on triangulated manifolds. PMID:9671694
Squeezed states and path integrals
NASA Technical Reports Server (NTRS)
Daubechies, Ingrid; Klauder, John R.
1992-01-01
The continuous-time regularization scheme for defining phase-space path integrals is briefly reviewed as a method to define a quantization procedure that is completely covariant under all smooth canonical coordinate transformations. As an illustration of this method, a limited set of transformations is discussed that have an image in the set of the usual squeezed states. It is noteworthy that even this limited set of transformations offers new possibilities for stationary phase approximations to quantum mechanical propagators.
Accelerating cleanup: Paths to closure
Edwards, C.
1998-06-30
This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.
Path optimization for oil probe
NASA Astrophysics Data System (ADS)
Smith, O'Neil; Rahmes, Mark; Blue, Mark; Peter, Adrian
2014-05-01
We discuss a robust method for optimal oil probe path planning inspired by medical imaging. Horizontal wells require three-dimensional steering made possible by the rotary steerable capabilities of the system, which allows the hole to intersect multiple target shale gas zones. Horizontal "legs" can be over a mile long; the longer the exposure length, the more oil and natural gas is drained and the faster it can flow. More oil and natural gas can be produced with fewer wells and less surface disturbance. Horizontal drilling can help producers tap oil and natural gas deposits under surface areas where a vertical well cannot be drilled, such as under developed or environmentally sensitive areas. Drilling creates well paths which have multiple twists and turns to try to hit multiple accumulations from a single well location. Our algorithm can be used to augment current state of the art methods. Our goal is to obtain a 3D path with nodes describing the optimal route to the destination. This algorithm works with BIG data and saves cost in planning for probe insertion. Our solution may be able to help increase the energy extracted vs. input energy.
Theory of bright-field scanning transmission electron microscopy for tomography
NASA Astrophysics Data System (ADS)
Levine, Zachary H.
2005-02-01
Radiation transport theory is applied to electron microscopy of samples composed of one or more materials. The theory, originally due to Goudsmit and Saunderson, assumes only elastic scattering and an amorphous medium dominated by atomic interactions. For samples composed of a single material, the theory yields reasonable parameter-free agreement with experimental data taken from the literature for the multiple scattering of 300-keV electrons through aluminum foils up to 25μm thick. For thin films, the theory gives a validity condition for Beer's law. For thick films, a variant of Molière's theory [V. G. Molière, Z. Naturforschg. 3a, 78 (1948)] of multiple scattering leads to a form for the bright-field signal for foils in the multiple-scattering regime. The signal varies as [tln(e1-2γt/τ)]-1 where t is the path length of the beam, τ is the mean free path for elastic scattering, and γ is Euler's constant. The Goudsmit-Saunderson solution interpolates numerically between these two limits. For samples with multiple materials, elemental sensitivity is developed through the angular dependence of the scattering. From the elastic scattering cross sections of the first 92 elements, a singular-value decomposition of a vector space spanned by the elastic scattering cross sections minus a delta function shows that there is a dominant common mode, with composition-dependent corrections of about 2%. A mathematically correct reconstruction procedure beyond 2% accuracy requires the acquisition of the bright-field signal as a function of the scattering angle. Tomographic reconstructions are carried out for three singular vectors of a sample problem with four elements Cr, Cu, Zr, and Te. The three reconstructions are presented jointly as a color image; all four elements are clearly identifiable throughout the image.
Cockpit simulation study of use of flight path angle for instrument approaches
NASA Technical Reports Server (NTRS)
Hanisch, B.; Ernst, H.; Johnston, R.
1981-01-01
The results of a piloted simulation experiment to evaluate the effect of integrating flight path angle information into a typical transport electronic attitude director indicator display format for flight director instrument landing system approaches are presented. Three electronic display formats are evaluated during 3 deg straight-in approaches with wind shear and turbulence conditions. Flight path tracking data and pilot subjective comments are analyzed with regard to the pilot's tracking performance and workload for all three display formats.
Time optimal paths for high speed maneuvering
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.
Multiple paths to encephalization and technical civilizations.
Schwartzman, David; Middendorf, George
2011-12-01
We propose consideration of at least two possible evolutionary paths for the emergence of intelligent life with the potential for technical civilization. The first is the path via encephalization of homeothermic animals; the second is the path to swarm intelligence of so-called superorganisms, in particular the social insects. The path to each appears to be facilitated by environmental change: homeothermic animals by decreased climatic temperature and for swarm intelligence by increased oxygen levels. PMID:22139517
Multiple Paths to Encephalization and Technical Civilizations
NASA Astrophysics Data System (ADS)
Schwartzman, David; Middendorf, George
2011-12-01
We propose consideration of at least two possible evolutionary paths for the emergence of intelligent life with the potential for technical civilization. The first is the path via encephalization of homeothermic animals; the second is the path to swarm intelligence of so-called superorganisms, in particular the social insects. The path to each appears to be facilitated by environmental change: homeothermic animals by decreased climatic temperature and for swarm intelligence by increased oxygen levels.
Evaluation of the Learning Path Specification
ERIC Educational Resources Information Center
Janssen, Jose; Berlanga, Adriana J.; Koper, Rob
2011-01-01
Flexible lifelong learning requires that learners can compare and select learning paths that best meet individual needs, not just in terms of learning goals, but also in terms of planning, costs etc. To this end a learning path specification was developed, which describes both the contents and the structure of any learning path, be it formal,…
Evaluation of the Learning Path Specification
ERIC Educational Resources Information Center
Janssen, Jose; Berlanga, Adriana J.; Koper, Rob
2011-01-01
Flexible lifelong learning requires that learners can compare and select learning paths that best meet individual needs, not just in terms of learning goals, but also in terms of planning, costs etc. To this end a learning path specification was developed, which describes both the contents and the structure of any learning path, be it formal,
Performance Analysis of Path Planning Modeling
NASA Astrophysics Data System (ADS)
Wang, Zhirui; Li, Shuanghong; Zhang, Ying; Du, Qiaoling
Ant colony system (ACS) algorithm was applied to the path planning for the robot. In the same working environment, path planning based on MAKLINK graph theory and Voronoi diagram were simulated and compared. MAKLINK graph theory is appropriate to apply to precise searching in small-scale district, and Voronoi diagram is suitable for fast path planning in a large area.
Characterizing the Evolutionary Path(s) to Early Homo
Schroeder, Lauren; Roseman, Charles C.; Cheverud, James M.; Ackermann, Rebecca R.
2014-01-01
Numerous studies suggest that the transition from Australopithecus to Homo was characterized by evolutionary innovation, resulting in the emergence and coexistence of a diversity of forms. However, the evolutionary processes necessary to drive such a transition have not been examined. Here, we apply statistical tests developed from quantitative evolutionary theory to assess whether morphological differences among late australopith and early Homo species in Africa have been shaped by natural selection. Where selection is demonstrated, we identify aspects of morphology that were most likely under selective pressure, and determine the nature (type, rate) of that selection. Results demonstrate that selection must be invoked to explain an Au. africanus—Au. sediba—Homo transition, while transitions from late australopiths to various early Homo species that exclude Au. sediba can be achieved through drift alone. Rate tests indicate that selection is largely directional, acting to rapidly differentiate these taxa. Reconstructions of patterns of directional selection needed to drive the Au. africanus—Au. sediba—Homo transition suggest that selection would have affected all regions of the skull. These results may indicate that an evolutionary path to Homo without Au. sediba is the simpler path and/or provide evidence that this pathway involved more reliance on cultural adaptations to cope with environmental change. PMID:25470780
Attention trees and semantic paths
NASA Astrophysics Data System (ADS)
Giusti, Christian; Pieroni, Goffredo G.; Pieroni, Laura
2007-02-01
In the last few decades several techniques for image content extraction, often based on segmentation, have been proposed. It has been suggested that under the assumption of very general image content, segmentation becomes unstable and classification becomes unreliable. According to recent psychological theories, certain image regions attract the attention of human observers more than others and, generally, the image main meaning appears concentrated in those regions. Initially, regions attracting our attention are perceived as a whole and hypotheses on their content are formulated; successively the components of those regions are carefully analyzed and a more precise interpretation is reached. It is interesting to observe that an image decomposition process performed according to these psychological visual attention theories might present advantages with respect to a traditional segmentation approach. In this paper we propose an automatic procedure generating image decomposition based on the detection of visual attention regions. A new clustering algorithm taking advantage of the Delaunay- Voronoi diagrams for achieving the decomposition target is proposed. By applying that algorithm recursively, starting from the whole image, a transformation of the image into a tree of related meaningful regions is obtained (Attention Tree). Successively, a semantic interpretation of the leaf nodes is carried out by using a structure of Neural Networks (Neural Tree) assisted by a knowledge base (Ontology Net). Starting from leaf nodes, paths toward the root node across the Attention Tree are attempted. The task of the path consists in relating the semantics of each child-parent node pair and, consequently, in merging the corresponding image regions. The relationship detected in this way between two tree nodes generates, as a result, the extension of the interpreted image area through each step of the path. The construction of several Attention Trees has been performed and partial results will be shown.
Evaluation of guidewire path reproducibility.
Schafer, Sebastian; Hoffmann, Kenneth R; Nol, Peter B; Ionita, Ciprian N; Dmochowski, Jacek
2008-05-01
The number of minimally invasive vascular interventions is increasing. In these interventions, a variety of devices are directed to and placed at the site of intervention. The device used in almost all of these interventions is the guidewire, acting as a monorail for all devices which are delivered to the intervention site. However, even with the guidewire in place, clinicians still experience difficulties during the interventions. As a first step toward understanding these difficulties and facilitating guidewire and device guidance, we have investigated the reproducibility of the final paths of the guidewire in vessel phantom models on different factors: user, materials and geometry. Three vessel phantoms (vessel diameters approximately 4 mm) were constructed having tortuousity similar to the internal carotid artery from silicon tubing and encased in Sylgard elastomer. Several trained users repeatedly passed two guidewires of different flexibility through the phantoms under pulsatile flow conditions. After the guidewire had been placed, rotational c-arm image sequences were acquired (9 in. II mode, 0.185 mm pixel size), and the phantom and guidewire were reconstructed (512(3), 0.288 mm voxel size). The reconstructed volumes were aligned. The centerlines of the guidewire and the phantom vessel were then determined using region-growing techniques. Guidewire paths appear similar across users but not across materials. The average root mean square difference of the repeated placement was 0.17 +/- 0.02 mm (plastic-coated guidewire), 0.73 +/- 0.55 mm (steel guidewire) and 1.15 +/- 0.65 mm (steel versus plastic-coated). For a given guidewire, these results indicate that the guidewire path is relatively reproducible in shape and position. PMID:18561663
Communication path for extreme environments
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)
2010-01-01
Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.
Multiple order common path spectrometer
NASA Technical Reports Server (NTRS)
Newbury, Amy B. (Inventor)
2010-01-01
The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.
NASA Astrophysics Data System (ADS)
Bhasker, H. P.; Thakur, Varun; Shivaprasad, S. M.; Dhar, S.
2015-06-01
The depth distribution of the transport properties as well as the temperature dependence of the low field magneto-conductance for c -axis oriented GaN nanowall network samples grown with different average wall-widths ({{t}\\text{av}} ) are investigated. Magneto-conductance recorded at low temperatures shows clear signature of weak localization effect in all samples studied here. The scattering mean free path {{l}e} and the phase coherence time {τφ} , are extracted from the magneto-conductance profile. Electron mobility estimated from {{l}e} is found to be comparable with those estimated previously from room temperature conductivity data for these samples, confirming independently the substantial mobility enhancement in these nanowalls as compared to bulk. Our study furthermore reveals that the high electron mobility region extends down to several hundreds of nanometer below the tip of the walls. Like mobility, phase coherence length ({{l}φ} ) is found to increase with the reduction of the average wall width. Interestingly, for samples with lower values of the average wall width, {{l}φ} is estimated to be as high as 60 μm, which is much larger than those reported for GaN/AlGaN heterostructure based two-dimensional electron gas (2DEG) systems.
Relations between Coherence and Path Information.
Bagan, Emilio; Bergou, János A; Cottrell, Seth S; Hillery, Mark
2016-04-22
We find two relations between coherence and path information in a multipath interferometer. The first builds on earlier results for the two-path interferometer, which used minimum-error state discrimination between detector states to provide the path information. For visibility, which was used in the two-path case, we substitute a recently defined l_{1} measure of quantum coherence. The second is an entropic relation in which the path information is characterized by the mutual information between the detector states and the outcome of the measurement performed on them, and the coherence measure is one based on relative entropy. PMID:27152780
Relations between Coherence and Path Information
NASA Astrophysics Data System (ADS)
Bagan, Emilio; Bergou, János A.; Cottrell, Seth S.; Hillery, Mark
2016-04-01
We find two relations between coherence and path information in a multipath interferometer. The first builds on earlier results for the two-path interferometer, which used minimum-error state discrimination between detector states to provide the path information. For visibility, which was used in the two-path case, we substitute a recently defined l1 measure of quantum coherence. The second is an entropic relation in which the path information is characterized by the mutual information between the detector states and the outcome of the measurement performed on them, and the coherence measure is one based on relative entropy.
Colloidal quantum dot photovoltaics: a path forward.
Kramer, Illan J; Sargent, Edward H
2011-11-22
Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun's broad spectrum. CQD materials' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field. PMID:21967723
Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko
2015-01-01
Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature. PMID:25702631
NASA Technical Reports Server (NTRS)
Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi
2013-01-01
Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.
NASA Astrophysics Data System (ADS)
Habash Krause, L.; Gilchrist, B. E.; Nishikawa, K.; Williams, A.
2013-12-01
Relativistic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and suborbital Reusable Launch Vehicle (sRLV) altitudes. The monoenergetic beam is modeled in cylindrical symmetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremmstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry that relies on sRLVs with a nominal apogee of 100 km. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.
NASA Astrophysics Data System (ADS)
Wang, Zhiyuan; Wang, Xiaoxin; Liu, Jifeng
2014-12-01
Solar-blind ultraviolet (UV) detection refers to photon detection specifically in the wavelength range of 200 nm-320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. The most commonly used solid state devices for this application are wide band gap (WBG) semiconductor photodetectors (Eg > 3.5 eV). However, WBG semiconductors are difficult to grow and integrate with Si readout integrated circuits (ROICs). In this paper, we design a nanophotonic metal-oxide-semiconductor structure on Si for solar-blind UV detectors. Instead of using semiconductors as the active absorber, we use Sn nano-grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO2 interfacial barrier, thereby generating photocurrent between the metal and the n-type Si region upon UV excitation. Moreover, the transported hot electron has an excess kinetic energy >3 eV, large enough to induce impact ionization and generate another free electron in the conduction band of n-Si. This process doubles the quantum efficiency. On the other hand, the large metal/oxide interfacial energy barrier (>3.5 eV) also enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, ˜75% UV absorption and hot electron excitation can be achieved within the mean free path of ˜20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. The simple geometry of the Sn nano-gratings and the MOS structure make it easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices.
E-beam ionized channel guiding of an intense relativistic electron beam
Frost, C.A.; Godfrey, B.B.; Kiekel, P.D.; Shope, S.L.
1988-05-10
An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path. 2 figs.
E-beam ionized channel guiding of an intense relativistic electron beam
Frost, Charles A.; Godfrey, Brendon B.; Kiekel, Paul D.; Shope, Steven L.
1988-01-01
An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path.
NASA Astrophysics Data System (ADS)
Lu, Zexi; Wang, Yan; Ruan, Xiulin
2016-02-01
The standard two-temperature equations for electron-phonon coupled thermal transport across metal/nonmetal interfaces are modified to include the possible coupling between metal electrons with substrate phonons. The previous two-temperature molecular dynamics (TT-MD) approach is then extended to solve these equations numerically at the atomic scale, and the method is demonstrated using Cu/Si interface as an example. A key parameter in TT-MD is the nonlocal coupling distance of metal electrons and nonmetal phonons, and here we use two different approximations. The first is based on Overhauser's "joint-modes" concept, while we use an interfacial reconstruction region as the length scale of joint region rather than the phonon mean-free path as in Overhauser's original model. In this region, the metal electrons can couple to the joint phonon modes. The second approximation is the "phonon wavelength" concept where electrons couple to phonons nonlocally within the range of one phonon wavelength. Compared with the original TT-MD, including the cross-interface electron-phonon coupling can slightly reduce the total thermal boundary resistance. Whether the electron-phonon coupling within the metal block is nonlocal or not does not make an obvious difference in the heat transfer process. Based on the temperature profiles from TT-MD, we construct a new mixed series-parallel thermal circuit. We show that such a thermal circuit is essential for understanding metal/nonmetal interfacial transport, while calculating a single resistance without solving temperature profiles as done in most previous studies is generally incomplete. As a comparison, the simple series circuit that neglects the cross-interface electron-phonon coupling could overestimate the interfacial resistance, while the simple parallel circuit in the original Overhauser's model underestimates the total interfacial resistance.
Filtered backprojection proton CT reconstruction along most likely paths
Rit, Simon; Dedes, George; Freud, Nicolas; Sarrut, David; Letang, Jean Michel
2013-03-15
Purpose: Proton CT (pCT) has the potential to accurately measure the electron density map of tissues at low doses but the spatial resolution is prohibitive if the curved paths of protons in matter is not accounted for. The authors propose to account for an estimate of the most likely path of protons in a filtered backprojection (FBP) reconstruction algorithm. Methods: The energy loss of protons is first binned in several proton radiographs at different distances to the proton source to exploit the depth-dependency of the estimate of the most likely path. This process is named the distance-driven binning. A voxel-specific backprojection is then used to select the adequate radiograph in the distance-driven binning in order to propagate in the pCT image the best achievable spatial resolution in proton radiographs. The improvement in spatial resolution is demonstrated using Monte Carlo simulations of resolution phantoms. Results: The spatial resolution in the distance-driven binning depended on the distance of the objects from the source and was optimal in the binned radiograph corresponding to that distance. The spatial resolution in the reconstructed pCT images decreased with the depth in the scanned object but it was always better than previous FBP algorithms assuming straight line paths. In a water cylinder with 20 cm diameter, the observed range of spatial resolutions was 0.7 - 1.6 mm compared to 1.0 - 2.4 mm at best with a straight line path assumption. The improvement was strongly enhanced in shorter 200 Degree-Sign scans. Conclusions: Improved spatial resolution was obtained in pCT images with filtered backprojection reconstruction using most likely path estimates of protons. The improvement in spatial resolution combined with the practicality of FBP algorithms compared to iterative reconstruction algorithms makes this new algorithm a candidate of choice for clinical pCT.
NASA Astrophysics Data System (ADS)
Carles, R.; Bayle, M.; Benzo, P.; Benassayag, G.; Bonafos, C.; Cacciato, G.; Privitera, V.
2015-11-01
Since the discovery of surface-enhanced Raman scattering (SERS) 40 years ago, the origin of the "background" that is systematically observed in SERS spectra has remained questionable. To deeply analyze this phenomenon, plasmon-resonant Raman scattering was recorded under specific experimental conditions on a panel of composite multilayer samples containing noble metal (Ag and Au) nanoparticles. Stokes, anti-Stokes, and wide, including very low, frequency ranges have been explored. The effects of temperature, size (in the nm range), embedding medium (SiO2, Si3N4, or TiO2) or ligands have been successively analyzed. Both lattice (Lamb modes and bulk phonons) and electron (plasmon mode and electron-hole excitations) dynamics have been investigated. This work confirms that in Ag-based nanoplasmonics composite layers, only Raman scattering by single-particle electronic excitations accounts for the background. This latter appears as an intrinsic phenomenon independently of the presence of molecules on the metallic surface. Its spectral shape is well described by revisiting a model developed in the 1990s for analyzing electron scattering in dirty metals, and used later in superconductors. The gs factor, that determines the effective mean-free path of free carriers, is evaluated, gsexpt=0.33 ±0.04 , in good agreement with a recent evaluation based on time-dependent local density approximation gstheor=0.32 . Confinement and interface roughness effects at the nanometer range thus appear crucial to understand and control SERS enhancement and more generally plasmon-enhanced processes on metallic surfaces.
CURRENT SHEET REGULATION OF SOLAR NEAR-RELATIVISTIC ELECTRON INJECTION HISTORIES
Agueda, N.; Sanahuja, B.; Vainio, R.; Dalla, S.; Lario, D.
2013-03-10
We present a sample of three large near-relativistic (>50 keV) electron events observed in 2001 by both the ACE and the Ulysses spacecraft, when Ulysses was at high-northern latitudes (>60 Degree-Sign ) and close to 2 AU. Despite the large latitudinal distance between the two spacecraft, electrons injected near the Sun reached both heliospheric locations. All three events were associated with large solar flares, strong decametric type II radio bursts and accompanied by wide (>212 Degree-Sign ) and fast (>1400 km s{sup -1}) coronal mass ejections (CMEs). We use advanced interplanetary transport simulations and make use of the directional intensities observed in situ by the spacecraft to infer the electron injection profile close to the Sun and the interplanetary transport conditions at both low and high latitudes. For the three selected events, we find similar interplanetary transport conditions at different heliolatitudes for a given event, with values of the mean free path ranging from 0.04 AU to 0.27 AU. We find differences in the injection profiles inferred for each spacecraft. We investigate the role that sector boundaries of the heliospheric current sheet (HCS) have on determining the characteristics of the electron injection profiles. Extended injection profiles, associated with coronal shocks, are found if the magnetic footpoints of the spacecraft lay in the same magnetic sector as the associated flare, while intermittent sparse injection episodes appear when the spacecraft footpoints are in the opposite sector or a wrap in the HCS bounded the CME structure.
Integrated assignment and path planning
NASA Astrophysics Data System (ADS)
Murphey, Robert A.
2005-11-01
A surge of interest in unmanned systems has exposed many new and challenging research problems across many fields of engineering and mathematics. These systems have the potential of transforming our society by replacing dangerous and dirty jobs with networks of moving machines. This vision is fundamentally separate from the modern view of robotics in that sophisticated behavior is realizable not by increasing individual vehicle complexity, but instead through collaborative teaming that relies on collective perception, abstraction, decision making, and manipulation. Obvious examples where collective robotics will make an impact include planetary exploration, space structure assembly, remote and undersea mining, hazardous material handling and clean-up, and search and rescue. Nonetheless, the phenomenon driving this technology trend is the increasing reliance of the US military on unmanned vehicles, specifically, aircraft. Only a few years ago, following years of resistance to the use of unmanned systems, the military and civilian leadership in the United States reversed itself and have recently demonstrated surprisingly broad acceptance of increasingly pervasive use of unmanned platforms in defense surveillance, and even attack. However, as rapidly as unmanned systems have gained acceptance, the defense research community has discovered the technical pitfalls that lie ahead, especially for operating collective groups of unmanned platforms. A great deal of talent and energy has been devoted to solving these technical problems, which tend to fall into two categories: resource allocation of vehicles to objectives, and path planning of vehicle trajectories. An extensive amount of research has been conducted in each direction, yet, surprisingly, very little work has considered the integrated problem of assignment and path planning. This dissertation presents a framework for studying integrated assignment and path planning and then moves on to suggest an exact mathematical model and solution techniques. The approach adopted is based upon the very flexible New Product Development model but also blends many features from other approaches. Solution methods using branch and bound and construction heuristics are developed and tested on several example problems, including a military scenario featuring unmanned air vehicles.
Electron-hole quantum physics in ZnO
NASA Astrophysics Data System (ADS)
Versteegh, M. A. M.
2011-09-01
This dissertation describes several new aspects of the quantum physics of electrons and holes in zinc oxide (ZnO), including a few possible applications. Zinc oxide is a II-VI semiconductor with a direct band gap in the ultraviolet. Experimental and theoretical studies have been performed, both on bulk ZnO and on ZnO nanowires. Chapter 2 presents a new technique for an ultrafast all-optical shutter, based on two-photon absorption in a ZnO crystal. This shutter can be used for luminescence experiments requiring extremely high time-resolution. Chapter 3 describes a time-resolved study on the electron-hole many-body effects in highly excited ZnO at room temperature, in particular band-filling, band-gap renormalization, and the disappearance of the exciton resonance due to screening. In Chapter 4, the quantum many-body theory developed and experimentally verified in Chapter 3, is used to explain laser action in ZnO nanowires, and compared with experimental results. In contrast to current opinion, the results indicate that excitons are not involved in the laser action. The measured emission wavelength, the laser threshold, and the spectral distance between the laser modes are shown to be excellently explained by our quantum many-body theory. Multiple scattering of light in a forest of nanowires can be employed to enhance light absorption in solar cells. Optimization of this technique requires better understanding of light diffusion in such a nanowire forest. In Chapter 5 we demonstrate a method, based on two-photon absorption, to directly measure the residence time of light in a nanowire forest, and we show that scanning electron microscope (SEM) images can be used to predict the photon mean free path. In Chapter 6 we present a new ultrafast all-optical transistor, consisting of a forest of ZnO nanowires. After excitation, laser action in this forest causes rapid recombination of the majority of the electrons and holes, limiting the amplification to 1.2 picoseconds only . This ultrafast ultraviolet transistor may have applications in all-optical computing and in pump-probe experiments. Finally, Chapter 7 presents our discovery of preformed electron-hole Cooper pairs. A ZnO crystal has been highly excited via three-photon absorption at cryogenic temperatures. A new peak appears in the measured emission spectra when the crystal is cooled below a certain temperature, and also when it is excited above a certain density. Comparison with light amplification spectra, calculated from quantum many-body theory, demonstrates that this new peak is due to amplified spontaneous emission (ASE) from preformed electron-hole Cooper pairs.
The path to adaptive microsystems
NASA Astrophysics Data System (ADS)
Zolper, John C.; Biercuk, Michael J.
2006-05-01
Scaling trends in microsystems are discussed frequently in the technical community, providing a short-term perspective on the future of integrated microsystems. This paper looks beyond the leading edge of technological development, focusing on new microsystem design paradigms that move far beyond today's systems based on static components. We introduce the concept of Adaptive Microsystems and outline a path to realizing these systems-on-a-chip. The role of DARPA in advancing future components and systems research is discussed, and specific DARPA efforts enabling and producing adaptive microsystems are presented. In particular, we discuss efforts underway in the DARPA Microsystems Technology Office (MTO) including programs in novel circuit architectures (3DIC), adaptive imaging and sensing (AFPA, VISA, MONTAGE, A-to-I) and reconfigurable RF/Microwave devices (SMART, TFAST, IRFFE).
Flexible-Path Human Exploration
NASA Technical Reports Server (NTRS)
Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; Hoffman, S.; Grunsfeld, J.; Seery, B. D.
2010-01-01
In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.
Sequential Path Entanglement for Quantum Metrology
Jin, Xian-Min; Peng, Cheng-Zhi; Deng, Youjin; Barbieri, Marco; Nunn, Joshua; Walmsley, Ian A.
2013-01-01
Path entanglement is a key resource for quantum metrology. Using path-entangled states, the standard quantum limit can be beaten, and the Heisenberg limit can be achieved. However, the preparation and detection of such states scales unfavourably with the number of photons. Here we introduce sequential path entanglement, in which photons are distributed across distinct time bins with arbitrary separation, as a resource for quantum metrology. We demonstrate a scheme for converting polarization Greenberger-Horne-Zeilinger entanglement into sequential path entanglement. We observe the same enhanced phase resolution expected for conventional path entanglement, independent of the delay between consecutive photons. Sequential path entanglement can be prepared comparably easily from polarization entanglement, can be detected without using photon-number-resolving detectors, and enables novel applications.
A note on the path interval distance.
Coons, Jane Ivy; Rusinko, Joseph
2016-06-01
The path interval distance accounts for global congruence between locally incongruent trees. We show that the path interval distance provides a lower bound for the nearest neighbor interchange distance. In contrast to the Robinson-Foulds distance, random pairs of trees are unlikely to be maximally distant from one another under the path interval distance. These features indicate that the path interval distance should play a role in phylogenomics where the comparison of trees on a fixed set of taxa is becoming increasingly important. PMID:27040521
Path-integral simulation of solids.
Herrero, C P; Ramírez, R
2014-06-11
The path-integral formulation of the statistical mechanics of quantum many-body systems is described, with the purpose of introducing practical techniques for the simulation of solids. Monte Carlo and molecular dynamics methods for distinguishable quantum particles are presented, with particular attention to the isothermal-isobaric ensemble. Applications of these computational techniques to different types of solids are reviewed, including noble-gas solids (helium and heavier elements), group-IV materials (diamond and elemental semiconductors), and molecular solids (with emphasis on hydrogen and ice). Structural, vibrational, and thermodynamic properties of these materials are discussed. Applications also include point defects in solids (structure and diffusion), as well as nuclear quantum effects in solid surfaces and adsorbates. Different phenomena are discussed, as solid-to-solid and orientational phase transitions, rates of quantum processes, classical-to-quantum crossover, and various finite-temperature anharmonic effects (thermal expansion, isotopic effects, electron-phonon interactions). Nuclear quantum effects are most remarkable in the presence of light atoms, so that especial emphasis is laid on solids containing hydrogen as a constituent element or as an impurity. PMID:24810944
Spatial and frequency coherence of oblique, one-hop, high-frequency paths
Fitzgerald, T.J.
1995-10-01
We consider the effect of random index of refraction fluctuations upon long-distance, ionospherically-reflected, hf paths. Along with deterministic effects such as multipath and dispersion, such fluctuations have a deleterious impact on hf communication including nonabsorptive fading, time-of-arrival spread, angle-of-arrival spread, and Doppler spread. We develop a formalism to calculate the mutual coherence functions for spatial and frequency separations based upon a path integral solution of the parabolic wave equation for a single refracted path through an ionosphere which contains random electron density fluctuations. The statistics of the hf path depend directly on the strength and statistics of the electron density fluctuations; we model the spatial power spectrum of the density fluctuation as a power law behavior versus frequency and with outer and inner scales.
Manfra, M.J.; Baldwin, K.W.; Sergent, A.M.; West, K.W.; Molnar, R.J.; Caissie, J.
2004-11-29
We report on the transport properties of a two-dimensional electron gas (2DEG) confined in an AlGaN/GaN heterostructure grown by plasma-assisted molecular-beam epitaxy on a semi-insulating GaN template prepared by hydride vapor phase epitaxy with a threading dislocation density of {approx}5x10{sup 7} cm{sup -2}. Using a gated Hall bar structure, the electron density (n{sub e}) is varied from 4.1 to 9.1x10{sup 11} cm{sup -2}. At T=300 mK, the 2DEG displays a maximum mobility of 167 000 cm{sup 2}/V s at a sheet density of 9.1x10{sup 11} cm{sup -2}, corresponding to a mean-free-path of {approx}3 {mu}m. Shubnikov-de Haas oscillations, typically not observed at magnetic fields below 2 T in GaN, commence at B=0.6 T.
Precision Cleaning - Path to Premier
NASA Technical Reports Server (NTRS)
Mackler, Scott E.
2008-01-01
ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.
Gerbertian paths for the Jubilee
NASA Astrophysics Data System (ADS)
Sigismondi, Costantino
2015-04-01
Gerbert before becoming Pope Sylvester II came several times in Rome, as reported in his Letters and in the biography of Richerus. Eight places in Rome can be connected with Gerbertian memories. 1. The Cathedral of St. John in the Lateran where the gravestone of his tumb is still preserved near the Holy Door; 2. the “Basilica Hierusalem” (Santa Croce) where Gerbert had the stroke on May 3rd 1003 which lead him to death on May 12th; 3. the Aventine hill, with the church of the Knights of Malta in the place where the palace of the Ottonian Emperors was located; 4. the church of St. Bartholomew in the Tiber Island built in 997 under Otto III; 5. the Obelisk of Augustus in Montecitorio to remember the relationship between Gerbert, Astronomy and numbers which led the birth of the legends on Gerbert magician; 6. St. Mary Major end of the procession of August 15, 1000; 7. St. Paul outside the walls with the iconography of the Popes and 8. St. Peter's tumb end of all Romaei pilgrimages. This Gerbertian path in Rome suggests one way to accomplish the pilgrimage suggested by Pope Francis in the Bulla Misericordiae Vultus (14) of indiction of the new Jubilee.
Decision paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene
1991-01-01
Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.
Harmonic-based gain compensation method in optic sensors with separate light paths.
Perciante, César Daniel; Ferrari, José A; Garbusi, Eugenio
2003-06-10
We describe a method for the compensation of gain unbalance in optical sensors with separate light path that involve two separate detection and conditioning electronic devices. The method is based on the digital measurement of harmonics of the output intensities from each path by means of the fast Fourier transform algorithm. The quotient of the amplitude of harmonics allows us to calculate the unbalance between paths and to compensate for it. In particular, this method can be applied electric power and current sensors that use Faraday and Pockels cells to measure current and voltage, respectively. PMID:12816322
NASA Technical Reports Server (NTRS)
Thakoor, Anil
1990-01-01
Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.
Effective path length corrections in beam-beam scattering experiments
NASA Technical Reports Server (NTRS)
Brinkmann, R. T.; Trajmar, S.
1981-01-01
The effect of the change of scattering geometry with scattering angle in beam-beam experiments is investigated. Atomic (molecular) target distributions associated with static gas, orifice, tube, capillary array (with and without further collimation), and jet sources have been considered in model calculations for a number of commonly used electron scattering geometries. The relationship between scattering intensity, cross section, and the geometrical integral called 'effective path length' is derived. Volume correction factors (the reciprocal of effective path length) have been calculated for sample cases to illustrate the effect of various beam and scattering geometry characteristics. The validity of the model calculation has been experimentally verified. Most of the commonly used scattering geometries require significant correction of the scattering intensity distributions, but with proper planning scattering geometries can be designed such that the intensity and the cross section angular distribution are identical within 1%.
Career Paths in Sport Management
ERIC Educational Resources Information Center
Schwab, Keri A.; Legg, Eric; Tanner, Preston; Timmerman, Danielle; Dustin, Daniel; Arthur-Banning, Skye G.
2015-01-01
Sport management alumni (N = 268) from five universities that offer undergraduate programs with an emphasis in sport management within departments of parks, recreation, and tourism were sampled via an electronic survey. The survey sought to learn where alumni were working, and how they felt about their career choice and undergraduate professional
Career Paths in Sport Management
ERIC Educational Resources Information Center
Schwab, Keri A.; Legg, Eric; Tanner, Preston; Timmerman, Danielle; Dustin, Daniel; Arthur-Banning, Skye G.
2015-01-01
Sport management alumni (N = 268) from five universities that offer undergraduate programs with an emphasis in sport management within departments of parks, recreation, and tourism were sampled via an electronic survey. The survey sought to learn where alumni were working, and how they felt about their career choice and undergraduate professional…
Leak Path Development in CO2 Wells
NASA Astrophysics Data System (ADS)
Torsater, M.; Todorovic, J.; Opedal, N.; Lavrov, A.
2014-12-01
Wells have in numerous scientific works been denoted the "weak link" of safe and cost-efficient CO2 Capture and Storage (CCS). Whether they are active or abandoned, all wells are man-made intrusions into the storage reservoir with sealing abilities depending on degradable materials like steel and cement. If dense CO2 is allowed to expand (e.g. due to leakage) it will cool down its surroundings and cause strong thermal and mechanical loading on the wellbore. In addition, CO2 reacts chemically with rock, cement and steel. To ensure long-term underground containment, it is therefore necessary to study how, why, where and when leakage occurs along CO2wells. If cement bonding to rock or casing is poor, leak paths can form already during drilling and completion of the well. In the present work, we have mapped the bonding quality of cement-rock and cement-steel interfaces - and measured their resistance towards CO2 flow. This involved a large experimental matrix including different rocks, steels, cement types and well fluids. The bonding qualities were measured on composite cores using micro computed tomography (µ-CT), and CO2 was flooded through the samples to determine leakage rates. These were further compared to numerical simulations of leakage through the digitalized µ-CT core data, and CO2chemical interactions with the materials were mapped using electron microscopy. We also present a new laboratory set-up for measuring how well integrity is affected by downhole temperature variations - and we showcase some initial results. Our work concludes that leak path development in CO2 wells depends critically on the drilling fluids and presflushes/spacers chosen already during drilling and completion of a well. Fluid films residing on rock and casing surfaces strongly degrade the quality of cement bonding. The operation of the well is also important, as even slight thermal cycling (between 10°C and 95°C on casing) leads to significant de-bonding of the annular cement.
Adaptively Ubiquitous Learning in Campus Math Path
ERIC Educational Resources Information Center
Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung
2012-01-01
The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This system…
Cooperative organic mine avoidance path planning
NASA Astrophysics Data System (ADS)
McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David
2005-06-01
The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.
Career Path Guide for Adult Career Choices.
ERIC Educational Resources Information Center
Case, Clydia
Intended for adults who are considering career choices or changes, this booklet provides opportunities for self-study and reflection in six career paths. The booklet begins with tips for long-term career survival and myths and realities of career planning. After a brief career survey, readers are introduced to six career paths: arts and…
Adaptable Path Planning in Regionalized Environments
NASA Astrophysics Data System (ADS)
Richter, Kai-Florian
Human path planning relies on several more aspects than only geometric distance between two locations. These additional aspects mostly relate to the complexity of the traveled path. Accordingly, in recent years several cognitively motivated path search algorithms have been developed that try to minimize wayfinding complexity. However, the calculated paths may result in large detours as geometric properties of the network wayfinding occurs in are ignored. Simply adding distance as an additional factor to the cost function is a possible, but insufficient way of dealing with this problem. Instead, taking a global view on an environment by accounting for the heterogeneity of its structure allows for adapting the path search strategy. This heterogeneity can be used to regionalize the environment; each emerging region may require a different strategy for path planning. This paper presents such an approach to regionalized path planning. It argues for the advantages of the chosen approach, develops a measure for calculating wayfinding complexity that accounts for structural and functional aspects of wayfinding, and states a generic algorithm for regionalization. Finally, regionalized path planning is demonstrated in a sample scenario.
Adaptively Ubiquitous Learning in Campus Math Path
ERIC Educational Resources Information Center
Shih, Shu-Chuan; Kuo, Bor-Chen; Liu, Yu-Lung
2012-01-01
The purposes of this study are to develop and evaluate the instructional model and learning system which integrate ubiquitous learning, computerized adaptive diagnostic testing system and campus math path learning. The researcher first creates a ubiquitous learning environment which is called "adaptive U-learning math path system". This system
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff... airborne. (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part of the takeoff path must not be negative at any point; (2)...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff path. 23.57 Section 23.57 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff path. For each commuter category airplane,...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff... airborne. (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part of the takeoff path must not be negative at any point; (2)...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff... airborne. (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part of the takeoff path must not be negative at any point; (2)...
The Path of Carbon in Photosynthesis VI.
DOE R&D Accomplishments Database
Calvin, M.
1949-06-30
This paper is a compilation of the essential results of our experimental work in the determination of the path of carbon in photosynthesis. There are discussions of the dark fixation of photosynthesis and methods of separation and identification including paper chromatography and radioautography. The definition of the path of carbon in photosynthesis by the distribution of radioactivity within the compounds is described.
NASA Astrophysics Data System (ADS)
Bae, Hyo Won; Yel Lee, Jung; Lee, Ho-Jun; Lee, Hae June
2011-10-01
Recently, atmospheric pressure plasmas attract lots of interests for the useful applications such as surface modification and bio-medical treatment. In this study, a particle-in-cell Monte Carlo collision (PIC-MCC) simulation was adopted to investigate the discharge characteristics of a planar micro dielectric barrier discharge (DBD) with a driving frequency from 1 MHz to 50 MHz and with a gap distance from 60 to 500 micrometers. The variation of control parameters such as the gap distance, the driving wave form, and the applied voltage results in the change in the electron energy distribution function (EEDF). Through the relation between the ionization mean free path and the gap size, a significant change of EEDFs is achievable with the decrease of gap distance. Therefore, it is possible to categorize the operation range of DBDs for its applications by controlling the interactions between plasmas and neutral gas for the generation of preferable radicals. This work was supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20104010100670).
Shortest path and Schramm-Loewner Evolution
Posé, N.; Schrenk, K. J.; Araújo, N. A. M.; Herrmann, H. J.
2014-01-01
We numerically show that the statistical properties of the shortest path on critical percolation clusters are consistent with the ones predicted for Schramm-Loewner evolution (SLE) curves for κ = 1.04 ± 0.02. The shortest path results from a global optimization process. To identify it, one needs to explore an entire area. Establishing a relation with SLE permits to generate curves statistically equivalent to the shortest path from a Brownian motion. We numerically analyze the winding angle, the left passage probability, and the driving function of the shortest path and compare them to the distributions predicted for SLE curves with the same fractal dimension. The consistency with SLE opens the possibility of using a solid theoretical framework to describe the shortest path and it raises relevant questions regarding conformal invariance and domain Markov properties, which we also discuss. PMID:24975019
NASA Astrophysics Data System (ADS)
Khrabrov, Alexander V.; Kaganovich, Igor D.; Ventzek, Peter L. G.; Ranjan, Alok; Chen, Lee
2015-10-01
Low-pressure capacitively-coupled discharges with additional dc bias applied to a separate electrode are utilized in plasma-assisted etching for semiconductor device manufacturing. Measurements of the electron velocity distribution function (EVDF) of the flux impinging on the wafer, as well as in the plasma bulk, show a thermal population and additional peaks within a broad range of energies. That range extends from the thermal level up to the value for the ‘ballistic’ peak, corresponding to the bias potential. The non-thermal electron flux has been correlated to alleviating the electron shading effect and providing etch-resistance properties to masking photoresist layers. ‘Middle-energy peak electrons’ at energies of several hundred eV may provide an additional sustaining mechanism for the discharge. These features in the electron velocity (or energy) distribution functions are possibly caused by secondary electrons emitted from the electrodes and interacting with two high-voltage sheaths: a stationary sheath at the dc electrode and an oscillating self-biased sheath at the powered electrode. Since at those energies the mean free path for large-angle scattering (momentum relaxation length) is comparable to, or exceeds the size of the discharge gap, these ‘ballistic’ electrons will not be fully scattered by the background gas as they traverse the inter-electrode space. We have performed test-particle simulations in which the features in the EVDF of electrons impacting the RF electrode are fully resolved at all energies. An analytical model has been developed to predict existence of peaked and step-like structures in the EVDF. Those features can be explained by analyzing the kinematics of electron trajectories in the discharge gap. Step-like structures in the EVDF near the powered electrode appear due to accumulation of electrons emitted from the dc electrode within a portion of the RF cycle, and their subsequent release. Trapping occurs when the RF sheath voltage exceeds the applied bias, and is decreasing. The secondary electrons originating from the dc-biased surface also form a peak near the energy equal to the bias potential. Additional peaks, at lower energies, are formed by the electrons emitted from the RF electrode and eventually escaping to it. The latter can be grouped according to the number of bounces between the sheaths during their residence time in the discharge. Each of such groups may give rise to an individual peak in the distribution. The trap-and-release theory developed in this paper provides a convincing explanation for the observations of the ballistic and ‘middle energy peak’ electrons detected in experiments.
Evolution paths for advanced automation
NASA Technical Reports Server (NTRS)
Healey, Kathleen J.
1990-01-01
As Space Station Freedom (SSF) evolves, increased automation and autonomy will be required to meet Space Station Freedom Program (SSFP) objectives. As a precursor to the use of advanced automation within the SSFP, especially if it is to be used on SSF (e.g., to automate the operation of the flight systems), the underlying technologies will need to be elevated to a high level of readiness to ensure safe and effective operations. Ground facilities supporting the development of these flight systems -- from research and development laboratories through formal hardware and software development environments -- will be responsible for achieving these levels of technology readiness. These facilities will need to evolve support the general evolution of the SSFP. This evolution will include support for increasing the use of advanced automation. The SSF Advanced Development Program has funded a study to define evolution paths for advanced automaton within the SSFP's ground-based facilities which will enable, promote, and accelerate the appropriate use of advanced automation on-board SSF. The current capability of the test beds and facilities, such as the Software Support Environment, with regard to advanced automation, has been assessed and their desired evolutionary capabilities have been defined. Plans and guidelines for achieving this necessary capability have been constructed. The approach taken has combined indepth interviews of test beds personnel at all SSF Work Package centers with awareness of relevant state-of-the-art technology and technology insertion methodologies. Key recommendations from the study include advocating a NASA-wide task force for advanced automation, and the creation of software prototype transition environments to facilitate the incorporation of advanced automation in the SSFP.
NASA Astrophysics Data System (ADS)
Feibel, C. S.
2004-12-01
A complex series of evolutionary steps, contingent upon a dynamic environmental context and a long biological heritage, have led to the ascent of Homo sapiens as a dominant component of the modern biosphere. In a field where missing links still abound and new discoveries regularly overturn theoretical paradigms, our understanding of the path of human evolution has made tremendous advances in recent years. Two major trends characterize the development of the hominin clade subsequent to its origins with the advent of upright bipedalism in the Late Miocene of Africa. One is a diversification into two prominent morphological branches, each with a series of 'twigs' representing evolutionary experimentation at the species or subspecies level. The second important trend, which in its earliest manifestations cannot clearly be ascribed to one or the other branch, is the behavioral complexity of an increasing reliance on technology to expand upon limited inherent morphological specializations and to buffer the organism from its environment. This technological dependence is directly associated with the expansion of hominin range outside Africa by the genus Homo, and is accelerated in the sole extant form Homo sapiens through the last 100 Ka. There are interesting correlates between the evolutionary and behavioral patterns seen in the hominin clade and environmental dynamics of the Neogene. In particular, the tempo of morphological and behavioral innovation may be tracking major events in Neogene climatic development as well as reflecting intervals of variability or stability. Major improvements in analytical techniques, coupled with important new collections and a growing body of contextual data are now making possible the integration of global, regional and local environmental archives with an improved biological understanding of the hominin clade to address questions of coincidence and causality.
Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy
Tan, Haiyan; Zhu, Ye; Dwyer, Christian; Xin, Huolin L.
2014-12-31
Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5λ (λ is the electron mean-free path, here approximately 110 nm). At greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.
ELECTRON HEAT FLUX IN THE SOLAR WIND: ARE WE OBSERVING THE COLLISIONAL LIMIT IN THE 1 AU DATA?
Landi, S.; Matteini, L.; Pantellini, F.
2014-07-20
Using statistically significant data at 1 AU, it has recently been shown (Bale et al.) that in the solar wind, when the Knudsen number K {sub T} (the ratio between the electron mean free path and the electron temperature scale height) drops below about 0.3, the electron heat flux q intensity rapidly approaches the classical collisional Spitzer-Härm limit. Using a fully kinetic model including the effect of Coulomb collisions and the expansion of the solar wind with heliocentric distance, we observe that the heat flux strength does indeed approach the collisional value for Knudsen numbers smaller than about 0.3 in very good agreement with the observations. However, closer inspection of the heat flux properties, such as its variation with the heliocentric distance and its dependence on the plasma parameters, shows that for Knudsen numbers between 0.02 and 0.3 the heat flux is not conveniently described by the Spitzer-Härm formula. We conclude that even though observations at 1 AU seem to indicate that the electron heat flux intensity approaches the collisional limit when the Knudsen drops below ∼0.3, the collisional limit is not a generally valid closure for a Knudsen larger than 0.01. Moreover, the good agreement between the heat flux from our model and the heat flux from solar wind measurements in the high-Knudsen number regime seems to indicate that the heat flux at 1 AU is not constrained by electromagnetic instabilities as both wave-particle and wave-wave interactions are neglected in our calculations.
Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy
Tan, Haiyan; Zhu, Ye; Dwyer, Christian; Xin, Huolin L.
2014-12-31
Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5λ (λ is the electron mean-free path, here approximately 110 nm). Atmore » greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.« less
Weatherford, Brandon R. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Barnat, E. V. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Xiong, Zhongmin E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Kushner, Mark J. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu
2014-09-14
Fast ionization waves (FIWs), often generated with high voltage pulses over nanosecond timescales, are able to produce large volumes of ions and excited states at moderate pressures. The mechanisms of FIW propagation were experimentally and computationally investigated to provide insights into the manner in which these large volumes are excited. The two-dimensional structure of electron and metastable densities produced by short-pulse FIWs sustained in helium were measured using laser-induced fluorescence and laser collision-induced fluorescence diagnostics for times of 100–120 ns after the pulse, as the pressure was varied from 1 to 20 Torr. A trend of center-peaked to volume-filling to wall-peaked electron density profiles was observed as the pressure was increased. Instantaneous FIW velocities, obtained from plasma-induced emission, ranged from 0.1 to 3×10⁹cm s⁻¹, depending on distance from the high voltage electrode and pressure. Predictions from two-dimensional modeling of the propagation of a single FIW correlated well with the experimental trends in electron density profiles and wave velocity. Results from the model show that the maximum ionization rate occurs in the wavefront, and the discharge continues to propagate forward after the removal of high voltage from the powered electrode due to the potential energy stored in the space charge. As the pressure is varied, the radial distribution of the ionization rate is shaped by changes in the electron mean free path, and subsequent localized electric field enhancement at the walls or on the centerline of the discharge.
Nonholonomic catheter path reconstruction using electromagnetic tracking
NASA Astrophysics Data System (ADS)
Lugez, Elodie; Sadjadi, Hossein; Akl, Selim G.; Fichtinger, Gabor
2015-03-01
Catheter path reconstruction is a necessary step in many clinical procedures, such as cardiovascular interventions and high-dose-rate brachytherapy. To overcome limitations of standard imaging modalities, electromagnetic tracking has been employed to reconstruct catheter paths. However, tracking errors pose a challenge in accurate path reconstructions. We address this challenge by means of a filtering technique incorporating the electromagnetic measurements with the nonholonomic motion constraints of the sensor inside a catheter. The nonholonomic motion model of the sensor within the catheter and the electromagnetic measurement data were integrated using an extended Kalman filter. The performance of our proposed approach was experimentally evaluated using the Ascension's 3D Guidance trakStar electromagnetic tracker. Sensor measurements were recorded during insertions of an electromagnetic sensor (model 55) along ten predefined ground truth paths. Our method was implemented in MATLAB and applied to the measurement data. Our reconstruction results were compared to raw measurements as well as filtered measurements provided by the manufacturer. The mean of the root-mean-square (RMS) errors along the ten paths was 3.7 mm for the raw measurements, and 3.3 mm with manufacturer's filters. Our approach effectively reduced the mean RMS error to 2.7 mm. Compared to other filtering methods, our approach successfully improved the path reconstruction accuracy by exploiting the sensor's nonholonomic motion constraints in its formulation. Our approach seems promising for a variety of clinical procedures involving reconstruction of a catheter path.
Robot path planning using a genetic algorithm
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu
1988-01-01
Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.
Methodology for Augmenting Existing Paths with Additional Parallel Transects
Wilson, John E.
2013-09-30
Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—the shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.
Steering Chiral Swimmers along Noisy Helical Paths
NASA Astrophysics Data System (ADS)
Friedrich, Benjamin M.; Jülicher, Frank
2009-08-01
Chemotaxis along helical paths towards a target releasing a chemoattractant is found in sperm cells and many microorganisms. We discuss the stochastic differential geometry of the noisy helical swimming path of a chiral swimmer. A chiral swimmer equipped with a simple feedback system can navigate in a concentration gradient of chemoattractant. We derive an effective equation for the alignment of helical paths with a concentration gradient which is related to the alignment of a dipole in an external field and discuss the chemotaxis index.
The terminal area automated path generation problem
NASA Technical Reports Server (NTRS)
Hsin, C.-C.
1977-01-01
The automated terminal area path generation problem in the advanced Air Traffic Control System (ATC), has been studied. Definitions, input, output and the interrelationships with other ATC functions have been discussed. Alternatives in modeling the problem have been identified. Problem formulations and solution techniques are presented. In particular, the solution of a minimum effort path stretching problem (path generation on a given schedule) has been carried out using the Newton-Raphson trajectory optimization method. Discussions are presented on the effect of different delivery time, aircraft entry position, initial guess on the boundary conditions, etc. Recommendations are made on real-world implementations.
Mach flow angularity probes for scramjet engine flow path diagnostics
Jalbert, P.A.; Hiers, R.S. Jr.
1993-12-31
Mach-flow angularity (MFA) probes were developed for use in scramjet flow path probe rakes. Prototype probes were fabricated to demonstrate the assembly processes (numerical control machining, furnace brazing, and electron beam welding). Tests of prototype probes confirmed the thermal durability margins and life cycle. Selected probes were calibrated in air at Mach numbers from 1.75 to 6.0. Acceptance criteria for the production probes stressed thermal durability and pressure (and, consequently, Mach number) measurement quality. This new water-cooled MFA probe has 0.397-cm shaft diameter and is capable of withstanding heat fluxes of 2.724 kW/sq cm.
Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.
1984-01-01
A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.
Excitation of nucleobases from a computational perspective I: reaction paths.
Giussani, Angelo; Segarra-Martí, Javier; Roca-Sanjuán, Daniel; Merchán, Manuela
2015-01-01
The main intrinsic photochemical events in nucleobases can be described on theoretical grounds within the realm of non-adiabatic computational photochemistry. From a static standpoint, the photochemical reaction path approach (PRPA), through the computation of the respective minimum energy path (MEP), can be regarded as the most suitable strategy in order to explore the electronically excited isolated nucleobases. Unfortunately, the PRPA does not appear widely in the studies reported in the last decade. The main ultrafast decay observed experimentally for the gas-phase excited nucleobases is related to the computed barrierless MEPs from the bright excited state connecting the initial Franck-Condon region and a conical intersection involving the ground state. At the highest level of theory currently available (CASPT2//CASPT2), the lowest excited (1)(ππ*) hypersurface for cytosine has a shallow minimum along the MEP deactivation pathway. In any case, the internal conversion processes in all the natural nucleobases are attained by means of interstate crossings, a self-protection mechanism that prevents the occurrence of photoinduced damage of nucleobases by ultraviolet radiation. Many alternative and secondary paths have been proposed in the literature, which ultimately provide a rich and constructive interplay between experimentally and theoretically oriented research. PMID:24264958
Path integral approach to the quantum fidelity amplitude.
Vaníček, Jiří; Cohen, Doron
2016-06-13
The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called 'dephasing representation,' circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact. PMID:27140973
NASA Astrophysics Data System (ADS)
Strangeways, H. J.
2000-10-01
A homing-in method is presented for determining ionospheric reflected or transionospheric paths between fixed transmitter and receiver locations in the presence of ionospheric gradients or ripples. Both initial elevation and azimuth are automatically adjusted to find the path that arrives exactly at the receiver. The method can be used for any 3D ionospheric model to find precise ray paths and phase and group delays for both magneto-ionic modes. The method takes full account of path location, geomagnetic field orientation and the bending of the ray path resulting from horizontal as well as vertical gradients of electron density. It can also find multiple paths e.g. low and high angle, 1- and 2-hops for both ordinary and extraordinary modes. Examples of its use are given for both terrestrial HF links and Earth to Satellite paths. For paths reflected from the ionosphere, the effect of gradients of both critical frequency and height of maximum electron density are determined and the comparative effect of gradients on high and low angle and 1- and 2-hops paths for both magneto-ionic modes investigated. Path variation with frequency for a fixed link is also studied and the bandwidth of the ionospheric background channel (dispersive bandwidth) and its reciprocal (the pulse rise time), important for wideband digital HF broadcasting or spread spectrum HF communications, is estimated for a range of frequencies, for high- and low-angle rays and 1- and 2-hop paths. For Earth-satellite paths, the effect of the ionosphere and horizontal ionospheric gradients is determined for a range of frequencies and elevation angles. It is shown that the method can also enable the determination of second-order errors in satellite navigation methods, such as GPS, due to ionospheric gradients and the effect of the geomagnetic field.
Vittitoe, C.N.
1993-08-01
A method is presented to unfold the two-dimensional vertical structure in electron density by using data on the total electron content for a series of paths through the ionosphere. The method uses a set of orthonormal basis functions to represent the vertical structure and takes advantage of curved paths and the eikonical equation to reduce the number of iterations required for a solution. Curved paths allow a more thorough probing of the ionosphere with a given set of transmitter and receiver positions. The approach can be directly extended to more complex geometries.
A chemist building paths to cell biology.
Weibel, Douglas B
2013-11-01
Galileo is reported to have stated, "Measure what is measurable and make measurable what is not so." My group's trajectory in cell biology has closely followed this philosophy, although it took some searching to find this path. PMID:24174456
An Alternate Path To Stoichiometric Problem Solving.
ERIC Educational Resources Information Center
Schmidt, Hans-Jurgen
1997-01-01
Discusses an alternate path to teaching introductory stoichiometry based on research findings. The recommendation is to use problems that can be solved easily by rapid mental calculation as well as by pure logic. (AIM)
Duality of quantum coherence and path distinguishability
NASA Astrophysics Data System (ADS)
Bera, Manabendra Nath; Qureshi, Tabish; Siddiqui, Mohd Asad; Pati, Arun Kumar
2015-07-01
We derive a generalized wave-particle duality relation for arbitrary multipath quantum interference phenomena. Beyond the conventional notion of the wave nature of a quantum system, i.e., the interference fringe visibility, we introduce a quantifier as the normalized quantum coherence, recently defined in the framework of quantum information theory. To witness the particle nature, we quantify the path distinguishability or the which-path information based on unambiguous quantum state discrimination. Then, the Bohr complementarity principle for multipath quantum interference can be stated as a duality relation between the quantum coherence and the path distinguishability. For two-path interference, the quantum coherence is identical to the interference fringe visibility, and the relation reduces to the well-known complementarity relation. The duality relation continues to hold in the case where mixedness is introduced due to possible decoherence effects.
Path Analysis in Genetic Epidemiology and Alternatives.
ERIC Educational Resources Information Center
Karlin, Samuel
1987-01-01
Discusses the application of path analysis in the context of genetic epidemiology. Examines the coherence of model specification, plausibility of modeling assumptions, the interpretability and usefulness of the model, and the validity of statistical procedures. (RB)
Nonclassical paths in quantum interference experiments.
Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-09-19
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence. PMID:25279612
Nonclassical Paths in Quantum Interference Experiments
NASA Astrophysics Data System (ADS)
Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-09-01
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.
Riemann Curvature Tensor and Closed Geodesic Paths
ERIC Educational Resources Information Center
Morganstern, Ralph E.
1977-01-01
Demonstrates erroneous results obtained if change in a vector under parallel transport about a closed path in Riemannian spacetime is made in a complete circuit rather than just half a circuit. (Author/SL)
Limited Path Percolation in Complex Networks
NASA Astrophysics Data System (ADS)
López, Eduardo; Parshani, Roni; Cohen, Reuven; Carmi, Shai; Havlin, Shlomo
2007-11-01
We study the stability of network communication after removal of a fraction q=1-p of links under the assumption that communication is effective only if the shortest path between nodes i and j after removal is shorter than aℓij(a≥1) where ℓij is the shortest path before removal. For a large class of networks, we find analytically and numerically a new percolation transition at p˜c=(κ0-1)(1-a)/a, where κ0≡⟨k2⟩/⟨k⟩ and k is the node degree. Above p˜c, order N nodes can communicate within the limited path length aℓij, while below p˜c, Nδ (δ<1) nodes can communicate. We expect our results to influence network design, routing algorithms, and immunization strategies, where short paths are most relevant.
Identifying decohering paths in closed quantum systems
NASA Technical Reports Server (NTRS)
Albrecht, Andreas
1990-01-01
A specific proposal is discussed for how to identify decohering paths in a wavefunction of the universe. The emphasis is on determining the correlations among subsystems and then considering how these correlations evolve. The proposal is similar to earlier ideas of Schroedinger and of Zeh, but in other ways it is closer to the decoherence functional of Griffiths, Omnes, and Gell-Mann and Hartle. There are interesting differences with each of these which are discussed. Once a given coarse-graining is chosen, the candidate paths are fixed in this scheme, and a single well defined number measures the degree of decoherence for each path. The normal probability sum rules are exactly obeyed (instantaneously) by these paths regardless of the level of decoherence. Also briefly discussed is how one might quantify some other aspects of classicality. The important role that concrete calculations play in testing this and other proposals is stressed.
Create three distinct career paths for innovators.
O'Connor, Gina Colarelli; Corbett, Andrew; Pierantozzi, Ron
2009-12-01
Large companies say they Create Three Distinct want to be Career Paths for Innovators innovative, but they fundamentally mismanage their talent. Expecting innovators to grow along with their projects-from discovery to incubation to acceleration--sets them up to fail. Most people excel at one of the phases, not all three. By allowing innovation employees to develop career paths suited to their strengths, companies will create a sustainable innovation function. PMID:19968059
Competition for Shortest Paths on Sparse Graphs
NASA Astrophysics Data System (ADS)
Yeung, Chi Ho; Saad, David
2012-05-01
Optimal paths connecting randomly selected network nodes and fixed routers are studied analytically in the presence of a nonlinear overlap cost that penalizes congestion. Routing becomes more difficult as the number of selected nodes increases and exhibits ergodicity breaking in the case of multiple routers. The ground state of such systems reveals nonmonotonic complex behaviors in average path length and algorithmic convergence, depending on the network topology, and densities of communicating nodes and routers. A distributed linearly scalable routing algorithm is also devised.
Electron and ion acceleration in relativistic shocks with applications to GRB afterglows
NASA Astrophysics Data System (ADS)
Warren, Donald C.; Ellison, Donald C.; Bykov, Andrei M.; Lee, Shiu-Hang
2015-09-01
We have modelled the simultaneous first-order Fermi shock acceleration of protons, electrons, and helium nuclei by relativistic shocks. By parametrizing the particle diffusion, our steady-state Monte Carlo simulation allows us to follow particles from particle injection at non-relativistic thermal energies to above PeV energies, including the non-linear smoothing of the shock structure due to cosmic ray (CR) backpressure. We observe the mass-to-charge (A/Z) enhancement effect believed to occur in efficient Fermi acceleration in non-relativistic shocks and we parametrize the transfer of ion energy to electrons seen in particle-in-cell (PIC) simulations. For a given set of environmental and model parameters, the Monte Carlo simulation determines the absolute normalization of the particle distributions and the resulting synchrotron, inverse Compton, and pion-decay emission in a largely self-consistent manner. The simulation is flexible and can be readily used with a wide range of parameters typical of γ-ray burst (GRB) afterglows. We describe some preliminary results for photon emission from shocks of different Lorentz factors and outline how the Monte Carlo simulation can be generalized and coupled to hydrodynamic simulations of GRB blast waves. We assume Bohm diffusion for simplicity but emphasize that the non-linear effects we describe stem mainly from an extended shock precursor where higher energy particles diffuse further upstream. Quantitative differences will occur with different diffusion models, particularly for the maximum CR energy and photon emission, but these non-linear effects should be qualitatively similar as long as the scattering mean-free path is an increasing function of momentum.
Multi-Level Indoor Path Planning Method
NASA Astrophysics Data System (ADS)
Xiong, Q.; Zhu, Q.; Zlatanova, S.; Du, Z.; Zhang, Y.; Zeng, L.
2015-05-01
Indoor navigation is increasingly widespread in complex indoor environments, and indoor path planning is the most important part of indoor navigation. Path planning generally refers to finding the most suitable path connecting two locations, while avoiding collision with obstacles. However, it is a fundamental problem, especially for 3D complex building model. A common way to solve the issue in some applications has been approached in a number of relevant literature, which primarily operates on 2D drawings or building layouts, possibly with few attached attributes for obstacles. Although several digital building models in the format of 3D CAD have been used for path planning, they usually contain only geometric information while losing abundant semantic information of building components (e.g. types and attributes of building components and their simple relationships). Therefore, it becomes important to develop a reliable method that can enhance application of path planning by combining both geometric and semantic information of building components. This paper introduces a method that support 3D indoor path planning with semantic information.
Path optimization with limited sensing ability
Kang, Sung Ha Kim, Seong Jun Zhou, Haomin
2015-10-15
We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducing its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.
Computing Diffeomorphic Paths for Large Motion Interpolation.
Seo, Dohyung; Jeffrey, Ho; Vemuri, Baba C
2013-06-01
In this paper, we introduce a novel framework for computing a path of diffeomorphisms between a pair of input diffeomorphisms. Direct computation of a geodesic path on the space of diffeomorphisms Diff(Ω) is difficult, and it can be attributed mainly to the infinite dimensionality of Diff(Ω). Our proposed framework, to some degree, bypasses this difficulty using the quotient map of Diff(Ω) to the quotient space Diff(M)/Diff(M) μ obtained by quotienting out the subgroup of volume-preserving diffeomorphisms Diff(M) μ . This quotient space was recently identified as the unit sphere in a Hilbert space in mathematics literature, a space with well-known geometric properties. Our framework leverages this recent result by computing the diffeomorphic path in two stages. First, we project the given diffeomorphism pair onto this sphere and then compute the geodesic path between these projected points. Second, we lift the geodesic on the sphere back to the space of diffeomerphisms, by solving a quadratic programming problem with bilinear constraints using the augmented Lagrangian technique with penalty terms. In this way, we can estimate the path of diffeomorphisms, first, staying in the space of diffeomorphisms, and second, preserving shapes/volumes in the deformed images along the path as much as possible. We have applied our framework to interpolate intermediate frames of frame-sub-sampled video sequences. In the reported experiments, our approach compares favorably with the popular Large Deformation Diffeomorphic Metric Mapping framework (LDDMM). PMID:25364222
Path optimization with limited sensing ability
NASA Astrophysics Data System (ADS)
Kang, Sung Ha; Kim, Seong Jun; Zhou, Haomin
2015-10-01
We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducing its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.
Path discrepancies between great circle and rhumb line
NASA Technical Reports Server (NTRS)
Kaul, Rajan
1987-01-01
A simulation of a mathematical model to compute path discrepancies between great circle and rhumb line flight paths is presented. The model illustrates that the path errors depend on the latitude, the bearing, and the trip length of the flight.
Complementarity with neutron two-path interferences and separated-oscillatory-field resonances
NASA Astrophysics Data System (ADS)
Ramsey, Norman F.
1993-07-01
The implications of complementarity on two-path neutron interferences and on separated-oscillatory-field resonances are discussed. The studies are extensions of those by Furry and Ramsey [Phys. Rev. 118, 623 (1960)] on two-path electron interferences which showed that an apparatus used to determine the electron path introduces uncertainties in the scalar and vector potentials which in turn disturb the phase of the electron wave function so much through the Aharonov-Bohm effects [Phys. Rev. 115, 485 (1959)] that the interference fringes disappear. A similar result is derived here for the neutron, but with the phase uncertainties coming from the magnetic moment's motion through an electric field as discussed by Anandan [Phys. Rev. Lett. 48, 1660 (1982)], and Aharonov and Casher [Phys. Rev. Lett. 53, 319 (1984)]. A corresponding result is also obtained for separated-oscillatory-fields resonances, which can be interpreted as an interference between two different paths in spin space. An interesting difference between the separated-path and separated-oscillatory-field experiments is that the latter may be interpreted classically.
Automatic alignment of double optical paths in excimer laser amplifier
NASA Astrophysics Data System (ADS)
Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun
2013-05-01
A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.
Approximate path seeking for statistical iterative reconstruction
NASA Astrophysics Data System (ADS)
Wu, Meng; Yang, Qiao; Maier, Andreas; Fahrig, Rebecca
2015-03-01
Statistical iterative reconstruction (IR) techniques have demonstrated many advantages in X-ray CT reconstruction. The statistical iterative reconstruction approach is often modeled as an optimization problem including a data fitting function and a penalty function. The tuning parameter values that regulate the strength of the penalty function are critical for achieving good reconstruction results. However, appropriate tuning parameter values that are suitable for the scan protocols and imaging tasks are often difficult to choose. In this work, we propose a path seeking algorithm that is capable of generating a series of IR images with different strengths of the penalty function. The path seeking algorithm uses the ratio of the gradients of the data fitting function and the penalty function to select pixels for small fixed size updates. We describe the path seeking algorithm for penalized weighted least squares (PWLS) with a Huber penalty function in both the directions of increasing and decreasing tuning parameter value. Simulations using the XCAT phantom show the proposed method produces path images that are very similar to the IR images that are computed via direct optimization. The root-mean- squared-error of one path image generated by the proposed method relative to full iterative reconstruction is about 6 HU for the entire image and 10 HU for a small region. Different path seeking directions, increment sizes and updating percentages of the path seeking algorithm are compared in simulations. The proposed method may reduce the dependence on selection of good tuning parameter values by instead generating multiple IR images, without significantly increasing the computational load.
Current path in light emitting diodes based on nanowire ensembles.
Limbach, F; Hauswald, C; Lhnemann, J; Wlz, M; Brandt, O; Trampert, A; Hanke, M; Jahn, U; Calarco, R; Geelhaar, L; Riechert, H
2012-11-23
Light emitting diodes (LEDs) have been fabricated using ensembles of free-standing (In, Ga)N/GaN nanowires (NWs) grown on Si substrates in the self-induced growth mode by molecular beam epitaxy. Electron-beam-induced current analysis, cathodoluminescence as well as biased ?-photoluminescence spectroscopy, transmission electron microscopy, and electrical measurements indicate that the electroluminescence of such LEDs is governed by the differences in the individual current densities of the single-NW LEDs operated in parallel, i.e. by the inhomogeneity of the current path in the ensemble LED. In addition, the optoelectronic characterization leads to the conclusion that these NWs exhibit N-polarity and that the (In, Ga)N quantum well states in the NWs are subject to a non-vanishing quantum confined Stark effect. PMID:23092897
Current path in light emitting diodes based on nanowire ensembles
NASA Astrophysics Data System (ADS)
Limbach, F.; Hauswald, C.; Lähnemann, J.; Wölz, M.; Brandt, O.; Trampert, A.; Hanke, M.; Jahn, U.; Calarco, R.; Geelhaar, L.; Riechert, H.
2012-11-01
Light emitting diodes (LEDs) have been fabricated using ensembles of free-standing (In, Ga)N/GaN nanowires (NWs) grown on Si substrates in the self-induced growth mode by molecular beam epitaxy. Electron-beam-induced current analysis, cathodoluminescence as well as biased μ-photoluminescence spectroscopy, transmission electron microscopy, and electrical measurements indicate that the electroluminescence of such LEDs is governed by the differences in the individual current densities of the single-NW LEDs operated in parallel, i.e. by the inhomogeneity of the current path in the ensemble LED. In addition, the optoelectronic characterization leads to the conclusion that these NWs exhibit N-polarity and that the (In, Ga)N quantum well states in the NWs are subject to a non-vanishing quantum confined Stark effect.
Electron transport through a circular constriction
NASA Astrophysics Data System (ADS)
Nikolić, Branislav; Allen, Philip B.
1999-08-01
We calculate the conductance of a circular constriction of radius a in an insulating diaphragm which separates two conducting half spaces characterized by the mean free path l. Using the Boltzmann equation we obtain an answer for all values of the ratio l/a. Our exact result interpolates between the Maxwell conductance in diffusive (l<>a) transport regimes. Following Wexler's work, our main advance is to find the explicit form of the Green's function for the linearized Boltzmann operator. The formula for the conductance deviates by less than 11% from the naive interpolation formula obtained by adding resistances in the diffusive and the ballistic regime.
NASA Astrophysics Data System (ADS)
Li, Wu
2015-08-01
We demonstrate the ab initio electrical transport calculation limited by electron-phonon coupling by using the full solution of the Boltzmann transport equation (BTE), which applies equally to metals and semiconductors. Numerical issues are emphasized in this work. We show that the simple linear interpolation of the electron-phonon coupling matrix elements from a relatively coarse grid to an extremely fine grid can ease the calculational burden, which makes the calculation feasible in practice. For the Brillouin zone (BZ) integration of the transition probabilities involving one δ function, the Gaussian smearing method with a physical choice of locally adaptive broadening parameters is employed. We validate the calculation in the cases of n -type Si and Al. The calculated conductivity and mobility are in good agreement with experiments. In the metal case we also demonstrate that the Gaussian smearing method with locally adaptive broadening parameters works excellently for the BZ integration with double δ functions involved in the Eliashberg spectral function and its transport variant. The simpler implementation is the advantage of the Gaussian smearing method over the tetrahedron method. The accuracy of the relaxation time approximation and the approximation made by Allen [Phys. Rev. B 17, 3725 (1978), 10.1103/PhysRevB.17.3725] has been examined by comparing with the exact solution of BTE. We also apply our method to n -type monolayer MoS2, for which a mobility of 150 cm2 v-1 s-1 is obtained at room temperature. Moreover, the mean free paths are less than 9 nm, indicating that in the presence of grain boundaries the mobilities should not be effectively affected if the grain boundary size is tens of nanometers or larger. The ab initio approach demonstrated in this paper can be directly applied to other materials without the need for any a priori knowledge about the electron-phonon scattering processes, and can be straightforwardly extended to study cases with electron-impurity scattering.
Marocchino, A.; Atzeni, S.; Schiavi, A.
2014-01-15
In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.
Path analysis in genetic epidemiology: a critique.
Karlin, S; Cameron, E C; Chakraborty, R
1983-01-01
Path analysis, a form of general linear structural equation models, is used in studies of human genetics data to discern genetic, environmental, and cultural factors contributing to familial resemblance. It postulates a set of linear and additive parametric relationships between phenotypes and genetic and cultural variables and then essentially uses the assumption of multivariate normality to estimate and perform tests of hypothesis on parameters. Such an approach has been advocated for the analysis of genetic epidemiological data by D. C. Rao, N. Morton, C. R. Cloninger, L. J. Eaves, and W. E. Nance, among others. This paper reviews and evaluates the formulations, assumptions, methodological procedures, interpretations, and applications of path analysis. To give perspective, we begin with a discussion of path analysis as it occurs in the form of general linear causal models in several disciplines of the social sciences. Several specific path analysis models applied to lipoprotein concentrations, IQ, and twin data are then reviewed to keep the presentation self-contained. The bulk of the critical discussion that follows is directed toward the following four facets of path analysis: (1) coherence of model specification and applicability to data; (2) plausibility of modeling assumptions; (3) interpretability and utility of the model; and (4) validity of statistical and computational procedures. In the concluding section, a brief discussion of the problem of appropriate model selection is presented, followed by a number of suggestions of essentially model-free alternative methods of use in the treatment of complex structured data such as occurs in genetic epidemiology. PMID:6349335
Perfect discretization of reparametrization invariant path integrals
NASA Astrophysics Data System (ADS)
Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian
2011-05-01
To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.
Interpretation of pressure-temperature-time paths
England, P.C.
1985-01-01
Pressure-temperature-time (PTt) paths inferred from mineral assemblages or compositions in metamorphic rocks are used to place constraints on metamorphic processes on several different scales. The purpose of this paper is to indicate the kind of questions that may be answered, and those that cannot, by interpretation of PTt data. The intensity of regional metamorphism depends both on the intensity of available heat sources and the length of time available for thermal relaxation; consequently the addition of reliable dates to a PT path is a crucial element in containing thermal history. For example, the question as to whether or not Archaean continental thermal regimes were similar to today's cannot be answered without PTt paths dated to a precision of better than 30 Myr. As there is always local perturbation due to tectonic, igneous or other fluid activity it is essential to obtain widespread PTt data before making estimates of thermal budgets for regional metamorphism. However, on the smaller scale, PTt paths may be used to infer tectonic style where structural data are ambiguous or lacking. Particular attention is paid to the problems of inferring extensional events from the PTt paths recorded by rocks from regional metamorphic belts.
Multiple Manifold Clustering Using Curvature Constrained Path
Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba
2015-01-01
The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819
Switching-path distribution in multidimensional systems.
Chan, H B; Dykman, M I; Stambaugh, C
2008-11-01
We explore the distribution of paths followed in fluctuation-induced switching between coexisting stable states. We introduce a quantitative characteristic of the path distribution in phase space that does not require a priori knowledge of system dynamics. The theory of the distribution is developed and its direct measurement is performed in a micromechanical oscillator driven into parametric resonance. The experimental and theoretical results on the shape and position of the distribution are in excellent agreement, with no adjustable parameters. In addition, the experiment provides the first demonstration of the lack of time-reversal symmetry in switching of systems far from thermal equilibrium. The results open the possibility of efficient control of the switching probability based on the measured narrow path distribution. PMID:19113097
Molecular path control in zeolite membranes
Dubbeldam, D.; Beerdsen, E.; Calero, S.; Smit, B.
2005-01-01
We report molecular simulations of diffusion in confinement showing a phenomenon that we denote as molecular path control (MPC); depending on loading, molecules follow a preferred pathway. MPC raises the important question to which extent the loading may affect the molecular trajectories in nanoporous materials. Through MPC one is able to manually adjust the ratio of the diffusivities through different types of pores, and as an application one can direct the flow of diffusing particles in membranes forward or sideward by simply adjusting the pressure, without the need for mechanical parts like valves. We show that the key ingredient of MPC is the anisotropic nature of the nanoporous material that results in a complex interplay between different diffusion paths as a function of loading. These paths may be controlled by changing the loading, either through a change in pressure or temperature. PMID:16109769
Fermionic path integrals and local anomalies
NASA Astrophysics Data System (ADS)
Roepstorff, G.
2003-05-01
No doubt, the subject of path integrals proved to be an immensely fruitful human, i.e. Feynman's idea. No wonder it is more timely than ever. Some even claim that it is the most daring, innovative and revolutionary idea since the days of Heisenberg and Bohr. It is thus likely to generate enthusiasm, if not addiction among physicists who seek simplicity together with perfection. Professor Devreese's long-lasting interest in, if not passion on the subject stems from his firm conviction that, beyond being the tool of choice, path integration provides the key to all quantum phenomena, be it in solid state, atomic, molecular or particle physics as evidenced by the impressive list of publications at the address http://lib.ua.ac.be/AB/a867.html. In this note, I review a pitfall of fermionic path integrals and a way to get around it in situations relevant to the Standard Model of particle physics.
Differentiable-path integrals in quantum mechanics
NASA Astrophysics Data System (ADS)
Koch, Benjamin; Reyes, Ignacio
2015-06-01
A method is presented which restricts the space of paths entering the path integral of quantum mechanics to subspaces of Cα, by only allowing paths which possess at least α derivatives. The method introduces two external parameters, and induces the appearance of a particular time scale ɛD such that for time intervals longer than ɛD the model behaves as usual quantum mechanics. However, for time scales smaller than ɛD, modifications to standard formulation of quantum theory occur. This restriction renders convergent some quantities which are usually divergent in the time-continuum limit ɛ → 0. We illustrate the model by computing several meaningful physical quantities such as the mean square velocity
Quantum state of wormholes and path integral
Garay, L.J. )
1991-08-15
The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface {ital S} which divides the spacetime manifold into two disconnected parts. The ground-state wave function is picked out by requiring that there be no matter excitations in the asymptotic region. Once the path integrals over the lapse and shift functions are evaluated, the requirement that the spacetime be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is claimed that no wave function exists which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. The wormhole wave functions are worked out in minisuperspace models with massless minimal and conformal scalar fields.
A taxonomy of integral reaction path analysis
Grcar, Joseph F.; Day, Marcus S.; Bell, John B.
2004-12-23
W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examples illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.
Circular common-path point diffraction interferometer.
Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan
2012-10-01
A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes. PMID:23027234
Tornado Intensity Estimated from Damage Path Dimensions
Elsner, James B.; Jagger, Thomas H.; Elsner, Ian J.
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242
Tornado intensity estimated from damage path dimensions.
Elsner, James B; Jagger, Thomas H; Elsner, Ian J
2014-01-01
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado's power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s(-1) for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width. PMID:25229242
Community Networks in Libraries: A Case Study of the Freenet P.A.T.H.
ERIC Educational Resources Information Center
Geffert, Bryn
1993-01-01
Description of community online systems focuses on a Freenet in Illinois called P.A.T.H. (Public Access to Heartland). Highlights include patron use; discussion groups and bulletin boards; electronic mail; reference questions; Freenet's place in public libraries; and sample reference questions answered by Freenet information providers. (five…
Path planning for everday robotics with SANDROS
Watterberg, P.; Xavier, P.; Hwang, Y.
1997-02-01
We discuss the integration of the SANDROS path planner into a general robot simulation and control package with the inclusion of a fast geometry engine for distance calculations. This creates a single system that allows the path to be computed, simulated, and then executed on the physical robot. The architecture and usage procedures are presented. Also, we present examples of its usage in typical environments found in our organization. The resulting system is as easy to use as the general simulation system (which is in common use here) and is fast enough (example problems are solved in seconds) to be used interactively on an everyday basis.
Mars PathFinder Rover Traverse Image
NASA Technical Reports Server (NTRS)
1998-01-01
This figure contains an azimuth-elevation projection of the 'Gallery Panorama.' The original Simple Cylindrical mosaic has been reprojected to the inside of a sphere so that lines of constant azimuth radiate from the center and lines of constant elevation are concentric circles. This projection preserves the resolution of the original panorama. Overlaid onto the projected Martian surface is a delineation of the Sojourner rover traverse path during the 83 Sols (Martian days) of Pathfinder surface operations. The rover path was reproduced using IMP camera 'end of day' and 'Rover movie' image sequences and rover vehicle telemetry data as references.
Gas Path Sealing in Turbine Engines
NASA Technical Reports Server (NTRS)
Ludwig, L. P.
1978-01-01
A survey of gas path seals is presented with particular attention given to sealing clearance effects on engine component efficiency. The effects on compressor pressure ratio and stall margin are pointed out. Various case-rotor relative displacements, which affect gas path seal clearances, are identified. Forces produced by nonuniform sealing clearances and their effect on rotor stability are discussed qualitatively, and recent work on turbine-blade-tip sealing for high temperature is described. The need for active clearance control and for engine structural analysis is discussed. The functions of the internal-flow system and its seals are reviewed.
Diagnosis for Covariance Structure Models by Analyzing the Path
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Kouros, Chrystyna D.; Kelley, Ken
2008-01-01
When a covariance structure model is misspecified, parameter estimates will be affected. It is important to know which estimates are systematically affected and which are not. The approach of analyzing the path is both intuitive and informative for such a purpose. Different from path analysis, analyzing the path uses path tracing and elementary…
Exploring Career Paths. A Guide for Students and Their Families.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This five-section guide is designed to help students and their parents explore career paths. The first part of the guide is an introduction to the concept of career paths and an explanation of the steps students follow in exploring career paths. The second section, which makes up most of the booklet, covers five steps for exploring career paths:…
Path Analysis: A Link between Family Theory and Reseach.
ERIC Educational Resources Information Center
Rank, Mark R.; Sabatelli, Ronald M.
This paper discusses path analysis and the applicability of this methodology to the field of family studies. The statistical assumptions made in path analysis are presented along with a description of the two types of models within path analysis, i.e., recursive and non-recursive. Methods of calculating in the path model and the advantages of…
An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles
Cunningham, C.T.; Roberts, R.S.
2000-09-12
An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.
Adaptive path planning algorithm for cooperating unmanned air vehicles
Cunningham, C T; Roberts, R S
2001-02-08
An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.
A Comparison of Two Path Planners for Planetary Rovers
NASA Technical Reports Server (NTRS)
Tarokh, M.; Shiller, Z.; Hayati, S.
1999-01-01
The paper presents two path planners suitable for planetary rovers. The first is based on fuzzy description of the terrain, and genetic algorithm to find a traversable path in a rugged terrain. The second planner uses a global optimization method with a cost function that is the path distance divided by the velocity limit obtained from the consideration of the rover static and dynamic stability. A description of both methods is provided, and the results of paths produced are given which show the effectiveness of the path planners in finding near optimal paths. The features of the methods and their suitability and application for rover path planning are compared
Learning to improve path planning performance
Chen, Pang C.
1995-04-01
In robotics, path planning refers to finding a short. collision-free path from an initial robot configuration to a desired configuratioin. It has to be fast to support real-time task-level robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To remedy this situation, we present and analyze a learning algorithm that uses past experience to increase future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a speedup-learning framework in which a slow but capable planner may be improved both cost-wise and capability-wise by a faster but less capable planner coupled with experience. The basic algorithm is suitable for stationary environments, and can be extended to accommodate changing environments with on-demand experience repair and object-attached experience abstraction. To analyze the algorithm, we characterize the situations in which the adaptive planner is useful, provide quantitative bounds to predict its behavior, and confirm our theoretical results with experiments in path planning of manipulators. Our algorithm and analysis are sufficiently, general that they may also be applied to other planning domains in which experience is useful.
Folded-path optical analysis gas cell
Carangelo, R.M.; Wright, D.D.
1995-08-08
A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.
Photographic time studies of airplane paths
NASA Technical Reports Server (NTRS)
Von Baumhaur, A G
1926-01-01
The object of this report is the description of a method which seems to be practicable for determining the path of an airplane, especially in taking off and landing. This report tells how, by means of a camera, preferably a kinetograph, which simultaneously photographs a stop watch the distance of an airplane from the camera and its height above the ground can be determined.
Motion on Cycloid Paths: A Project
ERIC Educational Resources Information Center
Gluck, P.
2010-01-01
This article reports a high school laboratory project whose theme is the motion of a small ball on cycloidal tracks. Models were built both of a brachistochrone and of a Huygens pendulum clock whose bob is constrained to move on a cycloidal path. Photogates and a data acquisition system were employed in order to investigate experimentally the
Current SPE Hydrodynamic Modeling and Path Forward
Knight, Earl E.; Rougier, Esteban
2012-08-14
Extensive work has been conducted on SPE analysis efforts: Fault effects Non-uniform weathered layer analysis MUNROU: material library incorporation, parallelization, and development of non-locking tets Development of a unique continuum-based-visco-plastic strain-rate-dependent material model With corrected SPE data path is now set for a multipronged approach to fully understand experimental series shot effects.
Administrator Career Paths and Decision Processes
ERIC Educational Resources Information Center
Farley-Ripple, Elizabeth N.; Raffel, Jeffrey A.; Welch, Jennie Christine
2012-01-01
Purpose: The purpose of this paper is to present qualitative evidence on the processes and forces that shape school administrator career paths. Design/methodology/approach: An embedded case study approach is used to understand more than 100 administrator career transitions within the Delaware education system. Semi-structured interview data were…
Explore the Many Paths to Leadership
ERIC Educational Resources Information Center
Crow, Tracy
2015-01-01
The road to leadership is not necessarily one that educators plan carefully with a series of logical steps. Certainly some educators start as teachers and then systematically work through a traditional hierarchy on their way to the superintendency. No matter their role or their path, education leaders demand more from themselves and others and…
LONG PATH LASER OZONE MONITOR EVALUATION
The purpose of the study reported here was to evaluate a long path laser air pollution monitor developed for the U.S. Environmental Protection Agency (EPA) by the General Electric (GE) Company. The monitor was known as ILAMS (Infrared Laser Atmospheric Monitoring System) and desi...
Motion on Cycloid Paths: A Project
ERIC Educational Resources Information Center
Gluck, P.
2010-01-01
This article reports a high school laboratory project whose theme is the motion of a small ball on cycloidal tracks. Models were built both of a brachistochrone and of a Huygens pendulum clock whose bob is constrained to move on a cycloidal path. Photogates and a data acquisition system were employed in order to investigate experimentally the…
Visualizing Transmedia Networks: Links, Paths and Peripheries
ERIC Educational Resources Information Center
Ruppel, Marc Nathaniel
2012-01-01
'Visualizing Transmedia Networks: Links, Paths and Peripheries' examines the increasingly complex rhetorical intersections between narrative and media ("old" and "new") in the creation of transmedia fictions, loosely defined as multisensory and multimodal stories told extensively across a diverse media set. In order…
Path integration in tactile perception of shapes.
Moscatelli, Alessandro; Naceri, Abdeldjallil; Ernst, Marc O
2014-11-01
Whenever we move the hand across a surface, tactile signals provide information about the relative velocity between the skin and the surface. If the system were able to integrate the tactile velocity information over time, cutaneous touch may provide an estimate of the relative displacement between the hand and the surface. Here, we asked whether humans are able to form a reliable representation of the motion path from tactile cues only, integrating motion information over time. In order to address this issue, we conducted three experiments using tactile motion and asked participants (1) to estimate the length of a simulated triangle, (2) to reproduce the shape of a simulated triangular path, and (3) to estimate the angle between two-line segments. Participants were able to accurately indicate the length of the path, whereas the perceived direction was affected by a direction bias (inward bias). The response pattern was thus qualitatively similar to the ones reported in classical path integration studies involving locomotion. However, we explain the directional biases as the result of a tactile motion aftereffect. PMID:25151621
A Complex Path to Haudenosaunee Degree Completion
ERIC Educational Resources Information Center
Waterman, Stephanie J.
2007-01-01
This qualitative study describes how 12 Haudenosaunee (Six Nations Iroquois Confederacy) college graduates constructed pathways to degree completion. The participants related their experiences on this path through open-ended interviews. The pathways were found to be complex owing to their unique cultural grounding and dedication to family. The…
A Critical Path Analysis of Scientific Productivity.
ERIC Educational Resources Information Center
Loehle, Craig
1994-01-01
This article presents a queuing model simulation of scientific productivity utilizing critical path analysis. Creativity is found to have a large positive effect, a negative effect, or no effect on productivity, depending on the stage of the problem-solving process to which it is applied and the nature of the bottlenecks inherent to the specific…
Quad-rotor flight path energy optimization
NASA Astrophysics Data System (ADS)
Kemper, Edward
Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.
Feynman path integral and the photon
Pugh, R.E.
1986-02-15
The construction of an overcomplete set of states for both the physical and artificial modes of the photon is examined in a representation with an indefinite metric. The Feynman path integral is then easily derived and the usual Green's functions, kernels, propagators, and Feynman rules follow immediately.
Modeling DNA Dynamics by Path Integrals
NASA Astrophysics Data System (ADS)
Zoli, Marco
2013-02-01
Complementary strands in DNA double helix show temporary fluctuational openings which are essential to biological functions such as transcription and replication of the genetic information. Such large amplitude fluctuations, known as the breathing of DNA, are generally localized and, microscopically, are due to the breaking of the hydrogen bonds linking the base pairs (bps). I apply imaginary time path integral techniques to a mesoscopic Hamiltonian which accounts for the helicoidal geometry of a short circular DNA molecule. The bps displacements with respect to the ground state are interpreted as time dependent paths whose amplitudes are consistent with the model potential for the hydrogen bonds. The portion of the paths configuration space contributing to the partition function is determined by selecting the ensemble of paths which fulfill the second law of thermodynamics. Computations of the thermodynamics in the denaturation range show the energetic advantage for the equilibrium helicoidal geometry peculiar of B-DNA. I discuss the interplay between twisting of the double helix and anharmonic stacking along the molecule backbone suggesting an interesting relation between intrinsic nonlinear character of the microscopic interactions and molecular topology.
Visualizing Transmedia Networks: Links, Paths and Peripheries
ERIC Educational Resources Information Center
Ruppel, Marc Nathaniel
2012-01-01
'Visualizing Transmedia Networks: Links, Paths and Peripheries' examines the increasingly complex rhetorical intersections between narrative and media ("old" and "new") in the creation of transmedia fictions, loosely defined as multisensory and multimodal stories told extensively across a diverse media set. In order
Planning Flight Paths of Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli
2009-01-01
Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.
Judgments of Path, Not Heading, Guide Locomotion
ERIC Educational Resources Information Center
Wilkie, Richard M.; Wann, John P.
2006-01-01
To steer a course through the world, people are almost entirely dependent on visual information, of which a key component is optic flow. In many models of locomotion, heading is described as the fundamental control variable; however, it has also been shown that fixating points along or near one's future path could be the basis of an efficient…
Stochastic Evolutionary Algorithms for Planning Robot Paths
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard
2006-01-01
A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.
Building a path in cell biology
Voeltz, Gia; Cheeseman, Iain
2012-01-01
Setting up a new lab is an exciting but challenging prospect. We discuss our experiences in finding a path to tackle some of the key current questions in cell biology and the hurdles that we have encountered along the way. PMID:23112222
An Introduction to Career Path Employability Profiles.
ERIC Educational Resources Information Center
Alvir, Howard P.
An employability profile specifies employment opportunities for which an individual is qualified. A career path is the term applied to an employability profile that combines both the career ladder aspect of advancement and the career lattice element of wide selection. After a descriptive analysis of typical employability profiles, this document…
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.57 Takeoff..., landing gear retraction must not be initiated until the airplane is airborne. (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— (1) The slope of the airborne part...
Explore the Many Paths to Leadership
ERIC Educational Resources Information Center
Crow, Tracy
2015-01-01
The road to leadership is not necessarily one that educators plan carefully with a series of logical steps. Certainly some educators start as teachers and then systematically work through a traditional hierarchy on their way to the superintendency. No matter their role or their path, education leaders demand more from themselves and others and
Thermo fields from Euclidean path integrals
NASA Astrophysics Data System (ADS)
Laflamme, R.
1989-05-01
The motive for the introduction of a fictitious field and the vacuum in thermo field dynamics is derived from Euclidean path integrals. We show that the occurrence of a fictitious system, both in the theory of Umezawa and Takahashi at finite temperature and the one of Israel for black hole backgrounds, can be related to the geometry of the Euclidean section of their spacetime.
The Erratic Path of Hungarian Higher Education
ERIC Educational Resources Information Center
Marcus, Jon
2014-01-01
This article reviews the path of funding higher education in Hungary, where funding cuts have resulted in understaffing, escalating tuition, growing student debt, and declining enrollment. Graduation rates are low, government policies favor vocational disciplines, and the system of preparation and access gives preference to students from wealthier
The Erratic Path of Hungarian Higher Education
ERIC Educational Resources Information Center
Marcus, Jon
2014-01-01
This article reviews the path of funding higher education in Hungary, where funding cuts have resulted in understaffing, escalating tuition, growing student debt, and declining enrollment. Graduation rates are low, government policies favor vocational disciplines, and the system of preparation and access gives preference to students from wealthier…
A modified reconfigurable data path processor
NASA Technical Reports Server (NTRS)
Ganesh, G.; Whitaker, S.; Maki, G.
1991-01-01
High throughput is an overriding factor dictating system performance. A configurable data processor is presented which can be modified to optimize performance for a wide class of problems. The new processor is specifically designed for arbitrary data path operations and can be dynamically reconfigured.
Star-Paths, Stones and Horizon Astronomy
NASA Astrophysics Data System (ADS)
Brady, Bernadette
2015-05-01
Archaeoastronomers tend to approach ancient monuments focusing on the landscape and the horizon calendar events of sun and moon and, due to problems with precession, generally ignore the movement of the stars. However, locating the position of solar calendar points on the horizon can have other uses apart from calendar and/or cosmological purposes. This paper firstly suggests that the stars do not need to be ignored. By considering the evidence of the Phaenomena, a sky poem by Aratus of Soli, a third century BC Greek poet, and his use of second millennium BC star lore fragments, this paper argues that the stars were a part of the knowledge of horizon astronomy. Aratus' poem implied that the horizon astronomy of the late Neolithic and Bronze Age periods included knowledge of star-paths or 'linear constellations' that were defined by particular horizon calendar events and other azimuths. Knowledge of such star-paths would have enabled navigation and orientation, and by using permanent markers, constructed or natural, to define these paths, they were immune to precession as the stones could redefine a star-path for a future generation. Finally the paper presents other possible intentions behind the diverse orientation of passage tombs and some megalithic sites.
Path integral and noncommutative Poisson brackets
NASA Astrophysics Data System (ADS)
Valtancoli, P.
2015-06-01
We find that in presence of noncommutative Poisson brackets, the relation between Lagrangian and Hamiltonian is modified. We discuss this property by using the path integral formalism for non-relativistic systems. We apply this procedure to the harmonic oscillator with a minimal length.
Theory of extreme correlations using canonical Fermions and path integrals
Shastry, B. Sriram
2014-04-15
The tJ model is studied using a novel and rigorous mapping of the Gutzwiller projected electrons, in terms of canonical electrons. The mapping has considerable similarity to the DysonMaleev transformation relating spin operators to canonical Bosons. This representation gives rise to a non Hermitian quantum theory, characterized by minimal redundancies. A path integral representation of the canonical theory is given. Using it, the salient results of the extremely correlated Fermi liquid (ECFL) theory, including the previously found Schwinger equations of motion, are easily rederived. Further, a transparent physical interpretation of the previously introduced auxiliary Greens function and the caparison factor, is obtained. The low energy electron spectral function in this theory, with a strong intrinsic asymmetry, is summarized in terms of a few expansion coefficients. These include an important emergent energy scale ?{sub 0} that shrinks to zero on approaching the insulating state, thereby making it difficult to access the underlying very low energy Fermi liquid behavior. The scaled low frequency ECFL spectral function, related simply to the Fano line shape, has a peculiar energy dependence unlike that of a Lorentzian. The resulting energy dispersion obtained by maximization is a hybrid of a massive and a massless Dirac spectrum E{sub Q}{sup ?}??Q??(?{sub 0}{sup 2}+Q{sup 2}), where the vanishing of Q, a momentum type variable, locates the kink minimum. Therefore the quasiparticle velocity interpolates between (??1) over a width ?{sub 0} on the two sides of Q=0, implying a kink there that strongly resembles a prominent low energy feature seen in angle resolved photoemission spectra (ARPES) of cuprate materials. We also propose novel ways of analyzing the ARPES data to isolate the predicted asymmetry between particle and hole excitations. -- Highlights: Spectral function of the Extremely Correlated Fermi Liquid theory at low energy. Electronic origin of low energy kinks in energy dispersion. Non Hermitian representation of Gutzwiller projected electrons. Analogy with DysonMaleev representation of spins. Path integral formulation of extremely correlated electrons.
Photon path length retrieval from GOSAT observations
NASA Astrophysics Data System (ADS)
Kremmling, Beke; Penning de Vries, Marloes; Deutschmann, Tim; Wagner, Thomas
2013-04-01
The influence of clouds on the atmospheric radiation budget is investigated, focussing on the photon path length distributions of the scattered sunlight. Apart from the reflection of incoming solar radiation at the cloud top, clouds can also introduce a large number of additional scattering events causing an enhancement of the photon paths. In certain cloud formations, these scattering events also result in a ``ping-pong`` behaviour between different cloud patches and cloud layers. It has been shown from ground based measurements that it is possible to retrieve photon path lengths by analysis of high resolution oxygen A-band spectra (O. Funk et al.). This study uses similar space based measurements of the oxygen A-band for the path length retrieval. The oxygen A-band spectra are retrieved from the Japanese Greenhouse Gases Observing Satellite (GOSAT) which was successfully launched in 2009. The high spectral resolution of the GOSAT TANSO-FTS instrument allows to almost completely resolve the individual absorption lines. The considered spectral range is particularly suitable for this study because it shows clear absorption structures of different strength. From the analysis of the spectral signatures, cloud properties and the underlying path length distributions can be derived. The retrieval is done by analysis and comparison of the extracted TANSO-FTS spectra with simulations from the Monte Carlo radiative transfer Model McArtim. The model permits modelling of altitude dependent oxygen absorption cross sections and three-dimensional cloud patterns. Case studies of clear and cloudy sky scenarios will be presented. Future studies will focus on more complicated cloud structures, especially considering three-dimensional geometries and heterogeneities.
High-order path-integral Monte Carlo methods for solving quantum dot problems
NASA Astrophysics Data System (ADS)
Chin, Siu A.
2015-03-01
The conventional second-order path-integral Monte Carlo method is plagued with the sign problem in solving many-fermion systems. This is due to the large number of antisymmetric free-fermion propagators that are needed to extract the ground state wave function at large imaginary time. In this work we show that optimized fourth-order path-integral Monte Carlo methods, which use no more than five free-fermion propagators, can yield accurate quantum dot energies for up to 20 polarized electrons with the use of the Hamiltonian energy estimator.
Kanematsu, Nobuyuki; Inaniwa, Taku; Koba, Yusuke
2012-02-15
Purpose: In treatment planning of charged-particle radiotherapy, patient heterogeneity is conventionally modeled as variable-density water converted from CT images to best reproduce the stopping power, which may lead to inaccuracies in the handling of multiple scattering and nuclear interactions. Although similar conversions can be defined for these individual interactions, they would be valid only for specific CT systems and would require additional tasks for clinical application. This study aims to improve the practicality of the interaction-specific heterogeneity correction. Methods: The authors calculated the electron densities and effective densities for stopping power, multiple scattering, and nuclear interactions of protons and ions, using the standard elemental-composition data for body tissues to construct the invariant conversion functions. The authors also simulated a proton beam in a lung-like geometry and a carbon-ion beam in a prostate-like geometry to demonstrate the procedure and the effects of the interaction-specific heterogeneity correction. Results: Strong correlations were observed between the electron density and the respective effective densities, with which the authors formulated polyline conversion functions. Their effects amounted to 10% differences in multiple-scattering angle and nuclear interaction mean free path for bones compared to those in the conventional heterogeneity correction. Although their realistic effect on patient dose distributions would be generally small, it could be at the level of a few percent when a carbon-ion beam traverses a large bone. Conclusions: The present conversion functions are invariant and may be incorporated in treatment planning systems with a common function relating CT number to electron density. This will enable improved beam dose calculation while minimizing initial setup and quality management of the user's specific system.
Proposal for a QND which-path measurement using photons
NASA Technical Reports Server (NTRS)
Raymer, M. G.; Yang, S.
1992-01-01
A scheme is proposed for experimentally realizing the famous two-slit gedaenken experiment using photons. As elegantly discussed for electrons by Feynman, a particle's quantum pathways interfere to produce fringes in the probability density for the particle to be found at a particle location. If the path taken by the particle is experimentally determined, the complementarity principle says that the fringes must disappear. To carry out this experiment with photons is difficult because normally the act of determining a photon's location destroys it. We propose to overcome this difficulty by putting a type-2 optical parametric amplifier (OPA) in each arm of a Mach-Zehnder interferometer, and observing fringes at the output. An OPA responds to an input photon by increasing its probability to produce a pair of photons with polarization orthogonal to the input, the detection of which allows partial inference about the path taken by the input photon without destroying it. Thus, the measurement is of the quantum nondemolition (QND) type.
Nanoscale heat transport via electrons and phonons by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Lin, Keng-Hua
Nanoscale heat transport has become a crucial research topic due to the growing importance of nanotechnology for manufacturing, energy conversion, medicine and electronics. Thermal transport properties at the nanoscale are distinct from the macroscopic ones since the sizes of nanoscale features, such as free surfaces and interfaces, are comparable to the wavelengths and mean free paths of the heat carriers (electrons and phonons), and lead to changes in thermal transport properties. Therefore, understanding how the nanoscale features and energy exchange between the heat carriers affect thermal transport characteristics are the goals of this research. Molecular dynamics (MD) is applied in this research to understand the details of nanoscale heat transport. The advantage of MD is that the size effect, anharmonicity, atomistic structure, and non-equilibrium behavior of the system can all be captured since the dynamics of atoms are described explicitly in MD. However, MD neglects the thermal role of electrons and therefore it is unable to describe heat transport in metal or metal-semiconductor systems accurately. To address this limitation of MD, we develop a method to simulate electronic heat transport by implementing electronic degrees of freedom to MD. In this research, nanoscale heat transport in semiconductor, metal, and metal-semiconductor systems is studied. Size effects on phonon thermal transport in SiGe superlattice thin films and nanowires are studied by MD. We find that, opposite to the macroscopic trend, superlattice thin films can achieve lower thermal conductivity than nanowires at small scales due to the change of phonon nature caused by adjusting the superlattice periodic length and specimen length. Effects of size and electron-phonon coupling rate on thermal conductivity and thermal interface resistivity in Al and model metal-semiconductor systems are studied by MD with electronic degrees of freedom. The results show that increasing the specimen length or the electron-phonon coupling rate increases the electronic contribution in thermal transport and therefore increases the thermal conductivity; moreover, the thermal interface resistivity in metal-semiconductor systems is observed to depend on the heat flux direction due to the direction-dependent energy transfer pathways between electrons and phonons at the interface. MD with electronic degrees of freedom is also applied to simulate heat transport across the metal-semiconductor interface under the non-equilibrium conditions, mimicking the ultrafast laser heating in transient thermoreflectance measurements. The effect of local and non-local electron-phonon coupling across the interface are examined, since the experimental evidence suggests that non-local electron-phonon coupling occurs under the non-equilibrium conditions. Our results show that non-local electron-phonon coupling not only facilitates energy transfer across the interface but also enhances ballistic transport of the high frequency phonon modes in a semiconductor. In summary, our study provides an insight into the details of nanoscale heat transport in various systems by MD and MD with electronic degrees of freedom.
Studies of the interactions of ionizing radiations with communications materials
Ashley, J.C.; Williams, M.W.
1982-01-01
Various models were developed for calculating the energy loss per unit length, or stopping power, and the inelastic mean free path for electrons in a material. We have included both organic materials such as polyethylene and inorganic materials such as SiO/sub 2/. In each case, the calculated values of stopping power and mean free path have been compared with experimental values where available and, in the case of mean free paths for organic materials, with those predicted from our universal formula. In addition the various models for stopping power and mean free path have been compared with each other. Measurements have been made of electron attenuation lengths (approx. = electron mean free paths) as a function of incident electron energy for electrons in amorphous carbon films, as a direct check on the values predicted by our universal formula for electron mean free paths in solid organic insulators. A theory has been developed to describe charged-particle track structure in nonmetallic solids, as the track evolves in time and space. Work has continued in the field of microdosimetry with the calculation of the energy densities deposited by high-energy photons as a function of depth in traversing a SiO/sub 2/ slab sandwiched between two slabs of Si.
Common path point diffraction interferometer using liquid crystal phase shifting
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R. (Inventor)
1997-01-01
A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.
Arena geometry and path shape: when rats travel in straight or in circuitous paths?
Yaski, Osnat; Portugali, Juval; Eilam, David
2011-12-01
We show here that the global geometry of the environment affects the shape of the paths of travel in rats. To examine this, individual rats were introduced into an unfamiliar arena. One group of rats (n=8) was tested in a square arena (2 m × 2 m), and the other group (n=8) in a round arena (2 m diameter). Testing was in a total darkness, since in the absence of visual information the geometry is not perceived immediately and the extraction of environment shape is slower. We found that while the level of the rats' activity did not seem to differ between both arenas, path shape differed significantly. When traveling along the perimeter, path shape basically followed the arena walls, with perimeter paths curving along the walls of the round arena, while being straight along the walls of the square arena. A similar impact of arena geometry was observed for travel away from the arena walls. Indeed, when the rats abandoned the arena walls to crosscut through the center of the arena, their center paths were circuitous in the round arena and relatively straight in the square arena. We suggest that the shapes of these paths are exploited for the same spatial task: returning back to a familiar location in the unsighted environment. PMID:21840341
Adaptive path planning for flexible manufacturing
Chen, Pang C.
1994-08-01
Path planning needs to be fast to facilitate real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To overcome this difficulty, we present an adaptive algorithm that uses past experience to speed up future performance. It is a learning algorithm suitable for automating flexible manufacturing in incrementally-changing environments. The algorithm allows the robot to adapt to its environment by having two experience manipulation schemes: For minor environmental change, we use an object-attached experience abstraction scheme to increase the flexibility of the learned experience; for major environmental change, we use an on-demand experience repair scheme to retain those experiences that remain valid and useful. Using this algorithm, we can effectively reduce the overall robot planning time by re-using the computation result for one task to plan a path for another.
Hamiltonian formalism and path entropy maximization
NASA Astrophysics Data System (ADS)
Davis, Sergio; González, Diego
2015-10-01
Maximization of the path information entropy is a clear prescription for constructing models in non-equilibrium statistical mechanics. Here it is shown that, following this prescription under the assumption of arbitrary instantaneous constraints on position and velocity, a Lagrangian emerges which determines the most probable trajectory. Deviations from the probability maximum can be consistently described as slices in time by a Hamiltonian, according to a nonlinear Langevin equation and its associated Fokker-Planck equation. The connections unveiled between the maximization of path entropy and the Langevin/Fokker-Planck equations imply that missing information about the phase space coordinate never decreases in time, a purely information-theoretical version of the second law of thermodynamics. All of these results are independent of any physical assumptions, and thus valid for any generalized coordinate as a function of time, or any other parameter. This reinforces the view that the second law is a fundamental property of plausible inference.
Degenerate optimal paths in thermally isolated systems
NASA Astrophysics Data System (ADS)
Acconcia, Thiago V.; Bonança, Marcus V. S.
2015-04-01
We present an analysis of the work performed on a system of interest that is kept thermally isolated during the switching of a control parameter. We show that there exists, for a certain class of systems, a finite-time family of switching protocols for which the work is equal to the quasistatic value. These optimal paths are obtained within linear response for systems initially prepared in a canonical distribution. According to our approach, such protocols are composed of a linear part plus a function which is odd with respect to time reversal. For systems with one degree of freedom, we claim that these optimal paths may also lead to the conservation of the corresponding adiabatic invariant. This points to an interesting connection between work and the conservation of the volume enclosed by the energy shell. To illustrate our findings, we solve analytically the harmonic oscillator and present numerical results for certain anharmonic examples.
Mining Preferred Traversal Paths with HITS
NASA Astrophysics Data System (ADS)
Yeh, Jieh-Shan; Lin, Ying-Lin; Chen, Yu-Cheng
Web usage mining can discover useful information hidden in web logs data. However, many previous algorithms do not consider the structure of web pages, but regard all web pages with the same importance. This paper utilizes HITS values and PNT preferences as measures to mine users' preferred traversal paths. Wë structure mining uses HITS (hypertext induced topic selection) to rank web pages. PNT (preferred navigation tree) is an algorithm that finds users' preferred navigation paths. This paper introduces the Preferred Navigation Tree with HITS (PNTH) algorithm, which is an extension of PNT. This algorithm uses the concept of PNT and takes into account the relationships among web pages using HITS algorithm. This algorithm is suitable for E-commerce applications such as improving web site design and web server performance.
Degenerate optimal paths in thermally isolated systems.
Acconcia, Thiago V; Bonana, Marcus V S
2015-04-01
We present an analysis of the work performed on a system of interest that is kept thermally isolated during the switching of a control parameter. We show that there exists, for a certain class of systems, a finite-time family of switching protocols for which the work is equal to the quasistatic value. These optimal paths are obtained within linear response for systems initially prepared in a canonical distribution. According to our approach, such protocols are composed of a linear part plus a function which is odd with respect to time reversal. For systems with one degree of freedom, we claim that these optimal paths may also lead to the conservation of the corresponding adiabatic invariant. This points to an interesting connection between work and the conservation of the volume enclosed by the energy shell. To illustrate our findings, we solve analytically the harmonic oscillator and present numerical results for certain anharmonic examples. PMID:25974472
A path model of aircraft noise annoyance
NASA Astrophysics Data System (ADS)
Taylor, S. M.
1984-09-01
This paper describes the development and testing of a path model of aircraft noise annoyance by using noise and social survey data collected in the vicinity of Toronto International Airport. Path analysis is used to estimate the direct and indirect effects of seventeen independent variables on individual annoyance. The results show that the strongest direct effects are for speech interference, attitudes toward aircraft operations, sleep interruption and personal sensitivity to noise. The strongest indirect effects are for aircraft Leq(24) and sensitivity. Overall the model explains 41 percent of the variation in the annoyance reported by the 673 survey respondents. The findings both support and extend existing statements in the literature on the antecedents of annoyance.
Broadband Phase Spectroscopy over Turbulent Air Paths
NASA Astrophysics Data System (ADS)
Giorgetta, Fabrizio R.; Rieker, Gregory B.; Baumann, Esther; Swann, William C.; Sinclair, Laura C.; Kofler, Jon; Coddington, Ian; Newbury, Nathan R.
2015-09-01
Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70 000 comb teeth spanning 233 cm-1 across hundreds of near-infrared rovibrational resonances of CO2 , CH4 , and H2O with submilliradian uncertainty, corresponding to a 10-13 refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO2 . While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.
NASA Astrophysics Data System (ADS)
Mielke, Steven L.; Truhlar, Donald G.
2016-01-01
Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function.
Mielke, Steven L; Truhlar, Donald G
2016-01-21
Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function. PMID:26801023
On the path integral of constrained systems
Muslih, Sami I.
2004-10-04
Constrained Hamiltonian systems are investigated by using Gueler's method. Integration of a set of equations of motion and the action function is discussed. It is shown that the canonical path integral quantization is obtained directly as an integration over the canonical phase-space coordinates without any need to enlarge the initial phase-space by introducing extra- unphysical variables as in the Batalin-Fradkin-Tyutin (BFT) method. The abelian Proca model is analyzed by the two methods.
Flux Control in Networks of Diffusion Paths
A. I. Zhmoginov and N. J. Fisch
2009-07-08
A class of optimization problems in networks of intersecting diffusion domains of a special form of thin paths has been considered. The system of equations describing stationary solutions is equivalent to an electrical circuit built of intersecting conductors. The solution of an optimization problem has been obtained and extended to the analogous electrical circuit. The interest in this network arises from, among other applications, an application to wave-particle diffusion through resonant interactions in plasma.
Vertical flight path steering system for aircraft
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1983-01-01
Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.
Quantitative Molecular Thermochemistry Based on Path Integrals
Glaesemann, K R; Fried, L E
2005-03-14
The calculation of thermochemical data requires accurate molecular energies and heat capacities. Traditional methods rely upon the standard harmonic normal mode analysis to calculate the vibrational and rotational contributions. We utilize path integral Monte Carlo (PIMC) for going beyond the harmonic analysis, to calculate the vibrational and rotational contributions to ab initio energies. This is an application and extension of a method previously developed in our group.
Covariant path integrals on hyperbolic surfaces
Schaefer, J.
1997-11-01
DeWitt{close_quote}s covariant formulation of path integration [B. De Witt, {open_quotes}Dynamical theory in curved spaces. I. A review of the classical and quantum action principles,{close_quotes} Rev. Mod. Phys. {bold 29}, 377{endash}397 (1957)] has two practical advantages over the traditional methods of {open_quotes}lattice approximations;{close_quotes} there is no ordering problem, and classical symmetries are manifestly preserved at the quantum level. Applying the spectral theorem for unbounded self-adjoint operators, we provide a rigorous proof of the convergence of certain path integrals on Riemann surfaces of constant curvature {minus}1. The Pauli{endash}DeWitt curvature correction term arises, as in DeWitt{close_quote}s work. Introducing a Fuchsian group {Gamma} of the first kind, and a continuous, bounded, {Gamma}-automorphic potential V, we obtain a Feynman{endash}Kac formula for the automorphic Schr{umlt o}dinger equation on the Riemann surface {Gamma}{backslash}H. We analyze the Wick rotation and prove the strong convergence of the so-called Feynman maps [K. D. Elworthy, {ital Path Integration on Manifolds, Mathematical Aspects of Superspace}, edited by Seifert, Clarke, and Rosenblum (Reidel, Boston, 1983), pp. 47{endash}90] on a dense set of states. Finally, we give a new proof of some results in C. Grosche and F. Steiner, {open_quotes}The path integral on the Poincare upper half plane and for Liouville quantum mechanics,{close_quotes} Phys. Lett. A {bold 123}, 319{endash}328 (1987). {copyright} {ital 1997 American Institute of Physics.}
Pedestrian traffic: on the quickest path
NASA Astrophysics Data System (ADS)
Kretz, Tobias
2009-03-01
When a large group of pedestrians moves around a corner, most pedestrians do not follow the shortest path, which is to stay as close as possible to the inner wall, but try to minimize the travel time. For this they accept to move on a longer path with some distance to the corner, to avoid large densities and by this succeed in maintaining a comparatively high speed. In many models of pedestrian dynamics the basic rule of motion is often either 'move as far as possible toward the destination' or—reformulated—'of all coordinates accessible in this time step move to the one with the smallest distance to the destination'. On top of this rule modifications are placed to make the motion more realistic. These modifications usually focus on local behavior and neglect long-ranged effects. Compared to real pedestrians this leads to agents in a simulation valuing the shortest path a lot better than the quickest. So, in a situation such as the movement of a large crowd around a corner, one needs an additional element in a model of pedestrian dynamics that makes the agents deviate from the rule of the shortest path. In this work it is shown how this can be achieved by using a flood fill dynamic potential field method, where during the filling process the value of a field cell is not increased by 1, but by a larger value, if it is occupied by an agent. This idea may be an obvious one: however, the tricky part—and therefore in a strict sense the contribution of this work—is (a) to minimize unrealistic artifacts, as naive flood fill metrics deviate considerably from the Euclidean metric and in this respect yield large errors, (b) do this with limited computational effort and (c) keep agents' movement at very low densities unaltered.
Practical and conceptual path sampling issues
NASA Astrophysics Data System (ADS)
Bolhuis, P. G.; Dellago, C.
2015-09-01
In the past 15 years transition path sampling (TPS) has evolved from its basic algorithm to an entire collection of methods and a framework for investigating rare events in complex systems. The methodology is applicable to a wide variety of systems and processes, ranging from transitions in small clusters or molecules to chemical reactions, phase transitions, and conformational changes in biomolecules. The basic idea of TPS is to harvest dynamical unbiased trajectories that connect a reactant with a product, by a Markov Chain Monte Carlo procedure called shooting. This simple importance sampling yields the rate constants, the free energy surface, insight in the mechanism of the rare event of interest, and by using the concept of the committor, also access to the reaction coordinate. In the last decade extensions to TPS have been developed, notably the transition interface sampling (TIS) methods, and its generalization multiple state TIS. Combination with advanced sampling methods such as replica exchange and the Wang-Landau algorithm, among others, improves sampling efficiency. Notwithstanding the success of TPS, there are issues left to discuss, and, despite the method's apparent simplicity, many pitfalls to avoid. This paper discusses several of these issues and pitfalls: the choice of stable states and interface order parameters, the problem of positioning the TPS windows and TIS interfaces, the matter of convergence of the path ensemble, the matter of kinetic traps, and the question whether TPS is able to investigate and sample Markov state models. We also review the reweighting technique used to join path ensembles. Finally we discuss the use of the sampled path ensemble to obtain reaction coordinates.
Adaptive path planning: Algorithm and analysis
Chen, Pang C.
1995-03-01
To address the need for a fast path planner, we present a learning algorithm that improves path planning by using past experience to enhance future performance. The algorithm relies on an existing path planner to provide solutions difficult tasks. From these solutions, an evolving sparse work of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a framework in which a slow but effective planner may be improved both cost-wise and capability-wise by a faster but less effective planner coupled with experience. We analyze algorithm by formalizing the concept of improvability and deriving conditions under which a planner can be improved within the framework. The analysis is based on two stochastic models, one pessimistic (on task complexity), the other randomized (on experience utility). Using these models, we derive quantitative bounds to predict the learning behavior. We use these estimation tools to characterize the situations in which the algorithm is useful and to provide bounds on the training time. In particular, we show how to predict the maximum achievable speedup. Additionally, our analysis techniques are elementary and should be useful for studying other types of probabilistic learning as well.
Path integrals for dimerized quantum spin systems
NASA Astrophysics Data System (ADS)
Foussats, Adriana; Greco, Andrés; Muramatsu, Alejandro
2011-01-01
Dimerized quantum spin systems may appear under several circumstances, e.g. by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to a Néel state as a function of a suitable coupling constant. We present here two path-integral formulations appropriate for spin S=1/2 dimerized systems. The first one deals with a description of the dimers degrees of freedom in an SO(4) manifold, while the second one provides a path-integral for the bond-operators introduced by Sachdev and Bhatt. The path-integral quantization is performed using the Faddeev-Jackiw symplectic formalism for constrained systems, such that the measures and constraints that result from the algebra of the operators is provided in both cases. As an example we consider a spin-Peierls chain, and show how to arrive at the corresponding field-theory, starting with both an SO(4) formulation and bond-operators.