Science.gov

Sample records for electron tomography tilt-series

  1. Scanning transmission electron microscopy through-focal tilt-series on biological specimens.

    PubMed

    Trepout, Sylvain; Messaoudi, Cédric; Perrot, Sylvie; Bastin, Philippe; Marco, Sergio

    2015-10-01

    Since scanning transmission electron microscopy can produce high signal-to-noise ratio bright-field images of thick (≥500 nm) specimens, this tool is emerging as the method of choice to study thick biological samples via tomographic approaches. However, in a convergent-beam configuration, the depth of field is limited because only a thin portion of the specimen (from a few nanometres to tens of nanometres depending on the convergence angle) can be imaged in focus. A method known as through-focal imaging enables recovery of the full depth of information by combining images acquired at different levels of focus. In this work, we compare tomographic reconstruction with the through-focal tilt-series approach (a multifocal series of images per tilt angle) with reconstruction with the classic tilt-series acquisition scheme (one single-focus image per tilt angle). We visualised the base of the flagellum in the protist Trypanosoma brucei via an acquisition and image-processing method tailored to obtain quantitative and qualitative descriptors of reconstruction volumes. Reconstructions using through-focal imaging contained more contrast and more details for thick (≥500 nm) biological samples. PMID:26093182

  2. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram.

    PubMed

    Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R

    2014-05-01

    Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. PMID:24727133

  3. Alignator: a GPU powered software package for robust fiducial-less alignment of cryo tilt-series.

    PubMed

    Castaño-Díez, Daniel; Scheffer, Margot; Al-Amoudi, Ashraf; Frangakis, Achilleas S

    2010-04-01

    The robust alignment of tilt-series collected for cryo-electron tomography in the absence of fiducial markers, is a problem that, especially for tilt-series of vitreous sections, still represents a significant challenge. Here we present a complete software package that implements a cross-correlation-based procedure that tracks similar image features that are present in several micrographs and explores them implicitly as substitutes for fiducials like gold beads and quantum dots. The added value compared to previous approaches, is that the algorithm explores a huge number of random positions, which are tracked on several micrographs, while being able to identify trace failures, using a cross-validation procedure based on the 3D marker model of the tilt-series. Furthermore, this method allows the reliable identification of areas which behave as a rigid body during the tilt-series and hence addresses specific difficulties for the alignment of vitreous sections, by correcting practical caveats. The resulting alignments can attain sub-pixel precision at the local level and is able to yield a substantial number of usable tilt-series (around 60%). In principle, the algorithm has the potential to run in a fully automated fashion, and could be used to align any tilt-series directly from the microscope. Finally, we have significantly improved the user interface and implemented the source code on the graphics processing unit (GPU) to accelerate the computations. PMID:20117216

  4. Rapid low dose electron tomography using a direct electron detection camera

    PubMed Central

    Migunov, Vadim; Ryll, Henning; Zhuge, Xiaodong; Simson, Martin; Strüder, Lothar; Batenburg, K. Joost; Houben, Lothar; Dunin-Borkowski, Rafal E.

    2015-01-01

    We demonstrate the ability to record a tomographic tilt series containing 3487 images in only 3.5 s by using a direct electron detector in a transmission electron microscope. The electron dose is lower by at least one order of magnitude when compared with that used to record a conventional tilt series of fewer than 100 images in 15–60 minutes and the overall signal-to-noise ratio is greater than 4. Our results, which are illustrated for an inorganic nanotube, are important for ultra-low-dose electron tomography of electron-beam-sensitive specimens and real-time dynamic electron tomography of nanoscale objects with sub-ms temporal resolution. PMID:26434767

  5. Cryo-Electron Tomography for Structural Characterization of Macromolecular Complexes

    PubMed Central

    Cope, Julia; Heumann, John; Hoenger, Andreas

    2011-01-01

    Cryo-electron tomography (cryo-ET) is an emerging 3-D reconstruction technology that combines the principles of tomographic 3-D reconstruction with the unmatched structural preservation of biological material embedded in vitreous ice. Cryo-ET is particularly suited to investigating cell-biological samples and large macromolecular structures that are too polymorphic to be reconstructed by classical averaging-based 3-D reconstruction procedures. This unit aims to make cryo-ET accessible to newcomers and discusses the specialized equipment required, as well as the relevant advantages and hurdles associated with sample preparation by vitrification and cryo-ET. Protocols describe specimen preparation, data recording and 3-D data reconstruction for cryo-ET, with a special focus on macromolecular complexes. A step-by-step procedure for specimen vitrification by plunge freezing is provided, followed by the general practicalities of tilt-series acquisition for cryo-ET, including advice on how to select an area appropriate for acquiring a tilt series. A brief introduction to the underlying computational reconstruction principles applied in tomography is described, along with instructions for reconstructing a tomogram from cryo-tilt series data. Finally, a method is detailed for extracting small subvolumes containing identical macromolecular structures from tomograms for alignment and averaging as a means to increase the signal-to-noise ratio and eliminate missing wedge effects inherent in tomographic reconstructions. PMID:21842467

  6. Conventional and 360 degree electron tomography of a micro-crystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Duchamp, M.; Ramar, A.; Kovács, A.; Kasama, T.; Haug, F.-J.; Newcomb, S. B.; Ballif, C.; Dunin-Borkowski, R. E.

    2011-11-01

    Bright-field (BF) and annular dark-field (ADF) electron tomography in the transmission electron microscope (TEM) are used to characterize elongated porous regions or cracks (simply referred to as cracks thereafter) in micro-crystalline silicon (μc-Si:H) solar cell. The limitations of inferring the 3D geometry of a crack from a tilt series of images acquired from 100-nm-thick focused ion beam (FTB) milled TEM specimen are discussed. In an attempt to maximize the specimen tilt range and to reduce the effects of diffraction and phase contrast on the reconstruction, both BF and ADF electron tomography are used to acquire 360° tilt series of images from a FIB-prepared needle-shaped μc-Si:H specimen.

  7. EPiK-a Workflow for Electron Tomography in Kepler*

    PubMed Central

    Wang, Jianwu; Crawl, Daniel; Phan, Sébastien; Lawrence, Albert; Ellisman, Mark

    2015-01-01

    Scientific workflows integrate data and computing interfaces as configurable, semi-automatic graphs to solve a scientific problem. Kepler is such a software system for designing, executing, reusing, evolving, archiving and sharing scientific workflows. Electron tomography (ET) enables high-resolution views of complex cellular structures, such as cytoskeletons, organelles, viruses and chromosomes. Imaging investigations produce large datasets. For instance, in Electron Tomography, the size of a 16 fold image tilt series is about 65 Gigabytes with each projection image including 4096 by 4096 pixels. When we use serial sections or montage technique for large field ET, the dataset will be even larger. For higher resolution images with multiple tilt series, the data size may be in terabyte range. Demands of mass data processing and complex algorithms require the integration of diverse codes into flexible software structures. This paper describes a workflow for Electron Tomography Programs in Kepler (EPiK). This EPiK workflow embeds the tracking process of IMOD, and realizes the main algorithms including filtered backprojection (FBP) from TxBR and iterative reconstruction methods. We have tested the three dimensional (3D) reconstruction process using EPiK on ET data. EPiK can be a potential toolkit for biology researchers with the advantage of logical viewing, easy handling, convenient sharing and future extensibility. PMID:25621086

  8. Zernike Phase Contrast Electron Cryo-Tomography Applied to Marine Cyanobacteria Infected with Cyanophages

    PubMed Central

    Dai, Wei; Fu, Caroline; Khant, Htet A.; Ludtke, Steven J.; Schmid, Michael F.; Chiu, Wah

    2015-01-01

    Advances in electron cryo-tomography have provided a new opportunity to visualize the internal 3D structures of a bacterium. An electron microscope equipped with Zernike phase contrast optics produces images with dramatically increased contrast compared to images obtained by conventional electron microscopy. Here we describe a protocol to apply Zernike phase plate technology for acquiring electron tomographic tilt series of cyanophage-infected cyanobacterial cells embedded in ice, without staining or chemical fixation. We detail the procedures for aligning and assessing phase plates for data collection, and methods to obtain 3D structures of cyanophage assembly intermediates in the host, by subtomogram alignment, classification and averaging. Acquiring three to four tomographic tilt series takes approximately 12 h on a JEM2200FS electron microscope. We expect this time requirement to decrease substantially as the technique matures. Time required for annotation and subtomogram averaging varies widely depending on the project goals and data volume. PMID:25321408

  9. Three-Dimensional Imaging of the Local Structure of Materials at Atomic Resolution by Electron Tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Chun

    Electron tomography was originally developed in 1968, and has been primarily applied to determine the three-dimensional (3D) structure of biological systems. In the last decade, the application of electron tomography in materials science and nanoscience has revived due to the utilization of scanning transmission electron microscopy (STEM) in the high-angle annular dark-field (HAADF) mode, and a highest resolution of ˜1 nm3 has been achieved. However, improving the resolution from ˜1 nm 3 to the atomic level remains a challenging task, which requires new tomographic reconstruction algorithms, better projection alignment methods, state-of-the-art STEM instruments, and more accurate data-acquisition procedures. In this thesis, important progress has been made in all these four areas. First, a novel tomographic method, termed equally sloped tomography (EST), was developed and allows the 3D image reconstruction of tilt series with a limited number projections and a "missing wedge" (i.e. specimens cannot usually be tilted beyond +/-70°). Second, an alignment method which can be used to align the projections of a tilt series at atomic-level resolution was developed based on center of mass. Finally, by using a Titan 80-300 STEM instrument at the California NanoSystems Institute, UCLA, more accurate data acquisition procedures were developed and a number of tomographic tilt series of atomic resolution projections from different nanoparticles have been obtained. With all these combinations, the 3D structure of a 10 nm gold nanoparticle was determined at 2.4 A resolution, the highest resolution ever achieved in any general tomography method. More recently, this novel electron tomography method has been applied to observe nearly all the atoms in a Pt nanoparticle, and imaged for the first time the 3D core structure of edge and screw dislocations at atomic resolution. Furthermore, through numerical simulations the feasibility of determining the 3D atomic structure of

  10. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy

    PubMed Central

    Levin, Barnaby D.A.; Padgett, Elliot; Chen, Chien-Chun; Scott, M.C.; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D.; Robinson, Richard D.; Ercius, Peter; Kourkoutis, Lena F.; Miao, Jianwei; Muller, David A.; Hovden, Robert

    2016-01-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data. PMID:27272459

  11. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy.

    PubMed

    Levin, Barnaby D A; Padgett, Elliot; Chen, Chien-Chun; Scott, M C; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D; Robinson, Richard D; Ercius, Peter; Kourkoutis, Lena F; Miao, Jianwei; Muller, David A; Hovden, Robert

    2016-01-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data. PMID:27272459

  12. Computed tomography of electronics

    NASA Astrophysics Data System (ADS)

    Bossi, Richard H.; Kruse, Robert J.; Knutson, Benjamin W.

    1989-12-01

    The application of Computed Tomography (CT) and laminography was tested on a variety of electronic components. The effort was performed as a preliminary testing task assignment in the Advanced Development of X ray Computed Tomography Application program. A key area for testing was printed circuit boards for the inspection of solder bonds and in particular for leadless chip carrier devices. During the course of the task assignment several other categories of electronic devices were examined including transformers, connectors, switches from solution and contrast sensitivity phantoms developed for the programs were used to establish quantitative measures of capability used to generate images. This preliminary testing of electronics lead to the conclusion that higher resolution CT scanning is needed to resolve details of interest. CT testing on commercially available system could resolve high contrast details in the range of 2 to 4 lp/mm; however, in many electronic components finer resolution is needed to detect microcracking, voiding and other features. Further testing on high resolution system is recommended. Two areas of immediate potential economic payback for electronics inspection were identified; the inspection of high volume printed circuit board production using high speed laminography and nondestructive failure analysis studies components using high-resolution CT.

  13. Unraveling the structure of membrane proteins in situ by transfer function corrected cryo-electron tomography.

    PubMed

    Eibauer, Matthias; Hoffmann, Christian; Plitzko, Jürgen M; Baumeister, Wolfgang; Nickell, Stephan; Engelhardt, Harald

    2012-12-01

    Cryo-electron tomography in combination with subtomogram averaging allows to investigate the structure of protein assemblies in their natural environment in a close to live state. To make full use of the structural information contained in tomograms it is necessary to analyze the contrast transfer function (CTF) of projections and to restore the phases of higher spatial frequencies. CTF correction is however hampered by the difficulty of determining the actual defocus values from tilt series data, which is due to the low signal-to-noise ratio of electron micrographs. In this study, an extended acquisition scheme is introduced that enables an independent CTF determination. Two high-dose images are recorded along the tilt axis on both sides of each projection, which allow an accurate determination of the defocus values of these images. These values are used to calculate the CTF for each image of the tilt series. We applied this scheme to the mycobacterial outer membrane protein MspA reconstituted in lipid vesicles and tested several variants of CTF estimation in combination with subtomogram averaging and correction of the modulation transfer function (MTF). The 3D electron density map of MspA was compared with a structure previously determined by X-ray crystallography. We were able to demonstrate that structural information up to a resolution of 16.8Å can be recovered using our CTF correction approach, whereas the uncorrected 3D map had a resolution of only 26.2Å. PMID:23000705

  14. Compressed Sensing Electron Tomography for Determining Biological Structure.

    PubMed

    Guay, Matthew D; Czaja, Wojciech; Aronova, Maria A; Leapman, Richard D

    2016-01-01

    There has been growing interest in applying compressed sensing (CS) theory and practice to reconstruct 3D volumes at the nanoscale from electron tomography datasets of inorganic materials, based on known sparsity in the structure of interest. Here we explore the application of CS for visualizing the 3D structure of biological specimens from tomographic tilt series acquired in the scanning transmission electron microscope (STEM). CS-ET reconstructions match or outperform commonly used alternative methods in full and undersampled tomogram recovery, but with less significant performance gains than observed for the imaging of inorganic materials. We propose that this disparity stems from the increased structural complexity of biological systems, as supported by theoretical CS sampling considerations and numerical results in simulated phantom datasets. A detailed analysis of the efficacy of CS-ET for undersampled recovery is therefore complicated by the structure of the object being imaged. The numerical nonlinear decoding process of CS shares strong connections with popular regularized least-squares methods, and the use of such numerical recovery techniques for mitigating artifacts and denoising in reconstructions of fully sampled datasets remains advantageous. This article provides a link to the software that has been developed for CS-ET reconstruction of electron tomographic data sets. PMID:27291259

  15. Compressed Sensing Electron Tomography for Determining Biological Structure

    NASA Astrophysics Data System (ADS)

    Guay, Matthew D.; Czaja, Wojciech; Aronova, Maria A.; Leapman, Richard D.

    2016-06-01

    There has been growing interest in applying compressed sensing (CS) theory and practice to reconstruct 3D volumes at the nanoscale from electron tomography datasets of inorganic materials, based on known sparsity in the structure of interest. Here we explore the application of CS for visualizing the 3D structure of biological specimens from tomographic tilt series acquired in the scanning transmission electron microscope (STEM). CS-ET reconstructions match or outperform commonly used alternative methods in full and undersampled tomogram recovery, but with less significant performance gains than observed for the imaging of inorganic materials. We propose that this disparity stems from the increased structural complexity of biological systems, as supported by theoretical CS sampling considerations and numerical results in simulated phantom datasets. A detailed analysis of the efficacy of CS-ET for undersampled recovery is therefore complicated by the structure of the object being imaged. The numerical nonlinear decoding process of CS shares strong connections with popular regularized least-squares methods, and the use of such numerical recovery techniques for mitigating artifacts and denoising in reconstructions of fully sampled datasets remains advantageous. This article provides a link to the software that has been developed for CS-ET reconstruction of electron tomographic data sets.

  16. Compressed Sensing Electron Tomography for Determining Biological Structure

    PubMed Central

    Guay, Matthew D.; Czaja, Wojciech; Aronova, Maria A.; Leapman, Richard D.

    2016-01-01

    There has been growing interest in applying compressed sensing (CS) theory and practice to reconstruct 3D volumes at the nanoscale from electron tomography datasets of inorganic materials, based on known sparsity in the structure of interest. Here we explore the application of CS for visualizing the 3D structure of biological specimens from tomographic tilt series acquired in the scanning transmission electron microscope (STEM). CS-ET reconstructions match or outperform commonly used alternative methods in full and undersampled tomogram recovery, but with less significant performance gains than observed for the imaging of inorganic materials. We propose that this disparity stems from the increased structural complexity of biological systems, as supported by theoretical CS sampling considerations and numerical results in simulated phantom datasets. A detailed analysis of the efficacy of CS-ET for undersampled recovery is therefore complicated by the structure of the object being imaged. The numerical nonlinear decoding process of CS shares strong connections with popular regularized least-squares methods, and the use of such numerical recovery techniques for mitigating artifacts and denoising in reconstructions of fully sampled datasets remains advantageous. This article provides a link to the software that has been developed for CS-ET reconstruction of electron tomographic data sets. PMID:27291259

  17. The Caltech Tomography Database and Automatic Processing Pipeline.

    PubMed

    Ding, H Jane; Oikonomou, Catherine M; Jensen, Grant J

    2015-11-01

    Here we describe the Caltech Tomography Database and automatic image processing pipeline, designed to process, store, display, and distribute electron tomographic data including tilt-series, sample information, data collection parameters, 3D reconstructions, correlated light microscope images, snapshots, segmentations, movies, and other associated files. Tilt-series are typically uploaded automatically during collection to a user's "Inbox" and processed automatically, but can also be entered and processed in batches via scripts or file-by-file through an internet interface. As with the video website YouTube, each tilt-series is represented on the browsing page with a link to the full record, a thumbnail image and a video icon that delivers a movie of the tomogram in a pop-out window. Annotation tools allow users to add notes and snapshots. The database is fully searchable, and sets of tilt-series can be selected and re-processed, edited, or downloaded to a personal workstation. The results of further processing and snapshots of key results can be recorded in the database, automatically linked to the appropriate tilt-series. While the database is password-protected for local browsing and searching, datasets can be made public and individual files can be shared with collaborators over the Internet. Together these tools facilitate high-throughput tomography work by both individuals and groups. PMID:26087141

  18. A fast cross-validation method for alignment of electron tomography images based on Beer-Lambert law.

    PubMed

    Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen

    2015-11-01

    In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. PMID:26455556

  19. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect

    Dahmen, Tim; Baudoin, Jean-Pierre G; Lupini, Andrew R; Kubel, Christian; Slusallek, Phillip; De Jonge, Niels

    2014-01-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  20. Electron tomography of dislocation structures

    SciTech Connect

    Liu, G.S.; House, S.D.; Kacher, J.; Tanaka, M.; Higashida, K.; Robertson, I.M.

    2014-01-15

    Recent developments in the application of electron tomography for characterizing microstructures in crystalline solids are described. The underlying principles for electron tomography are presented in the context of typical challenges in adapting the technique to crystalline systems and in using diffraction contrast imaging conditions. Methods for overcoming the limitations associated with the angular range, the number of acquired images, and uniformity of image contrast are introduced. In addition, a method for incorporating the real space coordinate system into the tomogram is presented. As the approach emphasizes development of experimental solutions to the challenges, the solutions developed and implemented are presented in the form of examples.

  1. Quantum tomography of an electron

    NASA Astrophysics Data System (ADS)

    Jullien, T.; Roulleau, P.; Roche, B.; Cavanna, A.; Jin, Y.; Glattli, D. C.

    2014-10-01

    The complete knowledge of a quantum state allows the prediction of the probability of all possible measurement outcomes, a crucial step in quantum mechanics. It can be provided by tomographic methods which have been applied to atomic, molecular, spin and photonic states. For optical or microwave photons, standard tomography is obtained by mixing the unknown state with a large-amplitude coherent photon field. However, for fermions such as electrons in condensed matter, this approach is not applicable because fermionic fields are limited to small amplitudes (at most one particle per state), and so far no determination of an electron wavefunction has been made. Recent proposals involving quantum conductors suggest that the wavefunction can be obtained by measuring the time-dependent current of electronic wave interferometers or the current noise of electronic Hanbury-Brown/Twiss interferometers. Here we show that such measurements are possible despite the extreme noise sensitivity required, and present the reconstructed wavefunction quasi-probability, or Wigner distribution function, of single electrons injected into a ballistic conductor. Many identical electrons are prepared in well-controlled quantum states called levitons by repeatedly applying Lorentzian voltage pulses to a contact on the conductor. After passing through an electron beam splitter, the levitons are mixed with a weak-amplitude fermionic field formed by a coherent superposition of electron-hole pairs generated by a small alternating current with a frequency that is a multiple of the voltage pulse frequency. Antibunching of the electrons and holes with the levitons at the beam splitter changes the leviton partition statistics, and the noise variations provide the energy density matrix elements of the levitons. This demonstration of quantum tomography makes the developing field of electron quantum optics with ballistic conductors a new test-bed for quantum information with fermions. These results may

  2. Visualization of ATP Synthase Dimers in Mitochondria by Electron Cryo-tomography

    PubMed Central

    Davies, Karen M.; Daum, Bertram; Gold, Vicki A. M.; Mühleip, Alexander W.; Brandt, Tobias; Blum, Thorsten B.; Mills, Deryck J.; Kühlbrandt, Werner

    2014-01-01

    Electron cryo-tomography is a powerful tool in structural biology, capable of visualizing the three-dimensional structure of biological samples, such as cells, organelles, membrane vesicles, or viruses at molecular detail. To achieve this, the aqueous sample is rapidly vitrified in liquid ethane, which preserves it in a close-to-native, frozen-hydrated state. In the electron microscope, tilt series are recorded at liquid nitrogen temperature, from which 3D tomograms are reconstructed. The signal-to-noise ratio of the tomographic volume is inherently low. Recognizable, recurring features are enhanced by subtomogram averaging, by which individual subvolumes are cut out, aligned and averaged to reduce noise. In this way, 3D maps with a resolution of 2 nm or better can be obtained. A fit of available high-resolution structures to the 3D volume then produces atomic models of protein complexes in their native environment. Here we show how we use electron cryo-tomography to study the in situ organization of large membrane protein complexes in mitochondria. We find that ATP synthases are organized in rows of dimers along highly curved apices of the inner membrane cristae, whereas complex I is randomly distributed in the membrane regions on either side of the rows. By subtomogram averaging we obtained a structure of the mitochondrial ATP synthase dimer within the cristae membrane. PMID:25285856

  3. Quantum tomography of an electron.

    PubMed

    Jullien, T; Roulleau, P; Roche, B; Cavanna, A; Jin, Y; Glattli, D C

    2014-10-30

    The complete knowledge of a quantum state allows the prediction of the probability of all possible measurement outcomes, a crucial step in quantum mechanics. It can be provided by tomographic methods which have been applied to atomic, molecular, spin and photonic states. For optical or microwave photons, standard tomography is obtained by mixing the unknown state with a large-amplitude coherent photon field. However, for fermions such as electrons in condensed matter, this approach is not applicable because fermionic fields are limited to small amplitudes (at most one particle per state), and so far no determination of an electron wavefunction has been made. Recent proposals involving quantum conductors suggest that the wavefunction can be obtained by measuring the time-dependent current of electronic wave interferometers or the current noise of electronic Hanbury-Brown/Twiss interferometers. Here we show that such measurements are possible despite the extreme noise sensitivity required, and present the reconstructed wavefunction quasi-probability, or Wigner distribution function, of single electrons injected into a ballistic conductor. Many identical electrons are prepared in well-controlled quantum states called levitons by repeatedly applying Lorentzian voltage pulses to a contact on the conductor. After passing through an electron beam splitter, the levitons are mixed with a weak-amplitude fermionic field formed by a coherent superposition of electron-hole pairs generated by a small alternating current with a frequency that is a multiple of the voltage pulse frequency. Antibunching of the electrons and holes with the levitons at the beam splitter changes the leviton partition statistics, and the noise variations provide the energy density matrix elements of the levitons. This demonstration of quantum tomography makes the developing field of electron quantum optics with ballistic conductors a new test-bed for quantum information with fermions. These results may

  4. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research.

    PubMed

    Ercius, Peter; Alaidi, Osama; Rames, Matthew J; Ren, Gang

    2015-10-14

    Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. PMID:26087941

  5. Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST)

    PubMed Central

    Aronova, M. A.; Kim, Y. C.; Harmon, R.; Sousa, A. A.; Zhang, G.; Leapman, R. D.

    2007-01-01

    We describe the development of quantitative electron spectroscopic tomography (QuEST), which provides three-dimensional distributions of elements on a nanometer scale. Specifically, it is shown that QuEST can be applied to map the distribution of phosphorus in unstained sections of embedded cells. A series of 2D elemental maps is derived from images recorded in the energy filtering transmission electron microscope for a range of specimen tilt angles. A quantitative 3-D elemental distribution is then reconstructed from the elemental tilt series. To obtain accurate quantitative elemental distributions it is necessary to correct for plural inelastic scattering at the phosphorus L2,3 edge, which is achieved by acquiring unfiltered and zero-loss images at each tilt angle. The data are acquired automatically using a cross correlation technique to correct for specimen drift and focus change between successive tilt angles. An algorithm based on the simultaneous iterative reconstruction technique (SIRT) is implemented to obtain quantitative information about the number of phosphorus atoms associated with each voxel in the reconstructed volume. We assess the accuracy of QuEST by determining the phosphorus content of ribosomes in a eukaryotic cell, and then apply it to estimate the density of nucleic acid in chromatin of the cell's nucleus. From our experimental data, we estimate that the sensitivity for detecting phosphorus is 20 atoms in a 2.7 nm-sized voxel. PMID:17693097

  6. Refinement procedure for the image alignment in high-resolution electron tomography.

    PubMed

    Houben, L; Bar Sadan, M

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. PMID:21930024

  7. Using size-selected gold clusters on graphene oxide films to aid cryo-transmission electron tomography alignment

    PubMed Central

    Arkill, Kenton P.; Mantell, Judith M.; Plant, Simon R.; Verkade, Paul; Palmer, Richard E.

    2015-01-01

    A three-dimensional reconstruction of a nano-scale aqueous object can be achieved by taking a series of transmission electron micrographs tilted at different angles in vitreous ice: cryo-Transmission Electron Tomography. Presented here is a novel method of fine alignment for the tilt series. Size-selected gold clusters of ~2.7 nm (Au561 ± 14), ~3.2 nm (Au923 ± 22), and ~4.3 nm (Au2057 ± 45) in diameter were deposited onto separate graphene oxide films overlaying holes on amorphous carbon grids. After plunge freezing and subsequent transfer to cryo-Transmission Electron Tomography, the resulting tomograms have excellent (de-)focus and alignment properties during automatic acquisition. Fine alignment is accurate when the evenly distributed 3.2 nm gold particles are used as fiducial markers, demonstrated with a reconstruction of a tobacco mosaic virus. Using a graphene oxide film means the fiducial markers are not interfering with the ice bound sample and that automated collection is consistent. The use of pre-deposited size-selected clusters means there is no aggregation and a user defined concentration. The size-selected clusters are mono-dispersed and can be produced in a wide size range including 2–5 nm in diameter. The use of size-selected clusters on a graphene oxide films represents a significant technical advance for 3D cryo-electron microscopy. PMID:25783049

  8. Using size-selected gold clusters on graphene oxide films to aid cryo-transmission electron tomography alignment

    NASA Astrophysics Data System (ADS)

    Arkill, Kenton P.; Mantell, Judith M.; Plant, Simon R.; Verkade, Paul; Palmer, Richard E.

    2015-03-01

    A three-dimensional reconstruction of a nano-scale aqueous object can be achieved by taking a series of transmission electron micrographs tilted at different angles in vitreous ice: cryo-Transmission Electron Tomography. Presented here is a novel method of fine alignment for the tilt series. Size-selected gold clusters of ~2.7 nm (Au561 +/- 14), ~3.2 nm (Au923 +/- 22), and ~4.3 nm (Au2057 +/- 45) in diameter were deposited onto separate graphene oxide films overlaying holes on amorphous carbon grids. After plunge freezing and subsequent transfer to cryo-Transmission Electron Tomography, the resulting tomograms have excellent (de-)focus and alignment properties during automatic acquisition. Fine alignment is accurate when the evenly distributed 3.2 nm gold particles are used as fiducial markers, demonstrated with a reconstruction of a tobacco mosaic virus. Using a graphene oxide film means the fiducial markers are not interfering with the ice bound sample and that automated collection is consistent. The use of pre-deposited size-selected clusters means there is no aggregation and a user defined concentration. The size-selected clusters are mono-dispersed and can be produced in a wide size range including 2-5 nm in diameter. The use of size-selected clusters on a graphene oxide films represents a significant technical advance for 3D cryo-electron microscopy.

  9. Feasibility study for mega-electron-volt electron beam tomography

    SciTech Connect

    Hampel, U.; Baertling, Y.; Hoppe, D.; Kuksanov, N.; Fadeev, S.; Salimov, R.

    2012-09-15

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  10. Using Tomoauto: A Protocol for High-throughput Automated Cryo-electron Tomography.

    PubMed

    Morado, Dustin R; Hu, Bo; Liu, Jun

    2016-01-01

    Cryo-electron tomography (Cryo-ET) is a powerful three-dimensional (3-D) imaging technique for visualizing macromolecular complexes in their native context at a molecular level. The technique involves initially preserving the sample in its native state by rapidly freezing the specimen in vitreous ice, then collecting a series of micrographs from different angles at high magnification, and finally computationally reconstructing a 3-D density map. The frozen-hydrated specimen is extremely sensitive to the electron beam and so micrographs are collected at very low electron doses to limit the radiation damage. As a result, the raw cryo-tomogram has a very low signal to noise ratio characterized by an intrinsically noisy image. To better visualize subjects of interest, conventional imaging analysis and sub-tomogram averaging in which sub-tomograms of the subject are extracted from the initial tomogram and aligned and averaged are utilized to improve both contrast and resolution. Large datasets of tilt-series are essential to understanding and resolving the complexes at different states, conditions, or mutations as well as obtaining a large enough collection of sub-tomograms for averaging and classification. Collecting and processing this data can be a major obstacle preventing further analysis. Here we describe a high-throughput cryo-ET protocol based on a computer-controlled 300kV cryo-electron microscope, a direct detection device (DDD) camera and a highly effective, semi-automated image-processing pipeline software wrapper library tomoauto developed in-house. This protocol has been effectively utilized to visualize the intact type III secretion system (T3SS) in Shigella flexneri minicells. It can be applicable to any project suitable for cryo-ET. PMID:26863591

  11. Recent advances in the application of electron tomography to materials chemistry.

    PubMed

    Leary, Rowan; Midgley, Paul A; Thomas, John Meurig

    2012-10-16

    Nowadays, tomography plays a central role in pureand applied science, in medicine, and in many branches of engineering and technology. It entails reconstructing the three-dimensional (3D) structure of an object from a tilt series of two-dimensional (2D) images. Its origin goes back to 1917, when Radon showed mathematically how a series of 2D projection images could be converted to the 3D structural one. Tomographic X-ray and positron scanning for 3D medical imaging, with a resolution of ∼1 mm, is now ubiquitous in major hospitals. Electron tomography, a relatively new chemical tool, with a resolution of ∼1 nm, has been recently adopted by materials chemists as an invaluable aid for the 3D study of the morphologies, spatially-discriminating chemical compositions, and defect properties of nanostructured materials. In this Account, we review the advances that have been made in facilitating the recording of the required series of 2D electron microscopic images and the subsequent process of 3D reconstruction of specimens that are vulnerable, to a greater or lesser degree, to electron beam damage. We describe how high-fidelity 3D tomograms may be obtained from relatively few 2D images by incorporating prior structural knowledge into the reconstruction process. In particular, we highlight the vital role of compressed sensing, a recently developed procedure well-known to information theorists that exploits ideas of image compression and "sparsity" (that the important image information can be captured in a reduced data set). We also touch upon another promising approach, "discrete" tomography, which builds into the reconstruction process a prior assumption that the object can be described in discrete terms, such as the number of constituent materials and their expected densities. Other advances made recently that we outline, such as the availability of aberration-corrected electron microscopes, electron wavelength monochromators, and sophisticated specimen goniometers

  12. Three-dimensional shapes and distribution of FePd nanoparticles observed by electron tomography using high-angle annular dark-field scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Sato, Kazuhisa; Aoyagi, Kenta; Konno, Toyohiko J.

    2010-01-01

    We have studied three-dimensional shapes and distribution of FePd nanoparticles, prepared by electron beam deposition and postdeposition annealing, by means of single-axis tilt tomography using atomic number contrasts obtained by high-angle annular dark-field scanning transmission electron microscopy. Particle size, shape, and locations were reconstructed by weighted backprojection (WBP), as well as by simultaneous iterative reconstruction technique (SIRT). We have also estimated the particle size by simple extrapolation of tilt-series original data sets, which proved to be quite powerful. The results of the two algorithms for reconstruction have been compared quantitatively with those obtained by the extrapolation method and those independently reported by electron holography. It was found that the reconstructed intensity map by WBP contains a small amount of dotlike artifacts, which do not exist in the results by SIRT, and that the particle surface obtained by WBP is rougher than that by SIRT. We demonstrate, on the other hand, that WBP yields a better estimation of the particle size in the z direction than SIRT does, most likely due to the presence of a "missing wedge" in the original data set.

  13. A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.

    PubMed

    Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa

    2015-12-01

    Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction. PMID:26433028

  14. Using tomoauto – a protocol for high-throughput automated cryo-electron tomography

    PubMed Central

    Morado, Dustin R.; Hu, Bo; Liu, Jun

    2016-01-01

    We present a protocol on how to utilize high-throughput cryo-electron tomography to determine high resolution in situ structures of molecular machines. The protocol permits large amounts of data to be processed, avoids common bottlenecks and reduces resource downtime, allowing the user to focus on important biological questions. Cryo-electron tomography (Cryo-ET) is a powerful three-dimensional (3-D) imaging technique for visualizing macromolecular complexes in their native context at a molecular level. The technique involves initially preserving the sample in its native state by rapidly freezing the specimen in vitreous ice, then collecting a series of micrographs from different angles at high magnification, and finally computationally reconstructing a 3-D density map. The frozen-hydrated specimen is extremely sensitive to the electron beam and so micrographs are collected at very low electron doses to limit the radiation damage. As a result, the raw cryo-tomogram has a very low signal to noise ratio characterized by an intrinsically noisy image. To better visualize subjects of interest, conventional imaging analysis and sub-tomogram averaging in which sub-tomograms of the subject are extracted from the initial tomogram and aligned and averaged are utilized to improve both contrast and resolution. Large datasets of tilt-series are essential to understanding and resolving the complexes at different states, conditions, or mutations as well as obtaining a large enough collection of sub-tomograms for averaging and classification. Collecting and processing this data can be a major obstacle preventing further analysis. Here we describe a high-throughput cryo-ET protocol based on a computer-controlled 300kV cryo-electron microscope, a direct detection device (DDD) camera and a highly effective, semi-automated image-processing pipeline software wrapper library tomoauto developed in-house. This protocol has been effectively utilized to visualize the intact type III

  15. Local electron tomography using angular variations of surface tangents: Stomo version 2

    NASA Astrophysics Data System (ADS)

    Petersen, T. C.; Ringer, S. P.

    2012-03-01

    In a recent publication, we investigated the prospect of measuring the outer three-dimensional (3D) shapes of nano-scale atom probe specimens from tilt-series of images collected in the transmission electron microscope. For this purpose alone, an algorithm and simplified reconstruction theory were developed to circumvent issues that arise in commercial "back-projection" computations in this context. In our approach, we give up the difficult task of computing the complete 3D continuum structure and instead seek only the 3D morphology of internal and external scattering interfaces. These interfaces can be described as embedded 2D surfaces projected onto each image in a tilt series. Curves and other features in the images are interpreted as inscribed sets of tangent lines, which intersect the scattering interfaces at unknown locations along the direction of the incident electron beam. Smooth angular variations of the tangent line abscissa are used to compute the surface tangent intersections and hence the 3D morphology as a "point cloud". We have published the explicit details of our alternative algorithm along with the source code entitled "stomo_version_1". For this work, we have further modified the code to efficiently handle rectangular image sets, perform much faster tangent-line "edge detection" and smoother tilt-axis image alignment using simple bi-linear interpolation. We have also adapted the algorithm to detect tangent lines as "ridges", based upon 2nd order partial derivatives of the image intensity; the magnitude and orientation of which is described by a Hessian matrix. Ridges are more appropriate descriptors for tangent-line curves in phase contrast images outlined by Fresnel fringes or absorption contrast data from fine-scale objects. Improved accuracy, efficiency and speed for "stomo_version_2" is demonstrated in this paper using both high resolution electron tomography data of a nano-sized atom probe tip and simulated absorption-contrast images

  16. Electron Tomography: Seeing Atoms in Three Dimensions

    SciTech Connect

    Arslan, Ilke; Stach, Eric A.

    2012-11-01

    Our eyes - a parallel lens system - have the phenomenal ability to observe and "reconstruct" the three-dimensional world, relaying a 3-D image to our brains. Imaging of the nanoworld is best done with electrons rather than photons because of their lower wavelengths and higher resolution. The advent of aberration-correction has led to transmission electron microscopes with sub-Angstrom resolution that can resolve single atoms. Yet, no matter what detector is used, the resulting images are only two-dimensional projections of three-dimensional objects. Electron tomography is a technique that allows reconstruction of the three-dimensional structure and morphology of nanomaterials from such projections. X-ray tomography has been used in many branches of science for nearly half a century, and in the biological sciences electron tomography has been a powerful tool for understanding ultrastructure. However, for many years crystalline materials posed a challenge to electron tomography because diffraction contrast (a change in intensity in the image at particular crystal orientations) creates artifacts in the 3-D reconstruction. In 2003, with advances in scanning transmission electron microscopy, Midgley and colleagues obtained the first electron tomograms of crystalline materials. Shortly thereafter, Arslan et al. showed that the spatial resolution could be improved to 1 nm in all three spatial dimensions and visualized the formation of faceted 3.5-nm quantum dots embedded in a Si matrix. However, with that work existing reconstruction algorithms appeared to have reached their limit. To attain a resolution of 1 nm, a total of 140 images over ±78 degrees of tilt were needed. Writing in Nature Materials, Goris et al. now report a novel algorithm for 3-D reconstruction of the atomic structure of free-standing Au nanorods, using only four projection images. I.A. acknowledges collaboration with J.D. Roehling, K.J. Batenburg, B.C. Gates and A. Katz for Figure 1, supported in

  17. Cryo-electron tomography of bacterial viruses

    SciTech Connect

    Guerrero-Ferreira, Ricardo C.; Wright, Elizabeth R.

    2013-01-05

    Bacteriophage particles contain both simple and complex macromolecular assemblages and machines that enable them to regulate the infection process under diverse environmental conditions with a broad range of bacterial hosts. Recent developments in cryo-electron tomography (cryo-ET) make it possible to observe the interactions of bacteriophages with their host cells under native-state conditions at unprecedented resolution and in three-dimensions. This review describes the application of cryo-ET to studies of bacteriophage attachment, genome ejection, assembly and egress. Current topics of investigation and future directions in the field are also discussed.

  18. Atom Probe Tomography of Nanoscale Electronic Materials

    SciTech Connect

    Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.

    2016-01-01

    Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.

  19. On geometric artifacts in cryo electron tomography.

    PubMed

    Turoňová, Beata; Marsalek, Lukas; Slusallek, Philipp

    2016-04-01

    Single-tilt scheme is nowadays the prevalent acquisition geometry in electron tomography and subtomogram averaging experiments. Being an incomplete scheme that induces ill-posedness in the sense of the X-ray or Radon transform inverse problem, it introduces a number of artifacts that directly influence the quality of tomographic reconstructions. Though individually described by different authors before, a systematic study of these acquisition geometry-related artifacts in one place and across representative set of reconstruction methods has not been, to our knowledge, performed before. Moreover, the effects of these artifacts on the reconstructed density are sometimes misinterpreted, attributing them to the wrong cause, especially if their effects accumulate. In this work, we systematically study the major artifacts of single-tilt geometry known as the missing wedge (incomplete projection set problem), the missing information and the specimen-level interior problem (long-object problem). First, we illustratively describe, using a unified terminology, how and why these artifacts arise and when they can be avoided. Next, we describe the effects of these artifacts on the reconstructions across all major classes of reconstruction methods, including newly-appeared methods like the Iterative Nonuniform fast Fourier transform based Reconstruction method (INFR) and the Progressive Stochastic Reconstruction Technique (PSRT). Finally, we draw conclusions and recommendations on numerous points, especially regarding the mutual influence of the geometric artifacts, ability of different reconstruction methods to suppress them as well as implications to the interpretation of both electron tomography and subtomogram averaging experiments. PMID:26916079

  20. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Arena, J.; Song, M. J.; McEwen, B. F.

    1996-01-01

    Aspects of the ultrastructural interaction between collagen and mineral crystals in embryonic chick bone have been examined by the novel technique of high voltage electron microscopic tomography to obtain three-dimensional information concerning extracellular calcification in this tissue. Newly mineralizing osteoid along periosteal surfaces of mid-diaphyseal regions from normal chick tibiae was embedded, cut into 0.25 microns thick sections, and documented at 1.0 MV in the Albany AEI-EM7 high voltage electron microscope. The areas of the tissue studied contained electron dense mineral crystals associated with collagen fibrils, some marked by crystals disposed along their cylindrically shaped lengths. Tomographic reconstructions of one site with two mineralizing fibrils were computed from a 5 degrees tilt series of micrographs over a +/- 60 degrees range. Reconstructions showed that the mineral crystals were platelets of irregular shape. Their sizes were variable, measured here up to 80 x 30 x 8 nm in length, width, and thickness, respectively. The longest crystal dimension, corresponding to the c-axis crystallographically, was generally parallel to the collagen fibril long axis. Individual crystals were oriented parallel to one another in each fibril examined. They were also parallel in the neighboring but apparently spatially separate fibrils. Crystals were periodically (approximately 67 nm repeat distance) arranged along the fibrils and their location appeared to correspond to collagen hole and overlap zones defined by geometrical imaging techniques. The crystals appeared to be continuously distributed along a fibril, their size and number increasing in a tapered fashion from a relatively narrow tip containing smaller and infrequent crystals to wider regions having more densely packed and larger crystals. Defined for the first time by direct visual 3D imaging, these data describe the size, shape, location, orientation, and development of early crystals in normal

  1. Quantitative Electron Tomography of Rubber Composites

    NASA Astrophysics Data System (ADS)

    Staniewicz, Lech; Vaudey, Thomas; Degrandcourt, Christophe; Couty, Marc; Gaboriaud, Fabien; Midgley, Paul

    2014-06-01

    Rubber composite materials have many applications, one example being tyre manufacture. The presence of a filler material in the composite (such as carbon black or silica) causes its mechanical properties to differ in several ways when compared to pure rubber such as viscoelastic behaviour (the Payne effect), increased tensile strength and improved wear resistance. To fully understand these properties, it is necessary to characterise how the filler material is organised on the nanoscale. Using composite materials representative of those found in tyres, this work illustrates the use of electron tomography and machine learning methods as tools to describe the percolation behaviour of the filler; in this case, we focus on the largest proportion of particles absorbed into one single object as a function of particle spacing.

  2. Fully Mechanically Controlled Automated Electron Microscopic Tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; Rames, Matthew; Zhang, Meng; Yu, Yadong; Peng, Bo; Celis, César Díaz; Xu, April; Zou, Qin; Yang, Xu; Chen, Xuefeng; Ren, Gang

    2016-07-01

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins’ functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000–160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisition without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging.

  3. Resolving Presynaptic Structure by Electron Tomography

    PubMed Central

    Perkins, Guy A.; Jackson, Dakota R.; Spirou, George A.

    2016-01-01

    A key goal in neurobiology is to generate a theoretical framework that merges structural, physiological and molecular explanations of brain function. These categories of explanation do not advance in synchrony; advances in one category define new experiments in other categories. For example, the synapse was defined physiologically and biochemically before it was visualized using electron microscopy. Indeed, the original descriptions of synapses in the 1950s were lent credence by the presence of spherical vesicles in presynaptic terminals that were considered to be the substrate for quantal neurotransmission. In the last few decades, our understanding of synaptic function has again been driven by physiological and molecular techniques. The key molecular players for synaptic vesicle structure, mobility and fusion were identified and applications of the patch clamp technique permitted physiological estimation of neurotransmitter release and receptor properties. These advances demand higher resolution structural images of synapses. During the 1990s a second renaissance in cell biology driven by EM was fueled by improved techniques for electron tomography (ET) with the ability to compute virtual images with nm resolution between image planes. Over the last fifteen years, ET has been applied to the presynaptic terminal with special attention to the active zone and organelles of the nerve terminal. In this review, we first summarize the technical improvements that have led to a resurgence in utilization of ET and then we summarize new insights gained by the application of ET to reveal the high-resolution structure of the nerve terminal. PMID:25683026

  4. Cryo-Electron Tomography and Subtomogram Averaging.

    PubMed

    Wan, W; Briggs, J A G

    2016-01-01

    Cryo-electron tomography (cryo-ET) allows 3D volumes to be reconstructed from a set of 2D projection images of a tilted biological sample. It allows densities to be resolved in 3D that would otherwise overlap in 2D projection images. Cryo-ET can be applied to resolve structural features in complex native environments, such as within the cell. Analogous to single-particle reconstruction in cryo-electron microscopy, structures present in multiple copies within tomograms can be extracted, aligned, and averaged, thus increasing the signal-to-noise ratio and resolution. This reconstruction approach, termed subtomogram averaging, can be used to determine protein structures in situ. It can also be applied to facilitate more conventional 2D image analysis approaches. In this chapter, we provide an introduction to cryo-ET and subtomogram averaging. We describe the overall workflow, including tomographic data collection, preprocessing, tomogram reconstruction, subtomogram alignment and averaging, classification, and postprocessing. We consider theoretical issues and practical considerations for each step in the workflow, along with descriptions of recent methodological advances and remaining limitations. PMID:27572733

  5. Resolving presynaptic structure by electron tomography.

    PubMed

    Perkins, Guy A; Jackson, Dakota R; Spirou, George A

    2015-05-01

    A key goal in neurobiology is to generate a theoretical framework that merges structural, physiological, and molecular explanations of brain function. These categories of explanation do not advance in synchrony; advances in one category define new experiments in other categories. For example, the synapse was defined physiologically and biochemically before it was visualized using electron microscopy. Indeed, the original descriptions of synapses in the 1950s were lent credence by the presence of spherical vesicles in presynaptic terminals that were considered to be the substrate for quantal neurotransmission. In the last few decades, our understanding of synaptic function has again been driven by physiological and molecular techniques. The key molecular players for synaptic vesicle structure, mobility and fusion were identified and applications of the patch clamp technique permitted physiological estimation of neurotransmitter release and receptor properties. These advances demand higher resolution structural images of synapses. During the 1990s a second renaissance in cell biology driven by EM was fueled by improved techniques for electron tomography (ET) with the ability to compute virtual images with nm resolution between image planes. Over the last 15 years, ET has been applied to the presynaptic terminal with special attention to the active zone and organelles of the nerve terminal. In this review, we first summarize the technical improvements that have led to a resurgence in utilization of ET and then we summarize new insights gained by the application of ET to reveal the high-resolution structure of the nerve terminal. PMID:25683026

  6. Fully Mechanically Controlled Automated Electron Microscopic Tomography

    PubMed Central

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; Rames, Matthew; Zhang, Meng; Yu, Yadong; Peng, Bo; Celis, César Díaz; Xu, April; Zou, Qin; Yang, Xu; Chen, Xuefeng; Ren, Gang

    2016-01-01

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins’ functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000–160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisition without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging. PMID:27403922

  7. Fully Mechanically Controlled Automated Electron Microscopic Tomography.

    PubMed

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; Rames, Matthew; Zhang, Meng; Yu, Yadong; Peng, Bo; Celis, César Díaz; Xu, April; Zou, Qin; Yang, Xu; Chen, Xuefeng; Ren, Gang

    2016-01-01

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins' functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000-160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisition without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging. PMID:27403922

  8. Quantitative determination of the mineral distribution in different collagen zones of calcifying tendon using high voltage electron microscopic tomography

    NASA Technical Reports Server (NTRS)

    McEwen, B. F.; Song, M. J.; Landis, W. J.

    1991-01-01

    High voltage electron microscopic tomography was used to make the first quantitative determination of the distribution of mineral between different regions of collagen fibrils undergoing early calcification in normal leg tendons of the domestic turkey, Meleagris gallopavo. The tomographic 3-D reconstruction was computed from a tilt series of 61 different views spanning an angular range of +/- 60 degrees in 2 degrees intervals. Successive applications of an interactive computer operation were used to mask the collagen banding pattern of either hole or overlap zones into separate versions of the reconstruction. In such 3-D volumes, regions specified by the mask retained their original image density while the remaining volume was set to background levels. This approach was also applied to the mineral crystals present in the same volumes to yield versions of the 3-D reconstructions that were masked for both the crystal mass and the respective collagen zones. Density profiles from these volumes contained a distinct peak corresponding only to the crystal mass. A comparison of the integrated density of this peak from each profile established that 64% of the crystals observed were located in the collagen hole zones and 36% were found in the overlap zones. If no changes in crystal stability occur once crystals are formed, this result suggests the possibilities that nucleation of mineral is preferentially and initially associated with the hole zones, nucleation occurs more frequently in the hole zones, the rate of crystal growth is more rapid in the hole zones, or a combination of these alternatives. All lead to the conclusion that the overall accumulation of mineral mass is predominant in the collagen hole zones compared to overlap zones during early collagen fibril calcification.

  9. Characterization of Septin Ultrastructure in Budding Yeast Using Electron Tomography

    PubMed Central

    Bertin, Aurélie; Nogales, Eva

    2015-01-01

    Summary Septins are essential for the completion of cytokinesis. In budding yeast, Saccharomyces cerevisiae, septins are located at the bud neck during mitosis and are closely connected to the inner plasma membrane. In vitro, yeast septins have been shown to self-assemble into a variety of filamentous structures, including rods, paired filaments, bundles and rings [1–3]. Using electron tomography of freeze-substituted section and cryo-electron tomography of frozen sections, we determined the three dimensional organization of the septin cytoskeleton in dividing budding yeast with molecular resolution [4,5]. Here we describe the detailed procedures used for our characterization of the septin cellular ultrastructure. PMID:26519309

  10. Removing the effects of the "dark matter" in tomography.

    PubMed

    Gontard, Lionel C

    2015-07-01

    Electron tomography (ET) using different imaging modes has been progressively consolidating its position as a key tool in materials science. The fidelity of a tomographic reconstruction, or tomogram, is affected by several experimental factors. Most often, an unrealistic cloud of intensity that does not correspond to a real material phase of the specimen ("dark matter") blurs the tomograms and enhances artefacts arising from the missing wedge (MW). Here we show that by simple preprocessing of the background level of any tomographic tilt series, it is possible to minimise the negative effects of that "dark matter". Iterative reconstruction algorithms converge better, leading to tomograms with fewer streaking artefacts from the MW, more contrast, and increased accuracy. The conclusions are valid irrespective of the imaging mode used, and the methodology improves the segmentation and visualisation of tomograms of both crystalline and amorphous materials. We show examples of HAADF STEM and BF TEM tomography. PMID:25863219

  11. Whole-mount immunoelectron tomography of chromosomes and cells.

    PubMed

    Engelhardt, Peter; Meriläinen, Jari; Zhao, Fang; Uchiyama, Susumu; Fukui, Kiichi; Lehto, Veli-Pekka

    2007-01-01

    Standard immunogold-labeling methods in transmission electron microscopy (TEM) are unable to locate immunogold particles in the depth direction. This inability does not only concern bulky whole mounts, but also sections. A partial solution to the problem is stereo inspection. However, three-dimensional reconstruction of immunogold-labeled structures, that is, immuno-electron tomography (IET), is a correct solution for this inconsistency. Striking improvement in resolution is achieved: the 1.4-nm immunogold particles are shown in IET that are not detected in the original tilt series. IET is not restricted to laboratories with advanced medium- or high-voltage TEM and super-computing facilities; the methods we have developed for whole-mounted chromosomes and also for whole-mounted cytoskeleton of fibroblasts work remarkably well with ordinary 80-kV TEMs equipped with a goniometer to collect tilt series for IET on film. In addition, free programs are available to produce three-dimensional reconstructions even without high-performance computers. These improvements make it possible to many laboratories without modern facilities to perform IET reconstruction with standard TEM apparatus. PMID:17656761

  12. Non-rigid alignment in electron tomography in materials science.

    PubMed

    Printemps, Tony; Bernier, Nicolas; Bleuet, Pierre; Mula, Guido; Hervé, Lionel

    2016-09-01

    Electron tomography is a key technique that enables the visualization of an object in three dimensions with a resolution of about a nanometre. High-quality 3D reconstruction is possible thanks to the latest compressed sensing algorithms and/or better alignment and preprocessing of the 2D projections. Rigid alignment of 2D projections is routine in electron tomography. However, it cannot correct misalignments induced by (i) deformations of the sample due to radiation damage or (ii) drifting of the sample during the acquisition of an image in scanning transmission electron microscope mode. In both cases, those misalignments can give rise to artefacts in the reconstruction. We propose a simple-to-implement non-rigid alignment technique to correct those artefacts. This technique is particularly suited for needle-shaped samples in materials science. It is initiated by a rigid alignment of the projections and it is then followed by several rigid alignments of different parts of the projections. Piecewise linear deformations are applied to each projection to force them to simultaneously satisfy the rigid alignments of the different parts. The efficiency of this technique is demonstrated on three samples, an intermetallic sample with deformation misalignments due to a high electron dose typical to spectroscopic electron tomography, a porous silicon sample with an extremely thin end particularly sensitive to electron beam and another porous silicon sample that was drifting during image acquisitions. PMID:27018779

  13. Tomography of Particle Plasmon Fields from Electron Energy Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hörl, Anton; Trügler, Andreas; Hohenester, Ulrich

    2013-08-01

    We theoretically investigate electron energy loss spectroscopy (EELS) of metallic nanoparticles in the optical frequency domain. Using a quasistatic approximation scheme together with a plasmon eigenmode expansion, we show that EELS can be rephrased in terms of a tomography problem. For selected single and coupled nanoparticles we extract the three-dimensional plasmon fields from a collection of rotated EELS maps. Our results pave the way for a fully three-dimensional plasmon-field tomography and establish EELS as a quantitative measurement device for plasmonics.

  14. Dictionary-Learning-Based Reconstruction Method for Electron Tomography

    PubMed Central

    LIU, BAODONG; YU, HENGYONG; VERBRIDGE, SCOTT S.; SUN, LIZHI; WANG, GE

    2014-01-01

    Summary Electron tomography usually suffers from so-called “missing wedge” artifacts caused by limited tilt angle range. An equally sloped tomography (EST) acquisition scheme (which should be called the linogram sampling scheme) was recently applied to achieve 2.4-angstrom resolution. On the other hand, a compressive sensing inspired reconstruction algorithm, known as adaptive dictionary based statistical iterative reconstruction (ADSIR), has been reported for X-ray computed tomography. In this paper, we evaluate the EST, ADSIR, and an ordered-subset simultaneous algebraic reconstruction technique (OS-SART), and compare the ES and equally angled (EA) data acquisition modes. Our results show that OS-SART is comparable to EST, and the ADSIR outperforms EST and OS-SART. Furthermore, the equally sloped projection data acquisition mode has no advantage over the conventional equally angled mode in this context. PMID:25104167

  15. Visualization of carrageenan hydrogels by electron tomography

    NASA Astrophysics Data System (ADS)

    Leis, Andrew; Øiseth, Sofia; Crameri, Sandra; Lundin, Leif

    2013-10-01

    The visualization of hydrogels and other forms of hydrated, soft matter pose a significant challenge for studies by electron microscopy. The main challenges can be subdivided into: (1) accurate preservation of structure, (2) ensuring a sufficiently high signal-to-noise ratio, and (3) acquisition of comprehensive datasets. A shortcoming in any of these areas will lead to measurement uncertainty. We demonstrate the characteristic differences between the polymer networks formed by the potassium and sodium forms of κ-carrageenan, in 3D and at a resolution sufficient to resolve fiber bundles. Finally, we discuss the uncertainties involved in quantitative measurements obtainable with current methodologies as well as prospects for improvement.

  16. Cryo-electron tomography of vaccinia virus

    PubMed Central

    Cyrklaff, Marek; Risco, Cristina; Fernández, Jose Jesús; Jiménez, Maria Victoria; Estéban, Mariano; Baumeister, Wolfgang; Carrascosa, José L.

    2005-01-01

    The combination of cryo-microscopy and electron tomographic reconstruction has allowed us to determine the structure of one of the more complex viruses, intracellular mature vaccinia virus, at a resolution of 4–6 nm. The tomographic reconstruction allows us to dissect the different structural components of the viral particle, avoiding projection artifacts derived from previous microscopic observations. A surface-rendering representation revealed brick-shaped viral particles with slightly rounded edges and dimensions of ≈360 × 270 × 250 nm. The outer layer was consistent with a lipid membrane (5–6 nm thick), below which usually two lateral bodies were found, built up by a heterogeneous material without apparent ordering or repetitive features. The internal core presented an inner cavity with electron dense coils of presumptive DNA–protein complexes, together with areas of very low density. The core was surrounded by two layers comprising an overall thickness of ≈18–19 nm; the inner layer was consistent with a lipid membrane. The outer layer was discontinuous, formed by a periodic palisade built by the side interaction of T-shaped protein spikes that were anchored in the lower membrane and were arranged into small hexagonal crystallites. It was possible to detect a few pore-like structures that communicated the inner side of the core with the region outside the layer built by the T-shaped spike palisade. PMID:15699328

  17. Markov random field based automatic alignment for low SNR imagesfor cryo electron tomography

    SciTech Connect

    Amat, Fernando; Moussavi, Farshid; Comolli, Luis R.; Elidan, Gal; Horowitz, Mark

    2007-07-21

    We present a method for automatic full precision alignmentof the images in a tomographic tilt series. Full-precision automaticalignment of cryo electron microscopy images has remained a difficultchallenge to date, due to the limited electron dose and low imagecontrast. These facts lead to poor signal to noise ratio (SNR) in theimages, which causes automatic feature trackers to generate errors, evenwith high contrast gold particles as fiducial features. To enable fullyautomatic alignment for full-precision reconstructions, we frame theproblem probabilistically as finding the most likely particle tracksgiven a set of noisy images, using contextual information to make thesolution more robust to the noise in each image. To solve this maximumlikelihood problem, we use Markov Random Fields (MRF) to establish thecorrespondence of features in alignment and robust optimization forprojection model estimation. The resultingalgorithm, called RobustAlignment and Projection Estimation for Tomographic Reconstruction, orRAPTOR, has not needed any manual intervention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as goodas the manual approach by an expert user. We are able to automaticallymap complete and partial marker trajectories and thus obtain highlyaccurate image alignment. Our method has been applied to challenging cryoelectron tomographic datasets with low SNR from intact bacterial cells,as well as several plastic section and x-ray datasets.

  18. Electronic hardware design of electrical capacitance tomography systems.

    PubMed

    Saied, I; Meribout, M

    2016-06-28

    Electrical tomography techniques for process imaging are very prominent for industrial applications, such as the oil and gas industry and chemical refineries, owing to their ability to provide the flow regime of a flowing fluid within a relatively high throughput. Among the various techniques, electrical capacitance tomography (ECT) is gaining popularity due to its non-invasive nature and its capability to differentiate between different phases based on their permittivity distribution. In recent years, several hardware designs have been provided for ECT systems that have improved its resolution of measurements to be around attofarads (aF, 10(-18) F), or the number of channels, that is required to be large for some applications that require a significant amount of data. In terms of image acquisition time, some recent systems could achieve a throughput of a few hundred frames per second, while data processing time could be achieved in only a few milliseconds per frame. This paper outlines the concept and main features of the most recent front-end and back-end electronic circuits dedicated for ECT systems. In this paper, multiple-excitation capacitance polling, a front-end electronic technique, shows promising results for ECT systems to acquire fast data acquisition speeds. A highly parallel field-programmable gate array (FPGA) based architecture for a fast reconstruction algorithm is also described. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185964

  19. Nanoscale 3D cellular imaging by axial scanning transmission electron tomography

    PubMed Central

    Hohmann-Marriott, Martin F.; Sousa, Alioscka A.; Azari, Afrouz A.; Glushakova, Svetlana; Zhang, Guofeng; Zimmerberg, Joshua; Leapman, Richard D.

    2009-01-01

    Electron tomography provides three-dimensional structural information about supramolecular assemblies and organelles in a cellular context but image degradation, caused by scattering of transmitted electrons, limits applicability in specimens thicker than 300 nm. We show that scanning transmission electron tomography of 1000 nm thick samples using axial detection provides resolution comparable to conventional electron tomography. The method is demonstrated by reconstructing a human erythrocyte infected with the malaria parasite Plasmodium falciparum. PMID:19718033

  20. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Song, M. J.; Leith, A.; McEwen, L.; McEwen, B. F.

    1993-01-01

    To define the ultrastructural accommodation of mineral crystals by collagen fibrils and other organic matrix components during vertebrate calcification, electron microscopic 3-D reconstructions were generated from the normally mineralizing leg tendons from the domestic turkey, Meleagris gallopavo. Embedded specimens containing initial collagen mineralizing sites were cut into 0.5-micron-thick sections and viewed and photographed at 1.0 MV in the Albany AEI-EM7 high-voltage electron microscope. Tomographic 3-D reconstructions were computed from a 2 degree tilt series of micrographs taken over a minimum angular range of +/- 60 degrees. Reconstructions of longitudinal tendon profiles confirm the presence of irregularly shaped mineral platelets, whose crystallographic c-axes are oriented generally parallel to one another and directed along the collagen long axes. The reconstructions also corroborate observations of a variable crystal length (up to 170 nm measured along crystallographic c-axes), the presence of crystals initially in either the hole or overlap zones of collagen, and crystal growth in the c-axis direction beyond these zones into adjacent overlap and other hole regions. Tomography shows for the first time that crystal width varies (30-45 nm) but crystal thickness is uniform (approximately 4-6 nm at the resolution limit of tomography); more crystals are located in the collagen hole zones than in the overlap regions at the earliest stages of tendon mineralization; the crystallographic c-axes of the platelets lie within +/- 15-20 degrees of one another rather than being perfectly parallel; adjacent platelets are spatially separated by a minimum of 4.2 +/- 1.0 nm; crystals apparently fuse in coplanar alignment to form larger platelets; development of crystals in width occurs to dimensions beyond single collagen hole zones; and a thin envelope of organic origin may be present along or just beneath the surfaces of individual mineral platelets. Implicit in the

  1. STEM electron tomography in the Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Ferroni, M.; Signoroni, A.; Sanzogni, A.; Sberveglieri, G.; Migliori, A.; Ortolani, L.; Christian, M.; Masini, L.; Morandi, V.

    2015-10-01

    The scanning-transmission imaging mode in the SEM allows for the threedimensional tomographic reconstruction of a specimen, starting from a set of projection images. Compressed sensing was used to solve the undetermined problem of structure reconstruction and was proven capable of overcoming the limitations arising from the sampling scheme. Reconstructions of cobalt particles within a carbon nanotube and collagen fibrils in a dermal tissue are presented, demonstrating the potential of this technique in the set of 3-D electron microscopy methods for both physical and biological science.

  2. Physically motivated global alignment method for electron tomography

    DOE PAGESBeta

    Sanders, Toby; Prange, Micah; Akatay, Cem; Binev, Peter

    2015-04-08

    Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop amore » new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable ‘local’ center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.« less

  3. Physically motivated global alignment method for electron tomography

    SciTech Connect

    Sanders, Toby; Prange, Micah; Akatay, Cem; Binev, Peter

    2015-04-08

    Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop a new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable ‘local’ center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.

  4. Recent Advances in Electron Tomography: TEM and HAADF-STEM Tomography for Materials Science and IC Applications

    SciTech Connect

    Kubel, C; Voigt, A; Schoenmakers, R; Otten, M; Su, D; Lee, T; Carlsson, A; Engelmann, H; Bradley, J

    2005-11-09

    Electron tomograph tomography is a well y well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life science applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution 3D structural information in physical sciences. In this paper, we evaluate the capabilities and limitations of TEM and HAADF-STEM tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in 3D by electron tomography. For partially crystalline materials with small single crystalline domains, TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.

  5. Tomography of the ionospheric electron density with geostatistical inversion

    NASA Astrophysics Data System (ADS)

    Minkwitz, D.; van den Boogaart, K. G.; Gerzen, T.; Hoque, M.

    2015-08-01

    In relation to satellite applications like global navigation satellite systems (GNSS) and remote sensing, the electron density distribution of the ionosphere has significant influence on trans-ionospheric radio signal propagation. In this paper, we develop a novel ionospheric tomography approach providing the estimation of the electron density's spatial covariance and based on a best linear unbiased estimator of the 3-D electron density. Therefore a non-stationary and anisotropic covariance model is set up and its parameters are determined within a maximum-likelihood approach incorporating GNSS total electron content measurements and the NeQuick model as background. As a first assessment this 3-D simple kriging approach is applied to a part of Europe. We illustrate the estimated covariance model revealing the different correlation lengths in latitude and longitude direction and its non-stationarity. Furthermore, we show promising improvements of the reconstructed electron densities compared to the background model through the validation of the ionosondes Rome, Italy (RO041), and Dourbes, Belgium (DB049), with electron density profiles for 1 day.

  6. High-performance electron tomography of complex biological specimens.

    PubMed

    Fernández, José-Jesús; Lawrence, Albert F; Roca, Javier; García, Inmaculada; Ellisman, Mark H; Carazo, José-María

    2002-01-01

    We have evaluated reconstruction methods using smooth basis functions in the electron tomography of complex biological specimens. In particular, we have investigated series expansion methods, with special emphasis on parallel computation. Among the methods investigated, the component averaging techniques have proven to be most efficient and have generally shown fast convergence rates. The use of smooth basis functions provides the reconstruction algorithms with an implicit regularization mechanism, very appropriate for noisy conditions. Furthermore, we have applied high-performance computing (HPC) techniques to address the computational requirements demanded by the reconstruction of large volumes. One of the standard techniques in parallel computing, domain decomposition, has yielded an effective computational algorithm which hides the latencies due to interprocessor communication. We present comparisons with weighted back-projection (WBP), one of the standard reconstruction methods in the areas of computational demand and reconstruction quality under noisy conditions. These techniques yield better results, according to objective measures of quality, than the weighted backprojection techniques after a very few iterations. As a consequence, the combination of efficient iterative algorithms and HPC techniques has proven to be well suited to the reconstruction of large biological specimens in electron tomography, yielding solutions in reasonable computation times. PMID:12160697

  7. Mapping Synapses by Conjugate Light-Electron Array Tomography

    PubMed Central

    Buchanan, JoAnn; Phend, Kristen D.; Micheva, Kristina D.; Weinberg, Richard J.; Smith, Stephen J

    2015-01-01

    Synapses of the mammalian CNS are diverse in size, structure, molecular composition, and function. Synapses in their myriad variations are fundamental to neural circuit development, homeostasis, plasticity, and memory storage. Unfortunately, quantitative analysis and mapping of the brain's heterogeneous synapse populations has been limited by the lack of adequate single-synapse measurement methods. Electron microscopy (EM) is the definitive means to recognize and measure individual synaptic contacts, but EM has only limited abilities to measure the molecular composition of synapses. This report describes conjugate array tomography (AT), a volumetric imaging method that integrates immunofluorescence and EM imaging modalities in voxel-conjugate fashion. We illustrate the use of conjugate AT to advance the proteometric measurement of EM-validated single-synapse analysis in a study of mouse cortex. PMID:25855189

  8. Implementing Transmission Electron Backscatter Diffraction for Atom Probe Tomography.

    PubMed

    Rice, Katherine P; Chen, Yimeng; Prosa, Ty J; Larson, David J

    2016-06-01

    There are advantages to performing transmission electron backscattering diffraction (tEBSD) in conjunction with focused ion beam-based specimen preparation for atom probe tomography (APT). Although tEBSD allows users to identify the position and character of grain boundaries, which can then be combined with APT to provide full chemical and orientation characterization of grain boundaries, tEBSD can also provide imaging information that improves the APT specimen preparation process by insuring proper placement of the targeted grain boundary within an APT specimen. In this report we discuss sample tilt angles, ion beam milling energies, and other considerations to optimize Kikuchi diffraction pattern quality for the APT specimen geometry. Coordinated specimen preparation and analysis of a grain boundary in a Ni-based Inconel 600 alloy is used to illustrate the approach revealing a 50° misorientation and trace element segregation to the grain boundary. PMID:27329309

  9. Mapping synapses by conjugate light-electron array tomography.

    PubMed

    Collman, Forrest; Buchanan, JoAnn; Phend, Kristen D; Micheva, Kristina D; Weinberg, Richard J; Smith, Stephen J

    2015-04-01

    Synapses of the mammalian CNS are diverse in size, structure, molecular composition, and function. Synapses in their myriad variations are fundamental to neural circuit development, homeostasis, plasticity, and memory storage. Unfortunately, quantitative analysis and mapping of the brain's heterogeneous synapse populations has been limited by the lack of adequate single-synapse measurement methods. Electron microscopy (EM) is the definitive means to recognize and measure individual synaptic contacts, but EM has only limited abilities to measure the molecular composition of synapses. This report describes conjugate array tomography (AT), a volumetric imaging method that integrates immunofluorescence and EM imaging modalities in voxel-conjugate fashion. We illustrate the use of conjugate AT to advance the proteometric measurement of EM-validated single-synapse analysis in a study of mouse cortex. PMID:25855189

  10. 3D Observation of GEMS by Electron Tomography

    NASA Technical Reports Server (NTRS)

    Matsuno, Junya; Miyake, Akira; Tsuchiyama, Akira; Nakamura-Messenger, Keiko; Messenger, Scott

    2014-01-01

    Amorphous silicates in chondritic porous interplanetary dust particles (CP-IDPs) coming from comets are dominated by glass with embedded metal and sulfides (GEMS). GEMS grains are submicron-sized rounded objects (typically 100-500) nm in diameter) with anaometer-sized (10-50 nm) Fe-Ni metal and sulfide grains embedded in an amorphous silicate matrix. Several formation processes for GEMS grains have been proposed so far, but these models are still being debated [2-5]. Bradley et al. proposed that GEMS grains are interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk and that they are amorphiation products of crystalline silicates in the interstellar medium by sputter-deposition of cosmic ray irradiation, similar to space weathering [2,4]. This consideration is based on the observation of nano-sized crystals (approximately 10 nm) called relict grains in GEMS grains and their shapes are pseudomorphs to the host GEMS grains. On the other hand, Keller and Messenger proposed that most GEMS formed in the protoplanetary disk as condensates from high temperature gas [3,5]. This model is based on the fact that most GEMS grains have solar isotopic compositions and have extremely heterogeneous and non-solar elemental compositions. Keller and Messenger (2011) also reported that amorphous silicates in GEMS grains are surrounded by sulfide grains, which formed as sulfidization of metallic iron grains located on the GEMS surface. The previous studies were performed with 2D observation by using transmission electron microscopy (TEM) or scanning TEM (STEM). In order to understand the structure of GEMS grains described above more clearly, we observed 3D structure of GEMS grains by electron tomography using a TEM/STEM (JEM-2100F, JEOL) at Kyoto University. Electron tomography gives not only 3D structures but also gives higher spatial resolution (approximately a few nm) than that in conventional 2D image, which is restricted by

  11. Robust registration of electron tomography projections without fiducial markers

    NASA Astrophysics Data System (ADS)

    Tran, Viet-Dung; Moreaud, Maxime; Thiébaut, Éric; Dénis, Loïc.; Becker, Jean-Marie

    2013-02-01

    A major issue in electron tomography is the misalignment of the projections contributing to the reconstruction. The current alignment techniques currently use fiducial markers such as gold particles. When the use of markers is not possible, the accurate alignment of the projections is a challenge. We describe a new method for the alignment of transmission electron microscopy (TEM) images series without the need of fiducial markers. The proposed approach is composed of two steps. The first step consists of an initial alignment process, which relies on the minimization of a cost function based on robust statistics measuring the similarity of a projection to its previous projections in the series. It reduces strong shifts resulting from the acquisition between successive projections. The second step aligns the projections finely. The issue is formalized as an inverse problem. The pre­ registered projections are used to initialize an iterative alignment-refinement process which alternates between (i) volume reconstructions and (ii) registrations of measured projections onto simulated projections computed from the volume reconstructed in (i). The accuracy of our method is very satisfying; we illustrate it on simulated data and real projections of different zeolite supports catalyst.

  12. Compressed Sensing Electron tomography using adaptive dictionaries: a simulation study

    NASA Astrophysics Data System (ADS)

    AlAfeef, A.; Cockshott, P.; MacLaren, I.; McVitie, S.

    2014-06-01

    Electron tomography (ET) is an increasingly important technique for examining the three-dimensional morphologies of nanostructures. ET involves the acquisition of a set of 2D projection images to be reconstructed into a volumetric image by solving an inverse problem. However, due to limitations in the acquisition process this inverse problem is considered ill-posed (i.e., no unique solution exists). Furthermore reconstruction usually suffers from missing wedge artifacts (e.g., star, fan, blurring, and elongation artifacts). Compressed sensing (CS) has recently been applied to ET and showed promising results for reducing missing wedge artifacts caused by limited angle sampling. CS uses a nonlinear reconstruction algorithm that employs image sparsity as a priori knowledge to improve the accuracy of density reconstruction from a relatively small number of projections compared to other reconstruction techniques. However, The performance of CS recovery depends heavily on the degree of sparsity of the reconstructed image in the selected transform domain. Prespecified transformations such as spatial gradients provide sparse image representation, while synthesising the sparsifying transform based on the properties of the particular specimen may give even sparser results and can extend the application of CS to specimens that can not be sparsely represented with other transforms such as Total variation (TV). In this work, we show that CS reconstruction in ET can be significantly improved by tailoring the sparsity representation using a sparse dictionary learning principle.

  13. Quantitative electron tomography and its application to polymer nanostructures

    NASA Astrophysics Data System (ADS)

    Jinnai, Hiroshi

    2009-03-01

    The transmission electron microtomography (TEMT) is a powerful tool to visualize three-dimensional (3D) structures in many fields of materials science. Recently, researchers are trying not only to visualize 3D nano-structures but also to quantify them in order to seek a possible correlation between the 3D structures and materials' properties. However, one of the serious problems that prohibit TEMT from truly quantitative 3D images is the ``missing wedge'' in the Fourier space that is caused by the limitation of angular range available in transmission electron microscopes (TEM). Please note that the computerized tomography (CT), on which TEMT is based, requires projections from entire tilt angles, i.e. ±90^o. Thus, the most faithful tactics for the CT is to tilt specimen over ±90^o. In order to realize such requirement, a rod-shaped ZrO2/polymer nano-composite whose diameter is ca. 150 nm was attached at the tip of a specially modified specimen holder without any supporting film. A complete set of tomograms has been generated for the first time from the 181 projections that were taken over the angular range of ±90^o. One of the structural parameters characterizing the nano-composite, a volume fraction of ZrO2, , was measured as a function of the maximum tilt angle, α. It was found that was in excellent agreement with the known volume fraction of ZrO2 when α=90^o, i.e., ±90^o tilt, while increased with decreasing α. When α=60^o that is a typical maximum tilt angle, the measured was larger by 20˜30% than the true value. In addition to the above TEMT experimental technique, some applications of TEMT to polymer nano-structures will be presented at the conference time.

  14. Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography.

    PubMed

    Fertig, Emanuel T; Gherghiceanu, Mihaela; Popescu, Laurentiu M

    2014-10-01

    Telocytes have been reported to play an important role in long-distance heterocellular communication in normal and diseased heart, both through direct contact (atypical junctions), as well as by releasing extracellular vesicles (EVs) which may act as paracrine mediators. Exosomes and ectosomes are the two main types of EVs, as classified by size and the mechanism of biogenesis. Using electron microscopy (EM) and electron tomography (ET) we have found that telocytes in culture release at least three types of EVs: exosomes (released from endosomes; 45 ± 8 nm), ectosomes (which bud directly from the plasma membrane; 128 ± 28 nm) and multivesicular cargos (MVC; 1 ± 0.4 μm), the latter containing tightly packaged endomembrane-bound vesicles (145 ± 35 nm). Electron tomography revealed that endomembrane vesicles are released into the extracellular space as a cargo enclosed by plasma membranes (estimated area of up to 3 μm(2)). This new type of EV, also released by telocytes in tissue, likely represents an essential component in the paracrine secretion of telocytes and may consequently be directly involved in heart physiology and regeneration. PMID:25257228

  15. Advanced prior modeling for 3D bright field electron tomography

    NASA Astrophysics Data System (ADS)

    Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.

    2015-03-01

    Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.

  16. Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography

    PubMed Central

    Haberfehlner, Georg; Thaler, Philipp; Knez, Daniel; Volk, Alexander; Hofer, Ferdinand; Ernst, Wolfgang E.; Kothleitner, Gerald

    2015-01-01

    Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope remains challenging and has been demonstrated only a few times using strong constraints or extensive filtering. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets. We reveal morphology and composition of a cluster identifying gold- and silver-rich regions in three dimensions and we estimate atomic positions without using any prior information and with minimal filtering. The ability to get full three-dimensional information down to the atomic scale allows understanding the growth and deposition process of the nanoclusters and demonstrates an approach that may be generally applicable to all types of nanoscale materials. PMID:26508471

  17. Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography.

    PubMed

    Sato, K; Miyazaki, H; Gondo, T; Miyazaki, S; Murayama, M; Hata, S

    2015-10-01

    We have developed a newly designed straining specimen holder for in situ transmission electron microscopy (TEM) compatible with high-angle single tilt-axis electron tomography. The holder can deform a TEM specimen under tensile stress with the strain rate between 1.5 × 10(-6) and 5.2 × 10(-3) s(-1). We have also confirmed that the maximum tilt angle of the specimen holder reaches ±60° with a rectangular shape aluminum specimen. The new specimen holder, termed as 'straining and tomography holder', will have wide range potential applications in materials science. PMID:25904643

  18. Electron tomography of HEK293T cells using scanning electron microscope-based scanning transmission electron microscopy.

    PubMed

    You, Yun-Wen; Chang, Hsun-Yun; Liao, Hua-Yang; Kao, Wei-Lun; Yen, Guo-Ji; Chang, Chi-Jen; Tsai, Meng-Hung; Shyue, Jing-Jong

    2012-10-01

    Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged. PMID:23026379

  19. TEM, HRTEM, electron holography and electron tomography studies of gamma' and gamma'' nanoparticles in Inconel 718 superalloy.

    PubMed

    Dubiel, B; Kruk, A; Stepniowska, E; Cempura, G; Geiger, D; Formanek, P; Hernandez, J; Midgley, P; Czyrska-Filemonowicz, A

    2009-11-01

    The aim of the study was the identification of gamma' and gamma'' strengthening precipitates in a commercial nickel-base superalloy Inconel 718 (Ni-19Fe-18Cr-5Nb-3Mo-1Ti-0.5Al-0.04C, wt %) using TEM dark-field, HRTEM, electron holography and electron tomography imaging. To identify gamma' and gamma'' nanoparticles unambiguously, a systematic analysis of experimental and theoretical diffraction patterns were performed. Using HRTEM method it was possible to analyse small areas of precipitates appearance. Electron holography and electron tomography techniques show new possibilities of visualization of gamma' and gamma'' nanoparticles. The analysis by means of different complementary TEM methods showed that gamma'' particles exhibit a shape of thin plates, while gamma' phase precipitates are almost spherical. PMID:19903242

  20. Whole-Cell Analysis of Low-Density Lipoprotein Uptake by Macrophages Using STEM Tomography

    PubMed Central

    Baudoin, Jean-Pierre; Jerome, W. Gray; Kübel, Christian; de Jonge, Niels

    2013-01-01

    Nanoparticles of heavy materials such as gold can be used as markers in quantitative electron microscopic studies of protein distributions in cells with nanometer spatial resolution. Studying nanoparticles within the context of cells is also relevant for nanotoxicological research. Here, we report a method to quantify the locations and the number of nanoparticles, and of clusters of nanoparticles inside whole eukaryotic cells in three dimensions using scanning transmission electron microscopy (STEM) tomography. Whole-mount fixed cellular samples were prepared, avoiding sectioning or slicing. The level of membrane staining was kept much lower than is common practice in transmission electron microscopy (TEM), such that the nanoparticles could be detected throughout the entire cellular thickness. Tilt-series were recorded with a limited tilt-range of 80° thereby preventing excessive beam broadening occurring at higher tilt angles. The 3D locations of the nanoparticles were nevertheless determined with high precision using computation. The obtained information differed from that obtained with conventional TEM tomography data since the nanoparticles were highlighted while only faint contrast was obtained on the cellular material. Similar as in fluorescence microscopy, a particular set of labels can be studied. This method was applied to study the fate of sequentially up-taken low-density lipoprotein (LDL) conjugated to gold nanoparticles in macrophages. Analysis of a 3D reconstruction revealed that newly up-taken LDL-gold was delivered to lysosomes containing previously up-taken LDL-gold thereby forming onion-like clusters. PMID:23383042

  1. Scanning precession electron tomography for three-dimensional nanoscale orientation imaging and crystallographic analysis.

    PubMed

    Eggeman, Alexander S; Krakow, Robert; Midgley, Paul A

    2015-01-01

    Three-dimensional (3D) reconstructions from electron tomography provide important morphological, compositional, optical and electro-magnetic information across a wide range of materials and devices. Precession electron diffraction, in combination with scanning transmission electron microscopy, can be used to elucidate the local orientation of crystalline materials. Here we show, using the example of a Ni-base superalloy, that combining these techniques and extending them to three dimensions, to produce scanning precession electron tomography, enables the 3D orientation of nanoscale sub-volumes to be determined and provides a one-to-one correspondence between 3D real space and 3D reciprocal space for almost any polycrystalline or multi-phase material. PMID:26028514

  2. Scanning precession electron tomography for three-dimensional nanoscale orientation imaging and crystallographic analysis

    PubMed Central

    Eggeman, Alexander S.; Krakow, Robert; Midgley, Paul A.

    2015-01-01

    Three-dimensional (3D) reconstructions from electron tomography provide important morphological, compositional, optical and electro-magnetic information across a wide range of materials and devices. Precession electron diffraction, in combination with scanning transmission electron microscopy, can be used to elucidate the local orientation of crystalline materials. Here we show, using the example of a Ni-base superalloy, that combining these techniques and extending them to three dimensions, to produce scanning precession electron tomography, enables the 3D orientation of nanoscale sub-volumes to be determined and provides a one-to-one correspondence between 3D real space and 3D reciprocal space for almost any polycrystalline or multi-phase material. PMID:26028514

  3. Cryo-electron tomography: moving towards revealing the viral life cycle of Rice dwarf virus

    PubMed Central

    Miyazaki, Naoyuki; Akita, Fusamichi; Nakagawa, Atsushi; Murata, Kazuyoshi; Omura, Toshihiro; Iwasaki, Kenji

    2013-01-01

    It is well known that viruses utilize the host cellular systems for their infection and replication processes. However, the molecular mechanisms underlying these processes are poorly understood for most viruses. To understand these molecular mechanisms, it is essential to observe the viral and virus-related structures and analyse their molecular interactions within a cellular context. Cryo-electron microscopy and tomography offer the potential to observe macromolecular structures and to analyse their molecular interactions within the cell. Here, using cryo-electron microscopy and tomography, the structures of Rice dwarf virus are reported within fully hydrated insect vector cells grown on electron microscopy grids towards revealing the viral infection and replication mechanisms. PMID:24121321

  4. Experimental facility for two- and three-dimensional ultrafast electron beam x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Stürzel, T.; Bieberle, M.; Laurien, E.; Hampel, U.; Barthel, F.; Menz, H.-J.; Mayer, H.-G.

    2011-02-01

    An experimental facility is described, which has been designed to perform ultrafast two-dimensional (2D) and three-dimensional (3D) electron beam computed tomographies. As a novelty, a specially designed transparent target enables tomography with no axial offset for 2D imaging and high axial resolution 3D imaging employing the cone-beam tomography principles. The imaging speed is 10 000 frames per second for planar scanning and more than 1000 frames per second for 3D imaging. The facility serves a broad spectrum of potential applications; primarily, the study of multiphase flows, but also in principle nondestructive testing or small animal imaging. In order to demonstrate the aptitude for these applications, static phantom experiments at a frame rate of 2000 frames per second were performed. Resulting spatial resolution was found to be 1.2 mm and better for a reduced temporal resolution.

  5. `Big Bang' tomography as a new route to atomic-resolution electron tomography

    NASA Astrophysics Data System (ADS)

    van Dyck, Dirk; Chen, Fu-Rong

    2012-06-01

    Until now it has not been possible to image at atomic resolution using classical electron tomographic methods, except when the target is a perfectly crystalline nano-object imaged along a few zone axes. The main reasons are that mechanical tilting in an electron microscope with sub-ångström precision over a very large angular range is difficult, that many real-life objects such as dielectric layers in microelectronic devices impose geometrical constraints and that many radiation-sensitive objects such as proteins limit the total electron dose. Hence, there is a need for a new tomographic scheme that is able to deduce three-dimensional information from only one or a few projections. Here we present an electron tomographic method that can be used to determine, from only one viewing direction and with sub-ångström precision, both the position of individual atoms in the plane of observation and their vertical position. The concept is based on the fact that an experimentally reconstructed exit wave consists of the superposition of the spherical waves that have been scattered by the individual atoms of the object. Furthermore, the phase of a Fourier component of a spherical wave increases with the distance of propagation at a known `phase speed'. If we assume that an atom is a point-like object, the relationship between the phase and the phase speed of each Fourier component is linear, and the distance between the atom and the plane of observation can therefore be determined by linear fitting. This picture has similarities with Big Bang cosmology, in which the Universe expands from a point-like origin such that the distance of any galaxy from the origin is linearly proportional to the speed at which it moves away from the origin (Hubble expansion). The proof of concept of the method has been demonstrated experimentally for graphene with a two-layer structure and it will work optimally for similar layered materials, such as boron nitride and molybdenum disulphide.

  6. 'Big Bang' tomography as a new route to atomic-resolution electron tomography.

    PubMed

    Van Dyck, Dirk; Jinschek, Joerg R; Chen, Fu-Rong

    2012-06-14

    Until now it has not been possible to image at atomic resolution using classical electron tomographic methods, except when the target is a perfectly crystalline nano-object imaged along a few zone axes. The main reasons are that mechanical tilting in an electron microscope with sub-ångström precision over a very large angular range is difficult, that many real-life objects such as dielectric layers in microelectronic devices impose geometrical constraints and that many radiation-sensitive objects such as proteins limit the total electron dose. Hence, there is a need for a new tomographic scheme that is able to deduce three-dimensional information from only one or a few projections. Here we present an electron tomographic method that can be used to determine, from only one viewing direction and with sub-ångström precision, both the position of individual atoms in the plane of observation and their vertical position. The concept is based on the fact that an experimentally reconstructed exit wave consists of the superposition of the spherical waves that have been scattered by the individual atoms of the object. Furthermore, the phase of a Fourier component of a spherical wave increases with the distance of propagation at a known 'phase speed'. If we assume that an atom is a point-like object, the relationship between the phase and the phase speed of each Fourier component is linear, and the distance between the atom and the plane of observation can therefore be determined by linear fitting. This picture has similarities with Big Bang cosmology, in which the Universe expands from a point-like origin such that the distance of any galaxy from the origin is linearly proportional to the speed at which it moves away from the origin (Hubble expansion). The proof of concept of the method has been demonstrated experimentally for graphene with a two-layer structure and it will work optimally for similar layered materials, such as boron nitride and molybdenum disulphide

  7. In vivo examination of the cortical cytoskeleton in multiciliated cells using electron tomography.

    PubMed

    Clare, Daniel K; Dumoux, Maud; Delacour, Delphine

    2015-01-01

    Multiciliated cells are characterized by coordinated arrays of motile cilia. In the respiratory tract, the maintenance of this array is essential to ensure proper ciliary and mucus clearance. The establishment and the maintenance of the ciliary set are mediated by the correct positioning of basal bodies at the cell cortex. While microtubule and actin cytoskeletons have been reported to regulate basal body lattices, an understanding of their detailed organization was missing until recently. Here, we describe how electron tomography can highlight the arrangement of the cytoskeletal networks and their interplay with basal bodies in ciliated cells in their tissular environment. Thanks to this approach, information in fine detail on large parts of the cell, dense in organelles, is provided. In combination with other approaches, such as transgenic animal models, electron tomography constitutes a powerful technique giving an overview of tissues and cells concomitantly with acquisition of three-dimensional detail. PMID:26175434

  8. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography

    PubMed Central

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex. PMID:27493552

  9. In Situ Cryo-Electron Tomography: A Post-Reductionist Approach to Structural Biology.

    PubMed

    Asano, Shoh; Engel, Benjamin D; Baumeister, Wolfgang

    2016-01-29

    Cryo-electron tomography is a powerful technique that can faithfully image the native cellular environment at nanometer resolution. Unlike many other imaging approaches, cryo-electron tomography provides a label-free method of detecting biological structures, relying on the intrinsic contrast of frozen cellular material for direct identification of macromolecules. Recent advances in sample preparation, detector technology, and phase plate imaging have enabled the structural characterization of protein complexes within intact cells. Here, we review these technical developments and outline a detailed computational workflow for in situ structural analysis. Two recent studies are described to illustrate how this workflow can be adapted to examine both known and unknown cellular complexes. The stage is now set to realize the promise of visual proteomics-a complete structural description of the cell's native molecular landscape. PMID:26456135

  10. 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography

    PubMed Central

    Nicastro, Daniela; McIntosh, J. Richard; Baumeister, Wolfgang

    2005-01-01

    We have used cryo-electron tomography to investigate the 3D structure and macromolecular organization of intact, frozen-hydrated sea urchin sperm flagella in a quiescent state. The tomographic reconstructions provide information at a resolution better than 6 nm about the in situ arrangements of macromolecules that are key for flagellar motility. We have visualized the heptameric rings of the motor domains in the outer dynein arm complex and determined that they lie parallel to the plane that contains the axes of neighboring flagellar microtubules. Both the material associated with the central pair of microtubules and the radial spokes display a plane of symmetry that helps to explain the planar beat pattern of these flagella. Cryo-electron tomography has proven to be a powerful technique for helping us understand the relationships between flagellar structure and function and the design of macromolecular machines in situ. PMID:16246999

  11. Studying synapses in human brain with array tomography and electron microscopy

    PubMed Central

    Kay, Kevin R.; Smith, Colin; Wright, Ann K.; Serrano-Pozo, Alberto; Pooler, Amy M.; Koffie, Robert; Bastin, Mark E.; Bak, Thomas H.; Abrahams, Sharon; Kopeikina, Katherine J.; McGuone, Declan; Frosch, Matthew P.; Gillingwater, Thomas H.; Hyman, Bradley T.; Spires-Jones, Tara L.

    2013-01-01

    Postmortem studies of synapses in human brain are problematic due to the axial resolution limit of light microscopy and the difficulty preserving and analyzing ultrastructure with electron microscopy. Array tomography overcomes these problems by embedding autopsy tissue in resin and cutting ribbons of ultrathin serial sections. Ribbons are imaged with immunofluorescence, allowing high-throughput imaging of tens of thousands of synapses to assess synapse density and protein composition. The protocol takes approximately 3 days per case, excluding image analysis, which is done at the end of the study. Parallel processing for transmission electron microscopy (TEM) using a protocol modified to preserve structure in human samples allows complimentary ultrastructural studies. Incorporation of array tomography and TEM into brain banking is a potent way of phenotyping synapses in well-characterized clinical cohorts to develop clinico-pathological correlations at the synapse level. This will be important for research in neurodegenerative disease, developmental diseases, and psychiatric illness. PMID:23787894

  12. The Microstructure of Cellulose Nanocrystal Aerogels as Revealed by Transmission Electron Microscope Tomography.

    PubMed

    Buesch, Christian; Smith, Sean W; Eschbach, Peter; Conley, John F; Simonsen, John

    2016-09-12

    The microstructure of highly porous cellulose nanocrystal (CNC) aerogels is investigated via transmission electron microscope (TEM) tomography. The aerogels were fabricated by first supercritically drying a carboxylated CNC organogel and then coating via atomic layer deposition with a thin conformal layer of Al2O3 to protect the CNCs against prolonged electron beam exposure. A series of images was then acquired, reconstructed, and segmented in order to generate a three-dimensional (3D) model of the aerogel. The model agrees well with theory and macroscopic measurements, indicating that a thin conformal inorganic coating enables TEM tomography as an analysis tool for microstructure characterization of CNC aerogels. The 3D model also reveals that the aerogels consist of randomly orientated CNCs that attach to one another primarily in three ways: end to end contact, "T″ contact, and "X″ contact. PMID:27500897

  13. Validation of three-dimensional diffraction contrast tomography reconstructions by means of electron backscatter diffraction characterization

    PubMed Central

    Syha, Melanie; Trenkle, Andreas; Lödermann, Barbara; Graff, Andreas; Ludwig, Wolfgang; Weygand, Daniel; Gumbsch, Peter

    2013-01-01

    Microstructure reconstructions resulting from diffraction contrast tomography data of polycrystalline bulk strontium titanate were reinvestigated by means of electron backscatter diffraction (EBSD) characterization. Corresponding two-dimensional grain maps from the two characterization methods were aligned and compared, focusing on the spatial resolution at the internal interfaces. The compared grain boundary networks show a remarkably good agreement both morphologically and in crystallographic orientation. Deviations are critically assessed and discussed in the context of diffraction data reconstruction and EBSD data collection techniques. PMID:24046507

  14. Self-adapting denoising, alignment and reconstruction in electron tomography in materials science.

    PubMed

    Printemps, Tony; Mula, Guido; Sette, Daniele; Bleuet, Pierre; Delaye, Vincent; Bernier, Nicolas; Grenier, Adeline; Audoit, Guillaume; Gambacorti, Narciso; Hervé, Lionel

    2016-01-01

    An automatic procedure for electron tomography is presented. This procedure is adapted for specimens that can be fashioned into a needle-shaped sample and has been evaluated on inorganic samples. It consists of self-adapting denoising, automatic and accurate alignment including detection and correction of tilt axis, and 3D reconstruction. We propose the exploitation of a large amount of information of an electron tomography acquisition to achieve robust and automatic mixed Poisson-Gaussian noise parameter estimation and denoising using undecimated wavelet transforms. The alignment is made by mixing three techniques, namely (i) cross-correlations between neighboring projections, (ii) common line algorithm to get a precise shift correction in the direction of the tilt axis and (iii) intermediate reconstructions to precisely determine the tilt axis and shift correction in the direction perpendicular to that axis. Mixing alignment techniques turns out to be very efficient and fast. Significant improvements are highlighted in both simulations and real data reconstructions of porous silicon in high angle annular dark field mode and agglomerated silver nanoparticles in incoherent bright field mode. 3D reconstructions obtained with minimal user-intervention present fewer artefacts and less noise, which permits easier and more reliable segmentation and quantitative analysis. After careful sample preparation and data acquisition, the denoising procedure, alignment and reconstruction can be achieved within an hour for a 3D volume of about a hundred million voxels, which is a step toward a more routine use of electron tomography. PMID:26413937

  15. Cryo-electron tomography: The challenge of doing structural biology in situ

    PubMed Central

    Lučić, Vladan; Rigort, Alexander

    2013-01-01

    Electron microscopy played a key role in establishing cell biology as a discipline, by producing fundamental insights into cellular organization and ultrastructure. Many seminal discoveries were made possible by the development of new sample preparation methods and imaging modalities. Recent technical advances include sample vitrification that faithfully preserves molecular structures, three-dimensional imaging by electron tomography, and improved image-processing methods. These new techniques have enabled the extraction of high fidelity structural information and are beginning to reveal the macromolecular organization of unperturbed cellular environments. PMID:23918936

  16. Comparisons of ionospheric electron density distributions reconstructed by GPS computerized tomography, backscatter ionograms, and vertical ionograms

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua

    2015-12-01

    Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.

  17. An 8×8 Row-Column Summing Readout Electronics for Preclinical Positron Emission Tomography Scanners.

    PubMed

    Shih, Y C; Sun, F W; Macdonald, L R; Otis, B P; Miyaoka, R S; McDougald, W; Lewellen, T K

    2009-10-24

    This work presents a row/column summing readout electronics for an 8×8 silicon photomultiplier array. The summation circuit greatly reduces the number of electronic channels, which is desirable for pursuing higher resolution positron emission tomography scanners. By using a degenerated common source topology in the summation circuit, more fan-in is possible and therefore a greater reduction in the number of electronic channels can be achieved. The timing signal is retrieved from a common anode, which allows the use of a single fast-sampling analog to digital converter (ADC) for the timing channel and slower, lower power ADCs for the 64 spatial channels. Preliminary results of one row summation of the 8×8 readout electronics exhibited FWHM energy resolution of 17.8% and 18.3% with and without multiplexing, respectively. The measured timing resolution is 2.9ns FWHM. PMID:20729983

  18. Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58.

    PubMed

    Simancas, Jorge; Simancas, Raquel; Bereciartua, Pablo J; Jorda, Jose L; Rey, Fernando; Corma, Avelino; Nicolopoulos, Stavros; Pratim Das, Partha; Gemmi, Mauro; Mugnaioli, Enrico

    2016-08-17

    In this work a new ultrafast data collection strategy for electron diffraction tomography is presented that allows reducing data acquisition time by one order of magnitude. This methodology minimizes the radiation damage of beam-sensitive materials, such as microporous materials. This method, combined with the precession of the electron beam, provides high quality data enabling the determination of very complex structures. Most importantly, the implementation of this new electron diffraction methodology is easily affordable in any modern electron microscope. As a proof of concept, we have solved a new highly complex zeolitic structure named ITQ-58, with a very low symmetry (triclinic) and a large unit cell volume (1874.6 Å(3)), containing 16 silicon and 32 oxygen atoms in its asymmetric unit, which would be very difficult to solve with the state of the art techniques. PMID:27478889

  19. Selenium segregation in femtosecond-laser hyperdoped silicon revealed by electron tomography.

    PubMed

    Haberfehlner, Georg; Smith, Matthew J; Idrobo, Juan-Carlos; Auvert, Geoffroy; Sher, Meng-Ju; Winkler, Mark T; Mazur, Eric; Gambacorti, Narciso; Gradečak, Silvija; Bleuet, Pierre

    2013-06-01

    Doping of silicon with chalcogens (S, Se, Te) by femtosecond laser irradiation to concentrations well above the solubility limit leads to near-unity optical absorptance in the visible and infrared (IR) range and is a promising route toward silicon-based IR optoelectronics. However, open questions remain about the nature of the IR absorptance and in particular about the impact of the dopant distribution and possible role of dopant diffusion. Here we use electron tomography using a high-angle annular dark-field (HAADF) detector in a scanning transmission electron microscope (STEM) to extract information about the three-dimensional distribution of selenium dopants in silicon and correlate these findings with the optical properties of selenium-doped silicon. We quantify the tomography results to extract information about the size distribution and density of selenium precipitates. Our results show correlation between nanoscale distribution of dopants and the observed sub-band gap optical absorptance and demonstrate the feasibility of HAADF-STEM tomography for the investigation of dopant distribution in highly-doped semiconductors. PMID:23570747

  20. Dose tolerance at helium and nitrogen temperatures for whole cell electron tomography.

    PubMed

    Comolli, Luis R; Downing, Kenneth H

    2005-12-01

    Electron tomography is currently the only method that allows the direct three-dimensional visualization of macromolecules in an unperturbed cellular context. In principle, tomography should enable the identification and localization of the major macromolecular complexes within intact bacteria, embedded in amorphous ice. In an effort to optimize conditions for recording data that would bring us close to the theoretical limits, we present here a comparison of the dose tolerance of Caulobacter crescentus cells embedded in amorphous ice at liquid helium versus liquid nitrogen temperature. The inner and outer cell membranes, and the periodic structure of the S-layer of this Gram-negative bacterium provide ideal features to monitor changes in contrast and order as a function of dose. The loss of order in the S-layer occurs at comparable doses at helium and nitrogen temperatures. Macroscopic bubbling within the cell and the plastic support develops at both temperatures, but more slowly at helium temperature. The texture of the bubbles is finer in initial stages at helium temperature, giving an impression of contrast reversal in some parts of the specimen. Bubbles evolve differently in different organelles, presumably a consequence of their different chemical composition and mechanical properties. Finally, the amorphous ice "flows" at helium temperature, causing changes in the relative positions of markers within the specimen and distorting the cells. We conclude that for cryo-electron tomography of whole cells liquid nitrogen temperature provides better overall data quality. PMID:16198601

  1. Model-based automated segmentation of kinetochore microtubule from electron tomography.

    PubMed

    Jiang, Ming; Ji, Qiang; McEwen, Bruce

    2004-01-01

    The segmentation of kinetochore microtubules from electron tomography is challenging due to the poor quality of the acquired data and the cluttered cellular surroundings. We propose to automate the microtubule segmentation by extending the active shape model (ASM) in two aspects. First, we develop a higher order boundary model obtained by 3-D local surface estimation that characterizes the microtubule boundary better than the gray level appearance model in the 2-D microtubule cross section. We then incorporate this model into the weight matrix of the fitting error measurement to increase the influence of salient features. Second, we integrate the ASM with Kalman filtering to utilize the shape information along the longitudinal direction of the microtubules. The ASM modified in this way is robust against missing data and outliers frequently present in the kinetochore tomography volume. Experimental results demonstrate that our automated method outperforms manual process but using only a fraction of the time of the latter. PMID:17272020

  2. Tomography of the Galactic free electron density with the Square Kilometer Array

    NASA Astrophysics Data System (ADS)

    Greiner, M.; Schnitzeler, D. H. F. M.; Enßlin, T. A.

    2016-05-01

    We present a new algorithm for reconstructing the Galactic free electron density from pulsar dispersion measures. The algorithm performs a nonparametric tomography for a density field with an arbitrary amount of degrees of freedom. It is based on approximating the Galactic free electron density as the product of a profile function with a statistically isotropic and homogeneous log-normal field. Under this approximation the algorithm generates a map of the free electron density as well as an uncertainty estimate without the need of information about the power spectrum. The uncertainties of the pulsar distances are treated consistently by an iterative procedure. We tested the algorithm using the NE2001 model with modified fluctuations as a Galaxy model, pulsar populations generated from the Lorimer population model, and mock observations emulating the upcoming Square Kilometer Array (SKA). We show the quality of the reconstruction for mock data sets containing between 1000 and 10 000 pulsars with distance uncertainties of up to 25%. Our results show that with the SKA nonparametric tomography of the Galactic free electron density becomes feasible, but the quality of the reconstruction is very sensitive to the distance uncertainties.

  3. Electron Tomography of Nanoparticle Clusters: Implications for Atmospheric Lifetimes and Radiative Forcing of Soot

    NASA Technical Reports Server (NTRS)

    vanPoppel, Laura H.; Friedrich, Heiner; Spinsby, Jacob; Chung, Serena H.; Seinfeld, John H.; Buseck, Peter R.

    2005-01-01

    Nanoparticles are ubiquitous in nature. Their large surface areas and consequent chemical reactivity typically result in their aggregation into clusters. Their chemical and physical properties depend on cluster shapes, which are commonly complex and unknown. This is the first application of electron tomography with a transmission electron microscope to quantitatively determine the three-dimensional (3D) shapes, volumes, and surface areas of nanoparticle clusters. We use soot (black carbon, BC) nanoparticles as an example because it is a major contributor to environmental degradation and global climate change. To the extent that our samples are representative, we find that quantitative measurements of soot surface areas and volumes derived from electron tomograms differ from geometrically derived values by, respectively, almost one and two orders of magnitude. Global sensitivity studies suggest that the global burden and direct radiative forcing of fractal BC are only about 60% of the value if it is assumed that BC has a spherical shape.

  4. Three-dimensional visualization of forming Hepatitis C virus-like particles by electron-tomography

    SciTech Connect

    Badia-Martinez, Daniel; Peralta, Bibiana; Andres, German; Guerra, Milagros; Gil-Carton, David; Abrescia, Nicola G.A.

    2012-09-01

    Hepatitis C virus infects almost 170 million people per year but its assembly pathway, architecture and the structures of its envelope proteins are poorly understood. Using electron tomography of plastic-embedded sections of insect cells, we have visualized the morphogenesis of recombinant Hepatitis C virus-like particles. Our data provide a three-dimensional sketch of viral assembly at the endoplasmic reticulum showing different budding stages and contiguity of buds. This latter phenomenon could play an important role during the assembly of wt-HCV and explain the size-heterogeneity of its particles.

  5. Analysis of the 3D distribution of stacked self-assembled quantum dots by electron tomography

    PubMed Central

    2012-01-01

    The 3D distribution of self-assembled stacked quantum dots (QDs) is a key parameter to obtain the highest performance in a variety of optoelectronic devices. In this work, we have measured this distribution in 3D using a combined procedure of needle-shaped specimen preparation and electron tomography. We show that conventional 2D measurements of the distribution of QDs are not reliable, and only 3D analysis allows an accurate correlation between the growth design and the structural characteristics. PMID:23249477

  6. Electron holographic tomography for mapping the three-dimensional distribution of electrostatic potential in III-V semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Wolf, D.; Lichte, H.; Pozzi, G.; Prete, P.; Lovergine, N.

    2011-06-01

    Electron holographic tomography (EHT), the combination of off-axis electron holography with electron tomography, is a technique, which can be applied to the quantitative 3-dimensional (3D) mapping of electrostatic potential at the nanoscale. Here, we show the results obtained in the EHT investigation of GaAs and GaAs-AlGaAs core-shell nanowires grown by Au-catalysed metalorganic vapor phase epitaxy. The unique ability of EHT of disentangling the materials mean inner potential (MIP) from the specimen projected thickness allows reconstruction of the nanowire 3D morphology and inner compositional structure as well as the measurement of the MIP.

  7. Electron holographic tomography for mapping the three-dimensional distribution of electrostatic potential in III-V semiconductor nanowires

    SciTech Connect

    Wolf, D.; Lichte, H.; Pozzi, G.; Lovergine, N.

    2011-06-27

    Electron holographic tomography (EHT), the combination of off-axis electron holography with electron tomography, is a technique, which can be applied to the quantitative 3-dimensional (3D) mapping of electrostatic potential at the nanoscale. Here, we show the results obtained in the EHT investigation of GaAs and GaAs-AlGaAs core-shell nanowires grown by Au-catalysed metalorganic vapor phase epitaxy. The unique ability of EHT of disentangling the materials mean inner potential (MIP) from the specimen projected thickness allows reconstruction of the nanowire 3D morphology and inner compositional structure as well as the measurement of the MIP.

  8. Markov Random Field Based Automatic Image Alignment for ElectronTomography

    SciTech Connect

    Moussavi, Farshid; Amat, Fernando; Comolli, Luis R.; Elidan, Gal; Downing, Kenneth H.; Horowitz, Mark

    2007-11-30

    Cryo electron tomography (cryo-ET) is the primary method for obtaining 3D reconstructions of intact bacteria, viruses, and complex molecular machines ([7],[2]). It first flash freezes a specimen in a thin layer of ice, and then rotates the ice sheet in a transmission electron microscope (TEM) recording images of different projections through the sample. The resulting images are aligned and then back projected to form the desired 3-D model. The typical resolution of biological electron microscope is on the order of 1 nm per pixel which means that small imprecision in the microscope's stage or lenses can cause large alignment errors. To enable a high precision alignment, biologists add a small number of spherical gold beads to the sample before it is frozen. These beads generate high contrast dots in the image that can be tracked across projections. Each gold bead can be seen as a marker with a fixed location in 3D, which provides the reference points to bring all the images to a common frame as in the classical structure from motion problem. A high accuracy alignment is critical to obtain a high resolution tomogram (usually on the order of 5-15nm resolution). While some methods try to automate the task of tracking markers and aligning the images ([8],[4]), they require user intervention if the SNR of the image becomes too low. Unfortunately, cryogenic electron tomography (or cryo-ET) often has poor SNR, since the samples are relatively thick (for TEM) and the restricted electron dose usually results in projections with SNR under 0 dB. This paper shows that formulating this problem as a most-likely estimation task yields an approach that is able to automatically align with high precision cryo-ET datasets using inference in graphical models. This approach has been packaged into a publicly available software called RAPTOR-Robust Alignment and Projection estimation for Tomographic Reconstruction.

  9. A new apparatus for electron tomography in the scanning electron microscope

    SciTech Connect

    Morandi, V. Maccagnani, P.; Masini, L.; Migliori, A.; Ortolani, L.; Pezza, A.; Del Marro, M.; Pallocca, G.; Vinciguerra, P.; Rossi, M.; Ferroni, M.; Sberveglieri, G.; Vittori-Antisari, M.

    2015-06-23

    The three-dimensional reconstruction of a microscopic specimen has been obtained by applying the tomographic algorithm to a set of images acquired in a Scanning Electron Microscope. This result was achieved starting from a series of projections obtained by stepwise rotating the sample under the beam raster. The Scanning Electron Microscope was operated in the scanning-transmission imaging mode, where the intensity of the transmitted electron beam is a monotonic function of the local mass-density and thickness of the specimen. The detection strategy has been implemented and tailored in order to maintain the projection requirement over the large tilt range, as required by the tomographic workflow. A Si-based electron detector and an eucentric-rotation specimen holder have been specifically developed for the purpose.

  10. Automated extraction of fine features of kinetochore microtubules and plus-ends from electron tomography volume.

    PubMed

    Jiang, Ming; Ji, Qiang; McEwen, Bruce F

    2006-07-01

    Kinetochore microtubules (KMTs) and the associated plus-ends have been areas of intense investigation in both cell biology and molecular medicine. Though electron tomography opens up new possibilities in understanding their function by imaging their high-resolution structures, the interpretation of the acquired data remains an obstacle because of the complex and cluttered cellular environment. As a result, practical segmentation of the electron tomography data has been dominated by manual operation, which is time consuming and subjective. In this paper, we propose a model-based automated approach to extracting KMTs and the associated plus-ends with a coarse-to-fine scale scheme consisting of volume preprocessing, microtubule segmentation and plus-end tracing. In volume preprocessing, we first apply an anisotropic invariant wavelet transform and a tube-enhancing filter to enhance the microtubules at coarse level for localization. This is followed with a surface-enhancing filter to accentuate the fine microtubule boundary features. The microtubule body is then segmented using a modified active shape model method. Starting from the segmented microtubule body, the plus-ends are extracted with a probabilistic tracing method improved with rectangular window based feature detection and the integration of multiple cues. Experimental results demonstrate that our automated method produces results comparable to manual segmentation but using only a fraction of the manual segmentation time. PMID:16830922

  11. Comparison of atom probe tomography and transmission electron microscopy analysis of oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    London, A. J.; Lozano-Perez, S.; Santra, S.; Amirthapandian, S.; Panigrahi, B. K.; Sundar, C. S.; Grovenor, C. R. M.

    2014-06-01

    Oxide dispersion strengthened steels owe part of their high temperature stability to the nano-scale oxides they contain. These yttrium-titanium oxides are notoriously difficult to characterise since they are embedded in a magnetic-ferritic matrix and often <10 nm across. This study uses correlated transmission electron microscopy and atom probe tomography on the same material to explore the kind of information that can be gained on the character of the oxide particles. The influence of chromium in these alloys is of interest, therefore two model ODS steels Fe-(14Cr)-0.2Ti-0.3Y2O3 are compared. TEM is shown to accurately measure the size of the oxide particles and atom probe tomography is necessary to observe the smallest sub-1.5 nm particles. Larger Y2Ti2O7 and Y2TiO5 structured particles were identified by high-resolution transmission electron microscopy, but the smallest oxides remain difficult to index. Chemical data from energy-filtered TEM agreed qualitatively with the atom probe findings. It was found that the majority of the oxide particles exhibit an unoxidised chromium shell which may be responsible for reducing the ultimate size of the oxide particles.

  12. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    SciTech Connect

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.

  13. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE PAGESBeta

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  14. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    SciTech Connect

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro; Maekawa, Toru

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. Black-Right-Pointing-Pointer 3-D images of TAT-SPIONs in a cell are clearly shown. Black-Right-Pointing-Pointer Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  15. 3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle Electron Tomography

    PubMed Central

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-01-01

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions. PMID:25940394

  16. textbf{Tomography of Ionosphere electron density and its abnormity analysis during Wenchuan earthquake }

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoya; Xing, Nan

    2010-05-01

    A multiple-arc method and Kriging interpolation are applied to obtain VTEC as well as DCB using ground-based GPS data. Given by the time variation characteristics of VTEC and DCB, VTEC is calculated every 30 minutes as local variables, and DCB is calculated every day as global variables. Kriging method, taking the spatial information of VTEC into account, is useful to make VTEC more precise and stable. Meanwhile, based on 3-variable spline basis function, we expand electron density into a linear combination of a set of grid points. Tomography of Ionosphere electron density is made by MART. The results show the coherence with CHAMP occultation results. We applied these two ways to process the ground-based GPS data of Yangzi River Triangle Region in May, 2008 when the shocking earthquake happened in Wenchuan. A simple statistic analysis reveals the response of ionosphere to the earthquake and also the abnormal signal occurred before the earthquake.

  17. Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging.

    PubMed

    McNally, Elizabeth; Nan, Feihong; Botton, Gianluigi A; Schwarcz, Henry P

    2013-06-01

    Previously we presented (McNally et al., 2012) a model for the ultrastructure of bone showing that the mineral resides principally outside collagen fibrils in the form of 5 nm thick mineral structures hundreds of nanometers long oriented parallel to the fibrils. Here we use high-angle annular dark-field electron tomography in the scanning transmission electron microscope to confirm this model and further elucidate the composite structure. Views of a section cut parallel to the fibril axes show bundles of mineral structures extending parallel to the fibrils and encircling them. The mineral density inside the fibrils is too low to be visualized in these tomographic images. A section cut perpendicular to the fibril axes, shows quasi-circular walls composed of mineral structures, wrapping around apparently empty holes marking the sites of fibrils. These images confirm our original model that the majority of mineral in bone resides outside the collagen fibrils. PMID:23545162

  18. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.

  19. Using tomography of GPS TEC to routinely determine ionospheric average electron density profiles

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M. B.; Dyson, P. L.; Essex, E. A.

    2007-03-01

    This paper introduces a technique that calculates average electron density (Ne) profiles over a wide geographic area of coverage, using tomographic ionospheric Ne profiles. These Ne profiles, which can provide information of the Ne distribution up to global positioning system (GPS) orbiting altitude (with the coordination of space-based GPS tomographic profiles), can be incorporated into the next generation of the international reference ionosphere (IRI) model. An additional advantage of tomography is that it enables accurate modeling of the topside ionosphere. By applying the tomographic reconstruction approach to ground-based GPS slant total electron content (STEC), we calculate 3-h average Ne profiles over a wide region. Since it uses real measurement data, tomographic average Ne profiles describe the ionosphere during quiet and disturbed periods. The computed average Ne profiles are compared with IRI model profiles and average Ne profiles obtained from ground-based ionosondes.

  20. Analytical electron tomography mapping of the SiCporeoxidation at the nanoscale

    NASA Astrophysics Data System (ADS)

    Florea, Ileana; Ersen, Ovidiu; Hirlimann, Charles; Roiban, Lucian; Deneuve, Adrien; Houllé, Matthieu; Janowska, Izabela; Nguyen, Patrick; Pham, Charlotte; Pham-Huu, Cuong

    2010-12-01

    Silicon carbide is a ceramic material that has been widely studied because of its potential applications, ranging from electronics to heterogeneous catalysis. Recently, a new type of SiC materials with a medium specific surface area and thermal conductivity, called β-SiC, has attracted overgrowing interest as a new class of catalyst support in several catalytic reactions. A primary electron tomography study, performed in usual mode, has revealed a dual surface structure defined by two types of porosities made of networks of connected channels with sizes larger than 50 nm and ink-bottled pores with sizes spanning from 4 to 50 nm. Depending on the solvent nature, metal nanoparticles could be selectively deposited inside one of the two porosities, a fact that illustrates a selective wetting titration of the two types of surfaces by different liquids. The explaining hypothesis that has been put forward was that this selectivity against solvents is related to the pore surface oxidation degree of the two types of pores. A new technique of analytical electron tomography, where the series of projections used to reconstruct the volume of an object is recorded in energy filtered mode (EFTEM), has been implemented to map the poreoxidation state and to correlate it with the morphology and the accessibility of the porous network. Applied, for the first time, at a nanoscale resolution, this technique allowed us to obtain 3D elemental maps of different elements present in the analysed porous grains, in particular oxygen; we found thus that the interconnected channelpores are more rapidly oxidized than the ink-bottled ones. Alternatively, our study highlights the great interest of this method that opens the way for obtaining precise information on the chemical composition of a 3D surface at a nanometer scale.Silicon carbide is a ceramic material that has been widely studied because of its potential applications, ranging from electronics to heterogeneous catalysis. Recently, a new

  1. Compressed sensing electron tomography of needle-shaped biological specimens--Potential for improved reconstruction fidelity with reduced dose.

    PubMed

    Saghi, Zineb; Divitini, Giorgio; Winter, Benjamin; Leary, Rowan; Spiecker, Erdmann; Ducati, Caterina; Midgley, Paul A

    2016-01-01

    Electron tomography is an invaluable method for 3D cellular imaging. The technique is, however, limited by the specimen geometry, with a loss of resolution due to a restricted tilt range, an increase in specimen thickness with tilt, and a resultant need for subjective and time-consuming manual segmentation. Here we show that 3D reconstructions of needle-shaped biological samples exhibit isotropic resolution, facilitating improved automated segmentation and feature detection. By using scanning transmission electron tomography, with small probe convergence angles, high spatial resolution is maintained over large depths of field and across the tilt range. Moreover, the application of compressed sensing methods to the needle data demonstrates how high fidelity reconstructions may be achieved with far fewer images (and thus greatly reduced dose) than needed by conventional methods. These findings open the door to high fidelity electron tomography over critically relevant length-scales, filling an important gap between existing 3D cellular imaging techniques. PMID:26555323

  2. Developing a denoising filter for electron microscopy and tomography data in the cloud

    PubMed Central

    Starosolski, Zbigniew; Szczepanski, Marek; Wahle, Manuel; Rusu, Mirabela

    2012-01-01

    The low radiation conditions and the predominantly phase-object image formation of cryo-electron microscopy (cryo-EM) result in extremely high noise levels and low contrast in the recorded micrographs. The process of single particle or tomographic 3D reconstruction does not completely eliminate this noise and is even capable of introducing new sources of noise during alignment or when correcting for instrument parameters. The recently developed Digital Paths Supervised Variance (DPSV) denoising filter uses local variance information to control regional noise in a robust and adaptive manner. The performance of the DPSV filter was evaluated in this review qualitatively and quantitatively using simulated and experimental data from cryo-EM and tomography in two and three dimensions. We also assessed the benefit of filtering experimental reconstructions for visualization purposes and for enhancing the accuracy of feature detection. The DPSV filter eliminates high-frequency noise artifacts (density gaps), which would normally preclude the accurate segmentation of tomography reconstructions or the detection of alpha-helices in single-particle reconstructions. This collaborative software development project was carried out entirely by virtual interactions among the authors using publicly available development and file sharing tools. PMID:23066432

  3. Model-based automated extraction of microtubules from electron tomography volume.

    PubMed

    Jiang, Ming; Ji, Qiang; McEwen, Bruce F

    2006-07-01

    We propose a model-based automated approach to extracting microtubules from noisy electron tomography volume. Our approach consists of volume enhancement, microtubule localization, and boundary segmentation to exploit the unique geometric and photometric properties of microtubules. The enhancement starts with an anisotropic invariant wavelet transform to enhance the microtubules globally, followed by a three-dimensional (3-D) tube-enhancing filter based on Weingarten matrix to further accentuate the tubular structures locally. The enhancement ends with a modified coherence-enhancing diffusion to complete the interruptions along the microtubules. The microtubules are then localized with a centerline extraction algorithm adapted for tubular objects. To perform segmentation, we novelly modify and extend active shape model method. We first use 3-D local surface enhancement to characterize the microtubule boundary and improve shape searching by relating the boundary strength with the weight matrix of the searching error. We then integrate the active shape model with Kalman filtering to utilize the longitudinal smoothness along the microtubules. The segmentation improved in this way is robust against missing boundaries and outliers that are often present in the tomography volume. Experimental results demonstrate that our automated method produces results close to those by manual process and uses only a fraction of the time of the latter. PMID:16871731

  4. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography

    PubMed Central

    Demurtas, Davide; Guichard, Paul; Martiel, Isabelle; Mezzenga, Raffaele; Hébert, Cécile; Sagalowicz, Laurent

    2015-01-01

    Bulk and dispersed cubic liquid crystalline phases (cubosomes), present in the body and in living cell membranes, are believed to play an essential role in biological phenomena. Moreover, their biocompatibility is attractive for nutrient or drug delivery system applications. Here the three-dimensional organization of dispersed cubic lipid self-assembled phases is fully revealed by cryo-electron tomography and compared with simulated structures. It is demonstrated that the interior is constituted of a perfect bicontinuous cubic phase, while the outside shows interlamellar attachments, which represent a transition state between the liquid crystalline interior phase and the outside vesicular structure. Therefore, compositional gradients within cubosomes are inferred, with a lipid bilayer separating at least one water channel set from the external aqueous phase. This is crucial to understand and enhance controlled release of target molecules and calls for a revision of postulated transport mechanisms from cubosomes to the aqueous phase. PMID:26573367

  5. Analysis of Iron Meteorites Using Computed Tomography and Electron-probe Microanalysis

    NASA Technical Reports Server (NTRS)

    Carpenter, P. K.; Gillies, D. C.

    2005-01-01

    Computed tomography (CT) imaging and electron-probe microanalysis (EPMA) have been used to study samples of the Mundrabilla and Colomera iron meteorites in order to perform structural, textural, and mineralogical analysis. Both gamma-ray (Co-60 source, essentially monochromatic 1.25MeV avg.) and x-ray (420 KeV, continuous) sources have been used, with effective resolution of approximately 1 mm and 0.25 mm, respectively. The gamma-ray source provides approx. 15 cm penetration through steel and is used for larger samples, whereas the x-ray source provides superior resolution at reduced penetration but exhibits beam hardening artifacts. Here we present a combined approach where CT and EPMA imaging and microanalysis aid in the identification of structural and compositional features in iron meteorites.

  6. Three-Dimensional Structures of Pathogenic and Saprophytic Leptospira Species Revealed by Cryo-Electron Tomography

    PubMed Central

    Raddi, Gianmarco; Morado, Dustin R.; Yan, Jie; Haake, David A.

    2012-01-01

    Leptospira interrogans is the primary causative agent of the most widespread zoonotic disease, leptospirosis. An in-depth structural characterization of L. interrogans is needed to understand its biology and pathogenesis. In this study, cryo-electron tomography (cryo-ET) was used to compare pathogenic and saprophytic species and examine the unique morphological features of this group of bacteria. Specifically, our study revealed a structural difference between the cell envelopes of L. interrogans and Leptospira biflexa involving variations in the lipopolysaccharide (LPS) layer. Through cryo-ET and subvolume averaging, we determined the first three-dimensional (3-D) structure of the flagellar motor of leptospira, with novel features in the flagellar C ring, export apparatus, and stator. Together with direct visualization of chemoreceptor arrays, DNA packing, periplasmic filaments, spherical cytoplasmic bodies, and a unique “cap” at the cell end, this report provides structural insights into these fascinating Leptospira species. PMID:22228733

  7. Three-dimensional architecture of hair-cell linkages as revealedby electron-microscopic tomography

    SciTech Connect

    Auer, Manfred; Koster, Bram; Ziese, Ulrike; Bajaj, Chandrajit; Volkmann, Niels; Wang, Da Neng; Hudspeth, A. James

    2006-07-28

    The senses of hearing and balance rest upon mechanoelectrical transduction by the hair bundles of hair cells in the inner ear. Located at the apical cellular surface, each hair bundle comprises several tens of stereocilia and a single kinocilium that are interconnected by extracellular proteinaceous links. Using electron-microscopic tomography of bullfrog saccular sensory epithelia, we examined the three-dimensional structures of ankle or basal links, kinociliary links, and tip links. We observed clear differences in the dimensions and appearances of the three links. We found two distinct populations of tip links suggestive of the involvement of two proteins or splice variants. We noted auxiliary links connecting the upper portions of tip links to the taller stereocilia. Tip links and auxiliary links show a tendency to adopt a globular conformation when disconnected from the membrane surface.

  8. ICON: 3D reconstruction with 'missing-information' restoration in biological electron tomography.

    PubMed

    Deng, Yuchen; Chen, Yu; Zhang, Yan; Wang, Shengliu; Zhang, Fa; Sun, Fei

    2016-07-01

    Electron tomography (ET) plays an important role in revealing biological structures, ranging from macromolecular to subcellular scale. Due to limited tilt angles, ET reconstruction always suffers from the 'missing wedge' artifacts, thus severely weakens the further biological interpretation. In this work, we developed an algorithm called Iterative Compressed-sensing Optimized Non-uniform fast Fourier transform reconstruction (ICON) based on the theory of compressed-sensing and the assumption of sparsity of biological specimens. ICON can significantly restore the missing information in comparison with other reconstruction algorithms. More importantly, we used the leave-one-out method to verify the validity of restored information for both simulated and experimental data. The significant improvement in sub-tomogram averaging by ICON indicates its great potential in the future application of high-resolution structural determination of macromolecules in situ. PMID:27079261

  9. Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli

    SciTech Connect

    Liu Jun; Chen Chengyen; Shiomi, Daisuke; Niki, Hironori; Margolin, William

    2011-09-01

    Bacteriophage P1 has a contractile tail that targets the conserved lipopolysaccharide on the outer membrane surface of the host for initial adsorption. The mechanism by which P1 DNA enters the host cell is not well understood, mainly because the transient molecular interactions between bacteriophage and bacteria have been difficult to study by conventional approaches. Here, we engineered tiny E. coli host cells so that the initial stages of P1-host interactions could be captured in unprecedented detail by cryo-electron tomography. Analysis of three-dimensional reconstructions of frozen-hydrated specimens revealed three predominant configurations: an extended tail stage with DNA present in the phage head, a contracted tail stage with DNA, and a contracted tail stage without DNA. Comparative analysis of various conformations indicated that there is uniform penetration of the inner tail tube into the E. coli periplasm and a significant movement of the baseplate away from the outer membrane during tail contraction.

  10. Cryo-focused Ion Beam Sample Preparation for Imaging Vitreous Cells by Cryo-electron Tomography

    PubMed Central

    Schaffer, Miroslava; Engel, Benjamin D.; Laugks, Tim; Mahamid, Julia; Plitzko, Jürgen M.; Baumeister, Wolfgang

    2016-01-01

    Cryo-electron tomography (CET) is a well-established technique for imaging cellular and molecular structures at sub-nanometer resolution. As the method is limited to samples that are thinner than 500 nm, suitable sample preparation is required to attain CET data from larger cell volumes. Recently, cryo-focused ion beam (cryo-FIB) milling of plunge-frozen biological material has been shown to reproducibly yield large, homogeneously thin, distortion-free vitreous cross-sections for state-of-the-art CET. All eukaryotic and prokaryotic cells that can be plunge-frozen can be thinned with the cryo-FIB technique. Together with advances in low-dose microscopy, this has shifted the frontiers of in situ structural biology. In this protocol we describe the typical steps of the cryo-FIB technique, starting with fully grown cell cultures. Three recently investigated biological samples are given as examples. PMID:27294174

  11. Electron tomography reveals the fibril structure and lipid interactions in amyloid deposits.

    PubMed

    Kollmer, Marius; Meinhardt, Katrin; Haupt, Christian; Liberta, Falk; Wulff, Melanie; Linder, Julia; Handl, Lisa; Heinrich, Liesa; Loos, Cornelia; Schmidt, Matthias; Syrovets, Tatiana; Simmet, Thomas; Westermark, Per; Westermark, Gunilla T; Horn, Uwe; Schmidt, Volker; Walther, Paul; Fändrich, Marcus

    2016-05-17

    Electron tomography is an increasingly powerful method to study the detailed architecture of macromolecular complexes or cellular structures. Applied to amyloid deposits formed in a cell culture model of systemic amyloid A amyloidosis, we could determine the structural morphology of the fibrils directly in the deposit. The deposited fibrils are arranged in different networks, and depending on the relative fibril orientation, we can distinguish between fibril meshworks, fibril bundles, and amyloid stars. These networks are frequently infiltrated by vesicular lipid inclusions that may originate from the death of the amyloid-forming cells. Our data support the role of nonfibril components for constructing fibril deposits and provide structural views of different types of lipid-fibril interactions. PMID:27140609

  12. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography.

    PubMed

    He, Wanzhong; Ladinsky, Mark S; Huey-Tubman, Kathryn E; Jensen, Grant J; McIntosh, J Richard; Björkman, Pamela J

    2008-09-25

    The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rats, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0-6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates the efficient unidirectional transport of IgG, because FcRn binds IgG at pH 6.0-6.5 but not at pH 7 or more. As milk passes through the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum and jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum). Here we use electron tomography to make jejunal transcytosis visible directly in space and time, developing new labelling and detection methods to map individual nanogold-labelled Fc within transport vesicles and simultaneously to characterize these vesicles by immunolabelling. Combining electron tomography with a non-perturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine whether a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moves through networks of entangled tubular and irregular vesicles, only some of which are microtubule-associated, as it migrates to the basolateral surface. New features of transcytosis are elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis through clathrin-coated pits. Markers for early, late and recycling endosomes each labelled vesicles in different and overlapping morphological classes, revealing spatial complexity in endo-lysosomal trafficking. PMID:18818657

  13. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography

    PubMed Central

    He, Wanzhong; Ladinsky, Mark S.; Huey-Tubman, Kathryn E.; Jensen, Grant J.; McIntosh, J. Richard; Björkman, Pamela J.

    2009-01-01

    The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers1,2, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rodents, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0-6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates efficient unidirectional transport of IgG, since FcRn binds IgG at pH 6.0-6.5 but not pH ≥7 1,2. As milk passes through the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum, jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum)3-6. We used electron tomography to directly visualize jejunal transcytosis in space and time, developing new labeling and detection methods to map individual nanogold-labeled Fc within transport vesicles7 and to simultaneously characterize these vesicles by immunolabeling. Combining electron tomography with a non-perturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine if a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moved through networks of entangled tubular and irregular vesicles, only some of which were microtubule-associated, as it migrated to the basolateral surface. New features of transcytosis were elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis via clathrin-coated pits. Markers for early, late, and recycling endosomes each labeled vesicles in different and overlapping morphological classes, revealing unexpected spatial complexity in endo-lysosomal trafficking. PMID:18818657

  14. Cryo Electron Tomography of Herpes Simplex Virus during Axonal Transport and Secondary Envelopment in Primary Neurons

    PubMed Central

    Ibiricu, Iosune; Huiskonen, Juha T.; Döhner, Katinka; Bradke, Frank; Sodeik, Beate; Grünewald, Kay

    2011-01-01

    During herpes simplex virus 1 (HSV1) egress in neurons, viral particles travel from the neuronal cell body along the axon towards the synapse. Whether HSV1 particles are transported as enveloped virions as proposed by the ‘married’ model or as non-enveloped capsids suggested by the ‘separate’ model is controversial. Specific viral proteins may form a recruitment platform for microtubule motors that catalyze such transport. However, their subviral location has remained elusive. Here we established a system to analyze herpesvirus egress by cryo electron tomography. At 16 h post infection, we observed intra-axonal transport of progeny HSV1 viral particles in dissociated hippocampal neurons by live-cell fluorescence microscopy. Cryo electron tomography of frozen-hydrated neurons revealed that most egressing capsids were transported independently of the viral envelope. Unexpectedly, we found not only DNA-containing capsids (cytosolic C-capsids), but also capsids lacking DNA (cytosolic A-/B-capsids) in mid-axon regions. Subvolume averaging revealed lower amounts of tegument on cytosolic A-/B-capsids than on C-capsids. Nevertheless, all capsid types underwent active axonal transport. Therefore, even few tegument proteins on the capsid vertices seemed to suffice for transport. Secondary envelopment of capsids was observed at axon terminals. On their luminal face, the enveloping vesicles were studded with typical glycoprotein-like spikes. Furthermore, we noted an accretion of tegument density at the concave cytosolic face of the vesicle membrane in close proximity to the capsids. Three-dimensional analysis revealed that these assembly sites lacked cytoskeletal elements, but that filamentous actin surrounded them and formed an assembly compartment. Our data support the ‘separate model’ for HSV1 egress, i.e. progeny herpes viruses being transported along axons as subassemblies and not as complete virions within transport vesicles. PMID:22194682

  15. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography

    SciTech Connect

    Norlen, Lars . E-mail: lars.norlen@ki.se; Masich, Sergej; Goldie, Kenneth N.; Hoenger, Andreas

    2007-06-10

    Intermediate filaments are a large and structurally diverse group of cellular filaments that are classified into five different groups. They are referred to as intermediate filaments (IFs) because they are intermediate in diameter between the two other cytoskeletal filament systems that is filamentous actin and microtubules. The basic building block of IFs is a predominantly {alpha}-helical rod with variable length globular N- and C-terminal domains. On the ultra-structural level there are two major differences between IFs and microtubules or actin filaments: IFs are non-polar, and they do not exhibit large globular domains. IF molecules associate via a coiled-coil interaction into dimers and higher oligomers. Structural investigations into the molecular building plan of IFs have been performed with a variety of biophysical and imaging methods such as negative staining and metal-shadowing electron microscopy (EM), mass determination by scanning transmission EM, X-ray crystallography on fragments of the IF stalk and low-angle X-ray scattering. The actual packing of IF dimers into a long filament varies between the different families. Typically the dimers form so called protofibrils that further assemble into a filament. Here we introduce new cryo-imaging methods for structural investigations of IFs in vitro and in vivo, i.e., cryo-electron microscopy and cryo-electron tomography, as well as associated techniques such as the preparation and handling of vitrified sections of cellular specimens.

  16. Improving accuracy of electron density measurement in the presence of metallic implants using orthovoltage computed tomography

    SciTech Connect

    Yang Ming; Virshup, Gary; Mohan, Radhe; Shaw, Chris C.; Zhu, X. Ronald; Dong Lei

    2008-05-15

    The goal of this study was to evaluate the improvement in electron density measurement and metal artifact reduction using orthovoltage computed tomography (OVCT) imaging compared with conventional kilovoltage CT (KVCT). For this study, a bench-top system was constructed with adjustable x-ray tube voltage up to 320 kVp. A commercial tissue-characterization phantom loaded with inserts of various human tissue substitutes was imaged using 125 kVp (KVCT) and 320 kVp (OVCT) x rays. Stoichiometric calibration was performed for both KVCT and OVCT imaging using the Schneider method. The metal inserts--titanium rods and aluminum rods--were used to study the impact of metal artifacts on the electron-density measurements both inside and outside the metal inserts. It was found that the relationships between Hounsfield units and relative electron densities (to water) were more predictable for OVCT than KVCT. Unlike KVCT, the stoichiometric calibration for OVCT was insensitive to the use of tissue substitutes for direct electron density calibration. OVCT was found to significantly reduce metal streak artifacts. Errors in electron-density measurements within uniform tissue substitutes were reduced from 42% (maximum) and 18% (root-mean-square) in KVCT to 12% and 2% in OVCT, respectively. Improvements were also observed inside the metal implants. For the detectors optimized for KVCT, the imaging dose is almost doubled for OVCT for the image quality comparable to KVCT. OVCT may be a good option for high-precision radiotherapy treatment planning, especially for patients with metal implants and especially for charged particle therapy, such as proton therapy.

  17. Breaking the Crowther limit: combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions.

    PubMed

    Hovden, Robert; Ercius, Peter; Jiang, Yi; Wang, Deli; Yu, Yingchao; Abruña, Héctor D; Elser, Veit; Muller, David A

    2014-05-01

    To date, high-resolution (<1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (>6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. PMID:24636875

  18. Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography.

    PubMed

    Galaz-Montoya, Jesús G; Hecksel, Corey W; Baldwin, Philip R; Wang, Eryu; Weaver, Scott C; Schmid, Michael F; Ludtke, Steven J; Chiu, Wah

    2016-06-01

    Single particle cryo-electron tomography (cryoSPT) extracts features from cryo-electron tomograms, followed by 3D classification, alignment and averaging to generate improved 3D density maps of such features. Robust methods to correct for the contrast transfer function (CTF) of the electron microscope are necessary for cryoSPT to reach its resolution potential. Many factors can make CTF correction for cryoSPT challenging, such as lack of eucentricity of the specimen stage, inherent low dose per image, specimen charging, beam-induced specimen motions, and defocus gradients resulting both from specimen tilting and from unpredictable ice thickness variations. Current CTF correction methods for cryoET make at least one of the following assumptions: that the defocus at the center of the image is the same across the images of a tiltseries, that the particles all lie at the same Z-height in the embedding ice, and/or that the specimen, the cryo-electron microscopy (cryoEM) grid and/or the carbon support are flat. These experimental conditions are not always met. We have developed a CTF correction algorithm for cryoSPT without making any of the aforementioned assumptions. We also introduce speed and accuracy improvements and a higher degree of automation to the subtomogram averaging algorithms available in EMAN2. Using motion-corrected images of isolated virus particles as a benchmark specimen, recorded with a DE20 direct detection camera, we show that our CTF correction and subtomogram alignment routines can yield subtomogram averages close to 4/5 Nyquist frequency of the detector under our experimental conditions. PMID:27016284

  19. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging

    NASA Astrophysics Data System (ADS)

    Al-Jamal, Khuloud T.; Nerl, Hannah; Müller, Karin H.; Ali-Boucetta, Hanene; Li, Shouping; Haynes, Peter D.; Jinschek, Joerg R.; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas; Porter, Alexandra E.

    2011-06-01

    Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH3+ were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH3+ were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed

  20. FPGA-Based Front-End Electronics for Positron Emission Tomography

    PubMed Central

    Haselman, Michael; DeWitt, Don; McDougald, Wendy; Lewellen, Thomas K.; Miyaoka, Robert; Hauck, Scott

    2010-01-01

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA’s low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper two such processes, sub-clock rate pulse timing and event localization, will be discussed in detail. We show that timing performed in the FPGA can achieve a resolution that is suitable for small-animal scanners, and will outperform the analog version given a low enough sampling period for the ADC. We will also show that the position of events in the scanner can be determined in real time using a statistical positioning based algorithm. PMID:21961085

  1. Bright-field electron tomography of individual inorganic fullerene-like structures.

    PubMed

    Bar Sadan, Maya; Wolf, Sharon G; Houben, Lothar

    2010-03-01

    Nanotubes and fullerene-like nanoparticles of various inorganic layered compounds have been studied extensively in recent years. Their characterisation on the atomic scale has proven essential for progress in synthesis as well as for the theoretical modelling of their physical properties. We show that with electron tomography it is possible to achieve a reliable reconstruction of the 3D structure of nested WS(2) or MoS(2) fullerene-like and nanotube structures with sub-nanometre resolution using electron microscopes that are not aberration-corrected. Model-based simulations were used to identify imaging parameters, under which structural features such as the shell structure can be retained in the tomogram reconstructed from bright-field micrographs. The isolation of a particle out of an agglomerate for the analysis of a single structure and its interconnection with other particles is facilitated through the tomograms. The internal structure of the layers within the particle alongside the shape and content of its internal void are reconstructed. The tomographic reconstruction yields insights regarding the growth process as well as structural defects, such as non-continuous layers, which relate to the lubrication properties. PMID:20644827

  2. Quantitative analysis of cytoskeletal reorganization during epithelial tissue sealing by large-volume electron tomography.

    PubMed

    Eltsov, Mikhail; Dubé, Nadia; Yu, Zhou; Pasakarnis, Laurynas; Haselmann-Weiss, Uta; Brunner, Damian; Frangakis, Achilleas S

    2015-05-01

    The closure of epidermal openings is an essential biological process that causes major developmental problems such as spina bifida in humans if it goes awry. At present, the mechanism of closure remains elusive. Therefore, we reconstructed a model closure event, dorsal closure in fly embryos, by large-volume correlative electron tomography. We present a comprehensive, quantitative analysis of the cytoskeletal reorganization, enabling separated epidermal cells to seal the epithelium. After establishing contact through actin-driven exploratory filopodia, cells use a single lamella to generate 'roof tile'-like overlaps. These shorten to produce the force, 'zipping' the tissue closed. The shortening overlaps lack detectable actin filament ensembles but are crowded with microtubules. Cortical accumulation of shrinking microtubule ends suggests a force generation mechanism in which cortical motors pull on microtubule ends as for mitotic spindle positioning. In addition, microtubules orient filopodia and lamellae before zipping. Our 4D electron microscopy picture describes an entire developmental process and provides fundamental insight into epidermal closure. PMID:25893916

  3. Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography

    SciTech Connect

    Liberton, Michelle L.; Austin, Jotham R.; Berg, R. H.; Pakrasi, Himadri B.

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  4. Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography

    SciTech Connect

    Liberton, Michelle; Austin II, Jotham R; Berg, R. Howard; Pakrasi, Himadri B

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  5. High-resolution cryo-electron microscopy on macromolecular complexes and cell organelles.

    PubMed

    Hoenger, Andreas

    2014-03-01

    collection exposes its specimens to a large electron dose, which is particularly problematic for frozen-hydrated samples. Currently, cryo-electron tomography is a rapidly emerging technology, on one end driven by the newest developments of hardware such as super-stabile microscopy stages as well as the latest generation of direct electron detectors and cameras. On the other end, success also strongly depends on new software developments on all kinds of fronts such as tilt-series alignment and back-projection procedures that are all adapted to the very low-dose and therefore very noisy primary data. Here, we will review the status quo of cryo-electron microscopy and discuss the future of cellular cryo-electron tomography from data collection to data analysis, CTF-correction of tilt-series, post-tomographic sub-volume averaging, and 3-D particle classification. We will also discuss the pros and cons of plunge freezing of cellular specimens to vitrified sectioning procedures and their suitability for post-tomographic volume averaging despite multiple artifacts that may distort specimens to some degree. PMID:24390311

  6. Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Lei, Dongsheng; Smith, Jessica M.; Zhang, Meng; Tong, Huimin; Zhang, Xing; Lu, Zhuoyang; Liu, Jiankang; Alivisatos, A. Paul; Ren, Gang

    2016-03-01

    DNA base pairing has been used for many years to direct the arrangement of inorganic nanocrystals into small groupings and arrays with tailored optical and electrical properties. The control of DNA-mediated assembly depends crucially on a better understanding of three-dimensional structure of DNA-nanocrystal-hybridized building blocks. Existing techniques do not allow for structural determination of these flexible and heterogeneous samples. Here we report cryo-electron microscopy and negative-staining electron tomography approaches to image, and three-dimensionally reconstruct a single DNA-nanogold conjugate, an 84-bp double-stranded DNA with two 5-nm nanogold particles for potential substrates in plasmon-coupling experiments. By individual-particle electron tomography reconstruction, we obtain 14 density maps at ~2-nm resolution. Using these maps as constraints, we derive 14 conformations of dsDNA by molecular dynamics simulations. The conformational variation is consistent with that from liquid solution, suggesting that individual-particle electron tomography could be an expected approach to study DNA-assembling and flexible protein structure and dynamics.

  7. Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography.

    PubMed

    Zhang, Lei; Lei, Dongsheng; Smith, Jessica M; Zhang, Meng; Tong, Huimin; Zhang, Xing; Lu, Zhuoyang; Liu, Jiankang; Alivisatos, A Paul; Ren, Gang

    2016-01-01

    DNA base pairing has been used for many years to direct the arrangement of inorganic nanocrystals into small groupings and arrays with tailored optical and electrical properties. The control of DNA-mediated assembly depends crucially on a better understanding of three-dimensional structure of DNA-nanocrystal-hybridized building blocks. Existing techniques do not allow for structural determination of these flexible and heterogeneous samples. Here we report cryo-electron microscopy and negative-staining electron tomography approaches to image, and three-dimensionally reconstruct a single DNA-nanogold conjugate, an 84-bp double-stranded DNA with two 5-nm nanogold particles for potential substrates in plasmon-coupling experiments. By individual-particle electron tomography reconstruction, we obtain 14 density maps at ∼2-nm resolution. Using these maps as constraints, we derive 14 conformations of dsDNA by molecular dynamics simulations. The conformational variation is consistent with that from liquid solution, suggesting that individual-particle electron tomography could be an expected approach to study DNA-assembling and flexible protein structure and dynamics. PMID:27025159

  8. Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography

    PubMed Central

    Zhang, Lei; Lei, Dongsheng; Smith, Jessica M.; Zhang, Meng; Tong, Huimin; Zhang, Xing; Lu, Zhuoyang; Liu, Jiankang; Alivisatos, A. Paul; Ren, Gang

    2016-01-01

    DNA base pairing has been used for many years to direct the arrangement of inorganic nanocrystals into small groupings and arrays with tailored optical and electrical properties. The control of DNA-mediated assembly depends crucially on a better understanding of three-dimensional structure of DNA-nanocrystal-hybridized building blocks. Existing techniques do not allow for structural determination of these flexible and heterogeneous samples. Here we report cryo-electron microscopy and negative-staining electron tomography approaches to image, and three-dimensionally reconstruct a single DNA-nanogold conjugate, an 84-bp double-stranded DNA with two 5-nm nanogold particles for potential substrates in plasmon-coupling experiments. By individual-particle electron tomography reconstruction, we obtain 14 density maps at ∼2-nm resolution. Using these maps as constraints, we derive 14 conformations of dsDNA by molecular dynamics simulations. The conformational variation is consistent with that from liquid solution, suggesting that individual-particle electron tomography could be an expected approach to study DNA-assembling and flexible protein structure and dynamics. PMID:27025159

  9. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

    PubMed Central

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

    2009-01-01

    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  10. 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography

    PubMed Central

    2015-01-01

    The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap and carries great potential to impact areas such as data storage, sensing, and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nm by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic nonplanar nanodevices. PMID:27182110

  11. Direct Visualization of HIV-1 with Correlative Live-Cell Microscopy and Cryo-Electron Tomography

    PubMed Central

    Jun, Sangmi; Ke, Danxia; Debiec, Karl; Zhao, Gongpu; Meng, Xin; Ambrose, Zandrea; Gibson, Gregory A.; Watkins, Simon C.; Zhang, Peijun

    2011-01-01

    SUMMARY Cryo-electron tomography (cryoET) allows 3D visualization of cellular structures at molecular resolution in a close-to-native state, and therefore has the potential to help elucidate early events of HIV-1 infection in host cells. However, direct observation of structural details of infecting HIV-1 has not been realized due to technological challenges in working with rare and dynamic HIV-1 particles in human cells. Here, we report structural analysis of HIV-1 and host-cell interactions by developing a correlative high-speed 3D live-cell imaging and cryoET method. Using this methodology, we showed, for the first time under near-native conditions, that intact hyperstable mutant HIV-1 cores are released into the cytoplasm of host-cells. We further obtained direct evidence to suggest that a hyperstable mutant capsid, E45A, delayed capsid disassembly compared to the wild-type capsid. Together, these results demonstrate the advantage of our correlative live-cell and cryoET approach to image dynamic processes, such as viral infection. PMID:22078557

  12. Automated tracing of filaments in 3D electron tomography reconstructions using Sculptor and Situs.

    PubMed

    Rusu, Mirabela; Starosolski, Zbigniew; Wahle, Manuel; Rigort, Alexander; Wriggers, Willy

    2012-05-01

    The molecular graphics program Sculptor and the command-line suite Situs are software packages for the integration of biophysical data across spatial resolution scales. Herein, we provide an overview of recently developed tools relevant to cryo-electron tomography (cryo-ET), with an emphasis on functionality supported by Situs 2.7.1 and Sculptor 2.1.1. We describe a work flow for automatically segmenting filaments in cryo-ET maps including denoising, local normalization, feature detection, and tracing. Tomograms of cellular actin networks exhibit both cross-linked and bundled filament densities. Such filamentous regions in cryo-ET data sets can then be segmented using a stochastic template-based search, VolTrac. The approach combines a genetic algorithm and a bidirectional expansion with a tabu search strategy to localize and characterize filamentous regions. The automated filament segmentation by VolTrac compares well to a manual one performed by expert users, and it allows an efficient and reproducible analysis of large data sets. The software is free, open source, and can be used on Linux, Macintosh or Windows computers. PMID:22433493

  13. Examination of Scanning Electron Microscope and Computed Tomography Images of PICA

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery

    2010-01-01

    Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).

  14. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography.

    PubMed

    Xu, Rui; Chen, Chien-Chun; Wu, Li; Scott, M C; Theis, W; Ophus, Colin; Bartels, Matthias; Yang, Yongsoo; Ramezani-Dakhel, Hadi; Sawaya, Michael R; Heinz, Hendrik; Marks, Laurence D; Ercius, Peter; Miao, Jianwei

    2015-11-01

    Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. Here, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ∼19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field and the full strain tensor with a 3D resolution of ∼1 nm(3) and a precision of ∼10(-3), which are further verified by density functional theory calculations and molecular dynamics simulations. The ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology. PMID:26390325

  15. Native cellular architecture of Treponema denticola revealed by cryo-electron tomography

    PubMed Central

    Izard, Jacques; Hsieh, Chyong-Ere; Limberger, Ronald J.; Mannella, Carmen A.; Marko, Michael

    2008-01-01

    Using cryo-electron tomography, we are developing a refined description of native cellular structures in the pathogenic spirochete Treponema denticola. Tightly organized bundles of periplasmic flagella were readily observed in intact plunge-frozen cells. The periplasmic space was measured in both wild-type and aflagellate strains, and found to widen by less than the diameter of flagella when the latter are present. This suggests that a structural change occurs in the peptidoglycan layer to accommodate the presence of the flagella. In dividing cells, the flagellar filaments were found to bridge the cytoplasmic cylinder constriction site. Cytoplasmic filaments, adjacent to the inner membrane, run parallel to the tightly organized flagellar filaments. The cytoplasmic filaments may be anchored by a narrow plate-like structure. The tapering of the cell ends was conserved between cells, with a patella-shaped structure observed in the periplasm at the tip of each cytoplasmic cylinder. Several incompletely characterized structures have been observed in the periplasm between dividing cells, including a cable-like structure linking two cytoplasmic cylinders and complex foil-shaped structures. PMID:18468917

  16. Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering

    PubMed Central

    Fernández-Busnadiego, Rubén; Asano, Shoh; Oprisoreanu, Ana-Maria; Sakata, Eri; Doengi, Michael; Kochovski, Zdravko; Zürner, Magdalena; Stein, Valentin; Schoch, Susanne; Baumeister, Wolfgang

    2013-01-01

    Synaptic vesicles are embedded in a complex filamentous network at the presynaptic terminal. Before fusion, vesicles are linked to the active zone (AZ) by short filaments (tethers). The identity of the molecules that form and regulate tethers remains unknown, but Rab3-interacting molecule (RIM) is a prominent candidate, given its central role in AZ organization. In this paper, we analyzed presynaptic architecture of RIM1α knockout (KO) mice by cryo–electron tomography. In stark contrast to previous work on dehydrated, chemically fixed samples, our data show significant alterations in vesicle distribution and AZ tethering that could provide a structural basis for the functional deficits of RIM1α KO synapses. Proteasome inhibition reversed these structural defects, suggesting a functional recovery confirmed by electrophysiological recordings. Altogether, our results not only point to the ubiquitin–proteasome system as an important regulator of presynaptic architecture and function but also show that the tethering machinery plays a critical role in exocytosis, converging into a structural model of synaptic vesicle priming by RIM1α. PMID:23712261

  17. Anchoring structure of the calvarial periosteum revealed by focused ion beam/scanning electron microscope tomography

    PubMed Central

    Hirashima, Shingo; Ohta, Keisuke; Kanazawa, Tomonoshin; Uemura, Kei-ichiro; Togo, Akinobu; Yoshitomi, Munetake; Okayama, Satoko; Kusukawa, Jingo; Nakamura, Kei-ichiro

    2015-01-01

    An important consideration in regeneration therapy is the fact that the tissue surrounding an organ supports its function. Understanding the structure of the periosteum can contribute to more effective bone regeneration therapy. As a cellular source, the periosteum also assists bone growth and fracture healing; this further necessitates its direct contact with the bone. However, its anchoring strength appears to be inexplicably stronger than expected. In this study, we used focused ion beam/scanning electron microscope tomography to investigate ultrathin serial sections as well as the three dimensional ultrastructure of the periosteum to clarify the architecture of its anchoring strength, as such assessments are challenging using conventional methods. We discovered perforating fibres that arise from the bone surface at 30 degree angles. Additionally, the fibres across the osteoblast layer were frequently interconnected to form a net-like structure. Fibroblast processes were observed extending into the perforating fibres; their morphologies were distinct from those of typical fibroblasts. Thus, our study revealed novel ultrastructures of the periosteum that support anchorage and serve as a cellular source as well as a mechanical stress transmitter. PMID:26627533

  18. Electron tomography image reconstruction using data-driven adaptive compressed sensing.

    PubMed

    Al-Afeef, Ala'; Cockshott, W Paul; MacLaren, Ian; McVitie, Stephen

    2016-05-01

    Electron tomography (ET) is an increasingly important technique for the study of the three-dimensional morphologies of nanostructures. ET involves the acquisition of a set of two-dimensional projection images, followed by the reconstruction into a volumetric image by solving an inverse problem. However, due to limitations in the acquisition process, this inverse problem is ill-posed (i.e., a unique solution may not exist). Furthermore, reconstruction usually suffers from missing wedge artifacts (e.g., star, fan, blurring, and elongation artifacts). Recently, compressed sensing (CS) has been applied to ET and showed promising results for reducing missing wedge artifacts. This uses image sparsity as a priori knowledge to improve the accuracy of reconstruction, and can require fewer projections than other reconstruction techniques. The performance of CS relies heavily on the degree of sparsity in the selected transform domain and this depends essentially on the choice of sparsifying transform. We propose a new image reconstruction algorithm for ET that learns the sparsifying transform adaptively using a dictionary-based approach. We demonstrate quantitatively using simulations from complex phantoms that this new approach reconstructs the morphology with higher fidelity than either analytically based CS reconstruction algorithms or traditional weighted back projection from the same dataset. SCANNING 38:251-276, 2016. © 2015 Wiley Periodicals, Inc. PMID:26435074

  19. Hidden structural features of multicompartment micelles revealed by cryogenic transmission electron tomography.

    PubMed

    Löbling, Tina I; Haataja, Johannes S; Synatschke, Christopher V; Schacher, Felix H; Müller, Melanie; Hanisch, Andreas; Gröschel, André H; Müller, Axel H E

    2014-11-25

    The demand for ever more complex nanostructures in materials and soft matter nanoscience also requires sophisticated characterization tools for reliable visualization and interpretation of internal morphological features. Here, we address both aspects and present synthetic concepts for the compartmentalization of nanoparticle peripheries as well as their in situ tomographic characterization. We first form negatively charged spherical multicompartment micelles from ampholytic triblock terpolymers in aqueous media, followed by interpolyelectrolyte complex (IPEC) formation of the anionic corona with bis-hydrophilic cationic/neutral diblock copolymers. At a 1:1 stoichiometric ratio of anionic and cationic charges, the so-formed IPECs are charge neutral and thus phase separate from solution (water). The high chain density of the ionic grafts provides steric stabilization through the neutral PEO corona of the grafted diblock copolymer and suppresses collapse of the IPEC; instead, the dense grafting results in defined nanodomains oriented perpendicular to the micellar core. We analyze the 3D arrangements of the complex and purely organic compartments, in situ, by means of cryogenic transmission electron microscopy (cryo-TEM) and tomography (cryo-ET). We study the effect of block lengths of the cationic and nonionic block on IPEC morphology, and while 2D cryo-TEM projections suggest similar morphologies, cryo-ET and computational 3D reconstruction reveal otherwise hidden structural features, e.g., planar IPEC brushes emanating from the micellar core. PMID:25195820

  20. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Chen, Chien-Chun; Wu, Li; Scott, M. C.; Theis, W.; Ophus, Colin; Bartels, Matthias; Yang, Yongsoo; Ramezani-Dakhel, Hadi; Sawaya, Michael R.; Heinz, Hendrik; Marks, Laurence D.; Ercius, Peter; Miao, Jianwei

    2015-11-01

    Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. Here, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ~19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field and the full strain tensor with a 3D resolution of ~1 nm3 and a precision of ~10-3, which are further verified by density functional theory calculations and molecular dynamics simulations. The ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.

  1. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography

    PubMed Central

    Engel, Benjamin D; Schaffer, Miroslava; Kuhn Cuellar, Luis; Villa, Elizabeth; Plitzko, Jürgen M; Baumeister, Wolfgang

    2015-01-01

    Chloroplast function is orchestrated by the organelle's intricate architecture. By combining cryo-focused ion beam milling of vitreous Chlamydomonas cells with cryo-electron tomography, we acquired three-dimensional structures of the chloroplast in its native state within the cell. Chloroplast envelope inner membrane invaginations were frequently found in close association with thylakoid tips, and the tips of multiple thylakoid stacks converged at dynamic sites on the chloroplast envelope, implicating lipid transport in thylakoid biogenesis. Subtomogram averaging and nearest neighbor analysis revealed that RuBisCO complexes were hexagonally packed within the pyrenoid, with ∼15 nm between their centers. Thylakoid stacks and the pyrenoid were connected by cylindrical pyrenoid tubules, physically bridging the sites of light-dependent photosynthesis and light-independent carbon fixation. Multiple parallel minitubules were bundled within each pyrenoid tubule, possibly serving as conduits for the targeted one-dimensional diffusion of small molecules such as ATP and sugars between the chloroplast stroma and the pyrenoid matrix. DOI: http://dx.doi.org/10.7554/eLife.04889.001 PMID:25584625

  2. Molecular architecture of axonemal microtubule doublets revealedby cryo-electron tomography

    SciTech Connect

    Sui, Haixin; Downing, Kenneth H.

    2006-05-22

    The axoneme, which forms the core of eukaryotic flagella and cilia, is one of the largest macromolecular machines with a structure that is largely conserved from protists to mammals. Microtubule doublets are structural components of axonemes containing a number of proteins besides tubulin, and are usually found in arrays of nine doublets arranged around two singlet microtubules. Coordinated sliding of adjacent doublets, which involves a host of other proteins in the axoneme, produces periodic beating movements of the axoneme. We have obtained a 3D density map of intact microtubule doublets using cryo-electron tomography and image averaging. Our map, with a resolution of about 3 nm, provides insights into locations of particular proteins within the doublets and the structural features of the doublets that define their mechanical properties. We identify likely candidates for several of these non-tubulin components of the doublets. This work offers novel insight on how tubulin protofilaments and accessory proteins attach together to form the doublets and provides a structural basis for understanding doublet function in axonemes.

  3. Whole Cell Cryo-Electron Tomography Reveals Distinct Disassembly Intermediates of Vaccinia Virus

    PubMed Central

    Cyrklaff, Marek; Linaroudis, Alexandros; Boicu, Marius; Chlanda, Petr; Baumeister, Wolfgang; Griffiths, Gareth; Krijnse-Locker, Jacomine

    2007-01-01

    At each round of infection, viruses fall apart to release their genome for replication, and then reassemble into stable particles within the same host cell. For most viruses, the structural details that underlie these disassembly and assembly reactions are poorly understood. Cryo-electron tomography (cryo-ET), a unique method to investigate large and asymmetric structures at the near molecular resolution, was previously used to study the complex structure of vaccinia virus (VV). Here we study the disassembly of VV by cryo-ET on intact, rapidly frozen, mammalian cells, infected for up to 60 minutes. Binding to the cell surface induced distinct structural rearrangements of the core, such as a shape change, the rearrangement of its surface spikes and de-condensation of the viral DNA. We propose that the cell surface induced changes, in particular the decondensation of the viral genome, are a prerequisite for the subsequent release of the vaccinia DNA into the cytoplasm, which is followed by its cytoplasmic replication. Generally, this is the first study that employs whole cell cryo-ET to address structural details of pathogen-host cell interaction. PMID:17487274

  4. Direct visualization of vaults within intact cells by electron cryo-tomography.

    PubMed

    Woodward, Cora L; Mendonça, Luiza M; Jensen, Grant J

    2015-09-01

    The vault complex is the largest cellular ribonucleoprotein complex ever characterized and is present across diverse Eukarya. Despite significant information regarding the structure, composition and evolutionary conservation of the vault, little is know about the complex's actual biological function. To determine if intracellular vaults are morphologically similar to previously studied purified and recombinant vaults, we have used electron cryo-tomography to characterize the vault complexes found in the thin edges of primary human cells growing in tissue culture. Our studies confirm that intracellular vaults are similar in overall size and shape to purified and recombinant vaults previously analyzed. Results from subtomogram averaging indicate that densities within the vault lumen are not ordered, but randomly distributed. We also observe that vaults located in the extreme periphery of the cytoplasm predominately associate with granule-like structures and actin. Our ultrastructure studies augment existing biochemical, structural and genetic information on the vault, and provide important intracellular context for the ongoing efforts to understand the biological function of the native cytoplasmic vault. PMID:25864047

  5. Native Ultrastructure of the Red Cell Cytoskeleton by Cryo-Electron Tomography

    PubMed Central

    Nans, Andrea; Mohandas, Narla; Stokes, David L.

    2011-01-01

    Erythrocytes possess a spectrin-based cytoskeleton that provides elasticity and mechanical stability necessary to survive the shear forces within the microvasculature. The architecture of this membrane skeleton and the nature of its intermolecular contacts determine the mechanical properties of the skeleton and confer the characteristic biconcave shape of red cells. We have used cryo-electron tomography to evaluate the three-dimensional topology in intact, unexpanded membrane skeletons from mouse erythrocytes frozen in physiological buffer. The tomograms reveal a complex network of spectrin filaments converging at actin-based nodes and a gradual decrease in both the density and the thickness of the network from the center to the edge of the cell. The average contour length of spectrin filaments connecting junctional complexes is 46 ± 15 nm, indicating that the spectrin heterotetramer in the native membrane skeleton is a fraction of its fully extended length (∼190 nm). Higher-order oligomers of spectrin were prevalent, with hexamers and octamers seen between virtually every junctional complex in the network. Based on comparisons with expanded skeletons, we propose that the oligomeric state of spectrin is in a dynamic equilibrium that facilitates remodeling of the network as the cell changes shape in response to shear stress. PMID:22098732

  6. Native cellular architecture of Treponema denticola revealed by cryo-electron tomography.

    PubMed

    Izard, Jacques; Hsieh, Chyong-Ere; Limberger, Ronald J; Mannella, Carmen A; Marko, Michael

    2008-07-01

    Using cryo-electron tomography, we are developing a refined description of native cellular structures in the pathogenic spirochete Treponema denticola. Tightly organized bundles of periplasmic flagella were readily observed in intact plunge-frozen cells. The periplasmic space was measured in both wild-type and aflagellate strains, and found to widen by less than the diameter of flagella when the latter are present. This suggests that a structural change occurs in the peptidoglycan layer to accommodate the presence of the flagella. In dividing cells, the flagellar filaments were found to bridge the cytoplasmic cylinder constriction site. Cytoplasmic filaments, adjacent to the inner membrane, run parallel to the tightly organized flagellar filaments. The cytoplasmic filaments may be anchored by a narrow plate-like structure. The tapering of the cell ends was conserved between cells, with a patella-shaped structure observed in the periplasm at the tip of each cytoplasmic cylinder. Several incompletely characterized structures have been observed in the periplasm between dividing cells, including a cable-like structure linking two cytoplasmic cylinders and complex foil-shaped structures. PMID:18468917

  7. Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete.

    PubMed

    Izard, Jacques; Renken, Christian; Hsieh, Chyong-Ere; Desrosiers, Daniel C; Dunham-Ems, Star; La Vake, Carson; Gebhardt, Linda L; Limberger, Ronald J; Cox, David L; Marko, Michael; Radolf, Justin D

    2009-12-01

    Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space. Although the outer membrane (OM) generally was smooth in contour, OM extrusions and blebs frequently were observed, highlighting the structure's fluidity and lack of attachment to underlying periplasmic constituents. Cytoplasmic filaments converged from their attachment points opposite the basal bodies to form arrays that ran roughly parallel to the flagellar filaments along the inner surface of the cytoplasmic membrane (CM). Motile treponemes stably attached to rabbit epithelial cells predominantly via their tips. CET revealed that T. pallidum cell ends have a complex morphology and assume at least four distinct morphotypes. Images of dividing treponemes and organisms shedding cell envelope-derived blebs provided evidence for the spirochete's complex membrane biology. In the regions without flagellar filaments, peptidoglycan (PG) was visualized as a thin layer that divided the periplasmic space into zones of higher and lower electron densities adjacent to the CM and OM, respectively. Flagellar filaments were observed overlying the PG layer, while image modeling placed the PG-basal body contact site in the vicinity of the stator-P-collar junction. Bioinformatics and homology modeling indicated that the MotB proteins of T. pallidum, Treponema denticola, and Borrelia burgdorferi have membrane topologies and PG binding sites highly similar to those of their well-characterized Escherichia coli and Helicobacter pylori orthologs. Collectively, our results help to clarify fundamental differences in cell envelope ultrastructure between spirochetes and gram-negative bacteria. They also confirm that PG stabilizes the flagellar motor

  8. Localize.pytom: a modern webserver for cryo-electron tomography.

    PubMed

    Hrabe, Thomas

    2015-07-01

    Localize.pytom, available through http://localize.pytom.org is a webserver for the localize module in the PyTom package. It is a free website and open to all users and there is no login requirement. The server accepts tomograms as they are imaged and reconstructed by Cryo-Electron Tomography (CET) and returns densities and coordinates of candidate-macromolecules in the tomogram. Localization of macromolecules in cryo-electron tomograms is one of the key procedures to unravel structural features of imaged macromolecules. Positions of localized molecules are further used for structural analysis by single particle procedures such as fine alignment, averaging and classification. Accurate localization can be furthermore used to generate molecular atlases of whole cells. Localization uses a cross-correlation-based score and requires a reference volume as input. A reference can either be a previously detected macromolecular structure or extrapolated on the server from a specific PDB chain. Users have the option to use either coarse or fine angular sampling strategies based on uniformly distributed rotations and to accurately compensate for the CET common 'Missing Wedge' artefact during sampling. After completion, all candidate macromolecules cut out from the tomogram are available for download. Their coordinates are stored and available in XML format, which can be easily integrated into successive analysis steps in other software. A pre-computed average of the first one hundred macromolecules is also available for immediate download, and the user has the option to further analyse the average, based on the detected score distribution in a novel web-density viewer. PMID:25934806

  9. Cryo-Electron Tomography Elucidates the Molecular Architecture of Treponema pallidum, the Syphilis Spirochete▿ †

    PubMed Central

    Izard, Jacques; Renken, Christian; Hsieh, Chyong-Ere; Desrosiers, Daniel C.; Dunham-Ems, Star; La Vake, Carson; Gebhardt, Linda L.; Limberger, Ronald J.; Cox, David L.; Marko, Michael; Radolf, Justin D.

    2009-01-01

    Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space. Although the outer membrane (OM) generally was smooth in contour, OM extrusions and blebs frequently were observed, highlighting the structure's fluidity and lack of attachment to underlying periplasmic constituents. Cytoplasmic filaments converged from their attachment points opposite the basal bodies to form arrays that ran roughly parallel to the flagellar filaments along the inner surface of the cytoplasmic membrane (CM). Motile treponemes stably attached to rabbit epithelial cells predominantly via their tips. CET revealed that T. pallidum cell ends have a complex morphology and assume at least four distinct morphotypes. Images of dividing treponemes and organisms shedding cell envelope-derived blebs provided evidence for the spirochete's complex membrane biology. In the regions without flagellar filaments, peptidoglycan (PG) was visualized as a thin layer that divided the periplasmic space into zones of higher and lower electron densities adjacent to the CM and OM, respectively. Flagellar filaments were observed overlying the PG layer, while image modeling placed the PG-basal body contact site in the vicinity of the stator-P-collar junction. Bioinformatics and homology modeling indicated that the MotB proteins of T. pallidum, Treponema denticola, and Borrelia burgdorferi have membrane topologies and PG binding sites highly similar to those of their well-characterized Escherichia coli and Helicobacter pylori orthologs. Collectively, our results help to clarify fundamental differences in cell envelope ultrastructure between spirochetes and gram-negative bacteria. They also confirm that PG stabilizes the flagellar motor

  10. Compensation of Missing Wedge Effects with Sequential Statistical Reconstruction in Electron Tomography

    PubMed Central

    Tuna, Uygar; Peltonen, Sari; Moriya, Toshio; Soonsawad, Pan; Marjomäki, Varpu; Cheng, R. Holland; Ruotsalainen, Ulla

    2014-01-01

    Electron tomography (ET) of biological samples is used to study the organization and the structure of the whole cell and subcellular complexes in great detail. However, projections cannot be acquired over full tilt angle range with biological samples in electron microscopy. ET image reconstruction can be considered an ill-posed problem because of this missing information. This results in artifacts, seen as the loss of three-dimensional (3D) resolution in the reconstructed images. The goal of this study was to achieve isotropic resolution with a statistical reconstruction method, sequential maximum a posteriori expectation maximization (sMAP-EM), using no prior morphological knowledge about the specimen. The missing wedge effects on sMAP-EM were examined with a synthetic cell phantom to assess the effects of noise. An experimental dataset of a multivesicular body was evaluated with a number of gold particles. An ellipsoid fitting based method was developed to realize the quantitative measures elongation and contrast in an automated, objective, and reliable way. The method statistically evaluates the sub-volumes containing gold particles randomly located in various parts of the whole volume, thus giving information about the robustness of the volume reconstruction. The quantitative results were also compared with reconstructions made with widely-used weighted backprojection and simultaneous iterative reconstruction technique methods. The results showed that the proposed sMAP-EM method significantly suppresses the effects of the missing information producing isotropic resolution. Furthermore, this method improves the contrast ratio, enhancing the applicability of further automatic and semi-automatic analysis. These improvements in ET reconstruction by sMAP-EM enable analysis of subcellular structures with higher three-dimensional resolution and contrast than conventional methods. PMID:25279759

  11. Localize.pytom: a modern webserver for cryo-electron tomography

    PubMed Central

    Hrabe, Thomas

    2015-01-01

    Localize.pytom, available through http://localize.pytom.org is a webserver for the localize module in the PyTom package. It is a free website and open to all users and there is no login requirement. The server accepts tomograms as they are imaged and reconstructed by Cryo-Electron Tomography (CET) and returns densities and coordinates of candidate-macromolecules in the tomogram. Localization of macromolecules in cryo-electron tomograms is one of the key procedures to unravel structural features of imaged macromolecules. Positions of localized molecules are further used for structural analysis by single particle procedures such as fine alignment, averaging and classification. Accurate localization can be furthermore used to generate molecular atlases of whole cells. Localization uses a cross-correlation-based score and requires a reference volume as input. A reference can either be a previously detected macromolecular structure or extrapolated on the server from a specific PDB chain. Users have the option to use either coarse or fine angular sampling strategies based on uniformly distributed rotations and to accurately compensate for the CET common ‘Missing Wedge’ artefact during sampling. After completion, all candidate macromolecules cut out from the tomogram are available for download. Their coordinates are stored and available in XML format, which can be easily integrated into successive analysis steps in other software. A pre-computed average of the first one hundred macromolecules is also available for immediate download, and the user has the option to further analyse the average, based on the detected score distribution in a novel web-density viewer. PMID:25934806

  12. High-temperature flow field's electron number density measurement by two-wavelength moiré tomography.

    PubMed

    Chen, Yun-Yun; Song, Yang; Gu, Fang; Shao, Shao-Feng; Zhang, Ying-Ying

    2016-04-01

    In this Letter, a direct method is proposed to measure the electron number density distribution for high-temperature complex flow fields. The experimental system of two-wavelength moiré tomography is established, while four key issues are solved and well clarified. The argon arc plasma is adopted as an example for experiment, while 532 and 808 nm are chosen as the two probe wavelengths. The results indicate that the electron number density's distribution of the measured argon arc plasma can be directly obtained by two-wavelength moiré tomography, which can avoid the imprecision of the indirect methods. This Letter can provide some reference for various high-temperature and high-density gradient flow field optical measurement and diagnosis. PMID:27192307

  13. Sub-micron resolution high-speed spectral domain optical coherence tomography in quality inspection for printed electronics

    NASA Astrophysics Data System (ADS)

    Czajkowski, J.; Lauri, J.; Sliz, R.; Fält, P.; Fabritius, T.; Myllylä, R.; Cense, B.

    2012-04-01

    We present the use of sub-micron resolution optical coherence tomography (OCT) in quality inspection for printed electronics. The device used in the study is based on a supercontinuum light source, Michelson interferometer and high-speed spectrometer. The spectrometer in the presented spectral-domain optical coherence tomography setup (SD-OCT) is centered at 600 nm and covers a 400 nm wide spectral region ranging from 400 nm to 800 nm. Spectra were acquired at a continuous rate of 140,000 per second. The full width at half maximum of the point spread function obtained from a Parylene C sample was 0:98 m. In addition to Parylene C layers, the applicability of sub-micron SD-OCT in printed electronics was studied using PET and epoxy covered solar cell, a printed RFID antenna and a screen-printed battery electrode. A commercial SD-OCT system was used for reference measurements.

  14. 3 D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography.

    PubMed

    González, J C; Hernández, J C; López-Haro, M; del Río, E; Delgado, J J; Hungría, A B; Trasobares, S; Bernal, S; Midgley, P A; Calvino, José Juan

    2009-01-01

    Living on the edge: Three-dimensional reconstructions from electron tomography data recorded from Au/Ce(0.50)Tb(0.12)Zr(0.38)O(2-x) catalysts show that gold nanoparticles (see picture; yellow) are preferentially located on stepped facets and nanocrystal boundaries. An epitaxial relationship between the metal and support plays a key role in the structural stabilization of the gold nanoparticles. PMID:19544338

  15. Visualization of the Herpes Simplex Virus Portal in situ by Cryo-electron Tomography

    PubMed Central

    Cardone, Giovanni; Winkler, Dennis C.; Trus, Benes L.; Cheng, Naiqian; Heuser, John E.; Newcomb, William W.; Brown, Jay C.; Steven, Alasdair C.

    2007-01-01

    Herpes simplex virus type 1 (HSV-1), the prototypical herpesvirus, has an icosahedral nucleocapsid surrounded by a proteinaceous tegument and a lipoprotein envelope. As in tailed bacteriophages, the icosahedral symmetry of the capsid is broken at one of the twelve vertices, which is occupied by a dodecameric ring of portal protein, UL6, instead of a pentamer of the capsid protein, UL19. The portal ring serves as a conduit for DNA entering and exiting the capsid. From a cryo-EM reconstruction of capsids immuno-gold-labeled with anti-UL6 antibodies, we confirmed that UL6 resides at a vertex. To visualize the portal in the context of the assembled capsid, we used cryo-electron tomography to determine the three-dimensional structures of individual A-capsids (empty, mature capsids). The similarity in size and overall shape of the portal and a UL19 pentamer - both are cylinders of ~ 800 kDa - combined with residual noise in the tomograms, prevented us from identifying the portal vertices directly; however, this was accomplished by a computational classification procedure. Averaging the portal-containing subtomograms produced a structure that tallies with the isolated portal, as previously reconstructed by cryo-EM. The portal is mounted on the outer surface of the capsid floor layer, with its narrow end pointing outwards. This disposition differs from that of known phage portals in that the bulk of its mass lies outside, not inside, the floor. This distinction may be indicative of functional divergence at the level of portal-related functions other than its role as a DNA channel. PMID:17188319

  16. Three-Dimensional Morphological Analysis of ALH84001 Magnetite Using Electron Tomography

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Shimmin, Joel; Morphew, Mary; McIntosh, J. Richard; Bazylinski, Dennis A.; Kirschvink, Joseph L.; Wentworth, Susan J.; McKay, David S.; Vali, Hojatollah

    2003-01-01

    We report here the crystal morphologies of MV-1 and ALH84001 magnetites as calculated by back-projection using electron tomography. In the present study, we used a 300 keV TEM with a field emission gun (Tecnai F-30 from FEI Inc.), equipped with a 2048 x 2048 pixel CCD camera from Gatan Inc. to image magnetite crystals over tilt ranges of approx. +/- 72 deg in 2 deg tilt intervals. The images were aligned for back-projection, either manually, or through the use of fiducial 5 nm Au spheres affixed to the specimen prior to microscopy. Three-dimensional (3-D) reconstructions were computed using weighted back-projection of the tilted views. The tomograms were viewed and analyzed as a series of slices 1.0 nm thick, taken parallel to the specimen-supporting grid, using the IMOD software package. The shape of each magnetite crystal was determined by defining the external contour of a given magnetite in each slice and assembling a stack of these contours in 3-D. To aid in visualization, the stacked contour array was reduced to an optimal mesh by Delaunay triangulation. The surface normal to each of the triangles in the mesh was calculated and the triangle faces colored according to the orientation of that surface normal relative to the principal crystallographic axis of magnetite. Green surfaces correspond to {111} orientations, blue surfaces to {100} orientations, and red surfaces to {110} orientations. Triangles whose surface normal did not correspond to one of the principal axes were colored gray. Within the experimental and numerical uncertainties of the deconvolution, the tomographic reconstruction of both MV-1 and ALH84001 magnetites are equivalent and correspond to a truncated hexa-octahedral morphology.

  17. Three-dimensional reconstruction of axonemal outer dynein arms in situ by electron tomography.

    PubMed

    Lupetti, Pietro; Lanzavecchia, Salvatore; Mercati, David; Cantele, Francesca; Dallai, Romano; Mencarelli, Caterina

    2005-10-01

    We present here for the first time a 3D reconstruction of in situ axonemal outer dynein arms. This reconstruction has been obtained by electron tomography applied to a series of tilted images collected from metal replicas of rapidly frozen, cryofractured, and metal-replicated sperm axonemes of the cecidomid dipteran Monarthropalpus flavus. This peculiar axonemal model consists of several microtubular laminae that proved to be particularly suitable for this type of analysis. These laminae are sufficiently planar to allow the visualization of many dynein molecules within the same fracture face, allowing us to recover a significant number of equivalent objects and to improve the signal-to-noise ratio of the reconstruction by applying advanced averaging protocols. The 3D model we obtained showed the following interesting structural features: First, each dynein arm has two head domains that are almost parallel and are obliquely oriented with respect to the longitudinal axis of microtubules. The two heads are therefore positioned at different distances from the surface of the A-tubule. Second, each head domain consists of a series of globular subdomains that are positioned on the same plane. Third, a stalk domain originates as a conical region from the proximal head and ends with a small globular domain that contacts the B-tubule. Fourth, the stem region comprises several globular subdomains and presents two distinct points of anchorage to the surface of the A-tubule. Finally, and most importantly, contrary to what has been observed in isolated dynein molecules adsorbed to flat surfaces, the stalk and the stem domains are not in the same plane as the head. PMID:16106450

  18. Automatic detection of mitochondria from electron microscope tomography images: a curve fitting approach

    NASA Astrophysics Data System (ADS)

    Tasel, Serdar F.; Hassanpour, Reza; Mumcuoglu, Erkan U.; Perkins, Guy C.; Martone, Maryann

    2014-03-01

    Mitochondria are sub-cellular components which are mainly responsible for synthesis of adenosine tri-phosphate (ATP) and involved in the regulation of several cellular activities such as apoptosis. The relation between some common diseases of aging and morphological structure of mitochondria is gaining strength by an increasing number of studies. Electron microscope tomography (EMT) provides high-resolution images of the 3D structure and internal arrangement of mitochondria. Studies that aim to reveal the correlation between mitochondrial structure and its function require the aid of special software tools for manual segmentation of mitochondria from EMT images. Automated detection and segmentation of mitochondria is a challenging problem due to the variety of mitochondrial structures, the presence of noise, artifacts and other sub-cellular structures. Segmentation methods reported in the literature require human interaction to initialize the algorithms. In our previous study, we focused on 2D detection and segmentation of mitochondria using an ellipse detection method. In this study, we propose a new approach for automatic detection of mitochondria from EMT images. First, a preprocessing step was applied in order to reduce the effect of nonmitochondrial sub-cellular structures. Then, a curve fitting approach was presented using a Hessian-based ridge detector to extract membrane-like structures and a curve-growing scheme. Finally, an automatic algorithm was employed to detect mitochondria which are represented by a subset of the detected curves. The results show that the proposed method is more robust in detection of mitochondria in consecutive EMT slices as compared with our previous automatic method.

  19. Visualization of the herpes simplex virus portal in situ by cryo-electron tomography

    SciTech Connect

    Cardone, Giovanni; Winkler, Dennis C.; Trus, Benes L.; Cheng, Naiqian; Heuser, John E.; Newcomb, William W.; Brown, Jay C.; Steven, Alasdair C. . E-mail: Alasdair_Steven@nih.gov

    2007-05-10

    Herpes simplex virus type 1 (HSV-1), the prototypical herpesvirus, has an icosahedral nucleocapsid surrounded by a proteinaceous tegument and a lipoprotein envelope. As in tailed bacteriophages, the icosahedral symmetry of the capsid is broken at one of the 12 vertices, which is occupied by a dodecameric ring of portal protein, UL6, instead of a pentamer of the capsid protein, UL19. The portal ring serves as a conduit for DNA entering and exiting the capsid. From a cryo-EM reconstruction of capsids immuno-gold-labeled with anti-UL6 antibodies, we confirmed that UL6 resides at a vertex. To visualize the portal in the context of the assembled capsid, we used cryo-electron tomography to determine the three-dimensional structures of individual A-capsids (empty, mature capsids). The similarity in size and overall shape of the portal and a UL19 pentamer - both are cylinders of {approx} 800 kDa - combined with residual noise in the tomograms, prevented us from identifying the portal vertices directly; however, this was accomplished by a computational classification procedure. Averaging the portal-containing subtomograms produced a structure that tallies with the isolated portal, as previously reconstructed by cryo-EM. The portal is mounted on the outer surface of the capsid floor layer, with its narrow end pointing outwards. This disposition differs from that of known phage portals in that the bulk of its mass lies outside, not inside, the floor. This distinction may be indicative of divergence at the level of portal-related functions other than its role as a DNA channel.

  20. Structural evolution and strain induced mixing in Cu–Co composites studied by transmission electron microscopy and atom probe tomography

    SciTech Connect

    Bachmaier, A.; Aboulfadl, H.; Pfaff, M.; Mücklich, F.; Motz, C.

    2015-02-15

    A Cu–Co composite material is chosen as a model system to study structural evolution and phase formations during severe plastic deformation. The evolving microstructures as a function of the applied strain were characterized at the micro-, nano-, and atomic scale-levels by combining scanning electron microscopy and transmission electron microscopy including energy-filtered transmission electron microscopy and electron energy-loss spectroscopy. The amount of intermixing between the two phases at different strains was examined at the atomic scale using atom probe tomography as complimentary method. It is shown that Co particles are dissolved in the Cu matrix during severe plastic deformation to a remarkable extent and their size, number, and volume fraction were quantitatively determined during the deformation process. From the results, it can be concluded that supersaturated solid solutions up to 26 at.% Co in a fcc Cu–26 at.% Co alloy are obtained during deformation. However, the distribution of Co was found to be inhomogeneous even at the highest degree of investigated strain. - Highlights: • Structural evolution in a deformed Cu–Co composite is studied on all length scales. • Amount of intermixing is examined by atom-probe tomography. • Supersaturated solid solutions up to 26 at.% Co in Cu are observed.

  1. Regional pulmonary blood flow measurement in humans with electron-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Holt, William W.; Konhilas, John; Wolfkiel, Christopher J.

    1995-05-01

    Electron beam computed tomography (EBCT) is a potentially useful modality to quantitate regional pulmonary flow (RPF) with minimal invasiveness, in part because it has good spatial and temporal resolution. The present studies used a single compartment model of indicator transport and EBCT to measure regional tissue flow in the lungs of human subjects. The model postulates that flow is proportional to maximal enhancement and assumes complete tissue accumulation of indicator before significant indicator washout (WO). EBCT flow studies were retrospectively analyzed with respect to RPF in 10 adult patients who had undergone clinically indicated or research cardiovascular studies. Time density curves from the left atrial (LA) cavity and one-third segments of left (LL) and right (RL) lungs (A: anterior, M: middle, and P: posterior segments) were used to calculate RPF. Washout was determined as the percent of the LA curve at the time of peak parenchymal opacification using gamma curve fits to both tissue data and the LA curve data. Mean +/- standard deviation RPF in ml/min/ml was 0.8 +/- 0.4, 1.1 +/- 0.4, and 1.3 +/- 0.4 for A, M, and P respectively for one-third regions in the left lung. Similar results were found in the right lung. No difference in RPF was found when images were measured either by including the largest of visible parenchymal vessels or when such vessels were excluded. Flow in A of LL and RL was less than that in M or P. Average WO was about 10%, with a range of 0-41% of the LA curve area. There was no significant difference between one-third segment WO using pairwise comparison on the left and right sides when tested separately. RPF values were greater in the posterior vs anterior regions of these supine patients. In conclusion, EBCT can detect gravity related flow differences in the human lung. EBCT has potential for clinical assessment of absolute regional pulmonary flow determination in animals and man.

  2. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  3. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  4. Analysis of Human T-Cell Leukemia Virus Type 1 Particles by Using Cryo-Electron Tomography

    PubMed Central

    Cao, Sheng; Maldonado, José O.; Grigsby, Iwen F.

    2014-01-01

    The particle structure of human T-cell leukemia virus type 1 (HTLV-1) is poorly characterized. Here, we have used cryo-electron tomography to analyze HTLV-1 particle morphology. Particles produced from MT-2 cells were polymorphic, roughly spherical, and varied in size. Capsid cores, when present, were typically poorly defined polyhedral structures with at least one curved region contacting the inner face of the viral membrane. Most of the particles observed lacked a defined capsid core, which likely impacts HTLV-1 particle infectivity. PMID:25473052

  5. Measuring location, size, distribution, and loading of NiO crystallites in individual SBA-15 pores by electron tomography.

    PubMed

    Friedrich, Heiner; Sietsma, Jelle R A; de Jongh, Petra E; Verkleij, Arie J; de Jong, Krijn P

    2007-08-22

    By the combination of electron tomography with image segmentation, the properties of 299 NiO crystallites contained in 6 SBA-15 pores were studied. A statistical analysis of the particle size showed that crystallites between 2 and 6 nm were present with a distribution maximum at 3 and 4 nm, for the number-weighted and volume-weighted curves, respectively. Interparticle distances between nearest neighbors were 1-3 nm with very few isolated crystallites. In the examined pores, a local loading twice the applied average of 24 wt % NiO was found. This suggests that a very high local loading combined with a high dispersion is achievable. PMID:17655305

  6. A study of 3D structure of nighttime electron density enhancement in the mid-latitude ionosphere by GPS tomography

    NASA Astrophysics Data System (ADS)

    Chen, C.; Saito, A.

    2011-12-01

    The mid-latitude summer nighttime anomaly (MSNA) is a feature that the nighttime electron density larger than that in the daytime mid-latitude ionosphere. This anomaly was first detected in the southern hemisphere five decades ago and observed in the northern hemisphere recently by ionosondes and satellites. Previous studies presented the electron density structure of MSNA by using COSMIC occultation data and found that MSNA is clearly seen around 300 km altitude during local summer. However, due to lack of observation, the day-to-day variation of MSNA was not investigated. A GPS tomography method by SPEL of Kyoto University using the total electron content (TEC) data measured by the ground-based GPS receiver network is employed in this study. The wide coverage and continuous observation of GPS receivers are suitable for investigating the spatial and day-to-day variations of ionospheric electron densities. The algorithm of the GPS tomography developed by SPEL of Kyoto University use a constraint condition that the gradient of election density tends to be smooth in the horizontal direction and steep in the vicinity of the F2 peak, instead of inputting the initial conditions. Therefore, the algorithm is independent of any ionospheric and plasmaspheric electron density distribution models. The dense ground-based GPS receiver network around European region is used to study the three dimensional (3D) structure of MSNA with GPS tomography. Results show that the MSNA usually appear around the geomagnetic mid-latitude region during local summer nighttime. The feature of MSNA is most obvious at the ionospheric F2-peak altitudes. The result also shows a day-to-day variation in the formation of MSNA, in terms of the occurrence time, intensity, and spatial extent. The tomographic results are compared with the ionosondes, satellites, and radar measurements. A theoretical model simulation, SAMI2, is also used to further discuss the mechanism of MSNA. The comparison with other

  7. Conical Tomography of a Ribbon Synapse: Structural Evidence for Vesicle Fusion

    PubMed Central

    Zampighi, Guido A.; Schietroma, Cataldo; Zampighi, Lorenzo M.; Woodruff, Michael; Wright, Ernest M.; Brecha, Nicholas C.

    2011-01-01

    To characterize the sites of synaptic vesicle fusion in photoreceptors, we evaluated the three-dimensional structure of rod spherules from mice exposed to steady bright light or dark-adapted for periods ranging from 3 to 180 minutes using conical electron tomography. Conical tilt series from mice retinas were reconstructed using the weighted back projection algorithm, refined by projection matching and analyzed using semiautomatic density segmentation. In the light, rod spherules contained ∼470 vesicles that were hemi-fused and ∼187 vesicles that were fully fused (omega figures) with the plasma membrane. Active zones, defined by the presence of fully fused vesicles, extended along the entire area of contact between the rod spherule and the horizontal cell ending, and included the base of the ribbon, the slope of the synaptic ridge and ribbon-free regions apposed to horizontal cell axonal endings. There were transient changes of the rod spherules during dark adaptation. At early periods in the dark (3–15 minutes), there was a) an increase in the number of fully fused synaptic vesicles, b) a decrease in rod spherule volume, and c) an increase in the surface area of the contact between the rod spherule and horizontal cell endings. These changes partially compensate for the increase in the rod spherule plasma membrane following vesicle fusion. After 30 minutes of dark-adaptation, the rod spherules returned to dimensions similar to those measured in the light. These findings show that vesicle fusion occurs at both ribbon-associated and ribbon-free regions, and that transient changes in rod spherules and horizontal cell endings occur shortly after dark onset. PMID:21390245

  8. Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary alloy exposed to high-temperature water

    SciTech Connect

    Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2013-06-14

    Intergranular oxidation of a Ni-4Al alloy exposed to hydrogenated, high-temperature water was characterized using directly correlated transmission electron microscopy and atom probe tomography. These combined analyses revealed that discrete, well-separated oxides (NiAl2O4) precipitated along grain boundaries in the metal. Aluminum was depleted from the grain boundary between oxides and also from one side of the boundary as a result of grain boundary migration. The discrete oxide morphology, disconnected from the continuous surface oxidation, suggests intergranular solid-state internal oxidation of Al. Keywords: oxidation; grain boundaries; nickel alloys; atom probe tomography; transmission electron microscopy (TEM)

  9. Experimental two-phase flow measurement using ultra fast limited-angle-type electron beam X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Bieberle, M.; Fischer, F.; Schleicher, E.; Koch, D.; Menz, H.-J.; Mayer, H.-G.; Hampel, U.

    2009-09-01

    An experimental evaluation of a novel limited-angle-type ultra fast electron beam X-ray computed tomography approach for the visualization and measurement of a gas-liquid two-phase flow is reported here. With this method, a simple linear electron beam scan is used to produce instantaneous radiographic views of a two-phase flow in a pipe segment of a flow loop. Electron beam scanning can be performed very rapidly, thus a frame rate of 5 kHz is achieved. Radiographic projections are recorded by a very fast detector arc made of zink-cadmium-telluride elements. This detector records the X-ray radiation passing through the object with a sampling rate of 1 MHz. The reconstruction of slice images from the recorded detector data is a limited-angle problem since in our scanning geometry the object’s Radon space is only incompletely sampled. It was investigated here, whether this technology is able to produce accurate gas fraction data from bubbly two-phase flow. Experiments were performed both on a Perspex phantom with known geometry and an experimental flow loop operated under vacuum conditions in an electron beam processing box.

  10. Structural evolution and strain induced mixing in Cu–Co composites studied by transmission electron microscopy and atom probe tomography

    PubMed Central

    Bachmaier, A.; Aboulfadl, H.; Pfaff, M.; Mücklich, F.; Motz, C.

    2015-01-01

    A Cu–Co composite material is chosen as a model system to study structural evolution and phase formations during severe plastic deformation. The evolving microstructures as a function of the applied strain were characterized at the micro-, nano-, and atomic scale-levels by combining scanning electron microscopy and transmission electron microscopy including energy-filtered transmission electron microscopy and electron energy-loss spectroscopy. The amount of intermixing between the two phases at different strains was examined at the atomic scale using atom probe tomography as complimentary method. It is shown that Co particles are dissolved in the Cu matrix during severe plastic deformation to a remarkable extent and their size, number, and volume fraction were quantitatively determined during the deformation process. From the results, it can be concluded that supersaturated solid solutions up to 26 at.% Co in a fcc Cu–26 at.% Co alloy are obtained during deformation. However, the distribution of Co was found to be inhomogeneous even at the highest degree of investigated strain. PMID:26523113

  11. Reconstructing virus structures from nanometer to near-atomic resolutions with cryo-electron microscopy and tomography

    PubMed Central

    Chang, Juan; Liu, Xiangan; Rochat, Ryan H.; Baker, Matthew L.; Chiu, Wah

    2014-01-01

    The past few decades have seen tremendous advances in single particle electron cryo-microscopy (cryo-EM). The field has matured to the point that near-atomic resolution density maps can be generated for icosahedral viruses without the need for crystallization. In parallel, substantial progress has been made in determining the structures of non-icosahedrally arranged proteins in viruses by employing either single particle cryo-EM or cryo-electron tomography (cryo-ET). Implicit in this course has been the availability of a new generation of electron cryo-microscopes and the development of the computational tools that are essential for generating these maps and models. This methodology has enabled structural biologists to analyze structures in increasing detail for virus particles that are in different morphogenetic and biochemical states. Furthermore, electron imaging of frozen, hydrated cells, in the process of being infected by viruses, has also opened up a new avenue for studying virus structures “in situ”. Here we present the common techniques used to acquire and process cryo-EM and cryo-ET data and discuss their implications for structural virology both now and in the future. PMID:22297510

  12. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.

    PubMed

    Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki

    2011-10-01

    The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale. PMID:21899811

  13. High-Performance Iterative Electron Tomography Reconstruction with Long-Object Compensation using Graphics Processing Units (GPUs)

    PubMed Central

    Xu, Wei; Xu, Fang; Jones, Mel; Keszthelyi, Bettina; Sedat, John; Agard, David; Mueller, Klaus

    2010-01-01

    Iterative reconstruction algorithms pose tremendous computational challenges for 3D Electron Tomography (ET). Similar to X-ray Computed Tomography (CT), graphics processing units (GPUs) offer an affordable platform to meet these demands. In this paper, we outline a CT reconstruction approach for ET that is optimized for the special demands and application setting of ET. It exploits the fact that ET is typically cast as a parallel-beam configuration, which allows the design of an efficient data management scheme, using a holistic sinogram-based representation. Our method produces speedups of about an order of magnitude over a previously proposed GPU-based ET implementation, on similar hardware, and completes an iterative 3D reconstruction of practical problem size within minutes. We also describe a novel GPU-amenable approach that effectively compensates for reconstruction errors resulting from the TEM data acquisition on (long) samples which extend the width of the parallel TEM beam. We show that the vignetting artifacts typically arising at the periphery of non-compensated ET reconstructions are completely eliminated when our method is employed. PMID:20371381

  14. Characterization of nanoscale NiAl-type precipitates in a ferritic steel by electron microscopy and atom probe tomography

    SciTech Connect

    Teng, Zhenke; Miller, Michael K; Ghosh, Gautam; Liu, Chain T; Huang, Shenyan; Russell, Kaye F; Fine, Morris E; Liaw, Peter K

    2010-01-01

    The microstructure of NiAl-type ({beta}{prime}) precipitates in an aged ferritic steel (Fe-12.7Al-9Ni-10.2Cr-1.9Mo, at.%) is characterized by transmission and analytical electron microscopy (AEM) and atom probe tomography (APT). The alloy shows a duplex precipitation of {beta}{prime} particles: primary with an average diameter of 130 nm and secondary with an average diameter of 3 nm. Based on APT, the primary and secondary {beta}{prime} have compositions of Ni{sub 41.2}Al{sub 43.6}Fe{sub 12.7}Cr{sub 0.8}Mo{sub 1.4} and Ni{sub 26.3}Al{sub 41.6}Fe{sub 26.9}Cr{sub 3.3}Mo{sub 1.7}, respectively.

  15. Cryo-electron tomography of the magnetotactic vibrio Magnetovibrio blakemorei: insights into the biomineralization of prismatic magnetosomes

    PubMed Central

    Abreu, Fernanda; Sousa, Alioscka A.; Aronova, Maria A.; Kim, Youngchan; Cox, Daniel; Leapman, Richard D.; Andrade, Leonardo R.; Kachar, Bechara; Bazylinski, Dennis A.; Lins, Ulysses

    2012-01-01

    We examined the structure and biomineralization of prismatic magnetosomes in the magnetotactic marine vibrio Magnetovibrio blakemorei strain MV-1 and a non-magnetotactic mutant derived from it, using a combination of cryo-electron tomography and freeze-fracture. The vesicles enveloping the Magnetovibrio magnetosomes were elongated and detached from the cell membrane. Magnetosome crystal formation appeared to be initiated at a nucleation site on the membrane inner surface. Interestingly, while scattered filaments were observed in the surrounding cytoplasm, their association with the magnetosome chains could not be unequivocally established. Our data suggests fundamental differences between prismatic and octahedral magnetosomes in their mechanisms of nucleation and crystal growth as well as in their structural relationships with the cytoplasm and plasma membrane. PMID:23246783

  16. Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium.

    PubMed

    Ting, Claire S; Hsieh, Chyongere; Sundararaman, Sesh; Mannella, Carmen; Marko, Michael

    2007-06-01

    In an age of comparative microbial genomics, knowledge of the near-native architecture of microorganisms is essential for achieving an integrative understanding of physiology and function. We characterized and compared the three-dimensional architecture of the ecologically important cyanobacterium Prochlorococcus in a near-native state using cryo-electron tomography and found that closely related strains have diverged substantially in cellular organization and structure. By visualizing native, hydrated structures within cells, we discovered that the MED4 strain, which possesses one of the smallest genomes (1.66 Mbp) of any known photosynthetic organism, has evolved a comparatively streamlined cellular architecture. This strain possesses a smaller cell volume, an attenuated cell wall, and less extensive intracytoplasmic (photosynthetic) membrane system compared to the more deeply branched MIT9313 strain. Comparative genomic analyses indicate that differences have evolved in key structural genes, including those encoding enzymes involved in cell wall peptidoglycan biosynthesis. Although both strains possess carboxysomes that are polygonal and cluster in the central cytoplasm, the carboxysomes of MED4 are smaller. A streamlined cellular structure could be advantageous to microorganisms thriving in the low-nutrient conditions characteristic of large regions of the open ocean and thus have consequences for ecological niche differentiation. Through cryo-electron tomography we visualized, for the first time, the three-dimensional structure of the extensive network of photosynthetic lamellae within Prochlorococcus and the potential pathways for intracellular and intermembrane movement of molecules. Comparative information on the near-native structure of microorganisms is an important and necessary component of exploring microbial diversity and understanding its consequences for function and ecology. PMID:17449628

  17. Contrast enhanced electron beam computed tomography to analyse the coronary arteries in patients after acute myocardial infarction

    PubMed Central

    Achenbach, S; Ropers, D; Regenfus, M; Muschiol, G; Daniel, W; Moshage, W

    2000-01-01

    OBJECTIVE—To evaluate the accuracy of contrast enhanced electron beam computed tomography (EBCT) after acute myocardial infarction in determining patency of the infarct related artery and detecting high grade stenoses and occlusions in the coronary vessels.
DESIGN—Case study using blinded comparison with invasive coronary angiography.
PATIENTS—36 patients (mean age 53 years) 4-70 days after acute myocardial infarction.
INTERVENTIONS—The patients were studied by EBCT and invasive coronary angiography. For EBCT, 50 axial images of the heart (3 mm slice thickness) were acquired. They were triggered by the ECG during breath holding, after intravenous injection of contrast agent. The original images, surface reconstructions, and maximum intensity projections were evaluated for the presence of high grade stenoses and occlusions of the coronary arteries.
MAIN OUTCOME MEASURES—EBCT results were compared with invasive coronary angiography.
RESULTS—Of a total of 144 coronary arteries (left main, left anterior descending, left circumflex, and right coronary artery in 36 patients), 29 (20%) were unevaluable by EBCT. In the remaining arteries, 33 of 36 high grade lesions were correctly detected (92% sensitivity). Specificity was also 92% (73/79). Patency of the infarct related artery was correctly detected in 15 of 16 cases (94%). Five of the 14 occluded infarct related arteries (35%) were mistaken as stenotic but patent, and six could not be assessed.
CONCLUSIONS—EBCT is very accurate in detecting significant coronary artery lesions in patients after acute myocardial infarction, but differentiation between occluded and patent infarct related arteries is currently unreliable.


Keywords: electron beam CT; coronary angiography; myocardial infarction; computed tomography PMID:11040005

  18. A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography.

    PubMed

    Kuybeda, Oleg; Frank, Gabriel A; Bartesaghi, Alberto; Borgnia, Mario; Subramaniam, Sriram; Sapiro, Guillermo

    2013-02-01

    The limitation of using low electron doses in non-destructive cryo-electron tomography of biological specimens can be partially offset via averaging of aligned and structurally homogeneous subsets present in tomograms. This type of sub-volume averaging is especially challenging when multiple species are present. Here, we tackle the problem of conformational separation and alignment with a "collaborative" approach designed to reduce the effect of the "curse of dimensionality" encountered in standard pair-wise comparisons. Our new approach is based on using the nuclear norm as a collaborative similarity measure for alignment of sub-volumes, and by exploiting the presence of symmetry early in the processing. We provide a strict validation of this method by analyzing mixtures of intact simian immunodeficiency viruses SIV mac239 and SIV CP-MAC. Electron microscopic images of these two virus preparations are indistinguishable except for subtle differences in conformation of the envelope glycoproteins displayed on the surface of each virus particle. By using the nuclear norm-based, collaborative alignment method presented here, we demonstrate that the genetic identity of each virus particle present in the mixture can be assigned based solely on the structural information derived from single envelope glycoproteins displayed on the virus surface. PMID:23110852

  19. High-voltage electron microscopy tomography and structome analysis of unique spiral bacteria from the deep sea.

    PubMed

    Yamaguchi, Masashi; Yamada, Hiroyuki; Higuchi, Kimitaka; Yamamoto, Yuta; Arai, Shigeo; Murata, Kazuyoshi; Mori, Yuko; Furukawa, Hiromitsu; Uddin, Mohammad Shorif; Chibana, Hiroji

    2016-08-01

    Structome analysis is a useful tool for identification of unknown microorganisms that cannot be cultured. In 2012, we discovered a unique deep-sea microorganism with a cell structure intermediate between those of prokaryotes and eukaryotes and described its features using freeze-substitution electron microscopy and structome analysis (quantitative and three-dimensional structural analysis of a whole cell at the electron microscopic level). We named it Myojin parakaryote Here we describe, using serial ultrathin sectioning and high-voltage electron microscopy tomography of freeze-substituted specimens, the structome analysis and 3D reconstruction of another unique spiral bacteria, found in the deep sea off the coast of Japan. The bacteria, which is named as 'Myojin spiral bacteria' after the discovery location and their morphology, had a total length of 1.768 ± 0.478 µm and a total diameter of 0.445 ± 0.050 µm, and showed either clockwise or counter-clockwise spiral. The cells had a cell surface membrane, thick fibrous layer, ribosomes and inner fibrous structures (most likely DNA). They had no flagella. The bacteria had 322 ± 119 ribosomes per cell. This ribosome number is only 1.2% of that of Escherichia coli and 19.3% of Mycobacterium tuberculosis and may reflect a very slow growth rate of this organism in the deep sea. PMID:27230559

  20. Preparation of Primary Neurons for Visualizing Neurites in a Frozen-hydrated State Using Cryo-Electron Tomography

    PubMed Central

    Shahmoradian, Sarah H.; Galiano, Mauricio R.; Wu, Chengbiao; Chen, Shurui; Rasband, Matthew N.; Mobley, William C.; Chiu, Wah

    2014-01-01

    Neurites, both dendrites and axons, are neuronal cellular processes that enable the conduction of electrical impulses between neurons. Defining the structure of neurites is critical to understanding how these processes move materials and signals that support synaptic communication. Electron microscopy (EM) has been traditionally used to assess the ultrastructural features within neurites; however, the exposure to organic solvent during dehydration and resin embedding can distort structures. An important unmet goal is the formulation of procedures that allow for structural evaluations not impacted by such artifacts. Here, we have established a detailed and reproducible protocol for growing and flash-freezing whole neurites of different primary neurons on electron microscopy grids followed by their examination with cryo-electron tomography (cryo-ET). This technique allows for 3-D visualization of frozen, hydrated neurites at nanometer resolution, facilitating assessment of their morphological differences. Our protocol yields an unprecedented view of dorsal root ganglion (DRG) neurites, and a visualization of hippocampal neurites in their near-native state. As such, these methods create a foundation for future studies on neurites of both normal neurons and those impacted by neurological disorders. PMID:24561719

  1. Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator.

    PubMed

    Hsieh, C-T; Huang, C-M; Chang, C-L; Ho, Y-C; Chen, Y-S; Lin, J-Y; Wang, J; Chen, S-Y

    2006-03-10

    A tomographic diagnosis method was developed to systematically resolve the injection and acceleration processes of a monoenergetic electron beam in a laser-wakefield accelerator. It was found that all the monoenergetic electrons are injected at the same location in the plasma column and accelerated from 5 to 55 MeV energy in 200 microm distance. This is a direct measurement of the real acceleration gradient in a laser-wakefield accelerator, and the experimental data are consistent with the model of transverse wave breaking and beam loading for monoenergetic electron injection. PMID:16606269

  2. Removing high contrast artifacts via digital inpainting in cryo-electron tomography: an application of compressed sensing.

    PubMed

    Song, Kahye; Comolli, Luis R; Horowitz, Mark

    2012-05-01

    To cope with poor quality in cryo-electron tomography images, electron-dense markers, such as colloidal goldbeads, are often used to assist image registration and analysis algorithms. However, these markers can create artifacts that occlude a specimen due to their high contrast, which can also cause failure of some image processing algorithms. One way of reducing these artifacts is to replace high contrast objects with pixel densities that blend into the surroundings in the projection domain before volume reconstruction. In this paper, we propose digital inpainting via compressed sensing (CS) as a new method to achieve this goal. We show that cryo-ET projections are sparse in the discrete cosine transform (DCT) domain, and, by finding the sparsest DCT domain decompositions given uncorrupted pixels, we can fill in the missing pixel values that are occluded by high contrast objects without discontinuities. Our method reduces visual artifacts both in projections and in tomograms better than conventional algorithms, such as polynomial interpolation and random noise inpainting. PMID:22248454

  3. Zernike Phase Contrast Cryo-Electron Microscopy and Tomography for Structure Determination at Nanometer and Sub-Nanometer Resolutions

    PubMed Central

    Murata, Kazuyoshi; Liu, Xiangan; Danev, Radostin; Jakana, Joanita; Schmid, Michael F.; King, Jonathan; Nagayama, Kuniaki; Chiu, Wah

    2010-01-01

    SUMMARY Zernike phase contrast cryo-electron microscopy (ZPC-cryoEM) is an emerging technique which is capable of producing higher image contrast than conventional cryoEM. By combining this technique with advanced image processing methods, we achieved subnanometer resolution for two biological specimens: 2-D bacteriorhodopsin crystal and epsilon15 bacteriophage. For an asymmetric reconstruction of epsilon15 bacteriophage, ZPC-cryoEM can reduce the required amount of data by a factor of ~3 compared to conventional cryoEM. The reconstruction was carried out to 13 Å resolution without the need to correct the contrast transfer function. New structural features at the portal vertex of the epsilon15 bacteriophage are revealed in this reconstruction. Using ZPC cryo-electron tomography (ZPC-cryoET), a similar level of data reduction and higher resolution structures of epsilon15 bacteriophage can be obtained relative to conventional cryoET. These results show quantitatively the benefits of ZPC-cryoEM and -cryoET for structural determinations of macromolecular machines at nanometer and subnanometer resolutions. PMID:20696391

  4. Analysis of β-tricalcium phosphate granules prepared with different formulations by nano-computed tomography and scanning electron microscopy.

    PubMed

    Terranova, Lisa; Libouban, Hélène; Mallet, Romain; Chappard, Daniel

    2015-12-01

    Among biomaterials used for filling bone defects, beta-tricalcium phosphate (β-TCP) is suitable in non-bearing bones, particularly in dental implantology, oral and maxillofacial surgery. When β-TCP granules are placed in a bone defect, they occupy the void 3D volume. Little is known about the 3D arrangement of the granules, which depends on the nature and size of the granules. The aim of this study was to examine the 3D architecture of porous β-TCP granules. Granules were prepared with different concentrations of β-TCP powder in slurry (10, 11, 15, 18, 21, and 25 g of β-TCP powder in distilled water). Granules were prepared by the polyurethane foam method. They were analyzed by nano-computed tomography (nanoCT) and compared with scanning electron microscopy (SEM). Commercial granules of hydroxyapatite-β-TCP prepared by the same methodology were also used. The outer and inner architectures of the granules were shown by nanoCT which evidenced macroporosity, internal porosity and microporosity between the sintered grains. Macroporosity was reduced at high concentration and conversely, numerous concave surfaces were observed. Internal porosity, related to the sublimation of the polyurethane foam, was present in all the granules. Microporosity at the grain joints was evidenced by SEM and on 2D nanoCT sections. Granules presented a heterogeneous aspect due to the different mineralization degree of the sintered powder grains in the β-TCP granules; the difference between hydroxyapatite and β-TCP was also evidenced. NanoCT is an interesting method to analyze the fine morphology of biomaterials with a resolution close to synchrotron and better than microcomputed tomography. PMID:25899237

  5. Computed tomography of cryogenic cells

    SciTech Connect

    Schneider, Gerd; Anderson, E.; Vogt, S.; Knochel, C.; Weiss, D.; LeGros, M.; Larabell, C.

    2001-08-30

    Due to the short wavelengths of X-rays and low numerical aperture of the Fresnel zone plates used as X-ray objectives, the depth of field is several microns. Within the focal depth, imaging a thick specimen is to a good approximation equivalent to projecting the specimen absorption. Therefore, computed tomography based on a tilt series of X-ray microscopic images can be used to reconstruct the local linear absorption coefficient and image the three-dimensional specimen structure. To preserve the structural integrity of biological objects during image acquisition, microscopy is performed at cryogenic temperatures. Tomography based on X-ray microscopic images was applied to study the distribution of male specific lethal 1 (MSL-1), a nuclear protein involved in dosage compensation in Drosophila melanogaster, which ensures that males with single X chromosome have the same amount of most X-linked gene products as females with two X chromosomes. Tomographic reconstructions of X-ray microscopic images were used to compute the local three-dimensional linear absorption coefficient revealing the arrangement of internal structures of Drosophila melanogaster cells. Combined with labelling techniques, nanotomography is a new technique to study the 3D distribution of selected proteins inside whole cells. We want to improve this technique with respect to resolution and specimen preparation. The resolution in the reconstruction can be significantly improved by reducing the angular step size to collect more viewing angles, which requires an automated data acquisition. In addition, fast-freezing with liquid ethane instead of cryogenic He gas will be applied to improve the vitrification of the hydrated samples. We also plan to apply cryo X-ray nanotomography in order to study different types of cells and their nuclear protein distributions.

  6. MRC2014: Extensions to the MRC format header for electron cryo-microscopy and tomography

    PubMed Central

    Cheng, Anchi; Henderson, Richard; Mastronarde, David; Ludtke, Steven J.; Schoenmakers, Remco H.M.; Short, Judith; Marabini, Roberto; Dallakyan, Sargis; Agard, David; Winn, Martyn

    2015-01-01

    The MRC binary file format is widely used in the three-dimensional electron microscopy field for storing image and volume data. Files contain a header which describes the kind of data held, together with other important metadata. In response to advances in electron microscopy techniques, a number of variants to the file format have emerged which contain useful additional data, but which limit interoperability between different software packages. Following extensive discussions, the authors, who represent leading software packages in the field, propose a set of extensions to the MRC format standard designed to accommodate these variants, while restoring interoperability. The MRC format is equivalent to the map format used in the CCP4 suite for macromolecular crystallography, and the proposal also maintains interoperability with crystallography software. This Technical Note describes the proposed extensions, and serves as a reference for the standard. PMID:25882513

  7. MRC2014: Extensions to the MRC format header for electron cryo-microscopy and tomography.

    PubMed

    Cheng, Anchi; Henderson, Richard; Mastronarde, David; Ludtke, Steven J; Schoenmakers, Remco H M; Short, Judith; Marabini, Roberto; Dallakyan, Sargis; Agard, David; Winn, Martyn

    2015-11-01

    The MRC binary file format is widely used in the three-dimensional electron microscopy field for storing image and volume data. Files contain a header which describes the kind of data held, together with other important metadata. In response to advances in electron microscopy techniques, a number of variants to the file format have emerged which contain useful additional data, but which limit interoperability between different software packages. Following extensive discussions, the authors, who represent leading software packages in the field, propose a set of extensions to the MRC format standard designed to accommodate these variants, while restoring interoperability. The MRC format is equivalent to the map format used in the CCP4 suite for macromolecular crystallography, and the proposal also maintains interoperability with crystallography software. This Technical Note describes the proposed extensions, and serves as a reference for the standard. PMID:25882513

  8. 3D Reconstruction of VZV Infected Cell Nuclei and PML Nuclear Cages by Serial Section Array Scanning Electron Microscopy and Electron Tomography

    PubMed Central

    Reichelt, Mike; Joubert, Lydia; Perrino, John; Koh, Ai Leen; Phanwar, Ibanri; Arvin, Ann M.

    2012-01-01

    Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell

  9. Limitations of beam damage in electron spectroscopic tomography of embedded cells

    PubMed Central

    ARONOVA, M.A.; SOUSA, A.A.; ZHANG, G.; LEAPMAN, R.D.

    2011-01-01

    Summary Elemental mapping in the energy filtering transmission electron microscope (EFTEM) can be extended into three dimensions (3D) by acquiring a series of two-dimensional (2D) core-edge images from a specimen oriented over a range of tilt angles, and then reconstructing the volume using tomographic methods. EFTEM has been applied to imaging the distribution of biological molecules in 2D, e.g. nucleic acid and protein, in sections of plastic-embedded cells, but no systematic study has been undertaken to assess the extent to which beam damage limits the available information in 3D. To address this question, 2D elemental maps of phosphorus and nitrogen were acquired from unstained sections of plastic-embedded isolated mouse thymocytes. The variation in elemental composition, residual specimen mass and changes in the specimen morphology were measured as a function of electron dose. Whereas 40% of the total specimen mass was lost at doses above 106 e–/nm2, no significant loss of phosphorus or nitrogen was observed for doses as high as 108 e–/nm2. The oxygen content decreased from 25 ± 2 to 9 ± 2 atomic percent at an electron dose of 104 e–/nm2, which accounted for a major component of the total mass loss. The specimen thickness decreased by 50% after a dose of 108 e–/nm2, and a lateral shrinkage of 9.5 ± 2.0% occurred from 2 × 104 to 108 e–/nm2. At doses above 107 e–/nm2, damage could be observed in the bright field as well in the core edge images, which is attributed to further loss of oxygen and carbon atoms. Despite these artefacts, electron tomograms obtained from high-pressure frozen and freeze-substituted sections of C. elegans showed that it is feasible to obtain useful 3D phosphorus and nitrogen maps, and thus to reveal quantitative information about the subcellular distributions of nucleic acids and proteins. PMID:20701660

  10. The electronics system for the LBNL positron emission tomography (PEM) camera

    SciTech Connect

    Moses, W.W.; Young, J.W.; Baker, K.; Jones, W.; Lenox, M.; Ho, M.H.; Weng, M.

    2000-11-04

    We describe the electronics for a high performance Positron Emission Mammography (PEM) camera. It is based on the electronics for a human brain PET camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An ASIC services the PD array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal by crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs makes the overall design extremely flexible, allowing many different functions (or design modifications) to be realized without hardware changes. Incorporation of extensive onboard diagnostics, implemented in the FPGAs, is required by the very high level of integration and density achieved by this system.

  11. Comparison of F-region electron density observations by satellite radio tomography and incoherent scatter methods

    NASA Astrophysics Data System (ADS)

    Nygrén, T.; Markkanen, M.; Lehtinen, M.; Tereshchenko, E. D.; Khudukon, B. Z.; Evstafiev, O. V.; Pollari, P.

    1996-12-01

    In November 1995 a campaign of satellite radiotomography supported by the EISCAT incoherent scatter radar and several other instruments was arranged in Scandinavia. A chain of four satellite receivers extending from the north of Norway to the south of Finland was installed approximately along a geomagnetic meridian. The receivers carried out difference Doppler measurements using signals from satellites flying along the chain. The EISCAT UHF radar was simultaneously operational with its beam swinging either in geomagnetic or in geographic meridional plane. With this experimental set-up latitudinal scans of F-region electron density are obtained both from the radar observations and by tomographic inversion of the phase observations given by the difference Doppler experiment. This paper shows the first results of the campaign and compares the electron densities given by the two methods. Acknowledgements. This work has been supported by the UK Particle-Physics and Astronomy Research Council. The assistance of the director and staff of the EISCAT Scientific Association, the staff of the Norsk Polarinstitutt and the director and staff of the Swedish Institute of Space Physics is gratefully acknowledged. In addition the authors would like to thank Professor Evgeny Tereshchenko of the Polar Geophysical Institute in Mumansk, Russia and Dr Tuomo Nygrén of the University of Oulu, Finland for provision of data from EISCAT special program time during the November 1995 campaign. Topical Editor D. Alcaydé thanks E. J. Fremouw and another referee for their help in evaluating this paper.--> Correspondence to: I. K. Walker-->

  12. Three-dimensional imaging of copper pillars using x-ray tomography within a scanning electron microscope: A simulation study based on synchrotron data

    SciTech Connect

    Martin, N.; Bertheau, J.; Charbonnier, J.; Hugonnard, P.; Lorut, F.; Bleuet, P.; Tabary, J.; Laloum, D.

    2013-02-15

    While microelectronic devices are frequently characterized with surface-sensitive techniques having nanometer resolution, interconnections used in 3D integration require 3D imaging with high penetration depth and deep sub-micrometer spatial resolution. X-ray tomography is well adapted to this situation. In this context, the purpose of this study is to assess a versatile and turn-key tomographic system allowing for 3D x-ray nanotomography of copper pillars. The tomography tool uses the thin electron beam of a scanning electron microscope (SEM) to provoke x-ray emission from specific metallic targets. Then, radiographs are recorded while the sample rotates in a conventional cone beam tomography scheme that ends up with 3D reconstructions of the pillar. Starting from copper pillars data, collected at the European Synchrotron Radiation Facility, we build a 3D numerical model of a copper pillar, paying particular attention to intermetallics. This model is then used to simulate physical radiographs of the pillar using the geometry of the SEM-hosted x-ray tomography system. Eventually, data are reconstructed and it is shown that the system makes it possible the quantification of 3D intermetallics volume in copper pillars. The paper also includes a prospective discussion about resolution issues.

  13. Three-dimensional imaging of copper pillars using x-ray tomography within a scanning electron microscope: A simulation study based on synchrotron data

    NASA Astrophysics Data System (ADS)

    Martin, N.; Bertheau, J.; Bleuet, P.; Charbonnier, J.; Hugonnard, P.; Laloum, D.; Lorut, F.; Tabary, J.

    2013-02-01

    While microelectronic devices are frequently characterized with surface-sensitive techniques having nanometer resolution, interconnections used in 3D integration require 3D imaging with high penetration depth and deep sub-micrometer spatial resolution. X-ray tomography is well adapted to this situation. In this context, the purpose of this study is to assess a versatile and turn-key tomographic system allowing for 3D x-ray nanotomography of copper pillars. The tomography tool uses the thin electron beam of a scanning electron microscope (SEM) to provoke x-ray emission from specific metallic targets. Then, radiographs are recorded while the sample rotates in a conventional cone beam tomography scheme that ends up with 3D reconstructions of the pillar. Starting from copper pillars data, collected at the European Synchrotron Radiation Facility, we build a 3D numerical model of a copper pillar, paying particular attention to intermetallics. This model is then used to simulate physical radiographs of the pillar using the geometry of the SEM-hosted x-ray tomography system. Eventually, data are reconstructed and it is shown that the system makes it possible the quantification of 3D intermetallics volume in copper pillars. The paper also includes a prospective discussion about resolution issues.

  14. Ultrastructure Features and Three-Dimensional Transmission Electron Tomography of Dhub Lizard (Uromastyx Aegyptia) Cornea and Its Adaptation to a Desert Environment.

    PubMed

    Akhtar, Saeed; Alkhalaf, Mousa; Khan, Adnan A; Almubrad, Turki M

    2016-08-01

    We report ultrastructural features and transmission electron tomography of the dhub lizard (Uromastyx aegyptia) cornea and its adaptation to hot and dry environments. Six corneas of dhub lizards were fixed in 2.5% glutaraldehyde and processed for electron microscopy and tomography. The ultrathin sections were observed with a JEOL 1400 transmission electron microscope. The cornea of the dhub lizard is very thin (~28-30 µm). The epithelium constitutes ~14% of the cornea, whereas the stroma constitutes 80% of the cornea. The middle stromal lamellae are significantly thicker than anterior and posterior stromal lamellae. Collagen fibril (CF) diameters in the anterior stroma are variable in size (25-75 nm). Proteoglycans (PGs) are very large in the middle and posterior stroma, whereas they are small in the anterior stroma. Three-dimensional electron tomography was carried out to understand the structure and arrangement of the PG and CFs. The presence of large PGs in the posterior and middle stroma might help the animal retain a large amount of water to protect it from dryness. The dhub corneal structure is equipped to adapt to the dry and hot desert environment. PMID:27619263

  15. Exploring the benefits of electron tomography to characterize the precise morphology of core-shell Au@Ag nanoparticles and its implications on their plasmonic properties

    NASA Astrophysics Data System (ADS)

    Hernández-Garrido, J. C.; Moreno, M. S.; Ducati, C.; Pérez, L. A.; Midgley, P. A.; Coronado, E. A.

    2014-10-01

    In the design and engineering of functional core-shell nanostructures, material characterization at small length scales remains one of the major challenges. Here we show how electron tomography in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) mode can be applied successfully to perform nano-metrological characterization of Au@Ag core-shell nanostructures. This work stresses the benefits of HAADF-STEM tomography and its use as a novel and rigorous tool for understanding the physical-chemical properties of complex 3D core-shell nanostructures. The reconstructed Au@Ag core-shell architecture was used as an input for discrete dipole approximation (DDA)-based electrodynamics simulations of the optical properties of the nanostructures. The implications of localized surface plasmon spectroscopy as well as Raman-enhanced spectroscopy are analysed.In the design and engineering of functional core-shell nanostructures, material characterization at small length scales remains one of the major challenges. Here we show how electron tomography in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) mode can be applied successfully to perform nano-metrological characterization of Au@Ag core-shell nanostructures. This work stresses the benefits of HAADF-STEM tomography and its use as a novel and rigorous tool for understanding the physical-chemical properties of complex 3D core-shell nanostructures. The reconstructed Au@Ag core-shell architecture was used as an input for discrete dipole approximation (DDA)-based electrodynamics simulations of the optical properties of the nanostructures. The implications of localized surface plasmon spectroscopy as well as Raman-enhanced spectroscopy are analysed. Electronic supplementary information (ESI) available: 3D reconstruction movie and supplementary figures. See DOI: 10.1039/c4nr03017f

  16. 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils.

    PubMed

    Ciesielski, Peter N; Matthews, James F; Tucker, Melvin P; Beckham, Gregg T; Crowley, Michael F; Himmel, Michael E; Donohoe, Bryon S

    2013-09-24

    Fundamental insights into the macromolecular architecture of plant cell walls will elucidate new structure-property relationships and facilitate optimization of catalytic processes that produce fuels and chemicals from biomass. Here we introduce computational methodology to extract nanoscale geometry of cellulose microfibrils within thermochemically treated biomass directly from electron tomographic data sets. We quantitatively compare the cell wall nanostructure in corn stover following two leading pretreatment strategies: dilute acid with iron sulfate co-catalyst and ammonia fiber expansion (AFEX). Computational analysis of the tomographic data is used to extract mathematical descriptions for longitudinal axes of cellulose microfibrils from which we calculate their nanoscale curvature. These nanostructural measurements are used to inform the construction of atomistic models that exhibit features of cellulose within real, process-relevant biomass. By computational evaluation of these atomic models, we propose relationships between the crystal structure of cellulose Iβ and the nanoscale geometry of cellulose microfibrils. PMID:23988022

  17. Electronic stopping power calculation for water under the Lindhard formalism for application in proton computed tomography

    NASA Astrophysics Data System (ADS)

    Guerrero, A. F.; Mesa, J.

    2016-07-01

    Because of the behavior that charged particles have when they interact with biological material, proton therapy is shaping the future of radiation therapy in cancer treatment. The planning of radiation therapy is made up of several stages. The first one is the diagnostic image, in which you have an idea of the density, size and type of tumor being treated; to understand this it is important to know how the particles beam interacts with the tissue. In this work, by using de Lindhard formalism and the Y.R. Waghmare model for the charge distribution of the proton, the electronic stopping power (SP) for a proton beam interacting with a liquid water target in the range of proton energies 101 eV - 1010 eV taking into account all the charge states is calculated.

  18. Theory of bright-field scanning transmission electron microscopy for tomography

    NASA Astrophysics Data System (ADS)

    Levine, Zachary H.

    2005-02-01

    Radiation transport theory is applied to electron microscopy of samples composed of one or more materials. The theory, originally due to Goudsmit and Saunderson, assumes only elastic scattering and an amorphous medium dominated by atomic interactions. For samples composed of a single material, the theory yields reasonable parameter-free agreement with experimental data taken from the literature for the multiple scattering of 300-keV electrons through aluminum foils up to 25μm thick. For thin films, the theory gives a validity condition for Beer's law. For thick films, a variant of Molière's theory [V. G. Molière, Z. Naturforschg. 3a, 78 (1948)] of multiple scattering leads to a form for the bright-field signal for foils in the multiple-scattering regime. The signal varies as [tln(e1-2γt/τ)]-1 where t is the path length of the beam, τ is the mean free path for elastic scattering, and γ is Euler's constant. The Goudsmit-Saunderson solution interpolates numerically between these two limits. For samples with multiple materials, elemental sensitivity is developed through the angular dependence of the scattering. From the elastic scattering cross sections of the first 92 elements, a singular-value decomposition of a vector space spanned by the elastic scattering cross sections minus a delta function shows that there is a dominant common mode, with composition-dependent corrections of about 2%. A mathematically correct reconstruction procedure beyond 2% accuracy requires the acquisition of the bright-field signal as a function of the scattering angle. Tomographic reconstructions are carried out for three singular vectors of a sample problem with four elements Cr, Cu, Zr, and Te. The three reconstructions are presented jointly as a color image; all four elements are clearly identifiable throughout the image.

  19. 3D Structure Determination of Native Mammalian Cells using Cryo-FIB and Cryo-electron Tomography

    PubMed Central

    Wang, Ke; Strunk, Korrinn; Zhao, Gongpu; Gray, Jennifer L.; Zhang, Peijun

    2012-01-01

    Cryo-electron tomography (cryo-ET) has enabled high resolution three-dimensional (3D) structural analysis of virus and host cell interactions and many cell signaling events; these studies, however, have largely been limited to very thin, peripheral regions of eukaryotic cells or to small prokaryotic cells. Recent efforts to make thin, vitreous sections using cryo-ultramicrotomy have been successful, however, this method is technically very challenging and with many artifacts. Here, we report a simple and robust method for creating in situ, frozen-hydrated cell lamellas using a focused ion beam at cryogenic temperature (cryo-FIB), allowing access to any interior cellular regions of interest. We demonstrate the utility of cryo-FIB with high resolution 3D cellular structures from both bacterial cells and large mammalian cells. The method will not only facilitate high-throughput 3D structural analysis of biological specimens, but is also broadly applicable to sample preparation of thin films and surface materials without the need for FIB “lift-out”. PMID:22796867

  20. Electron tomography characterization of hemoglobin uptake in Plasmodium chabaudi reveals a stage-dependent mechanism for food vacuole morphogenesis.

    PubMed

    Wendt, Camila; Rachid, Rachel; de Souza, Wanderley; Miranda, Kildare

    2016-05-01

    In the course of their intraerythrocytic development, malaria parasites incorporate and degrade massive amounts of the host cell cytoplasm. This mechanism is essential for parasite development and represents a physiological step used as target for many antimalarial drugs; nevertheless, the fine mechanisms underlying these processes in Plasmodium species are still under discussion. Here, we studied the events of hemoglobin uptake and hemozoin nucleation in the different stages of the intraerythrocytic cycle of the murine malaria parasite Plasmodium chabaudi using transmission electron tomography of cryofixed and freeze-substituted cells. The results showed that hemoglobin uptake in P. chabaudi starts at the early ring stage and is present in all developmental stages, including the schizont stage. Hemozoin nucleation occurs near the membrane of small food vacuoles. At the trophozoite stage, food vacuoles are found closely localized to cytostomal tubes and mitochondria, whereas in the schizont stage, we observed a large food vacuole located in the central portion of the parasite. Taken together, these results provide new insights into the mechanisms of hemoglobin uptake and degradation in rodent malaria parasites. PMID:26882843

  1. FIB Plan View Preparation and Electron Tomography of Ga-Containing Droplets Induced by Melt-Back Etching in Si.

    PubMed

    Gries, Katharina I; Werner, Katharina; Beyer, Andreas; Stolz, Wolfgang; Volz, Kerstin

    2016-02-01

    Melt-back etching is an effect that can occur for gallium (Ga) containing III/V semiconductors grown on Si. Since this effect influences interfaces between the two compounds and therefore the physical characteristics of the material composition, it is desirable to understand its driving forces. Therefore, we investigated Ga grown on Si (001) via metal organic chemical vapor deposition using trimethyl Ga as a precursor. As a result of the melt-back etching, Ga-containing droplets formed on the Si surface which reach into the Si wafer. The shape of these structures was analyzed by plan view investigation and cross sectional tomography in a (scanning) transmission electron microscope. For plan view preparation a focused ion beam was used to avoid damage to the Ga-containing structures, which are sensitive to the chemicals normally used during conventional plan view preparation. Combining the results of both investigation methods confirms that the Ga-containing structure within the Si exhibits a pyramid shape with facets along the Si {111} lattice planes. PMID:26739750

  2. Micro-tomography and electron microscopy of a shock dike in the Buck Mountains 005 L6 chondrite

    NASA Astrophysics Data System (ADS)

    Brown, R.; Ruzicka, A. M.; Hutson, M.; Friedrich, J. M.; Rivers, M. L.

    2013-12-01

    Buck Mountains 005 is an L6 chondrite that contains a complexly structured shock dike. Scanning electron microscopy reveals that the dike consists of a holocrystalline, orthopyroxene-rich groundmass with a distinctive core-rim structure. Micro-tomography imaging shows that the dike is actually a sheet structure where the central sheet swells and pinches in a boudin-like fashion and is flanked by the rim. The central sheet entrains silicate clasts that were broken off and transported from the unmelted portion of the host. The flanking outer sheet is relatively clast free, but contains globules of metal with sulfides and bands of sheared, recrystallized Mg-olivine along the contact zone with the host. These two zones are separated by a thin band of sulfides with cellular metal that encloses euhedral silicate crystals. During dike formation, metal was mobilized and transported out of the dike and injected into the unmelted chondrite host, where it accumulated as larger grains. Formation of the dike can be attributed to localized shearing and heating that resulted in simple cataclasis and melting. The melt underwent FeO reduction and vaporization of volatile alkali elements, followed by rapid igneous crystallization. The combination of these processes transformed the mineralogy of the original chondrite, making it poorer in olivine and feldspar and richer in pyroxene. The Buck Mountain 005 dike presents further insight into the importance of shock in meteorites.

  3. An incommensurately modulated structure of η'-phase of Cu(3+x)Si determined by quantitative electron diffraction tomography.

    PubMed

    Palatinus, Lukáš; Klementová, Mariana; Dřínek, Vladislav; Jarošová, Markéta; Petříček, Václav

    2011-04-18

    The diffraction data of η'-Cu(3+x)(Si,Ge) were collected by 3D quantitative electron diffraction tomography on a submicrometer-sized sample, and the structure was solved by the charge-flipping algorithm in superspace. It is shown that the structure is trigonal, and it is incommensurately modulated with two modulation vectors q(1) = (α, α, 1/3) and q(2) = (-2α, α, 1/3), superspace group P31m(α, α, 1/3)000(-2α, α, 1/3)000. The modulation functions of some atoms are very complicated and reach amplitudes comparable with the unit cell dimensions. The modulated structure can be described as sheets of Cu clusters separated by honeycomb layers of mixed Si/Ge positions. The shape of the Cu clusters in the sheets strongly varies with the modulation phase, and the predominant form is an icosahedron. The striving of the Cu layers to form icosahedral clusters is deemed to be the main driving force of the modulation. The combination of methods used in this work can be applied to other structures that are difficult to crystallize in large crystals and opens new perspectives, especially for investigations of aperiodic or otherwise complex metallic alloys. PMID:21438499

  4. Study of vertical Si/SiO2 interface using laser-assisted atom probe tomography and transmission electron microscopy.

    PubMed

    Lee, J H; Lee, B H; Kim, Y T; Kim, J J; Lee, S Y; Lee, K P; Park, C G

    2014-03-01

    Laser-assisted atom probe tomography has opened the way to three-dimensional visualization of nanostructures. However, many questions related to the laser-matter interaction remain unresolved. We demonstrate that the interface reaction can be activated by laser-assisted field evaporation and affects the quantification of the interfacial composition. At a vertical interface between Si and SiO2, a SiO2 molecule tends to combine with a Si atom and evaporate as a SiO molecule, reducing the evaporation field. The features of the reaction depend on the direction of the laser illumination and the inner structure of tip. A high concentration of SiO is observed at a vertical interface between Si and SiO2 when the Si column is positioned at the center of the tip, whereas no significant SiO is detected when the SiO2 layer is at the center. The difference in the interfacial compositions of two samples was due to preferential evaporation of the Si layer. This was explained using transmission electron microscopy observations before and after atom probe experiments. PMID:24411275

  5. Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system.

    PubMed

    Nans, Andrea; Einheber, Steven; Salzer, James L; Stokes, David L

    2011-03-01

    The polarized domains of myelinated axons are specifically organized to maximize the efficiency of saltatory conduction. The paranodal region is directly adjacent to the node of Ranvier and contains specialized septate-like junctions that provide adhesion between axons and glial cells and that constitute a lateral diffusion barrier for nodal components. To complement and extend earlier studies on the peripheral nervous system, electron tomography was used to image paranodal regions from the central nervous system (CNS). Our three-dimensional reconstructions revealed short filamentous linkers running directly from the septate-like junctions to neurofilaments, microfilaments, and organelles within the axon. The intercellular spacing between axons and glia was measured to be 7.4 ± 0.6 nm, over twice the value previously reported in the literature (2.5-3.0 nm). Averaging of individual junctions revealed a bifurcated structure in the intercellular space that is consistent with a dimeric complex of cell adhesion molecules composing the septate-like junction. Taken together, these findings provide new insight into the structural organization of CNS paranodes and suggest that, in addition to providing axo-glial adhesion, cytoskeletal linkage to the septate-like junctions may be required to maintain axonal domains and to regulate organelle transport in myelinated axons. PMID:21259318

  6. Cellular Architecture of Treponema pallidum: Novel Flagellum, Periplasmic Cone, and Cell Envelope as Revealed by Cryo-Electron Tomography

    PubMed Central

    Liu, Jun; Howell, Jerrilyn K.; Bradley, Sherille D.; Zheng, Yesha; Zhou, Z. Hong; Norris, Steven J.

    2010-01-01

    High resolution cryo-electron tomography (cryo-ET) was utilized to visualize Treponema pallidum, the causative agent of syphilis, at the molecular level. Three-dimensional (3-D) reconstructions from 304 infectious organisms revealed unprecedented cellular structures of this unusual member in the spirochetal family. High resolution cryo-ET reconstructions provided the detailed structures of the cell envelope, which is significantly different from that of gram-negative bacteria. The 4 nm lipid bilayer of both outer and cytoplasmic membranes resolved in 3-D reconstructions, providing an important marker for interpreting membrane-associated structures. Abundant lipoproteins cover the outer leaflet of the cytoplasmic membrane, in contrast to the rare outer membrane proteins visible by scanning probe microscopy. High resolution cryo-ET images also provided the first observation of T. pallidum chemoreceptor arrays, as well as structural details of the periplasmically located, cone-shaped structure at both ends of bacterium. Furthermore, 3-D subvolume averages of the periplasmic flagellar motors and filaments from living organisms revealed the novel flagellar architectures that may facilitate their rotation within the confining periplasmic space. Together, our findings provide the most detailed structural understanding of the periplasmic flagella and the surrounding cell envelope, which enable this enigmatic bacterium to efficiently penetrate tissue and escape host immune responses. PMID:20850455

  7. Laboratory-Based Cryogenic Soft X-ray Tomography with Correlative Cryo-Light and Electron Microscopy

    SciTech Connect

    Carlson, David B.; Gelb, Jeff; Palshin, Vadim; Evans, James E.

    2013-02-01

    Here we present a novel laboratory-based cryogenic soft X-ray microscope for whole cell tomography of frozen hydrated samples. We demonstrate the capabilities of this compact cryogenic microscope by visualizing internal sub-cellular structures of Saccharomyces cerevisiae cells. The microscope is shown to achieve better than 50 nm spatial resolution with a Siemens star test sample. For whole biological cells, the microscope can image specimens up to 5 micrometers thick. Structures as small as 90 nm can be detected in tomographic reconstructions at roughly 70 nm spatial resolution following a low cumulative radiation dose of only 7.2 MGy. Furthermore, the design of the specimen chamber utilizes a standard sample support that permits multimodal correlative imaging of the exact same unstained yeast cell via cryo-fluorescence light microscopy, cryo-soft x-ray microscopy and cryo-transmission electron microscopy. This completely laboratory-based cryogenic soft x-ray microscope will therefore enable greater access to three-dimensional ultrastructure determination of biological whole cells without chemical fixation or physical sectioning.

  8. The dependence of computed tomography number to relative electron density conversion on phantom geometry and its impact on planned dose.

    PubMed

    Inness, Emma K; Moutrie, Vaughan; Charles, Paul H

    2014-06-01

    A computed tomography number to relative electron density (CT-RED) calibration is performed when commissioning a radiotherapy CT scanner by imaging a calibration phantom with inserts of specified RED and recording the CT number displayed. In this work, CT-RED calibrations were generated using several commercially available phantoms to observe the effect of phantom geometry on conversion to electron density and, ultimately, the dose calculation in a treatment planning system. Using an anthropomorphic phantom as a gold standard, the CT number of a material was found to depend strongly on the amount and type of scattering material surrounding the volume of interest, with the largest variation observed for the highest density material tested, cortical bone. Cortical bone gave a maximum CT number difference of 1,110 when a cylindrical insert of diameter 28 mm scanned free in air was compared to that in the form of a 30 × 30 cm(2) slab. The effect of using each CT-RED calibration on planned dose to a patient was quantified using a commercially available treatment planning system. When all calibrations were compared to the anthropomorphic calibration, the largest percentage dose difference was 4.2 % which occurred when the CT-RED calibration curve was acquired with heterogeneity inserts removed from the phantom and scanned free in air. The maximum dose difference observed between two dedicated CT-RED phantoms was ±2.1 %. A phantom that is to be used for CT-RED calibrations must have sufficient water equivalent scattering material surrounding the heterogeneous objects that are to be used for calibration. PMID:24760737

  9. Electron Tomography Analysis of Tick-Borne Encephalitis Virus Infection in Human Neurons

    PubMed Central

    Bílý, Tomáš; Palus, Martin; Eyer, Luděk; Elsterová, Jana; Vancová, Marie; Růžek, Daniel

    2015-01-01

    Tick-borne encephalitis virus (TBEV) causes serious, potentially fatal neurological infections that affect humans in endemic regions of Europe and Asia. Neurons are the primary target for TBEV infection in the central nervous system. However, knowledge about this viral infection and virus-induced neuronal injury is fragmental. Here, we directly examined the pathology that occurs after TBEV infection in human primary neurons. We exploited the advantages of advanced high-pressure freezing and freeze-substitution techniques to achieve optimal preservation of infected cell architecture. Electron tomographic (ET) reconstructions elucidated high-resolution 3D images of the proliferating endoplasmic reticulum, and individual tubule-like structures of different diameters in the endoplasmic reticulum cisternae of single cells. ET revealed direct connections between the tubule-like structures and viral particles in the endoplasmic reticulum. Furthermore, ET showed connections between cellular microtubules and vacuoles that harbored the TBEV virions in neuronal extensions. This study was the first to characterize the 3D topographical organization of membranous whorls and autophagic vacuoles in TBEV-infected human neurons. The functional importance of autophagy during TBEV replication was studied in human neuroblastoma cells; stimulation of autophagy resulted in significantly increased dose-dependent TBEV production, whereas the inhibition of autophagy showed a profound, dose-dependent decrease of the yield of infectious virus. PMID:26073783

  10. Automatic Electronic Cleansing in Computed Tomography Colonography Images using Domain Knowledge.

    PubMed

    Manjunath, Kn; Siddalingaswamy, Pc; Prabhu, Gk

    2015-01-01

    Electronic cleansing is an image post processing technique in which the tagged colonic content is subtracted from colon using CTC images. There are post processing artefacts, like: 1) soft tissue degradation; 2) incomplete cleansing; 3) misclassification of polyp due to pseudo enhanced voxels; and 4) pseudo soft tissue structures. The objective of the study was to subtract the tagged colonic content without losing the soft tissue structures. This paper proposes a novel adaptive method to solve the first three problems using a multi-step algorithm. It uses a new edge model-based method which involves colon segmentation, priori information of Hounsfield units (HU) of different colonic contents at specific tube voltages, subtracting the tagging materials, restoring the soft tissue structures based on selective HU, removing boundary between air-contrast, and applying a filter to clean minute particles due to improperly tagged endoluminal fluids which appear as noise. The main finding of the study was submerged soft tissue structures were absolutely preserved and the pseudo enhanced intensities were corrected without any artifact. The method was implemented with multithreading for parallel processing in a high performance computer. The technique was applied on a fecal tagged dataset (30 patients) where the tagging agent was not completely removed from colon. The results were then qualitatively validated by radiologists for any image processing artifacts. PMID:26745084

  11. Electron Tomography Analysis of Tick-Borne Encephalitis Virus Infection in Human Neurons.

    PubMed

    Bílý, Tomáš; Palus, Martin; Eyer, Luděk; Elsterová, Jana; Vancová, Marie; Růžek, Daniel

    2015-01-01

    Tick-borne encephalitis virus (TBEV) causes serious, potentially fatal neurological infections that affect humans in endemic regions of Europe and Asia. Neurons are the primary target for TBEV infection in the central nervous system. However, knowledge about this viral infection and virus-induced neuronal injury is fragmental. Here, we directly examined the pathology that occurs after TBEV infection in human primary neurons. We exploited the advantages of advanced high-pressure freezing and freeze-substitution techniques to achieve optimal preservation of infected cell architecture. Electron tomographic (ET) reconstructions elucidated high-resolution 3D images of the proliferating endoplasmic reticulum, and individual tubule-like structures of different diameters in the endoplasmic reticulum cisternae of single cells. ET revealed direct connections between the tubule-like structures and viral particles in the endoplasmic reticulum. Furthermore, ET showed connections between cellular microtubules and vacuoles that harbored the TBEV virions in neuronal extensions. This study was the first to characterize the 3D topographical organization of membranous whorls and autophagic vacuoles in TBEV-infected human neurons. The functional importance of autophagy during TBEV replication was studied in human neuroblastoma cells; stimulation of autophagy resulted in significantly increased dose-dependent TBEV production, whereas the inhibition of autophagy showed a profound, dose-dependent decrease of the yield of infectious virus. PMID:26073783

  12. Exploring the benefits of electron tomography to characterize the precise morphology of core-shell Au@Ag nanoparticles and its implications on their plasmonic properties.

    PubMed

    Hernández-Garrido, J C; Moreno, M S; Ducati, C; Pérez, L A; Midgley, P A; Coronado, E A

    2014-11-01

    In the design and engineering of functional core-shell nanostructures, material characterization at small length scales remains one of the major challenges. Here we show how electron tomography in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) mode can be applied successfully to perform nano-metrological characterization of Au@Ag core-shell nanostructures. This work stresses the benefits of HAADF-STEM tomography and its use as a novel and rigorous tool for understanding the physical-chemical properties of complex 3D core-shell nanostructures. The reconstructed Au@Ag core-shell architecture was used as an input for discrete dipole approximation (DDA)-based electrodynamics simulations of the optical properties of the nanostructures. The implications of localized surface plasmon spectroscopy as well as Raman-enhanced spectroscopy are analysed. PMID:25215960

  13. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    PubMed Central

    Wu, Shenping; Liu, Jun; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-01-01

    Background Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. Methodology We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the “target zone”, situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. Conclusion We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force

  14. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    SciTech Connect

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-10-22

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  15. Relation of Depressive Symptoms With Coronary Artery Calcium Determined by Electron-Beam Computed Tomography (from the Rancho Bernardo Study).

    PubMed

    Bellettiere, John; Kritz-Silverstein, Donna; Laughlin, Gail A; LaCroix, Andrea Z; McEvoy, Linda K; Barrett-Connor, Elizabeth

    2016-02-01

    Studies linking depressive symptoms and coronary artery calcium (CAC), a measure of subclinical atherosclerosis, have yielded mixed results. No longitudinal studies of depressive symptoms and CAC have included older adults of both genders. This study examined the association of depressive symptoms with CAC and CAC progression in older men and women. Participants were 417 community-dwelling older adults (mean age = 67 ± 7) with no history of heart disease who attended a 1997 to 1999 research clinic visit when depressive symptoms were assessed using the Beck Depression Inventory (BDI). CAC was measured using electron-beam computed tomography in 2000 to 2002 and again in 2005 to 2007. Median BDI was 3, range = 0 to 37; 39% of men and 10% of women had severe CAC (Agatston score ≥ 400) in 2000 to 2002. Ordinal logistic regression analyses examining the odds of greater compared with lesser CAC severity by BDI quartiles showed an unexpected negative association whereby women with the lowest depressive symptoms had 2.4 times the odds of increasing CAC severity compared with women in the second BDI quartile (95% CI 1.1 to 5.4). A nonlinear, U-shaped association was observed in men with those in the first and fourth BDI quartiles having 2.6 and 3.0 times higher odds of increasing CAC severity than subjects in the second quartile (95% CI 1.2 to 5.6 and 1.3 to 6.9, respectively) after adjustment for coronary heart disease risk factors. No significant associations were observed for CAC progression although similar nonlinear patterns were observed in men. In conclusion, our results suggest that depressive symptoms have a gender-specific, cross-sectional association with CAC but no statistically significant associations with CAC progression. PMID:26747734

  16. Breast Patient Setup Error Assessment: Comparison of Electronic Portal Image Devices and Cone-Beam Computed Tomography Matching Results

    SciTech Connect

    Topolnjak, Rajko; Sonke, Jan-Jakob; Nijkamp, Jasper; Rasch, Coen; Minkema, Danny; Remeijer, Peter; Vliet-Vroegindeweij, Corine van

    2010-11-15

    Purpose: To quantify the differences in setup errors measured with the cone-beam computed tomography (CBCT) and electronic portal image devices (EPID) in breast cancer patients. Methods and Materials: Repeat CBCT scan were acquired for routine offline setup verification in 20 breast cancer patients. During the CBCT imaging fractions, EPID images of the treatment beams were recorded. Registrations of the bony anatomy for CBCT to planning CT and EPID to digitally reconstructed-radiographs (DRRs) were compared. In addition, similar measurements of an anthropomorphic thorax phantom were acquired. Bland-Altman and linear regression analysis were performed for clinical and phantom registrations. Systematic and random setup errors were quantified for CBCT and EPID-driven correction protocols in the EPID coordinate system (U, V), with V parallel to the cranial-caudal axis and U perpendicular to V and the central beam axis. Results: Bland-Altman analysis of clinical EPID and CBCT registrations yielded 4 to 6-mm limits of agreement, indicating that both methods were not compatible. The EPID-based setup errors were smaller than the CBCT-based setup errors. Phantom measurements showed that CBCT accurately measures setup error whereas EPID underestimates setup errors in the cranial-caudal direction. In the clinical measurements, the residual bony anatomy setup errors after offline CBCT-based corrections were {Sigma}{sub U} = 1.4 mm, {Sigma}{sub V} = 1.7 mm, and {sigma}{sub U} = 2.6 mm, {sigma}{sub V} = 3.1 mm. Residual setup errors of EPID driven corrections corrected for underestimation were estimated at {Sigma}{sub U} = 2.2mm, {Sigma}{sub V} = 3.3 mm, and {sigma}{sub U} = 2.9 mm, {sigma}{sub V} = 2.9 mm. Conclusion: EPID registration underestimated the actual bony anatomy setup error in breast cancer patients by 20% to 50%. Using CBCT decreased setup uncertainties significantly.

  17. Understanding of the field evaporation of surface modified oxide materials through transmission electron microscopy and atom probe tomography

    NASA Astrophysics Data System (ADS)

    Seol, Jae-Bok; Kwak, Chang-Min; Kim, Y.-T.; Park, Chan-Gyung

    2016-04-01

    Understanding of triggering the field evaporation of surface ions on the non-conductive materials enables improvement in the mass resolution in laser-pulsed atom probe tomography. This study addresses the influence of surface modification through metallic-capped layers, such as Co, Ni, and Ag, with surrounding bulk MgO tips on the physical mechanisms responsible for field evaporation and on the mass resolving power compared to uncapped bulk MgO. In particular, the field evaporation on the surface regions of Ag-capped bulk MgO tips during analysis was extensively observed by transmission electron microscopy to confirm the overall evaporation sequences occurring at the tip surface. We found that the introduction of such capping layers, especially for Ag-capping, controls both symmetric tip geometry at the surface of the specimens and the mass resolving power of ion species consisting of MgO materials. This implies the improvements in the symmetries of local field distributions and the isotropy of thermal heating across the tip surface. It reveals that Ag-capping with high thermal diffusivity promotes the compositional uniformities between the laser illumination side and the opposite side for MgO samples as well as the reduced fraction of multiple events for oxygen ions between both sides. Moreover, a variation in the thickness of the Ag-capping layer is an additional factor governing a thermal-assisted mechanism of MgO evaporation. Based on our findings, homogeneous thermal heat transfer for MgO emission along the tip axis by Ag-capping layers may be significant in potential methods for improvement.

  18. Three-Dimensional Analysis of Syncytial-Type Cell Plates during Endosperm Cellularization Visualized by High Resolution Electron Tomography W⃞

    PubMed Central

    Otegui, Marisa S.; Mastronarde, David N.; Kang, Byung-Ho; Bednarek, Sebastian Y.; Staehelin, L. Andrew

    2001-01-01

    The three-dimensional architecture of syncytial-type cell plates in the endosperm of Arabidopsis has been analyzed at ∼6-nm resolution by means of dual-axis high-voltage electron tomography of high-pressure frozen/freeze-substituted samples. Mini-phragmoplasts consisting of microtubule clusters assemble between sister and nonsister nuclei. Most Golgi-derived vesicles appear connected to these microtubules by two molecules that resemble kinesin-like motor proteins. These vesicles fuse with each other to form hourglass-shaped intermediates, which become wide (∼45 nm in diameter) tubules, the building blocks of wide tubular networks. New mini-phragmoplasts also are generated de novo around the margins of expanding wide tubular networks, giving rise to new foci of cell plate growth, which later become integrated into the main cell plate. Spiral-shaped rings of the dynamin-like protein ADL1A constrict but do not fission the wide tubules at irregular intervals. These rings appear to maintain the tubular geometry of the network. The wide tubular network matures into a convoluted fenestrated sheet in a process that involves increases of 45 and 130% in relative membrane surface area and volume, respectively. The proportionally larger increase in volume appears to reflect callose synthesis. Upon fusion with the parental plasma membrane, the convoluted fenestrated sheet is transformed into a planar fenestrated sheet. This transformation involves clathrin-coated vesicles that reduce the relative membrane surface area and volume by ∼70%. A ribosome-excluding matrix encompasses the cell plate membranes from the fusion of the first vesicles until the onset of the planar fenestrated sheet formation. We postulate that this matrix contains the molecules that mediate cell plate assembly. PMID:11549762

  19. Atomic-Resolution 3D Electron Microscopy with Dynamic Diffraction

    SciTech Connect

    O'Keefe, Michael A.; Downing, Kenneth H.; Wenk, Hans-Rudolf; Meisheng, Hu

    2005-02-15

    Achievement of atomic-resolution electron-beam tomography will allow determination of the three-dimensional structure of nanoparticles (and other suitable specimens) at atomic resolution. Three-dimensional reconstructions will yield ''section'' images that resolve atoms overlapped in normal electron microscope images (projections), resolving lighter atoms such as oxygen in the presence of heavier atoms, and atoms that lie on non-lattice sites such as those in non-periodic defect structures. Lower-resolution electron microscope tomography has been used to produce reconstructed 3D images of nanoparticles [1] but extension to atomic resolution is considered not to be straightforward. Accurate three-dimensional reconstruction from two-dimensional projections generally requires that intensity in the series of 2-D images be a monotonic function of the specimen structure (often specimen density, but in our case atomic potential). This condition is not satisfied in electron microscopy when specimens with strong periodicity are tilted close to zone-axis orientation and produce ''anomalous'' image contrast because of strong dynamic diffraction components. Atomic-resolution reconstructions from tilt series containing zone-axis images (with their contrast enhanced by strong dynamical scattering) can be distorted when the stronger zone-axis images overwhelm images obtained in other ''random'' orientations in which atoms do not line up in neat columns. The first demonstrations of 3-D reconstruction to atomic resolution used five zone-axis images from test specimens of staurolite consisting of a mix of light and heavy atoms [2,3]. Initial resolution was to the 1.6{angstrom} Scherzer limit of a JEOL-ARM1000. Later experiments used focal-series reconstruction from 5 to 10 images to produce staurolite images from the ARM1000 with resolution extended beyond the Scherzer limit to 1.38{angstrom} [4,5]. To obtain a representation of the three-dimensional structure, images were obtained

  20. Correlative Tomography

    NASA Astrophysics Data System (ADS)

    Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.

    2014-04-01

    Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques.

  1. Correlative tomography.

    PubMed

    Burnett, T L; McDonald, S A; Gholinia, A; Geurts, R; Janus, M; Slater, T; Haigh, S J; Ornek, C; Almuaili, F; Engelberg, D L; Thompson, G E; Withers, P J

    2014-01-01

    Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640

  2. Correlative Tomography

    PubMed Central

    Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.

    2014-01-01

    Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640

  3. Digital retrospective motion-mode display and processing of electron beam cine-computed tomography and other cross-sectional cardiac imaging techniques

    NASA Astrophysics Data System (ADS)

    Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II

    1995-05-01

    Electron beam computed tomography is unparalleled in its ability to consistently produce high quality dynamic images of the human heart. Its use in quantification of left ventricular dynamics is well established in both clinical and research applications. However, the image analysis tools supplied with the scanners offer a limited number of analysis options. They are based on embedded computer systems which have not been significantly upgraded since the scanner was introduced over a decade ago in spite of the explosive improvements in available computer power which have occured during this period. To address these shortcomings, a workstation-based ventricular analysis system has been developed at our institution. This system, which has been in use for over five years, is based on current workstation technology and therefore has benefited from the periodic upgrades in processor performance available to these systems. The dynamic image segmentation component of this system is an interactively supervised, semi-automatic surface identification and tracking system. It characterizes the endocardial and epicardial surfaces of the left ventricle as two concentric 4D hyper-space polyhedrons. Each of these polyhedrons have nearly ten thousand vertices which are deposited into a relational database. The right ventricle is also processed in a similar manner. This database is queried by other custom components which extract ventricular function parameters such as regional ejection fraction and wall stress. The interactive tool which supervises dynamic image segmentation has been enhanced with a temporal domain display. The operator interactively chooses the spatial location of the endpoints of a line segment while the corresponding space/time image is displayed. These images, with content resembling M-Mode echocardiography, benefit form electron beam computed tomography's high spatial and contrast resolution. The segmented surfaces are displayed along with the imagery. These

  4. Interfacial chemistry in a ZnTe/CdSe superlattice studied by atom probe tomography and transmission electron microscopy strain measurements.

    PubMed

    Bonef, B; Haas, B; Rouvière, J-L; André, R; Bougerol, C; Grenier, A; Jouneau, P-H; Zuo, J-M

    2016-05-01

    The atomic scale analysis of a ZnTe/CdSe superlattice grown by molecular beam epitaxy is reported using atom probe tomography and strain measurements from high-resolution scanning transmission electron microscopy images. CdTe interfaces were grown by atomic layer epitaxy to prevent the spontaneous formation of ZnSe bonds. Both interfaces between ZnTe and CdSe are composed of alloyed layers of ZnSe. Pure CdTe interfaces are not observed and Zn atoms are also visible in the CdSe layers. This information is critical to design superlattices with the expected optoelectronic properties. PMID:26748639

  5. 3D Visualization of the Iron Oxidation State in FeO/Fe3O4 Core-Shell Nanocubes from Electron Energy Loss Tomography.

    PubMed

    Torruella, Pau; Arenal, Raúl; de la Peña, Francisco; Saghi, Zineb; Yedra, Lluís; Eljarrat, Alberto; López-Conesa, Lluís; Estrader, Marta; López-Ortega, Alberto; Salazar-Alvarez, Germán; Nogués, Josep; Ducati, Caterina; Midgley, Paul A; Peiró, Francesca; Estradé, Sonia

    2016-08-10

    The physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample. PMID:27383904

  6. Argon broad ion beam tomography in a cryogenic scanning electron microscope: a novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid.

    PubMed

    Desbois, G; Urai, J L; Pérez-Willard, F; Radi, Z; Offern, S; Burkart, I; Kukla, P A; Wollenberg, U

    2013-03-01

    The contribution describes the implementation of a broad ion beam (BIB) polisher into a scanning electron microscope (SEM) functioning at cryogenic temperature (cryo). The whole system (BIB-cryo-SEM) provides a first generation of a novel multibeam electron microscope that combines broad ion beam with cryogenic facilities in a conventional SEM to produce large, high-quality cross-sections (up to 2 mm(2)) at cryogenic temperature to be imaged at the state-of-the-art SEM resolution. Cryogenic method allows detecting fluids in their natural environment and preserves samples against desiccation and dehydration, which may damage natural microstructures. The investigation of microstructures in the third dimension is enabled by serial cross-sectioning, providing broad ion beam tomography with slices down to 350 nm thick. The functionalities of the BIB-cryo-SEM are demonstrated by the investigation of rock salts (synthetic coarse-grained sodium chloride synthesized from halite-brine mush cold pressed at 150 MPa and 4.5 GPa, and natural rock salt mylonite from a salt glacier at Qom Kuh, central Iran). In addition, results from BIB-cryo-SEM on a gas shale and Boom Clay are also presented to show that the instrument is suitable for a large range of sedimentary rocks. For the first time, pore and grain fabrics of preserved host and reservoir rocks can be investigated at nm-scale range over a representative elementary area. In comparison with the complementary and overlapping performances of the BIB-SEM method with focused ion beam-SEM and X-ray tomography methods, the BIB cross-sectioning enables detailed insights about morphologies of pores at greater resolution than X-ray tomography and allows the production of large representative surfaces suitable for FIB-SEM investigations of a specific representative site within the BIB cross-section. PMID:23323728

  7. Electron tomography of (In,Ga)N insertions in GaN nanocolumns grown on semi-polar (112{sup -}2) GaN templates

    SciTech Connect

    Niehle, M. Trampert, A.; Albert, S.; Bengoechea-Encabo, A.; Calleja, E.

    2015-03-01

    We present results of scanning transmission electron tomography on GaN/(In,Ga)N/GaN nanocolumns (NCs) that grew uniformly inclined towards the patterned, semi-polar GaN(112{sup -}2) substrate surface by molecular beam epitaxy. For the practical realization of the tomographic experiment, the nanocolumn axis has been aligned parallel to the rotation axis of the electron microscope goniometer. The tomographic reconstruction allows for the determination of the three-dimensional indium distribution inside the nanocolumns. This distribution is strongly interrelated with the nanocolumn morphology and faceting. The (In,Ga)N layer thickness and the indium concentration differ between crystallographically equivalent and non-equivalent facets. The largest thickness and the highest indium concentration are found at the nanocolumn apex parallel to the basal planes.

  8. Measuring electrostatic potential profiles across amorphous intergranular films by electron diffraction.

    PubMed

    Koch, Christoph T; Bhattacharyya, Somnath; Rühle, Manfred; Satet, Raphaëlle L; Hoffmann, Michael J

    2006-04-01

    Amorphous 1-2-nm-wide intergranular films in ceramics dictate many of their properties. The detailed investigation of structure and chemistry of these films pushes the limits of today's transmission electron microscopy. We report on the reconstruction of the one-dimensional potential profile across the film from an experimentally acquired tilt series of energy-filtered electron diffraction patterns. Along with the potential profile, the specimen thickness, film orientation with respect to the grain lattice and specimen surface, and the absolute specimen orientation with respect to the laboratory frame of reference are retrieved. PMID:17481353

  9. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation

    SciTech Connect

    Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

    2014-03-26

    Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

  10. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ.

    PubMed

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the