Science.gov

Sample records for electron microscopy x-ray

  1. Bulk sensitive hard x-ray photoemission electron microscopy

    SciTech Connect

    Patt, M. Wiemann, C.; Weber, N.; Escher, M.; Merkel, M.; Gloskovskii, A.; Drube, W.; Schneider, C. M.

    2014-11-15

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.

  2. Scanning electron microscopy and electron probe X-ray microanalysis (SEM-EPMA) of pink teeth

    SciTech Connect

    Ikeda, N.; Watanabe, G.; Harada, A.; Suzuki, T.

    1988-11-01

    Samples of postmortem pink teeth were investigated by scanning electron microscopy and electron probe X-ray microanalysis. Fracture surfaces of the dentin in pink teeth were noticeably rough and revealed many more smaller dentinal tubules than those of the control white teeth. Electron probe X-ray microanalysis showed that the pink teeth contained iron which seemed to be derived from blood hemoglobin. The present study confirms that under the same circumstance red coloration of teeth may occur more easily in the teeth in which the dentin is less compact and contains more dentinal tubules.

  3. Study of titanate nanotubes by X-ray and electron diffraction and electron microscopy

    SciTech Connect

    Brunatova, Tereza; Popelkova, Daniela; Wan, Wei; Oleynikov, Peter; Danis, Stanislav; Zou, Xiaodong; Kuzel, Radomir

    2014-01-15

    The structure of titanate nanotubes (Ti-NTs) was studied by a combination of powder X-ray diffraction (PXRD), electron diffraction and high resolution transmission electron microscopy (HRTEM). Ti-NTs are prepared by hydrothermal treatment of TiO{sub 2} powder. The structure is identified by powder X-ray diffraction as the one based on the structure of H{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O phase. The same structure is obtained by projected potential from HRTEM through-focus image series. The structure is verified by simulated PXRD pattern with the aid of the Debye formula. The validity of the model is tested by computing Fourier transformation of a single nanotube which is proportional to measured electron diffraction intensities. A good agreement of this calculation with measured precession electron diffraction data is achieved. - Highlights: • Titanate nanotubes were prepared by hydrothermal method. • X-ray powder diffraction indicated their structure based on that of H{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O. • Structural model was created with the aid of high-resolution electron microscopy. • The model was verified with electron diffraction data. • X-ray powder diffraction pattern was calculated with the aid of the Debye formula.

  4. SCANNING ELECTRON MICROSCOPY/X-RAY FLUORESCENCE CHARACTERIZATION OF POST-ABATEMENT DUST

    EPA Science Inventory

    Scanning electron microscopy (SEM) and laboratory X-ray fluorescence (XRF) were used to characterize post-abatement dust collected with a HEPA filtered vacuum. hree size fractions of resuspended dust (0-30 pm, 2.5-15 pm, and <2.5 pm) were collected on teflon filters and analyzed ...

  5. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    SciTech Connect

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; Read, Randy J.; Wiedenheft, Blake

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging. Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.

  6. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    DOE PAGESBeta

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; Read, Randy J.; Wiedenheft, Blake

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less

  7. X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures.

    SciTech Connect

    Scholl, Andreas; Ohldag, Hendrik; Nolting, Frithjof; Stohr, Joachim; Padmore, Howard A.

    2001-08-30

    X-ray Photoemission Electron Microscopy unites the chemical specificity and magnetic sensitivity of soft x-ray absorption techniques with the high spatial resolution of electron microscopy. The discussed instrument possesses a spatial resolution of better than 50 nm and is located at a bending magnet beamline at the Advanced Light Source, providing linearly and circularly polarized radiation between 250 and 1300 eV. We will present examples which demonstrate the power of this technique applied to problems in the field of thin film magnetism. The chemical and elemental specificity is of particular importance for the study of magnetic exchange coupling because it allows separating the signal of the different layers and interfaces in complex multi-layered structures.

  8. Energy-filtered X-ray photoemission electron microscopy and its applications to surface and organic materials

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Tetsuya; Miyamoto, Takeshi; Niimi, Hironobu; Kitajima, Yoshinori; Sakai, Yuji; Kato, Makoto; Naito, Toshio; Asakura, Kiyotaka

    2007-10-01

    Energy-filtered X-ray photoemission electron microscopy (EXPEEM) is a new surface chemical imaging method that combines X-ray photoelectron spectroscopy (XPS) and photoemission electron microscopy (PEEM). We have developed a collinear type EXPEEM system using a Wien-filter-type electron energy analyzer. The collinear arrangement has the advantage of carrying out an easy alignment of the electron optical axis. We have measured EXPEEM images, μ-X-ray absorption near edge structure (μ-XANES) and μ-XPS of Au on Ta and Ag(DM) 2. We discuss the advantage of EXPEEM and future applications to organic devices.

  9. Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology

    SciTech Connect

    Forslind, B.

    1984-01-01

    Scanning electron microscopy is frequently applied to dermatological problems, as is evident from a review of the recent literature. In this paper, preparation methods and new techniques allowing experimental studies on the integumentary system are emphasized. Quantitative analysis in the electron microscope by use of energy-dispersive X-ray microanalysis (EDX) has become an important accessory technique. EDX can, for instance, be used to study problems involving physiological changes induced in skin by agents causing contact reactions. Recently, it has been shown that treatment with DNCB, chromate and nickel causes changes in elemental distribution in guinea-pig skin. In addition, elemental uptake in the integumentary system and in pathological inclusions in skin can be analyzed.

  10. X-ray photoemission electron microscopy for the study of semiconductor materials

    SciTech Connect

    Anders, S.; Stammler, T.; Padmore, H.; Terminello, L.J.; Jankowski, A.F.; Stohr, J.; Diaz, J.; Cossy-Gantner, A.

    1998-03-01

    Photoemission Electron Microscopy (PEEM) using X-rays is a novel combination of two established materials analysis techniques--PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper the authors give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments.

  11. Applications of scanning electron microscopy and X-ray microanalysis in inner ear pathology

    SciTech Connect

    Anniko, M.; Lim, D.J.; Sobin, A.; Wroblewski, R.

    1985-01-01

    Surface pathology of inner ear structures so far described in detail concern cochlear and vestibular hair cells and the stria vascularis. In man, surgical intervention into the inner ear is very uncommon and when performed is in general with the primary objective of destroying the diseased peripheral end organs. The vast majority of inner ear tissue available for use with scanning electron microscopy (SEM) is therefore obtained from animals. The present paper reviews the progression of surface pathology caused by aminoglycoside antibiotics, acoustic overstimulation and in a guinea pig strain with genetic inner ear disease. The primary site of onset of surface pathology differs, depending on the underlying cause. Advanced surface pathology shows a similar type of morphological degeneration independent of cause. The combination of SEM and energy dispersive X-ray microanalysis (XRMA) of inner ear pathology has as yet been reported in only three studies, all concerning inner ear fluids or otoconia.

  12. Study of hard disk and slider surfaces using X-ray photoemission electron microscopy and near-edge X-ray absorption fine structure spectroscopy

    SciTech Connect

    Anders, S.; Stammler, T.; Bhatia, C.S.; Fong, W.; Chen, C.Y.; Bogy, D.B.

    1998-04-01

    X-ray Photo Emission Electron Microscopy (X-PEEM) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy were applied to study the properties of amorphous hard carbon overcoats on disks and sliders, and the properties of the lubricant. The modification of lubricants after performing thermal desorption studies was measured by NEXAFS, and the results are compared to the thermal desorption data. The study of lubricant degradation in wear tracks is described. Sliders were investigated before and after wear test, and the modification of the slider coating as well as the transfer of lubricant to the slider was studied. The studies show that the lubricant is altered chemically during the wear. Fluorine is removed and carboxyl groups are formed.

  13. X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge

    PubMed Central

    Hitchock, Adam P; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Ewels, Chris P; Guttmann, Peter

    2012-01-01

    Summary We demonstrate that near-edge X-ray-absorption fine-structure spectra combined with full-field transmission X-ray microscopy can be used to study the electronic structure of graphite flakes consisting of a few graphene layers. The flake was produced by exfoliation using sodium cholate and then isolated by means of density-gradient ultracentrifugation. An image sequence around the carbon K-edge, analyzed by using reference spectra for the in-plane and out-of-plane regions of the sample, is used to map and spectrally characterize the flat and folded regions of the flake. Additional spectral features in both π and σ regions are observed, which may be related to the presence of topological defects. Doping by metal impurities that were present in the original exfoliated graphite is indicated by the presence of a pre-edge signal at 284.2 eV. PMID:23016137

  14. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ioni Beam-scanning Electron Microscopy

    SciTech Connect

    G Nelson; W Harris; J Lombardo; J Izzo Jr.; W Chiu; P Tanasini; M Cantoni; J Van herle; C Comninellis; et al.

    2011-12-31

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB-SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB-SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  15. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    SciTech Connect

    Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; Cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

    2011-03-24

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  16. Clinical applications of scanning electron microscopy and energy dispersive X-ray analysis in dermatology--an up-date

    SciTech Connect

    Forslind, B.

    1988-06-01

    Dermatological papers comprising scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis data published 1983 through 1986 in international journals are reviewed, as an update to our 1984 paper on Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology. The present paper not only deals with a review of recent publications in this area but also presents the application of microincineration to hair and cryosectioned freeze-dried skin specimens. Examples of the increased contrast obtained in hair cross sections are presented and a discussion on the feasibility of microincineration at analysis of hair and skin cross sections is given. Particle probe analysis (EDX: energy dispersive X-ray analysis and PMP: proton microprobe analysis) as applied to hair and skin samples are presented with stress put on the proton probe analysis. The complementarity of EDX and PMP is demonstrated and future applications are suggested. 75 references.

  17. Probing the electronic structure of graphene sheets with various thicknesses by scanning transmission X-ray microscopy

    SciTech Connect

    Bai, Lili; Liu, Jinyin; Zhao, Guanqi; Gao, Jing; Sun, Xuhui E-mail: jzhong@suda.edu.cn; Zhong, Jun E-mail: jzhong@suda.edu.cn

    2013-12-16

    The electronic structure of an aggregation of graphene sheets with various thicknesses was probed by scanning transmission X-ray microscopy. A uniform oxidation of the graphene sheets in the flat area was observed regardless of the thickness, while in the folded area the result could be strongly affected by the geometry. Moreover, thick parts of the aggregation showed strong angle-dependence to the incident X-ray, while thin parts showed less angle-dependence, which might be related to the surface wrinkles and ripples. The electronic structure differences due to the geometry and thickness suggest a complicated situation in the aggregation of graphene sheets.

  18. Architectural plasticity of AMPK revealed by electron microscopy and X-ray crystallography

    PubMed Central

    Ouyang, Yan; Zhu, Li; Li, Yifang; Guo, Miaomiao; Liu, Yang; Cheng, Jin; Zhao, Jing; Wu, Yi

    2016-01-01

    Mammalian AMP-activated protein kinase (AMPK) acts as an important sensor of cellular energy homeostasis related with AMP/ADP to ATP ratio. The overall architecture of AMPK has been determined in either homotrimer or monomer form by electron microscopy (EM) and X-ray crystallography successively. Accordingly proposed models have consistently revealed a key role of the α subunit linker in sensing adenosine nucleoside binding on the γ subunit and mediating allosteric regulation of kinase domain (KD) activity, whereas there are vital differences in orienting N-terminus of α subunit and locating carbohydrate-binding module (CBM) of β subunit. Given that Mg2+, an indispensable cofactor of AMPK was present in the EM sample preparation buffer however absent when forming crystals, here we carried out further reconstructions without Mg2+ to expectably inspect if this ion may contribute to this difference. However, no essential alteration has been found in this study compared to our early work. Further analyses indicate that the intra-molecular movement of the KD and CBM are most likely due to the flexible linkage of the disordered linkers with the rest portion as well as a contribution from the plasticity in the inter-molecular assembly mode, which might ulteriorly reveal an architectural complication of AMPK. PMID:27063142

  19. Electron microscopy and x-ray diffraction evidence for two Z-band structural states.

    PubMed

    Perz-Edwards, Robert J; Reedy, Michael K

    2011-08-01

    In vertebrate muscles, Z-bands connect adjacent sarcomeres, incorporate several cell signaling proteins, and may act as strain sensors. Previous electron microscopy (EM) showed Z-bands reversibly switch between a relaxed, "small-square" structure, and an active, "basketweave" structure, but the mechanism of this transition is unknown. Here, we found the ratio of small-square to basketweave in relaxed rabbit psoas muscle varied with temperature, osmotic pressure, or ionic strength, independent of activation. By EM, the A-band and both Z-band lattice spacings varied with temperature and pressure, not ionic strength; however, the basketweave spacing was consistently 10% larger than small-square. We next sought evidence for the two Z-band structures in unfixed muscles using x-ray diffraction, which indicated two Z-reflections whose intensity ratios and spacings correspond closely to the EM measurements for small-square and basketweave if the EM spacings are adjusted for 20% shrinkage due to EM processing. We conclude that the two Z-reflections arise from the small-square and basketweave forms of the Z-band as seen by EM. Regarding the mechanism of transition during activation, the effects of Ca(2+) in the presence of force inhibitors suggested that the interconversion of Z-band forms was correlated with tropomyosin movement on actin. PMID:21806939

  20. Architectural plasticity of AMPK revealed by electron microscopy and X-ray crystallography.

    PubMed

    Ouyang, Yan; Zhu, Li; Li, Yifang; Guo, Miaomiao; Liu, Yang; Cheng, Jin; Zhao, Jing; Wu, Yi

    2016-01-01

    Mammalian AMP-activated protein kinase (AMPK) acts as an important sensor of cellular energy homeostasis related with AMP/ADP to ATP ratio. The overall architecture of AMPK has been determined in either homotrimer or monomer form by electron microscopy (EM) and X-ray crystallography successively. Accordingly proposed models have consistently revealed a key role of the α subunit linker in sensing adenosine nucleoside binding on the γ subunit and mediating allosteric regulation of kinase domain (KD) activity, whereas there are vital differences in orienting N-terminus of α subunit and locating carbohydrate-binding module (CBM) of β subunit. Given that Mg(2+), an indispensable cofactor of AMPK was present in the EM sample preparation buffer however absent when forming crystals, here we carried out further reconstructions without Mg(2+) to expectably inspect if this ion may contribute to this difference. However, no essential alteration has been found in this study compared to our early work. Further analyses indicate that the intra-molecular movement of the KD and CBM are most likely due to the flexible linkage of the disordered linkers with the rest portion as well as a contribution from the plasticity in the inter-molecular assembly mode, which might ulteriorly reveal an architectural complication of AMPK. PMID:27063142

  1. Barriers to Quantitative Electron Probe X-Ray Microanalysis for Low Voltage Scanning Electron Microscopy

    PubMed Central

    Newbury, Dale E.

    2002-01-01

    Low voltage x-ray microanalysis, defined as being performed with an incident beam energy ≤5 keV, can achieve spatial resolution, laterally and in depth, of 100 nm or less, depending on the exact selection of beam energy and the composition of the target. The shallow depth of beam penetration, with the consequent short path length for x-ray absorption, and the low overvoltage, the ratio of beam energy to the critical ionization energy, both contribute to minimizing the matrix effects in quantitative x-ray microanalysis when the unknown is compared to pure element standards. The low beam energy restricts the energy of the atomic shells that can be excited, forcing the analyst to choose unfamiliar shells/characteristic peaks. The low photon energy shells are subject to low fluorescence yield, so that the peak-to-continuum background is reduced, severely limiting detectability. The limited resolution of semiconductor energy dispersive spectrometry results in frequent peak interference situations and further exacerbates detection limits. Future improvements to the x-ray spectrometry limitations are possible with x-ray optics-augmented wavelength dispersive spectrometry and microcalorimeter energy dispersive spectrometry.

  2. SCANNING ELECTRON MICROSCOPY AND X-RAY DIFFRACTION ANALYSIS OF TANK 18 SAMPLES

    SciTech Connect

    Hay, M.; O'Rourke, P.; Ajo, H.

    2012-03-08

    The F-Area Tank Farm (FTF) Performance Assessment (PA) utilizes waste speciation in the waste release model used in the FTF fate and transport modeling. The waste release modeling associated with the residual plutonium in Tank 18 has been identified as a primary contributor to the Tank 18 dose uncertainty. In order to reduce the uncertainty related to plutonium in Tank 18, a better understanding of the plutonium speciation in the Tank 18 waste (including the oxidation state and stoichiometry) is desired. Savannah River National Laboratory (SRNL) utilized Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to analyze Tank 18 samples to provide information on the speciation of plutonium in the waste material. XRD analysis of the Tank 18 samples did not identify any plutonium mineral phases in the samples. These indicates the crystalline mineral phases of plutonium are below the detection limits of the XRD method or that the plutonium phase(s) lack long range order and are present as amorphous or microcrystalline solids. SEM analysis of the Tank 18 samples did locate particles containing plutonium. The plutonium was found as small particles, usually <1 {micro}m but ranging up to several micrometers in diameter, associated with particles of an iron matrix and at low concentration in other elemental matrices. This suggests the plutonium has an affinity for the iron matrix. Qualitatively, the particles of plutonium found in the SEM analysis do not appear to account for all of the plutonium in the sample based on concentrations determined from the chemical analysis of the Tank 18 samples. This suggests that plutonium is also distributed throughout the solids in low concentrations.

  3. Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-Dispersive X-ray Analysis

    SciTech Connect

    Krueger, Brenda J.; Grassian, Vicki H.; Iedema, Martin J.; Cowin, James P.; Laskin, Alexander

    2003-10-01

    In this paper, we demonstrate the utility of single-particle analysis to investigate the chemistry of isolated, individual particles of atmospheric relevance such as NaCl, sea salt, CaCO3, and SiO2. A variety of state-of-th-art scanning electron microscopy techniques, including environmental scanning electon microscopy and computer-controlled scanning electron microscopy/energy-dispersive X-ray analysis, were utilized for monitoring and quantifying phase transitions of individual particles, morphology, and compositional changes of individual particles as they react with nitric acid.

  4. Small angle X-ray scattering and transmission electron microscopy study of the Lactobacillus brevis S-layer protein

    NASA Astrophysics Data System (ADS)

    Jääskeläinen, Pentti; Engelhardt, Peter; Hynönen, Ulla; Torkkeli, Mika; Palva, Airi; Serimaa, Ritva

    2010-10-01

    The structure of self-assembly domain containing recombinant truncation mutants of Lactobacillus brevis surface layer protein SlpA in aqueous solution was studied using small-angle X-ray scattering and transmission electron microscopy. The proteins were found out to interact with each other forming stable globular oligomers of about 10 monomers. The maximum diameter of the oligomers varied between 75 Å and 435 Å.

  5. An undulator based soft x-ray source for microscopy on the Duke electron storage ring

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis Elgin

    1998-09-01

    This dissertation describes the design, development, and installation of an undulator-based soft x-ray source on the Duke Free Electron Laser laboratory electron storage ring. Insertion device and soft x-ray beamline physics and technology are all discussed in detail. The Duke/NIST undulator is a 3.64-m long hybrid design constructed by the Brobeck Division of Maxwell Laboratories. Originally built for an FEL project at the National Institute of Standards and Technology, the undulator was acquired by Duke in 1992 for use as a soft x-ray source for the FEL laboratory. Initial Hall probe measurements on the magnetic field distribution of the undulator revealed field errors of more than 0.80%. Initial phase errors for the device were more than 11 degrees. Through a series of in situ and off-line measurements and modifications we have re-tuned the magnet field structure of the device to produce strong spectral characteristics through the 5th harmonic. A low operating K has served to reduce the effects of magnetic field errors on the harmonic spectral content. Although rms field errors remained at 0.75%, we succeeded in reducing phase errors to less than 5 degrees. Using trajectory simulations from magnetic field data, we have computed the spectral output given the interaction of the Duke storage ring electron beam and the NIST undulator. Driven by a series of concerns and constraints over maximum utility, personnel safety and funding, we have also constructed a unique front end beamline for the undulator. The front end has been designed for maximum throughput of the 1st harmonic around 40A in its standard mode of operation. The front end has an alternative mode of operation which transmits the 3rd and 5th harmonics. This compact system also allows for the extraction of some of the bend magnet produced synchrotron and transition radiation from the storage ring. As with any well designed front end system, it also provides excellent protection to personnel and to the

  6. Laboratory-Based Cryogenic Soft X-ray Tomography with Correlative Cryo-Light and Electron Microscopy

    SciTech Connect

    Carlson, David B.; Gelb, Jeff; Palshin, Vadim; Evans, James E.

    2013-02-01

    Here we present a novel laboratory-based cryogenic soft X-ray microscope for whole cell tomography of frozen hydrated samples. We demonstrate the capabilities of this compact cryogenic microscope by visualizing internal sub-cellular structures of Saccharomyces cerevisiae cells. The microscope is shown to achieve better than 50 nm spatial resolution with a Siemens star test sample. For whole biological cells, the microscope can image specimens up to 5 micrometers thick. Structures as small as 90 nm can be detected in tomographic reconstructions at roughly 70 nm spatial resolution following a low cumulative radiation dose of only 7.2 MGy. Furthermore, the design of the specimen chamber utilizes a standard sample support that permits multimodal correlative imaging of the exact same unstained yeast cell via cryo-fluorescence light microscopy, cryo-soft x-ray microscopy and cryo-transmission electron microscopy. This completely laboratory-based cryogenic soft x-ray microscope will therefore enable greater access to three-dimensional ultrastructure determination of biological whole cells without chemical fixation or physical sectioning.

  7. X-ray diffraction and electron microscopy data for amyloid formation of Aβ40 and Aβ42.

    PubMed

    Selivanova, Olga M; Grigorashvili, Elizaveta I; Suvorina, Mariya Yu; Dzhus, Ulyana F; Nikulin, Alexey D; Marchenkov, Victor V; Surin, Alexey K; Galzitskaya, Oxana V

    2016-09-01

    The data presented in this article are related to the research article entitled "One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of Aβ40 and Aβ42" (Dovidchenko et al., 2016) [1]. Aβ peptide is one of the most intensively studied amyloidogenic peptides. Despite the huge number of articles devoted to studying different fragments of Aβ peptide there are only several papers with correct kinetics data, also there are a few papers with X-ray data, especially for Aβ42. Our data present X-ray diffraction patterns both for Aβ40 and Aβ42 as well for Tris-HCl and wax. Moreover, our data provide kinetics of amyloid formation by recombinant Аβ40 and synthetic Аβ42 peptides by using electron microscopy. PMID:27294177

  8. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    SciTech Connect

    Janssens, K.; Adams, F.; Rivers, M.L.; Jones, K.W.

    1992-10-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ({mu}-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  9. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy

    SciTech Connect

    Janssens, K.; Adams, F. . Dept. of Chemistry); Rivers, M.L.; Jones, K.W. )

    1992-01-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ([mu]-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  10. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect

    Janssens, K.H.; van Langevelde, F.; Adams, F.C.; Vis, R.D.; Sutton, S.R.; Rivers, M.L.; Jones, K.W.; Bowen, D.K.

    1991-12-31

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  11. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect

    Janssens, K.H.; van Langevelde, F.; Adams, F.C. ); Vis, R.D. ); Sutton, S.R.; Rivers, M.L. ); Jones, K.W. ); Bowen, D.K. )

    1991-01-01

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  12. Multivariate statistics applications in scanning transmission electron microscopy X-ray spectrum imaging

    SciTech Connect

    Parish, Chad M

    2011-01-01

    A modern scanning transmission electron microscope (STEM) fitted with an energy dispersive X-ray spectroscopy (EDS) system can quickly and easily produce spectrum image (SI) datasets containing so much information (hundreds to thousands of megabytes) that they cannot be comprehensively interrogated by a human analyst. Therefore, advanced mathematical techniques are needed to glean materials science and engineering insight into the processing-structure-properties relationship of the examined material from the SI data. This review will discuss recent advances in the application of multivariate statistical analysis (MVSA) methods to STEM-EDS SI experiments. In particular, the fundamental mathematics of principal component analysis (PCA) and related methods are reviewed, and advanced methods such as multivariate curve resolution (MCR) are discussed. The applications of PCA and MCR-based techniques to solve difficult materials science problems, such as the analysis of a particle fully embedded in a matrix phase are discussed, as well as confounding effects such as rank deficiency that can confuse the results of MVSA computations. Possible future advances and areas in need of study are also mentioned.

  13. X-ray diffraction, XAFS and scanning electron microscopy study of otolith of a crevalle jack fish ( caranx hippos)

    NASA Astrophysics Data System (ADS)

    Pattanaik, Sidhartha

    2005-04-01

    The otolith of a crevalle jack fish (caranx hippos) has been investigated by means of X-ray diffraction, X-ray absorption fine structure spectroscopy and scanning electron microscopy techniques. The results suggest that the biomineralization of otolith occurs predominantly in the aragonite phase. A detailed X-ray Rietveld analysis showed that the first shell Ca-O distances in otolith lay in the range 2.371-2.652 Å, with each calcium atom coordinated to 9 oxygen atoms. While the average Ca-O distance remains same in both otolith and aragonite, certain Ca-O distances in otolith differ markedly from those in aragonite. Such difference reflects the remarkable degree of control that the protein matrix exercised over packing of calcium and carbonate ions to promote growth of rarer aragonite otolith. In view of the complex coordination chemistry of calcium in otoliths, the EXAFS analysis was limited to obtaining local atomic environment about calcium up to the first Ca-O shell. EXAFS data showed an asymmetric distribution of Ca-O bond distances with the centroid of distribution at 2.48 Å, which is closer to the average Ca-O distance in aragonite than in calcite. The asymmetry in the Ca-O peak is consistent with an apparent departure of Ca-O distances from a near regular distribution, as expected of an aragonite otolith.

  14. Scanning Transmission X-Ray, Laser Scanning, and Transmission Electron Microscopy Mapping of the Exopolymeric Matrix of Microbial Biofilms

    PubMed Central

    Lawrence, J. R.; Swerhone, G. D. W.; Leppard, G. G.; Araki, T.; Zhang, X.; West, M. M.; Hitchcock, A. P.

    2003-01-01

    Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provided the highest-resolution structural imaging, CLSM provided detailed compositional information when used in conjunction with molecular probes, and STXM provided compositional mapping of macromolecule distributions without the addition of probes. By examining exactly the same region of a sample with combinations of these techniques (STXM with CLSM and STXM with TEM), we demonstrate that this combination of multimicroscopy analysis can be used to create a detailed correlative map of biofilm structure and composition. We are using these correlative techniques to improve our understanding of the biochemical basis for biofilm organization and to assist studies intended to investigate and optimize biofilms for environmental remediation applications. PMID:12957944

  15. Soft x-ray laser microscopy

    SciTech Connect

    DiCicco, D.; Meixler, L.; Skinner, C.H.; Suckewer, S.; Hirschberg, J.; Kohen, E.

    1987-12-31

    Microscopes based on soft X-ray lasers possess unique advantages in bridging the gap between high resolution electron microscopy of dehydrated, stained cells and light microscopy at comparatively low resolution of unaltered live cells. The high brightness and short pulse duration of soft X-ray lasers make them ideal for flash imaging of live specimens. The Princeton soft X-ray laser is based on a magnetically confined laser produced carbon plasma. Radiation cooling after the laser pulse produces rapid recombination which produces a population inversion and high gain. A full account is given in a companion paper in this volume. The important characteristics of the laser beam produced by this device are 1 to 3 mJ of 18.2 nm radiation in a 10 to 30 nsec pulse with a divergence of 5 mrad. The 18.2 nm wavelength, while outside the water window, does provide a factor of 3 difference in absorption coefficients between oxygen and carbon.

  16. Soft x-ray laser microscopy

    SciTech Connect

    DiCicco, D. ); Meixler, L.; Skinner, C.H.; Suckewer, S. . Plasma Physics Lab.); Hirschberg, J.; Kohen, E. . Dept. of Physics)

    1987-01-01

    Microscopes based on soft X-ray lasers possess unique advantages in bridging the gap between high resolution electron microscopy of dehydrated, stained cells and light microscopy at comparatively low resolution of unaltered live cells. The high brightness and short pulse duration of soft X-ray lasers make them ideal for flash imaging of live specimens. The Princeton soft X-ray laser is based on a magnetically confined laser produced carbon plasma. Radiation cooling after the laser pulse produces rapid recombination which produces a population inversion and high gain. A full account is given in a companion paper in this volume. The important characteristics of the laser beam produced by this device are 1 to 3 mJ of 18.2 nm radiation in a 10 to 30 nsec pulse with a divergence of 5 mrad. The 18.2 nm wavelength, while outside the water window, does provide a factor of 3 difference in absorption coefficients between oxygen and carbon.

  17. X-ray microscopy using synchrotron radiation

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Schidlovsky, G.; Smith, J.V.; Spanne, P.; Sutton, S.R.

    1989-01-01

    The system for x-ray microscopy now being developed at the X-26 beam line of the Brookhaven National Synchrotron Light Source (NSLS) is described here. Examples of the use of x-ray microscopy for trace element geochemistry, biology and medicine, and materials investigations are given to emphasize the scientific applications of the technique. Future directions for the improvement and further development of the X-26 microscope and of the x-ray microscopy field in general are discussed. 11 refs., 7 figs.

  18. Roughness in sputtered multilayers analyzed by transmission electron microscopy and x-ray diffuse scattering.

    SciTech Connect

    Macrander, A. T.; Liu, C.; Csencsits, R.; Cook, R.; Kirk, M.; Headrick, R.

    1999-11-08

    Sputtered W/C muhilayers with a period of 25 {angstrom} have been studied both by cross-section TEM and by x-ray diffuse scattering using 10 keV synchrotrons radiation. Fitting to the x-ray data is aided by the TEM images in modeling the roughness and roughness propagation within the Born approximation. We report on a study of the correctness of the often applied small roughness approximation, and we find that is not well justified in the present case. In order to probe short lateral length scales at q{sub y} = 0.1 {angstrom}{sup -1}, diffuse scattering data were obtained in an unconventional scattering geometry.

  19. Development of wavelength-dispersive soft X-ray emission spectrometers for transmission electron microscopes--an introduction of valence electron spectroscopy for transmission electron microscopy.

    PubMed

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu(1-x)Zn(x) alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Malpha-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of pi- and sigma-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. PMID:20371492

  20. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    NASA Astrophysics Data System (ADS)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is

  1. Diffusion of Ag into organic semiconducting materials: a combined analytical study using transmission electron microscopy and X-ray reflectivity.

    PubMed

    Fladischer, Stefanie; Neuhold, Alfred; Kraker, Elke; Haber, Thomas; Lamprecht, Bernhard; Salzmann, Ingo; Resel, Roland; Grogger, Werner

    2012-10-24

    This study shows that the morphology of organic/metal interfaces strongly depends on process parameters and the involved materials. The interface between organic n-type blocking layer materials and the top Ag cathode within an organic photodiode was investigated. Ag was deposited on either amorphous tris-8-hydroxyquinolinato-aluminum (Alq(3)) or crystalline 4,7-diphenyl-1,10-phenanthroline (Bphen) using different deposition techniques such as electron beam deposition, ion beam sputtering, and vacuum thermal evaporation at various deposition rates. The interfaces were studied by transmission electron microscopy and X-ray reflectivity. It was found that Bphen does not show any Ag diffusion no matter which deposition technique was used, whereas the Ag diffusion into Alq(3) depends on the deposition technique and the deposition rate. The highest amount of Ag diffusion into Alq(3) occurred by using thermal vacuum deposition at low deposition rates. PMID:23027799

  2. From virus structure to chromatin: X-ray diffraction to three-dimensional electron microscopy.

    PubMed

    Klug, Aaron

    2010-01-01

    Early influences led me first to medical school with a view to microbiology, but I felt the lack of a deeper foundation and changed to chemistry, which in turn led me to physics and mathematics. I moved to the University of Cape Town to work on the X-ray crystallography of some small organic compounds. I developed a new method of using molecular structure factors to solve the crystal structure, which won me a research studentship to Trinity College Cambridge and the Cavendish Laboratory. There I worked on the austenite-pearlite transition in steel. This is governed by the dissipation of latent heat, and I ended up numerically solving partial differential equations. I used the idea of nucleation and growth during the phase change, which had its echo when I later tackled the assembly of Tobacco mosaic virus (TMV) from its constituent RNA and protein subunits. I wanted to move on to X-ray structure analysis of large biological molecules and obtained a Nuffield Fellowship to work in J.D. Bernal's department at Birkbeck College, London. There, I met Rosalind Franklin, who had taken up the study of TMV. I was able to interpret some of Franklin's beautiful X-ray diffraction patterns of the virus particle. From then on, my fate was sealed. After Franklin's untimely death in 1958, I moved in 1962 to the newly built MRC Laboratory of Molecular Biology in Cambridge, which, under Max Perutz, housed the original MRC unit from the Cavendish Laboratory. I was thus privileged to join the Laboratory at an early stage in its expansion and consequently able to take advantage of, and to help build up, its then unique environment of intellectual and technological sophistication. There I have remained ever since. PMID:20192760

  3. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Isaure, Marie-Pierre; Fayard, Barbara; Sarret, Géraldine; Pairis, Sébastien; Bourguignon, Jacques

    2006-12-01

    Cadmium (Cd) is a metal of high toxicity for plants. Resolving its distribution and speciation in plants is essential for understanding the mechanisms involved in Cd tolerance, trafficking and accumulation. The model plant Arabidopsis thaliana was exposed to cadmium under controlled conditions. Elemental distributions in the roots and in the leaves were determined using scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), and synchrotron-based micro X-ray fluorescence (μ-XRF), which offers a better sensitivity. The chemical form(s) of cadmium was investigated using Cd L III-edge (3538 eV) micro X-ray absorption near edge structure (μ-XANES) spectroscopy. Plant μ-XANES spectra were fitted by linear combination of Cd reference spectra. Biological sample preparation and conditioning is a critical point because of possible artifacts. In this work we compared freeze-dried samples analyzed at ambient temperature and frozen hydrated samples analyzed at -170 °C. Our results suggest that in the roots Cd is localized in vascular bundles, and coordinated to S ligands. In the leaves, trichomes (epidermal hairs) represent the main compartment of Cd accumulation. In these specialized cells, μ-XANES results show that the majority of Cd is bound to O/N ligands likely provided by the cell wall, and a minor fraction could be bound to S-containing ligands. No significant difference in Cd speciation was observed between freeze-dried and frozen hydrated samples. This work illustrates the interest and the sensitivity of Cd L III-edge XANES spectroscopy, which is applied here for the first time to plant samples. Combining μ-XRF and Cd L III-edge μ-XANES spectroscopy offers promising tools to study Cd storage and trafficking mechanisms in plants and other biological samples.

  4. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy

    SciTech Connect

    Langkilde, Annette E.; Morris, Kyle L.; Serpell, Louise C.; Svergun, Dmitri I.; Vestergaard, Bente

    2015-04-01

    The aggregation process and the fibril state of an amyloidogenic peptide suggest monomer addition to be the prevailing mechanism of elongation and a model of the peptide packing in the fibrils has been obtained. Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a β-sheet arrangement reminiscent of the β-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.

  5. HERMES: a soft X-ray beamline dedicated to X-ray microscopy.

    PubMed

    Belkhou, Rachid; Stanescu, Stefan; Swaraj, Sufal; Besson, Adrien; Ledoux, Milena; Hajlaoui, Mahdi; Dalle, Didier

    2015-07-01

    The HERMES beamline (High Efficiency and Resolution beamline dedicated to X-ray Microscopy and Electron Spectroscopy), built at Synchrotron SOLEIL (Saint-Auban, France), is dedicated to soft X-ray microscopy. The beamline combines two complementary microscopy methods: XPEEM (X-ray Photo Emitted Electron Microscopy) and STXM (Scanning Transmission X-ray Microscopy) with an aim to reach spatial resolution below 20 nm and to fully exploit the local spectroscopic capabilities of the two microscopes. The availability of the two methods within the same beamline enables the users to select the appropriate approach to study their specific case in terms of sample environment, spectroscopy methods, probing depth etc. In this paper a general description of the beamline and its design are presented. The performance and specifications of the beamline will be reviewed in detail. Moreover, the article is aiming to demonstrate how the beamline performances have been specifically optimized to fulfill the specific requirements of a soft X-ray microscopy beamline in terms of flux, resolution, beam size etc. Special attention has been dedicated to overcome some limiting and hindering problems that are usually encountered on soft X-ray beamlines such as carbon contamination, thermal stability and spectral purity. PMID:26134801

  6. X-ray deconvolution microscopy

    PubMed Central

    Ehn, Sebastian; Epple, Franz Michael; Fehringer, Andreas; Pennicard, David; Graafsma, Heinz; Noël, Peter; Pfeiffer, Franz

    2016-01-01

    Recent advances in single-photon-counting detectors are enabling the development of novel approaches to reach micrometer-scale resolution in x-ray imaging. One example of such a technology are the MEDIPIX3RX-based detectors, such as the LAMBDA which can be operated with a small pixel size in combination with real-time on-chip charge-sharing correction. This characteristic results in a close to ideal, box-like point spread function which we made use of in this study. The proposed method is based on raster-scanning the sample with sub-pixel sized steps in front of the detector. Subsequently, a deconvolution algorithm is employed to compensate for blurring introduced by the overlap of pixels with a well defined point spread function during the raster-scanning. The presented approach utilizes standard laboratory x-ray equipment while we report resolutions close to 10 μm. The achieved resolution is shown to follow the relationship pn with the pixel-size p of the detector and the number of raster-scanning steps n. PMID:27446649

  7. Electronic structure of the carbon nanotube tips studied by x-ray-absorption spectroscopy and scanning photoelectron microscopy

    NASA Astrophysics Data System (ADS)

    Chiou, J. W.; Yueh, C. L.; Jan, J. C.; Tsai, H. M.; Pong, W. F.; Hong, I.-H.; Klauser, R.; Tsai, M.-H.; Chang, Y. K.; Chen, Y. Y.; Wu, C. T.; Chen, K. H.; Wei, S. L.; Wen, C. Y.; Chen, L. C.; Chuang, T. J.

    2002-11-01

    Angle-dependent x-ray absorption near edge structure (XANES) and scanning photoelectron microscopy (SPEM) measurements have been performed to differentiate local electronic structures of the tips and sidewalls of highly aligned carbon nanotubes. The intensities of both π*- and σ*-band C K-edge XANES features are found to be significantly enhanced at the tip. SPEM results also show that the tips have a larger density of states and a higher C 1s binding energy than those of sidewalls. The increase of the tip XANES and SPEM intensities are quite uniform over an energy range wider than 10 eV in contrast to earlier finding that the enhancement is only near the Fermi level.

  8. Scanning Electron Microscopy Findings With Energy-Dispersive X-ray Investigations of Cosmetically Tinted Contact Lenses

    PubMed Central

    Hotta, Fumika; Imai, Shoji; Miyamoto, Tatsuro; Mitamura-Aizawa, Sayaka; Mitamura, Yoshinori

    2015-01-01

    Objective: To investigate the surfaces and principal elements of the colorants of cosmetically tinted contact lenses (Cos-CLs). Methods: We analyzed the surfaces and principal elements of the colorants of five commercially available Cos-CLs using scanning electron microscopy with energy-dispersive x-ray analysis. Results: In two Cos-CLs, the anterior and posterior surfaces were smooth, and colorants were found inside the lens. One lens showed colorants located to a depth of 8 to 14 μm from the anterior side of the lens. In the other lens, colorants were found in the most superficial layer on the posterior surface, although a coated layer was observed. The colorants in the other three lenses were deposited on either lens surface. Although a print pattern was uniform in embedded type lenses, uneven patterns were apparent in dot-matrix design lenses. Colorants used in all lenses contained chlorine, iron, and titanium. In the magnified scanning electron microscopy images of a certain lens, chlorine is exuded and spread. Conclusions: Cosmetically tinted contact lenses have a wide variety of lens surfaces and colorants. Colorants may be deposited on the lens surface and consist of an element that has tissue toxicity. PMID:25799458

  9. Soft x-ray holographic microscopy

    NASA Astrophysics Data System (ADS)

    Stickler, Daniel; Frömter, Robert; Stillrich, Holger; Menk, Christian; Tieg, Carsten; Streit-Nierobisch, Simone; Sprung, Michael; Gutt, Christian; Stadler, Lorenz-M.; Leupold, Olaf; Grübel, Gerhard; Oepen, Hans Peter

    2010-01-01

    We present a new x-ray microscopy technique based on Fourier transform holography (FTH), where the sample is separate from the optics part of the setup. The sample can be shifted with respect to the holography optics, thus large-scale or randomly distributed objects become accessible. As this extends FTH into a true microscopy technique, we call it x-ray holographic microscopy (XHM). FTH allows nanoscale imaging without the need for nanometer-size beams. Simple Fourier transform yields an unambiguous image reconstruction. We demonstrate XHM by studying the magnetic domain evolution of a Co/Pt multilayer film as function of locally varied iron overlayer thickness.

  10. Freeze stabilization and cryopreparation technique for visualizing the water distribution in woody tissues by X-ray imaging and cryo-scanning electron microscopy.

    PubMed

    Utsumi, Yasuhiro; Sano, Yuzou

    2014-01-01

    The protocol of freeze stabilization and cryopreparation techniques to examine the distribution of water in living tree stems by X-ray imaging and cryo-scanning electron microscopy have been developed and described. The brief procedures are as follows. Firstly, a portion of transpiring stem is frozen in the standing state with liquid nitrogen to stabilize the water that is present in the conducting tissue. After filling with liquid nitrogen, discs are then collected from the frozen portion of the stem and stored in liquid nitrogen. In a low-temperature room, the samples for X-ray imaging are sectioned with a fine handsaw, and trimmed sample blokes for cryo-scanning electron microscopy are cleanly planed using a sliding microtome. Finally, the frozen sections are irradiated in a soft X-ray apparatus, and the small blocks are examined in cryo-scanning electron microscope after freeze-etching and metal coating. PMID:24357385

  11. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    PubMed Central

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2015-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  12. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    PubMed

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  13. X-ray microscopy of human malaria

    SciTech Connect

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W.

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  14. Application of scanning electron microscopy to x-ray analysis of frozen- hydrated sections. I. Specimen handling techniques

    PubMed Central

    1981-01-01

    X-ray microanalysis of frozen-hydrated tissue sections permits direct quantitative analysis of diffusible elements in defined cellular compartments. Because the sections are hydrated, elemental concentrations can be defined as wet-weight mass fractions. Use of these techniques should also permit determination of water fraction in cellular compartments. Reliable preparative techniques provide flat, smooth, 0.5 micrometers-thick sections with little elemental and morphological disruption. The specimen support and transfer system described permits hydrated sections to be transferred to the scanning electron microscope cold stage for examination and analysis without contamination or water loss and without introduction of extraneous x- ray radiation. PMID:7204491

  15. In Depth Analyses of LEDs by a Combination of X-ray Computed Tomography (CT) and Light Microscopy (LM) Correlated with Scanning Electron Microscopy (SEM).

    PubMed

    Meyer, Jörg; Thomas, Christian; Tappe, Frank; Ogbazghi, Tekie

    2016-01-01

    In failure analysis, device characterization and reverse engineering of light emitting diodes (LEDs), and similar electronic components of micro-characterization, plays an important role. Commonly, different techniques like X-ray computed tomography (CT), light microscopy (LM) and scanning electron microscopy (SEM) are used separately. Similarly, the results have to be treated for each technique independently. Here a comprehensive study is shown which demonstrates the potentials leveraged by linking CT, LM and SEM. In depth characterization is performed on a white emitting LED, which can be operated throughout all characterization steps. Major advantages are: planned preparation of defined cross sections, correlation of optical properties to structural and compositional information, as well as reliable identification of different functional regions. This results from the breadth of information available from identical regions of interest (ROIs): polarization contrast, bright and dark-field LM images, as well as optical images of the LED cross section in operation. This is supplemented by SEM imaging techniques and micro-analysis using energy dispersive X-ray spectroscopy. PMID:27341190

  16. Characterization of leaf-level particulate matter for an industrial city using electron microscopy and X-ray microanalysis.

    PubMed

    Sgrigna, G; Baldacchini, C; Esposito, R; Calandrelli, R; Tiwary, A; Calfapietra, C

    2016-04-01

    This study reports application of monitoring and characterization protocol for particulate matter (PM) deposited on tree leaves, using Quercus ilex as a case study species. The study area is located in the industrial city of Terni in central Italy, with high PM concentrations. Four trees were selected as representative of distinct pollution environments based on their proximity to a steel factory and a street. Wash off from leaves onto cellulose filters were characterized using scanning electron microscopy and energy dispersive X-ray spectroscopy, inferring the associations between particle sizes, chemical composition, and sampling location. Modeling of particle size distributions showed a tri-modal fingerprint, with the three modes centered at 0.6 (factory related), 1.2 (urban background), and 2.6μm (traffic related). Chemical detection identified 23 elements abundant in the PM samples. Principal component analysis recognized iron and copper as source-specific PM markers, attributed mainly to industrial and heavy traffic pollution respectively. Upscaling these results on leaf area basis provided a useful indicator for strategic evaluation of harmful PM pollutants using tree leaves. PMID:26802337

  17. Sub-nanosecond resolution x-ray magnetic circular dichroism photoemission electron microscopy of magnetization processes in a permalloy ring

    NASA Astrophysics Data System (ADS)

    Neeb, D.; Krasyuk, A.; Oelsner, A.; Nepijko, S. A.; Elmers, H. J.; Kuksov, A.; Schneider, C. M.; Schönhense, G.

    2005-04-01

    Fast magnetization processes in a microstructured permalloy ring with 80 µm o.d. and 30 nm thickness have been observed by photoemission electron microscopy exploiting x-ray magnetic circular dichroism as the magnetic contrast mechanism. As a high speed probe we employed synchrotron radiation pulses at the ESRF (Grenoble) operated in 16-bunch mode, yielding photon pulses of 105 ps FWHM with a period of 176 ns. Fast magnetic field pulses have been generated by means of current pulses through coplanar waveguides with the magnetic structure being lithographically prepared on their surface. A stroboscopic pump-probe set-up with a variable time delay between the field pulse and photon pulse allowed us to take snapshots of the dynamic response of the magnetic domain structure. We observed coherent magnetization rotation during the leading edge part of the field pulse, the formation of a characteristic domain pattern ('onion state') in the plateau region of the pulse and the fast formation of a striped domain pattern (incoherent magnetization rotation) during the trailing edge part of the field pulse. A numerical simulation confirmed essential features of the stroboscopic image series.

  18. XRD (x-ray diffraction) and HREM (high resolution electron microscopy) studies of nanocrystalline Cu and Pd

    SciTech Connect

    Nieman, G.W.; Weertman, J.R. . Dept. of Materials Science and Engineering); Siegel, R.W. )

    1990-12-01

    Consolidated powders of nanocrystalline Cu and Pd have been studied by x-ray diffraction (XRD) and high resolution electron microscopy (HREM) as part of an investigation of the mechanical behavior of nanocrystalline pure metals. XRD line broadening measurements were made to estimate grain size, qualitative grain size distribution and average long range strains in a number of samples. Mean grain sizes range from 4--60 nm and have qualitatively narrow grain size distributions. Long range lattice strains are of the order of 0.2--3% in consolidated samples. These strains apparently persist and even increase in Cu samples after annealing at 0.35 Tm (498K) for 2h, accompanied by an apparent increase in grain size of {ge}2x. Grain size, grain size distribution width and internal strains vary somewhat among samples produced under apparently identical processing conditions. HREM studies show that twins, stacking faults and low-index facets are abundant in as-consolidated nanocrystalline Cu samples. Methodology, results, and analysis of XRD and HREM experiments are presented. 17 refs., 2 figs., 2 tabs.

  19. NASA Li/CF(x) cell problem analysis: Scanning electron microscopy with energy dispersive x ray spectrometry

    NASA Technical Reports Server (NTRS)

    Baker, John

    1991-01-01

    An analysis was made of Lithium/carbon fluoride cell parts for possible chloride contamination induced by exposure to thionyl chloride (SOCl2); various samples were submitted for analysis. Only a portion of the analysis which has been conducted is covered, herein, namely analysis by scanning electron microscopy with energy dispersive x ray spectrometry (SEM/EDS). A strip of nickel was exposed to SOCl2 vapors to observe variations in surface concentrations of sulfur and chlorine with time. By detecting chlorine one can not infer contamination by SOCl2 only that contamination is present. Six samples of stainless steel foil were analyzed for chlorine using EDS. Chlorine was not detected on background samples but was detected on the samples which had been handled including those which had been cleaned. Cell covers suspected of being contaminated while in storage and covers which were not exposed to the same storage conditions were analyzed for chlorine. Although no chlorine was found on the covers from cells, it was found on all stored covers. Results are presented with techniques shown for analysis and identification. Relevant photomicrographs are presented.

  20. Synchrotron X-ray diffraction and scanning electron microscopy to understand enamel affected by metabolic disorder mucopolysaccharidosis.

    PubMed

    Khan, Malik Arshman; Addison, Owen; James, Alison; Hendriksz, Christian J; Al-Jawad, Maisoon

    2016-04-01

    Mucopolysaccharidosis (MPS) is an inherited metabolic disorder that can affect the tooth structure leading to defects. Synchrotron X-ray diffraction being a state of the art technique has been used to determine the enamel crystallite orientation in deciduous enamel affected by Mucopolysaccharidosis Type I and Mucopolysaccharidosis Type IVA and comparing these with that of healthy deciduous enamel. Using this technique it was observed that there is a loss of texture in deciduous enamel affected by Mucopolysaccharidosis Type I and Mucopolysaccharidosis Type IVA when compared to the healthy deciduous enamel. Generally it was observed that the incisal surface of the deciduous teeth possessed a higher texture or preferred orientation of enamel crystallites and on progression towards the cervical region there was a decrease in the texture or preferred orientation of enamel crystallites. Scanning electron microscopy showed that the presence of a poorly calcified layer between the enamel and dentine at the enamel-dentine junction (EDJ) in MPS affected samples was likely to be responsible for rendering the tooth structure weak and prone to fracture as is often the case in MPS affected deciduous enamel. PMID:26896739

  1. Investigation of metal dusting mechanism in Fe-base alloys using Raman spectroscopy, x-ray diffraction, and electron microscopy.

    SciTech Connect

    Zeng, Z.; Natesan, K.; Maroni, V. A.

    2002-08-01

    The metal-dusting phenomenon, which is a metal loss process that occurs in hot reactive gases, was investigated in iron and certain iron-base alloys by Raman scattering, X-ray diffraction (XRD), and scanning-electron microscopy (SEM). Coke from metal dusting exhibits six Raman bands at 1330(D band), 1580(G band), 1617, 2685, 3920, and 3235 cm-1. The bandwidths and the relative intensities of the 1330 and 1580 cm-1 bands are related to the crystallinity and defect structure of the coke. Both Raman and XRD analyses suggest that the metal-dusting process influences the catalytic crystallization of carbon. A new mechanism of metal dusting is, therefore, proposed, based on the premise that coke cannot crystallize well by deposition from carburizing gases at low temperature without catalytic activation because of its strong C-C bonds and high melting temperature. Cementite or iron participates in the coke-crystallizing process in a manner that tends to improve the crystallinity of the coke. At the same time, fine iron or cementite particles are liberated from the pure metal or alloys.

  2. Effects of Pamidronate on Dental Enamel Formation Assessed by Light Microscopy, Energy-Dispersive X-Ray Analysis, Scanning Electron Microscopy, and Microhardness Testing.

    PubMed

    Soares, Ana P; do Espírito Santo, Renan F; Line, Sérgio R P; Pinto, Maria das G F; Santos, Pablo de M; Toralles, Maria Betania P; do Espírito Santo, Alexandre R

    2016-06-01

    The aim of the present work was to investigate birefringence and morphology of the secretory-stage enamel organic extracellular matrix (EOECM), and structural and mechanical properties of mature enamel of upper incisors from adult rats that had been treated with pamidronate disodium (0.5 mg/kg/week for 56 days), using transmitted polarizing and bright-field light microscopies (TPLM and BFLM), energy-dispersive X-ray (EDX) analysis, scanning electron microscopy (SEM) and microhardness testing. BFLM showed no morphological changes of the EOECM in pamidronate and control groups, but TPLM revealed a statistically significant reduction in optical retardation values of birefringence brightness of pamidronate-treated rats when compared with control animals (p0.05). The present study indicates that pamidronate can affect birefringence of the secretory-stage EOECM, which does not seem to be associated with significant changes in morphological and/or mechanical properties of mature enamel. PMID:27212049

  3. Scanning electron microscopy, X-ray diffraction and thermal analysis study of the TiH{sub 2} foaming agent

    SciTech Connect

    Mandrino, Djordje; Paulin, Irena; Skapin, Sreco D.

    2012-10-15

    The decomposition of commercially available TiH{sub 2} was investigated while performing different thermal treatments. TiH{sub 2} powder, which is widely used as a foaming agent, was heat treated at 450 Degree-Sign C for various times, from 15 min to 120 min. Scanning electron microscopy (SEM) images of the surfaces at different magnifications were obtained and interpreted. A Bragg-Brentano X-ray diffractometer was used to measure the X-ray diffraction (XRD) spectra on all five samples. A close examination of the diffraction spectra showed that for an as-received sample and samples undergoing the longest thermal treatment (1 and 2 h) these spectra can be explained as deriving from cubic TiH{sub 1.924}, while for the other two samples they can be explained as deriving from tetragonal TiH{sub 1.924}. A constant-unit-cell-volume phase transition between the cubic and tetragonal phases in TiH{sub 2-y}-type compounds had been described in the literature. The unit-cell parameters obtained from measured spectra confirm that within the measurement uncertainty the unit-cell volume is indeed constant in all five samples. Thermo-gravimetry (TG) and differential thermal analysis (DTA) measurements were performed on all the samples, showing that the intensity of the dehydrogenation depends on the previous treatment of the TiH{sub 2}. After the thermal analysis XRD of the samples was performed again and the material was found to exhibit a Ti-like unit cell, but slightly enlarged due to the unreleased hydrogen. - Highlights: Black-Right-Pointing-Pointer TiH{sub 2} samples were cubic or tetragonal TiH{sub 1.924} Black-Right-Pointing-Pointer Onset of the hydrogen release temperature increases with the pre-treatment time. Black-Right-Pointing-Pointer Thermal dehydrogenation for the as-prepared TiH{sub 2} is a three-step process. Black-Right-Pointing-Pointer After thermal analysis 2 residual hydrogen TiH{sub x} phases, close to {alpha}Ti, appeared.

  4. Laboratory cryo soft X-ray microscopy.

    PubMed

    Hertz, H M; von Hofsten, O; Bertilson, M; Vogt, U; Holmberg, A; Reinspach, J; Martz, D; Selin, M; Christakou, A E; Jerlström-Hultqvist, J; Svärd, S

    2012-02-01

    Lens-based water-window X-ray microscopy allows two- and three-dimensional (2D and 3D) imaging of intact unstained cells in their near-native state with unprecedented contrast and resolution. Cryofixation is essential to avoid radiation damage to the sample. Present cryo X-ray microscopes rely on synchrotron radiation sources, thereby limiting the accessibility for a wider community of biologists. In the present paper we demonstrate water-window cryo X-ray microscopy with a laboratory-source-based arrangement. The microscope relies on a λ=2.48-nm liquid-jet high-brightness laser-plasma source, normal-incidence multilayer condenser optics, 30-nm zone-plate optics, and a cryo sample chamber. We demonstrate 2D imaging of test patterns, and intact unstained yeast, protozoan parasites and mammalian cells. Overview 3D information is obtained by stereo imaging while complete 3D microscopy is provided by full tomographic reconstruction. The laboratory microscope image quality approaches that of the synchrotron microscopes, but with longer exposure times. The experimental image quality is analyzed from a numerical wave-propagation model of the imaging system and a path to reach synchrotron-like exposure times in laboratory microscopy is outlined. PMID:22119891

  5. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  6. Recent case histories of food product-metal container interactions using scanning electron microscopy-x-ray microanalysis.

    PubMed

    Charbonneau, J E

    1997-10-01

    Scanning electron microscopy (SEM) and x-ray microanalysis (EDS) were used to investigate stress corrosion cracking (SCC) in plain tinplate food cans, product discoloration, filiform corrosion, pitting/perforation corrosion, and loss of coating adhesion in enameled food cans. Intergranular SCC of uncoated tinplate occurred in canned pineapple juice. This is a rare occurrence in acid food products. The fracture developed in the can headspace only at the product line/metal interface by an interaction of the detinned metal surface with stress-inducing compounds in the product. Black discoloration of rice granules in the can headspace of a chicken and rice product was caused by the formation of metal sulfides. The source of the metal contamination was traced to metallic dirt in the coating on the tin-free-steel end. Blackening of light tan-colored olives and brine occurred after 1 year of storage in enameled tinplate containers as a result of pitting corrosion at the side seam weld. The cause of the pitting was a defective side seam stripe which failed to protect the weld. A perforation problem occurred at the score line of aluminum-tinplate bimetallic cans. The failure was caused by the high chloride content of the fruit product. Filiform corrosion resulted in perforations that occurred on the outside surfaces of two-piece tin-free steel cans packed with tuna. The cause of the corrosion was related to scratch defects in the exterior coating and the presence of chloride and sulfate cannery residues in the corroded areas. An enamel adhesion failure developed inside two-piece tin-free steel cans that contained mushrooms. Wrinkles in the coating which were introduced during can manufacture were cracked. The fractures were pathways for product-steel interaction which resulted in container failure. PMID:9353869

  7. Gunshot residue testing in suicides: Part I: Analysis by scanning electron microscopy with energy-dispersive X-ray.

    PubMed

    Molina, D Kimberley; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a deceased person's hands, including scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM-EDX) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Each of these techniques has been extensively studied, especially on living individuals. The current studies (Part I and Part II) were designed to compare the use and utility of the different GSR testing techniques in a medical examiner setting. In Part I, the hands of deceased persons who died from undisputed suicidal handgun wounds were tested for GSR by SEM-EDX over a 4-year period. A total of 116 cases were studied and analyzed for caliber of weapon, proximity of wound, and results of GSR testing, including spatial deposition upon the hands. It was found that in only 50% of cases with a known self-inflicted gunshot wound was SEM-EDX positive for at least 1 specific particle for GSR. In 18% of the cases there was a discernible pattern (spatial distribution) of the particles on the hand such that the manner in which the weapon was held could be determined. Since only 50% of cases where the person is known to have fired a weapon immediately prior to death were positive for GSR by SEM-EDX, this test should not be relied upon to determine whether a deceased individual has discharged a firearm. Furthermore, in only 18% of cases was a discernible pattern present indicating how the firearm was held. The low sensitivity, along with the low percentage of cases with a discernible pattern, limits the usefulness of GSR test results by SEM-EDX in differentiating self-inflicted from non-self-inflicted wounds. PMID:17721163

  8. Thermal analysis, X-ray powder diffraction and electron microscopy data related with the production of 1:1 Caffeine:Glutaric Acid cocrystals.

    PubMed

    Duarte, Íris; Andrade, Rita; Pinto, João F; Temtem, Márcio

    2016-09-01

    The data presented in this article are related to the production of 1:1 Caffeine:Glutaric Acid cocrystals as part of the research article entitled "Green production of cocrystals using a new solvent-free approach by spray congealing" (Duarte et al., 2016) [1]. More specifically, here we present the thermal analysis and the X-ray powder diffraction data for pure Glutaric Acid, used as a raw material in [1]. We also include the X-ray powder diffraction and electron microscopy data obtained for the 1:1 Caffeine:Glutaric Acid cocrystal (form II) produced using the cooling crystallization method reported in "Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile" (Yu et al., 2010) [2]. Lastly, we show the X-ray powder diffraction data obtained for assessing the purity of the 1:1 Caffeine:Glutaric cocrystals produced in [1]. PMID:27331096

  9. Scanning electron microscopy/energy dispersive spectrometry fixedbeam or overscan x-ray microanalysis of particles can miss the real structure: x-ray spectrum image mapping reveals the true nature

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2013-05-01

    The typical strategy for analysis of a microscopic particle by scanning electron microscopy/energy dispersive spectrometry x-ray microanalysis (SEM/EDS) is to use a fixed beam placed at the particle center or to continuously overscan to gather an "averaged" x-ray spectrum. While useful, such strategies inevitably concede any possibility of recognizing microstructure within the particle, and such fine scale structure is often critical for understanding the origins, behavior, and fate of particles. Elemental imaging by x-ray mapping has been a mainstay of SEM/EDS analytical practice for many years, but the time penalty associated with mapping with older EDS technology has discouraged its general use and reserved it more for detailed studies that justified the time investment. The emergence of the high throughput, high peak stability silicon drift detector (SDD-EDS) has enabled a more effective particle mapping strategy: "flash" x-ray spectrum image maps can now be recorded in seconds that capture the spatial distribution of major (concentration, C > 0.1 mass fraction) and minor (0.01 <= C <= 0.1) constituents. New SEM/SDD-EDS instrument configurations feature multiple SDDs that view the specimen from widely spaced azimuthal angles. Multiple, simultaneous measurements from different angles enable x-ray spectrometry and mapping that can minimize the strong geometric effects of particles. The NIST DTSA-II software engine is a powerful aid for quantitatively analyzing EDS spectra measured individually as well as for mapping information (available free for Java platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  10. Visualization of the effects of electron microscopy fixatives on the structure of hydrated epidermal hairs of tomato (lycopersicum peruvianum) as revealed by soft x-ray contact microscopy

    NASA Astrophysics Data System (ADS)

    Stead, Anthony D.; Cotton, Robin A.; Page, Anton M.; Dooley, Mike D.; Ford, Thomas W.

    1993-01-01

    In order to examine the ultrastructure of biological specimens by electron microscopy it is necessary to stabilize the highly labile cellular contents before embedding and sectioning the specimens. This is commonly achieved by treating the tissues with various chemical fixatives. The assessment of the efficacy of these fixative is usually based upon the appearance of the specimen under the microscope although this is somewhat intuitive as the ultrastructure of the living cell cannot be studied. Previous studies, in which the structure of epidermal hairs has been followed under the light microscope as the commonly used fixatives are perfused into the tissue, have shown that the cellular contents are drastically rearranged by these fixatives. This paper describes the effects of some of the commonly used fixatives on cell ultrastructure using firstly electron microscopy and secondly soft x-ray contact microscopy. The latter technique allows not only direct comparisons of the effects of the fixatives but also allows living, hydrated specimens to be imaged so that the true ultrastructural effects of the fixatives can be seen and compared to the ultrastructure of the living material.

  11. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  12. Electron beam parallel X-ray generator

    NASA Technical Reports Server (NTRS)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  13. Recent trends of projection X-ray microscopy in Japan

    NASA Astrophysics Data System (ADS)

    Yada, K.

    2009-08-01

    Recent activities of projection X-ray microscopy in Japan are reviewed. 1) By employing high brightness Schottky electron gun, resolution of 0.1 µm is realized by Tohken CO. group and some application examples are shown. 2) Deblurring of Fresnel diffracted image formed by synchrotron orbital radiation (SOR) X-rays is successfully tried by Chiba University group. Remarkable Fresnel fringes appearing at HeLa cell are mostly reconstructed by an iteration method. 3) Element analysis is carried out by Meiji University group utilizing absorption-edge characteristics between two kinds of X-ray targets without X-ray spectrometer. Actually, Cu and Ni targets are used with an inter-changeable system for elemental analysis of Fe 2O 3 particles and iron component in a mosquito larva.

  14. Towards high-resolution ptychographic x-ray diffraction microscopy

    SciTech Connect

    Takahashi, Yukio; Suzuki, Akihiro; Yamauchi, Kazuto; Zettsu, Nobuyuki; Kohmura, Yoshiki; Ishikawa, Tetsuya; Senba, Yasunori; Ohashi, Haruhiko

    2011-06-01

    Ptychographic x-ray diffraction microscopy is a lensless imaging technique with a large field of view and high spatial resolution, which is also useful for characterizing the wavefront of an x-ray probe. The performance of this technique is degraded by positioning errors due to the drift between the sample and illumination optics. We propose an experimental approach for correcting the positioning errors and demonstrate success by two-dimensionally reconstructing both the wavefront of the focused x-ray beam and the complex transmissivity of the weakly scattering objects at the pixel resolution of better than 10 nm in the field of view larger than 5 {mu}m. This method is applicable to not only the observation of organelles inside cells or nano-mesoscale structures buried within bulk materials but also the characterization of probe for single-shot imaging with x-ray free electron lasers.

  15. Structure of the Lassa Virus Nucleoprotein Revealed by X-ray Crystallography, Small-angle X-ray Scattering, and Electron Microscopy*

    PubMed Central

    Brunotte, Linda; Kerber, Romy; Shang, Weifeng; Hauer, Florian; Hass, Meike; Gabriel, Martin; Lelke, Michaela; Busch, Carola; Stark, Holger; Svergun, Dmitri I.; Betzel, Christian; Perbandt, Markus; Günther, Stephan

    2011-01-01

    The nucleoprotein (NP) of Lassa virus (LASV) strain AV was expressed in a recombinant baculovirus system. The crystal structure of full-length NP was solved at a resolution of 2.45 Å. The overall fold corresponds to that of NP of LASV strain Josiah (Qi, X., Lan, S., Wang, W., Schelde, L. M., Dong, H., Wallat, G. D., Ly, H., Liang, Y., and Dong, C. (2010) Nature 468, 779–783) with a root mean square deviation of 0.67 Å for all atoms (6.3% difference in primary sequence). As the packing in the crystal offers two different trimer architectures for the biological assembly, the quaternary structure of NP in solution was determined by small-angle x-ray scattering and EM. After classification and averaging of >6000 EM raw images, trimeric centrosymmetric structures were obtained, which correspond in size and shape to one trimer in the crystal structure formed around a crystallographic 3-fold rotation axis (symmetric trimer). The symmetric trimer is also a good model for the small-angle x-ray scattering data and could be well embedded into the ab initio model. The N-terminal domain of NP contains a deep nucleotide-binding cavity that has been proposed to bind cellular cap structures for priming viral mRNA synthesis. All residues implicated in m7GpppN binding were exchanged, and the transcription/replication phenotype of the NP mutant was tested using a LASV replicon system. None of the mutants showed a specific defect in mRNA expression; most were globally defective in RNA synthesis. In conclusion, we describe the full-length crystal structure and the quaternary structure in solution of LASV NP. The nucleotide-binding pocket of NP could not be assigned a specific role in viral mRNA synthesis. PMID:21917929

  16. Progress in high-resolution x-ray holographic microscopy

    SciTech Connect

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  17. Muscle cell membranes from early degeneration muscle cell fibers in Solenopsis are leaky to lanthanum: electron microscopy and X-ray analysis

    SciTech Connect

    Jones, R.G.; Davis, W.L.

    1985-06-01

    Lanthanum infusion techniques, transmission electron microscopy, and X-ray microanalysis were utilized to compare the permeability of muscle cell membranes from normal and degenerating muscle fibers of Solenopsis spp. In normal fibers, the electron-dense tracer was limited to components of the sarcotubular system. However, the insemination-induced degeneration of muscle fibers was characterized by the presence of an electron-dense precipitate within the myofibrils and mitochondria as well as in the extramyofibrillar spaces. The electron-dense material was subsequently identified by elemental analysis to be lanthanum. Such data indicate that one of the earliest stages of muscle degeneration involves an alteration in cell membrane permeability.

  18. The Reactivity and Structural Dynamics of Supported Metal Nanoclusters Using Electron Microscopy, in situ X-Ray Spectroscopy, Electronic Structure Theories, and Molecular Dynamics Simulations.

    SciTech Connect

    Judith C. Yang; Ralph G. Nuzzo, Duane Johnson, Anatoly Frenkel

    2008-07-01

    The distinguishing feature of our collaborative program of study is the focus it brings to emergent phenomena originating from the unique structural/electronic environments found in nanoscale materials. We exploit and develop frontier methods of atomic-scale materials characterization based on electron microscopy (Yang) and synchrotron X-ray absorption spectroscopy (Frenkel) that are in turn coupled innately with advanced first principles theory and methods of computational modeling (Johnson). In the past year we have made significant experimental advances that have led to important new understandings of the structural dynamics of what are unquestionably the most important classes of heterogeneous catalysts—the materials used to both produce and mitigate the consequences of the use of liquid hydrocarbon fuels.

  19. Exploring nanomagnetism with soft x-ray microscopy

    SciTech Connect

    Fischer, P.; Kim, D.-H.; Mesler, B.L.; Chao, W.; Sakdinawat,A.E.; Anderson, E.H.

    2006-10-30

    Magnetic soft X-ray microscopy images magnetism in nanoscale systems with a spatial resolution down to 15nm provided by state-of-the-art Fresnel zone plate optics. X-ray magnetic circular dichroism (X-MCD) is used as element-specific magnetic contrast mechanism similar to photoemission electron microscopy (PEEM), however, with volume sensitivity and the ability to record the images in varying applied magnetic fields which allows to study magnetization reversal processes at fundamental length scales. Utilizing a stroboscopic pump-probe scheme one can investigate fast spin dynamics with a time resolution down to 70 ps which gives access to precessional and relaxation phenomena as well as spin torque driven domain wall dynamics in nanoscale systems. Current developments in zone plate optics aim for a spatial resolution towards 10nm and at next generation X-ray sources a time resolution in the fsec regime can be envisioned.

  20. Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy.

    PubMed

    Takayama, Yuki; Yonekura, Koji

    2016-03-01

    Coherent X-ray diffraction imaging at cryogenic temperature (cryo-CXDI) allows the analysis of internal structures of unstained, non-crystalline, whole biological samples in micrometre to sub-micrometre dimensions. Targets include cells and cell organelles. This approach involves preparing frozen-hydrated samples under controlled humidity, transferring the samples to a cryo-stage inside a vacuum chamber of a diffractometer, and then exposing the samples to coherent X-rays. Since 2012, cryo-coherent diffraction imaging (CDI) experiments have been carried out with the X-ray free-electron laser (XFEL) at the SPring-8 Ångstrom Compact free-electron LAser (SACLA) facility in Japan. Complementary use of cryo-electron microscopy and/or light microscopy is highly beneficial for both pre-checking samples and studying the integrity or nature of the sample. This article reports the authors' experience in cryo-XFEL-CDI of biological cells and organelles at SACLA, and describes an attempt towards reliable and higher-resolution reconstructions, including signal enhancement with strong scatterers and Patterson-search phasing. PMID:26919369

  1. Cryotomography x-ray microscopy state

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  2. X-ray microscopy of live biological micro-organisms

    NASA Astrophysics Data System (ADS)

    Raja Al-Ani, Ma'an Nassar

    Real-time, compact x-ray microscopy has the potential to benefit many scientific fields, including microbiology, pharmacology, organic chemistry, and physics. Single frame x-ray micro-radiography, produced by a compact, solid-state laser plasma source, allows scientists to use x-ray emission for elemental analysis, and to observe biological specimens in their natural state. In this study, x-ray images of mouse kidney tissue, live bacteria, Pseudomonas aeruginosa and Burkholderia cepacia, and the bacteria's interaction with the antibiotic gentamicin, are examined using x-ray microscopy. For the purposes of comparing between confocal microscopy and x-ray microscopy, we introduced to our work the technique of gold labeling. Indirect immunofluorescence staining and immuno-gold labeling were applied on human lymphocytes and human tumor cells. Differential interference contrast microscopy (DIC) showed the lymphocyte body and nucleus, as did x-ray microscopy. However, the high resolution of x-ray microscopy allows us to differentiate between the gold particles bound to the antibodies and the free gold. A compact, tabletop Nd: glass laser is used in this study to produce x-rays from an Yttrium target. An atomic force microscope is used to scan the x-ray images from the developed photo-resist. The use of compact, tabletop laser plasma sources, in conjunction with x-ray microscopy, is a new technique that has great potential as a flexible, user-friendly scientific research tool.

  3. Synchrotron X-ray Enhanced Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Rose, Volker; Freeland, John

    2011-03-01

    Proper understanding of complex phenomena occurring in nanostructures requires tools with both the ability to resolve the nanometer scale as well as provide detailed information about chemical, electronic, and magnetic structure. Scanning tunneling microscopy (STM) achieves the requisite high spatial resolution; however, direct elemental determination is not easily accomplished. X-ray microscopies, on the other hand, provide elemental selectivity, but currently have spatial resolution only of tens of nanometers. We present a novel and radically different concept that employs detection of local synchrotron x-ray interactions utilizing a STM that provides spatial resolution, and x-ray absorption directly yields chemical, electronic, and magnetic sensitivity. If during tunneling the sample is simultaneously illuminated with monochromatic x-rays, characteristic absorption will arise. Electrons that are excited into unoccupied levels close to the Fermi level modulate the tunneling current giving rise to elemental contrast. This work was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357.

  4. ANALYSIS OF THE MICROBIOLOGICAL PARTICULATES IN MUNICIPAL DRINKING-WATER BY SCANNING ELECTRON MICROSCOPY/X-RAY ENERGY SPECTROSCOPY (ANALYSE VON BIOLOGISCHEN PARTIKELN IM TRINKWASSER DURCH RASTERELEKTRONEN-MIKROSKOPIE UND ELEKTRONENSTRAHLMIKROANALYSE)

    EPA Science Inventory

    Scanning electron microscopy and X-ray energy spectroscopy (SEM/XES) were used to survey the biological and nonbiological particles in two different municipal drinking-water systems. Microbiological particles could be differentiated from nonbiological by their qualitative element...

  5. Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Marchin, Stéphane; Putaux, Jean-Luc; Pignon, Frédéric; Léonil, Joëlle

    2007-01-01

    Casein micelles are colloidal protein-calcium-transport complexes whose structure has not been unequivocally elucidated. This study used small-angle x-ray scattering (SAXS) and ultrasmall angle x-ray scattering (USAXS) as well as cryo transmission electron microscopy (cryo-TEM) to provide fine structural details on their structure. Cryo-TEM observations of native casein micelles fractionated by differential centrifugation showed that colloidal calcium phosphate appeared as nanoclusters with a diameter of about 2.5nm. They were uniformly distributed in a homogeneous tangled web of caseins and were primarily responsible for the intensity distribution in the SAXS profiles at the highest q vectors corresponding to the internal structure of the casein micelles. A specific demineralization of casein micelles by decreasing the pH from 6.7 to 5.2 resulted in a reduced granular aspect of the micelles observed by cryo-TEM and the existence of a characteristic point of inflection in SAXS profiles. This supports the hypothesis that the smaller substructures detected by SAXS are colloidal calcium phosphate nanoclusters rather than putative submicelles.

  6. Rigorous quantitative elemental microanalysis by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) with spectrum processing by NIST DTSA-II

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2014-09-01

    Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  7. Faradaurate-940: synthesis, mass spectrometry, electron microscopy, high-energy X-ray diffraction, and X-ray scattering study of Au∼940±20(SR)∼160±4 nanocrystals.

    PubMed

    Kumara, Chanaka; Zuo, Xiaobing; Cullen, David A; Dass, Amala

    2014-06-24

    Obtaining monodisperse nanocrystals and determining their composition to the atomic level and their atomic structure is highly desirable but is generally lacking. Here, we report the discovery and comprehensive characterization of a 2.9 nm plasmonic nanocrystal with a composition of Au940±20(SCH2CH2Ph)160±4, which is the largest mass spectrometrically characterized gold thiolate nanoparticle produced to date. The compositional assignment has been made using electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry (MS). The MS results show an unprecedented size monodispersity, where the number of Au atoms varies by only 40 atoms (940 ± 20). The mass spectrometrically determined composition and size are supported by aberration-corrected scanning transmission electron microscopy (STEM) and synchrotron-based methods such as atomic pair distribution function (PDF) and small-angle X-ray scattering (SAXS). Lower-resolution STEM images show an ensemble of particles-1000s per frame-visually demonstrating monodispersity. Modeling of SAXS data on statistically significant nanoparticle population-approximately 10(12) individual nanoparticles-shows that the diameter is 3.0 ± 0.2 nm, supporting mass spectrometry and electron microscopy results on monodispersity. Atomic PDF based on high-energy X-ray diffraction experiments shows decent match with either a Marks decahedral or truncated octahedral structure. Atomic resolution STEM images of single particles and their fast Fourier transform suggest face-centered cubic arrangement. UV-visible spectroscopy data show that Faradaurate-940 supports a surface plasmon resonance peak at ̃505 nm. These monodisperse plasmonic nanoparticles minimize averaging effects and have potential application in solar cells, nano-optical devices, catalysis, and drug delivery. PMID:24813022

  8. X-ray holographic microscopy: Improved images of zymogen granules

    SciTech Connect

    Jacobsen, C.; Howells, M.; Kirz, J.; McQuaid, K.; Rothman, S.

    1988-10-01

    Soft x-ray holography has long been considered as a technique for x-ray microscopy. It has been only recently, however, that sub-micron resolution has been obtained in x-ray holography. This paper will concentrate on recent progress we have made in obtaining reconstructed images of improved quality. 15 refs., 6 figs.

  9. Stimulated Electronic X-Ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Purvis, Michael; Ryan, Duncan; London, Richard A.; Bozek, John D.; Bostedt, Christoph; Graf, Alexander; Brown, Gregory; Rocca, Jorge J.; Rohringer, Nina

    2013-12-01

    We demonstrate strong stimulated inelastic x-ray scattering by resonantly exciting a dense gas target of neon with femtosecond, high-intensity x-ray pulses from an x-ray free-electron laser (XFEL). A small number of lower energy XFEL seed photons drive an avalanche of stimulated resonant inelastic x-ray scattering processes that amplify the Raman scattering signal by several orders of magnitude until it reaches saturation. Despite the large overall spectral width, the internal spiky structure of the XFEL spectrum determines the energy resolution of the scattering process in a statistical sense. This is demonstrated by observing a stochastic line shift of the inelastically scattered x-ray radiation. In conjunction with statistical methods, XFELs can be used for stimulated resonant inelastic x-ray scattering, with spectral resolution smaller than the natural width of the core-excited, intermediate state.

  10. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis

    NASA Astrophysics Data System (ADS)

    Habibi, Neda

    2015-02-01

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33 nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the Nsbnd CH3 functional group about 2850 cm-1 is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field.

  11. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties

    PubMed Central

    Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy

    2015-01-01

    The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50–250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity. PMID:26288570

  12. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties.

    PubMed

    Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy

    2015-09-01

    The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50-250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity. PMID:26288570

  13. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    SciTech Connect

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks on the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.

  14. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    DOE PAGESBeta

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks onmore » the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.« less

  15. Soft x-ray holography and microscopy of biological cells

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Gao, Hongyi; Xie, Honglan; Li, Ruxin; Xu, Zhizhan

    2003-10-01

    Some experimental results on soft X-ray microscopy and holography imaging of biological specimens are presented in the paper. As we know, due to diffraction effects, there exists a resolution limit determined by wavelength λ and numerical aperture NA in conventional optical microscopy. In order to improve resolution, the num erical aperture should be made as large as possible and the wavelength as short as possible. Owing to the shorter wavelength, X-rays provide the potential of higher resolution in X-ray microscopy, holography image and allow for exam ination the interior structures of thicker specimens. In the experiments, we used synchrotron radiation source in Hefei as light source. Soft X-rays come from a bending magnet in 800 M eV electron storage ring with characteristic wavelength of 2.4 nm. The continuous X-ray spectrums are monochromatized by a zone-plate and a pinhole with 300 m diameter. The experimental set-up is typical contact microscopic system, its main advantage is simplicity and no special optical element is needed. The specimens used in the experiments of microscopic imaging are the colibacillus, the gingko vascular hundle and the fritillaries ovary karyon. The specimen for holographic imaging is the spider filam ents. The basic structures of plant cells such as the cell walls, the cytoplasm and the karyon especially the joint structures between the cells are observed clearly. An experimental study on a thick biological specimen that is a whole sporule w ith the thickness of about 30 μm is performed. In the holographic experiments, the experimental setup is typical Gabor in-line holography. The specimen is placed in line with X-ray source, which provides both the reference w aves and specimen illum ination. The specimen is some spider filament, which adhere to a Si3N4 film. The recording medium is PM M A, which is placed at recording distance of about 400 μm from the specimen. The hologram s were reconstructed by digital method with 300 nm

  16. X-ray magnetic circular dichroism photoemission electron microscopy of focused ion beam-induced magnetic patterns on iron-rhodium surfaces

    NASA Astrophysics Data System (ADS)

    Tohki, Atsushi; Aikoh, Kazuma; Shinoda, Ryoichi; Ohkochi, Takuo; Kotsugi, Masato; Nakamura, Tetsuya; Kinoshita, Toyohiko; Iwase, Akihiro; Matsui, Toshiyuki

    2013-05-01

    Iron-rhodium (FeRh) thin films were irradiated with a 30 keV Ga ion beam using a focused ion beam system to produce micrometer scale ferromagnetic square dot arrays. Two-dimensional magnetic square dot arrays with dimensions of 30 × 30, 10 × 10, and 5 × 5 μm were successfully produced on the FeRh surface, which was confirmed by magnetic force microscopy. The results of photoemission electron microscopy combined with X-ray magnetic circular dichroism revealed that the magnetization of the magnetic square dots could be controlled by changing the amount of irradiation. The magnetic domain structure of the magnetic square dots with sides of 5-30 μm was found to be a single domain structure, which was possibly influenced by the interaction between ferromagnetic and antiferromagnetic interfaces.

  17. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study.

    PubMed

    Caiazza, S; Falcinelli, G; Pintucci, S

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations, given the enhanced antibiotic-resistence of bacteria, is emphasized. PMID:2297990

  18. Imaging bacterial spores by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  19. Characterization of individual submicrometer aerosol particles collected in Incheon, Korea, by quantitative transmission electron microscopy energy-dispersive X-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Geng, Hong; Kang, Sujin; Jung, Hae-Jin; ChoëL, Marie; Kim, Hyekyeong; Ro, Chul-Un

    2010-08-01

    For the last decade the Monte Carlo calculation method has been proven to be an excellent tool for accurately simulating electron-solid interactions in atmospheric individual particles of micrometer size. Although it was designed for application to scanning electron microscopy, in the present study it is demonstrated that the Monte Carlo calculation can also be applied in a quantitative single particle analysis using transmission electron microscopy (TEM) with an ultrathin window energy-dispersive X-ray (EDX) spectrometer with a high accelerating voltage (200 kV). By utilizing an iterative reverse Monte Carlo simulation combined with successive approximation, atomic elemental concentrations (including low-Z elements) of submicrometer standard particles were determined with high accuracy for electron beam refractory particles such as NaCl, KCl, SiO2, Fe2O3, Na2SO4, K2SO4, CaCO3, and CaSO4. On the basis of quantitative X-ray analysis together with morphological information from TEM images, overall 1638 submicrometer individual particles from 10 sets of aerosol samples collected in Incheon, Korea, were identified. The most frequently encountered particle types are carbonaceous and (NH4)2SO4/NH4HSO4-containing particles, followed by mineral (e.g., aluminosilicate, SiO2, CaCO3), sea salt, K-rich (e.g., K2SO4 and KCl), Fe-rich, fly ash, and transition or heavy-metal-containing (e.g., ZnSO4, ZnCl2, PbSO4) particles. The relative abundances of the submicrometer particle types vary among samples collected in different seasons and also depend on different air mass transport routes. This study demonstrates that the quantitative TEM-EDX individual particle analysis is a useful and reliable technique in characterizing urban submicrometer aerosol particles.

  20. Basal ganglia calcification induced by excitotoxicity: an experimental model characterised by electron microscopy and X-ray microanalysis.

    PubMed

    Mahy, N; Prats, A; Riveros, A; Andrés, N; Bernal, F

    1999-09-01

    Activation of glutamate receptors induces an excitotoxic neurodegenerative process characterised in some brain areas by the formation of calcium precipitates. To examine the pathogenesis of basal ganglia calcification (BGC), an improved procedure of X-ray microanalysis was used to study experimental excitotoxic calcification in the rat. Three weeks after injection of ibotenic acid (IBO) in the rat basal forebrain, calcified inclusions within hypertrophied astrocytes were characterised. They appeared to form part of a filamentous structure localised in the cytoplasm in association with normal mitochondria and other organelles. Larger inclusions were surrounded by reactive microglia. The main inorganic components in these deposits were Ca and P, frequently accompanied by S. Al, Si and K. The shape and Ca/P molar ratio of the large deposits (>10 microm) indicate that they may be biological apatites. Aluminosilicates were detected as small deposits (<4 microm) free of other mineral constituents. To our knowledge this is the first report showing that IBO lesion induces brain accumulation of aluminosilicates similar to that described in Alzheimer's or Fahr's patients. Our data indicate that precipitation of Ca and Al may reduce their IBO-induced increased concentration. In conclusion, the experimental model and the improved efficiency of X-ray analysis described may help us to understand the pathogenesis of BGC. PMID:10483777

  1. Direct comparison between X-ray nanotomography and scanning electron microscopy for the microstructure characterization of a solid oxide fuel cell anode

    SciTech Connect

    Quey, R.; Suhonen, H.; Laurencin, J.; Cloetens, P.; Bleuet, P.

    2013-04-15

    X-ray computed nanotomography (nano-CT) and scanning electron microscopy (SEM) have been applied to characterize the microstructure of a Solid Oxide Fuel Cell (SOFC) anode. A direct comparison between the results of both methods is conducted on the same region of the microstructure to assess the spatial resolution of the nano-CT microstructure, SEM being taken as a reference. A registration procedure is proposed to find out the position of the SEM image within the nano-CT volume. It involves a second SEM observation, which is taken along an orthogonal direction and gives an estimate reference SEM image position, which is then refined by an automated optimization procedure. This enables an unbiased comparison between the cell porosity morphologies provided by both methods. In the present experiment, nano-CT is shown to underestimate the number of pores smaller than 1 μm and overestimate the size of the pores larger than 1.5 μm. - Highlights: ► X-ray computed nanotomography (nano-CT) and SEM are used to characterize an SOFC anode. ► A methodology is proposed to compare the nano-CT and SEM data on the same region. ► The spatial resolution of the nano-CT data is assessed from that comparison.

  2. A simple method for detection of gunshot residue particles from hands, hair, face, and clothing using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX).

    PubMed

    Kage, S; Kudo, K; Kaizoji, A; Ryumoto, J; Ikeda, H; Ikeda, N

    2001-07-01

    We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method. PMID:11451063

  3. Remineralization of demineralized enamel by toothpastes: a scanning electron microscopy, energy dispersive X-ray analysis, and three-dimensional stereo-micrographic study.

    PubMed

    Gjorgievska, Elizabeta S; Nicholson, John W; Slipper, Ian J; Stevanovic, Marija M

    2013-06-01

    Remineralization of hard dental tissues is thought to be a tool that could close the gap between prevention and surgical procedures in clinical dentistry. The purpose of this study was to examine the remineralizing potential of different toothpaste formulations: toothpastes containing bioactive glass, hydroxyapatite, or strontium acetate with fluoride, when applied to demineralized enamel. Results obtained by scanning electron microscopy (SEM) and SEM/energy dispersive X-ray analyses proved that the hydroxyapatite and bioactive glass-containing toothpastes were highly efficient in promoting enamel remineralization by formation of deposits and a protective layer on the surface of the demineralized enamel, whereas the toothpaste containing 8% strontium acetate and 1040 ppm fluoride as NaF had little, if any, remineralization potential. In conclusion, the treatment of demineralized teeth with toothpastes containing hydroxyapatite or bioactive glass resulted in repair of the damaged tissue. PMID:23659606

  4. Microstructural Investigation of SexTe100-x Thin Films Deposited on Si(100) Substrates by X-ray Diffractometer and Transmission Electron Microscopy Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Eun Tae; Lee, Jeong Yong; Kim, Yong Tae

    2007-11-01

    The microstructural properties of SexTe100-x (x=16,29,38) thin films are investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. SexTe100-x thin films have a Te hexagonal structure and Te{011} interplanar spacing decreases because some Se atoms occupy Te atomic sites, forming Se helical chains within the Te helical chains. By increasing the Se contents from 16 to 29 at. %, Se5.95Te1.05 monoclinic and Se hexagonal structures coexist in a grain and at 38 at. %, a Se hexagonal structure is observed within the Te hexagonal grain. This means that SexTe100-x thin films maintain the Te hexagonal structure and that phase separation does not occur owing to the short diffusion time.

  5. Electronic structure of ZnO nanorods studied by angle-dependent x-ray absorption spectroscopy and scanning photoelectron microscopy

    NASA Astrophysics Data System (ADS)

    Chiou, J. W.; Jan, J. C.; Tsai, H. M.; Bao, C. W.; Pong, W. F.; Tsai, M.-H.; Hong, I.-H.; Klauser, R.; Lee, J. F.; Wu, J. J.; Liu, S. C.

    2004-05-01

    Angle-dependent x-ray absorption near-edge structure (XANES) and scanning photoelectron microscopy measurements were performed to differentiate local electronic structures at the tips and sidewalls of highly aligned ZnO nanorods. The overall intensity of the O K-edge XANES spectra is greatly enhanced for small photon incident angles. In contrast, the overall intensity of the Zn K-edge XANES is much less sensitive to the photon incident angle. Both valence-band photoemission and O K-edge XANES spectra show substantial enhancement of O 2p derived states near the valence band maximum and conduction band minimum, respectively. The spatially resolved Zn 3d core level spectra from tip and sidewall regions show the lack of chemical shift. All the results consistently suggest that the tip surfaces of the highly aligned ZnO nanorods are terminated by O ions and the nanorods are oriented in the [0001¯] direction.

  6. Hard x-ray Zernike microscopy reaches 30 nm resolution.

    SciTech Connect

    Chen, Y.; Chen, T.; Yi, J.; Chu, Y.; Lee, W.-K.; Wang, C.; Kempson, I.; Hwu, Y.; Gajdosik, V.; Margaritondo, G.

    2011-03-30

    Since its invention in 1930, Zernike phase contrast has been a pillar in optical microscopy and more recently in x-ray microscopy, in particular for low-absorption-contrast biological specimens. We experimentally demonstrate that hard-x-ray Zernike microscopy now reaches a lateral resolution below 30?nm while strongly enhancing the contrast, thus opening many new research opportunities in biomedicine and materials science.

  7. Hard x-ray Zernike Microscopy Reaches 30 nm Resolution

    SciTech Connect

    Chen, Y.T.; Chu, Y.; Chen, T-Y.; Yi, J.; Lee, W-K.; Wang, C-L.; Kempson, I. M.; Hwu, Y.; Gajdosik, V.; Margaritondo, G.

    2011-03-30

    Since its invention in 1930, Zernike phase contrast has been a pillar in optical microscopy and more recently in x-ray microscopy, in particular for low-absorption-contrast biological specimens. We experimentally demonstrate that hard-x-ray Zernike microscopy now reaches a lateral resolution below 30 nm while strongly enhancing the contrast, thus opening many new research opportunities in biomedicine and materials science.

  8. X-ray laser microscopy of rat sperm nuclei

    SciTech Connect

    Da Silva, L.B. ); Trebes, J.E.; Balhorn, R.; Mrowka, S.; Barbee, T.W.Jr.; Brase, J.; Corzett, M.; Koch, J.A.; Lee, C.; London, R.A.; MacGowan, B.J.; Matthews, D.L.; Stone, G. ); Anderson, E.; Attwood, D.T. ); Gray, J. ); Kern, D. )

    1992-10-09

    The development of high brightness and short pulse width x-ray lasers now offers biologists the possibility of high-resolution imaging of specimens in an aqueous environment without the blurring effects associated with natural motions and chemical erosion. As a step toward developing the capabilities of this type of x-ray microscopy, a tantalum x-ray laser at 44.83 angstrom wavelength was used together with an x-ray zone plate lens to image both unlabeled and selectively gold-labeled dried rat sperm nuclei. The observed images show {approximately}500 angstrom features, illustrate the importance of x-ray microscopy in determining chemical composition, and provide information about the uniformity of sperm chromatin organization and the extent of sperm chromatin hydration.

  9. The Scanning X-Ray Microprobe at the Esrf ``X-Ray Microscopy'' Beamline

    NASA Astrophysics Data System (ADS)

    Susini, J.; Salomé, M.; Fayard, B.; Ortega, R.; Kaulich, B.

    The development of high brilliance X-ray sources coupled with advances in manufacturing technologies of focusing optics has led to significant improvements in submicrometer probes for spectroscopy, diffraction and imaging applications. For instance, X-ray microscopy in the 1-10 keV energy range is better-suited for analyzing trace elements in fluorescence yield. This article will be biased towards submicron fluorescence microscopy developed on the ID21 beamline at the ESRF. The main technical developments, involving new focusing lenses or novel phase contrast method, are presented. Strengths and weaknesses of X-ray microscopy and spectromicroscopy techniques are discussed and illustrated by examples in biology, materials science and geology.

  10. Development of Cell Staining Technique for X-Ray Microscopy

    SciTech Connect

    Tseng, P. Y.; Shih, Y. T.; Liu, C. J.; Hsu, T.; Chien, C. C.; Leng, W. H.; Liang, K. S.; Yin, G. C.; Chen, F. R.; Je, J. H.; Margaritondo, G.; Hwu, Y.

    2007-01-19

    We report a technique for detection of sub-cellular organelles and proteins with hard x-ray microscopy. Several metals were used for enhancing contrast for x-ray microscopy. Osmium tetroxide provides an excellent stain for lipid and can delineate cell membrane. Uranyl acetate has high affinity for nucleotide and can stain nucleus. Immunolocalization of specific proteins and sub-cellular organelles was achieved by 3'3 diaminobenzidine (DAB) with nickel enhancement and nanogold-conjugated secondary antibody with silver enhancement. The x-rays emitted from synchrotron source was monochromatized by double crystal monochromator, the photon energy was fixed at 8 keV to optimize the focusing efficiency of the zone plates. The estimated resolution is about 60 nm. When compared with visible light and conventional confocal microscopy, the X-ray microscopy provides a superior resolution to both conventional optical microscopes.

  11. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometry for quick detection of sulfur-oxidizing bacteria in environmental water samples

    NASA Astrophysics Data System (ADS)

    Sun, Chengjun; Jiang, Fenghua; Gao, Wei; Li, Xiaoyun; Yu, Yanzhen; Yin, Xiaofei; Wang, Yong; Ding, Haibing

    2016-03-01

    Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry (EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time (within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.

  12. Scanning electron and atomic force microscopy, and raman and x-ray photoelectron spectroscopy characterization of near-isogenic soft and hard wheat kernels and corresponding flours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...

  13. X-ray microscopy study of bone mineralization

    NASA Astrophysics Data System (ADS)

    Salomé, M.; Lafage-Proust, M. H.; Vico, L.; Amblard, D.; Kaulich, B.; Oestreich, S.; Susini, J.; Barrett, R.

    2000-05-01

    Transmission spectro-microscopy around the calcium K-edge and fluorescence microscopy were performed respectively on the Transmission X-ray Microscope (TXM) and Scanning X-ray Microscope (SXM) end-stations of ID21 beamline at ESRF, to map the calcium distribution and the Ca/P ratio in bone samples. Preliminary results are presented. The motivation for these experiments is the study of the genetic determinism of bone mineralisation parameters in two different strains of mice.

  14. Use of SIMS microscopy and electron probe X-ray microanalysis to study the subcellular localization of aluminium in Vicia faba roots cells.

    PubMed

    Mangabeira, P; Mushrifah, I; Escaig, F; Laffray, D; França, M G; Galle, P

    1999-06-01

    Received January 4, 1999; Accepted March 25, 1999 Secondary ion mass spectrometry (SIMS), electron probe X-ray microanalysis (EPMA) and transmission electron microscopy (TEM) were used to study the tissular distribution and subcellular localization of aluminium (Al) precipitate in roots of Viciafaba. The broad bean plant, grown in nitrate solution with 193 microM Al3+ at pH 4.8, for 15 days showed Al deposits in the roots. Al accumulation was not detected in the stems nor in the leaves. Al was found mainly localized on the root's surfaces and within the cell walls of the cortical cells. Al signal was not detected in the vascular tissues. Two weeks exposure to Al caused ultrastructural changes in cortical cells and sometimes a complete disruption of these cells. Deposition of Al in form of insoluble complexes associated with phosphorus, appeared as electron opaque materials in the vacuoles of disrupted cortex cells and in the intercellular inclusions. The leaves turned yellowish at the end of 15 days exposure. The use of electron microprobe, to investigate the same tissues as the ones investigated by SIMS, provided complementary results on aluminium allocation. PMID:10432188

  15. Refractive Optics for Hard X-ray Transmission Microscopy

    SciTech Connect

    Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E.; Ahrens, G.; Voigt, A.

    2011-09-09

    For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

  16. X-Ray Microscopy at BESSY: From Nano-Tomography to Fs-Imaging

    SciTech Connect

    Schneider, G.; Heim, S.; Rehbein, S.; Eichert, D.; Guttmann, P.

    2007-01-19

    The BESSY X-ray microscopy group has developed a new full-field x-ray microscope with glass capillary condenser. It permits tomography and spectromicroscopy of cryogenic as well as heated samples. Correlative light and x-ray microscopy is supported by an incorporated high resolution light microscope. Spectromicroscopy with polarized x-rays from a helical undulator can be performed with E/{delta}E = 104. With the planned BESSY High Gain Harmonic Generation Free Electron Laser (HGHG-FEL) x-ray imaging with ultra-short pulses and an integral photon flux of about 1011 photons/pulse in an energy bandwidth of 0.1% will be possible. Single shot imaging with a full field Transmission X-ray Microscope (TXM) employing a beam shaper as a condenser will be feasible with 20 fs pulses.

  17. X-Ray Microscopy at BESSY: From Nano-Tomography to Fs-Imaging

    NASA Astrophysics Data System (ADS)

    Schneider, G.; Guttmann, P.; Heim, S.; Rehbein, S.; Eichert, D.; Niemann, B.

    2007-01-01

    The BESSY X-ray microscopy group has developed a new full-field x-ray microscope with glass capillary condenser. It permits tomography and spectromicroscopy of cryogenic as well as heated samples. Correlative light and x-ray microscopy is supported by an incorporated high resolution light microscope. Spectromicroscopy with polarized x-rays from a helical undulator can be performed with E/ΔE = 104. With the planned BESSY High Gain Harmonic Generation Free Electron Laser (HGHG-FEL) x-ray imaging with ultra-short pulses and an integral photon flux of about 1011 photons/pulse in an energy bandwidth of 0.1% will be possible. Single shot imaging with a full field Transmission X-ray Microscope (TXM) employing a beam shaper as a condenser will be feasible with 20 fs pulses.

  18. Automatic Peak Identification in Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDS) Microanalysis: Can You Always Trust the Results?

    NASA Astrophysics Data System (ADS)

    Newbury, D.

    2006-05-01

    The degree of sophistication of computer-aided scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) microanalysis has advanced to the point where it is possible with a single command to automatically perform sequential qualitative analysis (peak identification) and quantitative analysis and then create a report of analysis with full statistical support. Often the actual algorithms employed in commercial software for each stage of the analysis are not provided or tested in sufficient detail nor are any inherent limitations in applying such "black box" software described to enable the analyst to estimate the performance. The identification of the elements responsible for the characteristic peaks in the EDS spectrum is obviously the first critical step in performing a robust analysis. Can the software be trusted to always deliver the correct elemental identification for the easiest possible case: peaks with high intensity and high peak-to-background that arise from major constituents (i.e., concentration, C above 0.1 mass fraction = 10 weight percent) and which do not suffer peak interference from another constituent? Unfortunately, testing of automatic peak identification procedures in a series of commercial systems has revealed that serious mistakes occur approximately 3 to 5 percent of the time for this easiest case [1]. Moreover, these mistakes are not random but occur systematically for certain elements. The situation is even worse when minor (C from 0.01 to 0.1) and trace (C less than 0.01) constituents are of interest or when analysis is performed under "low voltage" conditions (beam energy 5 keV or less). The prudent analyst will always use manual peak identification procedures to provide confirmation of automatic peak identification results before proceeding to quantitative analysis [2]. [1] Newbury, D., Microscopy and Microanalysis, 11 (2005) 545. [2] Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L

  19. Quantitative study of particle size distribution in an in-situ grown Al–TiB{sub 2} composite by synchrotron X-ray diffraction and electron microscopy

    SciTech Connect

    Tang, Y.; Chen, Z.; Borbély, A.; Ji, G.; Zhong, S.Y.; Schryvers, D.; Ji, V.

    2015-04-15

    Synchrotron X-ray diffraction and transmission electron microscopy (TEM) were applied to quantitatively characterize the average particle size and size distribution of free-standing TiB{sub 2} particles and TiB{sub 2} particles in an in-situ grown Al–TiB{sub 2} composite. The detailed evaluations were carried out by X-ray line profile analysis using the restricted moment method and multiple whole profile fitting procedure (MWP). Both numerical methods indicate that the formed TiB{sub 2} particles are well crystallized and free of crystal defects. The average particle size determined from different Bragg reflections by the restricted moment method ranges between 25 and 55 nm, where the smallest particle size is determined using the 110 reflection suggesting the highest lateral-growth velocity of (110) facets. The MWP method has shown that the in-situ grown TiB{sub 2} particles have a very low dislocation density (~ 10{sup 11} m{sup −} {sup 2}) and their size distribution can be described by a log-normal distribution. Good agreement was found between the results obtained from the restricted moment and MWP methods, which was further confirmed by TEM. - Highlights: • Accurate quantitative characterization of in-situ grown T{sub i}B{sub 2} particles has been achieved. • Particle size anisotropy was revealed indicating 110 facets being largest during T{sub i}B{sub 2} growth. • A wide size distribution was observed for T{sub i}B{sub 2} particles with a dominant size smaller than 100 nm.

  20. X-Ray Diffraction Microscopy of Magnetic Structures

    SciTech Connect

    Turner, J.; Lima, E.; Huang, X.; Krupin, O.; Seu, K.; Parks, D.; Kevan, S.; Kisslinger, K.; McNulty, I.; Gambino, R.; Mangin, S.; Roy, S. and Fischer, P.

    2011-07-14

    We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L{sub 3} edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.

  1. A hard X-ray nanoprobe beamline for nanoscale microscopy

    PubMed Central

    Winarski, Robert P.; Holt, Martin V.; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian; Maser, Jörg

    2012-01-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals. PMID:23093770

  2. Deflection gating for time-resolved x-ray magnetic circular dichroism-photoemission electron microscopy using synchrotron radiation

    SciTech Connect

    Wiemann, C.; Kaiser, A. M.; Cramm, S.; Schneider, C. M.

    2012-06-15

    In this paper, we present a newly developed gating technique for a time-resolving photoemission microscope. The technique makes use of an electrostatic deflector within the microscope's electron optical system for fast switching between two electron-optical paths, one of which is used for imaging, while the other is blocked by an aperture stop. The system can be operated with a switching time of 20 ns and shows superior dark current rejection. We report on the application of this new gating technique to exploit the time structure in the injection bunch pattern of the synchrotron radiation source BESSY II at Helmholtz-Zentrum Berlin for time-resolved measurements in the picosecond regime.

  3. Deflection gating for time-resolved x-ray magnetic circular dichroism-photoemission electron microscopy using synchrotron radiation.

    PubMed

    Wiemann, C; Kaiser, A M; Cramm, S; Schneider, C M

    2012-06-01

    In this paper, we present a newly developed gating technique for a time-resolving photoemission microscope. The technique makes use of an electrostatic deflector within the microscope's electron optical system for fast switching between two electron-optical paths, one of which is used for imaging, while the other is blocked by an aperture stop. The system can be operated with a switching time of 20 ns and shows superior dark current rejection. We report on the application of this new gating technique to exploit the time structure in the injection bunch pattern of the synchrotron radiation source BESSY II at Helmholtz-Zentrum Berlin for time-resolved measurements in the picosecond regime. PMID:22755633

  4. Sixth International Conference on X-ray Microscopy

    SciTech Connect

    Robinson, Arthur L.

    1999-08-23

    More than 180 participants from around the world crowded the Clark Kerr Campus of the University of California, Berkeley, from August 1-6, 1999 for the Sixth International Conference on X-Ray Microscopy (XRM99). Held every three years since 1983, the XRM conferences have become the primary international forum for the presentation and discussion of advances in high-spatial-resolution x-ray imaging and applications (including the use of x-ray spectroscopic and analytical techniques) in biological and medical sciences, environmental and soil sciences, and materials and surface sciences.

  5. Cryogenic X-ray Diffraction Microscopy for Biological Samples

    SciTech Connect

    E Lima; L Wiegart; P Pernot; M Howells; J Timmins; F Zontone; A Madsen

    2011-12-31

    X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

  6. X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form*

    PubMed Central

    Leone, Philippe; Bebeacua, Cecilia; Opota, Onya; Kellenberger, Christine; Klaholz, Bruno; Orlov, Igor; Cambillau, Christian; Lemaitre, Bruno; Roussel, Alain

    2015-01-01

    β-Barrel pore-forming toxins (β-PFT), a large family of bacterial toxins, are generally secreted as water-soluble monomers and can form oligomeric pores in membranes following proteolytic cleavage and interaction with cell surface receptors. Monalysin has been recently identified as a β-PFT that contributes to the virulence of Pseudomonas entomophila against Drosophila. It is secreted as a pro-protein that becomes active upon cleavage. Here we report the crystal and cryo-electron microscopy structure of the pro-form of Monalysin as well as the crystal structures of the cleaved form and of an inactive mutant lacking the membrane-spanning region. The overall structure of Monalysin displays an elongated shape, which resembles those of β-pore-forming toxins, such as Aerolysin, but is devoid of a receptor-binding domain. X-ray crystallography, cryo-electron microscopy, and light-scattering studies show that pro-Monalysin forms a stable doughnut-like 18-mer complex composed of two disk-shaped nonamers held together by N-terminal swapping of the pro-peptides. This observation is in contrast with the monomeric pro-form of the other β-PFTs that are receptor-dependent for membrane interaction. The membrane-spanning region of pro-Monalysin is fully buried in the center of the doughnut, suggesting that upon cleavage of pro-peptides, the two disk-shaped nonamers can, and have to, dissociate to leave the transmembrane segments free to deploy and lead to pore formation. In contrast with other toxins, the delivery of 18 subunits at once, nearby the cell surface, may be used to bypass the requirement of receptor-dependent concentration to reach the threshold for oligomerization into the pore-forming complex. PMID:25847242

  7. Scanning Electron Microscopy and X-Ray Microanalysis for Chemical and Morphological Characterisation of the Inorganic Component of Gunshot Residue: Selected Problems

    PubMed Central

    Brożek-Mucha, Zuzanna

    2014-01-01

    Chosen aspects of examinations of inorganic gunshot particles by means of scanning electron microscopy and energy dispersive X-ray spectrometry technique are presented. The research methodology of particles was worked out, which included a precise and repeatable procedure of the automatic detection and identification of particles as well as the representation of the obtained analytical data in the form of the frequencies of occurrence of particles of certain chemical or morphological class within the whole population of particles revealed in a specimen. On this basis, there were established relationships between the chemical and morphological properties of populations of particles and factors, such as the type of ammunition, the distance from the gun muzzle to the target, the type of a substrate the particles sediment on, and the time between shooting and collecting the specimens. Each of these aspects of examinations of particles revealed a great potential of being utilised in casework, while establishing various circumstances of shooting incidents leads to the reconstruction of the course of the studied incident. PMID:25025050

  8. Scanning electron microscopy and X-ray microanalysis for chemical and morphological characterisation of the inorganic component of gunshot residue: selected problems.

    PubMed

    Brożek-Mucha, Zuzanna

    2014-01-01

    Chosen aspects of examinations of inorganic gunshot particles by means of scanning electron microscopy and energy dispersive X-ray spectrometry technique are presented. The research methodology of particles was worked out, which included a precise and repeatable procedure of the automatic detection and identification of particles as well as the representation of the obtained analytical data in the form of the frequencies of occurrence of particles of certain chemical or morphological class within the whole population of particles revealed in a specimen. On this basis, there were established relationships between the chemical and morphological properties of populations of particles and factors, such as the type of ammunition, the distance from the gun muzzle to the target, the type of a substrate the particles sediment on, and the time between shooting and collecting the specimens. Each of these aspects of examinations of particles revealed a great potential of being utilised in casework, while establishing various circumstances of shooting incidents leads to the reconstruction of the course of the studied incident. PMID:25025050

  9. Chemical and morphological study of gunshot residue persisting on the shooter by means of scanning electron microscopy and energy dispersive X-ray spectrometry.

    PubMed

    Brożek-Mucha, Zuzanna

    2011-12-01

    Persistence of gunshot residue (GSR) simultaneously collected from hands, face and hair, and clothing of the shooting person was examined. Samples were collected from five shooters in nine time intervals after a single shoot with a Luger 9 mm pistol, in the range of 0-4 h and examined with scanning electron microscopy and energy dispersive X-ray spectrometry. Numbers of particles, frequencies of occurrence of certain compositions of particles, and their sizes in function of the time intervals were inspected. The greatest numbers of particles were observed in samples collected from hands right after shooting, but they decrease quickly with time. In samples collected from the face smaller initial numbers of particles were found, but they lasted at a similar level longer. The estimated half-life times of particles were less than 1 h for samples taken from the hands, over 1 h for clothing and about 2-3 h for the face. In samples collected at longer intervals after shooting, there were particles present of small sizes and irregular shapes. The results demonstrate that including evidence collected from the suspect's face and hair may increase the probability of detection of GSR in cases when the suspect has not been apprehended immediately after the investigated incident. PMID:22051052

  10. A Study of the Oxidation Behaviour of Pile Grade A (PGA) Nuclear Graphite Using Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and X-Ray Tomography (XRT).

    PubMed

    Payne, Liam; Heard, Peter J; Scott, Thomas B

    2015-01-01

    Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK's first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600-1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment. PMID:26575374

  11. Structure refinement of the δ1p phase in the Fe–Zn system by single-crystal X-ray diffraction combined with scanning transmission electron microscopy

    PubMed Central

    Okamoto, Norihiko L.; Tanaka, Katsushi; Yasuhara, Akira; Inui, Haruyuki

    2014-01-01

    The structure of the δ1p phase in the iron−zinc system has been refined by single-crystal synchrotron X-ray diffraction combined with scanning transmission electron microscopy. The large hexagonal unit cell of the δ1p phase with the space group of P63/mmc comprises more or less regular (normal) Zn12 icosahedra, disordered Zn12 icosahedra, Zn16 icosioctahedra and dangling Zn atoms that do not constitute any polyhedra. The unit cell contains 52 Fe and 504 Zn atoms so that the compound is expressed with the chemical formula of Fe13Zn126. All Fe atoms exclusively occupy the centre of normal and disordered icosahedra. Iron-centred normal icosahedra are linked to one another by face- and vertex-sharing forming two types of basal slabs, which are bridged with each other by face-sharing with icosioctahedra, whereas disordered icosahedra with positional disorder at their vertex sites are isolated from other polyhedra. The bonding features in the δ1p phase are discussed in comparison with those in the Γ and ζ phases in the iron−zinc system. PMID:24675597

  12. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    DOE PAGESBeta

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; Beland, Laurent K.; Wang, Lumin M.; Bei, Hongbin; Specht, Eliot D.; Larson, Bennett C.

    2016-01-01

    The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less

  13. Application of Scanning Electron Microscopy/Energy-Dispersive X-Ray Spectroscopy for Characterization of Detrital Minerals in Karst Cave Speleothems.

    PubMed

    Zupančič, Nina; Miler, Miloš; Šebela, Stanka; Jarc, Simona

    2016-02-01

    Micro-scale observations in karst caves help to identify different processes that shaped local morphology. Scanning electron microscopy/energy-dispersive X-ray spectroscopy inspection of speleothems from two karst caves in Slovenia, Predjama and Črna Jama, confirmed the presence of sub-angular to sub-rounded detrital fragments of clay minerals, feldspars, quartz, Fe-oxides/hydroxides, rutile and Nb-rutile, xenotime, kassite, allanite, fluorapatite, epidote, ilmenite, monazite, sphene, and zircon, between 2 and 50 μm across. These occur in porous layers separating calcite laminae in the clayey coating on the layer below the surface of the speleothems, and are also incorporated within actual crystals. It is likely that they are derived from the weathered rocks of the Eocene flysch. Probably they were first transported into the caves by floodwaters forming cave sediments. Later, depending upon the climate conditions, they were moved by air currents or by water to the surface of active speleothems. They might also be redeposited from overlying soils enriched with wind-transported minerals from the flysch, or from higher passages filled with weathered flysch sediment, by drip water percolating through the fissured limestone. As some of the identified minerals are carriers of rare earth elements, Ti and Zr, their presence could affect any palaeoclimatic interpretations that are based upon the geochemical composition of the speleothems. PMID:26914996

  14. Wavefront propagation simulations for a UV/soft x-ray beamline: Electron Spectro-Microscopy beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Canestrari, N.; Bisogni, V.; Walter, A.; Zhu, Y.; Dvorak, J.; Vescovo, E.; Chubar, O.

    2014-09-01

    A "source-to-sample" wavefront propagation analysis of the Electron Spectro-Microscopy (ESM) UV / soft X-ray beamline, which is under construction at the National Synchrotron Light Source II (NSLS-II) in the Brookhaven National Laboratory, has been conducted. All elements of the beamline - insertion device, mirrors, variable-line-spacing gratings and slits - are included in the simulations. Radiation intensity distributions at the sample position are displayed for representative photon energies in the UV range (20 - 100 eV) where diffraction effects are strong. The finite acceptance of the refocusing mirrors is the dominating factor limiting the spatial resolution at the sample (by ~3 μm at 20 eV). Absolute estimates of the radiation flux and energy resolution at the sample are also obtained from the electromagnetic calculations. The analysis of the propagated UV range undulator radiation at different deflection parameter values demonstrates that within the beamline angular acceptance a slightly "red-shifted" radiation provides higher flux at the sample and better energy resolution compared to the on-axis resonant radiation of the fundamental harmonic.

  15. A case of hut lung: scanning electron microscopy with energy dispersive x-ray spectroscopy analysis of a domestically acquired form of pneumoconiosis.

    PubMed

    Mukhopadhyay, Sanjay; Gujral, Manmeet; Abraham, Jerrold L; Scalzetti, Ernest M; Iannuzzi, Michael C

    2013-07-01

    Hut lung is a pneumoconiosis caused by exposure to smoke derived from biomass fuels used for cooking in poorly ventilated huts. We report, to our knowledge, the first analysis of the dust deposited in the lungs in hut lung by scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDS). A Bhutanese woman presented with shortness of breath and an abnormal chest radiograph. Chest CT scan showed innumerable tiny bilateral upper lobe centrilobular nodules. Transbronchial biopsy revealed mild interstitial fibrosis with heavy interstitial deposition of black dust. SEM/EDS showed that the dust was carbonaceous, with smaller yet substantial numbers of silica and silicate particles. Additional history revealed use of a wood/coal-fueled stove in a small, poorly ventilated hut for 45 years. The possibility of hut lung should be considered in women from countries where use of biomass-fueled stoves for cooking is common. Our findings support the classification of this condition as a mixed-dust pneumoconiosis. PMID:23880681

  16. Evaluation of LED therapy at 945nm on bone repair by micro x-ray fluorescence spectroscopy and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Diamantino, Alexandre G.; Nicolau, Renata A.; de Oliveira, Marco A.; Santo, Ana Maria E.

    2011-07-01

    Phototherapy is able to modulate cellular metabolism of bone tissue and consequently accelerate the repair. The aim of this study was to evaluate the effect of this therapy in repair of bone monocortical defects in femurs of thirty male Wistar rats. The animals were divided into six groups (five animals for group), including three controls and three irradiated groups with different experimental times (14, 21, and 28 days after surgery). LED was used for the irradiation, emitting non-coherent light in the spectral range of 945+/-20 nm and output power of 48 mW, on one point of irradiation for four minutes. Seven treatment sessions were performed with 48 hours between sessions. For analysis on the bone repair, qualitative and quantitative assessments of Ca and P contents were done by micro x-ray fluorescence spectroscopy (μXRF) and the morphological structure was carried out using Scanning Electron Microscopy (SEM). The results showed the efficiency of infrared LED therapy, because the amount of mineral components analyzed by μXRF and the morphological features of cortical and trabecular bones, demonstrated by the SEM images, showed enhanced bone repair in the irradiated groups when compared to their corresponding control groups at all stages.

  17. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy Studies on Processed Tooth Graft Material by Vacuum-ultrasonic Acceleration

    PubMed Central

    Lee, Eun-Young; Kim, Eun-Suk; Kim, Kyung-Won

    2014-01-01

    Purpose: The current gold standard for clinical jawbone formation involves autogenous bone as a graft material. In addition, demineralized dentin can be an effective graft material. Although demineralized dentin readily induces heterotopic bone formation, conventional decalcification takes three to five days, so, immediate bone grafting after extraction is impossible. This study evaluated the effect of vacuum ultrasonic power on the demineralization and processing of autogenous tooth material and documented the clinical results of rapidly processed autogenous demineralized dentin (ADD) in an alveolar defects patient. Methods: The method involves the demineralization of extracted teeth with detached soft tissues and pulp in 0.6 N HCl for 90 minutes using a heat controlled vacuum-ultrasonic accelerator. The characteristics of processed teeth were evaluated by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Bone grafting using ADD was performed for narrow ridges augmentation in the mandibular area. Results: The new processing method was completed within two hours regardless of form (powder or block). EDS and SEM uniformly demineralized autotooth biomaterial. After six months, bone remodeling was observed in augmented sites and histological examination showed that ADD particles were well united with new bone. No unusual complications were encountered. Conclusion: This study demonstrates the possibility of preparing autogenous tooth graft materials within two hours, allowing immediate one-day grafting after extraction. PMID:27489819

  18. A Study of the Oxidation Behaviour of Pile Grade A (PGA) Nuclear Graphite Using Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and X-Ray Tomography (XRT)

    PubMed Central

    Payne, Liam; Heard, Peter J.; Scott, Thomas B.

    2015-01-01

    Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK’s first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600–1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment. PMID:26575374

  19. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    SciTech Connect

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; Beland, Laurent K.; Wang, Lumin M.; Bei, Hongbin; Specht, Eliot D.; Larson, Bennett C.

    2016-01-01

    The nature of defect clusters in Ni and Ni$_{50}$Co$_{50}$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.

  20. Surface characterization of 7S and 11S globulin powders from soy protein examined by X-ray photoelectron spectroscopy and scanning electron microscopy.

    PubMed

    Zhao, Xiaoyan; Chen, Jun; Zhu, Qingjun; Du, Fangling; Ao, Qiang; Liu, Jie

    2011-09-01

    In this study the surface composition of 7S and 11S globulin powders from soybean proteins by aqueous buffer and reverse micelle extractions had been examined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Analysis by XPS revealed that the O and N atomic percentage of 7S and 11S globulin surfaces from bis(2-ethylhexyl) sodium sulfosuccinate (AOT) reverse micelle was higher than from aqueous buffer, but the C atomic percentage was lower. The O/C ratio of the 7S globulin powder from aqueous buffer and reverse micelle was similar while significant differences were obtained in the O/C ratio of the 11S globulin powder, N/C atom ratios of the 7S and 11S globulin powders and high-resolution XPS C 1s, N 1s, O 1s spectra. Powder microstructure after reverse micelle treatment showed the presence of small pores, indicating the effect of reverse micelle on the 7S and 11S globulin structure. The obtained results indicated that the reverse micelle could affect the C, O and N components on the surface of soybean proteins. PMID:21555209

  1. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Coroado, J.; dos Santos, J. M. F.; Lühl, L.; Wolff, T.; Kanngießer, B.; Carvalho, M. L.

    2011-05-01

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with μ-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each "layer". Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  2. Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive x-ray fluorescence spectrometry, and scanning electron microscopy study

    NASA Astrophysics Data System (ADS)

    Pascon, Fernanda Miori; Kantovitz, Kamila Rosamilia; Soares, Luís Eduardo Silva; Santo, Ana Maria do Espírito; Martin, Airton Abraha~o.; Puppin-Rontani, Regina Maria

    2012-07-01

    We examine the morphological and chemical changes in the pulp chamber dentin after using endodontic agents by scanning electron microscopy (SEM), Fourier transform Raman spectroscopy (FT-Raman), and micro energy-dispersive x-ray fluorescence spectrometry (μEDXRF). Thirty teeth were sectioned exposing the pulp chamber and divided by six groups (n=5): NT-no treatment; CHX-2% chlorhexidine; CHXE-2% chlorhexidine+17% EDTA E-17% EDTA; SH5-5.25% NaOCl; SH5E-5.25% NaOCl+17% EDTA. The inorganic and organic content was analyzed by FT-Raman. μEDXRF examined calcium (Ca) and phosphorus (P) content as well as Ca/P ratio. Impressions of specimens were evaluated by SEM. Data were submitted to Kruskal-Wallis and Dunn tests (p<0.05). Differences were observed among groups for the 960 cm-1 peak. Ca and P content differences were significant (SH5>NT=SH5E>CHX>E>CHXE). CHXE and E presented the highest Ca/P ratio values compared to the other groups (p<0.05). The SEM images in the EDTA-treated groups had the highest number of open tubules. Erosion in the tubules was observed in CHX and SH5E groups. Endodontic agents change the inorganic and organic content of pulp chamber dentin. NaOCl used alone, or in association with EDTA, was the most effective agent considering chemical and morphological approaches.

  3. X-ray Free-electron Lasers

    SciTech Connect

    Feldhaus, J.; Arthur, J.; Hastings, J.B.; /SLAC

    2007-02-23

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

  4. Crystallization, preliminary X-ray crystallographic and cryo-electron microscopy analysis of a bifunctional enzyme fucokinase/l-fucose-1-P-guanylyltransferase from Bacteroides fragilis

    PubMed Central

    Cheng, Chongyun; Gu, Jianhua; Su, Jing; Ding, Wei; Yin, Jie; Liang, Wenguang; Yu, Xiaoxia; Ma, Jun; Wang, Peng George; Xiao, Zhicheng; Liu, Zhi-Jie

    2014-01-01

    Fucokinase/l-fucose-1-P-guanylyltransferase (FKP) is a bifunctional enzyme which converts l-fucose to Fuc-1-P and thence to GDP-l-fucose through a salvage pathway. The molecular weights of full-length FKP (F-FKP) and C-terminally truncated FKP (C-FKP, residues 300–949) are 105.7 and 71.7 kDa, respectively. In this study, both recombinant F-FKP and C-FKP were expressed and purified. Size-exclusion chromatography experiments and analytical ultracentrifugation results showed that both F-FKP and C-FKP are trimers. Native F-FKP protein was crystallized by the vapour-diffusion method and the crystals belonged to space group P212121 and diffracted synchrotron X-rays to 3.7 Å resolution. The crystal unit-cell parameters are a = 91.36, b = 172.03, c = 358.86 Å, α = β = γ = 90.00°. The three-dimensional features of the F-FKP molecule were observed by cryo-EM (cryo-electron microscopy). The preliminary cryo-EM experiments showed the F-FKP molecules as two parallel disc-shaped objects stacking together. Combining all results together, it is assumed that there are six FKP molecules in one asymmetric unit, which corresponds to a calculated Matthews coefficient of 2.19 Å3 Da−1 with 43.83% solvent content. These preliminary crystallographic and cryo-EM microscopy analyses provide basic structural information on FKP. PMID:25195892

  5. Nanoscale Imaging of Buried Structures with Elemental Specificity Using Resonant X-Ray Diffraction Microscopy

    SciTech Connect

    Song, Changyong; Bergstrom, Raymond; Ramunno-Johnson, Damien; Jiang, Huaidong; Miao, Jianwei; Paterson, David; Jonge, Martin D. de; McNulty, Ian; Lee, Jooyoung; Wang, Kang L.

    2008-01-18

    We report the first demonstration of resonant x-ray diffraction microscopy for element specific imaging of buried structures with a pixel resolution of {approx}15 nm by exploiting the abrupt change in the scattering cross section near electronic resonances. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent x-ray diffraction patterns acquired below and above the Bi M{sub 5} edge. We anticipate that resonant x-ray diffraction microscopy will be applied to element and chemical state specific imaging of a broad range of systems including magnetic materials, semiconductors, organic materials, biominerals, and biological specimens.

  6. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  7. Magnetic anisotropy, scanning electron microscopy, and X ray pole figure goniometry study of inclination shallowing in a compacting clay-rich sediment

    NASA Astrophysics Data System (ADS)

    Kodama, K. P.

    1992-12-01

    Anisotropy of anhysteretic remanence (AAR), scanning electron microscopy (SEM), and X ray pole figure goniometry studies of clay-rich sediments were conducted to delineate the interactions between magnetite and clay particles which cause inclination shallowing during compaction. These studies used synthetic sediments composed of kaolinite or illite and two grain sizes of mgnetite, 0.45 μm and 2-3 μm. Natural marine sediments which contained 40-50% clay were also used. The sediments were compacted by pressures as high as 0.157 MPa. The sediments' porosity decrease suggests that the compaction experiments model burial depths up to 400-500 m. The main result of this study is that inclination shallowing and void ratio versus pressure curves show two points where behavior changes. A rapid decrease in inclination and void ratio occurs up to a pressure of 0.02 MPa. This is accompanied by a magnetic intensity decrease of 20-30%. Compaction at pressures between 0.02 MPa and 0.05 MPa causes a further decrease in these parameters at moderate rates, while compaction at pressures above 0.05 MPa causes very little change. Percent magnetic anisotropy and X ray pole figure intensity ratio versus pressure curves show only one point where behavior changes at 0.05 MPa with a rapid increase at lower pressures and little change at higher pressures. A model to explain this behavior, based on the SEM obsevations as well as the magnetic anisotropy, pole figure, and inclination data, suggests that compaction up to 0.02 MPa causes a decrease in pore volume with little reorientation of clay particles. Some magnetic particles are firmly attached to clay particles, whereas other loosely attached particles are either randomized or subvertical ones are preferentially disturbed causing inclination shallowing and an intensity decrease. At pressures between 0.02 MPa and 0.05 MPa, magnetite particles have become firmly attached to clay particles and start to follow the reorientation of clay

  8. The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal components analysis

    NASA Astrophysics Data System (ADS)

    Panfili, Frédéric; Manceau, Alain; Sarret, Géraldine; Spadini, Lorenzo; Kirpichtchikova, Tatiana; Bert, Valérie; Laboudigue, Agnès; Marcus, Matthew A.; Ahamdach, Noureddine; Libert, Marie-Françoise

    2005-05-01

    The maintenance of waterways generates large amounts of dredged sediments, which are deposited on adjacent land surfaces. These sediments are often rich in metal contaminants and present a risk to the local environment. Understanding how the metals are immobilized at the molecular level is critical for formulating effective metal containment strategies such as phytoremediation. In the present work, the mineralogical transformations of Zn-containing phases induced by two graminaceous plants (A grostis tenuis and Festuca rubra) in a contaminated sediment ([Zn] = 4700 mg kg -1, [P 2O 5] = 7000 mg kg -1, pH = 7.8), untreated or amended with hydroxylapatite (AP) or Thomas basic slag (TS), were investigated after two yr of pot experiment by scanning electron microscopy coupled with energy-dispersive spectrometry (SEM-EDS), synchrotron-based X-ray microfluorescence (μ-SXRF), and powder and laterally resolved extended X-ray absorption fine structure (μ-EXAFS) spectroscopy. The number and nature of Zn species were evaluated by principal component (PCA) and least-squares fitting (LSF) analysis of the entire set of μ-EXAFS spectra, which included up to 32 individual spectra from regions of interest varying in chemical composition. Seven Zn species were identified at the micrometer scale: sphalerite, gahnite, franklinite, Zn-containing ferrihydrite and phosphate, (Zn-Al)-hydrotalcite, and Zn-substituted kerolite-like trioctahedral phyllosilicate. Bulk fractions of each species were quantified by LSF of the powder EXAFS spectra to linear combinations of the identified Zn species spectra. In the untreated and unvegetated sediment, Zn was distributed as ˜50% (mole ratio of total Zn) sphalerite, ˜40% Zn-ferrihydrite, and ˜10 to 20% (Zn-Al)-hydrotalcite plus Zn-phyllosilicate. In unvegetated but amended sediments (AP and TS), ZnS and Zn-ferrihydrite each decreased by 10 to 20% and were replaced by Zn-phosphate (˜30˜40%). In the presence of plants, ZnS was almost completely

  9. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGESBeta

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  10. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    SciTech Connect

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  11. Contact microscopy with a soft x-ray laser

    SciTech Connect

    DiCicco, D.S.; Kim, D.; Rosser, R.J.; Skinner, C.H.; Suckewer, S.; Gupta, A.P.; Hirschberg, J.G.

    1989-03-01

    A soft x-ray laser of output energy 1-3 mJ at 19.2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. We also present a Composite Optical X- ray Laser Microscope ''COXRALM'' of novel design. 14 refs., 8 figs., 1 tab.

  12. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Page, A.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.

  13. Laser-based X-ray and electron source for X-ray fluorescence studies

    NASA Astrophysics Data System (ADS)

    Valle Brozas, F.; Crego, A.; Roso, L.; Peralta Conde, A.

    2016-08-01

    In this work, we present a modification to conventional X-rays fluorescence using electrons as excitation source and compare it with the traditional X-ray excitation for the study of pigments. For this purpose, we have constructed a laser-based source capable to produce X-rays as well as electrons. Because of the large penetration depth of X-rays, the collected fluorescence signal is a combination of several material layers of the artwork under study. However, electrons are stopped in the first layers, allowing a more superficial analysis. We show that the combination of both excitation sources can provide extremely valuable information about the structure of the artwork.

  14. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGESBeta

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore » microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  15. Biological imaging by soft x-ray diffraction microscopy

    SciTech Connect

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; Sayre, D.

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  16. High spatial resolution soft-x-ray microscopy

    SciTech Connect

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T.

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  17. Nearly Uniform Decaosmium Clusters Supported on MgO: Characterization by X-ray Absorption Spectroscopy and Scanning Transmission Electron Microscopy

    SciTech Connect

    Kulkarni, A.; Mehraeen, S; Reed, B; Okamoto, N; Browning, N; Gates, B

    2009-01-01

    Samples containing small, nearly uniform clusters of a heavy metal, Os, were prepared on a high-area porous support consisting of light atoms, MgO, to provide an opportunity for a critical assessment of estimates of cluster size determined by extended X-ray absorption fine structure (EXAFS) spectroscopy and high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Supported carbonyl clusters approximated as decaosmium were prepared by reductive carbonylation of adsorbed Os3(CO)12 at 548 K and 1 bar. Infrared (IR) spectra of the clusters resemble those attributed in earlier work to supported clusters similar to [Os10C(CO)24]2-, consistent with the EXAFS data. The spectra indicate a molar yield of decaosmium carbonyl clusters of about 65-70%. As these clusters were treated in flowing H2, they were partially decarbonylated, as shown by IR and EXAFS spectra. The rms (root-mean-square) radii of the undecarbonylated and partially decarbonylated clusters were found by HAADF-STEM to be 3.11 {+-} 0.09 and 3.06 {+-} 0.05 A, respectively, and the close agreement between these values is consistent with the inference that the cluster frame was essentially the same in each. The average rms radius of the undecarbonylated clusters, estimated on the basis of EXAFS data, was 2.94 {+-} 0.07 A, calculated on the basis of the assumption that the osmium frame matched that of [Os10C(CO)24]2-. EXAFS analysis of the data characterizing the partially decarbonylated sample, aided by the STEM results, showed, consistent with the STEM results, that the partial decarbonylation did not lead to a significant change in the rms radius of the metal frame.

  18. Weathering properties of treated southern yellow pine wood examined by X-ray photoelectron spectroscopy, scanning electron microscopy and physical characterization

    NASA Astrophysics Data System (ADS)

    Salaita, Ghaleb N.; Ma, Frank M. S.; Parker, Trudy C.; Hoflund, Gar B.

    2008-04-01

    In this study the weathering behavior of southern yellow pine (SYP) wood samples pretreated in different solutions has been examined using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and various types of physical characterization regarding material loss and discoloration. The treatment solutions include water as a control, a commercially available water repellent (WR) wood treating additive and polyethylene glycol (PEG) products including PEG PLUS™, PEG 8000 solutions and Compound 20M in varying concentrations. All contained the wood preservative chromated copper arsenate (CCA). One sample was treated with a CCA solution only. The treatments were carried out at 20 °C and 150 psig for 1/2 h after exposure to vacuum (28 mmHg) for 15 min. Simulated weathering was achieved in an Atlas 65-W Weather-Ometer for 2000 h with both light and dark periods and rain. The temperature ranged from 23 °C during the dark cycle to 35 °C during the light cycle. With weathering the XPS O/C ratios increase due to oxidation of the surface. Exposure to UV light results in bond breakage and reaction with oxygen in the presence of air to form organic functional groups such as ?, ?, C dbnd O and/or O-C-O. These oxidized products can protect the underlying wood from deterioration if they are insoluble in water and remain on the surface as a protective coating. If soluble, rain washes the compounds away and assists in the degradation. Correlated changes are observed in the XPS O/C ratios, the high-resolution XPS C 1s spectra, the SEM micrographs and physical measurements including thickness alteration, weight loss, and discoloration by yellowing or whitening of the weathered wood. The PEG treatments are effective in protecting wood with the 2% PEG PLUS treatment providing the best weathering behavior similar to that of the CCA treatment. The WR and water treatments yield the poorest weathering properties.

  19. Orthogonal identification of gunshot residue with complementary detection principles of voltammetry, scanning electron microscopy, and energy-dispersive X-ray spectroscopy: sample, screen, and confirm.

    PubMed

    O'Mahony, Aoife M; Samek, Izabela A; Sattayasamitsathit, Sirilak; Wang, Joseph

    2014-08-19

    Field-deployable voltammetric screening coupled with complementary laboratory-based analysis to confirm the presence of gunshot residue (GSR) from the hands of a subject who has handled, loaded, or discharged a firearm is described. This protocol implements the orthogonal identification of the presence of GSR utilizing square-wave stripping voltammetry (SWSV) as a rapid screening tool along with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) to confirm the presence of the characteristic morphology and metal composition of GSR particles. This is achieved through the judicious modification of the working electrode of a carbon screen-printed electrode (CSPE) with carbon tape (used in SEM analysis) to fix and retain a sample. A comparison between a subject who has handled and loaded a firearm and a subject who has had no contact with GSR shows the significant variations in voltammetric signals and the presence or absence of GSR-consistent particles and constituent metals. This initial electrochemical screening has no effect on the integrity of the metallic particles, and SEM/EDX analysis conducted prior to and postvoltammetry show no differences in analytical output. The carbon tape is instrumental in retaining the GSR sample after electrochemical analysis, supported by comparison with orthogonal detection at a bare CSPE. This protocol shows great promise as a two-tier detection system for the presence of GSR from the hands of a subject, whereby initial screening can be conducted rapidly onsite by minimally trained operators; confirmation can follow at the same substrate to substantiate the voltammetric results. PMID:25084547

  20. Transmission X-ray microscopy of spider dragline silk.

    PubMed

    Glisović, Anja; Thieme, Jürgen; Guttmann, Peter; Salditt, Tim

    2007-01-30

    We have investigated the structure of spider silk fibers from two different Nephila species and three different Araneus species by transmission X-ray microscopy (TXM). Single fibers and double fibers have been imaged. All images are in agreement with a homogenous density on length scales between the fiber diameter and the resolution of the instrument, which is about 25 nm. PMID:16889826

  1. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    SciTech Connect

    Liu, Y.; Andrews, J. C.; Mehta, A.; Pianetta, P.; Meirer, F.; Gil, S. Carrasco; Sciau, P.; Mester, Z.

    2011-09-09

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  2. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Andrews, J. C.; Meirer, F.; Mehta, A.; Gil, S. Carrasco; Sciau, P.; Mester, Z.; Pianetta, P.

    2011-09-01

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  3. Soft X-ray contact microscopy of nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Poletti, G.; Orsini, F.; Batani, D.; Bernardinello, A.; Desai, T.; Ullschmied, J.; Skala, J.; Kralikova, B.; Krousky, E.; Juha, L.; Pfeifer, M.; Kadlec, Ch.; Mocek, T.; Präg, A.; Renner, O.; Cotelli, F.; Lora Lamia, C.; Zullini, A.

    2004-08-01

    Soft X-ray Contact Microscopy (SXCM) of Caenorhabditis elegans nematodes with typical length ~800 μ m and diameter ~30 μ m has been performed using the PALS laser source of wavelength λ = 1.314~μ m and pulse duration τ (FWHM) = 400 ps. Pulsed soft X-rays were generated using molybdenum and gold targets with laser intensities I ≥ 1014 W/cm2. Images have been recorded on PMMA photo resists and analyzed using an atomic force microscope operating in contact mode. Cuticle features and several internal organs have been identified in the SXCM images including lateral field, cuticle annuli, pharynx, and hypodermal and neuronal cell nuclei.

  4. Hard x-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional x-ray microscopes

    SciTech Connect

    Schropp, A.; Hoppe, R.; Patommel, J.; Samberg, D.; Seiboth, F.; Stephan, S.; Schroer, C. G.; Wellenreuther, G.; Falkenberg, G.

    2012-06-18

    We demonstrate x-ray scanning coherent diffraction microscopy (ptychography) with 10 nm spatial resolution, clearly exceeding the resolution limits of conventional hard x-ray microscopy. The spatial resolution in a ptychogram is shown to depend on the shape (structure factor) of a feature and can vary for different features in the object. In addition, the resolution and contrast are shown to increase with increasing coherent fluence. For an optimal ptychographic x-ray microscope, this implies a source with highest possible brilliance and an x-ray optic with a large numerical aperture to generate the optimal probe beam.

  5. PREFACE: 9th International Conference on X-Ray Microscopy

    NASA Astrophysics Data System (ADS)

    Quitmann, Christoph; David, Christian; Nolting, Frithjof; Pfeiffer, Franz; Stampanoni, Marco

    2009-09-01

    Conference logo This volume compiles the contributions to the International Conference on X-Ray Microscopy (XRM2008) held on 20-25 July 2008 in Zurich, Switzerland. The conference was the ninth in a series which started in Göttingen in 1984. Over the years the XRM conference series has served as a forum bringing together all relevant players working on the development of methods, building instrumentation, and applying x-ray microscopy to challenging issues in materials science, condensed matter research, environmental science and biology. XRM2008 was attended by about 300 participants who followed 44 oral presentations and presented 220 posters. Conference photograph Figure 1: Participants of the XRM2008 conference gathered in front of the main building of the ETH-Zurich. The conference showed that x-ray microscopy has become a mature field resting on three pillars. The first are workhorse instruments available even to non-specialist users. These exist at synchrotron sources world-wide as well as in laboratories. They allow the application of established microscopy methods to solve scientific projects in areas as diverse as soil science, the investigation of cometary dust particles, magnetic materials, and the analysis of ancient parchments. Examples of all of these projects can be found in this volume. These instruments have become so well understood that now they are also commercially available. The second pillar is the continued development of methods. Methods like stroboscopic imaging, wet cells or high and low temperature environments add versatility to the experiments. Methods like phase retrieval and ptychographic imaging allow the retrieval of information which hitero was thought to be inaccessible. The third pillar is the extension of such instruments and methods to new photon sources. With x-ray free electron lasers on the horizon the XRM community is working to transfer their know-how to these novel sources which will offer unprecedented brightness and

  6. X-ray microscopy for neural circuit reconstruction

    NASA Astrophysics Data System (ADS)

    Mizutani, Haruo; Takeda, Yoshihiro; Momose, Atsushi; Takeuchi, Akihisa; Takagi, Toshihisa

    2009-09-01

    Neural circuits in the central nervous system build our various higher brain functions. However, little is known about mechanisms underlying neuronal information processing in the brain. Anatomical graph structures of real neural networks will provide us with fundamental views to elucidate them. We aim at developing a three-dimensional atlas of neural circuits using high resolution hard X-ray microscopy by synchrotron radiation. We stained neurons of a complete brain from a mouse by the Golgi-Cox method. The heavy metals used in our procedure enhanced X-ray absorption and phase contrast. 3D images of fibriform axons and dendrites of various neurons were reconstructed by back projection. X-ray microscopy with a Talbot interferometer demonstrated finer histological structures of pyramidal neurons in the hippocampus and the cerebral cortex. This observation probably serves as a foundation for achieving a mammalian Connectome Project (identifying complete wiring diagrams of the brain) with X-ray nano-tomography in the near future.

  7. Viewing spin structures with soft x-ray microscopy

    SciTech Connect

    Fischer, Peter

    2010-06-01

    The spin of the electron and its associated magnetic moment marks the basic unit for magnetic properties of matter. Magnetism, in particular ferromagnetism and antiferromagnetism is described by a collective order of these spins, where the interaction between individual spins reflects a competition between exchange, anisotropy and dipolar energy terms. As a result the energetically favored ground state of a ferromagnetic system is a rather complex spin configuration, the magnetic domain structure. Magnetism is one of the eldest scientific phenomena, yet it is one of the most powerful and versatile utilized physical effects in modern technologies, such as in magnetic storage and sensor devices. To achieve highest storage density, the relevant length scales, such as the bit size in disk drives is now approaching the nanoscale and as such further developments have to deal with nanoscience phenomena. Advanced characterization tools are required to fully understand the underlying physical principles. Magnetic microscopes using polarized soft X-rays offer a close-up view into magnetism with unique features, these include elemental sensitivity due to X-ray magnetic dichroism effects as contrast mechanism, high spatial resolution provided by state-of-the-art X-ray optics and fast time resolution limited by the inherent time structure of current X-ray sources, which will be overcome with the introduction of ultrafast and high brilliant X-ray sources.

  8. Evolution of titania nanotubes-supported WO{sub x} species by in situ thermo-Raman spectroscopy, X-ray diffraction and high resolution transmission electron microscopy

    SciTech Connect

    Cortes-Jacome, M.A.; Angeles-Chavez, C.; Morales, M.; Lopez-Salinas, E.; Toledo-Antonio, J.A.

    2007-10-15

    Structural evolution of WO{sub x} species on the surface of titania nanotubes was followed by in situ thermo-Raman spectroscopy. A total of 15 wt% of W atoms were loaded on the surface of a hydroxylated titania nanotubes by impregnation with ammonium metatungstate solution and then, the sample was thermally treated in a Linkam cell at different temperatures in nitrogen flow. The band characteristic of the W=O bond was observed at 962 cm{sup -1} in the dried sample, which vanished between 300 and 700 deg. C, and reappear again after annealing at 800 deg. C, along with a broad band centered at 935 cm{sup -1}, attributed to the v{sub 1} vibration of W=O in tetrahedral coordination. At 900 and 1000 deg. C, the broad band decomposed into four bands at 923, 934, 940 and 950 cm{sup -1}, corresponding to the symmetric and asymmetric vibration of W=O bonds in Na{sub 2}WO{sub 4} and Na{sub 2}W{sub 2}O{sub 7} phases as determined by X-ray diffraction and High resolution transmission electron microscopy (HRTEM). The structure of the nanotubular support was kept at temperatures below 450 deg. C, thereafter, it transformed into anatase being stabilized at temperatures as high as 900 deg. C. At 1000 deg. C, anatase phase partially converted into rutile. After annealing at 1000 deg. C, a core-shell model material was obtained, with a shell of ca. 5 nm thickness, composed of sodium tungstate nanoclusters, and a core composed mainly of rutile TiO{sub 2} phase. - Graphical abstract: Titania nanotubes loaded with 15 wt% W atoms were characterized from room temperature (rt) to 1000 deg. C by thermo-Raman spectroscopy in N{sub 2}. At 1000 deg. C, a core-shell model material was obtained, with a shell thickness of ca. 5 nm composed by nanoclusters of sodium tungstate, and a core composed mainly of rutile TiO{sub 2} phase.

  9. Elemental imaging of cartilage by scanning x-ray microscopy

    SciTech Connect

    Buckley, C.J.; Foster, G.F.; Burge, R.E. ); Ali, S.Y.; Scotchford, C.A. , Royal National Orthopaedic Hospital, Stanmore, Middlesex ); Kirz, J. ); Rivers, M.L. )

    1992-01-01

    Elemental imaging via scanning transmission x-ray microscopy (STXM) and scanning fluorescence x-ray microscopy (SFXM) has been used to image calcium deposits in cartilage. In the case of STXM, 0.1 {mu}m thick sections were imaged to investigate the proximity of calcium deposits in relation to chondrocyte cells. The resolution available was 0.5 {mu}m, and field widths of up to 25 {mu}m were used at this resolution. The resolution available in SFXM was 10 {mu}m, and field widths of up to 2 mm were used at this resolution on 5-{mu}m thick specimens. Together these techniques were used to map calcium deposits at the cellular level, and at the full tissue size level.

  10. X-ray fluorescence microscopy of olfactory receptor neurons

    NASA Astrophysics Data System (ADS)

    Dučić, T.; Breunig, E.; Schild, D.; Herbst, J.; Nováková, E.; Susini, J.; Tucoulu, R.; Salditt, T.

    2009-09-01

    We report a x-ray fluorescence microscopy study of cells and tissues from the olfactory system of Xenopus laevis. In this experiment we focus on sample preparation and experimental issues, and present first results of fluorescence maps of the elemental distribution of Cl, K, Ca, P, S and Na both in individual isolated neural cells and in cross-sections of the same tissue.

  11. Calcified-tissue investigations using synchrotron x-ray microscopy

    SciTech Connect

    Jones, K.W.; Spanne, P.; Schidlovsky, G.; Dejun, X. ); Bockman, R.S. . Medical Coll.); Rabinowitz, M.B. ); Hammond, P.B.; Bornschein, R.L. ); Hoeltzel, D.A. )

    1990-10-01

    Synchrotron x-ray microscopy (SXRM) in both emission and absorption modes has been used to examine elemental distributions in specimens of rat tibia, human deciduous teeth, and an orthopedic implant phantom. The work was performed with a spatial resolution of 8 {mu}m for the emission work and 25 {mu}m for the absorption work. The results illustrate the usefulness of SXRM for measurements of different types of calcified tissue. 3 figs.

  12. Quantitative biological imaging by ptychographic x-ray diffraction microscopy

    PubMed Central

    Giewekemeyer, Klaus; Thibault, Pierre; Kalbfleisch, Sebastian; Beerlink, André; Kewish, Cameron M.; Dierolf, Martin; Pfeiffer, Franz; Salditt, Tim

    2010-01-01

    Recent advances in coherent x-ray diffractive imaging have paved the way to reliable and quantitative imaging of noncompact specimens at the nanometer scale. Introduced a year ago, an advanced implementation of ptychographic coherent diffractive imaging has removed much of the previous limitations regarding sample preparation and illumination conditions. Here, we apply this recent approach toward structure determination at the nanoscale to biological microscopy. We show that the projected electron density of unstained and unsliced freeze-dried cells of the bacterium Deinococcus radiodurans can be derived from the reconstructed phase in a straightforward and reproducible way, with quantified and small errors. Thus, the approach may contribute in the future to the understanding of the highly disputed nucleoid structure of bacterial cells. In the present study, the estimated resolution for the cells was 85 nm (half-period length), whereas 50-nm resolution was demonstrated for lithographic test structures. With respect to the diameter of the pinhole used to illuminate the samples, a superresolution of about 15 was achieved for the cells and 30 for the test structures, respectively. These values should be assessed in view of the low dose applied on the order of ≃1.3·105 Gy, and were shown to scale with photon fluence. PMID:20018650

  13. Hard-X-ray magnetic microscopy and local magnetization analysis using synchrotron radiation.

    PubMed

    Suzuki, Motohiro

    2014-11-01

    X-ray measurement offers several useful features that are unavailable from other microscopic means including electron-based techniques. By using X-rays, one can observe the internal parts of a thick sample. This technique basically requires no high vacuum environment such that measurements are feasible for wet specimens as well as under strong electric and magnetic fields and even at a high pressure. X-ray spectroscopy using core excitation provides element-selectivity with significant sensitivities to the chemical states and atomic magnetic moments in the matter. Synchrotron radiation sources produce a small and low-divergent X-ray beam, which can be converged to a spot with the size of a micrometer or less using X-ray focusing optics. The recent development in the focusing optics has been driving X-ray microscopy, which has already gone into the era of X-ray nanoscopy. With the use of the most sophisticated focusing devices, an X-ray beam of 7-nm size has successfully been achieved [1]. X-ray microscopy maintains above-mentioned unique features of X-ray technique, being a perfect complement to electron microscopy.In this paper, we present recent studies on magnetic microscopy and local magnetic analysis using hard X-rays. The relevant instrumentation developments are also described. The X-ray nanospectroscopy station of BL39XU at SPring-8 is equipped with a focusing optics consisting of two elliptic mirrors, and a focused X-ray beam with the size of 100 × 100 nm(2) is available [2]. Researchers can perform X-ray absorption spectroscopy: nano-XAFS (X-ray absorption fine structure) using the X-ray beam as small as 100 nm. The available X-ray energy is from 5 to 16 keV, which allows nano-XAFS study at the K edges of 3d transition metals, L edges of rare-earth elements and 5d noble metals. Another useful capability of the nanoprobe is X-ray polarization tunability, enabling magnetic circular dichroism (XMCD) spectroscopy with a sub-micrometer resolution. Scanning

  14. Ultrastructural and elemental imaging of biological specimens by soft x-ray contact microscopy

    SciTech Connect

    Panessa, B.J.; Hoffman, P. . Dept. of Orthopedics); Warren, J.B. ); Feder, R.; Sayre, D. . Thomas J. Watson Research Center)

    1980-01-01

    Soft X-ray contact microscopy offers a means of visualizing unstained as well as stained biological materials at better than 6 nm resolution. Soft X-ray imaging depends on differential absorption of incident soft (1--10nm wavelength) X-rays by the endogenous elements within a specimen. The advantages of using soft X-rays for imaging are: (1) reduced specimen damage during exposure; (2) ability to image hydrated specimens at atmospheric pressure; (3) ability to image specimens ranging in thickness from less than 40 nm to as much as 10{mu}m; and (4) ability to map the elemental composition of the specimen through observation of the differential absorption of properly chosen incident x-ray wavelengths. This paper explains the principles of image formation and demonstrates the use of soft X-ray contact microscopy with biological samples which could not readily be imaged in their natural form using conventional electron microscopy methods. Data are also presented on the recognition of compositional features in histochemically treated articular joint tissues. 30 refs., 15 figs.

  15. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  16. Vanderbilt University free-electron laser x-ray facility

    NASA Astrophysics Data System (ADS)

    Tompkins, Perry A.; Andrews, Weiwei D.; Brau, Charles A.; Waters, James A.; Carroll, Frank E.; Pickens, David R.; Price, Ronald R.; Roos, Carlton F.

    1993-02-01

    The Vanderbilt University Free-Electron Laser Program is developing the capability to create near-monochromatic x rays for medical imaging and other purposes. For this experiment we feed-back the normal infrared FEL light to collide with the electron beam. This causes Compton backscattering of the incident photons which creates x rays. These x rays cannot feed an x-ray laser, but they have a collimated intensity and tunability which make them highly suitable for medical imaging. This paper is particularly focused on the x-ray beam transport to be used with this experiment. This transport must collimate the x-ray beam and re-direct it to match a beam chase located in the vault ceiling at a 40 degree angle to the electron beam axis. A brief description of the creation mechanism and x-ray beam properties are included.

  17. Development of scanning electron and x-ray microscope

    NASA Astrophysics Data System (ADS)

    Matsumura, Tomokazu; Hirano, Tomohiko; Suyama, Motohiro

    2016-01-01

    We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and soft materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.

  18. X-ray Microscopy Resource Center at the Advanced Light Source

    SciTech Connect

    Meyer-Ilse, W.; Attwood, D.; Koike, M.

    1992-08-01

    The high spectral brightness of undulator radiation from the Advanced Light Source (ALS) offers a great scientific opportunity for biological x-ray microscopy. X-ray microscopy extends visible light microscopy to higher resolution and makes use of unique contrast mechanisms. It does not compete with techniques such as electron microscopy in terms of resolution, but rather offers unique advantages, including the opportunity to take images of samples in an aqueous environment. For a considerable range of resolution and sample thickness the radiation dose in x-ray microscopy is lower than in electron microscopy under the same imaging conditions. To exploit this opportunity a Biological X-ray Microscopy Resource Center will be built at the ALS. An x-ray microscope (XM) and a scanning x-ray microscope (SXM) are to be built. These two microscopes serve complementary needs. The XM gives high quality images at comparably short exposure times, while the SXM is optimized for low radiation dose. High resolution is accomplished in both microscopes with Fresnel zone plate lenses. The SXM produces a diffraction-limited focus point, which is scanned across the sample; therefore the SXM can use only the spatially coherent portion of the radiation. The SXM is best operated on an undulator source with its small phase space. An XM can use the full brightness, including the incoherent fraction of the source. It can be operated with either a bending magnet or an undulator source. The XM can be installed initially at a bending magnet, which can be available at an earlier time, and thus permits the development of diverse biological community at an earlier time. Later this XM can be moved to the undulator, or left at the bending magnet for developmental and less demanding experiments.

  19. High-resolution ab initio Three-dimensional X-ray Diffraction Microscopy

    SciTech Connect

    Chapman, H N; Barty, A; Marchesini, S; Noy, A; Cui, C; Howells, M R; Rosen, R; He, H; Spence, J H; Weierstall, U; Beetz, T; Jacobsen, C; Shapiro, D

    2005-08-19

    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.

  20. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    SciTech Connect

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

  1. Laboratory source based full-field x-ray microscopy at 9 keV

    NASA Astrophysics Data System (ADS)

    Fella, C.; Balles, A.; Wiest, W.; Zabler, S.; Hanke, R.

    2016-01-01

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  2. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGESBeta

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; et al

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  3. Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.

    PubMed

    Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2013-04-22

    We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers. PMID:23609637

  4. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    SciTech Connect

    Volkov, V. V.; Klechkovskaya, V. V. Shtykova, E. V.; Dembo, K. A.; Arkharova, N. A.; Ivakin, G. I.; Smyslov, R. Yu.

    2009-03-15

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that large particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.

  5. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    NASA Astrophysics Data System (ADS)

    Volkov, V. V.; Klechkovskaya, V. V.; Shtykova, E. V.; Dembo, K. A.; Arkharova, N. A.; Ivakin, G. I.; Smyslov, R. Yu.

    2009-03-01

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that large particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.

  6. A soft X-ray beamline for transmission X-ray microscopy at ALBA.

    PubMed

    Pereiro, E; Nicolás, J; Ferrer, S; Howells, M R

    2009-07-01

    The MISTRAL beamline is one of the seven phase-I beamlines at the ALBA synchrotron light source (Barcelona, Spain) that will be opened to users at the end of 2010. MISTRAL will be devoted to cryotomography in the water window and multi-keV spectral regions for biological applications. The optics design consists of a plane-grating monochromator that has been implemented using variable-line-spacing gratings to fulfil the requirements of X-ray microscopy using a reflective condenser. For instance, a fixed-focus condition independent of the included angle, constant magnification as well as coma and spherical aberration corrections are achieved with this system. The reported design is of wider use. PMID:19535865

  7. The Development of Hard X-ray Microscopy with MIRRORCLE-6X

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Tokunaga, T.; Yamada, H.; Sasaki, M.; Hasegawa, D.; Ogasaka, Y.; Yamashita, H.

    2004-08-01

    A laboratory-scale hard X-ray microscope utilizing the portable synchrotron named MIRRORCLE-6X is developed in our laboratory. MIRRORCLE-6X is a X-ray source suitable for hard X-ray microscopy as a result of the X-ray source size of the order of micron, and highly brilliant hard X-rays. Furthermore, when effective focusing elements of hard X-rays are used for MIRRORCLE-6X, this machine could be used for non destructive inspection with high resolution of biological and engineering. We designed hard X-ray optical elements for MIRRORCLE6X and started fabricating X-ray mirrors.

  8. Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline.

    PubMed

    Jones, Michael W M; Phillips, Nicholas W; van Riessen, Grant A; Abbey, Brian; Vine, David J; Nashed, Youssef S G; Mudie, Stephen T; Afshar, Nader; Kirkham, Robin; Chen, Bo; Balaur, Eugeniu; de Jonge, Martin D

    2016-09-01

    Owing to its extreme sensitivity, quantitative mapping of elemental distributions via X-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated. PMID:27577770

  9. Characterization of toners and inkjets by laser ablation spectrochemical methods and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trejos, Tatiana; Corzo, Ruthmara; Subedi, Kiran; Almirall, José

    2014-02-01

    Detection and sourcing of counterfeit currency, examination of counterfeit security documents and determination of authenticity of medical records are examples of common forensic document investigations. In these cases, the physical and chemical composition of the ink entries can provide important information for the assessment of the authenticity of the document or for making inferences about common source. Previous results reported by our group have demonstrated that elemental analysis, using either Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation Induced Breakdown Spectroscopy (LIBS), provides an effective, practical and robust technique for the discrimination of document substrates and writing inks with minimal damage to the document. In this study, laser-based methods and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) methods were developed, optimized and validated for the forensic analysis of more complex inks such as toners and inkjets, to determine if their elemental composition can differentiate documents printed from different sources and to associate documents that originated from the same printing source. Comparison of the performance of each of these methods is presented, including the analytical figures of merit, discrimination capability and error rates. Different calibration strategies resulting in semi-quantitative and qualitative analysis, comparison methods (match criteria) and data analysis and interpretation tools were also developed. A total of 27 black laser toners originating from different manufacturing sources and/or batches were examined to evaluate the discrimination capability of each method. The results suggest that SEM-EDS offers relatively poor discrimination capability for this set (~ 70.7% discrimination of all the possible comparison pairs or a 29.3% type II error rate). Nonetheless, SEM-EDS can still be used as a complementary method of analysis since it has

  10. Soft X-ray microscopy to characterize polyelectrolyte assemblies.

    PubMed

    Köhler, Karen; Déjugnat, Christophe; Dubois, Monique; Zemb, Thomas; Sukhorukov, Gleb B; Guttmann, Peter; Möhwald, Helmuth

    2007-07-26

    Transmission microscopy with soft X-rays (TXM) is applied to image in-situ polyelectrolyte assemblies in aqueous environment. The method is element specific and at this stage exhibits a lateral resolution of 20 nm. With the specific examples of hollow capsules and full spheres made of PAH/PSS polyelectrolyte multilayers, it is shown quantitatively that heat treatment irreversibly reduces the water content in the membrane. These experiments complement those reported recently on the polyion system PDADMAC/PSS, which shows a different glass-transition behavior. Finally, the potential and present limitations of TXM are discussed. PMID:17428089

  11. Soft X-ray Microscopy of Green Cements

    NASA Astrophysics Data System (ADS)

    Monteiro, P. J. M.; Mancio, M.; Kirchheim, A. P.; Chae, R.; Ha, J.; Fischer, P.; Tyliszczak, T.

    2011-09-01

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO2 emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  12. Scattering imaging method in transmission x-ray microscopy.

    PubMed

    Chen, Jian; Gao, Kun; Ge, Xin; Wang, Zhili; Zhang, Kai; Hong, Youli; Pan, Zhiyun; Wu, Zhao; Zhu, Peiping; Yun, Wenbing; Wu, Ziyu

    2013-06-15

    We present a x-ray microscopy technique based on structured illumination in a microscope that characterizes the size of the subresolution-limit features. The technique is effective for characterizing fine structures substantially beyond the Rayleigh resolution of the microscope. We carried out optical experiments to demonstrate the basic principle of this new technique. Experimental results show good agreement with theoretical predictions. This technique should find a wide range of important imaging applications with a feature size down to nanometer scale, such as oil and gas reservoir rocks, advanced composites, and functional nanodevices and materials. PMID:23938979

  13. Soft X-ray Microscopy of Green Cements

    SciTech Connect

    Monteiro, P. J. M.; Mancio, M.; Chae, R.; Ha, J.; Kirchheim, A. P.; Fischer, P.; Tyliszczak, T.

    2011-09-09

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO{sub 2} emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  14. X-ray microscopy of soft and hard human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Deyhle, Hans; Stalder, Anja K.; Ilgenstein, Bernd; Holme, Margaret N.; Weitkamp, Timm; Beckmann, Felix; Hieber, Simone E.

    2016-01-01

    The simultaneous post mortem visualization of soft and hard tissues using absorption-based CT remains a challenge. If the photon energy is optimized for the visualization of hard tissue, the surrounding soft tissue components are almost X-ray transparent. Therefore, the combination with other modalities such as phase-contrast CT, magnetic resonance microscopy, and histology is essential to detect the anatomical features. The combination of the 2D and 3D data sets using sophisticated segmentation and registration tools allows for conclusions about otherwise inaccessible anatomical features essential for improved patient treatments.

  15. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM).

    PubMed

    Lopez-Salido, Ignacio; Lim, Dong Chan; Dietsche, Rainer; Bertram, Nils; Kim, Young Dok

    2006-01-26

    Au nanoparticles grown on mildly sputtered Highly Ordered Pyrolytic Graphite (HOPG) surfaces were studied using Scanning Tunneling Microscopy (STM) and X-ray Photoelectron Spectroscopy (XPS). The results were compared with those of Ag nanoparticles on the same substrate. By varying the defect densities of HOPG and the Au coverages, one can create Au nanoparticles in various sizes. At high Au coverages, the structures of the Au films significantly deviate from the ideal truncated octahedral form: the existence of many steps between different Au atomic layers can be observed, most likely due to a high activation barrier of the diffusion of Au atoms across the step edges. This implies that the particle growth at room temperature is strongly limited by kinetic factors. Hexagonal shapes of Au structures could be identified, indicating preferential growth of Au nanostructures along the (111) direction normal to the surface. In the case of Au, XPS studies reveal a weaker core level shift with decreasing particle size compared to the 3d level in similarly sized Ag particles. Also taking into account the Auger analysis of the Ag particles, the core level shifts of the metal nanoparticles on HOPG can be understood in terms of the metal/substrate charge transfer. Ag is (partially) positively charged, whereas Au negatively charged on HOPG. It is demonstrated that XPS can be a useful tool to study metal-support interactions, which plays an important role for heterogeneous catalysis, for example. PMID:16471654

  16. Nanoscale chemical imaging using synchrotron x-ray enhanced scanning tunneling microscopy

    SciTech Connect

    Rose, Volker; Freeland, John W.

    2010-06-23

    The combination of synchrotron radiation with scanning tunneling microscopy provides a promising new concept for chemical imaging of nanoscale structures. It employs detection of local x-ray absorption, which directly yields chemical, electronic, and magnetic sensitivity. The study of the tip current in the far field (800 nm tip/sample separation) shows that insulator-coated tips have to be considered in order to reduce the background from stray photoelectron. A picture of the different channels contributing to the x-ray enhanced STM process is proposed. If during electron tunneling the sample is illuminated with monochromatic x-rays, characteristic absorption will arise, and core electrons are excited, which might modulate the conventional tunnel current and facilitate chemical imaging at the nanoscale.

  17. Zone-Doubled Fresnel Zone Plates for Scanning Transmission X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, J.; Gorelick, S.; Färm, E.; Kewish, C. M.; Diaz, A.; Guzenko, V. A.; Barrett, R.; Raabe, J.; Menzel, A.; Bunk, O.; Ritala, M.; David, C.

    2011-09-01

    We demonstrate the highest spatial resolution reported in scanning transmission x-ray microscopy to date. For the first time in x-ray microscopy, features below 10 nm in width were resolved in the soft x-ray regime (1.2 keV) and 20-nm lines and spaces were visible at multi-keV photon energies (6.2 keV). These achievements were accomplished using zone-doubled Fresnel zone plates. These lenses were fabricated by combining electron-beam lithography and atomic layer deposition of iridium. Diffraction efficiencies up to 8% were measured for zone-doubled Fresnel zone plates with an outermost zone width of 25 nm at 6.2-keV photon energy.

  18. Low dose, limited energy spectroscopic x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Nelson Weker, Johanna; Li, Yiyang; Chueh, William C.

    2015-09-01

    In order to achieve high quality in situ spectroscopic X-ray microscopy of complex systems far from equilibrium, such as lithium ion batteries under standard electrochemical cycling, careful consideration of the total number of energy points is required. Enough energy points are need to accurately determine the per pixel chemical information; however, total radiation dose needs to be limited to avoid damaging the system which would produce misleading results. Here we consider the number of energy points need to accurately reproduce the state of charge maps of a LiFePO2 electrode recorded during electrochemical cycling. We observe very good per pixel agreement using only 13 energy points. Additionally, we find the quality of the agreement is heavily dependent on the number of energy points used in the post edge fit during normalization of the spectra rather than the total number of energies used. Finally, we suggest a straightforward protocol for determining the minimum number of energy points needed prior to initiating any in situ spectroscopic X-ray microscopy experiment.

  19. Fundamental studies of X-ray and secondary electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Mulapudi, Satya Prasad

    Microanalysis of submicron particles in the Scanning Electron Microscope (SEM) is only possible by using low incident electron beam energies due to smaller interaction volume and suppressed beam induced charging. Such low beam energies must use L- and M-lines rather than the familiar K-lines. The information about the fundamental parameters of X-ray emission and transport at low energies is limited, so the use of L- and M-lines is problematic. The rate of generation of X-rays from an element irradiated at some energy E depends on the product of the ionization cross-section sigma(E) and the fluorescent yield o. Unfortunately neither of these quantities is well established independently, especially outside of the K-series of lines. Therefore the absolute X-ray generation efficiencies (photons/electron) were directly measured and parameterized for a wide range of K, L , and M lines from different elements. It is anticipated that a complete set of such data would be of great value in applications such as spectrum simulation and standardless analysis. Secondary electron spectra have been collected from both pure elements and from compounds examined under conditions approximating those found in a scanning electron microscope. Despite the presence of substantial surface contamination these spectra are found to be reproducible and characteristic of the underlying material. Typically the peak in such spectra is found to be at an energy of about 5 eV, and 50% of the total secondary electron emission falls within the range 0--12 eV. These data may be of value for the design of detectors for scanning microscopy and might have applications for microanalysis.

  20. Imaging at high spatial resolution: Soft x-ray microscopy to 15nm

    SciTech Connect

    Attwood, D.; Chao, W.; Anderson, E.; Liddle, J.A.; Harteneck, B.; Fischer, P.; Schneider, G.; Le Gros, M.; Larabell, C.

    2006-04-05

    Soft x-ray microscopy has now achieved 15 nm spatial resolution with new zone plates and bending magnet radiation. Combined with elemental sensitivity and flexible sample environment (applied magnetic or electric fields, wet samples, windows, overcoatings) this emerges as a valuable tool for nanoscience and nanotechnology, complimenting common electron and scanning tip microscopies. In this presentation we describe recent advances in spatial resolution, expectations for the near future, and applications to magnetic materials, bio-tomography, etc.

  1. Examination of Libby, Montana, Fill Material for Background Levels of Amphibole from the Rainy Creek Complex Using Scanning Electron Microscopy and X-Ray Microanalysis

    USGS Publications Warehouse

    Adams, David T.; Langer, William H.; Hoefen, Todd M.; Van Gosen, Bradley S.; Meeker, Gregory P.

    2010-01-01

    Natural background levels of Libby-type amphibole in the sediment of the Libby valley in Montana have not, up to this point, been determined. The purpose of this report is to provide the preliminary findings of a study designed by both the U.S. Geological Survey and the U.S. Environmental Protection Agency and performed by the U.S. Geological Survey. The study worked to constrain the natural background levels of fibrous amphiboles potentially derived from the nearby Rainy Creek Complex. The material selected for this study was sampled from three localities, two of which are active open-pit sand and gravel mines. Seventy samples were collected in total and examined using a scanning electron microscope equipped with an energy dispersive x-ray spectrometer. All samples contained varying amounts of feldspars, ilmenite, magnetite, quartz, clay minerals, pyroxene minerals, and non-fibrous amphiboles such as tremolite, actinolite, and magnesiohornblende. Of the 70 samples collected, only three had detectable levels of fibrous amphiboles compatible with those found in the rainy creek complex. The maximum concentration, identified here, of the amphiboles potentially from the Rainy Creek Complex is 0.083 percent by weight.

  2. Structure of low-density nanoporous dielectrics revealed by low-vacuum electron microscopy and small-angle x-ray scattering

    SciTech Connect

    Kucheyev, S O; Toth, M; Baumann, T F; Hamza, A V; Ilavsky, J; Knowles, W R; Thiel, B L; Tileli, V; van Buuren, T; Wang, Y M; Willey, T M

    2006-06-05

    We use low-vacuum scanning electron microscopy to image directly the ligament and pore size and shape distributions of representative aerogels over a wide range of length scales ({approx} 10{sup 0}-10{sup 5} nm). The images are used for unambiguous, real-space interpretation of small-angle scattering data for these complex nanoporous systems.

  3. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  4. Density gradient free electron collisionally excited X-ray laser

    DOEpatents

    Campbell, Edward M.; Rosen, Mordecai D.

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  5. Development of X-ray Microscopy at IPOE

    SciTech Connect

    Zhu, J.; Mu, B.; Huang, Q.; Huang, C.; Yi, S.; Zhang, Z.; Wang, F.; Wang, Z.; Chen, L.

    2011-09-09

    In order to meet the different requirements of applications in synchrotron radiation and plasma diagnosis in China, focusing and imaging optics based on Kirkpatrick-Baez (KB) mirrors, compound refractive lenses (CRLs), and multilayer Laue lenses (MLLs) were studied in our lab. A one-dimensional KB microscope using mirrors with a dual-periodic multilayer coating was developed. The multilayer mirror can reflect both 4.75 keV (Ti K-line) and 8.05 keV (Cu K-line) simultaneously, which makes alignment easier. For hard x-ray microscopy, CRL was studied. Using a SU-8 resist planar parabolic CRL, a focal line of 28.8-{mu}m width was obtained. To focus hard x-rays to nanometer levels efficiently, an MLL was fabricated using a WSi{sub 2}/Si multilayer. The MLL consists of 324 alternating WSi{sub 2} and Si layers with a total thickness of 7.9 {mu}m. (Recently, a much thicker multilayer has been deposited with a layer number of n = 1582 and a total thickness of 27 {mu}m.) After deposition, the sample was sliced and polished into an approximate ideal aspect ratio (depth of the zone plate to outmost layer thickness); the measured results show an intact structure remains, and the surface roughness of the cross section is about 0.4 nm after grinding and polishing processes.

  6. Preparation of tissue samples for X-ray fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Chwiej, Joanna; Szczerbowska-Boruchowska, Magdalena; Lankosz, Marek; Wojcik, Slawomir; Falkenberg, Gerald; Stegowski, Zdzislaw; Setkowicz, Zuzanna

    2005-12-01

    As is well-known, trace elements, especially metals, play an important role in the pathogenesis of many disorders. The topographic and quantitative elemental analysis of pathologically changed tissues may shed some new light on processes leading to the degeneration of cells in the case of selected diseases. An ideal and powerful tool for such purpose is the Synchrotron Microbeam X-ray Fluorescence technique. It enables the carrying out of investigations of the elemental composition of tissues even at the single cell level. The tissue samples for histopathological investigations are routinely fixed and embedded in paraffin. The authors try to verify the usefulness of such prepared tissue sections for elemental analysis with the use of X-ray fluorescence microscopy. Studies were performed on rat brain samples. Changes in elemental composition caused by fixation in formalin or paraformaldehyde and embedding in paraffin were examined. Measurements were carried out at the bending magnet beamline L of the Hamburger Synchrotronstrahlungslabor HASYLAB in Hamburg. The decrease in mass per unit area of K, Br and the increase in P, S, Fe, Cu and Zn in the tissue were observed as a result of the fixation. For the samples embedded in paraffin, a lower level of most elements was observed. Additionally, for these samples, changes in the composition of some elements were not uniform for different analyzed areas of rat brain.

  7. X-Ray-Diffraction Tests Of Irradiated Electronic Devices: II

    NASA Technical Reports Server (NTRS)

    Shaw, David C.; Lowry, Lynn E.; Barnes, Charles E.

    1993-01-01

    Report describes research on use of x-ray diffraction to measure stresses in metal conductors of complementary metal oxide/semiconductor (CMOS) integrated circuits exposed to ionizing radiation. Expanding upon report summarized in "X-Ray-Diffraction Tests Of Irradiated Electronic Devices: I" (NPO-18803), presenting data further suggesting relationship between electrical performances of circuits and stresses and strains in metal conductors.

  8. Electron beam welder X-rays its own welds

    NASA Technical Reports Server (NTRS)

    Roden, W. A.

    1967-01-01

    Beam of an electron beam welder X rays its own welds, enabling rapid weld quality checks to be made without removing the work from the vacuum chamber. A tungsten target produces X rays when hit by the beam. They are directed at the weld specimen and recorded on polaroid film.

  9. Scanning and transmission electron microscopy and X-ray analysisof leaf salt glands of Limoniastrum guyonianum Boiss. under NaCl salinity.

    PubMed

    Zouhaier, Barhoumi; Abdallah, Atia; Najla, Trabelsi; Wahbi, Djebali; Wided, Chaïbi; Aouatef, Ben Ammar; Chedly, Abdelly; Abderazzak, Smaoui

    2015-11-01

    Leaf salt glands of Limoniastrum guyonianum were examined by scanning and transmission electron microscopes and energy dispersive X-ray analysis (EDAX) system, after growing for three months on sandy soil with or without 300 mM NaCl. Results showed that salt glands were irregularly scattered on both leaf sides and sunk under the epidermal level. Salt excretion occurred in both conditions and is mainly composed of calcium and magnesium in control plants, and essentially sodium and chloride in plants subjected to salt treatment. A salt gland is comprised of collecting, accumulating, and central compartments, and is made up of total thirty-two cells. The collecting cells were characterized by large central vacuoles. Accumulating cells contain numerous, large, and unshaped vacuoles and rudimentary chloroplasts. The central compartment was comprised of four basal cells and each one is surmounted by an apical cell. The basal cells are granulated, containing large nucleus, numerous mitochondria, endoplasmic reticulum, ribosomes, polyribosomes, and small vacuoles or vesicles. Equally, the apical cells are rich in organelles. Application of 300 mM NaCl to the culture medium increased vacuoles number and size, and organelles density especially the mitochondria which suggests energy requirement for ions transport. The reduction in size and number of vacuoles toward the interior of salt glands of treated plants and the fusion of the smallest ones with the plasma membrane substantiate the implication of such vacuoles in salt excretion process. The current study which is the first report on L. guyonianum salt gland has provided an in-depth understanding on structure-function relationship in the multicellular salt glands. PMID:26102605

  10. [Based on Curing Age of Calcined Coal Gangue Fine Aggregate Mortar of X-Ray Diffraction and Scanning Electron Microscopy Analysis].

    PubMed

    Dong, Zuo-chao; Xia, Jun-wu; Duan, Xiao-mu; Cao, Ji-chang

    2016-03-01

    By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious. PMID:27400535

  11. X-ray tube with magnetic electron steering

    DOEpatents

    Reed, Kim W.; Turman, Bobby N.; Kaye, Ronald J.; Schneider, Larry X.

    2000-01-01

    An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.

  12. X-ray framing camera for pulsed, high current, electron beam x-ray sources

    NASA Astrophysics Data System (ADS)

    Failor, B. H.; Rodriguez, J. C.; Riordan, J. C.; Lojewski, D. Y.

    2007-07-01

    High power x-ray sources built for nuclear weapons effects testing are evolving toward larger overall diameters and smaller anode cathode gaps. We describe a framing camera developed to measure the time-evolution of these 20-50 ns pulsed x-ray sources produced by currents in the 1.5-2.5 MA range and endpoint voltages between 0.2 and 1.5 MV. The camera has up to 4 frames with 5 ns gate widths; the frames are separated by 5 ns. The image data are recorded electronically with a gated intensified CCD camera and the data are available immediately following a shot. A fast plastic scintillator (2.1 ns decay time) converts the x-rays to visible light and, for high sensitivity, a fiber optic imaging bundle carries the light to the CCD input. Examples of image data are shown.

  13. X-Ray Fluorescence Microscopy for Investigation of Archival Tissues

    PubMed Central

    Paunesku, T.; Wanzer, M. B.; Kirillova, E. N.; Muksinova, K. N.; Revina, V. S.; Romanov, S. A.; Lyubchansky, E. R.; Grosche, B.; Birschwilks, M.; Vogt, S.; Finney, L.; Woloschak, G. E.

    2013-01-01

    Several recent efforts in radiation biology community worldwide have amassed records and archival tissues from animals exposed to different radionuclides and external beam irradiation. In most cases, these samples come from life-long studies on large animal populations conducted in national laboratories and equivalent institutions throughout Europe, North America, and Japan. While many of these tissues were used for histopathological analyses, much more information may still be obtained from these samples. A new technique suitable for imaging of these tissues is X-Ray Fluorescence Microscopy (XFM). Following development of third generation synchrotrons, XFM has emerged as an ideal technique for study of metal content, speciation, and localization in cells, tissues and organs. Here we review some of the recent XFM literature pertinent to tissue sample studies and present examples of XFM data obtained from tissue sections of beagle dog samples which show that the quality of archival tissues allows XFM investigation. PMID:22951477

  14. Observation of Organelles in Leydig Cells by Contact Soft X-Ray Microscopy with a Laser Plasma X-Ray Source

    NASA Astrophysics Data System (ADS)

    Kado, M.; Ishino, M.; Tamotsu, S.; Yasuda, K.; Kishimoto, M.; Nishikino, M.; Kinjo, Y.; Shinohara, K.

    2011-09-01

    We observed the same biological specimens for comparison of the images by contact soft x-ray microscopy with a laser plasma x-ray source with those by confocal laser microscopy. Images of wet Leydig cells were directly comparable for organelles and showed that actin filaments and mitochondria were clearly identified in the soft x-ray images.

  15. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser.

    PubMed

    Higley, Daniel J; Hirsch, Konstantin; Dakovski, Georgi L; Jal, Emmanuelle; Yuan, Edwin; Liu, Tianmin; Lutman, Alberto A; MacArthur, James P; Arenholz, Elke; Chen, Zhao; Coslovich, Giacomo; Denes, Peter; Granitzka, Patrick W; Hart, Philip; Hoffmann, Matthias C; Joseph, John; Le Guyader, Loïc; Mitra, Ankush; Moeller, Stefan; Ohldag, Hendrik; Seaberg, Matthew; Shafer, Padraic; Stöhr, Joachim; Tsukamoto, Arata; Nuhn, Heinz-Dieter; Reid, Alex H; Dürr, Hermann A; Schlotter, William F

    2016-03-01

    X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L(3,2)-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature. PMID:27036761

  16. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Higley, Daniel J.; Hirsch, Konstantin; Dakovski, Georgi L.; Jal, Emmanuelle; Yuan, Edwin; Liu, Tianmin; Lutman, Alberto A.; MacArthur, James P.; Arenholz, Elke; Chen, Zhao; Coslovich, Giacomo; Denes, Peter; Granitzka, Patrick W.; Hart, Philip; Hoffmann, Matthias C.; Joseph, John; Le Guyader, Loïc; Mitra, Ankush; Moeller, Stefan; Ohldag, Hendrik; Seaberg, Matthew; Shafer, Padraic; Stöhr, Joachim; Tsukamoto, Arata; Nuhn, Heinz-Dieter; Reid, Alex H.; Dürr, Hermann A.; Schlotter, William F.

    2016-03-01

    X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L3,2-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature.

  17. Atmospheric electron-induced x-ray spectrometer development

    NASA Technical Reports Server (NTRS)

    Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; Crisp, Joy

    2005-01-01

    This paper extends the work reported at the IEEE Aerospace conference in 2001 and 2003 where the concept and progress in the development of the so called atmospheric Electron X-ray Spectrometer (AEXS) has been described.

  18. Combined x-ray photoelectron spectroscopy and scanning electron microscopy studies of the LiBH4-MgH2 reactive hydride composite with and without a Ti-based additive

    NASA Astrophysics Data System (ADS)

    Deprez, E.; Muñoz-Márquez, M. A.; Jimenez de Haro, M. C.; Palomares, F. J.; Soria, F.; Dornheim, M.; Bormann, R.; Fernández, A.

    2011-01-01

    A detailed electronic and microstructural characterization is reported for the LiBH4-MgH2 reactive hydride composite system with and without titanium isopropoxide as additive. Surface characterization by x-ray photoelectron spectroscopy combined to a morphological study by scanning electron microscopy as well as elemental map composition analysis by energy dispersive x-ray emission are presented in this paper for the first time for all sorption steps. Although sorption reactions are not complete at the surface due to the unavoidable superficial oxidation, it has been shown that the presence of the additive is favoring the heterogeneous nucleation of the MgB2 phase. Ti-based phases appear in all the samples for the three sorption steps well dispersed and uniformly distributed in the material. Li-based phases are highly dispersed at the surface while the Mg-based ones appear, either partially covered by the Li-based phases, or forming bigger grains. Ball milling is promoting mixing of phases and a good dispersion of the additive what favors grain refinement and heterogeneous reactions at the interfaces.

  19. Limitations of ZAF correction factors in the determination of calcium/phosphorus ratios: Important forensic science considerations relevant to the analysis of bone fragments using scanning electron microscopy and energy-dispersive x-ray microanalysis

    SciTech Connect

    Payne, C.M.; Cromey, D.W. )

    1990-05-01

    A series of calcium phosphate standards having calcium/phosphorus (Ca/P) molar ratios of 0.50, 1.00, 1.50, and 1.67, respectively, was prepared for bulk specimen analysis using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDXA). The standards were mounted on carbon planchettes as either pure crystals or crystals embedded in epoxy resin. Ten different samples of each embedded and non-embedded standard were analyzed in a JEOL 100 CX electron microscope interfaced with a Kevex 8000 EDXA system using a lithium-drifted silicon detector and a multichannel analyzer. The Ca/P ratios were determined by calculating both net peak intensities without matrix corrections and atomic kappa-ratios using the MAGIC V computer program with ZAF correction factors for quantitative analysis. There was such extensive absorption of phosphorus X-rays in standards embedded in an epoxy matrix that the observed Ca/P ratios were statistically compatible with four different standards ranging in theoretical Ca/P ratios from 1.0 to 1.67. Although the non-embedded crystals showed a greater separation in the Ca/P ratios, both methods of preparation produced serious flaws in analysis. Direct application of the discovery of this caveat to the identification of suspected bone fragments for forensic science purposes is discussed.

  20. Hard X-ray Imaging Microscopy using X-ray Guide Tube as Beam Condenser for Field Illumination

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshio; Takeuchi, Akihisa; Uesugi, Kentaro; Terada, Yasuko; Nakazawa, Hiromoto; Ohzawa, Sumito; Aoyama, Tomoki; Nii, Hajime; Handa, Katsumi

    2013-10-01

    An optical system for illumination of object in x-ray imaging microscopy is developed. The optical system is a beam condenser consisting of a single-bounce conical-shape mono-capillary (x-ray guide tube: XGT) made of Pyrex glass. The XGT condenser was tested at the beam line 47XU of SPring-8 using a Fresnel zone plate as an objective lens. Comparing with the microscope without beam condenser, the flux density is improved by a factor of 12-20 in the x-ray energy range of 6-8 keV. Test patterns with a 50 nm-structure are clearly resolved at 8 keV with an exposure time less than 1 s.

  1. The Combination of X-Ray Crystallography and Cryo-Electron Microscopy Provides Insight into the Overall Architecture of the Dodecameric Rvb1/Rvb2 Complex

    PubMed Central

    Glatt, Sebastian; Hoffmann, Niklas A.; Kastritis, Panagiotis; Bork, Peer; Beck, Martin; Müller, Christoph W.

    2016-01-01

    The Rvb1/Rvb2 complex is an essential component of many cellular pathways. The Rvb1/Rvb2 complex forms a dodecameric assembly where six copies of each subunit form two heterohexameric rings. However, due to conformational variability, the way the two rings pack together is still not fully understood. Here, we present the crystal structure and two cryo-electron microscopy reconstructions of the dodecameric, full-length Rvb1/Rvb2 complex, all showing that the interaction between the two heterohexameric rings is mediated through the Rvb1/Rvb2-specific domain II. Two conformations of the Rvb1/Rvb2 dodecamer are present in solution: a stretched conformation also present in the crystal, and a compact conformation. Novel asymmetric features observed in the reconstruction of the compact conformation provide additional insight into the plasticity of the Rvb1/Rvb2 complex. PMID:26745716

  2. Semi-automatic detection of gunshot residue (GSR) by scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX).

    PubMed

    Gansau, H; Becker, U

    1982-01-01

    Wide strips of adhesive tape (40 mm x 86 mm) are pressed for about one minute on the thumb, forefinger and outer edge of a subject's hand. Subsequently these tapes are fixed to a cylinder that rotates within the SEM chamber and is adjustable in an axial direction. The tapes are scanned for possible GSR particles with simultaneous SE and X-ray imaging. The X-ray signal caused by particles of high atomic number automatically stops the rotating cylinder, and the EDX spectrum of the suspect particle is produced within five seconds. A chart is then plotted to record the size, elemental composition, morphology and tape coordinates of the particles of interest. The outcome is a complete map of GSR particles found on certain parts of the hand, and this map has a characteristic pattern depending on the firearm used, the ammunition and the circumstances of the shooting incident. The time lapse between firing and sampling may allow this GSR pattern to change, but this method is helpful in suicide/homicide decisions. PMID:7167744

  3. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2012-03-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  4. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2011-10-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  5. Microbial biofilm study by synchrotron X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Pennafirme, S.; Lima, I.; Bitencourt, J. A.; Crapez, M. A. C.; Lopes, R. T.

    2015-11-01

    Microbial biofilm has already being used to remove metals and other pollutants from wastewater. In this sense, our proposal was to isolate and cultivate bacteria consortia from mangrove's sediment resistant to Zn (II) and Cu (II) at 50 mg L-1 and to observe, through synchrotron X-ray fluorescence microscopy (microXRF), whether the biofilm sequestered the metal. The biofilm area analyzed was 1 mm2 and a 2D map was generated (pixel size 20×20 μm2, counting time 5 s/point). The biofilm formation and retention followed the sequence Zn>Cu. Bacterial consortium zinc resistant formed dense biofilm and retained 63.83% of zinc, while the bacterial consortium copper resistant retained 3.21% of copper, with lower biofilm formation. Dehydrogenase activity of Zn resistant bacterial consortium was not negatively affect by 50 mg ml-1 zinc input, whereas copper resistant bacterial consortium showed a significant decrease on dehydrogenase activity (50 mg mL-1 of Cu input). In conclusion, biofilm may protect bacterial cells, acting as barrier against metal toxicity. The bacterial consortia Zn resistant, composed by Nitratireductor spp. and Pseudomonas spp formed dense biofilm and sequestered metal from water, decreasing the metal bioavailability. These bacterial consortia can be used in bioreactors and in bioremediation programs.

  6. The identification of the pigments used to paint statues of Feixiange Cliff in China in late 19th century by micro-Raman spectroscopy and scanning electron microscopy/energy dispersive X-ray analysis

    NASA Astrophysics Data System (ADS)

    Jin, Pu-jun; Huang, Wei; Jianhua-Wang; Zhao, Gang; Wang, Xiao-ling

    2010-11-01

    The application of micro-Raman spectroscopy (μ-RS) and scanning electron microscopy (SEM)/energy dispersive X-ray spectrometer (EDS) to the research of pigments collected from Statues of Feixiange Cliff No. 67 and No. 69 niche of Tang Dynasty in China is reported. Five kinds of pigments were found in the experimental data, including black (carbon), white (gypsum + quartz), blue (lapis lazuli) and green (Paris green + Barium sulphate). After synthesized in 1814, Paris green was reported for a large import as a light and bright green pigment to paint architectures in China from the late 19th century. The analyzed blue pigment demonstrated the similar Raman spectra to the Lâjvardina blue glazed ceramics, which indicated lapis lazuli was an artificial product. This confirmed the painting of Feixiange Cliff in the early Republic of China as the historical record, and also reveals that some pigments were imported from abroad.

  7. Low dose hard x-ray contact microscopy assisted by a photoelectric conversion layer

    SciTech Connect

    Gomella, Andrew; Martin, Eric W.; Lynch, Susanna K.; Wen, Han; Morgan, Nicole Y.

    2013-04-15

    Hard x-ray contact microscopy provides images of dense samples at resolutions of tens of nanometers. However, the required beam intensity can only be delivered by synchrotron sources. We report on the use of a gold photoelectric conversion layer to lower the exposure dose by a factor of 40 to 50, allowing hard x-ray contact microscopy to be performed with a compact x-ray tube. We demonstrate the method in imaging the transmission pattern of a type of hard x-ray grating that cannot be fitted into conventional x-ray microscopes due to its size and shape. Generally the method is easy to implement and can record images of samples in the hard x-ray region over a large area in a single exposure, without some of the geometric constraints associated with x-ray microscopes based on zone-plate or other magnifying optics.

  8. Biological imaging by soft X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen

  9. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis.

    PubMed

    Leonardo, T; Farhi, E; Boisson, A-M; Vial, J; Cloetens, P; Bohic, S; Rivasseau, C

    2014-02-01

    The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the

  10. High resolution chemical mapping via scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Fleckenstein, Holger

    Scanning transmission x-ray microscopy (STXM) combines imaging at sub-50 nanometer spatial resolution in the soft x-ray region with x-ray absorption spectroscopy at an energy resolution of 0.1 eV and better. The sensitivity to light elements and their chemical bonding states in the near-edge x-ray absorption region together with 2D microscopy allow to map out the chemical composition of microscopic samples. Over the past decades STXM has been used by scientists from various fields such as material sciences, biology, earth and environmental sciences. This thesis describes the upgrade of the STXM microscopes at the National Synchrotron Light Source in Brookhaven National Laboratory. The now 5 th generation was a retrofit of the existing microscopes with a three axes laser interferometer system for improved relative sample positioning. Included in the same project were a hardware change towards faster scan positioning and data acquisition electronics as well as a new software concept allowing for remote control of the microscopes. We also present the use of non-negative matrix factorization to analyze spectromicroscopic data sets. Since in many specimens of interest in biology or related fields a number of spectral signatures may be unknown, thickness maps of the chemical composition of a sample cannot be calculated directly. A previous method used principal component analysis to orthogonalize and noise filter spectromicroscopy data, followed by cluster analysis as a form of unsupervised pattern recognition to determine pixels with spectroscopic similarity. We tried a non-negative matrix factorization algorithm to find a parts-based representation of the same data. The non-negativity constraint allows for a physical interpretation of component spectra and thickness maps. The STXM technique was utilized to investigate the composition of human sperm samples. We describe why the analysis of human sperm via x-ray spectromicroscopy can provide valuable information and what

  11. An X-ray microscopy perspective on the effect of glutaraldehyde fixation on cells.

    PubMed

    Jearanaikoon, S; Abraham-Peskir, J V

    2005-05-01

    X-ray microscopy (XRM) is the only microscopy technique that can provide high-resolution (30 nm) imaging of biological specimens without the need to fix, stain or section them. We aim to determine the effect, if any, of glutaraldehyde fixation on algae cells from the XRM perspective and thus provide beneficial information for both X-ray and electron microscopists on artefacts induced by glutaraldehyde fixation. Three species of microalgae, Microcystis aeruginosa, Anabaena spiroides and Chlorella vulgaris, were used in this study. XRM images were obtained from unfixed and glutaraldehyde-fixed cells and cell diameter and percentage X-ray absorbency were measured. The mean diameter of cells from fixed preparations was smaller than from unfixed preparations; the mean diameter of M. aeruginosa cells was significantly reduced from 3.92 microm in unfixed cells to 3.43 microm in fixed cells (P < 0.05); in C. vulgaris the diameter of cells was also significantly reduced from 3.50 microm in unfixed to 2.98 microm in fixed samples (P < 0.05); whereas there was no significant reduction in the diameter of A. spiroides cells (4.04-3.90 microm). The protein crosslinking mechanism of glutaraldehyde probably generated free water molecules, which play an important role in radiation damage induced by X-rays. This was seen as mass loss and cell shrinkage, which in the present study occurred more frequently in fixed cells than in unfixed cells. In addition, we demonstrated that the uptake of glutaraldehyde by cells makes all protein constituents in the cell organize into a closely packed configuration, thus causing a rise in the percentage of X-ray absorbency. In fixed cells, this rise was approximately by a factor of two compared with unfixed samples in which protein constituents inside the cell are arranged in their native form. PMID:15857380

  12. Study of Interactions Between Microbes and Minerals by Scanning Transmission X-Ray Microscopy (STXM)

    SciTech Connect

    Benzerara, K.; Tyliszczak, T.; Brown, G.E., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL

    2007-01-03

    Scanning Transmission X-ray Microscopy (STXM) and Transmission Electron Microscopy (TEM) were combined to characterize various samples of geomicrobiological interest down to the nanometer scale. An approach based on energy-filtered imaging was used to examine microbe-mineral interactions and the resulting biominerals, as well as biosignatures in simplified laboratory samples. This approach was then applied to natural samples, including natural biofilms entombed in calcium carbonate precipitates and bioweathered silicates and facilitated location of bacterial cells and provided unique insights about their biogeochemical interactions with minerals at the 30-40 nm scale.

  13. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE PAGESBeta

    Deng, Junjing; Vine, David J.; Chen, Si; Nashed, Youssef S. G.; Jin, Qiaoling; Phillips, Nicholas W.; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris J.

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub–30-nm resolution structural images and ~90-nm–resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less

  14. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae.

    PubMed

    Deng, Junjing; Vine, David J; Chen, Si; Nashed, Youssef S G; Jin, Qiaoling; Phillips, Nicholas W; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris J

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolution beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ∼90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context. PMID:25675478

  15. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    SciTech Connect

    Deng, Junjing; Vine, David J.; Chen, Si; Nashed, Youssef S. G.; Jin, Qiaoling; Phillips, Nicholas W.; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris J.

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolution beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub–30-nm resolution structural images and ~90-nm–resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.

  16. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    PubMed

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed. PMID:16021423

  17. Correlative VIS-fluorescence and soft X-ray cryo-microscopy/tomography of adherent cells.

    PubMed

    Hagen, Christoph; Guttmann, Peter; Klupp, Barbara; Werner, Stephan; Rehbein, Stefan; Mettenleiter, Thomas C; Schneider, Gerd; Grünewald, Kay

    2012-02-01

    Soft X-ray cryo-microscopy/tomography of vitreous samples is becoming a valuable tool in structural cell biology. Within the 'water-window' wavelength region (2.34-4.37nm), it provides absorption contrast images with high signal to noise ratio and resolution of a few tens of nanometer. Soft X-rays with wavelengths close to the K-absorption edge of oxygen penetrate biological samples with thicknesses in the micrometer range. Here, we report on the application of a recently established extension of the transmission soft X-ray cryo-microscope (HZB TXM) at the beamline U41-XM of the BESSY II electron storage ring by an in-column epi-fluorescence and reflected light cryo-microscope. We demonstrate the new capability for correlative fluorescence and soft X-ray cryo-microscopy/tomography of this instrument along a typical life science experimental approach - the correlation of a fluorophore-tagged protein (pUL34-GFP of pseudorabies virus, PrV, the nuclear membrane-anchored component of the nuclear egress complex of the Herpesviridae which interacts with viral pUL31) in PrV pUL34-GFP/pUL31 coexpressing mammalian cells, with virus-induced vesicular structures in the nucleus, expanding the nucleoplasmic reticulum. Taken together, our results demonstrate new possibilities to study the role of specific proteins in substructures of adherent cells, especially of the nucleus in toto, accessible to electron microscopy in thinned samples only. PMID:22210307

  18. Correlative VIS-fluorescence and soft X-ray cryo-microscopy/tomography of adherent cells

    PubMed Central

    Hagen, Christoph; Guttmann, Peter; Klupp, Barbara; Werner, Stephan; Rehbein, Stefan; Mettenleiter, Thomas C.; Schneider, Gerd; Grünewald, Kay

    2012-01-01

    Soft X-ray cryo-microscopy/tomography of vitreous samples is becoming a valuable tool in structural cell biology. Within the ‘water-window’ wavelength region (2.34–4.37 nm), it provides absorption contrast images with high signal to noise ratio and resolution of a few tens of nanometer. Soft X-rays with wavelengths close to the K-absorption edge of oxygen penetrate biological samples with thicknesses in the micrometer range. Here, we report on the application of a recently established extension of the transmission soft X-ray cryo-microscope (HZB TXM) at the beamline U41-XM of the BESSY II electron storage ring by an in-column epi-fluorescence and reflected light cryo-microscope. We demonstrate the new capability for correlative fluorescence and soft X-ray cryo-microscopy/tomography of this instrument along a typical life science experimental approach – the correlation of a fluorophore-tagged protein (pUL34-GFP of pseudorabies virus, PrV, the nuclear membrane-anchored component of the nuclear egress complex of the Herpesviridae which interacts with viral pUL31) in PrV pUL34-GFP/pUL31 coexpressing mammalian cells, with virus-induced vesicular structures in the nucleus, expanding the nucleoplasmic reticulum. Taken together, our results demonstrate new possibilities to study the role of specific proteins in substructures of adherent cells, especially of the nucleus in toto, accessible to electron microscopy in thinned samples only. PMID:22210307

  19. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

    SciTech Connect

    Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi; Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina; Obara, Yuki; Misawa, Kazuhiko; Bhattacharya, Atanu; Kurahashi, Naoya; Ogi, Yoshihiro; Suzuki, Toshinori

    2013-09-23

    We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (ΔE/E ∼ 5 × 10{sup −3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ∼3 × 10{sup −3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

  20. Inelastic X-ray Scattering Studies of Electronic Excitations

    NASA Astrophysics Data System (ADS)

    Ishii, Kenji; Tohyama, Takami; Mizuki, Jun'ichiro

    2013-02-01

    Inelastic x-ray scattering (IXS) has developed into one of the most powerful momentum-resolved spectroscopies. Especially in the last decade, it has achieved significant progress utilizing brilliant x-rays from third-generation synchrotron radiation facilities. Simultaneously, theoretical efforts have been made to predict or interpret the experimental spectra. One of the scientific fields studied intensively by IXS is strongly correlated electron systems, where the interplay of charge, spin, and orbital degrees of freedom determines their physical properties. IXS can provide a new insight into the electron dynamics of the systems through the observation of charge, spin, and orbital excitations. Focusing on the momentum-resolved electronic excitations in strongly correlated electron systems, we review IXS studies and the present capabilities of IXS for the study of the dynamics of materials. With nonresonant inelastic x-ray scattering (NIXS), one can directly obtain dynamical charge correlation and we discuss its complementary aspects with inelastic neutron scattering. NIXS also has a unique capability of measuring higher multipole transitions, which are usually forbidden in conventional optical absorption. Resonant inelastic x-ray scattering (RIXS) is now established as a valuable tool for measuring charge, spin, and orbital excitations in a momentum-resolved manner. We describe RIXS works on cuprates in detail and show what kind of electronic excitations have been observed. We also discuss RIXS studies on other transition-metal compounds. Finally, we conclude with an outlook on IXS using next-generation x-ray sources.

  1. Ultrastructural imaging and molecular modeling of live bacteria using soft x-ray contact microscopy with nanoseconds laser plasma radiation

    SciTech Connect

    Kado, M.; Richardson, M.C.; Gabel, K.; Torres, D.; Rajyaguru, J.; Muszynski, M.J.

    1995-12-31

    Detection for clinical diagnosis and study of microbial cell is performed by a combination of low magnification optical microscopy and direct and indirect labeling techniques. Visual ultrastructural studies on subcellular organelles are possible with variations of electron microscopy (thin section, scanning and freeze fracture), although specimen preparation steps such as fixation, dehydration, resin embedding, ultra-thin sectioning, coating and staining are very specialized, extensive and may introduce artifacts in the original sample. The development of high resolution x-ray microscopy is a new technique well suited to observe the intact structure of a biological specimen at high resolution without any artifacts. Here, x ray images of the various live bacteria, such as Staphylococcus and Streptococcus, and micromolecule such as chromosomal DNA from Escherichia coli, and Lipopolysaccharide from Burkholderia cepacia, are obtained with soft x-ray contact microscopy. A compact tabletop type glass laser system is used to produce x rays from Al, Si, and Au targets. The PMMA photoresists are used to record x-ray images. An AFM (atomic force microscope) is used to reproduce the x-ray images from the developed photoresists. The performance of the 50 nm spatial resolutions are achieved and images are able to be discussed on the biological view.

  2. Combined X-ray Microfluorescence and Atomic Force Microscopy Studies of Mg Distribution in Whole Cells

    SciTech Connect

    Lagomarsino, S.; Farruggia, G.; Trapani, V.; Mastrototaro, L.; Wolf, F.; Cedola, A.; Fratini, M.; Notargiacomo, A.; Bukreeva, I.; McNulty, I.; Vogt, S.; Kim, S.; Legnini, D.; Maier, J. A. M.

    2011-09-09

    We present in this paper a novel methodology that combines scanning x-ray fluorescencee microscopy and atomic force microscopy. The combination of these two techniques allows the determination of a concentration map of Mg in whole (not sectioned) cells.

  3. Exotic X-ray Sources from Intermediate Energy Electron Beams

    SciTech Connect

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J.L.; Lancaster, G.

    2003-08-26

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, 'novel' x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic 'structure' of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR)

  4. Magnetic x-ray microscopy at low temperatures - Visualization of flux distributions in superconductors

    NASA Astrophysics Data System (ADS)

    Stahl, Claudia; Ruoß, Stephen; Weigand, Markus; Bechtel, Michael; Schütz, Gisela; Albrecht, Joachim

    2016-01-01

    X-ray Magnetic Circular Dichroism (XMCD) microscopy at liquid nitrogen temperature has been performed on bilayers of high-Tc superconducting YBCO (YBa2Cu3O7-δ) and soft-magnetic Co40Fe40B20. This should allow us to map the magnetic flux density distribution in the current-carrying state of the superconductor with high spatial resolution. For that purpose the UHV scanning X-ray microscope MAXYMUS has been upgraded by a MMR Micro Miniature Joule-Thompson cryostat capable of temperatures between 75 K and 580 K. Resulting XMCD images of the magnetic flux density in the superconductor with a field of view ranging from millimeters to micrometers are presented. The microscope's unique combination of total electron yield (TEY) measurements together with low temperatures offers novel possibilities concerning the current transport in superconductors on small length scales.

  5. X-ray and Electron Spectroscopy of Water.

    PubMed

    Fransson, Thomas; Harada, Yoshihisa; Kosugi, Nobuhiro; Besley, Nicholas A; Winter, Bernd; Rehr, John J; Pettersson, Lars G M; Nilsson, Anders

    2016-07-13

    Here we present an overview of recent developments of X-ray and electron spectroscopy to probe water at different temperatures. Photon-induced ionization followed by detection of electrons from either the O 1s level or the valence band is the basis of photoelectron spectroscopy. Excitation between the O 1s and the unoccupied states or occupied states is utilized in X-ray absorption and X-ray emission spectroscopies. These techniques probe the electronic structure of the liquid phase and show sensitivity to the local hydrogen-bonding structure. Both experimental aspects related to the measurements and theoretical simulations to assist in the interpretation are discussed in detail. Different model systems are presented such as the different bulk phases of ice and various adsorbed monolayer structures on metal surfaces. PMID:27244473

  6. Magnetic soft x-ray microscopy-imaging fast spin dynamics inmagnetic nanostructures

    SciTech Connect

    Fischer, Peter; Kim, Dong-Hyun; Mesler, Brooke L.; Chao, Weilun; Sakdinawat, Anne E.; Anderson, Erik H.

    2007-06-01

    Magnetic soft X-ray microscopy combines 15nm spatial resolution with 70ps time resolution and elemental sensitivity. Fresnel zone plates are used as X-ray optics and X-ray magnetic circular dichroism serves as magnetic contrast mechanism. Thus scientifically interesting and technologically relevant low dimensional nanomagnetic systems can be imaged at fundamental length and ultrafast time scales in a unique way. Studies include magnetization reversal in magnetic multilayers, nanopatterned systems, vortex dynamics in nanoelements and spin current induced phenomena.

  7. Searching Ultimate Nanometrology for AlOx Thickness in Magnetic Tunnel Junction by Analytical Electron Microscopy and X-ray Reflectometry

    NASA Astrophysics Data System (ADS)

    Song, Se Ahn; Hirano, Tatsumi; Park, Jong Bong; Kaji, Kazutoshi; Kim, Ki Hong; Terada, Shohei

    2005-10-01

    Practical analyses of the structures of ultrathin multilayers in tunneling magneto resistance (TMR) and Magnetic Random Access Memory (MRAM) devices have been a challenging task because layers are very thin, just 1-2 nm thick. Particularly, the thinness ([similar]1 nm) and chemical properties of the AlOx barrier layer are critical to its magnetic tunneling property. We focused on evaluating the current TEM analytical methods by measuring the thickness and composition of an AlOx layer using several TEM instruments, that is, a round robin test, and cross-checked the thickness results with an X-ray reflectometry (XRR) method. The thickness measured by using HRTEM, HAADF-STEM, and zero-loss images was 1.1 nm, which agreed with the results from the XRR method. On the other hand, TEM-EELS measurements showed 1.8 nm for an oxygen 2D-EELS image and 3.0 nm for an oxygen spatially resolved EELS image, whereas the STEM-EDS line profile showed 2.5 nm in thickness. However, after improving the TEM-EELS measurements by acquiring time-resolved images, the measured thickness of the AlOx layer was improved from 1.8 nm to 1.4 nm for the oxygen 2D-EELS image and from 3.0 nm to 2.0 nm for the spatially resolved EELS image, respectively. Also the observed thickness from the EDS line profile was improved to 1.4 nm after more careful optimization of the experimental parameters. We found that EELS and EDS of one-dimensional line scans or two-dimensional elemental mapping gave a larger AlOx thickness even though much care was taken. The reasons for larger measured values can be found from several factors such as sample drift, beam damage, probe size, beam delocalization, and multiple scattering for the EDS images, and chromatic aberration, diffraction limit due to the aperture, delocalization, alignment between layered direction in samples, and energy dispersion direction in the EELS instrument for EELS images. In the case of STEM-EDS mapping with focused nanoprobes, it is always necessary

  8. Probing Transient Electron Dynamics Using Ultrafast X Rays

    NASA Astrophysics Data System (ADS)

    Bucksbaum, Philip

    2016-05-01

    Linear x-ray absorption in atoms or molecules creates highly excited multi-electron quantum systems, which relax rapidly by fluorescence or Auger emission. These relaxation rates are usually less than a few femtoseconds in duration, and so they can reveal transient elecronic states in molecules as they undergo photo-induced transformations. I will show recent results from femtosecond x-ray experiments that display this phenomenon. There are efforts underway to push the temporal resolving power of ultrafast x-ray pulses into the attosecond regime, using stronger fields to initiate nonlinear absorption processes such as transient stimulated electronic Raman scattering. I will discuss current progress and future prospects for research in this area. This research is supported through Stanford PULSE Institute, SLAC National Accelerator Lab by the U.S. Department of Energy, Office of Basic Energy Sciences, Atomic, Molecular, and Optical Science Program.

  9. The History of X-ray Free-Electron Lasers

    SciTech Connect

    Pellegrini, C.; /UCLA /SLAC

    2012-06-28

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  10. Optical Shaping of X-Ray Free-Electron Lasers.

    PubMed

    Marinelli, A; Coffee, R; Vetter, S; Hering, P; West, G N; Gilevich, S; Lutman, A A; Li, S; Maxwell, T; Galayda, J; Fry, A; Huang, Z

    2016-06-24

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes. PMID:27391728

  11. Optical Shaping of X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Marinelli, A.; Coffee, R.; Vetter, S.; Hering, P.; West, G. N.; Gilevich, S.; Lutman, A. A.; Li, S.; Maxwell, T.; Galayda, J.; Fry, A.; Huang, Z.

    2016-06-01

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes.

  12. The history of X-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.

    2012-10-01

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 Å, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 1013 to 1011, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  13. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    SciTech Connect

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  14. Progress and prospects in soft x-ray holographic microscopy

    SciTech Connect

    Howells, M.R.; Jacobsen, C.; Kirz, J.; McQuaid, K.; Rothman, S.S.

    1987-12-01

    We report some of the latest developments in x-ray holography experiments and make some speculations about the limits of performance of the approaches currently in use. We also make some suggestions about where the technique can (and cannot) go in the future. 32 refs., 5 figs., 1 tab.

  15. A Novel Integrating Solid State Detector With Segmentation For Scanning Transmission Soft X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Feser, Michael; Jacobsen, Chris; Degeronimo, Gianluigi; Rehak, Pavel; Holl, Peter; Strueder, Lothar

    2003-03-01

    Scanning transmission x-ray microscopy (STXM) with soft x-rays has unique detector requirements, which are not readily met by commercially available detectors. For implementation of dark-field and phase contrast imaging modes a segmented detector is needed with the high signal to noise ratio of a counting detector and a high detective quantum efficiency. Since the market for STXM is very small, the development of specialized detector systems relies on the collaboration with detector specialists at research facilities. We report on the successful development of a segmented silicon detector for STXM, which has been carried out in collaboration between the x-ray microscopy research group at SUNY Stony Brook, the instrumentation division at Brookhaven National Laboratory and silicon x-ray detector specialists in Germany. This project illustrates the effectiveness of such arrangements and justifies the support of future efforts in developing dedicated detectors for synchrotron radiation experiments bringing together detector experts and experimenters. The developed detector features eight separate circular segments matched to the STXM geometry. Fast charge integrating electronics have been developed to match the short pixel dwell times in a synchrotron based scanning microscope (in the ms range for the NSLS). The noise level of 5 photons RMS per integration per channel (at 520 eV photon energy) and a 1500 photon capacity (corresponding to the well depth in a CCD detector) is well matched to the characteristics of the experiment. Combining the detector signals in an appropriate way, different imaging modes (i.e. bright field, dark field or phase contrast) can be selected. We discuss recent developments on simultaneous quantitative phase and amplitude contrast imaging using this segmented detector in conjunction with a Fourier filter reconstruction technique.

  16. Innovations in X-ray-induced electron emission spectroscopy (XIEES)

    SciTech Connect

    Pogrebitsky, K. Ju. Sharkov, M. D.

    2010-06-15

    Currently, a pressing need has arisen for controlling the local atomic and electron structure of materials irrespective of their aggregate state. Efficient approaches to the studies of short-range order are based on phenomena accompanied by interference of secondary electrons excited by primary X-ray radiation. The set of such approaches are commonly referred to as the X-ray absorption fine structure (XAFS) methods. In reality, the XAFS methods are based on the use of synchrotron radiation and applied to structural studies in two modes of measurements, transmission analysis and recording of secondary effects. Only two such effects-specifically, the X-ray fluorescence an d X-ray-induced electron emission effect-are commonly discussed. Access to synchrotron accelerators is problematic for most researchers, so a demand is created for designing laboratory systems that make direct access possible. Since the power of laboratory systems is much lower than that of synchrotrons, it is essential to use much more efficient detectors of secondary electrons. In addition, it is of interest to analyze energy characteristics with a high spatial resolution. Channel multipliers and multichannel boards are incapable of providing such a possibility. For this reason, an improved electron detector has been developed to analyze the photoemission effect in an accelerating field.

  17. X-ray stereo microscopy for investigation of dynamics in soil

    SciTech Connect

    Gleber, S.-C.; Sedlmair, J.; Bertilson, M.; von Hofsten, O.; Heim,S.; Guttmann, P.; Hertz, H.; Fischer, P.; Thieme, J.

    2008-09-16

    The presented combination of stereo imaging and elemental mapping with soft X-ray microscopy reveals the spatial arrangement of naturally aqueous colloidal systems, e.g. iron oxides in soil colloid clusters. Changes in the spatial arrangement can be induced by manipulating the sample mounted to the X-ray microscope and thus be investigated directly.

  18. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    PubMed Central

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; Lima, Enju; Marchesini, Stefano; Miao, Huijie; Neiman, Aaron M.; Shapiro, David; Steinbrener, Jan; Stewart, Andrew; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below −170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics. PMID:20365955

  19. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE PAGESBeta

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; Lima, Enju; Marchesini, Stefano; Miao, Huijie; Neiman, Aaron M.; Shapiro, David; Steinbrener, Jan; Stewart, Andrew; et al

    2009-11-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  20. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGESBeta

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  1. Molecular Imaging Using X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Barty, Anton; Küpper, Jochen; Chapman, Henry N.

    2013-04-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 1013 transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 1018 to 1021 W cm-2 or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available.

  2. Transmission X-ray microscopy for full-field nano imaging of biomaterials.

    PubMed

    Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero

    2011-07-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. PMID:20734414

  3. Transmission X-ray microscopy for full-field nano-imaging of biomaterials

    PubMed Central

    ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO

    2010-01-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414

  4. Deducing Electron Properties from Hard X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; Piana, M.; Prato, M.; Schmahl, E. J.; Suarez-Garcia, E.

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  5. Deducing Electron Properties from Hard X-ray Observations

    NASA Astrophysics Data System (ADS)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kašparová, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; Piana, M.; Prato, M.; Schmahl, E. J.; Suarez-Garcia, E.

    2011-09-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager ( RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  6. Imaging of magnetic domains by transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Eimüller, T.; Schütz, G.; Guttmann, P.; Schmahl, G.; Pruegl, K.; Bayreuther, G.

    1998-03-01

    The combination of the high-resolution transmission x-ray microscope (TXM) based on the zone plate technique with the x-ray magnetic circular dichroism (X-MCD) providing a huge magnetic contrast is a new technique to image magnetic domain structures. It is inherently element specific and contains information on the local spin and orbital moments of the absorbing species that can be obtained by applying magneto-optical sum rules. A lateral spatial resolution depending on the quality of the zone plates down to 30 nm can be achieved. We report on first results at the Fe 0022-3727/31/6/012/img9 edges of Fe both in amorphous and in multilayered Gd-Fe systems. With a TXM set-up at BESSY I adapted to record magnetic images in varying magnetic fields the evolution of magnetic domains within a complete hysteresis loop and magnetic aftereffects have been studied.

  7. Application of X-ray synchrotron microscopy instrumentation in biology

    SciTech Connect

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.; Perez, C. A.; Lopes, R. T.; Lima, I.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  8. Coherent Cone-Beam X-ray Microscopy

    SciTech Connect

    Harder, R.; Xiao, X.

    2011-09-09

    A novel full-field imaging method using the (111) Bragg diffraction of a sub-micron gold crystal as the divergent cone-beam for sample illumination is reported. The divergence of the illumination allows for very high magnification, limited only by the achievable ratio of the crystal-to-sample and sample-to-detector distances. In this case an x-ray magnification of approximately 115 was achieved.

  9. The physics of x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.; Marinelli, A.; Reiche, S.

    2016-01-01

    X-ray free-electron lasers (x-ray FELs) give us for the first time the possibility to explore structures and dynamical processes of atomic and molecular systems at the angstrom-femtosecond space and time scales. They generate coherent photon pulses with time duration of a few to 100 fs, peak power of 10 to 100 GW, over a wavelength range extending from about 100 nm to less than 1 Å. Using these novel and unique capabilities new scientific results are being obtained in atomic and molecular sciences, in areas of physics, chemistry, and biology. This paper reviews the physical principles, the theoretical models, and the numerical codes on which x-ray FELs are based, starting from a single electron spontaneous undulator radiation to the FEL collective instability of a high density electron beam, strongly enhancing the electromagnetic radiation field intensity and its coherence properties. A short review is presented of the main experimental properties of x-ray FELs, and the results are discussed of the most recent research to improve their longitudinal coherence properties, increase the peak power, and generate multicolor spectra.

  10. ELECTRON INJECTORS FOR NEXT GENERATION X-RAY SOURCES.

    SciTech Connect

    BLUEM,H.; BEN-ZVI,I.; SRINIVASAN-RAO,T.; ET AL.

    2004-08-02

    Next generation x-ray sources require very high-brightness electron beams that are typically at or beyond the present state-of-the-art, and thus place stringent and demanding requirements upon the electron injector parameters. No one electron source concept is suitable for all the diverse applications envisaged, which have operating characteristics ranging from high-average-current, quasi-CW, to high-peak-current, single-pulse electron beams. Advanced Energy Systems, in collaboration with various partners, is developing several electron injector concepts for these x-ray source applications. The performance and design characteristics of five specific RF injectors, spanning ''L'' to ''X''-band, normal-conducting to superconducting, and low repetition rate to CW, which are presently in various stages of design, construction or testing, is described. We also discuss the status and schedule of each with respect to testing.

  11. High-resolution projection image reconstruction of thick objects by hard x-ray diffraction microscopy

    SciTech Connect

    Takahashi, Yukio; Nishino, Yoshinori; Tsutsumi, Ryosuke; Zettsu, Nobuyuki; Matsubara, Eiichiro; Yamauchi, Kazuto; Ishikawa, Tetsuya

    2010-12-01

    Hard x-ray diffraction microscopy enables us to observe thick objects at high spatial resolution. The resolution of this method is limited, in principle, by only the x-ray wavelength and the largest scattering angle recorded. As the resolution approaches the wavelength, the thickness effect of objects plays a significant role in x-ray diffraction microscopy. In this paper, we report high-resolution hard x-ray diffraction microscopy for thick objects. We used highly focused coherent x rays with a wavelength of {approx}0.1 nm as an incident beam and measured the diffraction patterns of a {approx}150-nm-thick silver nanocube at the scattering angle of {approx}3 deg. We observed a characteristic contrast of the coherent diffraction pattern due to only the thickness effect and collected the diffraction patterns at nine incident angles so as to obtain information on a cross section of Fourier space. We reconstructed a pure projection image by the iterative phasing method from the patched diffraction pattern. The edge resolution of the reconstructed image was {approx}2 nm, which was the highest resolution so far achieved by x-ray microscopy. The present study provides us with a method for quantitatively observing thick samples at high resolution by hard x-ray diffraction microscopy.

  12. Light and electron microscopy of mouse lymphosarcoma LS/BL cells during the first hour after irradiation with x-rays.

    PubMed

    Tkadlecek, L; Karpfel, Z; Cibulka, M; Viklická, S; Spurná, V

    1975-01-01

    Mouse lymphosarcoma LS/BL cells growing in tissue culture were irradiated with 100, 316 and 1000 R respectively and fixed 5, 15 or 60 minutes later. Semithin sections were studied under a light and ultrathin under an electron microscopes. Under the light microscope, differences between the morphology of individual nuclei were found in all groups, including controls; the rate of their occurrence was without any relation to the irradiation. They may reflect the differences in the state of LS/BL cells which were not completely adapted to cultivation in small glass tubes. On the other hand, the frequency of some ultrastructural changes seen under the electron microscope showed a relation to the irradiation. They were: undulation of the outer nuclear membrane and dilatation of the space between the outer and inner nuclear membranes, slots in karyosomes adjacent to the surface of the nuclei, enlargement of cisternae and vesicles of endoplasmic reticulum and Golgi apparatus. The importance of a careful examination of control groups in such experiments is stressed. PMID:1242790

  13. High-performance multilevel blazed x-ray microscopy Fresnel zone plates: Fabricated using x-ray lithography

    SciTech Connect

    Di Fabrizio, E.; Gentili, M.; Grella, L.; Baciocchi, M. , I-00156 Rome ); Krasnoperova, A.; Cerrina, F. ); Yun, W.; Lai, B.; Gluskin, E. )

    1994-11-01

    Diffractive lenses are becoming the optical elements of choice for many applications. One type of diffractive lens, the binary zone plate, has already demonstrated high-resolution performance experimentally. However, in order to increase the diffraction efficiency of these zone plates, a blazed grating profile must be used. This can best be approximated by a staircase grating profile, created by multilevel exposures. Using x-ray lithograph, we fabricated for the first time circular, linear bi- and trilevel zone plates, with gold structures 0.75 [mu]m thick (per level), on silicon nitride substrates. The zone plates were designed for use at a wavelength of 1.54 A, and had a theoretical efficiency of 68.5% for bilevel and 81.5% for trilevel zone plates. Due to the large depth of focus and high resolution inherent to x-ray lithography, the finished zone plate exhibits very steep sidewall profiles, with linewidth resolution down to 0.25 [mu]m. Such vertical sidewalls are essential for achieving high lens efficiency. Fabrication errors, such as thickness variation in the electroplated gold and misalignment, were considered, and their effect on the optical efficiency of the zone plate was estimated. Alignment errors between levels were minimized, achieving a best result of 25 nm (3[sigma]). In fabricating the zone plates, we employed standard integrated device tools, such as a Leica Cambridge Electron Beam microfabricator (EBMF) 10cs/120 electron-beam writer for the x-ray mask fabrication, and a Suss 200 x-ray stepper for the multilevel exposures. Thus, we have shown that it will be possible to fabricate many lenses, with a variety of optical characteristics, in one wafer.

  14. Electron Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  15. Applications of focused ion beam for preparation of specimens of ancient ceramic for electron microscopy and synchrotron X-ray studies.

    PubMed

    Sciau, Ph; Salles, Ph; Roucau, C; Mehta, A; Benassayag, G

    2009-01-01

    In this paper the capabilities of FIB systems as a tool for TEM studies of ancient pottery are explored, especially when the amount of available material is very limited and when, for instance, there is stringent demand for very accurate location of the electron-transparent area as is the case for investigation of outer surface layers, such as slips and patinas. The advantages of the two main FIB milling techniques (H-bar and Lift-out) are discussed in detail and illustrated through the study of metallic lustre decorations and a particular type of Roman Terra Sigillata coating. The H-bar technique is ideal for investigations where the features of interest are near the edges of a ceramic fragment. A significantly large area of surface decoration can be studied without any restriction on the size and the shape of fragment. On the other hand, the Lift-out technique is very powerful for extracting TEM membranes far from the edges. An added advantage of this technique is that the thickness of the foil is very uniform and that allows large tilts and makes it possible to obtain electron diffraction patterns of several zones axes from the same crystal, making crystallographic phase identification easier and precise, and identification of complex structures possible. We also show that the FIB system can be used to deposit very precise registration marks, allowing an experimenter to correlate results from TEM measurements with other complementary techniques, such as synchrotron based microdiffraction and microXANES. Combination of these complementary techniques is becoming a very powerful approach to probe the chemical and morphological microstructure of heterogeneous and complex material from the nanometre to millimetre scale. PMID:19342248

  16. An optimal design of X-ray target for uniform X-ray emission from an electronic brachytherapy system

    NASA Astrophysics Data System (ADS)

    Ihsan, Aamir; Heo, Sung Hwan; Kim, Hyun Jin; Kang, Chang Mu; Cho, Sung Oh

    2011-05-01

    We present a novel design of an X-ray target to deliver uniform dose from an electronic brachytherapy system (EBS). This design comprises of a combination of both the reflection- and transmission-type target geometries. Monte-Carlo simulation code MCNP5 has been employed for the calculation of angular distribution of the X-ray intensity produced from various morphologies of X-ray targets. The simulation results reveal that the combinatorial target-assembly is promising and effective in achieving uniformity of X-ray emission over the entire space of solid angle of 4 π in comparison to a transmission-type target that produces X-rays mainly in the forward direction and a reflection-type target that generates X-rays mostly in the backward direction. As a direct consequence of the uniformity of X-ray emission, the combinatorial target-assembly can impart a uniform dose distribution which makes it suitable as a target of an X-ray tube for EBS.

  17. The atomic structural dynamics of γ-Al2O3 supported Ir-Pt nanocluster catalysts prepared from a bimetallic molecular precursor: a study using aberration-corrected electron microscopy and X-ray absorption spectroscopy.

    PubMed

    Small, Matthew W; Sanchez, Sergio I; Menard, Laurent D; Kang, Joo H; Frenkel, Anatoly I; Nuzzo, Ralph G

    2011-03-16

    This study describes a prototypical, bimetallic heterogeneous catalyst: compositionally well-defined Ir-Pt nanoclusters with sizes in the range of 1-2 nm supported on γ-Al(2)O(3). Deposition of the molecular bimetallic cluster [Ir(3)Pt(3)(μ-CO)(3)(CO)(3)(η-C(5)Me(5))(3)] on γ-Al(2)O(3), and its subsequent reduction with hydrogen, provides highly dispersed supported bimetallic Ir-Pt nanoparticles. Using spherical aberration-corrected scanning transmission electron microscopy (C(s)-STEM) and theoretical modeling of synchrotron-based X-ray absorption spectroscopy (XAS) measurements, our studies provide unambiguous structural assignments for this model catalytic system. The atomic resolution C(s)-STEM images reveal strong and specific lattice-directed strains in the clusters that follow local bonding configurations of the γ-Al(2)O(3) support. Combined nanobeam diffraction (NBD) and high-resolution transmission electron microscopy (HRTEM) data suggest the polycrystalline γ-Al(2)O(3) support material predominantly exposes (001) and (011) surface planes (ones commensurate with the zone axis orientations frequently exhibited by the bimetallic clusters). The data reveal that the supported bimetallic clusters exhibit complex patterns of structural dynamics, ones evidencing perturbations of an underlying oblate/hemispherical cuboctahedral cluster-core geometry with cores that are enriched in Ir (a result consistent with models based on surface energetics, which favor an ambient cluster termination by Pt) due to the dynamical responses of the M-M bonding to the specifics of the adsorbate and metal-support interactions. Taken together, the data demonstrate that strong temperature-dependent charge-transfer effects occur that are likely mediated variably by the cluster-support, cluster-adsorbate, and intermetallic bonding interactions. PMID:21341654

  18. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy

    NASA Astrophysics Data System (ADS)

    Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M.

    2015-05-01

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.

  19. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy

    PubMed Central

    Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M.

    2015-01-01

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies. PMID:25974639

  20. Studying Nanoscale Magnetism and its Dynamics with Soft X-ray Microscopy

    SciTech Connect

    Mccall, Monnikue M; Fischer, Peter

    2008-05-01

    Magnetic soft X-ray microscopy allows for imaging magnetic structures at a spatial resolution down to 15nm and a time resolution in the sub-100ps regime. Inherent elemental specificity can be used to image the magnetic response of individual components such as layers in multilayered systems. This review highlights current achievements and discusses the future potential of magnetic soft X-ray microscopy at fsec X-ray sources where snapshot images of ultrafast spin dynamics with a spatial resolution below 10nm will become feasible.

  1. Halo suppression in full-field x-ray Zernike phase contrast microscopy.

    PubMed

    Vartiainen, Ismo; Mokso, Rajmund; Stampanoni, Marco; David, Christian

    2014-03-15

    Visible light Zernike phase contrast (ZPC) microscopy is a well established method for imaging weakly absorbing samples. The method is also used with hard x-ray photon energies for structural evaluation of material science and biological applications. However, the method suffers from artifacts that are inherent for the Zernike image formation. In this Letter, we investigate their origin and experimentally show how to suppress them in x-ray full-field ZPC microscopy based on diffractive x-ray optics. PMID:24690848

  2. Analysis of particles produced during airbag deployment by scanning electron microscopy with energy dispersive x-ray spectroscopy and their deposition on surrounding surfaces: a mid-research summary

    NASA Astrophysics Data System (ADS)

    Wyatt, J. Matney

    2011-06-01

    Airbags can be encountered in forensic work when investigating a car crash and are typically constructed with primerlike material to begin the deployment apparatus. The mechanisms of airbag deployment can produce particles ideal for scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS) analysis. A recent study published by Berk studied airbags with vents and showed that it is possible for particles generated from the deployment of these airbags to deposit on surfaces in the vehicle as the airbags deflate.1 Another paper published by Berk reported particles similar in morphology and composition to primer gunshot residue (GSR) are produced by side impact airbags.2 This paper's aim will be to show mid-point results of a study still in progress in which non-vented airbags were analyzed to determine if they exhibited the same particle depositing features as their vented airbag counterparts. Further investigation in this study is being performed to find more airbags which produce primer gunshot residue-like particles containing lead, barium, and antimony from airbag deployment. To date, the study has resulted in (1) non-vented airbags exhibiting deposition of particles suitable for SEM/EDS analysis and (2) no gunshot residue-like particles being detected from the airbag residues studied thus far.

  3. Elemental composition of strawberry plants inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, assessed with scanning electron microscopy and energy dispersive X-ray analysis.

    PubMed

    Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Díaz-Ricci, J C; Pedraza, R O

    2014-07-01

    The elemental composition of strawberry plants (Fragaria ananassa cv. Macarena) inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, and non-inoculated controls, was studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analysis. This allowed simultaneous semi-quantification of different elements in a small, solid sample. Plants were inoculated and grown hydroponically in 50% or 100% Hoagland solution, corresponding to limited or optimum nutrient medium, respectively. Bacteria-inoculated plants increased the growth index 45% and 80% compared to controls when grown in 100% and 50% Hoagland solution, respectively. Thus, inoculation with A. brasilense REC3 in a nutrient-limited medium had the strongest effect in terms of increasing both shoot and root biomass and growth index, as already described for Azospirillum inoculated into nutrient-poor soils. SEM-EDS spectra and maps showed the elemental composition and relative distribution of nutrients in strawberry tissues. Leaves contained C, O, N, Na, P, K, Ca and Cu, while roots also had Si and Cl. The organic fraction (C, O and N) accounted for over 96.3% of the total chemical composition; of the mineral fraction, Na had higher accumulation in both leaves and roots. Azospirillum-inoculated and control plants had similar elemental quantities; however, in bacteria-inoculated roots, P was significantly increased (34.33%), which constitutes a major benefit for plant nutrition, while Cu content decreased (35.16%). PMID:24148195

  4. Two-dimensional X-ray diffraction and transmission electron microscopy study on the effect of magnetron sputtering atmosphere on GaN/SiC interface and gallium nitride thin film crystal structure

    SciTech Connect

    Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian

    2015-03-21

    The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality (0002) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by (0002) oriented wurtzite GaN and (111) oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H{sub 2} into Ar and/or N{sub 2} during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H{sub 2} into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted (33{sup ¯}02) orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H{sub 2} into N{sub 2} due to the complex reaction between H{sub 2} and N{sub 2}.

  5. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions.

    PubMed

    Arndt, J; Deboudt, K; Anderson, A; Blondel, A; Eliet, S; Flament, P; Fourmentin, M; Healy, R M; Savary, V; Setyan, A; Wenger, J C

    2016-03-01

    The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe-Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site. PMID:26708757

  6. Epitaxial BaTiO{sub 3}(100) films on Pt(100): A low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy study

    SciTech Connect

    Foerster, Stefan; Huth, Michael; Schindler, Karl-Michael; Widdra, Wolf

    2011-09-14

    The growth of epitaxial ultrathin BaTiO{sub 3} films on a Pt(100) substrate has been studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and x-ray photoelectron spectroscopy (XPS). The films have been prepared by radio-frequency-assisted magnetron sputter deposition at room temperature and develop a long-range order upon annealing at 900 K in O{sub 2}. By adjusting the Ar and O{sub 2} partial pressures of the sputter gas, the stoichiometry was tuned to match that of a BaTiO{sub 3}(100) single crystal as determined by XPS. STM reveals the growth of continuous BaTiO{sub 3} films with unit cell high islands on top. With LEED already for monolayer thicknesses, the formation of a BaTiO{sub 3}(100)-(1 x 1) structure has been observed. Films of 2-3 unit cell thickness show a brilliant (1 x 1) LEED pattern for which an extended set of LEED I-V data has been acquired. At temperatures above 1050 K the BaTiO{sub 3} thin film starts to decay by formation of vacancy islands. In addition (4 x 4) and (3 x 3) surface reconstructions develop upon prolonged heating.

  7. Scanning transmission x-ray microscopy of unaltered biological specimens

    SciTech Connect

    Iskander, N.

    1987-05-01

    A scanning transmission x-ray microscope at the National Synchrotron Light Source was used to image fresh, wet biological specimens at 32 Angstroms, with resolution better than 750 Angstroms. A gold Fresnel zone plate (outer zone width 500 Angstroms) was used to focus the undulator radiation, and the sample was scanned through the spot. Absorption data was recorded digitally as a gridded array. The major accomplishment of the experiment was the demonstration of the ability to image biological samples in their natural state with high resolution and natural elemental contrast mechanisms. This was achieved through the design of a sample holder that maintains an aqueous environment for the sample, yet is transparent to x-rays at 32 Angstroms. The specimens used were isolated zymogen granules (approximately 1 micron diameter) from the pancreatic acinar cells of rats. The absorption data were correlated to protein concentration, and estimates of the protein concentrations within the granules were obtained. The data also yields some information about the spatial organization of the protein in the granules, and our data is compared to models for the internal structure. The success of this experiment points toward future opportunities for dynamical studies on living systems. 6 refs., 28 figs., 2 tabs.

  8. Quantitative Electron-Excited X-Ray Microanalysis of Borides, Carbides, Nitrides, Oxides, and Fluorides with Scanning Electron Microscopy/Silicon Drift Detector Energy-Dispersive Spectrometry (SEM/SDD-EDS) and NIST DTSA-II.

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2015-10-01

    A scanning electron microscope with a silicon drift detector energy-dispersive X-ray spectrometer (SEM/SDD-EDS) was used to analyze materials containing the low atomic number elements B, C, N, O, and F achieving a high degree of accuracy. Nearly all results fell well within an uncertainty envelope of ±5% relative (where relative uncertainty (%)=[(measured-ideal)/ideal]×100%). Quantification was performed with the standards-based "k-ratio" method with matrix corrections calculated based on the Pouchou and Pichoir expression for the ionization depth distribution function, as implemented in the NIST DTSA-II EDS software platform. The analytical strategy that was followed involved collection of high count (>2.5 million counts from 100 eV to the incident beam energy) spectra measured with a conservative input count rate that restricted the deadtime to ~10% to minimize coincidence effects. Standards employed included pure elements and simple compounds. A 10 keV beam was employed to excite the K- and L-shell X-rays of intermediate and high atomic number elements with excitation energies above 3 keV, e.g., the Fe K-family, while a 5 keV beam was used for analyses of elements with excitation energies below 3 keV, e.g., the Mo L-family. PMID:26365439

  9. Scanning x-ray difference microscopy and microtomography using synchrotron radiation of the storage ring VEPP-4

    NASA Astrophysics Data System (ADS)

    Borodin, Yu. I.; Dementyev, E. N.; Dragun, G. N.; Kulipanov, G. N.; Mezentsev, N. A.; Pindyurin, V. F.; Sheromov, M. A.; Skrinsky, A. N.; Sokolov, A. S.; Ushakov, V. A.

    1986-05-01

    A device designed to be employed for X-ray transmission difference microscopy and microtomography at the X-ray absorption edges of chemical elements using synchrotron radiation is described. The device comprises a double-crystal monochromator, collimator system, object scanning unit and two X-ray detection blocks based on an NaI(Tl) crystal, photomultiplier (FEU-130) and appropriate electronics. As an example of the practical application of this technique, the first results on the diagnostics of the lymph system by lymphography, i.e. the visualization of the lymph nodes previously contrasted by a Th-containing preparation, are presented. These results have been obtained at the Th L III-edge ( Eγ = 16.3 keV using difference microscopy and microtomography.

  10. Focused ion beam patterned Fe thin films A study by selective area Stokes polarimetry and soft x-Ray microscopy

    SciTech Connect

    Cook, P. J.; Shen, T. H.; Grundy, P. J.; Im, M.-Y.; Fischer, P.; Morton, S. A.; Kilcoyne, A. L. D.

    2010-11-14

    We demonstrate the potential to modify the magnetic behavior and structural properties of ferromagnetic thin films using focused ion beam 'direct-write' lithography. Patterns inspired by the split-ring resonators often used as components in meta-materials were defined upon 15 nm Fe films using a 30 keV Ga{sup +} focused ion beam at a dose of 2 x 10{sup 16} ions cm{sup -2}. Structural, chemical and magnetic changes to the Fe were studied using transmission soft X-ray microscopy at the ALS, Berkeley CA. X-ray absorption spectra showed a 23% reduction in the thickness of the film in the Ga irradiated areas, but no chemical change to the Fe was evident. X-ray images of the magnetic reversal process show domain wall pinning around the implanted areas, resulting in an overall increase in the coercivity of the film. Transmission electron microscopy showed significant grain growth in the implanted regions.

  11. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Hao; Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Rosenmann, Daniel; Preissner, Curt; Freeland, John W.; Kersell, Heath; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  12. Flash imaging of fine structures of cellular organelles by contact x-ray microscopy with a high intensity laser plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Kinjo, Yasuhito; Shinohara, Kunio

    2011-09-01

    X-ray flash imaging by contact microscopy with a highly intense laser-plasma x-ray source was achieved for the observation of wet biological cells. The exposure time to obtain a single x-ray image was about 600 ps as determined by the pulse duration of the driving laser pulse. The x-ray flash imaging makes it possible to capture an x-ray image of living biological cells without any artificial treatment such as staining, fixation, freezing, and so on. The biological cells were cultivated directly on the surface of the silicon nitride membranes, which are used for the x-ray microscope. Before exposing the cells to x-rays they were observed by a conventional fluorescent microscope as reference, since the fluorescent microscopes can visualize specific organelles stained with fluorescent dye. Comparing the x-ray images with the fluorescent images of the exact same cells, each cellular organelle observed in the x-ray images was identified one by one and actin filaments and mitochondria were clearly identified in the x-ray images.

  13. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    SciTech Connect

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  14. Evidence for beamed electrons in a limb X-ray flare observed by Hard X-Ray Imaging Spectrometer (HXIS)

    NASA Technical Reports Server (NTRS)

    Haug, Eberhard; Elwert, Gerhard

    1986-01-01

    The limb flare of November 18, 1980, 14:51 UT, was investigated on the basis of X-ray images taken by the Hard X-ray Imaging Spectrometer (HXIS) and of X-ray spectra from the Hard X-Ray Burst Spectrometer (HXRBS) aboard the Solar Maximum Mission (SMM). The impulsive burst was also recorded at microwave frequencies between 2 and 20 GHz whereas no optical flare and no radio event at frequencies below 1 GHz were reported. The flare occurred directly at the SW limb of the solar disk. Taking advantage of the spatial resolution of HXIS images, the time evolution of the X-radiation originating from relatively small source regions can be studied. Using Monte Carlo computations of the energy distribution of energetic electrons traversing the solar plasma, the bremsstrahlung spectra produced by the electrons were derived.

  15. Stochastic stimulated electronic x-ray Raman spectroscopy.

    PubMed

    Kimberg, Victor; Rohringer, Nina

    2016-05-01

    Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the [Formula: see text] transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations. PMID:26958585

  16. Stochastic stimulated electronic x-ray Raman spectroscopy

    PubMed Central

    Kimberg, Victor; Rohringer, Nina

    2016-01-01

    Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the O1s→π* transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations. PMID:26958585

  17. High efficiency, multiterawatt x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Emma, C.; Fang, K.; Wu, J.; Pellegrini, C.

    2016-02-01

    In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs), a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  18. X-ray microscopy and imaging of Caenorhabditis elegans nematode using a laser-plasma-pulsed x-ray source

    NASA Astrophysics Data System (ADS)

    Poletti, Giulio; Orsini, Franceasco; Ullschmied, Jiri; Skala, Jiri; Kralikova, Bozena; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomas; Prag, A. R.; Cotelli, F.; Lora Lamia, C.; Batani, Dimitri; Bernardinello, A.; Desai, Tara; Zullini, A.

    2004-01-01

    An experiment on Soft X-ray Contact Microscopy (SXCM) performed on Caenorhabditis elegans nematodes is discussed. This sample has been selected since it is a well studied case used as model in many biological contexts. The experiment has been performed using the iodine PALS laser source to generate pulsed soft X-rays from laser-plasma interaction, using molybdenum and gold as targets. Typical intensities on the targets exceeded 1014 W/cm2. The SXCM imprints have been recorded on Polymethilmetacrylate (PMMA) photo resists which have been chemically developed and analyzed with an Atomic Force Microscope (AFM) operating in constant force mode. The use of error signal AFM images together with topography AFM images, did allow an easier recognition of biological patterns, and the identification of observed structures with internal organs. Several organs were identified in the SXCM images, including cuticle annuli, alae, pharynx, and three different types of cell nuclei. These are the first SXCM images of multi-cellular complex organisms.

  19. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries.

    PubMed

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  20. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    PubMed Central

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  1. Quantitative x-ray magnetic circular dichroism mapping with high spatial resolution full-field magnetic transmission soft x-ray spectro-microscopy

    SciTech Connect

    Robertson, MacCallum J.; Agostino, Christopher J.; N'Diaye, Alpha T.; Chen, Gong; Im, Mi-Young; Fischer, Peter

    2015-05-07

    The spectroscopic analysis of X-ray magnetic circular dichroism (XMCD), which serves as strong and element-specific magnetic contrast in full-field magnetic transmission soft x-ray microscopy, is shown to provide information on the local distribution of spin (S) and orbital (L) magnetic moments down to a spatial resolution of 25 nm limited by the x-ray optics used in the x-ray microscope. The spatially resolved L/S ratio observed in a multilayered (Co 0.3 nm/Pt 0.5 nm) × 30 thin film exhibiting a strong perpendicular magnetic anisotropy decreases significantly in the vicinity of domain walls, indicating a non-uniform spin configuration in the vertical profile of a domain wall across the thin film. Quantitative XMCD mapping with x-ray spectro-microscopy will become an important characterization tool for systems with topological or engineered magnetization inhomogeneities.

  2. Quantitative x-ray magnetic circular dichroism mapping with high spatial resolution full-field magnetic transmission soft x-ray spectro-microscopy

    NASA Astrophysics Data System (ADS)

    Robertson, MacCallum J.; Agostino, Christopher J.; N'Diaye, Alpha T.; Chen, Gong; Im, Mi-Young; Fischer, Peter

    2015-05-01

    The spectroscopic analysis of X-ray magnetic circular dichroism (XMCD), which serves as strong and element-specific magnetic contrast in full-field magnetic transmission soft x-ray microscopy, is shown to provide information on the local distribution of spin (S) and orbital (L) magnetic moments down to a spatial resolution of 25 nm limited by the x-ray optics used in the x-ray microscope. The spatially resolved L/S ratio observed in a multilayered (Co 0.3 nm/Pt 0.5 nm) × 30 thin film exhibiting a strong perpendicular magnetic anisotropy decreases significantly in the vicinity of domain walls, indicating a non-uniform spin configuration in the vertical profile of a domain wall across the thin film. Quantitative XMCD mapping with x-ray spectro-microscopy will become an important characterization tool for systems with topological or engineered magnetization inhomogeneities.

  3. The X-ray microscopy beamline UE46-PGM2 at BESSY

    NASA Astrophysics Data System (ADS)

    Follath, R.; Schmidt, J. S.; Weigand, M.; Fauth, K.

    2010-06-01

    The Max Planck Institute for Metal Physics in Stuttgart and the Helmholtz Center Berlin operate a soft X-ray microscopy beamline at the storage ring BESSY II. A collimated PGM serves as monochromator for a scanning X-ray microscope and a full field X-ray microscope at the helical undulator UE46. The selection between both instruments is accomplished via two switchable focusing mirrors. The scanning microscope (SM) is based on the ALS STXM microscope and fabricated by the ACCEL company. The full field microscope (FFM) is currently in operation at the U41-SGM beamline and will be relocated to its final location this year.

  4. Imaging of lateral spin valves with soft x-ray microscopy

    SciTech Connect

    Mosendz, O.; Mihajlovic, G.; Pearson, J. E.; Fischer, P.; Im, M.-Y.; Bader, S. D.; Hoffmann, A.

    2009-05-01

    We investigated Co/Cu lateral spin valves by means of high-resolution transmission soft x-ray microscopy with magnetic contrast that utilizes x-ray magnetic circular dichroism (XMCD). No magnetic XMCD contrast was observed at the Cu L{sub 3} absorption edge, which should directly image the spin accumulation in Cu. Although electrical transport measurements in a non-local geometry clearly detected the spin accumulation in Cu, which remained unchanged during illumination with circular polarized x-rays at the Co and Cu L{sub 3} absorption edges.

  5. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-04-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties.

  6. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    PubMed Central

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  7. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy.

    PubMed

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  8. High resolution double-sided diffractive optics for hard X-ray microscopy.

    PubMed

    Mohacsi, Istvan; Vartiainen, Ismo; Guizar-Sicairos, Manuel; Karvinen, Petri; Guzenko, Vitaliy A; Müller, Elisabeth; Färm, Elina; Ritala, Mikko; Kewish, Cameron M; Somogyi, Andrea; David, Christian

    2015-01-26

    The fabrication of high aspect ratio metallic nanostructures is crucial for the production of efficient diffractive X-ray optics in the hard X-ray range. We present a novel method to increase their structure height via the double-sided patterning of the support membrane. In transmission, the two Fresnel zone plates on the two sides of the substrate will act as a single zone plate with added structure height. The presented double-sided zone plates with 30 nm smallest zone width offer up to 9.9% focusing efficiency at 9 keV, that results in a factor of two improvement over their previously demonstrated single-sided counterparts. The increase in efficiency paves the way to speed up X-ray microscopy measurements and allows the more efficient utilization of the flux in full-field X-ray microscopy. PMID:25835837

  9. Single-particle structure determination by X-ray free-electron lasers: Possibilities and challenges

    PubMed Central

    Hosseinizadeh, A.; Dashti, A.; Schwander, P.; Fung, R.; Ourmazd, A.

    2015-01-01

    Single-particle structure recovery without crystals or radiation damage is a revolutionary possibility offered by X-ray free-electron lasers, but it involves formidable experimental and data-analytical challenges. Many of these difficulties were encountered during the development of cryogenic electron microscopy of biological systems. Electron microscopy of biological entities has now reached a spatial resolution of about 0.3 nm, with a rapidly emerging capability to map discrete and continuous conformational changes and the energy landscapes of biomolecular machines. Nonetheless, single-particle imaging by X-ray free-electron lasers remains important for a range of applications, including the study of large “electron-opaque” objects and time-resolved examination of key biological processes at physiological temperatures. After summarizing the state of the art in the study of structure and conformations by cryogenic electron microscopy, we identify the primary opportunities and challenges facing X-ray-based single-particle approaches, and possible means for circumventing them. PMID:26798800

  10. Ptychography: Pushing the limits of X-ray microscopy

    SciTech Connect

    Fromm, Cayla

    2015-08-23

    Ptychography is an advanced diffraction based imaging technique that can achieve resolution of 5 nm, and below. It is done by scanning a sample through a beam of focused x-rays using discrete yet overlapping scan steps. Scattering data is collected on a CCD camera, and the phase of the scattered light is reconstructed with sophisticated iterative algorithms. Because the experimental setup is similar, ptychography setups can be created by retrofitting existing STXM beam lines with new hardware. The other challenge comes in the reconstruction of the collected scattering images. Scattering data must be adjusted and packaged with experimental parameters to calibrate the reconstruction software. The necessary pre-processing of data prior to reconstruction is unique to each beamline setup, and even the optical alignments used on that particular day. Pre-processing software must be developed to be flexible and efficient in order to allow experimenters appropriate control and freedom in the analysis of their hard-won data. This paper will describe the implementation of pre-processing software which successfully connects data collection steps to reconstruction steps, letting the user accomplish accurate and reliable ptychography.

  11. Electro-deposition of Cu studied with in situ electrochemical scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Qin, Z.; Rosendahl, S. M.; Lee, V.; Reynolds, M.; Hosseinkhannazer, H.

    2016-01-01

    Soft X-ray scanning transmission X-ray microscopy (STXM) was used to investigate Cu deposition onto, and stripping from a Au surface. Cu 2p spectromicroscopy was used to analyze initial and final states (ex situ processing) and follow the processes in situ. The in situ experiments were carried out using a static electrochemical cell with an electrolyte layer thickness of ˜1 μm. A new apparatus for in situ electrochemical STXM is described.

  12. Electronic structure of cobalt doped CdSe quantum dots using soft X-ray spectroscopy

    SciTech Connect

    Joshua T. Wright; Su, Dong; van Buuren, Tony; Meulenberg, Robert W.

    2014-08-21

    The electronic structure and magnetic properties of cobalt doped CdSe quantum dots (QDs) are studied using electron microscopy, soft X-ray spectroscopy, and magnetometry. Magnetometry measurements suggest these QDs are superparamagnetic, contrary to a spin-glass state observed in the bulk analogue. Moreover, the electron microscopy shows well formed QDs, but with cobalt existing as doped into the QD and as unreacted species not contained in the QD. X-ray absorption measurements at the Co L3-edge suggest that changes in spectra features as a function of particle size can be described considering combination of a cobalt ion in a tetrahedral crystal field and an octahedrally coordinated (impurity) phase. With decreasing particle sizes, the impurity phase increases, suggesting that small QDs can be difficult to dope.

  13. Atmospheric Electron-Induced X-Ray Spectrometer (AEXS) Development

    NASA Technical Reports Server (NTRS)

    Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; George, Thomas; Douglas, Susanne; Crisp, Joy

    2005-01-01

    This paper describes the progress in the development of the so-called Atmospheric Electron X-ray Spectrometer (AEXS) instrument in our laboratory at JPL. The AEXS is a novel miniature instrument concept based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam, for non-destructive evaluation of surfaces of samples in situ, in planetary ambient atmosphere. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum within the AEXS electron source from the outside ambient atmosphere. By using a focused electron beam, the impinging electrons on samples in the external atmosphere excite XRF spectra from the irradiated spots with high-to-medium spatial resolution. The XRF spectra are analyzed using an energy-dispersive detector to determine surface elemental composition. The use of high- intensity electron beam results in rapid spectrum acquisition (several minutes), and consequently low energy consumption (several tens of Joules) per acquired XRF spectrum in comparison to similar portable instruments.

  14. 3D X-ray ultra-microscopy of bone tissue.

    PubMed

    Langer, M; Peyrin, F

    2016-02-01

    We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features. PMID:26370826

  15. Structure and electronic properties of CH 3- and CF 3-terminated alkanethiol monolayers on Au( 1 1 1 ): a scanning tunneling microscopy, surface X-ray and helium scattering study

    NASA Astrophysics Data System (ADS)

    Pflaum, J.; Bracco, G.; Schreiber, F.; Colorado, R.; Shmakova, O. E.; Lee, T. R.; Scoles, G.; Kahn, A.

    2002-02-01

    The structure and the electronic properties of a series of CH 3- and CF 3-terminated alkanethiol monolayers on Au(1 1 1) have been studied by scanning tunneling microscopy (STM) and surface X-ray and helium scattering. At full coverage, the CH 3-terminated monolayers form long-range ordered domains of a (√3×√3) R30° and a (2√3×3) R30° standing-up phase. By thermal desorption, distinct lying-down phases of intermediate density as well as the ( p×√3) lying-down phase were generated. In contrast, the CF 3-terminated monolayers at full coverage form a standing-up phase of hexagonal symmetry that exhibits no long-range order at room temperature. Even after annealing, the domain sizes are smaller by more than one order of magnitude compared to the CH 3-terminated thiol monolayers. A comparison of the low-density lying-down phases suggests no measurable influence of the CF 3-group on the ordering. The current-voltage dependence ( I- V-curves) measured by scanning tunneling spectroscopy (STS) shows no voltage gap for CH 3-terminated decanethiols. In contrast, in the I- V-curves for CF 3-terminated decanethiol monolayers, an asymmetric voltage gap of about 2 V can be clearly observed. The latter results are discussed in terms of a microscopic model that includes the formation of an interfacial Coulomb barrier at the CF 3/vacuum boundary. In addition, the effects of the tunneling conditions on the STM image contrast were examined. These studies demonstrate that the nature of the STM images and thus, the respective apparent lateral order of the films, strongly depends on the choice of the tunneling parameters.

  16. Conservation of Moroccan manuscript papers aged 150, 200 and 800 years. Analysis by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM-EDS)

    NASA Astrophysics Data System (ADS)

    Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Lakhiari, Hamid; Kerbal, Abdelali; Doumenq, Pierre; Mille, Gilbert; De Carvalho, Maria Luisa

    2015-02-01

    The preservation of manuscripts and archive materials is a serious problem for librarians and restorers. Paper manuscript is subjected to numerous degradation factors affecting their conservation state. This research represents an attempt to evaluate the conservation restoration process applied in Moroccan libraries, especially the alkaline treatment for strengthening weakened paper. In this study, we focused on six samples of degraded and restored paper taken from three different Moroccan manuscripts aged 150, 200 and 800 years. In addition, the Japanese paper used in restoration has been characterized. A modern paper was also analyzed as reference. A three-step analytical methodology based on infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) analysis was developed before and after restoration in order to determine the effect of the consolidation treatment on the paper structure. The results obtained by XRD and ATR-FTIR disclosed the presence of barium sulfate (BaSO4) in all restored paper manuscripts. The presence of calcium carbonate (CaCO3) in all considered samples was confirmed by FTIR spectroscopy. The application of de-acidification treatment causes significant changes connected with the increase of intensity mostly in the region 1426 cm-1, assigned to the asymmetric and symmetric Csbnd O stretching mode of calcite, indicating the effectiveness of de-acidification procedure proved by the rise of the alkaline reserve content allowing the long term preservation of paper. Observations performed by SEM magnify the typical paper morphology and the structure of fibbers, highlighting the effect of the restoration process, manifested by the reduction of impurities.

  17. Instrumentation developments in scanning soft x-ray microscopy at the NSLS (invited)

    NASA Astrophysics Data System (ADS)

    Williams, Shawn; Jacobsen, Chris; Kirz, Janos; Maser, Jörg; Wirick, Sue; Zhang, Xiaodong; Ade, Harald; Rivers, Mark

    1995-02-01

    The Scanning Transmission Soft X-ray Microscope at the NSLS has been instrumented for the following new forms of imaging: (1) XANES microscopy for the mapping of chemical constituents and for absorption spectroscopy of small specimen areas; (2) luminescence microscopy for locating visible light emitting labels at the resolution determined by the size of the x-ray microprobe; and (3) dichroism microscopy for mapping the alignment of molecules whose absorption spectra are polarization dependent. Since the instrument is used mostly for the imaging of biological and other radiation sensitive materials, a cryostage is being planned to accommodate frozen hydrated specimens.

  18. 2D and 3D X-Ray Structural Microscopy Using Submicron-Resolution Laue Microdiffraction

    SciTech Connect

    Budai, John D.; Yang, Wenge; Larson, Bennett C.; Tischler, Jonathan Z.; Liu, Wenjun; Ice, Gene E.

    2010-11-10

    We have developed a scanning, polychromatic x-ray microscopy technique with submicron spatial resolution at the Advanced Photon Source. In this technique, white undulator radiation is focused to submicron diameter using elliptical mirrors. Laue diffraction patterns scattered from the sample are collected with an area detector and then analyzed to obtain the local crystal structure, lattice orientation, and strain tensor. These new microdiffraction capabilities have enabled both 2D and 3D structural studies of materials on mesoscopic length-scales of tenths-to-hundreds of microns. For thin samples such as deposited films, 2D structural maps are obtained by step-scanning the area of interest. For example, 2D x-ray microscopy has been applied in studies of the epitaxial growth of oxide films. For bulk samples, a 3D differential-aperture x-ray microscopy technique has been developed that yields the full diffraction information from each submicron volume element. The capabilities of 3D x-ray microscopy are demonstrated here with measurements of grain orientations and grain boundary motion in polycrystalline aluminum during 3D thermal grain growth. X-ray microscopy provides the needed, direct link between the experimentally measured 3D microstructural evolution and the results of theory and modeling of materials processes on mesoscopic length scales.

  19. High resolution transmission soft X-ray microscopy of deterioration products developed in large concrete dams

    PubMed

    Kurtis; Monteiro; Brown; Meyer-Ilse

    1999-12-01

    In concrete structures, the reaction of certain siliceous aggregates with the highly alkaline concrete pore solution produces an alkali-silicate gel that can absorb water and expand. This reaction can lead to expansion, cracking, increased permeability, and decreased strength of the concrete. Massive concrete structures, such as dams, are particularly susceptible to the damage caused by the alkali-silica reaction because of the availability of water and because massive gravity dams usually do not contain steel reinforcement to restrain the expansion. Both the cement hydration products and alkali-silica reaction products are extremely sensitive to humidity. Consequently, characterization techniques that require high vacuum or drying, as many existing techniques do, are not particularly appropriate for the study of the alkali-silica reaction because artefacts are introduced. Environmental scanning electron micrographs and scanning electron micrographs with energy dispersive X-ray analysis results demonstrate the effect of drying on the morphology and chemical composition of the alkali-silicate reaction gel. Thus, the impetus for this research was the need to observe and characterize the alkali-silica reaction and its gel product on a microscopic level in a wet environment (i.e. without introducing artefacts due to drying). Only soft X-ray transmission microscopy provides the required high spatial resolution needed to observe the reaction process in situ. The alkali-silica reaction can be observed over time, in a wet condition, and at normal pressures, features unavailable with most other high resolution techniques. Soft X-rays also reveal information on the internal structure of the sample. The purpose of this paper is to present research, obtained using transmission soft X-ray microscopy, on the effect of concrete pore solution cations, namely sodium and calcium, on the product formed as a result of alkali attack. Alkali-silicate reaction (ASR) gel was obtained from

  20. Transmission X-ray microscopy reveals the clay aggregate discrete structure in aqueous environment.

    PubMed

    Zbik, Marek S; Frost, Ray L; Song, Yen-Fang; Chen, Yi-Ming; Chen, Jian-Hua

    2008-03-15

    The utilization of new transmission X-ray microscopy (TXM) using the synchrotron photon source enable for the first time the study in three dimensions microsize clay particles in aggregates in their natural aqueous environment. This technique makes possible remarkable accurate images of nanosize mineral interparticle structure which forms a new nanocomposite. The Birdwood kaolinite/LDH aggregates observed in the TXM are much more compact than observed before in pure Birdwood kaolinite suspension and similar to aggregates formed after treatment by positively charged surfactant. Kaolinite/LDH aggregates in water reveal complex structure of larger kaolinite platelets connected together by gelled nanoparticles which are most probably LDH colloidal plates. Comparisons of the transmission electron microscope (TEM) and TXM techniques show similarities in particle morphology. The ability to study particles and aggregates in their natural aqueous environment and in 3-dimensions make this technique superior to the TEM technique. PMID:18187142

  1. Synchrotron X-ray microscopy and spectroscopy analysis of iron in hemochromatosis liver and intestines

    SciTech Connect

    Ko, J .Y. Peter; Sham, Tsun-Kong; Chakrabarti, Subrata; Adams, Paul C.

    2009-12-01

    Hemochromatosis is a genetic disorder that causes body to store excess iron in organs such as heart or liver. Distribution of iron, as well as copper, zinc and calcium, and chemical identity of iron in hemochromatosis liver and intestine were investigated by X-ray microprobe experiments, which consist of X-ray microscopy and micro-X-ray absorption fine structure. Our results show that iron concentration in hemochromatosis liver tissue is high, while much less Fe is found in intestinal tissue. Moreover, chemical identity of Fe in hemochromatosis liver can be identified. X-ray microprobe experiments allows for examining elemental distribution at an excellent spatial resolution. Moreover, chemical identity of element of interest can be obtained.

  2. Full-field hard x-ray microscopy with interdigitated silicon lenses

    NASA Astrophysics Data System (ADS)

    Simons, Hugh; Stöhr, Frederik; Michael-Lindhard, Jonas; Jensen, Flemming; Hansen, Ole; Detlefs, Carsten; Poulsen, Henning Friis

    2016-01-01

    Full-field x-ray microscopy using x-ray objectives has become a mainstay of the biological and materials sciences. However, the inefficiency of existing objectives at x-ray energies above 15 keV has limited the technique to weakly absorbing or two-dimensional (2D) samples. Here, we show that significant gains in numerical aperture and spatial resolution may be possible at hard x-ray energies by using silicon-based optics comprising 'interdigitated' refractive silicon lenslets that alternate their focus between the horizontal and vertical directions. By capitalizing on the nano-manufacturing processes available to silicon, we show that it is possible to overcome the inherent inefficiencies of silicon-based optics and interdigitated geometries. As a proof-of-concept of Si-based interdigitated objectives, we demonstrate a prototype interdigitated lens with a resolution of ≈255 nm at 17 keV.

  3. Coherent electron beam density modulator for driving X-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Novokhatski, A.; Decker, F.-J.; Hettel, B.; Nosochkov, Yu.; Sullivan, M.

    2015-02-01

    We propose a new compact scheme for a Free Electron Laser with more coherent properties for the X-ray beam. Higher FEL performance would be achieved using a train of electron bunches initially accelerated in a linear accelerator. Similar to the RF klystron concept, we propose developing an X-ray FEL which consists of two parts: an X-ray self-seeding electron beam density modulator and an output set of undulators. A density modulator consists of a low-Q X-ray cavity and an undulator, which is placed between the cavity mirrors. We use this undulator as a very high gain amplifier, which compensates the amplitude loss due to monochromatic X-ray reflections from the mirrors. Following the X-ray cavity, the density modulated electron beam is separated from the X-ray beam and then enters the output set of undulators. The frequency spectrum of the final X-ray beam is determined mainly by the bandwidth of the reflected elements in the X-ray cavity.

  4. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  5. WHOLE CELL TOMOGRAPHY/MOLECULAR BIOLOGY/STRUCTURAL BIOLOGY: Affordable x-ray microscopy with nanoscale resolution

    SciTech Connect

    Evans, James E.; Blackborow, Paul; Horne, Stephen J.; Gelb, Jeff

    2013-03-01

    Biological research spans 10 orders of magnitude from angstroms to meters. While electron microscopy can reveal structural details at most of these spatial length scales, transmission electron tomography only reliably reconstructs three-dimensional (3-D) volumes of cellular material with a spatial resolution between 1-5 nm from samples less than 500 nm thick1. Most biological cells are 2-30 times thicker than this threshold, which means that a cell must be cut into consecutive slices with each slice reconstructed individually in order to approximate the contextual information of the entire cell. Fortunately, due to a larger penetration depth2, X-ray computed tomography bypasses the need to physically section a cell and enables imaging of intact cells and tissues on the micrometer or larger scale with tens to hundreds of nanometer spatial resolution. While the technique of soft x-ray microscopy has been extensively developed in synchrotron facilities, advancements in laboratory x-ray source designs now increase its accessibility by supporting commercial systems suitable for a standard laboratory. In this paper, we highlight a new commercial compact cryogenic soft x-ray microscope designed for a standard laboratory setting and explore its capabilities for mesoscopic investigations of intact prokaryotic and eukaryotic cells.

  6. [Cryo-microscopy, an alternative to the X-ray crystallography?].

    PubMed

    Boutin, Jean A; Li, Zhuolun; Vuillard, Laurent; Vénien-Bryan, Catherine

    Recent technological advances have revolutionized the field of structural biologists. Specifically, dramatic progress related to the development of new electron microscopes and image capture (direct electron detection camera) and the provision of new image analysis software has led to a breakthrough in terms of resolution attained using cryo-electron transmission microscopy. It is thus possible to calculate relatively quickly high-resolution structures of biological molecules whom structural study still resists to more conventional methods such as X-ray diffraction or nuclear magnetic resonance (NMR). These structures thus obtained may also bring complementary structural information to those already described by other methods. Some of these new structures resolved through cryo-electron microscopy revealed for the first time the precise operation of essential mechanisms necessary for the good physiological process of a cell. The ability to solve these structures at atomic resolution detail is essential for the development of new drugs that target these proteins of therapeutic interest. Thanks to these advanced techniques that we summarize in this revew, biological and medical issues have now become accessible, whereas this approach was inconceivable only five yeras ago. ‡. PMID:27615185

  7. Characterization of polymer monoliths containing embedded nanoparticles by scanning transmission X-ray microscopy (STXM).

    PubMed

    Arrua, R Dario; Hitchcock, Adam P; Hon, Wei Boon; West, Marcia; Hilder, Emily F

    2014-03-18

    The structural and chemical homogeneity of monolithic columns is a key parameter for high efficiency stationary phases in liquid chromatography. Improved characterization techniques are needed to better understand the polymer morphology and its optimization. Here the analysis of polymer monoliths by scanning transmission X-ray microscopy (STXM) is presented for the first time. Poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) [poly(BuMA-co-EDMA)] monoliths containing encapsulated divinylbenzene (DVB) nanoparticles were characterized by STXM, which gives a comprehensive, quantitative chemical analysis of the monolith at a spatial resolution of 30 nm. The results are compared with other methods commonly used for the characterization of polymer monoliths [scanning electron microscopy (SEM), transmission electron microscopy (TEM), mercury porosimetry, and nitrogen adsorption]. The technique permitted chemical identification and mapping of the nanoparticles within the polymeric scaffold. Residual surfactant, which was used during the manufacture of the nanoparticles, was also detected. We show that STXM can give more in-depth chemical information for these types of materials and therefore lead to a better understanding of the link between polymer morphology and chromatographic performance. PMID:24552424

  8. Nanoscale Imaging of Mineral Crystals inside Biological Composite Materials Using X-Ray Diffraction Microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Huaidong; Ramunno-Johnson, Damien; Song, Changyong; Amirbekian, Bagrat; Kohmura, Yoshiki; Nishino, Yoshinori; Takahashi, Yukio; Ishikawa, Tetsuya; Miao, Jianwei

    2008-01-01

    We for the first time applied x-ray diffraction microscopy to the imaging of mineral crystals inside biological composite materials—intramuscular fish bone—at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization. Based on the experimental results and biomineralization analyses, we suggested a dynamic model to account for the nucleation and growth of mineral crystals in the collagen matrix. The results obtained from this study not only further our understanding of the complex structure of bone, but also demonstrate that x-ray diffraction microscopy will become an important tool to study biological materials.

  9. Soft x-ray spectroscopic studies of the electronic structure of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng

    Organic semiconductors have several unique properties, different from traditional inorganic semiconductors, such as flexibility and low cost production on a large scale. Potentially, they can be used in several new optoelectronic devices, such as organic solar cells, and organic light-emitting devices (OLEDs) Phthalocyanines (Pc's) are one important type of molecular organic semiconductor. The ease with which a diverse set of cations can bond to the phthalocyanine ligand leads to Pc-based thin films that display a wide variety of optical and electrical properties. In these materials, the ligand has a complex electronic structure in itself, and the introduction of metal cations adds further complexity to the states near the Fermi level (EF) due to the overlap of metal d states with carbon and nitrogen 2p states. In this thesis, the electronic structure of several Pc's has been studied by soft x-ray spectroscopies, such as x-ray photoemission spectroscopy (XPS), x-ray absorption spectroscopy (XAS), and x-ray emission spectroscopy (XES). To avoid potential contamination and beam damage, the large area thin film samples have been prepared in situ by using organic molecular beam deposition (OMBD). The structure of samples were characterized ex situ by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The soft x-ray spectra recorded from stationary samples are found to represent the electronic structure from damaged molecules, which is caused by intense x-ray beams. Continuously translating samples during measurement overcomes this problem. Element, chemical, and symmetry specific occupied and unoccupied partial density of states (PDOS) from Pc's were observed. They show good agreement with density functional theory (DFT) calculations. Studies of potassium doping non-transition metal Pc, fluorinated metal Pc, and metal oxide Pc's show several interesting phenomena, such as variation of molecular symmetry, and charge transfer and d-d* resonant inelastic x-ray

  10. Coherent X-ray microscopy of real materials at 10nm resolution

    NASA Astrophysics Data System (ADS)

    Menzel, Andreas

    2012-02-01

    Coherent X-ray microscopy replaces image-forming optics by mathematical algorithms to ``reconstruct'' the micrograph from the distribution of scattered light. In case of X-rays, its popularity is largely based on its ability to alleviate limitations of resolution and efficiency of available optics. Various methodologies have been developed, and high resolving power could be demonstrated. Yet, stringent constraints on sample preparation and data quality had to be addressed before the technique could advance from proof of principle studies to application. About a decade after the first demonstration using X-rays [J.W. Miao et al., Nature 400 (1999) 342] coherent diffractive imaging (CDI) seems to have matured into a microscopy technique that proves useful in real-life scientific investigations. The major coherent diffractive imaging methods will be reviewed, i.e., its original implementation using plane waves, the so-called Fresnel CDI that exploits curvature in the illuminating wavefront, and ptychographic CDI, which is a scanning microscopy method using multiple exposures. Being fully compatible with spectroscopic contrast channels makes quantitative structural, chemical, and magnetic information accessible, and the penetration power of X-rays can be exploited by tomographic or ab initio reconstruction methods in order to yield three-dimensional reconstructions with high resolution, high specificity, and high dose efficiency. These recent advances have turned coherent X-ray microscopy into a reliable and robust method that is attractive for scientists independent on how (un-)familiar they are with X-ray microscopy. Applications from the materials and life sciences will be discussed.

  11. European X-Ray Free Electron Laser (EXFEL): local implications

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    European X-Ray FEL - free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5GeV energy and more than 2km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in frequency. The prototype of EXFEL is FLASH Laser (200 m in length), where the "proof of principle" was checked, and from the technologies were transferred to the bigger machine. The project was stared in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.

  12. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data.

    PubMed

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M

    2016-09-16

    We present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional data cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. We demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate. PMID:27505613

  13. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    SciTech Connect

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  14. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    NASA Astrophysics Data System (ADS)

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    2016-09-01

    We present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional data cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. We demonstrate this ‘big data’ approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.

  15. Femtosecond Nanocrystallography with X-ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Chapman, Henry

    2011-03-01

    The ultrafast pulses from X-ray free-electron lasers have opened up a new form of protein nanocrystallography. The X-ray pulses are of high enough intensity and of sufficiently short duration that individual single-shot diffraction patterns can be obtained from a sample before significant damage occurs. This ``diffraction before destruction'' method may enable the determination of structures of proteins that cannot be grown into large enough crystals or are too radiation sensitive for high- resolution crystallography. Ultrafast pump-probe studies of photoinduced dynamics can also be studied. We have carried out experiments in coherent diffraction from protein nanocrystals, including Photosystem I membrane protein, at the Linac Coherent Light Source (LCLS) at SLAC. The crystals are filtered to sizes less than 2 micron, and are delivered to the pulsed X-ray beam in a continuously flowing liquid jet. Millions of diffraction patterns were recorded at the LCLS repetition rate of 60 Hz. Tens of thousands of the single-shot diffraction patterns have been indexed, and combined into a single crystal diffraction pattern, which can be phased for structure determination and analysed for the effects of pulse duration and fluence. Experimental data collection was carried out as part of a large collaboration involving CFEL DESY, Arizona State University, Max Planck Institute for Medical Research, University of Uppsala, SLAC, LBNL, LLNL, using the CAMP apparatus which was designed and built by the Max Planck Advanced Study Group at CFEL. The LCLS is operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

  16. Food Irradiation Using Electron Beams and X-Rays

    NASA Astrophysics Data System (ADS)

    Miller, Bruce

    2003-04-01

    In this presentation we will discuss the technology of food irradiation using electron accelerators. Food irradiation has generally come to describe the use of ionizing radiation to decrease the population of, or prevent the growth of, undesirable biological organisms in food. The many beneficial applications include insect disinfestation, sprouting inhibition, delayed ripening, and the enhanced safety and sterilization of fresh and frozen meat products, seafood, and eggs. With special regard to food safety, bacteria such as Salmonella enteridis, Listeria monocytogenes, Campylobacter jejuni and Escherichia coli serotype O157:H7 are the primary causes of food poisoning in industrialized countries. Ionizing doses in the range of only 1-5 kilogray (kGy) can virtually eliminate these organisms from food, without affecting the food's sensory and nutritional qualities, and without inducing radioactivity. The key elements of an accelerator-based irradiation facility include the accelerator system, a scanning system, and a material handling system that moves the product through the beam in a precisely controlled manner. Extensive radiation shielding is necessary to reduce the external dose to acceptable levels, and a safety system is necessary to prevent accidental exposure of personnel during accelerator operation. Parameters that affect the dose distribution must be continuously monitored and controlled with process control software. The choice of electron beam vs x-ray depends on the areal density (density times thickness) of the product and the anticipated mass throughput. To eliminate nuclear activation concerns, the maximum kinetic energy of the accelerator is limited by regulation to 10 MeV for electron beams, and 5 MeV for x-rays. From penetration considerations, the largest areal density that can be treated by double-sided electron irradiation at 10 MeV is about 8.8 g/cm2. Products having greater areal densities must be processed using more penetrating x-rays. The

  17. Measurement of the unstained biological sample by a novel scanning electron generation X-ray microscope based on SEM

    SciTech Connect

    Ogura, Toshihiko

    2009-08-07

    We introduced a novel X-ray microscope system based on scanning electron microscopy using thin film, which enables the measurement of unstained biological samples without damage. An unstained yeast sample was adsorbed under a titanium (Ti)-coated silicon nitride (Si{sub 3}N{sub 4}) film 90 nm thick. The X-ray signal from the film was detected by an X-ray photodiode (PD) placed below the sample. With an electron beam at 2.6 kV acceleration and 6.75 nA current, the yeast image is obtained using the X-ray PD. The image is created by soft X-rays from the Ti layer. The Ti layer is effective in generating the characteristic 2.7-nm wavelength X-rays by the irradiation of electrons. Furthermore, we investigated the electron trajectory and the generation of the characteristic X-rays within the Ti-coated Si{sub 3}N{sub 4} film by Monte Carlo simulation. Our system can be easily utilized to observe various unstained biological samples of cells, bacteria, and viruses.

  18. Combined use of hard X-ray phase contrast imaging and X-ray fluorescence microscopy for sub-cellular metal quantification.

    PubMed

    Kosior, Ewelina; Bohic, Sylvain; Suhonen, Heikki; Ortega, Richard; Devès, Guillaume; Carmona, Asuncion; Marchi, Florence; Guillet, Jean Francois; Cloetens, Peter

    2012-02-01

    Hard X-ray fluorescence microscopy and magnified phase contrast imaging are combined to obtain quantitative maps of the projected metal concentration in whole cells. The experiments were performed on freeze dried cells at the nano-imaging station ID22NI of the European Synchrotron Radiation Facility (ESRF). X-ray fluorescence analysis gives the areal mass of most major, minor and trace elements; it is validated using a biological standard of known composition. Quantitative phase contrast imaging provides maps of the projected mass and is validated using calibration samples and through comparison with Atomic Force Microscopy and Scanning Transmission Ion Microscopy. Up to now, absolute quantification at the sub-cellular level was impossible using X-ray fluorescence microscopy but can be reached with the use of the proposed approach. PMID:22182730

  19. Exfoliated nanoplatelets of an Aurivillius phase, Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12}: Characterisation by X-ray diffraction and by high-resolution electron microscopy

    SciTech Connect

    Chevallier, Virginie Nihoul, Genevieve Madigou, Veronique

    2008-03-15

    Nanoparticles of the Aurivillius phase La-substituted BTO (Bi{sub 4-x}La{sub x}Ti{sub 3}O{sub 12}, with x=0.75) were obtained through a chemical lithiation process. They have been characterised by X-ray diffraction and transmission electron microscopy (diffraction and imaging at high resolution). The defect-free particles are platelet-shaped with the c large axis perpendicular to the plane. From high-resolution images, it is clear that the delamination process occurs at the level of the (Bi{sub 2}O{sub 2}){sup 2+} intermediate layer and is destructive for this layer. The smallest thickness measured corresponds to one cell parameter (3.3 nm) but a large range of thicknesses have been observed: this suggests that the lithium insertion does not take place in all (Bi{sub 2}O{sub 2}){sup 2+} layers, despite a large excess of lithium and a long reaction time. This is confirmed by ICP analysis, which leads to a formula Li{sub 0.99}Bi{sub 3.25}La{sub 0.77}Ti{sub 3.00}O{sub 12} for the lithiated compound. This behaviour towards lithium intercalation differs from those observed with BTO in literature, where lithium insertion is reported as occurring in every (Bi{sub 2}O{sub 2}){sup 2+} layer. Possible explanations for this difference are advanced based on microstructural and structural considerations. - Graphical abstract: Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} nanoplatelets, of which the thickness downs to one cell parameter along the c-axis, are obtained through a soft chemical lithiation process followed by exfoliation. Li{sup +} cations intercalate in the intermediate (Bi{sub 2}O{sub 2}){sup 2+} layers. However, not all of them actually accommodate lithium. Moreover, exfoliation is destructive for the host layers.

  20. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Spanne, P. ); Rivers, M.L.; Sutton, S.R. )

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs.

  1. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    NASA Technical Reports Server (NTRS)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  2. High-resolution diffraction microscopy using the plane-wave field of a nearly diffraction limited focused x-ray beam

    SciTech Connect

    Takahashi, Yukio; Nishino, Yoshinori; Ishikawa, Tetsuya; Tsutsumi, Ryosuke; Kubo, Hideto; Furukawa, Hayato; Mimura, Hidekazu; Matsuyama, Satoshi; Zettsu, Nobuyuki; Matsubara, Eiichiro; Yamauchi, Kazuto

    2009-08-01

    X-ray waves in the center of the beam waist of nearly diffraction limited focused x-ray beams can be considered to have amplitude and phase that are both almost uniform, i.e., they are x-ray plane waves. Here we report the results of an experimental demonstration of high-resolution diffraction microscopy using the x-ray plane wave of the synchrotron x-ray beam focused using Kirkpatrik-Baez mirrors. A silver nanocube with an edge length of {approx}100 nm is illuminated with the x-ray beam focused to a {approx}1 {mu}m spot at 12 keV. A high-contrast symmetric diffraction pattern of the nanocube is observed in the forward far field. An image of the nanocube is successfully reconstructed by an iterative phasing method and its half-period resolution is 3.0 nm. This method does not only dramatically improve the spatial resolution of x-ray microscopy but also is a key technology for realizing single-pulse diffractive imaging using x-ray free-electron lasers.

  3. High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution

    PubMed Central

    Sandberg, Richard L.; Song, Changyong; Wachulak, Przemyslaw W.; Raymondson, Daisy A.; Paul, Ariel; Amirbekian, Bagrat; Lee, Edwin; Sakdinawat, Anne E.; La-O-Vorakiat, Chan; Marconi, Mario C.; Menoni, Carmen S.; Murnane, Margaret M.; Rocca, Jorge J.; Kapteyn, Henry C.; Miao, Jianwei

    2008-01-01

    Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to ≈200 nm. By using imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens with techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy, and photoactivated localization microscopy. Here, we report a versatile soft x-ray diffraction microscope with 70- to 90-nm resolution by using two different tabletop coherent soft x-ray sources—a soft x-ray laser and a high-harmonic source. We also use field curvature correction that allows high numerical aperture imaging and near-diffraction-limited resolution of 1.5λ. A tabletop soft x-ray diffraction microscope should find broad applications in biology, nanoscience, and materials science because of its simple optical design, high resolution, large depth of field, 3D imaging capability, scalability to shorter wavelengths, and ultrafast temporal resolution. PMID:18162534

  4. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging.

    PubMed

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs-Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure. PMID:26931918

  5. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  6. A hybrid x-ray and microscopy method for diametrical profile measurement of internal holes in steel components

    NASA Astrophysics Data System (ADS)

    Liu, T.; Malcolm, A. A.; Yin, X. M.; Liew, S. J.; Prawiradiraja, T. P.

    2008-09-01

    High-resolution X-ray is now an essential tool for internal defect and structure inspection in electronics and advanced materials industry. However, it is always a challenge to use it for accurate dimensional measurement due to the nature of the fan-beam X-ray source, particularly for cylindrical objects. This paper presents a novel hybrid X-ray and microscopy method for the profile measurement of the internal hole of a cylinder-shaped steel component. The part to be measured has a beer bottle shape but is open at the bottom side. The objective is to measure the diametrical profile of the internal hole with an accuracy of about 10μm. Traditionally this is measured with using a microscope after cutting and polishing the specimen. This is not only a tedious work, but is also inaccurate due to the uncertainty in cutting and polishing. This report demonstrates that the two edge-profiles of the internal hole can be obtained with X-ray inspection by sequentially placing each of them at the central of the X-ray beam so that the fan-beam effect can be minimized. The resolution of the X-ray inspection is about 6µm under a 20x magnification. Subsequently, the diameter of the hole is measured at two positions through the open end using a microscope with a 20x and a 10x objectives respectively. The results obtained with the two methods are then combined to generate the whole diametrical profile of the internal hole.

  7. Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy

    SciTech Connect

    Chao, W.; Kim, J.; Rekawa, S.; Fischer, P.; Anderson, E. H.

    2009-06-05

    To extend soft x-ray microscopy to a resolution of order 10 nm or better, we developed a new nanofabrication process for Fresnel zone plate lenses. The new process, based on the double patterning technique, has enabled us to fabricate high quality gold zone plates with 12 nm outer zones. Testing of the zone plate with the full-field transmission x-ray microscope, XM-1, in Berkeley, showed that the lens clearly resolved 12 nm lines and spaces. This result represents a significant step towards 10 nm resolution and beyond.

  8. Aplanatic Three-Mirror Objective for High-Magnification Soft X-Ray Microscopy

    SciTech Connect

    Toyoda, M.; Jinno, T.; Yanagihara, M.

    2011-09-09

    An innovative solution for high-magnification microscopy, based on attaching afocal optics for focal length reduction, is proposed. The solution, consisting of three spherical mirrors, allows one to enhance a magnification of a laboratory based soft x-ray microscope over 1000x, where movies with diffraction-limited resolution can be observed with an x-ray CCD. The design example, having a numerical aperture of 0.25, was successfully demonstrated both a high magnification and a large field of view.

  9. Application of X-ray microscopy in food science investigation of high pressure affected bacterial spores

    NASA Astrophysics Data System (ADS)

    Mönch, Susanne; Heinz, Volker; Guttmann, Peter; Knorr, Dietrich

    2000-05-01

    Using the Göttingen transmission X-ray microscope at BESSY the effect of different pressure and temperature levels during the high hydrostatic pressure (HP) treatment was investigated. At 150 MPa and temperatures up to 50 °C the triggering of germination was observed by standard microbiological methods with Bacillus subtilis spores. Increasing the temperature to 70 °C at the same pressure level killed the spores without any indication of germination. By X-ray microscopy images it could be shown that the typical disintegration of the protoplast is inhibited. This suggests that the enzymic reaction pathway is possibly affected under specific pressure temperature conditions.

  10. Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays

    SciTech Connect

    Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

    2010-10-29

    We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

  11. Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions

    SciTech Connect

    Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

    2008-09-01

    The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

  12. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    PubMed

    Withers, P J

    2015-03-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  13. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  14. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  15. X-ray Microscopy Studies of Electromigration in Advanced Copper Interconnects

    SciTech Connect

    Schneider, G.; Rudolph, S.; Heim, S.; Rehbein, S.; Guttmann, P.

    2006-02-07

    X-rays have the advantage that they penetrate samples which are several micrometers thick without significant sample damage, and that they provide a chemical image contrast between different dielectric layers of the Cu/low-k on-chip interconnect stack. Therefore, x-ray microscopy is an ideal tool for quantitative 3-D investigations of void dynamics with high spatial resolution of 20 nm. Using the BESSY full-field transmission x-ray microscope (TXM), we performed electromigration studies of advanced backend-of-line (BEoL) stacks of high-performance microprocessors containing copper interconnects and low-k materials. We observed void movement along the top copper/dielectric (SiNx) interface which is found to be the main pathway for electromigration-induced atomic copper transport.

  16. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy.

    PubMed

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-08-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens. PMID:19654762

  17. X-ray Microscopy Studies of Electromigration in Advanced Copper Interconnects

    NASA Astrophysics Data System (ADS)

    Schneider, G.; Guttmann, P.; Rudolph, S.; Heim, S.; Rehbein, S.; Meyer, M. A.; Zschech, E.

    2006-02-01

    X-rays have the advantage that they penetrate samples which are several micrometers thick without significant sample damage, and that they provide a chemical image contrast between different dielectric layers of the Cu/low-k on-chip interconnect stack. Therefore, x-ray microscopy is an ideal tool for quantitative 3-D investigations of void dynamics with high spatial resolution of 20 nm. Using the BESSY full-field transmission x-ray microscope (TXM), we performed electromigration studies of advanced backend-of-line (BEoL) stacks of high-performance microprocessors containing copper interconnects and low-k materials. We observed void movement along the top copper/dielectric (SiNx) interface which is found to be the main pathway for electromigration-induced atomic copper transport.

  18. 3D elemental sensitive imaging using transmission X-ray microscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method. PMID:22349401

  19. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation.

    PubMed

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ∼10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering. PMID:25375529

  20. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    PubMed Central

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2010-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens. PMID:19654762

  1. Biomedical elemental analysis and imaging using synchrotron x-ray microscopy

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Schidlovsky, G.; Spanne, P.; Dejun, Xue ); Bockman, R.S. ); Saubermann, A.J. . Health Science Center)

    1990-01-01

    The application of synchrotron x-ray microscopy to biomedical research is currently in progress at the Brookhaven National Synchrotron Light Source (NSLS). The current status of the x-ray microscope (XRM) is reviewed from a technical standpoint. Some of the items considered are photon flux, spatial resolution, quantitation, minimum detection limits, and beam-induced specimen damage. Images can be produced by measurement of fluorescent x rays or of the attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation coefficients can be made by scanning the specimen past the beam. Computed microtomography (CMT) can be used for non- destructive images through the specimen in either the emission or absorption mode. Examples of measurements made with the XRM are given.

  2. Advancement of X-Ray Microscopy Technology and its Application to Metal Solidification Studies

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Curreri, Peter A.

    1996-01-01

    The technique of x-ray projection microscopy is being used to view, in real time, the structures and dynamics of the solid-liquid interface during solidification. By employing a hard x-ray source with sub-micron dimensions, resolutions of 2 micrometers can be obtained with magnifications of over 800 X. Specimen growth conditions need to be optimized and the best imaging technologies applied to maintain x-ray image resolution, contrast and sensitivity. It turns out that no single imaging technology offers the best solution and traditional methods like radiographic film cannot be used due to specimen motion (solidification). In addition, a special furnace design is required to permit controlled growth conditions and still offer maximum resolution and image contrast.

  3. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE PAGESBeta

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore » using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  4. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    SciTech Connect

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.

  5. Artifact characterization and reduction in scanning X-ray Zernike phase contrast microscopy.

    PubMed

    Vartiainen, Ismo; Holzner, Christian; Mohacsi, Istvan; Karvinen, Petri; Diaz, Ana; Pigino, Gaia; David, Christian

    2015-05-18

    Zernike phase contrast microscopy is a well-established method for imaging specimens with low absorption contrast. It has been successfully implemented in full-field microscopy using visible light and X-rays. In microscopy Cowley's reciprocity principle connects scanning and full-field imaging. Even though the reciprocity in Zernike phase contrast has been discussed by several authors over the past thirty years, only recently it was experimentally verified using scanning X-ray microscopy. In this paper, we investigate the image and contrast formation in scanning Zernike phase contrast microscopy with a particular and detailed focus on the origin of imaging artifacts that are typically associated with Zernike phase contrast. We demonstrate experimentally with X-rays the effect of the phase mask design on the contrast and halo artifacts and present an optimized design of the phase mask with respect to photon efficiency and artifact reduction. Similarly, due to the principle of reciprocity the observations and conclusions of this work have direct applicability to Zernike phase contrast in full-field microscopy as well. PMID:26074579

  6. X-Ray Free Electron Laser Interaction With Matter

    SciTech Connect

    Hau-Riege, S

    2009-05-12

    X-ray free electron lasers (XFELs) will enable studying new areas of laser-matter interaction. We summarize the current understanding of the interaction of XFEL pulses with matter and describe some of the simulation approaches that are used to design experiments on future XFEL sources. Modified versions of these models have been successful in guiding and analyzing experiments performed at the extreme-ultraviolet FEL FLASH at wavelengths of 6 nm and longer. For photon energies of several keV, no XFEL-matter interaction experiments have been performed yet but data is anticipated to become available in the near future, which will allow to test our understanding of the interaction physics in this wavelength regime.

  7. Focusing mirror for x-ray free-electron lasers

    SciTech Connect

    Mimura, Hidekazu; Kimura, Takashi; Yamakawa, Daisuke; Matsuyama, Satoshi; Morita, Shinya; Uehara, Yoshihiro; Ohmori, Hitoshi; Lin, Weimin; Yumoto, Hirokatsu; Ohashi, Haruhiko

    2008-08-15

    We present the design, fabrication, and evaluation of a large total-reflection mirror for focusing x-ray free-electron laser beams to nanometer dimensions. We used an elliptical focusing mirror made of silicon that was 400 mm long and had a focal length of 550 mm. Electrolytic in-process dressing grinding was used for initial-step figuring and elastic emission machining was employed for final figuring and surface smoothing. A figure accuracy with a peak-to-valley height of 2 nm was achieved across the entire area. Characterization of the focused beam was performed at BL29XUL of SPring-8. The focused beam size was 75 nm at 15 keV, which is almost equal to the theoretical size.

  8. Measuring inside damage of individual multi-walled carbon nanotubes using scanning transmission X-ray microscopy

    SciTech Connect

    Liu, Jinyin; Bai, Lili; Zhao, Guanqi; Sun, Xuhui E-mail: jzhong@suda.edu.cn; Zhong, Jun E-mail: jzhong@suda.edu.cn; Wang, Jian

    2014-06-16

    The electronic structure of individual multi-walled carbon nanotubes (MWCNTs) has been probed using scanning transmission X-ray microscopy (STXM). Although transmission electron microscope (TEM) images show that the exterior of the MWCNTs are clean and straight; the inside structure of some of the MWCNTs is much less well ordered, as revealed by STXM. The amorphization of the interior tubes can be introduced in the growth or modification processes. Moreover, TEM measurement with high dose may also lead to the inside damage. Our results reveal that the structure of individual MWCNTs can be complex and suggest that electronic structure measurements are an important tool for characterizing carbon nanomaterials.

  9. An improved phase shift reconstruction algorithm of fringe scanning technique for X-ray microscopy

    SciTech Connect

    Lian, S.; Yang, H.; Kudo, H.; Momose, A.; Yashiro, W.

    2015-02-15

    The X-ray phase imaging method has been applied to observe soft biological tissues, and it is possible to image the soft tissues by using the benefit of the so-called “Talbot effect” by an X-ray grating. One type of the X-ray phase imaging method was reported by combining an X-ray imaging microscope equipped by a Fresnel zone plate with a phase grating. Using the fringe scanning technique, a high-precision phase shift image could be obtained by displacing the grating step by step and measuring dozens of sample images. The number of the images was selected to reduce the error caused by the non-sinusoidal component of the Talbot self-image at the imaging plane. A larger number suppressed the error more but increased radiation exposure and required higher mechanical stability of equipment. In this paper, we analyze the approximation error of fringe scanning technique for the X-ray microscopy which uses just one grating and proposes an improved algorithm. We compute the approximation error by iteration and substitute that into the process of reconstruction of phase shift. This procedure will suppress the error even with few sample images. The results of simulation experiments show that the precision of phase shift image reconstructed by the proposed algorithm with 4 sample images is almost the same as that reconstructed by the conventional algorithm with 40 sample images. We also have succeeded in the experiment with real data.

  10. Laser Plasma Soft X-Ray Contact Microscopy of Polymer Composites

    NASA Astrophysics Data System (ADS)

    Azuma, Hirozumi; Takeichi, Akihiro; Noda, Shoji

    1994-08-01

    Microstructures of polymer composites are observed with a good contrast and with a submicron spatial resolution by contact soft X-ray microscopy with a laser plasma as a soft X-ray source. An iron target was irradiated by a YAG laser ( 2ω=532 nm, 0.4 J) at laser power density of 2.5×1012 W/cm2 and the emitted soft X-rays were filtered with a thin aluminum foil. For a 0.1-µ m-thick poly acrylonitrile-butadiene-styrene specimen, poly-butadiene or copolymer of butadiene spheres of about 500 nm diameter, which are selectively stained with osmium, is observed with soft X-rays in the wavelength region between 17 and 20 nm. For a 4-µ m-thick polyvinyl chloride film specimen formed by polymer powder compaction, peripheral areas of holes, grain boundaries, and areas probably degraded by HCl reduction are observed with soft X-rays in the wavelength region mainly around 2 nm.

  11. High Resolution X-ray Microscopy For Nano-Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Kashyap, Y. S.; Agrawal, A.; Sarkar, P. S.; Shukla, Mayank; Roy, T.; Sinha, Amar

    2010-12-01

    If an object is illuminated with coherent electromagnetic radiation, e.g. by visible laser light or highly brilliant X-rays, a diffraction pattern is formed in the Fraunhofer far field that is related via a Fourier transform to the optical transmission function of the object. The aim of X-ray diffractive imaging or so-called lensless imaging, is to directly reconstruct the original optical transmission function of the specimen from its measured diffraction pattern. In principle, it allows one to obtain a resolution that is ultimately limited only by the wavelength of the radiation used and not by the quality of optical lenses. In X-ray microscopy, for instance, the resolution is presently limited to several tens of nanometers because of difficulties in manufacturing efficient high-quality nano-structured X-ray optical elements. Since this technique allows the resolution to be increased beyond these limits, they are among the most promising techniques for X-ray imaging applications in life and materials sciences on the nanometer scale.

  12. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography

    SciTech Connect

    Umetani, K.; Fukushima, K.

    2013-03-15

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 {mu}m, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 {mu}m diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 {mu}m was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct

  13. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Fukushima, K.

    2013-03-01

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 μm, yielding sharp images of small arteries. The exposure time has been shortened to around 2 ms using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 μm diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 μm was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct

  14. Laboratory x-ray CCD camera electronics: a test bed for the Swift X-Ray Telescope

    NASA Astrophysics Data System (ADS)

    Hill, Joanne E.; Zugger, Michael E.; Shoemaker, Jason; Witherite, Mark E.; Koch, T. Scott; Chou, Lester L.; Case, Traci; Burrows, David N.

    2000-12-01

    The Penn State University Department of Astronomy and Astrophysics has been active in the design of X-ray CCD cameras for astronomy for over two decades, including sounding rocket systems, the CUBIC instrument on the SAC-B satellite and the ACIS camera on the Chandra satellite. Currently the group is designing and building an X-ray telescope (XRT), which will comprise part of the Swift Gamma-Ray Burst Explorer satellite. The Swift satellite, selected in October 1999 as one of two winners of NASA Explorer contracts, will -- within one minute -- detect, locate, and observe gamma-ray bursts simultaneously in the optical, ultraviolet, X-ray, and gamma- ray wavelengths using three co-aligned telescopes. The XRT electronics is required to read out the telescope's CCD sensor in a number of different ways depending on the observing mode selected. Immediately after the satellite re-orients to observe a newly detected burst, the XRT will enter an imaging mode to determine the exact position of the burst. The location will then be transmitted to the ground, and the XRT will autonomously enter other modes as the X-ray intensity of the burst waxes and wanes. This paper will discuss the electronics for a laboratory X-ray CCD camera, which serves as a test bed for development of the Swift XRT camera. It will also touch upon the preliminary design of the flight camera, which is closely related. A major challenge is achieving performance and reliability goals within the cost constraints of an Explorer mission.

  15. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy.

    PubMed

    Meirer, Florian; Cabana, Jordi; Liu, Yijin; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2011-09-01

    The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano- and micrometer-scale factors at the origin of macroscopic behavior. While different electron- and X-ray-based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X-ray imaging set-up is proposed, combining full-field transmission X-ray microscopy (TXM) with X-ray absorption near-edge structure (XANES) spectroscopy to follow two-dimensional and three-dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (>20 µm) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields. PMID:21862859

  16. Time-resolved soft X-ray microscopy of magnetic nanostructures at the P04 beamline at PETRA III

    NASA Astrophysics Data System (ADS)

    Wessels, P.; Ewald, J.; Wieland, M.; Nisius, T.; Abbati, G.; Baumbach, S.; Overbuschmann, J.; Vogel, A.; Neumann, A.; Viefhaus, J.; Oepen, H. P.; Meier, G.; Wilhein, T.; Drescher, M.

    2014-04-01

    We present first time-resolved measurements of a new mobile full-field transmission microscope [1] obtained at the soft X-ray beamline P04 at the high brilliance synchrotron radiation source PETRA III. A nanostructured magnetic permalloy (Ni80Fe20) sample can be excited by the magnetic field of a 400 ps full width at half maximum (FWHM) long electric current pulse in a coplanar waveguide. The full-field soft X-ray microscope successively probes the time evolution of the sample magnetization via X-ray magnetic circular dichroism (XMCD) [2] spectromicroscopy in a pump-probe scheme by varying the delay between pump and probe pulses electronically. Static and transient magnetic fields of a permanent magnet and a coil are available in the sample plane to reset the system and to provide external offset fields. The microscope generates a flat-top illumination field of 20 μm diameter by using a grating condenser [3] and the sample plane is directly imaged by a micro zone plate with 60 nm resolution onto a 2D gateable X-ray detector to select the particular bunch in the storage ring that contains the dynamic information. The setup is built into a mobile endstation vacuum system with in-house developed three-axis piezo motorized stages for high accuracy positioning of all microscopy-components inside the chambers.

  17. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy

    PubMed Central

    Meirer, Florian; Cabana, Jordi; Liu, Yijin; Mehta, Apurva; Andrews, Joy C.; Pianetta, Piero

    2011-01-01

    The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano- and micrometer-scale factors at the origin of macroscopic behavior. While different electron- and X-ray-based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X-ray imaging set-up is proposed, combining full-field transmission X-ray microscopy (TXM) with X-ray absorption near-edge structure (XANES) spectroscopy to follow two-dimensional and three-dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (>20 µm) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields. PMID:21862859

  18. Phase contrast: the frontier of x-ray and electron imaging

    NASA Astrophysics Data System (ADS)

    Hwu, Y.; Margaritondo, G.

    2013-12-01

    Phase contrast has been a fundamental component of microscopy since the early 1940s. In broad terms, it refers to the formation of images using not the combination of wave intensities but their amplitudes with the corresponding phase factors. The impact on visible microscopy of biological specimens has been major. This contrast mechanism is now playing an increasingly important role in other kinds of microscopy, notably those based on electrons or x-rays. It notably solves the background problem of weak absorption contrast. New breakthroughs and new techniques are continuously produced, unfortunately unknown to most of the scientists that could exploit them. The present special cluster issue of reviews was inspired by this situation. The case of x-rays is very interesting. Phase contrast requires a high degree of longitudinal and lateral coherence. But conventional x-ray sources are not coherent. The progress of synchrotron sources yielded high coherence as a key byproduct—and started a rapid expansion of phase contrast radiology. No review—or cluster of reviews—can possibly cover all the facets of the recent progress. Without trying to be absolutely comprehensive, the present special cluster issue touches a variety of issues, giving a very broad picture. Liu et al review in general terms the different phase-based hard-x-ray techniques, with an interesting variety of examples. Then, Suortti et al and Wang et al present more specialized overviews of crystal and grating based x-ray imaging techniques, very powerful in the analysis of biological specimens. Mokso et al discuss the many facets of tomography using phase effects, expanding the picture of tomographic reconstruction of the three previous reviews. Wu et al treat the rapid progress in hard-x-ray focusing and its impact on radiology and tomography for materials science and biomedical research. The next two reviews deal with special and very interesting classes of applications. Specifically, Lee et al

  19. Soft x-ray microscopy - a powerful analytical tool to image magnetism down to fundamental length and times scales

    SciTech Connect

    Fischer, Peter

    2008-08-01

    The magnetic properties of low dimensional solid state matter is of the utmost interest both scientifically as well as technologically. In addition to the charge of the electron which is the base for current electronics, by taking into account the spin degree of freedom in future spintronics applications open a new avenue. Progress towards a better physical understanding of the mechanism and principles involved as well as potential applications of nanomagnetic devices can only be achieved with advanced analytical tools. Soft X-ray microscopy providing a spatial resolution towards 10nm, a time resolution currently in the sub-ns regime and inherent elemental sensitivity is a very promising technique for that. This article reviews the recent achievements of magnetic soft X-ray microscopy by selected examples of spin torque phenomena, stochastical behavior on the nanoscale and spin dynamics in magnetic nanopatterns. The future potential with regard to addressing fundamental magnetic length and time scales, e.g. imaging fsec spin dynamics at upcoming X-ray sources is pointed out.

  20. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    SciTech Connect

    Jacob, J; Ong, M; Wargo, P

    2005-07-21

    Lawrence Livermore National Laboratory (LLNL) is currently investigating various approaches to minimize the x-ray source size on the Flash X-Ray (FXR) linear induction accelerator in order to improve x-ray flux and increase resolution for hydrodynamic radiography experiments. In order to effectively gauge improvements to final x-ray source size, a fast, robust, and accurate system for measuring the spot size is required. Timely feedback on x-ray source size allows new and improved accelerator tunes to be deployed and optimized within the limited run-time constraints of a production facility with a busy experimental schedule; in addition, time-resolved measurement capability allows the investigation of not only the time-averaged source size, but also the evolution of the source size, centroid position, and x-ray dose throughout the 70 ns beam pulse. Combined with time-resolved measurements of electron beam parameters such as emittance, energy, and current, key limiting factors can be identified, modeled, and optimized for the best possible spot size. Roll-bar techniques are a widely used method for x-ray source size measurement, and have been the method of choice at FXR for many years. A thick bar of tungsten or other dense metal with a sharp edge is inserted into the path of the x-ray beam so as to heavily attenuate the lower half of the beam, resulting in a half-light, half-dark image as seen downstream of the roll-bar; by measuring the width of the transition from light to dark across the edge of the roll-bar, the source size can be deduced. For many years, film has been the imaging medium of choice for roll-bar measurements thanks to its high resolution, linear response, and excellent contrast ratio. Film measurements, however, are fairly cumbersome and require considerable setup and analysis time; moreover, with the continuing trend towards all-electronic measurement systems, film is becoming increasingly difficult and expensive to procure. Here, we shall

  1. Taking X-ray Diffraction to the Limit: Macromolecular Structures from Femtosecond X-ray Pulses and Diffraction Microscopy of Cells with Synchrotron Radiation

    SciTech Connect

    Chapman, H N; Miao, J; Kirz, J; Sayre, D; Hodgson, K O

    2003-10-01

    The methodology of X-ray crystallography has recently been successfully extended to the structure determination of non-crystalline specimens. The phase problem was solved by using the oversampling method, which takes advantage of ''continuous'' diffraction pattern from non-crystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging non-periodic objects, like cells and cellular structures using coherent and bright X-rays from the 3rd generation synchrotron radiation. In the longer run, the technique may be applied to image single biomolecules by using the anticipated X-ray free electron lasers. Computer simulations have so far demonstrated two important steps: (1) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself, and (2) the phase information can be ab initio retrieved from a set of calculated noisy diffraction patterns of single protein molecules.

  2. Electron Paramagnetic Resonance studies of x-ray irradiated Nafion

    NASA Astrophysics Data System (ADS)

    Fragoso, Juan; Usher, Timothy

    2007-03-01

    Fuel cells promise a bright future as power sources for a variety of electronic equipment as well as more power demanding elements. Nafion (DuPont's trademark of a sulfonated tetrafluorethylene polymer modified from Teflon) is the heart of Proton Exchange Membrane Fuel Cells (PEMFCs) as well as Direct Methanol Fuel Cells (DMFCs). Fuel cells are used to power electronic equipment on spacecraft, satellites and unpiloted high altitude aircraft, where ionizing radiation can be a concern. Electron Paramagnetic Resonance (EPR) is a spectroscopic technique that is very sensitive to free radicals such as those produced by ionizing radiation therefore EPR can give us a window into the degradation of the Nafion membranes due to the ionizing radiation. Nafion samples were irradiated using a x-ray diffractometer with a copper target operating at 40kV and 55mA for at least 3hrs. X-Band EPR spectroscopy of the irradiated nafion reveals a peak at 3400G with a width of 10G, which decays over time, completely diminishing in a couple of weeks. Preliminary results from the polarization studies on the effects of ionizing radiation will also be presented.

  3. Performance analysis of quantitative phase retrieval method in Zernike phase contrast X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Heng, Chen; Kun, Gao; Da-Jiang, Wang; Li, Song; Zhi-Li, Wang

    2016-02-01

    Since the invention of Zernike phase contrast method in 1930, it has been widely used in optical microscopy and more recently in X-ray microscopy. Considering the image contrast is a mixture of absorption and phase information, we recently have proposed and demonstrated a method for quantitative phase retrieval in Zernike phase contrast X-ray microscopy. In this contribution, we analyze the performance of this method at different photon energies. Intensity images of PMMA samples are simulated at 2.5 keV and 6.2 keV, respectively, and phase retrieval is performed using the proposed method. The results demonstrate that the proposed phase retrieval method is applicable over a wide energy range. For weakly absorbing features, the optimal photon energy is 2.5 keV, from the point of view of image contrast and accuracy of phase retrieval. On the other hand, in the case of strong absorption objects, a higher photon energy is preferred to reduce the error of phase retrieval. These results can be used as guidelines to perform quantitative phase retrieval in Zernike phase contrast X-ray microscopy with the proposed method. Supported by the State Key Project for Fundamental Research (2012CB825801), National Natural Science Foundation of China (11475170, 11205157 and 11179004) and Anhui Provincial Natural Science Foundation (1508085MA20).

  4. Revealing the Role of Catalysts in Carbon Nanotubes and Nanofibers by Scanning Transmission X-ray Microscopy

    PubMed Central

    Gao, Jing; Zhong, Jun; Bai, Lili; Liu, Jinyin; Zhao, Guanqi; Sun, Xuhui

    2014-01-01

    The identification of effective components on the atomic scale in carbon nanomaterials which improve the performance in various applications remains outstanding challenges. Here the catalyst residues in individual carbon nanotube (CNT) and carbon nanofiber (CNF) were clearly imaged with a concurrent characterization of their electronic structure by nanoscale scanning transmission X-ray microscopy. Except for prominent catalyst nanoparticle at the tip, tiny catalyst clusters along the tube (fiber) were detected, indicating a migration of the catalysts with the growth of CNTs (CNFs). The observation provides the direct evidence on the atomic metal in CNT for oxygen reduction reported in the literature. Interaction between catalysts (Fe, Ni) and CNTs (CNFs) at the tip was also identified by comparing the X-ray absorption spectra. A deep understanding of catalyst residues such as Fe or Ni in carbon nanomaterials is very vital to growth mechanism development and practical applications. PMID:24398972

  5. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    PubMed

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles. PMID:25745031

  6. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE PAGESBeta

    Beetz, T.; Howells, M. R.; Jacobsen, C.; Kao, C. -C.; Kirz, J.; Lima, E.; Mentes, T. O.; Miao, H.; Sanchez-Hanke, C.; Sayre, D.; et al

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore » computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  7. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    SciTech Connect

    Beetz, T.; Howells, M. R.; Jacobsen, C.; Kao, C. -C.; Kirz, J.; Lima, E.; Mentes, T. O.; Miao, H.; Sanchez-Hanke, C.; Sayre, D.; Shapiro, D.

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done by computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.

  8. Imaging interfacial micro- and nano-bubbles by scanning transmission soft X-ray microscopy.

    PubMed

    Zhang, Lijuan; Zhao, Binyu; Xue, Lian; Guo, Zhi; Dong, Yaming; Fang, Haiping; Tai, Renzhong; Hu, Jun

    2013-05-01

    Synchrotron-based scanning transmission soft X-ray microscopy (STXM) with nanometer resolution was used to investigate the existence and behavior of interfacial gas nanobubbles confined between two silicon nitride windows. The observed nanobubbles of SF6 and Ne with diameters smaller than 2.5 µm were quite stable. However, larger bubbles became unstable and grew during the soft X-ray imaging, indicating that stable nanobubbles may have a length scale, which is consistent with a previous report using atomic force microscopy [Zhang et al. (2010), Soft Matter, 6, 4515-4519]. Here, it is shown that STXM is a promising technique for studying the aggregation of gases near the solid/water interfaces at the nanometer scale. PMID:23592619

  9. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    PubMed

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\\bullet{\\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more

  10. Direct observation of temperature dependent magnetic domain structure of the multiferroic La{sub 0.66}Sr{sub 0.34}MnO{sub 3}/BiFeO{sub 3} bilayer system by x-ray linear dichroism- and x-ray magnetic circular dichroism-photoemission electron microscopy

    SciTech Connect

    Mix, C.; Finizio, S.; Jakob, G.; Kläui, M.; Buzzi, M.; Nolting, F.; Kronast, F.

    2014-05-21

    Low-thickness La{sub 0.66}Sr{sub 0.34}MnO{sub 3} (LSMO)/BiFeO{sub 3} (BFO) thin film samples deposited on SrTiO{sub 3} were imaged by high resolution x-ray microscopy at different temperatures. The ultra-thin thickness of the top layer allows to image both the ferromagnetic domain structure of LSMO and the multiferroic domain structure of the buried BFO layer, opening a path to a direct observation of coupling at the interface on a microscopic level. By comparing the domain size and structure of the BFO and LSMO, we observed that, in contrast to LSMO single layers, LSMO/BFO multilayers show a strong temperature dependence of the ferromagnetic domain structure of the LSMO. Particularly, at 40 K, a similar domain size for BFO and LSMO is observed. This indicates a persistence of exchange coupling on the microscopic scale at a temperature, where the exchange bias as determined by magnetometer measurements is vanishing.

  11. Dislocation Density Tensor Characterization of Deformation Using 3D X-Ray Microscopy

    SciTech Connect

    Larson, Ben C; Tischler, Jonathan Zachary; El-Azab, Anter; Liu, Wenjun

    2008-01-01

    Three-dimensional (3D) X-ray microscopy with submicron resolution has been used to make spatially resolved measurements of lattice curvature and elastic strain over two-dimensional slices in thin deformed Si plates. The techniques and capabilities associated with white-beam 3D X-ray microscopy are discussed, and both theoretical and experimental considerations associated with the measurement of Nye dislocation density tensors in deformed materials are presented. The ability to determine the local geometrically necessary dislocation (GND) density in the form of a dislocation density tensor, with micron spatial resolution over mesoscopic length scales, is demonstrated. Results are shown for the special case of an elastically bent (dislocation free) thin Si plate and for a similar thin Si plate that was bent plastically, above the brittle-to-ductile transition temperature, to introduce dislocations. Within the uncertainties of the measurements, the known result that GND density is zero for elastic bending is obtained, and well-defined GND distributions are observed in the plastically deformed Si plate. The direct and absolute connection between experimental measurements of GND density and multiscale modeling and computer simulations of deformation microstructures is discussed to highlight the importance of submicron-resolution 3D X-ray microscopy for mesoscale characterization of material defects and to achieve a fundamental understanding of deformation in ductile materials.

  12. Dislocation density tensor characterization of deformation using 3D x-ray microscopy.

    SciTech Connect

    Larson, B. C.; Tischler, J. Z.; El-Azab, A.; Liu, W.; ORNL; Florida State Univ.

    2008-04-01

    Three-dimensional (3D) X-ray microscopy with submicron resolution has been used to make spatially resolved measurements of lattice curvature and elastic strain over two-dimensional slices in thin deformed Si plates. The techniques and capabilities associated with white-beam 3D X-ray microscopy are discussed, and both theoretical and experimental considerations associated with the measurement of Nye dislocation density tensors in deformed materials are presented. The ability to determine the local geometrically necessary dislocation (GND) density in the form of a dislocation density tensor, with micron spatial resolution over mesoscopic length scales, is demonstrated. Results are shown for the special case of an elastically bent (dislocation free) thin Si plate and for a similar thin Si plate that was bent plastically, above the brittle-to-ductile transition temperature, to introduce dislocations. Within the uncertainties of the measurements, the known result that GND density is zero for elastic bending is obtained, and well-defined GND distributions are observed in the plastically deformed Si plate. The direct and absolute connection between experimental measurements of GND density and multiscale modeling and computer simulations of deformation microstructures is discussed to highlight the importance of submicron-resolution 3D X-ray microscopy for mesoscale characterization of material defects and to achieve a fundamental understanding of deformation in ductile materials.

  13. Measurement of total calcium in neurons by electron probe X-ray microanalysis.

    PubMed

    Pivovarova, Natalia B; Andrews, S Brian

    2013-01-01

    In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis

  14. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    SciTech Connect

    Kojima, Sadaoki Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi; Nishimura, Yasuhiko; Togawa, Hiromi; Ozaki, Tetsuo; Kato, Ryukou

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  15. Search for X-rays and relativistic electrons in laboratory discharge experiments

    NASA Astrophysics Data System (ADS)

    Ostgaard, N.; Carlson, B. E.; Grøndahl, Ø.; Kochkin, P.; Nisi, R.; Gjesteland, T.

    2014-12-01

    In 2013 discharge experiments were carried out at the Technical University of Eindhoven. The experimental set-up was designed to search for both X-rays and electrons produced in meter-scale sparks using a 1 MV Marx generator. In this paper we present the spatial distribution of signals and examine whether they are X-rays only or X-rays and electrons. Other characteristics of the signals will be presented as well. These experiments are carried out in the context of a larger effort to understand the various phenomena of X-rays and gammas from natural lightning.

  16. Real-time X-ray transmission microscopy of solidifying Al-In alloys

    SciTech Connect

    Curreri, P.A.; Kaukler, W.F.

    1996-03-01

    Real-time observations of transparent analog materials have provided insight, yet the results of these observations are not necessarily representative of opaque metallic systems. In order to study the detailed dynamics of the solidification process, the authors develop the technologies needed for real-time X-ray microscopy of solidifying metallic systems, which has not previously been feasible with the necessary resolution, speed, and contrast. In initial studies of Al-In monotectic alloys unidirectionally solidified in an X-ray transparent furnace, in situ records of the evolution of interface morphologies, interfacial solute accumulation, and formation of the monotectic droplets were obtained for the first time: a radiomicrograph of Al-30In grown during aircraft parabolic maneuvers is presented, showing the volumetric phase distribution in this specimen. The benefits of using X-ray microscopy for postsolidification metallography include ease of specimen preparation, increased sensitivity, and three-dimensional analysis of phase distribution. Imaging of the solute boundary layer revealed that the isoconcentration lines are not parallel (as is often assumed) to the growth interface. Striations in the solidified crystal did not accurately decorate the interface position and shape. The monotectic composition alloy under some conditions grew in an uncoupled manner.

  17. Real-Time X-Ray Transmission Microscopy of Solidifying Al-In Alloys

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Kaukler, William F.

    1997-01-01

    Real-time observations of transparent analog materials have provided insight, yet the results of these observations are not necessarily representative of opaque metallic systems. In order to study the detailed dynamics of the solidification process, we develop the technologies needed for real-time X ray microscopy of solidifying metallic systems, which has not previously been feasible with the necessary resolution, speed, and contrast. In initial studies of Al-In monotectic alloys unidirectionally solidified in an X-ray transparent furnace, in situ records of the evolution of interface morphologies, interfacial solute accumulation, and formation of the monotectic droplets were obtained for the first time: A radiomicrograph of Al-30In grown during aircraft parabolic maneuvers is presented, showing the volumetric phase distribution in this specimen. The benefits of using X-ray microscopy for postsolidification metallography include ease of specimen preparation, increased sensitivity, and three-dimensional analysis of phase distribution. Imaging of the solute boundary layer revealed that the isoconcentration lines are not parallel (as is often assumed) to the growth interface. Striations in the solidified crystal did not accurately decorate the interface position and shape. The monotectic composition alloy under some conditions grew in an uncoupled manner.

  18. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    DOE PAGESBeta

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    2016-08-09

    In this paper, we present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional datamore » cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. Finally, we demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.« less

  19. Nanoscale Examination of Microdamage in Sheep Cortical Bone Using Synchrotron Radiation Transmission X-Ray Microscopy

    PubMed Central

    Brock, Garry R.; Kim, Grace; Ingraffea, Anthony R.; Andrews, Joy C.; Pianetta, Piero; van der Meulen, Marjolein C. H.

    2013-01-01

    Microdamage occurs in bone through repeated and excessive loading. Accumulation of microdamage weakens bone, leading to a loss of strength, stiffness and energy dissipation in the tissue. Imaging techniques used to examine microdamage have typically been limited to the microscale. In the current study microdamage was examined at the nanoscale using transmission x-ray microscopy with an x-ray negative stain, lead-uranyl acetate. Microdamage was generated in notched and unnotched beams of sheep cortical bone (2×2×20 mm), with monotonic and fatigue loading. Bulk sections were removed from beams and stained with lead-uranyl acetate to identify microdamage. Samples were sectioned to 50 microns and imaged using transmission x-ray microscopy producing projection images of microdamage with nanoscale resolution. Staining indicated microdamage occurred in both the tensile and compressive regions. A comparison between monotonic and fatigue loading indicated a statistically significant greater amount of stain present in fatigue loaded sections. Microdamage occurred in three forms: staining to existing bone structures, cross hatch damage and a single crack extending from the notch tip. Comparison to microcomputed tomography demonstrated differences in damage morphology and total damage between the microscale and nanoscale. This method has future applications for understanding the underlying mechanisms for microdamage formation as well as three-dimensional nanoscale examination of microdamage. PMID:23472121

  20. Polarization dependent soft x-ray spectro-microscopy of local spin structures

    NASA Astrophysics Data System (ADS)

    Robertson, Maccallum; Agostino, Christopher; Im, Mi-Young; Montoya, Sergio; Fullerton, Eric; Fischer, Peter

    Quantitative information about element-specific contributions to local magnetic spin and orbital moments is readily available by XMCD spectroscopy and images of magnetic domain patterns with a few tens of nanometer spatial resolution. We show that the x-ray spectroscopic analysis of x-ray microscopy images provides quantitative information about local spin structures. We have investigated two prototypical multilayered PMA film systems prepared by sputtering, specifically (Co 0.3 nm/Pt 0.5 nm)x30 and (Fe 0.7nm/Gd 0.4nm)x100 systems. A spectroscopic sequence of full-field magnetic transmission soft x-ray microscopy (MTXM) images covering about 8mm field-of-views with a spatial resolution of about 20nm were recorded across the Co and Fe L edges, resp. To modulate the magnetic contrast, two sets of images were obtained with left and right circular polarization. Standard XMCD spectroscopy analysis procedures were applied to retrieve the local spectroscopic behavior. We observe a decrease of the L3/L2 ratio when approaching the domain walls, indicating a non-uniform spin configuration along the vertical profile of a domain, which we will discuss in view of both systems' magnetic anisotropies. U.S. DOE under Contract No. DE-AC02-05-CH11231.

  1. Depth-resolved soft x-ray photoelectron emission microscopy in nanostructures via standing-wave excited photoemission

    SciTech Connect

    Kronast, F.; Ovsyannikov, R.; Kaiser, A.; Wiemann, C.; Yang, S.-H.; Locatelli, A.; Burgler, D.E.; Schreiber, R.; Salmassi, F.; Fischer, P.; Durr, H.A.; Schneider, C.M.; Eberhardt, W.; Fadley, C.S.

    2008-11-24

    We present an extension of conventional laterally resolved soft x-ray photoelectron emission microscopy. A depth resolution along the surface normal down to a few {angstrom} can be achieved by setting up standing x-ray wave fields in a multilayer substrate. The sample is an Ag/Co/Au trilayer, whose first layer has a wedge profile, grown on a Si/MoSi2 multilayer mirror. Tuning the incident x-ray to the mirror Bragg angle we set up standing x-ray wave fields. We demonstrate the resulting depth resolution by imaging the standing wave fields as they move through the trilayer wedge structure.

  2. Iodine Vapor Staining for Atomic Number Contrast in Backscattered Electron and X-ray Imaging

    PubMed Central

    Boyde, Alan; Mccorkell, Fergus A; Taylor, Graham K; Bomphrey, Richard J; Doube, Michael

    2014-01-01

    Iodine imparts strong contrast to objects imaged with electrons and X-rays due to its high atomic number (53), and is widely used in liquid form as a microscopic stain and clinical contrast agent. We have developed a simple technique which exploits elemental iodine's sublimation-deposition state-change equilibrium to vapor stain specimens with iodine gas. Specimens are enclosed in a gas-tight container along with a small mass of solid I2. The bottle is left at ambient laboratory conditions while staining proceeds until empirically determined completion (typically days to weeks). We demonstrate the utility of iodine vapor staining by applying it to resin-embedded tissue blocks and whole locusts and imaging them with backscattered electron scanning electron microscopy (BSE SEM) or X-ray microtomography (XMT). Contrast is comparable to that achieved with liquid staining but without the consequent tissue shrinkage, stain pooling, or uneven coverage artefacts associated with immersing the specimen in iodine solutions. Unmineralized tissue histology can be read in BSE SEM images with good discrimination between tissue components. Organs within the locust head are readily distinguished in XMT images with particularly useful contrast in the chitin exoskeleton, muscle and nerves. Here, we have used iodine vapor staining for two imaging modalities in frequent use in our laboratories and on the specimen types with which we work. It is likely to be equally convenient for a wide range of specimens, and for other modalities which generate contrast from electron- and photon-sample interactions, such as transmission electron microscopy and light microscopy. Microsc. Res. Tech. 77:1044–1051, 2014. © 2014 The Authors. Microscopy Research Technique published by Wiley Periodocals, Inc. PMID:25219801

  3. High resolution imaging of the ultrastructure of living algal cells using soft x-ray contact microscopy

    SciTech Connect

    Ford, T.W.; Cotton, R.A.; Page, A.M.; Tomie, T.; Majima, T.; Stead, A.D.

    1995-12-31

    Soft x-ray contact microscopy provides the biologist with a technique for examining the ultrastructure of living cells at a much higher resolution than that possible by various forms of light microscopy. Readout of the developed photoresist using atomic force microscopy (AFM) produces a detailed map of the carbon densities generated in the resist following exposure of the specimen to water-window soft x-rays (2--4nm) produced by impact of a high energy laser onto a suitable target. The established high resolution imaging method of transmission electron microscopy (TEM) has inherent problems in the chemical pre-treatment required for producing the ultrathin sections necessary for this technique. Using the unicellular green alga Chlamydomonas the ultrastructural appearance of the cells following SXCM and TEM has been compared. While SXCM confirms the basic structural organization of the cell as seen by TEM (e.g., the organization of the thylakoid membranes within the chloroplast; flagellar insertion into the cytoplasm), there are important differences. These are in the appearance of the cell covering and the presence of carbon-dense spherical cellular inclusions.

  4. Hard X-ray Microscopy with sub 30 nm Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Tang, Mau-Tsu; Song, Yen-Fang; Yin, Gung-Chian; Chen, Fu-Rong; Chen, Jian-Hua; Chen, Yi-Ming; Liang, Keng S.; Duewer, F.; Yun, Wenbing

    2007-01-01

    A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC.

  5. Hard X-ray Microscopy with sub 30 nm Spatial Resolution

    SciTech Connect

    Tang, M.-T.; Song, Y.-F.; Yin, G.-C.; Chen, J.-H.; Chen, Y.-M.; Liang, Keng S.; Chen, F.-R.; Duewer, F.; Yun Wenbing

    2007-01-19

    A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC.

  6. Soft X-ray Tomography and Cryogenic Light Microscopy: The Cool Combination in Cellular Imaging

    PubMed Central

    McDermott, Gerry; Le Gros, Mark A.; Knoechel, Christian G.; Uchida, Maho; Larabell, Carolyn A.

    2012-01-01

    Soft x-ray tomography (SXT) is ideally suited to imaging sub-cellular architecture and organization, particularly in eukaryotic cells. SXT is similar in concept to the well-established medical diagnostic technique computed axial tomography (CAT), except SXT is capable of imaging with a spatial resolution of 50 nm, or better. In soft x-ray tomography (SXT) cells are imaged using photons from a region of the spectrum known as the ‘water window’. This results in quantitative, high-contrast images of intact, fully hydrated cells without the need to use contrast-enhancing agents. Cells are therefore visualized very close to their native, fully functional state. The utility of SXT has recently been enhanced by the development of high numerical aperture cryogenic light microscopy for correlated imaging. Taking this multi-modal approach now allows labeled molecules to be localized in the context of a high-resolution 3-dimensional tomographic reconstruction of the cell. PMID:19818625

  7. Investigation of Phase Transformations in High-Alloy Austenitic TRIP Steel Under High Pressure (up to 18 GPa) by In Situ Synchrotron X-ray Diffraction and Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Ackermann, Stephanie; Martin, Stefan; Schwarz, Marcus R.; Schimpf, Christian; Kulawinski, Dirk; Lathe, Christian; Henkel, Sebastian; Rafaja, David; Biermann, Horst; Weidner, Anja

    2016-01-01

    In order to clarify the difference between the deformation-induced ɛ-martensite ( ɛ 1) and the pressure-induced ɛ-iron ( ɛ 2), high-pressure quasi-hydrostatic experiments were performed on a low-carbon, high-alloy metastable austenitic steel. In situ synchrotron X-ray diffraction measurements as well as post-mortem investigations of the microstructure by electron backscatter diffraction were carried out to study the microstructural transformations. Three processes were observed during compression experiments: first, the formation of deformation-induced hexagonal ɛ 1-martensite, as well as small nuclei of deformation-induced bcc α'-martensite ( α 1') within the fcc γ-matrix due to non-hydrostaticity in the experiments; second, the onset of the phase transformation from the metastable fcc γ-austenite into the hexagonal pressure-induced ɛ 2-iron phase occurred at around 6 GPa; third, during decompression, the hexagonal pressure-induced ɛ 2-iron transformed partially into bcc α'-martensite ( α 2'). Completely different characteristics with regard to habitus as well as to orientation relationships were observed between the pressure-induced phases ( ɛ 2-iron phase and α 2'-martensite) and the deformation-induced martensites ( ɛ 1- and α 1'-martensite).

  8. X-Ray-Diffraction Tests Of Irradiated Electronic Devices: I

    NASA Technical Reports Server (NTRS)

    Shaw, David C.; Lowry, Lynn E.; Barnes, Charles E.

    1993-01-01

    X-ray-diffraction tests performed on aluminum conductors in commercial HI1-507A complementary metal oxide/semiconductor (CMOS) integrated-circuit analog multiplexers, both before and after circuits exposed to ionizing radiation from Co(60) source, and after postirradiation annealing at ambient and elevated temperatures. Tests in addition to electrical tests performed to determine effects of irradiation and of postirradiation annealing on electrical operating characteristics of circuits. Investigators sought to determine whether relationship between effects of irradiation on devices and physical stresses within devices. X-ray diffraction potentially useful for nondestructive measurement of stresses.

  9. The First Angstrom X-Ray Free-Electron Laser

    SciTech Connect

    Galayda, John; /SLAC

    2012-08-24

    The Linac Coherent Light Source produced its first x-ray laser beam on 10 April 2009. Today it is routinely producing x-ray pulses with energy >2 mJ across the operating range from 820-8,200 eV. The facility has begun operating for atomic/molecular/optical science experiments. Performance of the facility in its first user run (1 October - 21 December) and current machine development activities will be presented. Early results from the preparations for the start of the second user run is also reported.

  10. Design of a hard X-ray beamline and end-station for pump and probe experiments at Pohang Accelerator Laboratory X-ray Free Electron Laser facility

    NASA Astrophysics Data System (ADS)

    Park, Jaeku; Eom, Intae; Kang, Tai-Hee; Rah, Seungyu; Nam, Ki Hyun; Park, Jaehyun; Kim, Sangsoo; Kwon, Soonam; Park, Sang Han; Kim, Kyung Sook; Hyun, Hyojung; Kim, Seung Nam; Lee, Eun Hee; Shin, Hocheol; Kim, Seonghan; Kim, Myong-jin; Shin, Hyun-Joon; Ahn, Docheon; Lim, Jun; Yu, Chung-Jong; Song, Changyong; Kim, Hyunjung; Noh, Do Young; Kang, Heung Sik; Kim, Bongsoo; Kim, Kwang-Woo; Ko, In Soo; Cho, Moo-Hyun; Kim, Sunam

    2016-02-01

    The Pohang Accelerator Laboratory X-ray Free Electron Laser project, a new worldwide-user facility to deliver ultrashort, laser-like x-ray photon pulses, will begin user operation in 2017 after one year of commissioning. Initially, it will provide two beamlines for hard and soft x-rays, respectively, and two experimental end-stations for the hard x-ray beamline will be constructed by the end of 2015. This article introduces one of the two hard x-ray end-stations, which is for hard x-ray pump-probe experiments, and primarily outlines the overall design of this end-station and its critical components. The content of this article will provide useful guidelines for the planning of experiments conducted at the new facility.

  11. On the response of electronic personal dosimeters in constant potential and pulsed x- ray beams

    NASA Astrophysics Data System (ADS)

    Guimarães, M. C.; Silva, C. R. E.; Oliveira, P. M. C.; da Silva, T. A.

    2016-07-01

    Electronic personal dosimeters (EPDs) based on solid state detectors have widely been used but some deficiencies in their response in pulsed radiation beams have been reported. Nowadays, there is not an international standard for pulsed x-ray beams for calibration or type testing of dosimeters. Irradiation conditions for testing the response of EPDs in both the constant potential and pulsed x-ray beams were established in CDTN. Three different types of EPDs were tested in different conditions in similar ISO and IEC x-ray qualities. Results stressed the need of performing additional checks before using EPDs in constant potential or pulsed x-rays.

  12. Analytical transmission electron microscopy in materials science

    SciTech Connect

    Fraser, H.L.

    1980-01-01

    Microcharacterization of materials on a scale of less than 10 nm has been afforded by recent advances in analytical transmission electron microscopy. The factors limiting accurate analysis at the limit of spatial resolution for the case of a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy are examined in this paper.

  13. Iodine vapor staining for atomic number contrast in backscattered electron and X-ray imaging.

    PubMed

    Boyde, Alan; Mccorkell, Fergus A; Taylor, Graham K; Bomphrey, Richard J; Doube, Michael

    2014-12-01

    Iodine imparts strong contrast to objects imaged with electrons and X-rays due to its high atomic number (53), and is widely used in liquid form as a microscopic stain and clinical contrast agent. We have developed a simple technique which exploits elemental iodine's sublimation-deposition state-change equilibrium to vapor stain specimens with iodine gas. Specimens are enclosed in a gas-tight container along with a small mass of solid I2 . The bottle is left at ambient laboratory conditions while staining proceeds until empirically determined completion (typically days to weeks). We demonstrate the utility of iodine vapor staining by applying it to resin-embedded tissue blocks and whole locusts and imaging them with backscattered electron scanning electron microscopy (BSE SEM) or X-ray microtomography (XMT). Contrast is comparable to that achieved with liquid staining but without the consequent tissue shrinkage, stain pooling, or uneven coverage artefacts associated with immersing the specimen in iodine solutions. Unmineralized tissue histology can be read in BSE SEM images with good discrimination between tissue components. Organs within the locust head are readily distinguished in XMT images with particularly useful contrast in the chitin exoskeleton, muscle and nerves. Here, we have used iodine vapor staining for two imaging modalities in frequent use in our laboratories and on the specimen types with which we work. It is likely to be equally convenient for a wide range of specimens, and for other modalities which generate contrast from electron- and photon-sample interactions, such as transmission electron microscopy and light microscopy. PMID:25219801

  14. High-speed X-ray microscopy by use of high-resolution zone plates and synchrotron radiation.

    PubMed

    Hou, Qiyue; Wang, Zhili; Gao, Kun; Pan, Zhiyun; Wang, Dajiang; Ge, Xin; Zhang, Kai; Hong, Youli; Zhu, Peiping; Wu, Ziyu

    2012-09-01

    X-ray microscopy based on synchrotron radiation has become a fundamental tool in biology and life sciences to visualize the morphology of a specimen. These studies have particular requirements in terms of radiation damage and the image exposure time, which directly determines the total acquisition speed. To monitor and improve these key parameters, we present a novel X-ray microscopy method using a high-resolution zone plate as the objective and the matching condenser. Numerical simulations based on the scalar wave field theory validate the feasibility of the method and also indicate the performance of X-ray microscopy is optimized most with sub-10-nm-resolution zone plates. The proposed method is compatible with conventional X-ray microscopy techniques, such as computed tomography, and will find wide applications in time-resolved and/or dose-sensitive studies such as living cell imaging. PMID:22763718

  15. Enhanced Electron Efficiency in an X-ray Diode

    SciTech Connect

    K. Sun, L. MacNeil

    2010-05-20

    The goal for this research is to optimize the XRD structure and usage configurations and increase the efficiency of the XRD. This research was successful in optimizing the XRD structure and usage configurations, thus creating a high efficiency XRD. Best efficiency occurs when there is an angle between the photocathode and incident X-rays.

  16. Three-dimensional full-field X-ray orientation microscopy.

    PubMed

    Viganò, Nicola; Tanguy, Alexandre; Hallais, Simon; Dimanov, Alexandre; Bornert, Michel; Batenburg, Kees Joost; Ludwig, Wolfgang

    2016-01-01

    A previously introduced mathematical framework for full-field X-ray orientation microscopy is for the first time applied to experimental near-field diffraction data acquired from a polycrystalline sample. Grain by grain tomographic reconstructions using convex optimization and prior knowledge are carried out in a six-dimensional representation of position-orientation space, used for modelling the inverse problem of X-ray orientation imaging. From the 6D reconstruction output we derive 3D orientation maps, which are then assembled into a common sample volume. The obtained 3D orientation map is compared to an EBSD surface map and local misorientations, as well as remaining discrepancies in grain boundary positions are quantified. The new approach replaces the single orientation reconstruction scheme behind X-ray diffraction contrast tomography and extends the applicability of this diffraction imaging technique to material micro-structures exhibiting sub-grains and/or intra-granular orientation spreads of up to a few degrees. As demonstrated on textured sub-regions of the sample, the new framework can be extended to operate on experimental raw data, thereby bypassing the concept of orientation indexation based on diffraction spot peak positions. This new method enables fast, three-dimensional characterization with isotropic spatial resolution, suitable for time-lapse observations of grain microstructures evolving as a function of applied strain or temperature. PMID:26868303

  17. Transmission x-ray microscopy at Diamond-Manchester I13 Imaging Branchline

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, Joan; Bosgra, Jeroen; Eastwood, David S.; Wagner, Ulrich; Bodey, Andrew J.; Garcia-Fernandez, Miryam; David, Christian; Rau, Christoph

    2016-01-01

    Full-field Transmission X-ray Microscopy (TXM) has been shown to be a powerful method for obtaining quantitative internal structural and chemical information from materials at the nanoscale. The installation of a Full-field TXM station will extend the current microtomographic capabilities of the Diamond-Manchester I13 Imaging Branchline at Diamond Light Source (UK) into the sub-100 nm spatial resolution range using photon energies from 8 to 14 keV. The dedicated Full-field TXM station will be built in-house with contributions of Diamond Light Source support divisions and via collaboration with the X-ray Optics Group of Paul Scherrer Institut (Switzerland) which will develop state-of-the-art diffractive X-ray optical elements. Preliminary results of the I13 Full-field TXM station are shown. The Full-field TXM will become an important Diamond Light Source direct imaging asset for material science, energy science and biology at the nanoscale.

  18. Dynamical X-ray Microscopy Study of Stress-Induced Voiding in Cu Interconnects

    NASA Astrophysics Data System (ADS)

    Heim, S.; Friedrich, D.; Guttmann, P.; Rehbein, S.; Chumakov, D.; Ritz, Y.; Schneider, G.; Schmeisser, D.; Zschech, E.

    2009-06-01

    High-resolution x-ray imaging with a spatial resolution in the 20 nm range offers unique capabilities for process development in semiconductor industry. Buried copper on-chip interconnect structures can be studied with excellent element specific contrast. In addition, it is possible to obtain 3-D views of fully embedded copper interconnect lines and vias. Moreover, transmission x-ray microscopy (TXM) is a very suitable technique to study dynamical, reliability-limiting processes like electromigration (EM) or stress-induced voiding (SIV). Stress-induced void formation is investigated in dual damascene Cu/SiOx and Cu/low-k interconnect stacks. The initial pre-stressing of the about 1.5 μm thick focused ion beam(FIB)-prepared cross-sections was performed by heating at a temperature of 175° C for 50 hours. Subsequently, a series of x-ray images was recorded using images after every five hours of heating at the same temperature. The dynamical SIV experiments show for the first time directly that voids are formed and grown further underneath the via.

  19. Simultaneous x-ray nano-ptychographic and fluorescence microscopy at the bionanoprobe

    NASA Astrophysics Data System (ADS)

    Chen, S.; Deng, J.; Vine, D. J.; Nashed, Y. S. G.; Jin, Q.; Peterka, T.; Jacobsen, C.; Vogt, S.

    2015-09-01

    Hard X-ray fluorescence (XRF) microscopy offers unparalleled sensitivity for quantitative analysis of most of the trace elements in biological samples, such as Fe, Cu, and Zn. These trace elements play critical roles in many biological processes. With the advanced nano-focusing optics, nowadays hard X-rays can be focused down to 30 nm or below and can probe trace elements within subcellular compartments. However, XRF imaging does not usually reveal much information on ultrastructure, because the main constituents of biomaterials, i.e. H, C, N, and O, have low fluorescence yield and little absorption contrast at multi-keV X-ray energies. An alternative technique for imaging ultrastructure is ptychography. One can record far-field diffraction patterns from a coherently illuminated sample, and then reconstruct the complex transmission function of the sample. In theory the spatial resolution of ptychography can reach the wavelength limit. In this manuscript, we will describe the implementation of ptychography at the Bionanoprobe (a recently developed hard XRF nanoprobe at the Advanced Photon Source) and demonstrate simultaneous ptychographic and XRF imaging of frozen-hydrated biological whole cells. This method allows locating trace elements within the subcellular structures of biological samples with high spatial resolution. Additionally, both ptychographic and XRF imaging are compatible with tomographic approach for 3D visualization.

  20. Three-dimensional full-field X-ray orientation microscopy

    PubMed Central

    Viganò, Nicola; Tanguy, Alexandre; Hallais, Simon; Dimanov, Alexandre; Bornert, Michel; Batenburg, Kees Joost; Ludwig, Wolfgang

    2016-01-01

    A previously introduced mathematical framework for full-field X-ray orientation microscopy is for the first time applied to experimental near-field diffraction data acquired from a polycrystalline sample. Grain by grain tomographic reconstructions using convex optimization and prior knowledge are carried out in a six-dimensional representation of position-orientation space, used for modelling the inverse problem of X-ray orientation imaging. From the 6D reconstruction output we derive 3D orientation maps, which are then assembled into a common sample volume. The obtained 3D orientation map is compared to an EBSD surface map and local misorientations, as well as remaining discrepancies in grain boundary positions are quantified. The new approach replaces the single orientation reconstruction scheme behind X-ray diffraction contrast tomography and extends the applicability of this diffraction imaging technique to material micro-structures exhibiting sub-grains and/or intra-granular orientation spreads of up to a few degrees. As demonstrated on textured sub-regions of the sample, the new framework can be extended to operate on experimental raw data, thereby bypassing the concept of orientation indexation based on diffraction spot peak positions. This new method enables fast, three-dimensional characterization with isotropic spatial resolution, suitable for time-lapse observations of grain microstructures evolving as a function of applied strain or temperature. PMID:26868303

  1. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    DOE PAGESBeta

    Howells, M. R.; Beetz, T.; Chapman, H. N.; Cui, C.; Holton, J. M.; Jacobsen, C. J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; et al

    2008-11-17

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper wemore » address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.« less

  2. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    SciTech Connect

    Howells, M. R.; Beetz, T.; Chapman, H. N.; Cui, C.; Holton, J. M.; Jacobsen, C. J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; Sayre, D.; Shapiro, D. A.; Spence, J. C.H.; Starodub, D.

    2008-11-17

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.

  3. Soft X-Ray Microscopy and EUV Lithography: An Update on Imaging at 20-40 nm Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Attwood, D.; Anderson, E.; Denbeaux, G.; Goldberg, K.; Naulleau, P.; Schneider, G.

    2002-11-01

    Major advances in both soft x-ray microscopy, at wavelengths from 0.6 to 4 nm, and EUV lithography, at wavelengths between 13 and 14 nm, are reviewed. In the XRL-2000 proceedings we reported soft x-ray microscopy resolved to 25 nm, in static two-dimensional imaging, with applications to biology, magnetic materials, and various "wet" environmental samples. In this 2002 update we report significant extensions to three-dimensional tomographic imaging, dynamical studies of magnetic and electronic devices, and static two-dimensional microscopy poised for extension to below 20 nm spatial resolution. In the XRL-2000 proceedings we reported EUV lithographic imaging of 50 nm lines/100 nm spaces in static microfield (approx100 mum) exposures. In this 2002 update we report scanned full-field (25 mm by 32 mm) images at better than 100 nm lines/100 nm spaces, static microfield exposures down to 50 nm lines/50 nm spaces, and isolated lines to 39 nm wide at 0.1 NA. With soon to be available 0.3 NA optics, we expect to print isolated lines, in static micro exposures, at 16-20 nm width in 2003. These results will demonstrate EUV lithography's ability to meet not only the ITRS Roadmap 45 nm node (26 nm isolated lines in resist) in 2007, but also the 32 nm node (18 nm isolated lines in resist) in 2009, both of which the semiconductor industry is now preparing for.

  4. X-ray tomographic microscopy analysis of the dendrite orientation transition in Al-Zn

    NASA Astrophysics Data System (ADS)

    Friedli, Jonathan; Fife, Julie L.; Di Napoli, Paolo; Rappaz, Michel

    2012-07-01

    Recently, Gonzales and Rappaz [Met. Mat. Trans. A37:2797, 2006] showed the influence of an increasing zinc content on the growth directions of aluminum dendrites. langle100rangle and langle110rangle dendrites were observed below 25wt.% and above 55wt.% zinc, respectively, whereas textured seaweeds and langle320rangle dendrites were observed at intermediate compositions. Considering the complexity of these structures, it is necessary to first characterize them in further details and second, to model them using the phase field method. The so-called Dendrite Orientation Transition (DOT) was thus reinvestigated in quenched Bridgman solidification samples. The combination of X-ray tomographic microscopy and electron backscattered diffraction (EBSD) analysis on a whole range of compositions, from 5 to 90wt.% Zn, allowed insights with unprecedented details about texture, growth directions and mechanisms of the aforementioned structures. We show that seaweeds rather than dendrites are found at all intermediate compositions. Their growth was confirmed to be constrained within a (100) symmetry plane. However, new findings indicate that the observed macroscopic texture does not necessarily correspond to the actual growth directions of the microstructure. Further, it seems to operate by an alternating growth direction mechanism and could be linked to the competition between the langle100rangle and langle110rangle characters of regular dendrites observed at the limits of the DOT. These characters, as well as 3D seaweeds, are observed in phase-field simulations of equiaxed growth and directional solidification, respectively. This study emphasizes the importance of accurate experimental data to validate numerical models and details the progress that such combinations provide for the understanding of growth mechanisms.

  5. X-ray holographic microscopy using the atomic-force microscope

    SciTech Connect

    Howells, M.R.; Jacobsen, C.J.; Lindaas, S.

    1993-09-01

    The present authors have been seeking for some time to improve the resolution of holographic microscopy and have engaged in a continuing series of experiments using the X1A soft x-ray undulator beam line at Brookhaven. The principle strategy for pushing the resolution lower in these experiments has been the use of polymer resists as x-ray detectors and the primary goal has been to develop the technique to become useful for examining wet biological material. In the present paper the authors report on progress in the use of resist for high-spatial-resolution x-ray detection. This is the key step in in-line holography and the one which sets the ultimate limit to the image resolution. The actual recording has always been quite easy, given a high-brightness undulator source, but the difficult step was the readout of the recorded pattern. The authors describe in what follows how they have built a special instrument: an atomic force microscope (AFM) to read holograms recorded in resist. They report the technical reasons for building, rather than buying, such an instrument and they give details of the design and performance of the device. The authors also describe the first attempts to use the system for real holography and the authors show results of both recorded holograms and the corresponding reconstructed images. Finally, the authors try to analyze the effect that these advances are likely to have on the future prospects for success in applications of x-ray holography and the degree to which the other technical systems that are needed for such success are available or within reach.

  6. Damage threshold of coating materials on x-ray mirror for x-ray free electron laser.

    PubMed

    Koyama, Takahisa; Yumoto, Hirokatsu; Miura, Takanori; Tono, Kensuke; Togashi, Tadashi; Inubushi, Yuichi; Katayama, Tetsuo; Kim, Jangwoo; Matsuyama, Satoshi; Yabashi, Makina; Yamauchi, Kazuto; Ohashi, Haruhiko

    2016-05-01

    We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared with the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation. PMID:27250368

  7. Novel multi-beam X-ray source for vacuum electronics enabled medical imaging applications

    NASA Astrophysics Data System (ADS)

    Neculaes, V. Bogdan

    2013-10-01

    For almost 100 of years, commercial medical X-ray applications have relied heavily on X-ray tube architectures based on the vacuum electronics design developed by William Coolidge at the beginning of the twentieth century. Typically, the Coolidge design employs one hot tungsten filament as the electron source; the output of the tube is one X-ray beam. This X-ray source architecture is the state of the art in today's commercial medical imaging applications, such as Computed Tomography. Recently, GE Global Research has demonstrated the most dramatic extension of the Coolidge vacuum tube design for Computed Tomography (CT) in almost a century: a multi-beam X-ray source containing thirty two cathodes emitting up to 1000 mA, in a cathode grounded - anode at potential architecture (anode up to 140 kV). This talk will present the challenges of the X-ray multi-beam vacuum source design - space charge electron gun design, beam focusing to compression ratios needed in CT medical imaging applications (image resolution is critically dependent on how well the electron beam is focused in vacuum X-ray tubes), electron emitter choice to fit the aggressive beam current requirements, novel electronics for beam control and focusing, high voltage and vacuum solutions, as well as vacuum chamber design to sustain the considerable G forces typically encountered on a CT gantry (an X-ray vacuum tube typically rotates on the CT gantry at less than 0.5 s per revolution). Consideration will be given to various electron emitter technologies available for this application - tungsten emitters, dispenser cathodes and carbon nano tubes (CNT) - and their tradeoffs. The medical benefits potentially enabled by this unique vacuum multi-beam X-ray source are: X-ray dose reduction, reduction of image artifacts and improved image resolution. This work was funded in part by NIH grant R01EB006837.

  8. Electron-beam-based sources of ultrashort x-ray pulses

    SciTech Connect

    Zholents, A. )

    2010-01-01

    A review of various methods for generation of ultrashort X-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons are considered.

  9. An optimal target-filter system for electron beam generated x-ray spectra

    SciTech Connect

    Hsu, Hsiao-Hua; Vasilik, D.G.; Chen, J.

    1994-04-01

    An electron beam generated x-ray spectrum consists of characteristic x rays of the target and continuous bremsstrahlung. The percentage of characteristic x rays over the entire energy spectrum depends on the beam energy and the filter thickness. To determine the optimal electron beam energy and filter thickness, one can either conduct many experimental measurements, or perform a series of Monte Carlo simulations. Monte Carlo simulations are shown to be an efficient tool for determining the optimal target-filter system for electron beam generated x-ray spectra. Three of the most commonly used low-energy x-ray metal targets (Cu, Zn and Mo) are chosen for this study to illustrate the power of Monte Carlo simulations.

  10. Nonlinear effects in propagation of radiation of X-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Nosik, V. L.

    2016-05-01

    Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of "hollow" atomic shells as a result of the photoelectric effect.

  11. Correlative Light and Scanning X-Ray Scattering Microscopy of Healthy and Pathologic Human Bone Sections

    PubMed Central

    Giannini, C.; Siliqi, D.; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.

    2012-01-01

    Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon resolution. This favorable combination has been applied for the first time to biopsies of dwarfism syndrome and Paget's disease to shed light onto the cortical structure of natural bone in healthy and pathologic sections. PMID:22666538

  12. Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution

    SciTech Connect

    Chu, Y. S.; Yi, J. M.; De Carlo, F.; Shen, Q.; Lee, Wah-Keat; Wu, H. J.; Wang, C. L.; Wang, J. Y.; Liu, C. J.; Wang, C. H.; Wu, S. R.; Chien, C. C.; Hwu, Y.; Tkachuk, A.; Yun, W.; Feser, M.; Liang, K. S.; Yang, C. S.; Je, J. H.; Margaritondo, G.

    2008-03-10

    Substantial improvements in the nanofabrication and characteristics of gold Fresnel zone plates yielded unprecedented resolution levels in hard-x-ray microscopy. Tests performed on a variety of specimens with 8-10 keV photons demonstrated a first-order lateral resolution below 40 nm based on the Rayleigh criterion. Combined with the use of a phase contrast technique, this makes it possible to view features in the 30 nm range; good-quality images can be obtained at video rate, down to 50 ms/frame. The important repercussions on materials science, nanotechnology, and the life sciences are discussed.

  13. Microscopy and elemental analysis in tissue samples using computed microtomography with synchrotron x-rays

    SciTech Connect

    Spanne, P.; Rivers, M.L.

    1988-01-01

    The initial development shows that CMT using synchrotron x-rays can be developed to ..mu..m spatial resolution and perhaps even better. This creates a new microscopy technique which is of special interest in morphological studies of tissues, since no chemical preparation or slicing of the sample is necessary. The combination of CMT with spatial resolution in the ..mu..m range and elemental mapping with sensitivity in the ppM range results in a new tool for elemental mapping at the cellular level. 7 refs., 1 fig.

  14. Projection phase contrast microscopy with a hard x-ray nanofocused beam: Defocus and contrast transfer

    SciTech Connect

    Salditt, T.; Giewekemeyer, K.; Fuhse, C.; Krueger, S. P.; Tucoulou, R.; Cloetens, P.

    2009-05-01

    We report a projection phase contrast microscopy experiment using hard x-ray pink beam undulator radiation focused by an adaptive mirror system to 100-200 nm spot size. This source is used to illuminate a lithographic test pattern with a well-controlled range of spatial frequencies. The oscillatory nature of the contrast transfer function with source-to-sample distance in this holographic imaging scheme is quantified and the validity of the weak phase object approximation is confirmed for the experimental conditions.

  15. Sample handler for x-ray tomographic microscopy and image-guided failure assessment

    SciTech Connect

    Wyss, Peter; Thurner, Philipp; Broennimann, Rolf; Sennhauser, Urs; Stampanoni, Marco; Abela, Rafael; Mueller, Ralph

    2005-07-15

    X-ray tomographic microscopy (XTM) yields a three-dimensional data model of an investigated specimen. XTM providing micrometer resolution requires synchrotron light, high resolution area detectors, and a precise sample handler. The sample handler has a height of 270 mm only, is usable for 1 {mu}m resolution, and is able to carry loading machines with a weight of up to 20 kg. This allows exposing samples to load between scans for image-guided failure assessment. This system has been used in the XTM end station of the materials science beamline of the Swiss Light Source at the Paul Scherrer Institut.

  16. Optimization of the soft x-ray transmission microscopy beamline at the ALBA light source

    NASA Astrophysics Data System (ADS)

    Sorrentino, Andrea; Pereiro, Eva; Valcárcel, Ricardo; Ferrer, Salvador; Nicolas, Josep

    2013-09-01

    Mistral is the soft X-ray full field microscopy beamline at the ALBA light source. The beamline is designed to have large source acceptance and to provide constant magnification at the exit slit for photon energies between 270 and 2600 eV. The monochromator is a variation of the Petersen plane grating monochromator in which a variable line spacing grating is used to maintain the beam focused at the exit slit, independently of the fixed focus constant, and to cancel aberrations. We present the alignment strategy used to compensate errors of the optical elements, and report about the commissioning results.

  17. Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data

    PubMed Central

    Caulfield, Thomas R.; Devkota, Batsal; Rollins, Geoffrey C.

    2011-01-01

    We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from cryogenic-electron microscopy density maps. Thus, we were able to fit X-ray structures of tRNA onto cryogenic-electron microscopy density maps for hybrid states of tRNA. Additionally, we employed both Maxwell's demon molecular dynamics simulations and unbiased simulation methods to identify possible ribosome-tRNA contact areas where the ribosome may discriminate tRNAs during translation. Herein, we collected >500 ns of simulation data to assess the global range of motion for tRNAs. Biased simulations can be used to steer between known conformational stop points, while unbiased simulations allow for a general testing of conformational space previously unexplored. The unbiased molecular dynamics data describes the global conformational changes of tRNA on a sub-microsecond time scale for comparison with steered data. Additionally, the unbiased molecular dynamics data was used to identify putative contacts between tRNA and the ribosome during the accommodation step of translation. We found that the primary contact regions were H71 and H92 of the 50S subunit and ribosomal proteins L14 and L16. PMID:21716650

  18. Dark-field X-ray microscopy for multiscale structural characterization

    PubMed Central

    Simons, H.; King, A.; Ludwig, W.; Detlefs, C.; Pantleon, W.; Schmidt, S.; Snigireva, I.; Snigirev, A.; Poulsen, H. F.

    2015-01-01

    Many physical and mechanical properties of crystalline materials depend strongly on their internal structure, which is typically organized into grains and domains on several length scales. Here we present dark-field X-ray microscopy; a non-destructive microscopy technique for the three-dimensional mapping of orientations and stresses on lengths scales from 100 nm to 1 mm within embedded sampling volumes. The technique, which allows ‘zooming’ in and out in both direct and angular space, is demonstrated by an annealing study of plastically deformed aluminium. Facilitating the direct study of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements (for example, positioned at interfaces) is crucial to the performance and lifetime of macro-scale devices and components thereof. PMID:25586429

  19. Near-monochromatic X-ray beams produced by the free electron laser and Compton backscatter.

    PubMed

    Carroll, F E; Waters, J W; Price, R R; Brau, C A; Roos, C F; Tolk, N H; Pickens, D R; Stephens, W H

    1990-05-01

    The intense photon output of a free electron laser may be made to collide with its own high energy electron beam to create nearly monochromatic x-rays using Compton backscatter techniques. These x-rays can be used for imaging and non-imaging diagnostic and therapeutic experiments. The initial configuration of the Vanderbilt Medical Free Electron Laser (Sierra Laser Systems, Sunnyvale, CA) produces intense x-rays up to 17.9 keV, although higher energies are easily attainable through the use of frequency doubling methods, alteration of the energy of the electron beam and coupling to conventional laser inputs. PMID:2345075

  20. Characterization of the electronic structure of silicon nanoparticles using x-ray absorption and emission

    NASA Astrophysics Data System (ADS)

    Montoya Vaverka, April Susan

    Resolving open questions regarding transport in nanostructures can have a huge impact on a broad range of future technologies such as light harvesting for energy. Silicon has potential to be used in many of these applications. Understanding how the band edges of nanostructures move as a function of size, surface termination and assembly is of fundamental importance in understanding the transport properties of these materials. In this thesis work I have investigated the change in the electronic structure of silicon nanoparticle assemblies as the surface termination is changed. Nanoparticles are synthesized using a thermal evaporation technique and sizes are determined using atomic force microscopy (AFM). By passivating the particles with molecules containing alcohol groups we are able to modify the size dependent band edge shifts. Both the valence and conduction bands are measured using synchrotron based x-ray absorption spectroscopy (XAS) and soft x-ray fluorescence (SXF) techniques. Particles synthesized via recrystallization of amorphous silicon/SiO2 multilayers of thicknesses below 10 rim are also investigated using the synchrotron techniques. These samples also show quantum confinement effects but the electronic structure is different from those synthesized via evaporation methods. The total bandgap is determined for all samples measured. The origins of these differences in the electronic structures are discussed.

  1. Characterization of the Electronic Structure of Silicon Nanoparticles Using X-ray Absorption and Emission

    SciTech Connect

    Vaverka, April Susan Montoya

    2008-01-01

    Resolving open questions regarding transport in nanostructures can have a huge impact on a broad range of future technologies such as light harvesting for energy. Silicon has potential to be used in many of these applications. Understanding how the band edges of nanostructures move as a function of size, surface termination and assembly is of fundamental importance in understanding the transport properties of these materials. In this thesis work I have investigated the change in the electronic structure of silicon nanoparticle assemblies as the surface termination is changed. Nanoparticles are synthesized using a thermal evaporation technique and sizes are determined using atomic force microscopy (AFM). By passivating the particles with molecules containing alcohol groups we are able to modify the size dependent band edge shifts. Both the valence and conduction bands are measured using synchrotron based x-ray absorption spectroscopy (XAS) and soft x-ray fluorescence (SXF) techniques. Particles synthesized via recrystallization of amorphous silicon/SiO2 multilayers of thicknesses below 10 nm are also investigated using the synchrotron techniques. These samples also show quantum confinement effects but the electronic structure is different from those synthesized via evaporation methods. The total bandgap is determined for all samples measured. The origins of these differences in the electronic structures are discussed.

  2. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    NASA Astrophysics Data System (ADS)

    Baskaran, R.; Selvakumaran, T. S.

    2006-03-01

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10×10cm2 has been marked at 20cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10-5Torr, microwave power: 350W, and coil current: 0A. The effective energy of the x-ray spectrum is nearly 40keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  3. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.

    2006-03-15

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150 keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10x10 cm{sup 2} has been marked at 20 cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05 mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7 min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10{sup -5} Torr, microwave power: 350 W, and coil current: 0 A. The effective energy of the x-ray spectrum is nearly 40 keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  4. X-Ray Microanalysis and Electron Energy Loss Spectrometry in the Analytical Electron Microscope: Review and Future Directions

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.; Williams, D. B.

    1992-01-01

    This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be

  5. Probing Local Mineralogy in 3D with Dual Energy X-Ray Microscopy

    NASA Astrophysics Data System (ADS)

    Gelb, J.; Yun, S.; Doerr, D.; Hunter, L.; Johnson, B.; Merkle, A.; Fahey, K.

    2013-12-01

    In recent years, 3D imaging of rock microstructures has become routine practice for determining pore-scale properties in the geosciences. X-Ray imaging techniques, such as X-Ray Microscopy (XRM), have demonstrated several unique capabilities: namely, the ability to characterize the same sample across a range of length scales and REVs (from millimeters to nanometers), and to perform these characterizations on the same sample over a range of times/treatments (e.g., to observe fluid transporting through the pore networks in a flow cell). While the XRM technique is a popular choice for structural (i.e., pore) characterization, historically it has provided little mineralogical information. This means that resulting simulations are either based on pore structure alone, or rely on correlative chemical mapping techniques for compositionally-sensitive models. Recent advancements in XRM techniques are now enabling compositional sensitivity for a variety of geological sample types. By collecting high-resolution 3D tomography data sets at two different source settings (energies), results may be mixed together to enhance the appearance (contrast) of specific materials. This approach is proving beneficial, for example, to mining applications to locate and identify precious metals, as well as for oil & gas applications to map local hydrophobicity. Here, we will introduce the technique of dual energy X-Ray microscopy, showing how it extends the capabilities of traditional XRM techniques, affording the same high resolution structural information while adding 3D compositional data. Application examples will be shown to illustrate its effectiveness at both the single to sub-micron length scale for mining applications as well as at the 150 nm length scale for shale rock analysis.

  6. Soft x-ray microscopy: facing the mesoscale challenge in magnetism

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Im, M.-Y.; Hong, J.-I.

    2013-09-01

    For more than a decade magnetism research focused on a fundamental understanding and controlling of spins on a nanoscale. The next step beyond the nanoscale will be governed by mesoscale phenomena. Those are expected to add complexity and functionality, which are essential design parameters e.g. for the realization of future spintronic devices. Advanced characterization techniques will play key roles in achieving mesoscience goals and multidimensional spectromicroscopies utilizing polarized soft x-rays offering a unique combination of spatiotemporal resolution, elemental and magnetic sensitivity, and tomographic capabilities are very promising. As an example for complex behavior we show experimental results of the stochastic character of the nucleation of magnetic vortex structures in arrays of permalloy nanodisk. We have used magnetic soft x-ray microscopy to image at 25nm spatial resolution and a field of view of about 8 μm diameter both the circularity and the polarity of the disk, which allowed us to categorize the nucleated vortex state without ambiguity. We have found a symmetry breaking effect in the final vortex state, represented by a preferred handedness. We were able to identify as the origin of the asymmetry an internal Dzyaloshinskii-Moriya interaction arising from a broken inversion symmetry at the top and bottom surface/interface of the disk. Full 3-dimensional micromagnetic simulations confirmed our experimental observation. Here we present our observations with regard to disk diameter and disk thickness. Various soft x-ray microscopy approaches are currently pursued to obtain full 3dimensional images of magnetic structures, including computed reconstruction of 2dim projection images.

  7. X-ray microscopy study of chromonic liquid crystal dry film texture

    NASA Astrophysics Data System (ADS)

    Kaznatcheev, K. V.; Dudin, P.; Lavrentovich, O. D.; Hitchcock, A. P.

    2007-12-01

    Soft x-ray spectromicroscopy has been used to investigate the degree of the molecular alignment of sulfonated benzo[de]benzo[4.5]imidazo[2,1-a]isoquinoline[7,1], a lyotropic chromonic liquid crystal (LCLC). LCLC thin films cast from concentrated aqua solution (20%wt.) , aligned by shear flow and dried, show strong linear dichroism in their C-, N-, O-, S- K edge near edge x-ray spectra (NEXAFS). The carbon K edge has been used for quantitative evaluation of the orientational texture of the films at a submicron spatial scale. This has verified there is predominantly in-plane alignment of the LC director. To highlight the role of hydrophobic-hydrophilic interactions, two stereoisomers of the same dye has been synthesized with different positioning of terminal sulfonate groups, in the form of a mixture of isomers with sulfonate groups in 2,10 and 2,11 positions (Y104 compound) and in a 5,10-disulfo arrangement (Y105). Both compounds develop characteristic herringbone-type texture with similar domain sizes. Polarized optical microscopy and higher resolution x-ray microscopy show sinusoidal-like undulations of the molecular director, with occasional crisscross appearance. Such behavior is found to be consistent with earlier observation of striations, characteristic of the columnar phase. The drastic difference in the degree of undulation ( ±15° in Y104 and ±7° in Y105 films) and long period of undulation (approaching the film thickness) requires further analysis. It was also found that the degree of in-plane order within domains changes from 0.8 for Y104 to >0.9 in Y105 films.

  8. X-ray microscopy study of chromonic liquid crystal dry film texture.

    PubMed

    Kaznatcheev, K V; Dudin, P; Lavrentovich, O D; Hitchcock, A P

    2007-12-01

    Soft x-ray spectromicroscopy has been used to investigate the degree of the molecular alignment of sulfonated benzo[de]benzo[4.5]imidazo[2,1-a]isoquinoline[7,1], a lyotropic chromonic liquid crystal (LCLC). LCLC thin films cast from concentrated aqua solution (20%wt.) , aligned by shear flow and dried, show strong linear dichroism in their C-, N-, O-, S- K edge near edge x-ray spectra (NEXAFS). The carbon K edge has been used for quantitative evaluation of the orientational texture of the films at a submicron spatial scale. This has verified there is predominantly in-plane alignment of the LC director. To highlight the role of hydrophobic-hydrophilic interactions, two stereoisomers of the same dye has been synthesized with different positioning of terminal sulfonate groups, in the form of a mixture of isomers with sulfonate groups in 2,10 and 2,11 positions (Y104 compound) and in a 5,10-disulfo arrangement (Y105). Both compounds develop characteristic herringbone-type texture with similar domain sizes. Polarized optical microscopy and higher resolution x-ray microscopy show sinusoidal-like undulations of the molecular director, with occasional crisscross appearance. Such behavior is found to be consistent with earlier observation of striations, characteristic of the columnar phase. The drastic difference in the degree of undulation ( +/-15 degrees in Y104 and +/-7 degrees in Y105 films) and long period of undulation (approaching the film thickness) requires further analysis. It was also found that the degree of in-plane order within domains changes from 0.8 for Y104 to >0.9 in Y105 films. PMID:18233857

  9. Role of intestinal mucus in crystal biogenesis: an electron-microscopical, diffraction and X-ray microanalytical study.

    PubMed

    Humbert, W; Voegel, J C; Kirsch, R; Simonneaux, V

    1989-03-01

    In the posterior intestine of the sea-water eel, mucus plays an important role in biocrystallization of calcium ions. By means of transmission and scanning electron microscopy associated with X-ray microanalysis and X-ray diffraction it has been possible to determine the role of mucous fibers as nucleation sites. Biocrystallization occurs in 2 steps: (1) Calcification of mucus. As soon as mucus is excreted in the intestinal lumen, it is loaded with calcium, as shown by lanthanum affinity and X-ray microanalysis on freeze-dried tissues. (2) Genesis of crystals. Needle-shaped crystallites build up in coalescent spherites in the intestinal lumen near the microvilli. Genesis occurs as follows: (a) crystallite mineralization by nucleation in an organic matrix composed of glycoproteinaceous mucous fibers, followed by the appearance of spherites; (b) coalescence in spherites and association of spherites in rhombohedra; (c) extrusion of organic material during the final step of crystallization. PMID:2706658

  10. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    SciTech Connect

    Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G.; Heimann, P.; Krupin, O.; Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S.; Kelez, N.; Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W.; and others

    2012-04-15

    The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

  11. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  12. An investigation on some of the tumor treatment cases using x-rays and electron beams

    NASA Astrophysics Data System (ADS)

    Ucar, Burcu; Yigitoglu, Ibrahim; Arslan Kabalay, Ipek; Altiparmak, Duygu; Kilicaslan, Sinem

    2015-07-01

    In this work, we discussed some of the applications which X-rays and electron beam used in radiotherapy for tumor treatments. This study has been performed at Radiation Oncology Department, Medicine Faculty in Gaziosmanpasa University by using the VARIAN CLINICA DHX linear accelerator which is operated in the range of 6 MeV - 15 MeV. Processes for the treatments that X-rays used for pancreas, bladder and prostate tumors and the processes that the electron beam used for some of the derm tumors are studied. Effects of X-rays and electron beams to treatments process are examined and the obtained results are presented comparatively.

  13. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  14. Real-Time X-Ray transmission microscopy of solidifying Al-In Alloys

    NASA Astrophysics Data System (ADS)

    Curreri, Peter A.; Kaukler, William F.

    1996-03-01

    Real-time observations of transparent analog materials have provided insight, yet the results of these observations are not necessarily representative of opaque metallic systems. In order to study the detailed dynamics of the solidification process, we develop the technologies needed for real-time Xray microscopy of solidifying metallic systems, which has not previously been feasible with the necessary resolution, speed, and contrast. In initial studies of Al-ln monotectic alloys unidirectionally solidified in an X-ray transparent furnace, in situ records of the evolution of interface morphologies, interfacial solute accumulation, and formation of the monotectic droplets were obtained for the first time: A radiomicrograph of Al-30In grown during aircraft parabolic maneuvers is presented, showing the volumetric phase distribution in this specimen. The benefits of using X-ray microscopy for postsolidification metallography include ease of specimen preparation, increased sensitivity, and three-dimensional analysis of phase distribution. Imaging of the solute boundary layer revealed that the isoconcentration lines are not parallel (as is often assumed) to the growth interface. Striations in the solidified crystal did not accurately decorate the interface position and shape. The monotectic composition alloy under some conditions grew in an uncoupled manner.

  15. Nanoscale imaging of buried topological defects with quantitative X-ray magnetic microscopy

    PubMed Central

    Blanco-Roldán, C.; Quirós, C.; Sorrentino, A.; Hierro-Rodríguez, A.; Álvarez-Prado, L. M.; Valcárcel, R.; Duch, M.; Torras, N.; Esteve, J.; Martín, J. I.; Vélez, M.; Alameda, J. M.; Pereiro, E.; Ferrer, S.

    2015-01-01

    Advances in nanoscale magnetism increasingly require characterization tools providing detailed descriptions of magnetic configurations. Magnetic transmission X-ray microscopy produces element specific magnetic domain images with nanometric lateral resolution in films up to ∼100 nm thick. Here we present an imaging method using the angular dependence of magnetic contrast in a series of high resolution transmission X-ray microscopy images to obtain quantitative descriptions of the magnetization (canting angles relative to surface normal and sense). This method is applied to 55–120 nm thick ferromagnetic NdCo5 layers (canting angles between 65° and 22°), and to a NdCo5 film covered with permalloy. Interestingly, permalloy induces a 43° rotation of Co magnetization towards surface normal. Our method allows identifying complex topological defects (merons or ½ skyrmions) in a NdCo5 film that are only partially replicated by the permalloy overlayer. These results open possibilities for the characterization of deeply buried magnetic topological defects, nanostructures and devices. PMID:26337838

  16. Advancement of Solidification Processing Technology Through Real Time X-Ray Transmission Microscopy: Sample Preparation

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Curreri, P. A.

    1996-01-01

    Two types of samples were prepared for the real time X-ray transmission microscopy (XTM) characterization. In the first series directional solidification experiments were carried out to evaluate the critical velocity of engulfment of zirconia particles in the Al and Al-Ni eutectic matrix under ground (l-g) conditions. The particle distribution in the samples was recorded on video before and after the samples were directionally solidified. In the second series samples of the above two type of composites were prepared for directional solidification runs to be carried out on the Advanced Gradient Heating Facility (AGHF) aboard the space shuttle during the LMS mission in June 1996. X-ray microscopy proved to be an invaluable tool for characterizing the particle distribution in the metal matrix samples. This kind of analysis helped in determining accurately the critical velocity of engulfment of ceramic particles by the melt interface in the opaque metal matrix composites. The quality of the cast samples with respect to porosity and instrumented thermocouple sheath breakage or shift could be easily viewed and thus helped in selecting samples for the space shuttle experiments. Summarizing the merits of this technique it can be stated that this technique enabled the use of cast metal matrix composite samples since the particle location was known prior to the experiment.

  17. Ultrafast electronic dynamics in polyatomic molecules studied using femtosecond vacuum ultraviolet and x-ray pulses

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshinori

    2014-06-01

    Time-resolved velocity map photoelectron imaging is performed using sub-20 fs deep ultraviolet and vacuum ultraviolet pulses to study electronic dynamics of isolated polyatomic molecules. The non-adiabatic dynamics of pyrazine, furan and carbon disulfide (CS2) are described as examples. Also described is sub-picosecond time-resolved x-ray direct absorption spectroscopy using a hard x-ray free electron laser (SACLA) and a synchronous near ultraviolet laser to study ultrafast electronic dynamics in solutions.

  18. Femtosecond electronic response of atoms to ultra-intense x-rays.

    SciTech Connect

    Young, L.; Kanter, E .P.; Li, Y.; March, A.-M.; Pratt, S. T.; Santra, R.; Southworth, S. H.; Rohringer, N.; DiMauro, L. F.; Doumy, G.; Roedig, C. A.; Berrah, N.; Fang, L.; Hoener, M.; Bucksbaum, P. H.; Cryan, J. P .; Ghimire, S.; Glownia, J. M.; Reis, D. A.; Bozek, J. D.; Bostedt, C.; Messerschmidt, M.; Western Michigan Univ.; SLAC National Accelerator Lab.; The Ohio State Univ.; LLNL; Univ. of Chicago

    2010-07-01

    An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10{sup 18} W cm{sup -2}, 1.5-0.6 nm, {approx}10{sup 5} X-ray photons per {angstrom}{sup 2}). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse - by sequentially ejecting electrons - to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces 'hollow' atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.

  19. Electron Diffraction Using Transmission Electron Microscopy

    PubMed Central

    Bendersky, Leonid A.; Gayle, Frank W.

    2001-01-01

    Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈10 nm3). The NIST Materials Science and Engineering Laboratory has a history of discovery and characterization of new structures through electron diffraction, alone or in combination with other diffraction methods. This paper provides a survey of some of this work enabled through electron microscopy.

  20. Soft x-ray spectroscopy for probing electronic and chemical states of battery materials

    NASA Astrophysics Data System (ADS)

    Wanli, Yang; Ruimin, Qiao

    2016-01-01

    The formidable challenge of developing high-performance battery system stems from the complication of battery operations, both mechanically and electronically. In the electrodes and at the electrode-electrolyte interfaces, chemical reactions take place with evolving electron states. In addition to the extensive studies of material synthesis, electrochemical, structural, and mechanical properties, soft x-ray spectroscopy provides unique opportunities for revealing the critical electron states in batteries. This review discusses some of the recent soft x-ray spectroscopic results on battery binder, transition-metal based positive electrodes, and the solid-electrolyte-interphase. By virtue of soft x-ray’s sensitivity to electron states, the electronic property, the redox during electrochemical operations, and the chemical species of the interphases could be fingerprinted by soft x-ray spectroscopy. Understanding and innovating battery technologies need a multimodal approach, and soft x-ray spectroscopy is one of the incisive tools to probe the chemical and physical evolutions in batteries.

  1. Inferring the Energy Distribution of Accelerated Electrons in Solar Flares from X-ray Observations

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Sui, Linhui; Su, Yang

    2008-01-01

    Knowledge of the energy distribution of electrons accelerated in solar flares is important for constraining possible acceleration mechanisms and for understanding the relationships between flare X-ray sources, radio sources, and particles observed in space. Solar flare hard X-rays are primarily emitted from dense, thick-target regions in the lower atmosphere, but the electrons are understood to be accelerated higher in the corona. Various processes can distort the X-ray spectrum or the energy distribution of electrons before they reach the thick-target region. After briefly reviewing the processes that affect the X-ray spectrum and the electron distribution, I will describe recent results from a study of flare spectra from RHESSI to determine the importance of these processes in inferring the energy distribution of accelerated electrons.

  2. X-ray Emission from Electron Betatron Motion in a Laser-Plasma Accelerator

    SciTech Connect

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Mittelberger, D. E.; Battaglia, M.; Kim, T. S.; Nakamura, K.; Esarey, E.; Leemans, W. P.; Thorn, D. B.; Stoehlker, T.

    2010-11-04

    Single-shot x-ray spectra from electron bunches produced by a laser-plasma wakefield accelerator (LPA) were measured using a photon-counting single-shot pixelated Silicon-based detector, providing for the first time single-shot direct spectra without assumptions required by filter based techniques. In addition, the electron bunch source size was measured by imaging a wire target, demonstrating few micron source size and stability. X-rays are generated when trapped electrons oscillate in the focusing field of the wake trailing the driver laser pulse. In addition to improving understanding of bunch emittance and wake structure, this provides a broadband, synchronized femtosecond source of keV x-rays. Electron bunch spectra and divergence were measured simultaneously and preliminary analysis shows correlation between x-ray and electron spectra. Bremsstrahlung background was managed using shielding and magnetic diversion.

  3. PREFACE: 11th International Conference on X-ray Microscopy (XRM2012)

    NASA Astrophysics Data System (ADS)

    Xu, Hongjie; Wu, Ziyu; Tai, Renzhong

    2013-10-01

    The Eleventh International Conference on X-ray Microscopy (XRM2012) was held on 5-10 August 2012 at the Hope hotel in Shanghai. Historically, for the first time the XRM conference took place in China. The conference was jointly hosted by the Shanghai Synchrotron Radiation Facility (SSRF) and the National Synchrotron Radiation Laboratory (NSRL). The series of XRM conferences dates back to 1983 in Göttingen, Germany. Since the Zürich conference, XRM2008, it has been held every two years, showing its increasing popularity among the x-ray microscopy communities around the world. Research in the area of x-ray microscopy is advancing very fast with the development of synchrotron radiation techniques, especially the emergence of third generation light sources with low natural emittance which has significantly pushed forward the development of technologies and applications in this area. This has been fully demonstrated in presentations from this and previous XRM conferences. XRM2012 was attended by 295 people including 21 invited speakers, 53 contributing speakers, 55 students, and 13 industry exhibitors. Over 232 abstracts were submitted for oral or poster presentation and 56 original, peer-reviewed papers are published in these proceedings. The conference was sponsored by the Chinese Academy of Sciences (CAS) and the National Natural Science Foundation of China (11210301016/A0802), and three gold sponsors active in industrial and technological fields related to x-ray microscopy. An exhibition booth was offered free to Australia synchrotron, the host for XRM2014, to promote the next conference which will be held in Melbourne, Australia in 2014. An unforgettable memory for most conference participants might be the charming night cruise along Pujiang river which was part of the welcome reception on the first evening. The Werner Meyer-Ilse Award (WMIA) prize this year was awarded to Irene Zanette (TU-München) and Stephan Werner (HZB-Berlin), the former for her pioneering

  4. 77 FR 12226 - Sadex Corp.; Filing of Food Additive Petition (Animal Use); Electron Beam and X-Ray Sources for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Petition (Animal Use); Electron Beam and X-Ray Sources for Irradiation of Poultry Feed and Poultry Feed... regulations be amended to provide for the safe use of electron beam and x-ray sources for irradiation of... use of electron beam and x- ray sources for irradiation of poultry feed and poultry feed...

  5. Proposal for an Enhanced Self-Amplified Spontaneous Emission X-ray Free Electron Laser

    SciTech Connect

    Zholents, Alexander

    2004-02-01

    We describe a technique by which an energy modulation of electrons via interaction with a laser pulse in a wiggler magnet is used for a significant increase of the electron peak current prior to entering a long SASE FEL undulator. This results in a reduction of the gain length for the SASE process and a modification of the structure of the output x-ray radiation. It also temporally links the output x-ray pulse to the initial laser pulse, thus providing an opportunity for accurate synchronization between the laser pump pulse and x-ray probe pulse for pump-probe experiments.

  6. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity.

    PubMed

    Hao, Yajiang; Inhester, Ludger; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-07-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging. PMID:26798806

  7. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    PubMed Central

    Hao, Yajiang; Inhester, Ludger; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging. PMID:26798806

  8. Refractive optical elements and optical system for high energy x-ray microscopy

    SciTech Connect

    Simon, M.; Altapova, V.; Baumbach, T.; Kluge, M.; Last, A.; Marschall, F.; Mohr, J.; Nazmov, V.; Vogt, H.

    2012-05-17

    In material science, X-ray radiation with photon energies above 25 keV is used because of its penetration into high density materials. Research of the inner structure of novel materials, such as electrodes in high power batteries for engines, require X-ray microscopes operating in the hard X-ray energy range. A flexible X-ray microscope for hard X-rays with photon energies higher than 25 keV will be realized at the synchrotron source ANKA in Karlsruhe, Germany. The device will use refractive X-ray lenses as condenser as well as objective lenses.

  9. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    SciTech Connect

    Ruoß, S. Stahl, C.; Weigand, M.; Schütz, G.; Albrecht, J.

    2015-01-12

    The penetration of magnetic flux into high-temperature superconductors has been observed using a high-resolution technique based on x-ray magnetic circular dichroism. Superconductors coated with thin soft-magnetic layers are observed in a scanning x-ray microscope under the influence of external magnetic fields. Resulting electric currents in the superconductor create an inhomogeneous magnetic field distribution above the superconductor and lead to a local reorientation of the ferromagnetic layer. Measuring the local magnetization of the ferromagnet by x-ray absorption microscopy with circular-polarized radiation allows the analysis of the magnetic flux distribution in the superconductor with a spatial resolution on the nanoscale.

  10. A simulation of X-ray shielding for a superconducting electron cyclotron resonance ion source

    SciTech Connect

    Park, Jin Yong; Won, Mi-Sook; Lee, Byoung-Seob; Yoon, Jang-Hee; Choi, Seyong; Ok, Jung-Woo; Choi, Jeong-Sik; Kim, Byoung-Chul

    2014-02-15

    It is generally assumed that large amounts of x-rays are emitted from the ion source of an Electron Cyclotron Resonance (ECR) instrument. The total amount of x-rays should be strictly limited to avoid the extra heat load to the cryostat of the superconducting ECR ion source, since they are partly absorbed by the cold mass into the cryostat. A simulation of x-ray shielding was carried out to determine the effective thickness of the x-ray shield needed via the use of Geant4. X-ray spectra of the 10 GHz Nanogan ECR ion source were measured as a function of the thickness variation in the x-ray shield. The experimental results were compared with Geant4 results to verify the effectiveness of the x-ray shield. Based on the validity in the case of the 10 GHz ECR ion source, the x-ray shielding results are presented by assuming the spectral temperature of the 28 GHz ECR ion source.

  11. Femtosecond electron and x-ray generation by laser andplasma-based sources

    SciTech Connect

    Esarey, E.; Leemans, W.P.

    2000-02-01

    The generation of ultra-short x-rays by Thomson scattering intense laser pulses from electron beams is discussed, including recent experimental results and methods for enhancing the x-ray flux. A high flux of x-rays in a femtosecond pulse requires the generation of femtosecond electron bunches and a head-on Thomson scattering geometry. The generation of ultrashort electron bunches in a plasma-based accelerator with an injection technique that uses two colliding laser pulses is discussed. Simulations indicate the bunches as short as a few fs can be produced. Conversion of the fs electron pulse to a fs x-ray pulse can be accomplished by Bremsstrahlung or Thomson scattering.

  12. Femtosecond all-optical synchronization of an X-ray free-electron laser

    SciTech Connect

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.

  13. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGESBeta

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; et al

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  14. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  15. Femtosecond all-optical synchronization of an X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.

  16. Femtosecond all-optical synchronization of an X-ray free-electron laser.

    PubMed

    Schulz, S; Grguraš, I; Behrens, C; Bromberger, H; Costello, J T; Czwalinna, M K; Felber, M; Hoffmann, M C; Ilchen, M; Liu, H Y; Mazza, T; Meyer, M; Pfeiffer, S; Prędki, P; Schefer, S; Schmidt, C; Wegner, U; Schlarb, H; Cavalieri, A L

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  17. Theoretical explanation of the relationship between backscattered electron and x-ray linear attenuation coefficients in calcified tissues.

    PubMed

    Wong, F S; Elliott, J C

    1997-11-01

    X-ray absorption and backscattered electron (BSE) microscopies are two commonly used techniques for estimating mineral contents in calcified tissues. The resolution in BSE images is usually higher than in x-ray images, but due to the previous lack of good standards to quantify the grey levels in BSE images of bones and teeth, x-ray microtomography (XMT) images of the same specimens have been used for calibration. However, the physics of these two techniques is different: for a specimen with a given composition, the x-ray linear attenuation coefficient is proportional to density, but there is no such relation with the BSE coefficient. To understand the reason that this calibration appears to be valid, the behaviour of simulated bone samples was investigated. In this, the bone samples were modelled as having three phases: hydroxyapatite (Ca10(PO4)6(OH)2), protein, and void (either empty or completely filled with polymethylmethacrylate (PMMA), a resin which is usually used for embedding bones and teeth in microscopic studies). The x-ray linear attenuation coefficients (calculated using published data) and the BSE coefficients (calculated using Monte Carlo simulation) were compared for samples of various phase proportions. It was found that the BSE coefficient correlated only with the x-ray attenuation coefficient for samples with PMMA infiltration. This was attributed to the properties of PMMA (density and mean atomic number) being very similar to those of the protein; therefore, the sample behaves like a two-phase system which allows the establishment of a monotonic relation between density and BSE coefficient. With the newly developed standards (brominated and iodinated dimethacrylate esters) for BSE microscopy of bone, grey levels can be converted to absolute BSE coefficients by linear interpolation, from which equivalent densities can be determined. PMID:9418207

  18. Coherent X-ray radiation excited by a diverging relativistic electron beam in a single crystal

    SciTech Connect

    Blazhevich, S. V. Noskov, A. V.

    2015-05-15

    We develop a dynamic theory of coherent X-rays generated in a single-crystal wafer by a diverging relativistic electron beam. The dependence of the spectral-angular density of coherent X-ray radiation on the angle of divergence is analyzed for the case when the angular spread can be described by the 2D Gaussian distribution. The theory constructed here makes it possible to analyze coherent radiation for an arbitrary angular distribution of electrons in the beam as well.

  19. Objective for EUV microscopy, EUV lithography, and x-ray imaging

    DOEpatents

    Bitter, Manfred; Hill, Kenneth W.; Efthimion, Philip

    2016-05-03

    Disclosed is an imaging apparatus for EUV spectroscopy, EUV microscopy, EUV lithography, and x-ray imaging. This new imaging apparatus could, in particular, make significant contributions to EUV lithography at wavelengths in the range from 10 to 15 nm, which is presently being developed for the manufacturing of the next-generation integrated circuits. The disclosure provides a novel adjustable imaging apparatus that allows for the production of stigmatic images in x-ray imaging, EUV imaging, and EUVL. The imaging apparatus of the present invention incorporates additional properties compared to previously described objectives. The use of a pair of spherical reflectors containing a concave and convex arrangement has been applied to a EUV imaging system to allow for the image and optics to all be placed on the same side of a vacuum chamber. Additionally, the two spherical reflector segments previously described have been replaced by two full spheres or, more precisely, two spherical annuli, so that the total photon throughput is largely increased. Finally, the range of permissible Bragg angles and possible magnifications of the objective has been largely increased.

  20. Magnetic soft X-ray microscopy at 10nm spatial resolution

    NASA Astrophysics Data System (ADS)

    Fischer, Peter; Chao, Weilun; Im, Mi-Young; Anderson, Erik

    2011-03-01

    Magnetic soft X-ray microscopy, which combines high spatial and temporal resolution with elemental specificity by utilizing the specific features of X-ray magnetic circular dichroism effects is a unique and powerful analytical technique to image fast spin dynamics of nanoscale magnetism. The spatial resolution is determined by Fresnel zone plate lenses used as diffractive optics. FZPs are fabricated by state-of-the-art lithography techniques and the challenge is to produce a dense, circular line pattern with a high aspect ratio to achieve high efficiency. Using an overlay technique [2-3], which requires high position accuracy of the e-beam writer, FZPs with 12nm outermost zone width could be fabricated. Implementing this optic at BL 6.1.2 at the ALS in Berkeley CA, we have demonstrated that a 10nm line and space test pattern can be clearly resolved. First magnetic images of a PtCo film with a pronounced perpendicular anisotropy will be presented. Further progress to below 10nm can be anticipated in the near future. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231.

  1. X-ray microscopy for in situ characterization of 3D nanostructural evolution in the laboratory

    NASA Astrophysics Data System (ADS)

    Hornberger, Benjamin; Bale, Hrishikesh; Merkle, Arno; Feser, Michael; Harris, William; Etchin, Sergey; Leibowitz, Marty; Qiu, Wei; Tkachuk, Andrei; Gu, Allen; Bradley, Robert S.; Lu, Xuekun; Withers, Philip J.; Clarke, Amy; Henderson, Kevin; Cordes, Nikolaus; Patterson, Brian M.

    2015-09-01

    X-ray microscopy (XRM) has emerged as a powerful technique that reveals 3D images and quantitative information of interior structures. XRM executed both in the laboratory and at the synchrotron have demonstrated critical analysis and materials characterization on meso-, micro-, and nanoscales, with spatial resolution down to 50 nm in laboratory systems. The non-destructive nature of X-rays has made the technique widely appealing, with potential for "4D" characterization, delivering 3D micro- and nanostructural information on the same sample as a function of sequential processing or experimental conditions. Understanding volumetric and nanostructural changes, such as solid deformation, pore evolution, and crack propagation are fundamental to understanding how materials form, deform, and perform. We will present recent instrumentation developments in laboratory based XRM including a novel in situ nanomechanical testing stage. These developments bridge the gap between existing in situ stages for micro scale XRM, and SEM/TEM techniques that offer nanometer resolution but are limited to analysis of surfaces or extremely thin samples whose behavior is strongly influenced by surface effects. Several applications will be presented including 3D-characterization and in situ mechanical testing of polymers, metal alloys, composites and biomaterials. They span multiple length scales from the micro- to the nanoscale and different mechanical testing modes such as compression, indentation and tension.

  2. Lithographically-fabricated channel arrays for confocal x-ray fluorescence microscopy and XAFS

    NASA Astrophysics Data System (ADS)

    Woll, Arthur R.; Agyeman-Budu, David; Choudhury, Sanjukta; Coulthard, Ian; Finnefrock, Adam C.; Gordon, Robert; Hallin, Emil; Mass, Jennifer

    2014-03-01

    Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume. The minimum-achievable size of this probe volume is limited by the collector, for which polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched in silicon, and arranged like spokes of a wheel directed towards a single source position. The optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total collection efficiency, limiting its practical application. Here, we describe a new design in which the collimating channels are formed by a staggered array of pillars whose side-walls taper away from the channel axis. This approach improves both collection efficiency and working distance, while maintaining excellent spatial resolution. We illustrate these improvements with confocal XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) beamline 20-ID-B.

  3. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-08-01

    Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0). PMID:27515566

  4. Incorporation of Mn in AlxGa1 -xN probed by x-ray absorption and emission spectroscopy, high-resolution microscopy, x-ray diffraction, and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Rovezzi, Mauro; Schlögelhofer, Wolfgang; Devillers, Thibaut; Szwacki, Nevill Gonzalez; Li, Tian; Adhikari, Rajdeep; Glatzel, Pieter; Bonanni, Alberta

    2015-09-01

    Synchrotron radiation x-ray absorption and emission spectroscopy techniques, complemented by high-resolution transmission electron microscopy methods and density functional theory calculations, are employed to investigate the effect of Mn in AlxGa1 -xN :Mn samples with an Al content up to 100%. The atomic and electronic structure of Mn is established together with its local environment and valence state. A dilute alloy without precipitation is obtained for AlxGa1 -xN :Mn with Al concentrations up to 82%, and the surfactant role of Mn in the epitaxial process is confirmed.

  5. Implementation of soft x-ray microscopy with several tens nanometers spatial resolution at NSRL

    NASA Astrophysics Data System (ADS)

    Jiang, Shiping; Chen, Liang

    2009-09-01

    A transmission soft x-ray microscope (TXM), which is similar to the full-field x-ray microscopes installed on other synchrotron radiation sources in the world, was developed at National Synchrotron Radiation Laboratory (NSRL) in Hefei. An x-ray image taken with the microscope was acquired and its spatial resolution was estimated to be better than 70nm.

  6. Electron optics simulation for designing carbon nanotube based field emission x-ray source

    NASA Astrophysics Data System (ADS)

    Sultana, Shabana

    In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging.

  7. Detection of soft X-rays with NEA III-V photocathodes. [Negative Electron Affinity X-ray detector for astronomy

    NASA Technical Reports Server (NTRS)

    Bardas, D.; Kellogg, E.; Murray, S.; Enck, R., Jr.

    1978-01-01

    A description is presented of the results of tests on an X-ray photomultiplier containing a negative electron affinity (NEA) photocathode. This device makes it possible to investigate the response of the NEA photocathode to X-rays of various energies. The obtained data provide a basis for the determination of the photoelectron yield and energy resolution of the considered photocathode as a function of energy in the range from 0.8 to 3 keV. The investigation demonstrates the feasibility of using an NEA III-V photocathode for the detection of soft X-rays.

  8. Quantitative comparison of the void distribution in a. beta. '-phase Ni-Al-In alloy using x-ray small-angle scattering and transmission-electron microscopy. [Ni-51. 2 at. % Al-2. 6 at. % In

    SciTech Connect

    Epperson, J.E.; Loomis, B.A.; Lin, J.S.

    1981-11-01

    Small-angle scattering is a rather mature discipline which can yield valuable information on the size, amount, and distribution of inhomogeneities encountered in materials-science research. Methods have been publisheed which permit one to extend the standard analysis of data from a small-angle-scattering experiment to include determination of the distribution of particle sizes. This extended analysis has been carried out for voids in a ..beta..'-phase Ni-Al-In alloy, and, in order to assess the reliability of the procedure, the identical void distribution as been characterized by transmission-electron microscopy. A quantitative comparison is made of the results from thses two independent experiments, and the general performance of the Brill-Schmidt method for particle-size determinations is discussed. 6 figures, 1 table.

  9. A Sealed, UHV Compatible, Soft X-ray Detector Utilizing Gas Electron Multipliers

    SciTech Connect

    Schaknowski, N.A.; Smith, G.

    2009-10-25

    An advanced soft X-ray detector has been designed and fabricated for use in synchrotron experiments that utilize X-ray absorption spectroscopy in the study a wide range of materials properties. Fluorescence X-rays, in particular C{sub K} at 277eV, are converted in a low pressure gas medium, and charge multiplication occurs in two gas electron multipliers, fabricated in-house from glass reinforced laminate, to enable single photon counting. The detector satisfies a number of demanding characteristics often required in synchrotron environments, such as UHV compatibility compactness, long-term stability, and energy resolving capability.

  10. Coherent control of long-range photoinduced electron transfer by stimulated X-ray Raman processes.

    PubMed

    Dorfman, Konstantin E; Zhang, Yu; Mukamel, Shaul

    2016-09-01

    We show that X-ray pulses resonant with selected core transitions can manipulate electron transfer (ET) in molecules with ultrafast and atomic selectivity. We present possible protocols for coherently controlling ET dynamics in donor-bridge-acceptor (DBA) systems by stimulated X-ray resonant Raman processes involving various transitions between the D, B, and A sites. Simulations presented for a Ru(II)-Co(III) model complex demonstrate how the shapes, phases and amplitudes of the X-ray pulses can be optimized to create charge on demand at selected atoms, by opening up otherwise blocked ET pathways. PMID:27559082

  11. Hard X-ray Holographic Microscopy using Refractive Prism and Fresnel Zone Plate Objective

    SciTech Connect

    Suzuki, Yoshio; Takeuchi, Akihisa

    2007-01-19

    Imaging holography in hard x-ray region is realized by combining imaging microscopy with a refractive prism interferometer. The prism is placed behind the back-focal-plane of objective lens in order to configure a wave-front-division interferometer, and a magnified interferogram of object image is generated at an image plane. Spatial resolution of the image hologram is essentially determined by the performance of objective lens. However, speckle noise is a serious problem for fully coherent illumination. We have tried 'asymmetric spatial coherence' to reduce the speckle noise. A synchrotron radiation light source with small coupling constant is very suitable for this purpose. The spatial coherence is sufficiently high in the vertical direction to make an interferogram, and low enough in the horizontal direction to suppress the speckle noise. Preliminary experiments at BL20XU of SPring-8 are shown.

  12. Transmission X-ray microscopy (TXM) reveals the nanostructure of a smectite gel.

    PubMed

    Zbik, Marek S; Martens, Wayde N; Frost, Ray L; Song, Yen-Fang; Chen, Yi-Ming; Chen, Jian-Hua

    2008-08-19

    The unusual behavior of smectites, the ability to change volume when wetted (swelling) or dried (shrinking), makes soil rich in smectites very unstable and dangerous for the building industry because of the movement of building foundations and poor slope stability. These macroscopic properties are dominated by the structural arrangement of the smectites' finest fraction. Here, we show in three dimensions how the swelling phenomenon in smectite, caused by a combination of hydratation and electrostatic forces, may expand the dry smectite volume not 10-fold, as previously thought, but to more than 1000-fold. A new technique, transmission X-ray microscopy, makes it possible to investigate the internal structure and 3-D tomographic reconstruction of clay aggregates. This reveals, for the first time, the smectite gel arrangement in the voluminous cellular tactoid structure within a natural aqueous environment. PMID:18620443

  13. Observation of thermomagnetically recorded domains with high-resolution magnetic soft x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Tsunashima, S.; Takagi, Nayuki; Yamaguchi, Atushi; Kume, Minoru; Fischer, P.; Kumazawa, M.

    2003-04-01

    Magnetic domains were thermomagnetically recorded on TbFeCo films using laser pulsed magnetic field modulation (LP-MFM) and light intensity modulation (LIM). The domains were observed with high resolution magnetic transmission X-ray microscopy (M-TXM) before and after the heat treatment in order to clarify the recording characteristics and the thermal stability of recorded domains. From the results of M-TXM images, it was found that isolated single marks whose lengths are much smaller than 100 nm can be recorded by LP-MFM but their mark lengths become often longer than designed. It was further confirmed that the heat treatment at 120 degree C for 50 hours does not influence significantly the crescent-shaped magnetic domains of 100 nm in width recorded using LP-MFM method and circular domains of 150 nm in diameter recorded using LIM method.

  14. Structural characterization of colloidal crystals and inverse opals using transmission X-ray microscopy.

    PubMed

    Huang, Bo-Han; Wang, Chun-Chieh; Liao, Chen-Hong; Wu, Pu-Wei; Song, Yen-Fang

    2014-07-15

    A nondestructive tomographic technique was used to determine the crystallographic information of colloidal crystals comprising of polystyrene (PS) microspheres, as well as their silver inverse opals. The properties of the colloidal crystals, such as defects, grain size, grain boundaries, stacking sequence, and grain orientation, were determined using the full field transmission X-ray microscopy (TXM) with a spatial resolution of 50 nm. The PS microspheres (500-750 nm) which underwent a vertical electrophoresis process to form a face-centered cubic (fcc) close-packed structure with an ABCABC packing sequence. In addition, the colloidal crystal exhibited multiple grains, and an orientation variation of 6.1° in the stacking direction between two neighboring grains. PMID:24863783

  15. Terminal contact elements of insect attachment devices studied by transmission X-ray microscopy.

    PubMed

    Eimüller, T; Guttmann, P; Gorb, S N

    2008-06-01

    For the first time, the terminal elements (spatulae) of setal (hairy) attachment devices of the beetle Gastrophysa viridula (Coleoptera, Chrysomelidae) and the fly Lucilia caesar (Diptera, Calliphoridae) were studied using transmission X-ray microscopy (TXM) with a lateral resolution of about 30 nm. Since images are taken under ambient conditions, we demonstrate here that this method can be applied to study the contact behaviour of biological systems, including animal tenent setae, in a fresh state. We observed that the attached spatulae show a viscoelastic behavior increasing the contact area and providing improved adaptability to the local topography of the surface. The technique can be extended to TXM tomography, which would provide three-dimensional information and a deeper insight into the details of insect attachment structures. PMID:18515726

  16. Quantitative X-Ray Magnetic Microscopy: from parallel stripe domains to buried topological defects

    NASA Astrophysics Data System (ADS)

    Velez, Maria; Blanco-Roldan, C.; Quiros, C.; Valdes-Bango, F.; Alvarez-Prado, L. M.; Martin, J. I.; Alameda, J. M.; Hierro-Rodriguez, A.; Duch, M.; Torras, N.; Esteve, J.; Sorrentino, A.; Valcarcel, R.; Pereiro, E.; Ferrer, S.

    Magnetic transmission X-ray microscopy (TXM) is a powerful imaging technique that can produce element specific images of magnetic domains with nanometric lateral resolution. Here we present a novel imaging method in which the angular dependence of the magnetic contrast in a series of high resolution TXM images is used to obtain quantitative descriptions of the magnetization (canting angles and sense). This has been applied first to analyze parallel stripe domains in weak perpendicular anisotropy ferromagnetic NdCo5 layers of different thickness, and in NdCo5/Permalloy bilayers. Then, our method has been used to identify complex topological defects (merons or 1/2 skyrmions) in a NdCo5 film that are only partially replicated by the Permalloy overlayer. Meron propagation in trilayers (across the thickness) and in hexagonal networks (across bifurcations) will be discussed in terms of their topological characteristics (chirality and polarity). Work supported by Spanish Grant FIS2013-45469.

  17. Data preparation and evaluation techniques for x-ray diffraction microscopy

    DOE PAGESBeta

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. In addition, we show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffractionmore » patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.« less

  18. Data preparation and evaluation techniques for x-ray diffraction microscopy

    SciTech Connect

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. In addition, we show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffraction patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.

  19. Lateral spin transfer torque induced magnetic switching at room temperature demonstrated by x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Buhl, M.; Erbe, A.; Grebing, J.; Wintz, S.; Raabe, J.; Fassbender, J.

    2013-10-01

    Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nanoelectronic components. Therefore, new concepts for controlling the state of nanomagnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar. In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM).

  20. Differential Aperture X-ray Microscopy Near Te Precipitates in CdZnTe

    SciTech Connect

    Miller, Erin A.; Toloczko, Mychailo; Seifert, Allen; Seifert, Carolyn E.; Liu, Wenjun; Bliss, Mary

    2007-09-21

    We report the results of Differential Aperture X-ray Microscopy (DAXM) measurements near Te precipitates in CdZnTe grown via low-pressure Bridgman. White-beam Laue patterns were acquired with 3-D spatial resolution (with 250 nm resolution in the scanning directions and 1 μm resolution in depth) at depths of up to 35 μm deep normal to the surface. We find very little crystal strain (< 10-3) or rotation (<0.05 degrees) near Te precipitates. We also examine local deformations in the vicinity of a microhardness indent, and find that although significant rotations exist, the spatial extent is limited to a few tens of microns. Furthermore, observed crystal strains are limited to 5 x 10-3 or less in regions near the microhardness indent.