Science.gov

Sample records for electron transfer catalyst

  1. Ultrafast photodriven intramolecular electron transfer from an iridium-based water-oxidation catalyst to perylene diimide derivatives.

    PubMed

    Vagnini, Michael T; Smeigh, Amanda L; Blakemore, James D; Eaton, Samuel W; Schley, Nathan D; D'Souza, Francis; Crabtree, Robert H; Brudvig, Gary W; Co, Dick T; Wasielewski, Michael R

    2012-09-25

    Photodriving the activity of water-oxidation catalysts is a critical step toward generating fuel from sunlight. The design of a system with optimal energetics and kinetics requires a mechanistic understanding of the single-electron transfer events in catalyst activation. To this end, we report here the synthesis and photophysical characterization of two covalently bound chromophore-catalyst electron transfer dyads, in which the dyes are derivatives of the strong photooxidant perylene-3,4:9,10-bis(dicarboximide) (PDI) and the molecular catalyst is the Cp*Ir(ppy)Cl metal complex, where ppy = 2-phenylpyridine. Photoexcitation of the PDI in each dyad results in reduction of the chromophore to PDI(•-) in less than 10 ps, a process that outcompetes any generation of (3*)PDI by spin-orbit-induced intersystem crossing. Biexponential charge recombination largely to the PDI-Ir(III) ground state is suggestive of multiple populations of the PDI(•-)-Ir(IV) ion-pair, whose relative abundance varies with solvent polarity. Electrochemical studies of the dyads show strong irreversible oxidation current similar to that seen for model catalysts, indicating that the catalytic integrity of the metal complex is maintained upon attachment to the high molecular weight photosensitizer. PMID:22586073

  2. Ultrafast photodriven intramolecular electron transfer from an iridium-based water-oxidation catalyst to perylene diimide derivatives

    PubMed Central

    Vagnini, Michael T.; Smeigh, Amanda L.; Blakemore, James D.; Eaton, Samuel W.; Schley, Nathan D.; D’Souza, Francis; Crabtree, Robert H.; Brudvig, Gary W.; Co, Dick T.; Wasielewski, Michael R.

    2012-01-01

    Photodriving the activity of water-oxidation catalysts is a critical step toward generating fuel from sunlight. The design of a system with optimal energetics and kinetics requires a mechanistic understanding of the single-electron transfer events in catalyst activation. To this end, we report here the synthesis and photophysical characterization of two covalently bound chromophore-catalyst electron transfer dyads, in which the dyes are derivatives of the strong photooxidant perylene-3,4:9,10-bis(dicarboximide) (PDI) and the molecular catalyst is the Cp?Ir(ppy)Cl metal complex, where ppy = 2-phenylpyridine. Photoexcitation of the PDI in each dyad results in reduction of the chromophore to PDI•- in less than 10 ps, a process that outcompetes any generation of 3?PDI by spin-orbit-induced intersystem crossing. Biexponential charge recombination largely to the PDI-Ir(III) ground state is suggestive of multiple populations of the PDI•--Ir(IV) ion-pair, whose relative abundance varies with solvent polarity. Electrochemical studies of the dyads show strong irreversible oxidation current similar to that seen for model catalysts, indicating that the catalytic integrity of the metal complex is maintained upon attachment to the high molecular weight photosensitizer. PMID:22586073

  3. Coupled sensitizer-catalyst dyads: electron-transfer reactions in a perylene-polyoxometalate conjugate.

    PubMed

    Odobel, Fabrice; Séverac, Marjorie; Pellegrin, Yann; Blart, Errol; Fosse, Céline; Cannizzo, Caroline; Mayer, Cédric R; Elliott, Kristopher J; Harriman, Anthony

    2009-01-01

    Ultrafast discharge of a single-electron capacitor: A variety of intramolecular electron-transfer reactions are apparent for polyoxometalates functionalized with covalently attached perylene monoimide chromophores, but these are restricted to single-electron events. (et=electron transfer, cr=charge recombination, csr=charge-shift reaction, PER=perylene, POM=polyoxometalate).A new strategy is introduced that permits covalent attachment of an organic chromophore to a polyoxometalate (POM) cluster. Two examples are reported that differ according to the nature of the anchoring group and the flexibility of the linker. Both POMs are functionalized with perylene monoimide units, which function as photon collectors and form a relatively long-lived charge-transfer state under illumination. They are reduced to a stable pi-radical anion by electrolysis or to a protonated dianion under photolysis in the presence of aqueous triethanolamine. The presence of the POM opens up an intramolecular electron-transfer route by which the charge-transfer state reduces the POM. The rate of this process depends on the molecular conformation and appears to involve through-space interactions. Prior reduction of the POM leads to efficient fluorescence quenching, again due to intramolecular electron transfer. In most cases, it is difficult to resolve the electron-transfer products because of relatively fast reverse charge shift that occurs within a closed conformer. Although the POM can store multiple electrons, it has not proved possible to use these systems as molecular-scale capacitors because of efficient electron transfer from the one-electron-reduced POM to the excited singlet state of the perylene monoimide. PMID:19197929

  4. Hydrogen Photogeneration Promoted by Efficient Electron Transfer from Iridium Sensitizers to Colloidal MoS2 Catalysts

    PubMed Central

    Yuan, Yong-Jun; Yu, Zhen-Tao; Liu, Xiao-Jie; Cai, Jian-Guang; Guan, Zhong-Jie; Zou, Zhi-Gang

    2014-01-01

    We report the utilization of colloidal MoS2 nanoparticles (NPs) for multicomponent photocatalytic water reduction systems in cooperation with a series of cyclometalated Ir(III) sensitizers. The effects of the particle size and particle dispersion of MoS2 NPs catalyst, reaction solvent and the concentration of the components on hydrogen evolution efficiency were investigated. The MoS2 NPs exhibited higher catalytic performance than did other commonly used water reduction catalysts under identical experiment conditions. The introduction of the carboxylate anchoring groups in the iridium complexes allows the species to be favorably chem-adsorbed onto the MoS2 NPs surface to increase the electron transfer, resulting in enhancement of hydrogen evolution relative to the non-attached systems. The highest apparent quantum yield, which was as high as 12.4%, for hydrogen evolution, was obtained (? = 400?nm). PMID:24509729

  5. Hydrogen Photogeneration Promoted by Efficient Electron Transfer from Iridium Sensitizers to Colloidal MoS2 Catalysts

    NASA Astrophysics Data System (ADS)

    Yuan, Yong-Jun; Yu, Zhen-Tao; Liu, Xiao-Jie; Cai, Jian-Guang; Guan, Zhong-Jie; Zou, Zhi-Gang

    2014-02-01

    We report the utilization of colloidal MoS2 nanoparticles (NPs) for multicomponent photocatalytic water reduction systems in cooperation with a series of cyclometalated Ir(III) sensitizers. The effects of the particle size and particle dispersion of MoS2 NPs catalyst, reaction solvent and the concentration of the components on hydrogen evolution efficiency were investigated. The MoS2 NPs exhibited higher catalytic performance than did other commonly used water reduction catalysts under identical experiment conditions. The introduction of the carboxylate anchoring groups in the iridium complexes allows the species to be favorably chem-adsorbed onto the MoS2 NPs surface to increase the electron transfer, resulting in enhancement of hydrogen evolution relative to the non-attached systems. The highest apparent quantum yield, which was as high as 12.4%, for hydrogen evolution, was obtained (? = 400 nm).

  6. Electron-transfer sensitization of H2 oxidation and CO2 reduction catalysts using a single chromophore

    PubMed Central

    La Porte, Nathan T.; Moravec, Davis B.; Hopkins, Michael D.

    2014-01-01

    Energy-storing artificial-photosynthetic systems for CO2 reduction must derive the reducing equivalents from a renewable source rather than from sacrificial donors. To this end, a homogeneous, integrated chromophore/two-catalyst system is described that is thermodynamically capable of photochemically driving the energy-storing reverse water–gas shift reaction (CO2 + H2 ? CO + H2O), where the reducing equivalents are provided by renewable H2. The system consists of the chromophore zinc tetraphenylporphyrin (ZnTPP), H2 oxidation catalysts of the form [CpRCr(CO)3]–, and CO2 reduction catalysts of the type Re(bpy-4,4?-R2)(CO)3Cl. Using time-resolved spectroscopic methods, a comprehensive mechanistic and kinetic picture of the photoinitiated reactions of mixtures of these compounds has been developed. It has been found that absorption of a single photon by broadly absorbing ZnTPP sensitizes intercatalyst electron transfer to produce the substrate-active forms of each. The initial photochemical step is the heretofore unobserved reductive quenching of the low-energy T1 state of ZnTPP. Under the experimental conditions, the catalytically competent state decays with a second-order half-life of ?15 ?s, which is of the right magnitude for substrate trapping of sensitized catalyst intermediates. PMID:24961370

  7. Electron-transfer sensitization of H2 oxidation and CO2 reduction catalysts using a single chromophore.

    PubMed

    La Porte, Nathan T; Moravec, Davis B; Hopkins, Michael D

    2014-07-01

    Energy-storing artificial-photosynthetic systems for CO2 reduction must derive the reducing equivalents from a renewable source rather than from sacrificial donors. To this end, a homogeneous, integrated chromophore/two-catalyst system is described that is thermodynamically capable of photochemically driving the energy-storing reverse water-gas shift reaction (CO2 + H2 ? CO + H2O), where the reducing equivalents are provided by renewable H2. The system consists of the chromophore zinc tetraphenylporphyrin (ZnTPP), H2 oxidation catalysts of the form [Cp(R)Cr(CO)3](-), and CO2 reduction catalysts of the type Re(bpy-4,4'-R2)(CO)3Cl. Using time-resolved spectroscopic methods, a comprehensive mechanistic and kinetic picture of the photoinitiated reactions of mixtures of these compounds has been developed. It has been found that absorption of a single photon by broadly absorbing ZnTPP sensitizes intercatalyst electron transfer to produce the substrate-active forms of each. The initial photochemical step is the heretofore unobserved reductive quenching of the low-energy T1 state of ZnTPP. Under the experimental conditions, the catalytically competent state decays with a second-order half-life of ?15 ?s, which is of the right magnitude for substrate trapping of sensitized catalyst intermediates. PMID:24961370

  8. A kinetic study of plutonium dioxide dissolution in hydrochloric acid using iron (II) as an electron transfer catalyst

    SciTech Connect

    Fife, K.W.

    1996-09-01

    Effective dissolution of plutonium dioxide has traditionally been accomplished by contact with strong nitric acid containing a small amount of fluoride at temperatures of {approximately} 100 C. In spite of these aggressive conditions, PuO{sub 2} dissolution is sometimes incomplete requiring additional contact with the solvent. This work focused on an alternative to conventional dissolution in nitric acid where an electron transfer catalyst, Fe(II), was used in hydrochloric acid. Cyclic voltammetry was employed as an in-situ analytical technique for monitoring the dissolution reaction rate. The plutonium oxide selected for this study was decomposed plutonium oxalate with > 95% of the material having a particle diameter (< 70 {micro}m) as determined by a scanning laser microscopy technique. Attempts to dry sieve the oxide into narrow size fractions prior to dissolution in the HCl-Fe(II) solvent system failed, apparently due to significant interparticle attractive forces. Although sieve splits were obtained, subsequent scanning laser microscopy analysis of the sieve fractions indicated that particle segregation was not accomplished and the individual sieve fractions retained a particle size distribution very similar to the original powder assemblage. This phenomena was confirmed through subsequent dissolution experiments on the various screen fractions which illustrated no difference in kinetic behavior between the original oxide assemblage and the sieve fractions.

  9. The Role of a Dipeptide Outer-Coordination Sphere on H2 -Production Catalysts: Influence on Catalytic Rates and Electron Transfer

    SciTech Connect

    Reback, Matthew L.; Ginovska-Pangovska, Bojana; Ho, Ming-Hsun; Jain, Avijita; Squier, Thomas C.; Raugei, Simone; Roberts, John A.; Shaw, Wendy J.

    2013-02-04

    The outer-coordination sphere of enzymes acts to fine-tune the active site reactivity and control catalytic rates, suggesting that incorporation of analogous structural elements into molecular catalysts may be necessary to achieve rates comparable to those observed in enzyme systems at low overpotentials. In this work, we evaluate the effect of an amino acid and dipeptide outer-coordination sphere on [Ni(PPh2NPh-R2)2]2+ hydrogen production catalysts. A series of 12 new complexes containing non-natural amino acids or dipeptides were prepared to test the effects of positioning, size, polarity and aromaticity on catalytic activity. The non-natural amino acid was either 3-(meta- or para-aminophenyl)propionic acid terminated as an acid, an ester or an amide. Dipeptides consisted of one of the non-natural amino acids coupled to one of four amino acid esters: alanine, serine, phenylalanine or tyrosine. All of the catalysts are active for hydrogen production, with rates averaging ~1000 s-1, 40% faster than the unmodified catalyst. Structure and polarity of the aliphatic or aromatic side chains of the C-terminal peptide do not strongly influence rates. However, the presence of an amide bond increases rates, suggesting a role for the amide in assisting catalysis. Overpotentials were lower with substituents at the N-phenyl meta position. This is consistent with slower electron transfer in the less compact, para-substituted complexes, as shown in digital simulations of catalyst cyclic voltammograms and computational modeling of the complexes. Combining the current results with insights from previous results, we propose a mechanism for the role of the amino acid and dipeptide based outer-coordination sphere in molecular hydrogen production catalysts.

  10. Vectorial electron transfer in spatially ordered arrays

    SciTech Connect

    Fox, M.A.

    1993-02-01

    Progress was made on synthesis of new materials for directional electron transfer (block copolymers and helical oligopeptides), preparation and characterization of anisotropic composites bearing organics and inorganics, electrocatalysis (redox-activated catalysts), and surface modifications of metals and semiconductors.

  11. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, Roland (2823 Hillegass Ave., Berkeley, CA 94705); Calvin, Melvin (2683 Buena Vista Way, Berkeley, CA 94708)

    1984-01-01

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  12. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, R.; Calvin, M.

    1984-01-24

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  13. Nonadiabatic anharmonic electron transfer

    SciTech Connect

    Schmidt, P. P.

    2013-03-28

    The effect of an inner sphere, local mode vibration on an electron transfer is modeled using the nonadiabatic transition probability (rate) expression together with both the anharmonic Morse and the harmonic oscillator potential. For an anharmonic inner sphere mode, a variational analysis uses harmonic oscillator basis functions to overcome the difficulties evaluating Morse-model Franck-Condon overlap factors. Individual matrix elements are computed with the use of new, fast, robust, and flexible recurrence relations. The analysis therefore readily addresses changes in frequency and/or displacement of oscillator minimums in the different electron transfer states. Direct summation of the individual Boltzmann weighted Franck-Condon contributions avoids the limitations inherent in the use of the familiar high-temperature, Gaussian form of the rate constant. The effect of harmonic versus anharmonic inner sphere modes on the electron transfer is readily seen, especially in the exoergic, inverted region. The behavior of the transition probability can also be displayed as a surface for all temperatures and values of the driving force/exoergicity {Delta}=-{Delta}G. The temperature insensitivity of the transfer rate is clearly seen when the exoergicity equals the collective reorganization energy ({Delta}={Lambda}{sub s}) along a maximum ln (w) vs. {Delta} ridge of the surface. The surface also reveals additional regions for {Delta} where ln (w) appears to be insensitive to temperature, or effectively activationless, for some kinds of inner sphere contributions.

  14. Easy To Synthesize, Robust Organo-osmium Asymmetric Transfer Hydrogenation Catalysts.

    PubMed

    Coverdale, James P C; Sanchez-Cano, Carlos; Clarkson, Guy J; Soni, Rina; Wills, Martin; Sadler, Peter J

    2015-05-26

    Asymmetric transfer hydrogenation (ATH) is an important process in organic synthesis for which the Noyori-type Ru(II) catalysts [(arene)Ru(Tsdiamine)] are now well established and widely used. We now demonstrate for the first time the catalytic activity of the osmium analogues. X-ray crystal structures of the 16-electron Os(II) catalysts are almost identical to those of Ru(II). Intriguingly the precursor complex was isolated as a dichlorido complex with a monodentate amine ligand. The Os(II) catalysts are readily synthesised (within 1?h) and exhibit excellent enantioselectivity in ATH reactions of ketones. PMID:25853228

  15. Electron transfer networks Murad Banaji

    E-print Network

    Banaji,. Murad

    Electron transfer networks Murad Banaji§ Stephen Baigent June 4, 2007 Abstract In this paper we study electron transfer networks. These are generalisations of electron transport chains, and consist electrons to the oxidised forms, and there are some electron inflow and outflow processes. We show

  16. Intramolecular electron transfer rates

    NASA Astrophysics Data System (ADS)

    Hupp, Joseph T.

    The initial goals of this project were: (1) to construct pulsed-accelerated-flow and pulsed-laser (transient absorbance) instruments for intramolecular electron-transfer rate measurements, (2) to design and synthesize appropriate molecules and perform such measurements, (3) to develop further an electrochemical method for gauging site-to-site electronic coupling, and (4) to apply time-dependent Raman scattering theory to the problem of inner-shell reorganization in charge-transfer reactions. Although all four goals were met, we also found it necessary to pursue studies in some unforeseen directions. For example, early on we discovered that medium effects (aggregation and ion pairing) could play a very large, and previously unrecognized, role in some optical intervalence reactions. Given the importance of the effects to the areas above, we chose to map them in a fairly complete fashion. Also, in anticipation of possible renewal we initiated studies in a new area: bimolecular photoredox kinetics in supercritical media. Finally, in a small project carried out largely by undergraduates we examined solvent tuning effects upon lifetimes of photo-excited ruthenium am(m)ine bipyridine complexes. The key new findings and other highlights of these studies are outlined.

  17. Electron transfer reactions in microporous solids

    NASA Astrophysics Data System (ADS)

    Mallouk, T. E.

    1993-01-01

    The research program involves the use of microporous solids (zeolites, clays, layered, and tunnel structure oxide semiconductors) as organizing media for artificial photosynthetic systems. The purpose of the microporous solid is twofold. First, it induces spatial organization of photoactive and electroactive components (sensitizers, semiconductor particles, electron relays, and catalysts) at the solid-solution interface, enhancing the quantum efficiency of charge separation and separating physically the ultimate electron donor and acceptor in the electron transport chain. Second, since the microcrystalline solid admits only molecules of a certain charge and size, it is possible to achieve permanent charge separation by sieving chemical photoproducts (e.g., H2 and I3(-), or H2 and O2) from each other. Spectroscopic and electrochemical methods are used to study the kinetics of electron transfer reactions in these hybrid molecular/solid state assemblies.

  18. Proton-Coupled Electron Transfer

    SciTech Connect

    Weinberg, Dave; Gagliardi, Christopher J.; Hull, Jonathan F; Murphy, Christine Fecenko; Kent, Caleb A.; Westlake, Brittany C.; Paul, Amit; Ess, Daniel H; McCafferty, Dewey Granville; Meyer, Thomas J

    2012-07-11

    Proton-Coupled Electron Transfer (PCET) describes reactions in which there is a change in both electron and proton content between reactants and products. It originates from the influence of changes in electron content on acid-base properties and provides a molecular-level basis for energy transduction between proton transfer and electron transfer. Coupled electron-proton transfer or EPT is defined as an elementary step in which electrons and protons transfer from different orbitals on the donor to different orbitals on the acceptor. There is (usually) a clear distinction between EPT and H-atom transfer (HAT) or hydride transfer, in which the transferring electrons and proton come from the same bond. Hybrid mechanisms exist in which the elementary steps are different for the reaction partners. EPT pathways such as PhO•/PhOH exchange have much in common with HAT pathways in that electronic coupling is significant, comparable to the reorganization energy with H{sub DA} ~ ?. Multiple-Site Electron-Proton Transfer (MS-EPT) is an elementary step in which an electron-proton donor transfers electrons and protons to different acceptors, or an electron-proton acceptor accepts electrons and protons from different donors. It exploits the long-range nature of electron transfer while providing for the short-range nature of proton transfer. A variety of EPT pathways exist, creating a taxonomy based on what is transferred, e.g., 1e-/2H+ MS-EPT. PCET achieves “redox potential leveling” between sequential couples and the buildup of multiple redox equivalents, which is of importance in multielectron catalysis. There are many examples of PCET and pH-dependent redox behavior in metal complexes, in organic and biological molecules, in excited states, and on surfaces. Changes in pH can be used to induce electron transfer through films and over long distances in molecules. Changes in pH, induced by local electron transfer, create pH gradients and a driving force for long-range proton transfer in Photosysem II and through other biological membranes. In EPT, simultaneous transfer of electrons and protons occurs on time scales short compared to the periods of coupled vibrations and solvent modes. A theory for EPT has been developed which rationalizes rate constants and activation barriers, includes temperature- and driving force (?G)-dependences implicitly, and explains kinetic isotope effects. The distance-dependence of EPT is dominated by the short-range nature of proton transfer, with electron transfer being far less demanding.Changes in external pH do not affect an EPT elementary step. Solvent molecules or buffer components can act as proton donor acceptors, but individual H2O molecules are neither good bases (pKa(H3O+) = -1.74) nor good acids (pKa(H2O) = 15.7). There are many examples of mechanisms in chemistry, in biology, on surfaces, and in the gas phase which utilize EPT. PCET and EPT play critical roles in the oxygen evolving complex (OEC) of Photosystem II and other biological reactions by decreasing driving force and avoiding high-energy intermediates.

  19. Manifestations of sequential electron transfer

    SciTech Connect

    Thurnauer, M.C.; Tang, J.

    1996-05-01

    An essential feature of efficient photo-initiated charge separation is sequential electron transfer. Charge separation is initiated by photoexcitation of an electron donor followed by rapid electron transfer steps from the excited donor through a series of electron acceptors, so that, after one or two successive steps, charge separation is stabilized by the physical separation between the oxidized donor and reduced acceptor. The prime example of this process is the sequential electron transfer that takes place in the purple photosynthetic bacterial reaction center, resulting in the charge separation between P{sup +} and Q{sub A}{sup -} across a biological membrane. We have developed magnetic resonance tools to monitor sequential electron transfer. We are applying these techniques to study charge separation in natural photo-synthetic systems in order to gain insights into the features of the reaction center proteins that promote efficient charge separation. As we establish what some of these factors are, we are beginning to design artificial photosynthetic systems that undergo photoinduced sequential electron transfer steps.

  20. Vectorial electron transfer in spatially ordered arrays. Progress report, January 1992--January 1993

    SciTech Connect

    Fox, M.A.

    1993-02-01

    Progress was made on synthesis of new materials for directional electron transfer (block copolymers and helical oligopeptides), preparation and characterization of anisotropic composites bearing organics and inorganics, electrocatalysis (redox-activated catalysts), and surface modifications of metals and semiconductors.

  1. Electron transfer in biological molecules

    SciTech Connect

    Gray, H.B.

    1995-12-01

    Electron-transfer reactions are key stemps in photosynthesis, respiration, drug metabolism, and many other biochemical processes. These reactions commonly occur between protein-bound prosthetic groups that are separated by large molecular distances (often greater than 10 {Angstrom}). Although the electron donors and acceptors are expected to be weakly coupled, the reactions are remarkably fast and proceed with high specificity. Recent work on structurally engineered iron and cooper proteins has shown that the chemical bonds in the intervening medium potentially can control the rates of these electron-transfer reactions.

  2. Electron Attachment Step in Electron Capture Dissociation (ECD) and Electron Transfer Dissociation (ETD)

    E-print Network

    Simons, Jack

    Electron Attachment Step in Electron Capture Dissociation (ECD) and Electron Transfer Dissociation initio electronic structure calculations to estimate the cross sections with which electrons are attached (in electron capture dissociation (ECD)) or transferred (in electron transfer dissociation (ETD

  3. Analytical Model for Rates of Electron Attachment and Intramolecular Electron Transfer in Electron Transfer

    E-print Network

    Simons, Jack

    Analytical Model for Rates of Electron Attachment and Intramolecular Electron Transfer in Electron-mail: simons@chem.utah.edu Abstract: A new physical model is put forth to allow the prediction of electron of handling such electron transfer events when the Rydberg orbital has principal quantum number n ) 3

  4. Facile graphene transfer directly to target substrates with a reusable metal catalyst

    NASA Astrophysics Data System (ADS)

    Mafra, D. L.; Ming, T.; Kong, J.

    2015-09-01

    High-throughput, roll-to-roll growth and transferring of high-quality, large-area chemical vapor deposited (CVD) graphene directly onto a target substrate with a reusable metal catalyst is an enabling technology for flexible optoelectronics. We explore the direct transfer via hot lamination of CVD graphene onto a flexible substrate, followed by electrochemical delamination (bubble transfer) of the graphene. The transfer method investigated here does not require any intermediate transfer layer and allows the copper to be reused, which will reduce the production cost and avoid the generation of chemical waste. Such integration is one necessary step forward toward the economical and industrial scale production of graphene. Our method bares promise in various applications. As an example, we fabricated flexible solution-gated graphene field-effect-transistors, which exhibited transconductance as high as 200 ?S.High-throughput, roll-to-roll growth and transferring of high-quality, large-area chemical vapor deposited (CVD) graphene directly onto a target substrate with a reusable metal catalyst is an enabling technology for flexible optoelectronics. We explore the direct transfer via hot lamination of CVD graphene onto a flexible substrate, followed by electrochemical delamination (bubble transfer) of the graphene. The transfer method investigated here does not require any intermediate transfer layer and allows the copper to be reused, which will reduce the production cost and avoid the generation of chemical waste. Such integration is one necessary step forward toward the economical and industrial scale production of graphene. Our method bares promise in various applications. As an example, we fabricated flexible solution-gated graphene field-effect-transistors, which exhibited transconductance as high as 200 ?S. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03892h

  5. Exploring the decomposition pathways of iron asymmetric transfer hydrogenation catalysts.

    PubMed

    Lagaditis, Paraskevi O; Sues, Peter E; Lough, Alan J; Morris, Robert H

    2015-07-21

    Our group has developed a series of iron-based asymmetric transfer hydrogenation (ATH) catalysts for the reduction of polar double bonds. The activation of the precatalysts as well as the catalytic mechanism have been thoroughly investigated, but the decomposition pathways of these systems are poorly understood. Herein, we report a study of the deactivation pathways for an iron ATH catalyst under catalytically relevant conditions. The decomposition pathways were examined using experimental techniques and density functional theory (DFT) calculations. The major decomposition products that formed, Fe(CO)((Et)2PCH2CH2CHCHNCH2CH2P(Et)2) (3a) and Fe(CO)((Et)2PCH2CH2C(Ph)C(Ph)NCH2CH2P(Et)2) (3b), had two amido donors as well as a C=C bond on the diamine backbone of the tetradentate ligand. These species were identified by NMR studies and one was isolated as a bimetallic complex with Ru(II)Cp*. Two minor iron hydride species also formed concurrently with 3a, as determined by NMR studies, one of which was isolated and contained a fully saturated ligand as well as a hydride ligand. None of the compounds that were isolated were found to be active ATH catalysts. PMID:25373607

  6. Phase-Transfer Activation of Transition Metal Catalysts.

    PubMed

    Tuba, Robert; Xi, Zhenxing; Bazzi, Hassan S; Gladysz, John A

    2015-11-01

    With metal-based catalysts, it is quite common that a ligand (L) must first dissociate from a catalyst precursor (L'n M?L) to activate the catalyst. The resulting coordinatively unsaturated active species (L'n M) can either back react with the ligand in a k-1 step, or combine with the substrate in a k2 step. When dissociation is not rate determining and k-1 [L] is greater than or comparable to k2 [substrate], this slows the rate of reaction. By introducing a phase label onto the ligand L and providing a suitable orthogonal liquid or solid phase, dramatic rate accelerations can be achieved. This phenomenon is termed "phase-transfer activation". In this Concept, some historical antecedents are reviewed, followed by successful applications involving fluorous/organic and aqueous/organic liquid/liquid biphasic catalysis, and liquid/solid biphasic catalysis. Variants that include a chemical trap for the phase-labeled ligands are also described. PMID:26338471

  7. The electronic couplings in electron transfer and excitation energy transfer.

    PubMed

    Hsu, Chao-Ping

    2009-04-21

    The transport of charge via electrons and the transport of excitation energy via excitons are two processes of fundamental importance in diverse areas of research. Characterization of electron transfer (ET) and excitation energy transfer (EET) rates are essential for a full understanding of, for instance, biological systems (such as respiration and photosynthesis) and opto-electronic devices (which interconvert electric and light energy). In this Account, we examine one of the parameters, the electronic coupling factor, for which reliable values are critical in determining transfer rates. Although ET and EET are different processes, many strategies for calculating the couplings share common themes. We emphasize the similarities in basic assumptions between the computational methods for the ET and EET couplings, examine the differences, and summarize the properties, advantages, and limits of the different computational methods. The electronic coupling factor is an off-diagonal Hamiltonian matrix element between the initial and final diabatic states in the transport processes. ET coupling is essentially the interaction of the two molecular orbitals (MOs) where the electron occupancy is changed. Singlet excitation energy transfer (SEET), however, contains a Frster dipole-dipole coupling as its most important constituent. Triplet excitation energy transfer (TEET) involves an exchange of two electrons of different spin and energy; thus, it is like an overlap interaction of two pairs of MOs. Strategies for calculating ET and EET couplings can be classified as (1) energy-gap-based approaches, (2) direct calculation of the off-diagonal matrix elements, or (3) use of an additional operator to describe the extent of charge or excitation localization and to calculate the coupling value. Some of the difficulties in calculating the couplings were recently resolved. Methods were developed to remove the nondynamical correlation problem from the highly precise coupled cluster models for ET coupling. It is now possible to obtain reliable ET couplings from entry-level excited-state Hamiltonians. A scheme to calculate the EET coupling in a general class of systems, regardless of the contributing terms, was also developed. In the past, empirically derived parameters were heavily invoked in model description of charge and excitation energy drifts in a solid-state device. Recent advances, including the methods described in this Account, permit the first-principle quantum mechanical characterization of one class of the parameters in such descriptions, enhancing the predictive power and allowing a deeper understanding of the systems involved. PMID:19215069

  8. Electron Transfer in Gaseous Positively Charged Peptides --

    E-print Network

    Simons, Jack

    CHAPTER 8 Electron Transfer in Gaseous Positively Charged Peptides -- Relation to Mass Spectrometry Jack Simons Contents 1. Introduction 164 1.1 The electron-capture event involves electron transfer 165 1.2 Intra-peptide electron transfer can also occur 166 2. The Theoretical Challenges and Examples

  9. Synergistic "ping-pong" energy transfer for efficient light activation in a chromophore-catalyst dyad.

    PubMed

    Quaranta, Annamaria; Charalambidis, Georgios; Herrero, Christian; Margiola, Sofia; Leibl, Winfried; Coutsolelos, Athanassios; Aukauloo, Ally

    2015-10-01

    The synthesis of a porphyrin-Ru(II) polypyridine complex where the porphyrin acts as a photoactive unit and the Ru(II) polypyridine as a catalytic precursor is described. Comparatively, the free base porphyrin was found to outperform the ruthenium based chromophore in the yield of light induced electron transfer. Mechanistic insights indicate the occurrence of a ping-pong energy transfer from the (1)LC excited state of the porphyrin chromophore to the (3)MCLT state of the catalyst and back to the (3)LC excited state of the porphyrin unit. The latter, triplet-triplet energy transfer back to the chromophore, efficiently competes with fast radiationless deactivation of the excited state at the catalyst site. The energy thus recovered by the chromophore allows improved yield of formation of the oxidized form of the chromophore and concomitantly of the oxidation of the catalytic unit by intramolecular charge transfer. The presented results are among the rare examples where a porphyrin chromophore is successfully used to drive an oxidative activation process where reductive processes prevail in the literature. PMID:26327298

  10. Engineering nanocarbon interfaces for electron transfer

    E-print Network

    Hilmer, Andrew J. (Andrew Joseph)

    2013-01-01

    Electron-transfer reactions at nanometer-scale interfaces, such as those presented by single-walled carbon nanotubes (SWCNTs), are important for emerging optoelectronic and photovoltaic technologies. Electron transfer also ...

  11. 75 FR 66644 - Electronic Fund Transfers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ...responsibilities of participants in electronic fund transfer systems'' and to provide...of the Federal Reserve System, Washington, DC 20551...Consumer protection, Electronic fund transfers, Federal Reserve System, Reporting and...

  12. 75 FR 50683 - Electronic Fund Transfers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ...Documents. Prices of new books are listed in the first FEDERAL...E; Docket No. R-1377] Electronic Fund Transfers AGENCY: Board...Regulation E, which implements the Electronic Fund Transfer Act, and the...Credit Card Act amended the Electronic Fund Transfer Act,...

  13. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution.

    PubMed

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-01-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA·/TFA(-), serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts. PMID:26486863

  14. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-10-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA./TFA-, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts.

  15. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    PubMed Central

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-01-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA·/TFA?, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts. PMID:26486863

  16. Polymerization catalysts containing electron-withdrawing amide ligands

    DOEpatents

    Watkin, John G. (Los Alamos, NM); Click, Damon R. (Bloomington, IN)

    2002-01-01

    The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.

  17. Epoxides as reducing agents for low-catalyst-concentration atom transfer radical polymerization.

    PubMed

    Woodruff, Shannon R; Davis, Brad J; Tsarevsky, Nicolay V

    2014-01-01

    Activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) conditions utilizing a low concentration of catalyst are successfully applied for the preparation of well-defined poly(glycidyl methacrylate) without the addition of external reducing agents. The living character of polymerization is evidenced by successful chain extensions with methyl methacrylate and methyl acrylate, again, in the absence of additional reducing agents, yielding block copolymers. The epoxide groups in glycidyl methacrylate or the corresponding polymer can serve as an intrinsic reducing agent to continuously regenerate the Cu(I) -based ATRP activator from the Cu(II) halide complex present in the systems. The reactivity of various epoxides in the reduction of the Cu(II) Br2 complex of tris(2-pyridylmethyl)amine is compared. PMID:24214162

  18. Oligomer and mixed-metal compounds potential multielectron transfer catalysts

    SciTech Connect

    Rillema, D.P.

    1992-03-30

    Projects related to the design and characterization of multimetallic complexes has proceeded forward with a number of achievements. First, photoprocesses in hydrogel matrices lead to the conclusion that cationic metallochromophores could be ion exchanged into a hydrogel matrix ({kappa}-carageenan) and substantial photocurrents could be generated. Second, X-ray structures of Ru(bpy){sub 3}{sup 2+}, Ru(bpm){sub 3}{sup 2+} and Ru(bpz){sub 3}{sup 2+}, where bpy is 2,2{prime}-bipyridine, bpm is 2,2{prime}-bipyrimidine and bpz is 2,2{prime}-bipyrizine, were obtained and revealed similar Ru-N bond distances in each complex even though their {sigma}-donor and {pi}-acceptor character differ markedly. The structure parameters are expected to provide theoreticians with the information needed to probe the electronic character of the molecular systems and provide us with direction in our synthetic strategies. Third, a copper(I) complex was synthesized with a dimeric-ethane-bridged, 1,10-phenanthroline ligand that resulted in isolation of a bimetallic species. The copper(I) complex did luminesce weakly, suggesting that the dimer possesses potential electron transfer capability. Fourth, the photophysical properties of (Re(CO){sub 4}(L-L)){sup +}, where L-L = heterocyclic diimine ligands, and Pt(bph)X{sub 2}, where bph = the dianion of biphenyl and X = CH{sub 3}CN, py or ethylendiamine, displayed luminescence at high energy and underwent excited-state electron transfer. Such high energy emitters provide high driving forces for undergoing excited-state electron transfer. Fifth, both energy and electron transfer were observed in mixed-metal complexes bridged by 1,2-bis(2,2{prime}-bipyridyl-4{prime}-yl) ethane.

  19. Homogeneous catalytic reduction of dioxygen using transfer hydrogenation catalysts.

    PubMed

    Heiden, Zachariah M; Rauchfuss, Thomas B

    2007-11-21

    Solutions of Cp*IrH(rac-TsDPEN) (TsDPEN = H2NCHPhCHPhN(SO2C6H4CH3)-) (1H(H)) with O2 generate Cp*Ir(TsDPEN-H) (1) and 1 equiv of H2O. Kinetic analysis indicates a third-order rate law (second order in [1H(H)] and first order in [O2]), resulting in an overall rate constant of 0.024 +/- 0.013 M(-2) s(-1). Isotopic labeling revealed that the rate of the reaction of 1H(H) + O2 was strongly affected by deuteration at the hydride position (k(HH2)/k(DH2) = 6.0 +/- 1.3) but insensitive to deuteration of the amine (k(HH2)/k(HD2) = 1.2 +/- 0.2); these values are more disparate than for conventional transfer hydrogenation (Casey, C. P.; Johnson, J. B. J. Org. Chem. 2003, 68, 1998-2001). The temperature dependence of the reaction rate indicated DeltaH = 82.2 kJ/mol, DeltaS = 13.2 J/mol K, and a reaction barrier of 85.0 kJ/mol. A CH2Cl2 solution under 0.30 atm of H2 and 0.13 atm of O2 converted to H2O in the presence of 1 and 10 mol % of H(OEt2)2BAr(F)4 (BAr(F)4- = B(C6H3-3,5-(CF3)2)4-). The formation of water from H2 was verified by 2H NMR for the reaction of D2 + O2. Solutions of 1 slowly catalyze the oxidation of amyl alcohol to pentanal; using 1,4-benzoquinone as a cocatalyst, the conversion was faster. Complex 1 also catalyzes the reaction of O2 with RNH2BH3 (R = H, t-Bu), resulting in the formation of water and H2. The deactivation of the catalyst 1 in its reactions with O2 was traced to degradation of the Cp* ligand to a fulvene derivative. This pathway is not observed in the presence of amine-boranes, which were shown to reduce fulvenes back to Cp*. This work suggests the potential of transfer hydrogenation catalysts in reactions involving O2. PMID:17958423

  20. Electron Energy Loss Spectroscopy (EELS) of Iron Fischer Tropsch Catalysts

    NASA Astrophysics Data System (ADS)

    Jin, Aming; Xu, Huifang; Datye, Abhaya K.

    2006-04-01

    Electron energy loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy have been used to study iron catalysts for Fischer Tropsch synthesis. When silica-containing iron oxide precursors are activated in flowing CO, the iron phase segregates into iron carbide crystallites, leaving behind some unreduced iron oxide in an amorphous state coexisting with the silica binder. The iron carbide crystallites are found covered by characteristic amorphous carbonaceous surface layers. These amorphous species are difficult to analyze by traditional catalyst characterization techniques, which lack spatial resolution. Even a surface-sensitive technique such as XPS shows only broad carbon or iron peaks in these catalysts. As we show in this work, EELS allows us to distinguish three different carbonaceous species: reactive amorphous carbon, graphitic carbon, and carbidic carbon in the bulk of the iron carbide particles. The carbidic carbon K edge shows an intense “[pi]*” peak with an edge shift of about 1 eV to higher energy loss compared to that of the [pi]* of amorphous carbon film or graphitic carbon. EELS analysis of the oxygen K edge allows us to distinguish the amorphous unreduced iron phase from the silica binder, indicating these are two separate phases. These results shed light onto the complex phase transformations that accompany the activation of iron catalysts for Fischer Tropsch synthesis.

  1. Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer

    PubMed Central

    2015-01-01

    Here we report a ternary catalyst system for the intramolecular hydroamidation of unactivated olefins using simple N-aryl amide derivatives. Amide activation in these reactions occurs via concerted proton-coupled electron transfer (PCET) mediated by an excited state iridium complex and weak phosphate base to furnish a reactive amidyl radical that readily adds to pendant alkenes. A series of H-atom, electron, and proton transfer events with a thiophenol cocatalyst furnish the product and regenerate the active forms of the photocatalyst and base. Mechanistic studies indicate that the amide substrate can be selectively homolyzed via PCET in the presence of the thiophenol, despite a large difference in bond dissociation free energies between these functional groups. PMID:26439818

  2. Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer.

    PubMed

    Miller, David C; Choi, Gilbert J; Orbe, Hudson S; Knowles, Robert R

    2015-10-28

    Here we report a ternary catalyst system for the intramolecular hydroamidation of unactivated olefins using simple N-aryl amide derivatives. Amide activation in these reactions occurs via concerted proton-coupled electron transfer (PCET) mediated by an excited state iridium complex and weak phosphate base to furnish a reactive amidyl radical that readily adds to pendant alkenes. A series of H-atom, electron, and proton transfer events with a thiophenol cocatalyst furnish the product and regenerate the active forms of the photocatalyst and base. Mechanistic studies indicate that the amide substrate can be selectively homolyzed via PCET in the presence of the thiophenol, despite a large difference in bond dissociation free energies between these functional groups. PMID:26439818

  3. Electron transfer reactions in microporous solids

    NASA Astrophysics Data System (ADS)

    Mallouk, T. E.

    1991-05-01

    We are studying the synthesis of light-induced electron transfer reactions which occur within microporous materials. Some highlights of our progress in the last year are in the fields of (1) electron transfer reactions of donor/acceptor molecules at the zeolite/solution interface; (2) photochemistry of zeolite/TiO2 composites; and (3) photochemistry of layered oxide semiconductors.

  4. Exocellular electron transfer in anaerobic microbial communities.

    PubMed

    Stams, Alfons J M; de Bok, Frank A M; Plugge, Caroline M; van Eekert, Miriam H A; Dolfing, Jan; Schraa, Gosse

    2006-03-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory syntrophic consortia of proton-reducing acetogenic bacteria and hydrogen-consuming methanogenic archaea. Anaerobic microorganisms that use insoluble electron acceptors for growth, such as iron- and manganese-oxide as well as inert graphite electrodes in microbial fuel cells, also transfer electrons exocellularly. Soluble compounds, like humic substances, quinones, phenazines and riboflavin, can function as exocellular electron mediators enhancing this type of anaerobic respiration. However, direct electron transfer by cell-cell contact is important as well. This review addresses the mechanisms of exocellular electron transfer in anaerobic microbial communities. There are fundamental differences but also similarities between electron transfer to another microorganism or to an insoluble electron acceptor. The physical separation of the electron donor and electron acceptor metabolism allows energy conservation in compounds as methane and hydrogen or as electricity. Furthermore, this separation is essential in the donation or acceptance of electrons in some environmental technological processes, e.g. soil remediation, wastewater purification and corrosion. PMID:16478444

  5. Electronic states of carbon alloy catalysts and nitrogen substituent effects on catalytic activity

    NASA Astrophysics Data System (ADS)

    Hata, Tomoyuki; Ushiyama, Hiroshi; Yamashita, Koichi

    2013-03-01

    In recent years, Carbon Alloy Catalysts (CACs) are attracting attention as a candidate for non-platinum-based cathode catalysts in fuel cells. Oxygen reduction reactions at the cathode are divided into two elementary processes, electron transfer and oxygen adsorption. The electron transfer reaction is the rate-determining, and by comparison of energy levels, catalytic activity can be evaluated quantitatively. On the other hand, to begin with, adsorption mechanism is obscure. The purpose of this study is to understand the effect of nitrogen substitution and oxygen adsorption mechanism, by first-principle electronic structure calculations for nitrogen substituted models. To reproduce the elementary processes of oxygen adsorption, we assumed that the initial structures are formed based on the Pauling model, a CACs model and nitrogen substituted CACs models in which various points are replaced with nitrogen. When we try to focus only on the DOS peaks of oxygen, in some substituted model that has high adsorption activity, a characteristic partial occupancy state was found. We conclude that this state will affect the adsorption activity, and discuss on why partially occupied states appear with simplification by using an orbital correlation diagram.

  6. DREAM Assay for Studying Microbial Electron Transfer.

    PubMed

    Vishwanathan, A S; Devkota, Ranjan; Siva Sankara Sai, S; Rao, Govind

    2015-12-01

    Methylene blue undergoes reduction with an accompanying colour change reaction, from blue to colourless, enabling its use as a metric for estimating reducing power. A dye reduction-based electron-transfer activity monitoring (DREAM) assay is demonstrated as a tool to study and understand the process of microbes sourcing electrons from organic substrates and transferring them to an electron acceptor. The rate at which electrons can be transferred to the thermodynamically most feasible electron acceptor directly depends on the activity of microbes. Nature of available substrate determines the quantum of electrons available. Dissolved oxygen intercepts electrons from the microbes before they can be taken up by the dye. Sodium sulfite can be used to offset the detrimental effects of the presence of dissolved oxygen. This easy-to-perform assay has been demonstrated as a proof-of-concept having potential to be extended to other practical applications. PMID:26386586

  7. Characterization of Catalysts for Synthesis of Higher Alcohols using Electron Microscopy

    E-print Network

    Dunin-Borkowski, Rafal E.

    electron microscopy is a valuable tool for characterization of various materials is to characterize these new candidates by electron microscopy. This poster covers the principle methods Characterization of Catalysts for Synthesis of Higher Alcohols using Electron

  8. Characterization of Catalysts for the Synthesis of Higher Alcohols using Transmission Electron Microscopy

    E-print Network

    Dunin-Borkowski, Rafal E.

    Microscopy L. D. L. Duchstein*, T. W. Hansen, J. B. Wagner, R. E. Dunin-Borkowski Center for Electron in such reactions is poor, resulting in a demand for better catalysts [1]. Transmission electron microscopyCharacterization of Catalysts for the Synthesis of Higher Alcohols using Transmission Electron

  9. Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope

    E-print Network

    Dunin-Borkowski, Rafal E.

    Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron@cen.dtu.dk Keywords: Biofuel, catalysis, environmental TEM The development of transportation fuels from sustainable

  10. 77 FR 77187 - Electronic Fund Transfers (Regulation E)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ...any part of which is governed by the Electronic Fund Transfer Act.'' When EFTA...of these information collections is Electronic Fund Transfer Act (Regulation E) 12...Consumer protection, Credit unions, Electronic fund transfers, National banks,...

  11. Effects of catalyst loading amount on the synthesis of poly(3-hexylthiophene) via externally initiated Kumada catalyst-transfer polycondensation

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Higashihara, Tomoya

    2014-12-01

    A series of model polymerization are carried out via the one-pot externally initiated Kumada catalyst-transfer polycondensation (KCTP) of 2-bromo-5-chloromagnesium thiophene monomers, and the excess amount of initiators or catalysts are found no need to be isolated during the polycondensation process. Especially, the impacts of the nickel catalyst loading variation on regioregularity (rr), yield, molecular weight ( M n), polydispersity (PDI) and initiation efficiency of poly(3-hexylthiophene) (P3HT) are systematically investigated. The 1H NMR, size-exclusion chromatography (SEC), and MALDI-TOF mass spectroscopy results indicated that an excess amount of catalyst does not influence yield, rr, M n, and PDI of P3HT, nor the initiation efficiency. However, the PDI of the product is broad, and the M n and rr values decreased in the absence of 1,3-bis (diphenylphosphino)propane (dppp). It can be concluded that the in-situ KCTP polymerization of P3HT is a practical and effective process. These results are especially valuable for the synthesis of all-conjugated block copolymers where macroinitiators are used.

  12. Biomolecular electron transfer under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Tars, Märt; Ellervee, Aleksandr; Wasielewski, Michael R.; Freiberg, Arvi

    1998-08-01

    The dependence of the photoinduced electron transfer rate on hydrostatic pressure up to 8 kbar was studied at 295 K in a bridged Zn-porphyrin donor and pyromellitimide acceptor supermolecule dissolved in toluene. A picosecond fluorescence emission kinetics of the donor, limited by the electron transfer rate, was detected by using synchroscan streak camera. The experiment was complemented with model calculations based on modified classical and semi-classical nonadiabatic electron transfer theory. A peculiar asymmetric inverted parabola-like dependence of the electron transfer rate on pressure was observed. The dependence was successfully reproduced by nonadiabatic theory in the high-temperature limit assuming that the reorganisation free energy or both the reorganisation free energy and the reaction driving force (linearly) changed with pressure. The reaction driving force dependence on pressure alone failed to explain the asymmetry, suggesting that the electron transfer was accompanied with vibration frequency changes. It was inferred that the effective frequency in the product state should be larger than in the reactant state. The usage of the nonadiabatic theory is well justified due to the fulfilment of the inequalities V? kBT and V?< ?L> -1 ( V is the electronic coupling matrix element, < ?L> -1 is the solvent relaxation rate). The influence of the donor-acceptor distance reduction under compression on the electron transfer rate was found to be minor.

  13. Electron transfer pathways in cytochrome c oxidase.

    PubMed

    Lucas, M Fátima; Rousseau, Denis L; Guallar, Victor

    2011-10-01

    Mixed quantum mechanical/molecular mechanics calculations were used to explore the electron pathway of the terminal electron transfer enzyme, cytochrome c oxidase. This enzyme catalyzes the reduction of molecular oxygen to water in a multiple step process. Density functional calculations on the three redox centers allowed for the characterization of the electron transfer mechanism, following the sequence Cu(A)?heme a?heme a(3). This process is largely affected by the presence of positive charges, confirming the possibility of a proton coupled electron transfer. An extensive mapping of all residues involved in the electron transfer, between the Cu(A) center (donor) and the O(2) reduction site heme a(3)-Cu(B) (receptor), was obtained by selectively activating/deactivating different quantum regions. The method employed, called QM/MM e-pathway, allowed the identification of key residues along the possible electron transfer paths, consistent with experimental data. In particular, the role of arginines 481 and 482 appears crucial in the Cu(A)?heme a and in the heme a?heme a(3) electron transfer processes. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins. PMID:21419097

  14. Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation.

    PubMed

    Kärkäs, Markus D; Johnston, Eric V; Verho, Oscar; Akermark, Björn

    2014-01-21

    Human society faces a fundamental challenge as energy consumption is projected to increase due to population and economic growth as fossil fuel resources decrease. Therefore the transition to alternative and sustainable energy sources is of the utmost importance. The conversion of solar energy into chemical energy, by splitting H2O to generate molecular O2 and H2, could contribute to solving the global energy problem. Developing such a system will require the combination of several complicated processes, such as light-harvesting, charge separation, electron transfer, H2O oxidation, and reduction of the generated protons. The primary processes of charge separation and catalysis, which occur in the natural photosynthetic machinery, provide us with an excellent blueprint for the design of such systems. This Account describes our efforts to construct supramolecular assemblies capable of carrying out photoinduced electron transfer and to develop artificial water oxidation catalysts (WOCs). Early work in our group focused on linking a ruthenium chromophore to a manganese-based oxidation catalyst. When we incorporated a tyrosine unit into these supramolecular assemblies, we could observe fast intramolecular electron transfer from the manganese centers, via the tyrosine moiety, to the photooxidized ruthenium center, which clearly resembles the processes occurring in the natural system. Although we demonstrated multi-electron transfer in our artificial systems, the bottleneck proved to be the stability of the WOCs. Researchers have developed a number of WOCs, but the majority can only catalyze H2O oxidation in the presence of strong oxidants such as Ce(IV), which is difficult to generate photochemically. By contrast, illumination of ruthenium(II) photosensitizers in the presence of a sacrificial acceptor generates [Ru(bpy)3](3+)-type oxidants. Their oxidation potentials are significantly lower than that of Ce(IV), but our group recently showed that incorporating negatively charged groups into the ligand backbone could decrease the oxidation potential of the catalysts and, at the same time, decrease the potential for H2O oxidation. This permitted us to develop both ruthenium- and manganese-based WOCs that can operate under neutral conditions, driven by the mild oxidant [Ru(bpy)3](3+). Many hurdles to the development of viable systems for the production of solar fuels remain. However, the combination of important features from the natural photosynthetic machinery and novel artificial components adds insights into the complicated catalytic processes that are involved in splitting H2O. PMID:23957573

  15. Photoinduced electron transfer in ordered polymers

    SciTech Connect

    Jones, G. II.

    1990-10-20

    Photochemical studies on organic polymers or biopolymers (particularly synthetic peptides) that have been modified by covalent attachment (or other means of binding) of organic chromophores and electron transfer agents are described. Specific projects involve are: peptide conjugates bearing electroactive residues such as tryptophan and specifically labeled at the N- or C-terminus of peptide chains; the electrostatic binding of organic dyes to poly-electrolytes (polyacrylates) for which the formation of dimeric aggregates of bound dye that display unusual photophysical and electron transfer properties is important; a study of the binding of dyes and electron transfer agents to the protein mimic,'' polyvinyl-2-pyrrolidinone (PVP), in hydrophobic domains that depend on specific H-bond interaction; and completion of an earlier study having to do with the triplet state properties of charge-transfer (CT) complexes of a high potential quinone and various electron donors (investigation of the properties of triplet (contact) radical-ion pairs). 13 refs., 5 figs., 2 tabs.

  16. Electron transfer to continuum states

    SciTech Connect

    Macek, J.H. |

    1994-12-31

    Gene Rudd`s analysis of doubly differential cross sections for the ionization of He atoms by proton impact suggested that electrons were being carried along by the proton for a short period of time after being ejected from the target region. Normally, this would represent an electron capture event in which an excited state of atomic hydrogen is formed. Because the electron ends up ionized it was recognized that these states of the proton must be continuum states. This insight was confirmed by observations of the continuum electron capture (CEC) cusp when the electron velocity equals the proton velocity in the final state. The impact of this idea upon the theory of ionization at high energies is reviewed.

  17. Potential technology transfers of research on low-temperature carbon monoxide-oxygen recombination catalysts

    NASA Technical Reports Server (NTRS)

    Poziomek, Edward J.

    1990-01-01

    Results from research on catalytic recombination of CO-O2 for stable closed-cycle operation of CO2 lasers hold much promise for a variety of technology transfer. Expansion of CO2 laser remote sensing applications toward chemical detection and pollution monitoring would certainly be expected. However, the catalysts themselves may be especially effective in low-temperature oxidation of a number of chemicals in addition to CO. It is therefore of interest to compare the CO-O2 catalysts with chemical systems designed for chemical sensing, air purification and process catalysis. Success in understanding the catalytic mechanisms of the recombination of CO-O2 could help to shed light on how catalyst systems operate. New directions in low-temperature oxidation catalysts, coatings for chemical sensors and sorbents for air purification could well emerge.

  18. Thermally conducting electron transfer polymers

    NASA Technical Reports Server (NTRS)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L.

    1969-01-01

    New polymeric material exhibits excellent physical shock protection, high electrical resistance, and thermal conductivity. It is especially useful for electronic circuitry, such as subminiaturization of components and modular construction of circuits.

  19. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  20. BASE-CATALYZED DESTRUCTION OF PCBS-NEW DONORS, NEW TRANSFER AGENTS/CATALYSTS

    EPA Science Inventory

    The use of hydrogen transfer agents and catalysts to improve the base-catalyzed decomposition of polychlorinated biphenyls (PCBs) was investigated. The reaction proceeded only in the presence of base, but the rate of PCB disappearance increased with increasing amount of hydrogen ...

  1. Long-range electron transfer

    PubMed Central

    Gray, Harry B.; Winkler, Jay R.

    2005-01-01

    Recent investigations have shed much light on the nuclear and electronic factors that control the rates of long-range electron tunneling through molecules in aqueous and organic glasses as well as through bonds in donor–bridge–acceptor complexes. Couplings through covalent and hydrogen bonds are much stronger than those across van der Waals gaps, and these differences in coupling between bonded and nonbonded atoms account for the dependence of tunneling rates on the structure of the media between redox sites in Ru-modified proteins and protein–protein complexes. PMID:15738403

  2. Electron transfer reactions in microporous solids

    SciTech Connect

    Mallouk, T.E.

    1993-01-01

    Basic thrust the research program involves use of microporous solids (zeolites, clays, layered and tunnel structure oxide semiconductors) as organizing media for artificial photosynthetic systems. Purpose of the microporous solid is twofold. First, it induces spatial organization of photoactive and electroactive components (sensitizers, semiconductor particles, electron relays, and catalysts) at the solid-solution interface, enhancing the quantum efficiency of charge separation and separating physically the ultimate electron donor and acceptor in the electron transport chain. Second, since the microcrystalline solid admits only molecules of a certain charge and size, it is possible to achieve permanent charge separation by sieving chemical photoproducts (e.g., H[sub 2] and I[sub 3][sup [minus

  3. Electron transfer kinetics in water-splitting dye-sensitized photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Swierk, John R.

    Water-splitting dye-sensitized photoelectrochemical (WS-DSPECs) cells utilize molecular sensitizers absorbed on mesoporous TiO2 electrodes to harvest visible light, inject photoexcited electrons into the conduction band of TiO2, and finally transfer holes across the TiO2 surface to water oxidation catalysts, which in turn oxidize water to give molecular oxygen and four protons. Within the TiO2 layer photoinjected electrons are transported to a transparent conductor back contact and from there to a dark cathode to reduce protons to molecular hydrogen. WS-DSPECs offer several advantages for alternative solar fuels systems: the use of low-cost materials, tunable molecular sensitizers, and relaxed catalytic turnover requirements to name a few. Despite these advantageous features, power conversion efficiencies in WS-DSPECs are generally low. Broadly, this thesis explores the fundamental electron transfer processes that control the efficiency of these cells. Chapter 1 presents a survey of the previous literature and individually considers each component of a WS-DSPEC (water oxidation catalyst, sensitizers, electrode materials, redox mediators, and overall system design). Chapter 2 presents a novel method of preparing a WS-DSPEC that utilizes crystalline IrO2 nanoparticles directly sintered to TiO2 as a water oxidation catalyst and describes a previously unknown electron-scavenging pathway by IrO2. Chapter 3 explores how electron trapping by and proton intercalation into TiO2 controls the photoelectrochemical performance of WS-DSPECs. Chapter 4 characterizes how electron recombination with the oxidized sensitizer and electron scavenging by the IrO 2 catalyst combine to limit the concentration of conduction band electrons and by extension photocurrent in WS-DSPECs. Chapter 5 demonstrates the use of the first totally organic sensitizers for light driven water-splitting and explores how the molecular and electronic structure of a sensitizer affects the electron transfer steps of injection, recombination, and hole transfer among others. Finally, in Chapter 6 a model system that describes electron transfer between an oxidized sensitizer and water oxidation catalyst is demonstrated and provides insight into sensitizer regeneration in WS-DSPECs. Together the results in these chapters present a detailed picture of how electron scavenging, recombination, and transport combine to generate photocurrent in a fully characterized WS-DSPEC and serve as starting point for the further development of WS-DSPECs.

  4. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.

    PubMed

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G

    2015-06-22

    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans. PMID:26013846

  5. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction

    SciTech Connect

    Xian Li; Shuxun Hu; Lijun Jin; Haoquan Hu

    2008-03-15

    The aim of this research is to understand the major function of iron-based catalysts on direct coal liquefaction (DCL). Pyrolysis and direct liquefaction of Shenhua bituminous coal were carried out to investigate the effect of three solvents (wash-oil from coal-tar, cycle-oil from coal liquefaction, and tetralin) in a N{sub 2} or a H{sub 2} atmosphere and with or without catalyst. The hydrogen content in the solvent and liquid product and the H{sub 2} consumption for every run were calculated to understand the hydrogen transfer approach in DCL. The results showed that the iron-based catalyst promotes the coal pyrolysis, and the dominating function of the catalyst in DCL is to promote the formation of activated hydrogen and to accelerate the secondary distribution of H in the reaction system including the gas, liquid, and solid phases. The major transfer approach of the activated hydrogen is from molecular hydrogen to solvent and then from solvent to coal, and the solvent takes on the role of a 'bridge' in the hydrogen transfer approach. 31 refs., 5 figs., 3 tabs.

  6. A La-doped Mg-Al mixed metal oxide supported copper catalyst with enhanced catalytic performance in transfer dehydrogenation of 1-decanol.

    PubMed

    Zhang, Ming; Zhao, Yajie; Liu, Qian; Yang, Lan; Fan, Guoli; Li, Feng

    2016-01-01

    In the present work, a La-doped Mg-Al mixed metal oxide supported copper catalyst (Cu/La-MgAlO) was synthesized through a layered double hydroxide precursor route. The materials were characterized by powder X-ray diffraction, transmission electron microscopy, CO2-temperature programmed desorption, Fourier transform infrared spectra of CO2 absorption, and X-ray photoelectron spectroscopy. The results revealed that the introduction of a trace amount of La could significantly improve the surface basicity of the Cu/La-MgAlO catalyst, especially strong Lewis basicity. Compared with the undoped supported Cu catalyst, Cu/La-MgAlO exhibited much higher activity and selectivity in the liquid-phase transfer dehydrogenation of 1-decanol with a 1-decanal yield up to 89%. The excellent catalytic efficiency was mainly ascribed to the surface cooperation between the Lewis basic sites and the adjacent Cu(0)/Cu(+) species. That is, basic sites, especially strong-strength basic sites, held the key to the abstraction of protons from the hydroxyl group in 1-decanol, while the adjacent Cu(0) and Cu(+) species were responsible for the hydrogen transfer and the adsorption of styrene in the transfer dehydrogenation and hydrogenation reactions, respectively. This study provides a new method for designing cost-effective supported copper-based catalysts highly efficient for the transfer dehydrogenation of primary aliphatic alcohols by modifying the surface basicity of metal oxide supports. PMID:26659760

  7. Dynamic environmental transmission electron microscopy observation of platinum electrode catalyst deactivation in a proton-exchange-membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenta; Xudong, Zhang; Bright, Alexander N.; Saitoh, Koh; Tanaka, Nobuo

    2013-02-01

    Spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied to study the catalytic activity of platinum/amorphous carbon electrode catalysts in proton-exchange-membrane fuel cells (PEMFCs). These electrode catalysts were characterized in different atmospheres, such as hydrogen and air, and a conventional high vacuum of 10-5 Pa. A high-speed charge coupled device camera was used to capture real-time movies to dynamically study the diffusion and reconstruction of nanoparticles with an information transfer down to 0.1 nm, a time resolution below 0.2 s and an acceleration voltage of 300 kV. With such high spatial and time resolution, AC-ETEM permits the visualization of surface-atom behaviour that dominates the coalescence and surface-reconstruction processes of the nanoparticles. To contribute to the development of robust PEMFC platinum/amorphous carbon electrode catalysts, the change in the specific surface area of platinum particles was evaluated in hydrogen and air atmospheres. The deactivation of such catalysts during cycle operation is a serious problem that must be resolved for the practical use of PEMFCs in real vehicles. In this paper, the mechanism for the deactivation of platinum/amorphous carbon electrode catalysts is discussed using the decay rate of the specific surface area of platinum particles, measured first in a vacuum and then in hydrogen and air atmospheres for comparison.

  8. Electron transfer and catalysis with high-valent metal-oxo complexes.

    PubMed

    Fukuzumi, Shunichi

    2015-04-21

    High-valent metal-oxo complexes are produced by reductive activation of dioxygen via reduction of metal complexes with reductants and dioxygen. Photoinduced electron transfer from substrates to metal complexes with dioxygen also leads to the generation of high-valent metal-oxo complexes that can oxygenate substrates. In such a case metal complexes act as a photocatalyst to oxygenate substrates with dioxygen. High-valent metal-oxo complexes are also produced by proton-coupled electron-transfer oxidation of metal complexes by one-electron oxidants with water, oxygenating substrates to regenerate metal complexes. In such a case metal complexes act as a catalyst for electron-transfer oxygenation of substrates by one-electron oxidants with water that acts as an oxygen source. The one-electron oxidants which can oxidize metal complexes can be replaced by much weaker oxidants by a combination of redox photocatalysts and metal complexes. Thus, photocatalytic oxygenation of substrates proceeds via photoinduced electron transfer from a photocatalyst to reductants followed by proton-coupled electron transfer oxidation of metal complexes with the oxidized photocatalyst to produce high-valent metal-oxo complexes that oxygenate substrates. Thermal and photoinduced electron-transfer catalytic reactions of high-valent metal-oxo complexes for oxygenation of substrates using water or dioxygen as an oxygen source are summarized in this perspective. PMID:25710309

  9. Solvent gating of intramolecular electron transfer

    SciTech Connect

    Miller, R.M. ); Spears, K.G.; Gong, J.H.; Wach, M. )

    1994-02-03

    The rates for ionic photodissociation of malachite green leucocyanide to form cyanide ion and a malachite green carbonium ion were measured as a function of solvent and temperature. The observed rates in mixtures of polar and nonpolar solvents all had an activation energy of about 1 kcal/mol for a wide range of dielectric constants. This dissociative intramolecular electron transfer (DIET) is unusual because it is the first example where solvent configurational entropy changes are required to enable a large amplitude molecular distortion leading to a nonadiabatic electron transfer and ionic dissociation. This solvent gated intramolecular electron-transfer mechanism is supported by analysis of the preexponential and activation energy trends in dipolar aprotic solven mixtures and alcohol solvents. The large amplitude motion is not separately measurable due to the slow gating rates, but viscosity effects on both the preexponential and the activation energy are analyzed to demonstrate consistency with a barrierless diffusion model having a structural dependence on electron-transfer rate. The rate has an inverse dependence on viscosity raised to the 0.53 power. 36 refs., 6 figs., 4 tabs.

  10. 75 FR 33681 - Electronic Fund Transfers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... document in the Federal Register of June 4, 2010 (75 FR 31665). The document (FR Doc. 2010-13280) amended... number 2. In the final rule, FR Doc. 2010-13280, published on June 4, 2010 (75 FR 31665) make the... Part 205 Electronic Fund Transfers June 4, 2010. AGENCY: Board of Governors of the Federal...

  11. Vibrational control of electron-transfer reactions: a feasibility study for the fast coherent transfer regime.

    PubMed

    Antoniou, P; Ma, Z; Zhang, P; Beratan, D N; Skourtis, S S

    2015-11-18

    Molecular vibrations and electron-vibrational interactions are central to the control of biomolecular electron and energy-transfer rates. The vibrational control of molecular electron-transfer reactions by infrared pulses may enable the precise probing of electronic-vibrational interactions and of their roles in determining electron-transfer mechanisms. This type of electron-transfer rate control is advantageous because it does not alter the electronic state of the molecular electron-transfer system or irreversibly change its molecular structure. For bridge-mediated electron-transfer reactions, infrared (vibrational) excitation of the bridge linking the electron donor to the electron acceptor was suggested as being capable of influencing the electron-transfer rate by modulating the bridge-mediated donor-to-acceptor electronic coupling. This kind of electron-transfer experiment has been realized, demonstrating that bridge-mediated electron-transfer rates can be changed by exciting vibrational modes of the bridge. Here, we use simple models and ab initio computations to explore the physical constraints on one's ability to vibrationally perturb electron-transfer rates using infrared excitation. These constraints stem from the nature of molecular vibrational spectra, the strengths of the electron-vibrational coupling, and the interaction between molecular vibrations and infrared radiation. With these constraints in mind, we suggest parameter regimes and molecular architectures that may enhance the vibrational control of electron transfer for fast coherent electron-transfer reactions. PMID:25909507

  12. Facile graphene transfer directly to target substrates with a reusable metal catalyst.

    PubMed

    Mafra, D L; Ming, T; Kong, J

    2015-09-28

    High-throughput, roll-to-roll growth and transferring of high-quality, large-area chemical vapor deposited (CVD) graphene directly onto a target substrate with a reusable metal catalyst is an enabling technology for flexible optoelectronics. We explore the direct transfer via hot lamination of CVD graphene onto a flexible substrate, followed by electrochemical delamination (bubble transfer) of the graphene. The transfer method investigated here does not require any intermediate transfer layer and allows the copper to be reused, which will reduce the production cost and avoid the generation of chemical waste. Such integration is one necessary step forward toward the economical and industrial scale production of graphene. Our method bares promise in various applications. As an example, we fabricated flexible solution-gated graphene field-effect-transistors, which exhibited transconductance as high as 200 ?S. PMID:26289387

  13. Frustrated Solvation Structures Can Enhance Electron Transfer Rates.

    PubMed

    Remsing, Richard C; McKendry, Ian G; Strongin, Daniel R; Klein, Michael L; Zdilla, Michael J

    2015-12-01

    Polar surfaces can interact strongly with nearby water molecules, leading to the formation of highly ordered interfacial hydration structures. This ordering can lead to frustration in the hydrogen bond network, and, in the presence of solutes, frustrated hydration structures. We study frustration in the hydration of cations when confined between sheets of the water oxidation catalyst manganese dioxide. Frustrated hydration structures are shown to have profound effects on ion-surface electron transfer through the enhancement of energy gap fluctuations beyond those expected from Marcus theory. These fluctuations are accompanied by a concomitant increase in the electron transfer rate in Marcus's normal regime. We demonstrate the generality of this phenomenon-enhancement of energy gap fluctuations due to frustration-by introducing a charge frustrated XY model, likening the hydration structure of confined cations to topological defects. Our findings shed light on recent experiments suggesting that water oxidation rates depend on the cation charge and Mn-oxidation state in these layered transition metal oxide materials. PMID:26573339

  14. Catalytic conversion of polycyclic aromatic hydrocarbons: Mechanistic investigations of hydrogen transfer from an iron-based catalyst to alkylarenes

    SciTech Connect

    Autrey, T.; Linehan, J.C.; Camaioni, D.M.

    1995-12-31

    The mechanisms of hydrogen transfer from iron/sulfur-based catalysts to a series of coal model compounds have been investigated. The iron oxyhydroxides catalyst precursors are produced by the RTDS method with the actual catalytic species, an iron/sulfur catalyst, generated in situ by addition of sulfur and a hydrogen donor solvent. These catalysts promote the selective scission of thermally stable carbon-carbon bonds. Both the rate and the selectivity of catalytic induced bond scission are enhanced relative to the thermal hydrogen transfer pathways in 9,10-dihydrophenanthrene donor solvent. The reactivity of alkylated diphenylmethanes and derivatives of 1,2-diphenylethanol support a non-ionic free radical hydrogen transfer pathway. The selectivity of catalytic engendered bond scission is rationalized by an ipso displacement mechanism competing with a back-hydrogen transfer to the catalytic surface. This mechanism explains the scission of thermal stable coal linkages without the formation of light gases.

  15. Control of electron transfer in supramolecular systems

    NASA Astrophysics Data System (ADS)

    Kilså, Kristine; Macpherson, Alisdair N.; Gillbro, Tomas; Mårtensson, Jerker; Albinsson, Bo

    2001-09-01

    The fluorescence quantum yield of zinc porphyrin (ZnP) covalently linked to 9,10-bis(phenylethynyl)anthracene (AB) is strongly dependent upon the solvent properties. The bichromophoric system ZnP-AB exhibits 'normal' zinc porphyrin fluorescence in solvents that cannot coordinate to the central zinc atom. In contrast, if a Lewis base, such as pyridine, is added to a sufficiently polar solvent, the fluorescence is significantly quenched. Picosecond transient absorption measurements, in conjunction with fluorescence quenching and cyclic voltammetric measurements, suggest that the quenching mechanism is intramolecular electron transfer from ZnP to AB. The charge separated state, ZnP rad +-AB rad -, has a lifetime of not more than 220 ps before recombining. If a secondary electron acceptor, iron(III) porphyrin (FeP), is covalently connected to the AB unit, a second electron transfer from AB rad - to FeP occurs and the charge separated state, ZnP rad +-AB-FeP rad -, has a lifetime of at least 5 ns. This demonstrates that electron transfer might be sensitively tuned (switched on) by specific solvent effects.

  16. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    PubMed Central

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  17. 3D Scanning Transmission Electron Microscopy for Catalysts: Imaging and Data Analysis

    E-print Network

    Abidi, Mongi A.

    3D Scanning Transmission Electron Microscopy for Catalysts: Imaging and Data Analysis A. Y revolutionized electron microscopy, for the first time allowing direct imaging of sub-angstrom atomic spacings, A.R. Lipini, S. M. Travaglini, and S. J. Pennycook, J. Electron Microscopy, 55 (2006) 7. [4] P

  18. Frontier orbital symmetry control of intermolecular electron transfer

    SciTech Connect

    Stevens, B.

    1990-11-01

    Research continued on the study of intermolecular electron transfer. This report discusses the following topics: fluorescence quenching by electron transfer and the modification of quenching dynamics by solvent properties and net free energy change; transient absorption measurements following selective excitation of 1:1 EDA complex isomers; selective quenching of dual fluorescence from linked EDA systems; electron-transfer sensitized cycloreversion of rubrene endoperoxide; and vibronic modification of adiabatic requirements for intermolecular electron transfer. (CBS)

  19. Photoinitiated electron transfer in multichromophoric species: Synthetic tetrads and pentads

    SciTech Connect

    Gust, J.D. Jr.; Moore, T.A.

    1988-04-12

    This research project involves the design, synthesis and study of molecules which mimic many of the important aspects of photosynthetic electron and energy transfer. The knowledge gained from the study of synthetic model systems which abstract features of the natural photosynthetic apparatus can be used to design artificial photosynthetic systems which employ the basic physics and chemistry of photosynthesis to help meet mankind's energy needs. More specifically, the proposed models are designed to mimic the following aspects of natural photosynthetic multistep electron transfer: electron donation from a tetrapyrrole excited singlet state, electron transfer between tetrapyrroles, electron transfer from tetrapyrroles to quinones, and electron transfer between quinones with different redox properties.

  20. 31 CFR 208.3 - Payment by electronic funds transfer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Payment by electronic funds transfer... DISBURSEMENTS § 208.3 Payment by electronic funds transfer. Subject to § 208.4, and notwithstanding any other... electronic funds transfer....

  1. 48 CFR 18.123 - Electronic funds transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Electronic funds transfer. 18.123 Section 18.123 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to...

  2. 77 FR 40459 - Electronic Fund Transfers (Regulation E); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...Documents. Prices of new books are listed in the first FEDERAL...CFPB-2011-0009] RIN 3170-AA15 Electronic Fund Transfers (Regulation...6194), which implements the Electronic Fund Transfer Act, and the...in the interim final rule, Electronic Fund Transfers...

  3. Promoting Interspecies Electron Transfer with Biochar

    PubMed Central

    Chen, Shanshan; Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Malvankar, Nikhil S.; Liu, Fanghua; Fan, Wei; Nevin, Kelly P.; Lovley, Derek R.

    2014-01-01

    Biochar, a charcoal-like product of the incomplete combustion of organic materials, is an increasingly popular soil amendment designed to improve soil fertility. We investigated the possibility that biochar could promote direct interspecies electron transfer (DIET) in a manner similar to that previously reported for granular activated carbon (GAC). Although the biochars investigated were 1000 times less conductive than GAC, they stimulated DIET in co-cultures of Geobacter metallireducens with Geobacter sulfurreducens or Methanosarcina barkeri in which ethanol was the electron donor. Cells were attached to the biochar, yet not in close contact, suggesting that electrons were likely conducted through the biochar, rather than biological electrical connections. The finding that biochar can stimulate DIET may be an important consideration when amending soils with biochar and can help explain why biochar may enhance methane production from organic wastes under anaerobic conditions. PMID:24846283

  4. NOx removal with multiple pulsed electron beam free of catalysts or reagents.

    PubMed

    Wolford, Matthew F; Myers, Matthew C; Hegeler, Frank; Sethian, John D

    2013-03-28

    A catalyst free approach for nitrogen oxides (NOx) removal has been developed at the United States Naval Research Laboratory. Our goals were to assess the ability of pulsed electron beam to enhance NOx removal at potential lower capital cost with greater efficiency than other large scale NOx removal methods. Removal efficiency over 95% has been attained for NOx concentrations of 1000 parts per million (ppm), 500 ppm and 200 ppm in nitrogen atmosphere. The NOx concentration dropped from 204 ppm to below 4.8 ppm after 10 shots supplying a total dose of 65 kGy. The resultant chemicals after catalyst free pulsed electron beam processing of NOx are nitrogen and oxygen, same as components of air. Pulsed electron beams in a catalyst free approach remove a larger percentage of NOx than continuous wave electron beam with a catalyst. Catalyst free approach removes issues of handling, collecting, transporting and efficiently distributing chemical byproducts. Pulsed electron beams are as efficient as continuous wave electron beams for small removal percentages and have a significant advantage at higher fractional removal percentages of NOx. Preferential destruction of NO species relative to the removal of NO2 species is observed in the pulsed electron beam reaction chamber. The energy required to remove a kilogram of NOx is nearly the same at pressures of 1.16 atmospheres and 1.02 atmospheres. PMID:23417142

  5. Catalyst-Free, Selective Growth of ZnO Nanowires on SiO2 by Chemical Vapor Deposition for Transfer-Free Fabrication of UV Photodetectors.

    PubMed

    Xu, Liping; Li, Xin; Zhan, Zhaoyao; Wang, Liang; Feng, Shuanglong; Chai, Xiangyu; Lu, Wenqiang; Shen, Jun; Weng, Zhankun; Sun, Jie

    2015-09-16

    Catalyst-free, selective growth of ZnO nanowires directly on the commonly used dielectric SiO2 layer is of both scientific significance and application importance, yet it is still a challenge. Here, we report a facile method to grow single-crystal ZnO nanowires on a large scale directly on SiO2/Si substrate through vapor-solid mechanism without using any predeposited metal catalyst or seed layer. We found that a rough SiO2/Si substrate surface created by the reactive ion etching is critical for ZnO growth without using catalyst. ZnO nanowire array exclusively grows in area etched by the reactive ion etching method. The advantages of this method include facile and safe roughness-assisted catalyst-free growth of ZnO nanowires on SiO2/Si substrate and the subsequent transfer-free fabrication of electronic or optoelectronic devices. The ZnO nanowire UV photodetector fabricated by a transfer-free process presented high performance in responsivity, quantum efficiency and response speed, even without any post-treatments. The strategy shown here would greatly reduce the complexity in nanodevice fabrication and give an impetus to the application of ZnO nanowires in nanoelectronics and optoelectronics. PMID:26308593

  6. Photoinduced Electron Transfer of Porphyrin Isomers: Impact of Molecular Structures on Electron-Transfer Dynamics.

    PubMed

    Fujitsuka, Mamoru; Majima, Tetsuro

    2015-11-01

    Porphyrins have been investigated for a long time in various fields of chemistry owing to their excellent redox and optical properties. Structural isomers of porphyrins have been synthesized, namely, porphycene, hemiporphycene, and corrphycene. Although the number of studies on these structural isomers is limited, they exhibit interesting properties suitable for various applications such as photovoltaic devices, photocatalysts, and photodynamic therapy. In the present review, we summarized their photoinduced electron-transfer processes, which are key steps of various photofunctions. Their electrochemical and photophysical properties are summarized as basic properties for the electron transfer. Furthermore, differences among these isomers in the electron-transfer processes are clarified, and its origin has been discussed on the basis of their molecular structures. PMID:26211641

  7. Transmembrane electron transfer catalyzed by phospholipid-linked manganese porphyrins

    SciTech Connect

    Nango, Mamoru; Mizusawa, Atsushi; Miyake, Takenori; Yoshinaga, Junji )

    1990-02-14

    Synthetic models can be very helpful in studying the effect of distance and orientation in electron transfer reactions in biological membrane processes such as occur in photosynthesis and mitochondria. To provide a model for the electron transfer where porphyrin pigments play the key role, the preparation of porphyrin derivatives that are capable of light-induced intra- or intermolecular electron transfer was reported. However, there has been little study of ground-state electron transfer between porphyrin complexes to provide insight into the effect of distance and orientation in the electron transfer so that a vectorial electron transfer system may be constructed in the biological membrane. We now report transmembrane electron transfer catalyzed by manganese complexes of bilayer-active phospholipid-linked porphyrins 1, PE-C{sub n}-MnTTP (n = 0, 5, 11) (Scheme I), which can be easily immersed into the lipid bilayer. The synthetic procedures leading are described.

  8. Synthesis of TiO2-poly(3-hexylthiophene) hybrid particles through surface-initiated Kumada catalyst-transfer polycondensation.

    PubMed

    Boon, Florian; Moerman, David; Laurencin, Danielle; Richeter, Sébastien; Guari, Yannick; Mehdi, Ahmad; Dubois, Philippe; Lazzaroni, Roberto; Clément, Sébastien

    2014-09-30

    TiO2/conjugated polymers are promising materials in solar energy conversion where efficient photoinduced charge transfers are required. Here, a "grafting-from" approach for the synthesis of TiO2 nanoparticles supported with conjugated polymer brushes is presented. Poly(3-hexylthiophene) (P3HT), a benchmark material for organic electronics, was selectively grown from TiO2 nanoparticles by surface-initiated Kumada catalyst-transfer polycondensation. The grafting of the polymer onto the surface of the TiO2 nanoparticles by this method was demonstrated by (1)H and (13)C solid-state NMR, X-ray photoelectron spectrometry, thermogravimetric analysis, transmission electron microscopy, and UV-visible spectroscopy. Sedimentation tests in tetrahydrofuran revealed improved dispersion stability for the TiO2@P3HT hybrid material. Films were produced by solvent casting, and the quality of the dispersion of the modified TiO2 nanoparticles was evaluated by atomic force microscopy. The dispersion of the P3HT-coated TiO2 NPs in the P3HT matrix was found to be homogeneous, and the fibrillar structure of the P3HT matrix was maintained which is favorable for charge transport. Fluorescence quenching measurements on these hybrid materials in CHCl3 indicated improved photoinduced electron-transfer efficiency. All in all, better physicochemical properties for P3HT/TiO2 hybrid material were reached via the surface-initiated "grafted-from" approach compared to the "grafting-onto" approach. PMID:25188446

  9. Vectorial electron transfer in spatially ordered arrays. Progress report, January 1991--January 1994

    SciTech Connect

    Fox, M.A.

    1994-01-01

    Objective was to find methods for rapid, controlled placement of light absorbers, relays, and multi-electron catalysts at defined sites with respect to a semiconductor or metal surface and thus to develop methods for preparing chemically modified photoactive surfaces as artificial photosynthetic units. Progress has been made in four areas: synthesis of new materials for directional electron transfer, preparation and characterization of anisotropic composites containing organic and inorganic components, elaboration of mechanisms of electrocatalysis, and development of new methods for surface modification of metals and semiconductors.

  10. Quantum tunneling resonant electron transfer process in Lorentzian plasmas

    SciTech Connect

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-08-15

    The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunneling resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.

  11. Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production.

    PubMed

    Horvath, Samantha; Fernandez, Laura E; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2012-09-25

    The design of molecular electrocatalysts for H(2) oxidation and production is important for the development of alternative renewable energy sources that are abundant, inexpensive, and environmentally benign. Recently, nickel-based molecular electrocatalysts with pendant amines that act as proton relays for the nickel center were shown to effectively catalyze H(2) oxidation and production. We developed a quantum mechanical approach for studying proton-coupled electron transfer processes in these types of molecular electrocatalysts. This theoretical approach is applied to a nickel-based catalyst in which phosphorous atoms are directly bonded to the nickel center, and nitrogen atoms of the ligand rings act as proton relays. The catalytic step of interest involves electron transfer between the nickel complex and the electrode as well as intramolecular proton transfer between the nickel and nitrogen atoms. This process can occur sequentially, with either the electron or proton transferring first, or concertedly, with the electron and proton transferring simultaneously without a stable intermediate. The electrochemical rate constants are calculated as functions of overpotential for the concerted electron-proton transfer reaction and the two electron transfer reactions in the sequential mechanisms. Our calculations illustrate that the concerted electron-proton transfer standard rate constant will increase as the equilibrium distance between the nickel and nitrogen atoms decreases and as the pendant amines become more flexible to facilitate the contraction of this distance with a lower energy penalty. This approach identifies the favored mechanisms under various experimental conditions and provides insight into the impact of substituents on the nitrogen and phosphorous atoms. PMID:22529352

  12. Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production

    SciTech Connect

    Horvath, Samantha; Fernandez, Laura; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2012-09-25

    The design of molecular electrocatalysts for H2 oxidation and production is important for the development of alternative renewable energy sources that are abundant, inexpensive, and environmentally benign. Recently nickel-based molecular electrocatalysts with pendant amines that act as proton relays for the nickel center were shown to effectively catalyze H2 oxidation and production. We developed a quantum mechanical approach for studying proton-coupled electron transfer processes in these types of molecular electrocatalysts. This theoretical approach is applied to a nickel-based catalyst in which phosphorous atoms are directly bonded to the nickel center and nitrogen atoms of the ligand rings act as proton relays. The cataly c step of interest involves electron transfer between the nickel complex and the electrode as well as intramolecular proton transfer between the nickel and nitrogen atoms. This process can occur sequentially, with either the electron or proton transferring first, or concertedly, with the electron and proton transferring simultaneously without a stable intermediate. The heterogeneous rate constants are calculated as functions of overpotential for the concerted electron-proton transfer reaction and the two electron transfer reactions in the sequential mechanisms. Our calculations illustrate that the concerted electron-proton transfer standard rate constant will increase as the equilibrium distance between the nickel and nitrogen atoms decreases and as the nitrogen atoms become more mobile to facilitate the contraction of this distance. This approach assists in the identification of the favored mechanisms under various experimental conditions and provides insight into the qualitative impact of substituents on the nitrogen and phosphorous atoms. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under FWP 56073.

  13. Oxygenation of methylarenes to benzaldehyde derivatives by a polyoxometalate mediated electron transfer-oxygen transfer reaction in aqueous sulfuric Acid.

    PubMed

    Sarma, Bidyut Bikash; Efremenko, Irena; Neumann, Ronny

    2015-05-13

    The synthesis of benzaldehyde derivatives by oxygenation of methylarenes is of significant conceptual and practical interest because these compounds are important chemical intermediates whose synthesis is still carried out by nonsustainable methods with very low atom economy and formation of copious amounts of waste. Now an oxygenation reaction with a 100% theoretical atom economy using a polyoxometalate oxygen donor has been found. The product yield is typically above 95% with no "overoxidation" to benzoic acids; H2 is released by electrolysis, enabling additional reaction cycles. An electrocatalytic cycle is also feasible. This reaction is possible through the use of an aqueous sulfuric acid solvent, in an aqueous biphasic reaction mode that also allows simple catalyst recycling and recovery. The solvent plays a key role in the reaction mechanism by protonating the polyoxometalate thereby enabling the activation of the methylarenes by an electron transfer process. After additional proton transfer and oxygen transfer steps, benzylic alcohols are formed that further react by an electron transfer-proton transfer sequence forming benzaldehyde derivatives. PMID:25901934

  14. A Systematic Investigation of Quaternary Ammonium Ions as Asymmetric Phase Transfer Catalysts. Application of Quantitative Structure Activity/Selectivity Relationships

    PubMed Central

    Denmark, Scott E.; Gould, Nathan D.; Wolf, Larry M.

    2011-01-01

    While the synthetic utility of asymmetric phase transfer catalysis continues to expand, the number of proven catalyst types and design criteria remains limited. At the origin of this scarcity is a lack in understanding of how catalyst structural features affect the rate and enantioselectivity of phase transfer catalyzed reactions. Described in this paper is the development of quantitative structure-activity relationships (QSAR) and -selectivity relationships (QSSR) for the alkylation of a protected glycine imine with libraries of quaternary ammonium ion catalysts. Catalyst descriptors including ammonium ion accessibility, interfacial adsorption affinity, and partition coefficient were found to correlate meaningfully with catalyst activity. The physical nature of the descriptors was rationalized through differing contributions of the interfacial and extraction mechanisms to the reaction under study. The variation in the observed enantioselectivity was rationalized employing a comparative molecular field analysis (CoMFA) using both the steric and electrostatic fields of the catalysts. A qualitative analysis of the developed model reveals preferred regions for catalyst binding to afford both configurations of the alkylated product. PMID:21446723

  15. A Systematic Investigation of Quaternary Ammonium Ions as Asymmetric Phase Transfer Catalysts. Synthesis of Catalyst Libraries and Evaluation of Catalyst Activity

    PubMed Central

    Denmark, Scott E.; Gould, Nathan D.; Wolf, Larry M.

    2011-01-01

    Despite over three decades of research into asymmetric phase transfer catalysis (APTC), a fundamental understanding of the factors that affect the rate and stereoselectivity of this important process are still obscure. This paper describes the initial stages of a long-term program aimed at elucidating the physical organic foundations of APTC employing a chemoinformatic analysis of the alkylation of a protected glycine imine with a libraries of enantiomerically enriched quaternary ammonium ions. The synthesis of the quaternary ammonium ions follows a diversity oriented approach wherein the tandem inter[4+2]/intra[3+2] cycloaddition of nitroalkenes serves as the key transformation. A two part synthetic strategy comprised of: (1) preparation of enantioenriched scaffolds and (2) development of parallel synthesis procedures is described. The strategy allows for the facile introduction of four variable groups in the vicinity of a stereogenic quaternary ammonium ion. The quaternary ammonium ions exhibited a wide range of activity and to a lesser degree enantioselectivity. Catalyst activity and selectivity are rationalized in a qualitative way based on the effective positive potential of the ammonium ion. PMID:21446721

  16. Electronic and Nuclear Factors in Charge and Excitation Transfer

    SciTech Connect

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  17. [Mechanistic examination of organometallic electron transfer reactions: Annual report, 1989

    SciTech Connect

    Not Available

    1989-12-31

    Our mechanistic examination of electron transfer reactions between organometallic complexes has required data from our stopped-flow infrared spectrophotometer that was constructed in the first year. Our research on organometallic electron transfer reaction mechanisms was recognized by an invitation to the Symposium on Organometallic Reaction Mechanisms at the National ACS meeting in Miami. We have obtained a reasonable understanding of the electron transfer reactions between metal cations and anions and between metal carbonyl anions and metal carbonyl dimers. In addition we have begun to obtain data on the outer sphere electron transfer between metal carbonyl anions and coordination complexes and on reactions involving cluster anions.

  18. (Mechanistic examination of organometallic electron transfer reactions: Annual report, 1989)

    SciTech Connect

    Not Available

    1989-01-01

    Our mechanistic examination of electron transfer reactions between organometallic complexes has required data from our stopped-flow infrared spectrophotometer that was constructed in the first year. Our research on organometallic electron transfer reaction mechanisms was recognized by an invitation to the Symposium on Organometallic Reaction Mechanisms at the National ACS meeting in Miami. We have obtained a reasonable understanding of the electron transfer reactions between metal cations and anions and between metal carbonyl anions and metal carbonyl dimers. In addition we have begun to obtain data on the outer sphere electron transfer between metal carbonyl anions and coordination complexes and on reactions involving cluster anions.

  19. Ring-opening metathesis polymerization of 18-e Cobalt(I)-containing norbornene and application as heterogeneous macromolecular catalyst in atom transfer radical polymerization.

    PubMed

    Yan, Yi; Zhang, Jiuyang; Wilbon, Perry; Qiao, Yali; Tang, Chuanbing

    2014-11-01

    In the last decades, metallopolymers have received great attention due to their various applications in the fields of materials and chemistry. In this article, a neutral 18-electron exo-substituted ?(4) -cyclopentadiene CpCo(I) unit-containing polymer is prepared in a controlled/"living" fashion by combining facile click chemistry and ring-opening meta-thesis polymerization (ROMP). This Co(I)-containing polymer is further used as a heterogeneous macromolecular catalyst for atom transfer radical polymerization (ATRP) of methyl methacrylate and styrene. PMID:25250694

  20. Electron Transfer in the Photosynthetic Membrane

    PubMed Central

    Conjeaud, Hélène; Mathis, Paul

    1986-01-01

    The primary electron donor P-680 of the Photosystem-II reaction center was photoxidized by a short flash given after dark adaptation of photosynthetic membranes in which oxygen evolution was inhibited. The P-680+ reduction rate was measured under different conditions of pH and salt concentration by following the recovery of the absorption change at 820 nm. As previously reported for Tris-washed chloroplasts (Conjeaud, H., and P. Mathis, 1980, Biochim. Biophys. Acta, 590:353-359) a fast phase of P-680+ reduction slows down as the bulk pH decreases. When salt concentration increases, this fast phase becomes faster for pH above 4.5-5 and slower below. A quantitative interpretation is proposed in which the P-680+ reduction kinetics by the secondary electron donor Z are controlled by the local pH. This pH, at the membrane level, can be calculated using the Gouy-Chapman theory. A good fit of the results requires to assume that the surface charge density of the inside of the membrane, near the Photosystem-II reaction center, is positive at low pH values and becomes negative as the pH increases, with a local isoelectric point ?4.8. These results lead us to propose a functional scheme in which a pH-dependent proton release is coupled to the electron transfer between secondary and primary donors of Photosystem-II. The H+/e ratio varies from 1 at low pH to 0 at high pH, with a real pK ?6.5 for the protonatable species. PMID:19431676

  1. 77 FR 22066 - Proposed Collection of Information: “Notice of Reclamation Electronic Funds Transfer, Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ...Collection of Information: ``Notice of Reclamation Electronic Funds Transfer...continuing information collection...Reclamation. Electronic Funds Transfer...collection of information described...Reclamation, Electronic Funds...

  2. Electron transfer and protein engineering studies of the soluble methane monooxygenase from Methylococcus capsulatus (Bath)

    E-print Network

    Blazyk, Jessica L. (Jessica Lee), 1974-

    2003-01-01

    Chapter 1. Introduction: Electron Transfer in Biological Systems In many biological processes, including oxidative phosphorylation and photosynthesis, electron transfer reactions play vital roles. Electrons must be transported ...

  3. An Exploration of Geometric and Electronic Effects in Metal Nanoparticle Catalysts

    NASA Astrophysics Data System (ADS)

    Childers, David

    The goal of this thesis is to investigate the influence geometric and electronic effects on metal nanoparticle catalysis. There are three main methods which alter a catalyst's properties: changing support material, changing nanoparticle size and alloying a second metal. This work will focus on the latter two methods using Pt-group metals and alloys. Platinum and palladium were chosen as the active metals due to a large amount of industry significance and prior literature to draw upon. Neopentane conversion and propane dehydrogenation were the two probe reactions used to evaluate these catalysts mainly due to their relative simplicity and ease of operation on a laboratory scale. The effect of particle size was studied with Pt and Pd monometallic catalysts using neopentane hydrogenolysis/isomerization as the probe reaction. Particle size studies have been done previously using this reaction so there is literature data to compare this study's results. This data will also be used as comparison for the bimetallic studies conducted later so that particle size effects can be accounted for when attempting to determine the effect of alloying a second metal. Bimetallic catalysts have several different possible structures depending on a number of factors from the identity of the two metals to the synthesis procedure. Homogeneous, core-shell and intermetallic alloys are the three structures evaluated in this work. Determining the surface composition of a homogeneous alloy can be difficult especially if both metals adsorb CO. PtPd homogeneous alloys were used to evaluate the ability of EXAFS to give information about surface composition using CO adsorption. These catalysts were also tested using neopentane conversion to evaluate changes in catalytic performance. Core-shell catalysts can also exhibit unique properties although it is not clear whether the identity of the core metal is relevant or if surface changes are most important to changing catalytic behavior. PdAu catalysts were synthesized with varying Pd loadings to determine if the Au-rich core would continue to influence neopentane conversion performance with increasing Pd layers on the surface of the nanoparticle. Finally, intermetallic alloys have produced some very interesting literature results and can drastically alter catalyst surface structure. PdZn showed the potential to improve neopentane isomerization selectivity past that of Pt based on calculated electronic properties. Two PdZn catalysts with different loadings were synthesized to evaluate the electronic and geometric effects using both neopentane conversion and propane dehydrogenation.

  4. Electron transfer reactions in microporous solids. Progress report, September 1990--January 1993

    SciTech Connect

    Mallouk, T.E.

    1993-01-01

    Basic thrust the research program involves use of microporous solids (zeolites, clays, layered and tunnel structure oxide semiconductors) as organizing media for artificial photosynthetic systems. Purpose of the microporous solid is twofold. First, it induces spatial organization of photoactive and electroactive components (sensitizers, semiconductor particles, electron relays, and catalysts) at the solid-solution interface, enhancing the quantum efficiency of charge separation and separating physically the ultimate electron donor and acceptor in the electron transport chain. Second, since the microcrystalline solid admits only molecules of a certain charge and size, it is possible to achieve permanent charge separation by sieving chemical photoproducts (e.g., H{sub 2} and I{sub 3}{sup {minus}}, or H{sub 2} and O{sub 2)} from each other. Spectroscopic and electrochemical methods are used to study the kinetics of electron transfer reactions in these hybrid molecular/solid state assemblies.

  5. Theoretical Perspectives on Proton-Coupled Electron Transfer

    E-print Network

    Hammes-Schiffer, Sharon

    enzyme reactions such as those of ribonucleotide reductase and iron-sulfur pro- teins. In addition to study multiple electron transfer reactions.15 A number of additional challenges arise in the developTheoretical Perspectives on Proton-Coupled Electron Transfer Reactions SHARON HAMMES

  6. 75 FR 75897 - Electronic Funds Transfer of Depository Taxes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... published in the Federal Register (75 FR 51707) proposed amendments to the regulations (REG-153340-09) to... Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 RIN 1545-BJ13 Electronic Funds Transfer of... Electronic Funds Transfer (EFT). In response to the decision of the Financial Management Service...

  7. 76 FR 709 - Electronic Funds Transfer of Depository Taxes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... Federal Register on Tuesday, December 7, 2010 (75 FR 75897) providing guidance relating to Federal tax deposits (FTDs) by Electronic Funds Transfer (EFT). The temporary and final regulations provide rules under... Internal Revenue Service 26 CFR Parts 40 and 301 RIN 1545-BJ13 Electronic Funds Transfer of...

  8. METHODOLOGY FOR INCREASED PRECISION IN SATURATION TRANSFER ELECTRON PARAMAGNETIC

    E-print Network

    Thomas, David D.

    of Thomas et al., 1976), except that the microwave power was turned up to achieve a high enough HI value. INTRODUCTION Saturation transfer electron paramagnetic resonance (ST- EPR) is a powerful tool for studyingMETHODOLOGY FOR INCREASED PRECISION IN SATURATION TRANSFER ELECTRON PARAMAGNETIC RESONANCE STUDIES

  9. In tandem or alone: a remarkably selective transfer hydrogenation of alkenes catalyzed by ruthenium olefin metathesis catalysts.

    PubMed

    Zieli?ski, Grzegorz Krzysztof; Samoj?owicz, Cezary; Wdowik, Tomasz; Grela, Karol

    2015-03-01

    A system for transfer hydrogenation of alkenes, composed of a ruthenium metathesis catalyst and HCOOH, is presented. This operationally simple system can be formed directly after a metathesis reaction to effect hydrogenation of the metathesis product in a single-pot. These hydrogenation conditions are applicable to a wide range of alkenes and offer remarkable selectivity. PMID:25586518

  10. Long-distance electron transfer from a triplet excited state

    NASA Astrophysics Data System (ADS)

    Murtagh, James; Thomas, J. Kerry

    Electron transfer from the triplet excited state of N,N,N',N'-tetramethylphenylene diamine to phthalic anhydride has been monitored by phosphorescence emission decay. The kinetics of the transfer process were observed directly and the rate constant depends exponentially on the reacting distance, k(r) = 1 × 10 4 exp(-0.58 r) s -1. The electron transfer rate has been found to be invariant over the temperature interval 77-143 K.

  11. Integrating proton coupled electron transfer (PCET) and excited states

    SciTech Connect

    Gagliardi, Christopher J.; Westlake, Brittany C.; Kent, Caleb A.; Paul, Jared J.; Papanikolas, John M.; Meyer, Thomas J.

    2010-11-01

    In many of the chemical steps in photosynthesis and artificial photosynthesis, proton coupled electron transfer (PCET) plays an essential role. An important issue is how excited state reactivity can be integrated with PCET to carry out solar fuel reactions such as water splitting into hydrogen and oxygen or water reduction of CO2 to methanol or hydrocarbons. The principles behind PCET and concerted electron–proton transfer (EPT) pathways are reasonably well understood. In Photosystem II antenna light absorption is followed by sensitization of chlorophyll P680 and electron transfer quenching to give P680+. The oxidized chlorophyll activates the oxygen evolving complex (OEC), a CaMn4 cluster, through an intervening tyrosine–histidine pair, YZ. EPT plays a major role in a series of four activation steps that ultimately result in loss of 4e-/4H+ from the OEC with oxygen evolution. The key elements in photosynthesis and artificial photosynthesis – light absorption, excited state energy and electron transfer, electron transfer activation of multiple-electron, multiple-proton catalysis – can also be assembled in dye sensitized photoelectrochemical synthesis cells (DS-PEC). In this approach, molecular or nanoscale assemblies are incorporated at separate electrodes for coupled, light driven oxidation and reduction. Separate excited state electron transfer followed by proton transfer can be combined in single semi-concerted steps (photo-EPT) by photolysis of organic charge transfer excited states with H-bonded bases or in metal-to-ligand charge transfer (MLCT) excited states in pre-associated assemblies with H-bonded electron transfer donors or acceptors. In these assemblies, photochemically induced electron and proton transfer occur in a single, semi-concerted event to give high-energy, redox active intermediates.

  12. Electronic transfer of sensitive patient data.

    PubMed

    Detterbeck, A M W; Kaiser, J; Hirschfelder, U

    2015-01-01

    The purpose of this study was to develop decision-making aids and recommendations for dental practitioners regarding the utilization and sharing of sensitive digital patient data. In the current environment of growing digitization, healthcare professionals need detailed knowledge of secure data management to maximize confidentiality and minimize the risks involved in both archiving patient data and sharing it through electronic channels. Despite well-defined legal requirements, an all-inclusive technological solution does not currently exist. The need for a preliminary review and critical appraisal of common practices of data transfer prompted a search of the literature and the Web to identify viable methods of secure data exchange and to develop a flowchart. A strong focus was placed on the transmission of datasets both smaller than and larger than 10 MB, and on secure communication by smartphone. Although encryption of patient-related data should be routine, it is often difficult to implement. Pretty Good Privacy (PGP) and Secure/Multipurpose Internet Mail Extensions (S/MIME) are viable standards for secure e-mail encryption. Sharing of high-volume data should be accomplished with the help of file encryption. Careful handling of sensitive patient data is mandatory, and it is the end-user's responsibility to meet any requirements for encryption, preferably by using free, open-source (and hence transparent) software. PMID:25911828

  13. Mechanism of Intermolecular Electron Transfer in Bionanostructures

    NASA Astrophysics Data System (ADS)

    Gruodis, A.; Galikova, N.; Šarka, K.; Saul?, R.; Batiuškait?, D.; Saulis, G.

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Most patients are inoperable and hepatoma cells are resistant to conventional chemotherapies. Thus, the development of novel therapies for HCC treatment is of paramount importance. Amongst different alimentary factors, vitamin C and vitamin K3 In the present work, it has been shown that the treatment of mouse hepatoma MH-22A cells by vitamin C and vitamin K3 at the ratio of 100:1 greatly enhanced their cytotoxicity. When cells were subjected to vitamin C at 200 ?M or to vitamin K3 at 2 ?M separately, their viability reduced by only about 10%. However, when vitamins C and K3 were combined at the same concentrations, they killed more than 90% of cells. To elucidate the mechanism of the synergistic cytotoxicity of the C&K3 mixture, theoretical quantum-chemical analysis of the dynamics of intermolecular electron transfer (IET) processes within the complexes containing C (five forms) and K3 (one form) has been carried out. Optimization of the ground state complex geometry has been provided by means of GAUSSIAN03 package. Simulation of the IET has been carried out using NUVOLA package, in the framework of molecular orbitals (MO). The rate of IET has been calculated using Fermi Golden rule. The results of simulations allow us to create the preliminary model of the reaction pathway.

  14. Photoinduced electron transfer between the dendritic zinc phthalocyanines and anthraquinone

    NASA Astrophysics Data System (ADS)

    Chen, Kuizhi; Wen, Junri; Liu, Jiangsheng; Chen, Zhenzhen; Pan, Sujuan; Huang, Zheng; Peng, Yiru

    2015-03-01

    The intermolecular electron transfer between the novel dendritic zinc (II) phthalocyanines (G1-DPcB and G2-DPcB) and anthraquinone (AQ) was studied by steady-state fluorescence and UV/Vis absorption spectroscopic methods. The effect of dendron generation on intermolecular electron transfer was investigated. The results showed that the fluorescence emission of these dendritic phthalocyanines could be greatly quenched by AQ upon excitation at 610 nm. The Stern- Volmer constant (KSV) of electron transfer was decreased with increasing the dendron generations. Our study suggested that these novel dendritic phthalocyanines were effective new electron donors and transmission complexes and could be used as a potential artifical photosysthesis system.

  15. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins.

    PubMed

    Chen, Xiaoqi; Deng, Dehui; Pan, Xiulian; Hu, Yongfeng; Bao, Xinhe

    2015-01-01

    N-doped graphene used as an efficient electron donor of iron catalysts for CO hydrogenation can achieve a high selectivity of around 50% for light olefins, significantly superior to the selectivity of iron catalysts on conventional carbon materials, e.g. carbon black with a selectivity of around 30% at the same reaction conditions. PMID:25407097

  16. Electron energy loss spectroscopy (EELS) of iron Fischer-Tropsch catalysts.

    PubMed

    Jin, Yaming; Xu, Huifang; Datye, Abhaya K

    2006-04-01

    Electron energy loss spectroscopy (EELS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy have been used to study iron catalysts for Fischer-Tropsch synthesis. When silica-containing iron oxide precursors are activated in flowing CO, the iron phase segregates into iron carbide crystallites, leaving behind some unreduced iron oxide in an amorphous state coexisting with the silica binder. The iron carbide crystallites are found covered by characteristic amorphous carbonaceous surface layers. These amorphous species are difficult to analyze by traditional catalyst characterization techniques, which lack spatial resolution. Even a surface-sensitive technique such as XPS shows only broad carbon or iron peaks in these catalysts. As we show in this work, EELS allows us to distinguish three different carbonaceous species: reactive amorphous carbon, graphitic carbon, and carbidic carbon in the bulk of the iron carbide particles. The carbidic carbon K edge shows an intense "pi*" peak with an edge shift of about 1 eV to higher energy loss compared to that of the pi* of amorphous carbon film or graphitic carbon. EELS analysis of the oxygen K edge allows us to distinguish the amorphous unreduced iron phase from the silica binder, indicating these are two separate phases. These results shed light onto the complex phase transformations that accompany the activation of iron catalysts for Fischer-Tropsch synthesis. PMID:17481348

  17. The Iron-Sulfur Cluster of Electron Transfer Flavoprotein-Ubiquinone Oxidoreductase Is the Electron Acceptor for Electron Transfer Flavoprotein†

    PubMed Central

    Swanson, Michael A.; Usselman, Robert J.; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2009-01-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone pool. It contains one [4Fe-4S]2+,1+ and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S]2+,1+ to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S]+ at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 and -30 mV for wild type to -11 and -19 mV, respectively. The N338A mutation decreased the potentials to -37 and -49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF1e- catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone but not in electron transfer from ETF to ETF-QO. Therefore, the iron-sulfur cluster is the immediate acceptor from ETF. PMID:9585549

  18. Spatial Resolution and Information Transfer in Scanning Transmission Electron Microscopy

    E-print Network

    Pennycook, Steve

    Spatial Resolution and Information Transfer in Scanning Transmission Electron Microscopy Yiping of scanning transmission electron microscopy, it is shown that the channeling effect does not have a direct microscopy, especially the break- through brought by the practical correction of electron optical aberrations

  19. Changes in electronic states of platinum-cobalt alloy catalyst for polymer electrolyte fuel cells by potential cycling

    NASA Astrophysics Data System (ADS)

    Hidai, Shoichi; Kobayashi, Masaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Nakamori, Yoji; Aoki, Tsutomu

    2011-10-01

    Changes in the electronic states of platinum-cobalt (Pt-Co) alloy catalysts through potential cycling between 0.6 and 1.0 V were investigated by X-ray photoemission spectroscopy (XPS) using synchrotron radiation. The electrochemical surface area loss and the particle size growth of the Pt catalyst were larger than those of the Pt-Co alloy catalyst. Pt 4f XPS spectra of the Pt-Co alloy catalyst do not show any change through the potential cycling, indicating that most part of Pt is stable during the potential cycling. Larger amount of Pt(OH)2 existed in the initial MEA of the Pt catalyst than the Pt-Co alloy catalyst, indicating that the Pt catalyst has a tendency to be oxidized. The Pt(OH)2 decreased and metallic platinum increased in the cycle-tested MEA, suggesting that the Pt(OH)2 dissolved and re-deposited as metallic states. The oxidation tendency explains the less durability of the Pt catalyst than the Pt-Co alloy catalyst. Co 2p XPS spectra imply that cobalt is absent on the surface of the catalyst particles and the Pt skin layer is thicker than 1.4 nm (4 mono-layers). The absence of the cobalt oxide in the cycle-tested MEA demonstrates that the Pt-Co core under the Pt skin layer is stable during the potential cycling.

  20. REFLECTIONS ON THE TWO-STATE ELECTRON TRANSFER MODEL.

    SciTech Connect

    Brunschwig, B.S.

    2000-01-12

    There is general agreement that the two most important factors determining electron transfer rates in solution are the degree of electronic interaction between the donor and acceptor sites, and the changes in the nuclear configurations of the donor, acceptor, and surrounding medium that occur upon the gain or loss of an electron Ll-51. The electronic interaction of the sites will be very weak, and the electron transfer slow, when the sites are far apart or their interaction is symmetry or spin forbidden. Since electron motion is much faster than nuclear motion, energy conservation requires that, prior to the actual electron transfer, the nuclear configurations of the reactants and the surrounding medium adjust from their equilibrium values to a configuration (generally) intermediate between that of the reactants and products. In the case of electron transfer between , two metal complexes in a polar solvent, the nuclear configuration changes involve adjustments in the metal-ligand and intraligand bond lengths and angles, and changes in the orientations of the surrounding solvent molecules. In common with ordinary chemical reactions, an electron transfer reaction can then be described in terms of the motion of the system on an energy surface from the reactant equilibrium configuration (initial state) to the product equilibrium configuration (final state) via the activated complex (transition state) configuration.

  1. Electron transfer-initiated epoxidation and isomerization chain reactions of ?-caryophyllene.

    PubMed

    Steenackers, Bart; Campagnol, Nicolò; Fransaer, Jan; Hermans, Ive; De Vos, Dirk

    2015-01-26

    The abundant sesquiterpene ?-caryophyllene can be epoxidized by molecular oxygen in the absence of any catalyst. In polar aprotic solvents, the reaction proceeds smoothly with epoxide selectivities exceeding 70?%. A mechanistic study has been performed and the possible involvement of free radical, spin inversion, and electron transfer mechanisms is evaluated using experimental and computational methods. The experimental data-including a detailed reaction product analysis, studies on reaction parameters, solvent effects, additives and an electrochemical investigation-all support that the spontaneous epoxidation of ?-caryophyllene constitutes a rare case of unsensitized electron transfer from an olefin to triplet oxygen under mild conditions (80?°C, 1?bar?O2 ). As initiation of the oxygenation reaction, the formation of a caryophyllene-derived radical cation via electron transfer is proposed. This radical cation reacts with triplet oxygen to a dioxetane via a chain mechanism with chain lengths exceeding 100 under optimized conditions. The dioxetane then acts as an in?situ-formed epoxidizing agent. Under nitrogen atmosphere, the presence of a one-electron acceptor leads to the selective isomerization of ?-caryophyllene to isocaryophyllene. Observations indicate that this isomerization reaction is a novel and elegant synthetic pathway to isocaryophyllene. PMID:25430783

  2. Understanding catalyst behavior during in situ heating through simultaneous secondary and transmitted electron imaging

    PubMed Central

    2014-01-01

    By coupling techniques of simultaneous secondary (SE) and transmitted electron (TE) imaging at high resolution in a modern scanning transmission electron microscope (STEM), with the ability to heat specimens using a highly stable MEMS-based heating platform, we obtained synergistic information to clarify the behavior of catalysts during in situ thermal treatments. Au/iron oxide catalyst 'leached' to remove surface Au was heated to temperatures as high as 700°C. The Fe2O3 support particle structure tended to reduce to Fe3O4 and formed surface terraces; the formation, coalescence, and mobility of 1- to 2-nm particles on the terraces were characterized in SE, STEM-ADF, and TEM-BF modes. If combined with simultaneous nanoprobe spectroscopy, this approach will open the door to a new way of studying the kinetics of nano-scaled phenomena. PMID:25419195

  3. 48 CFR 52.232-38 - Submission of Electronic Funds Transfer Information with Offer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...false Submission of Electronic Funds Transfer Information with Offer. 52...232-38 Submission of Electronic Funds Transfer Information with Offer. As... Submission of Electronic Funds Transfer Information With Offer...

  4. 76 FR 35219 - Federal Acquisition Regulation; Information Collection; Payment by Electronic Fund Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ...Regulation; Information Collection; Payment by Electronic Fund Transfer...previously approved information collection...payment by electronic fund transfer...contract by electronic fund transfer (EFT). The information necessary...

  5. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.

    PubMed

    Wu, Chao; Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Wen-Wei; Li, Dao-Bo; Yu, Han-Qing

    2013-05-01

    Shewanella oneidensis MR-1 is an extensively studied dissimilatory metal-reducing bacterium with a great potential for bioremediation and electricity generation. It secretes flavins as electron shuttles which play an important role in extracellular electron transfer. However, the influence of various environmental factors on the secretion of flavins is largely unknown. Here, the effects of electron acceptors, including fumarate, ferrihydrite, Fe(III)-nitrilotriacetic acid (NTA), nitrate and trimethylamine oxide (TMAO), on the secretion of flavins were investigated. The level of riboflavin and riboflavin-5'-phosphate (FMN) secreted by S. oneidensis MR-1 varied considerably with different electron acceptors. While nitrate and ferrihydrite suppressed the secretion of flavins in relative to fumarate, Fe(III)-NTA and TMAO promoted such a secretion and greatly enhanced ferrihydrite reduction and electricity generation. This work clearly demonstrates that electron acceptors could considerably affect the secretion of flavins and consequent microbial EET. Such impacts of electron acceptors in the environment deserve more attention. PMID:23558182

  6. Quinone methide generation via photoinduced electron transfer.

    PubMed

    Percivalle, Claudia; La Rosa, Andrea; Verga, Daniela; Doria, Filippo; Mella, Mariella; Palumbo, Manlio; Di Antonio, Marco; Freccero, Mauro

    2011-05-01

    Photochemical activation of water-soluble 1,8-naphthalimide derivatives (NIs) as alkylating agents has been achieved by irradiation at 310 and 355 nm in aqueous acetonitrile. Reactivity in aqueous and neat acetonitrile has been extensively investigated by laser flash photolysis (LFP) at 355 nm, as well as by steady-state preparative irradiation at 310 nm in the presence of water, amines, thiols, and ethyl vinyl ether. Product distribution analysis revealed fairly efficient benzylation of the amines, hydration reaction, and 2-ethoxychromane generation, in the presence of ethyl vinyl ether, resulting from a [4 + 2] cycloaddition onto a transient quinone methide. Remarkably, we found that the reactivity was dramatically suppressed under the presence of oxygen and radical scavengers, such as thiols, which was usually associated with side product formation. In order to unravel the mechanism responsible for the photoreactivity of these NI-based molecules, a detailed LFP study has been carried out with the aim to characterize the transient species involved. LFP data suggest a photoinduced electron transfer (PET) involving the NI triplet excited state (?(max) 470 nm) of the NI core and the tethered quinone methide precursor (QMP) generating a radical ions pair NI(•-) (?(max) 410 nm) and QMP(•+). The latter underwent fast deprotonation to generate a detectable phenoxyl radical (?(max) 390 and 700 nm), which was efficiently reduced by the radical anion NI(•-), generating detectable QM. The mechanism proposed has been validated through a LFP investigation at 355 nm exploiting an intermolecular reaction between the photo-oxidant N-pentylnaphthalimide (NI-P) and a quaternary ammonium salt of a Mannich base as QMP (2a), in both neat and aqueous acetonitrile. Remarkably, these experiments revealed the generation of the model o-QM (?(max) 400 nm) as a long living transient mediated by the same reactivity pathway. Negligible QM generation has been observed under the very same conditions by irradiation of the QMP in the absence of the NI. Owing to the NIs redox and recognition properties, these results represent the first step toward new molecular devices capable of both biological target recognition and photoreleasing of QMs as alkylating species, under physiological conditions. PMID:21425810

  7. 76 FR 29901 - Electronic Fund Transfers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ...those cases, either the first cross-border intermediary...Efficient Markets, Working Paper at 27 (Feb. 2007...value of the transfer in first quarter of 2010.\\19...5 inches by 11 inches piece of paper, consistent with...

  8. Combining UV photodissociation with electron transfer for peptide structure analysis.

    PubMed

    Shaffer, Christopher J; Marek, Ales; Pepin, Robert; Slovakova, Kristina; Turecek, Frantisek

    2015-03-01

    The combination of near-UV photodissociation with electron transfer and collisional activation provides a new tool for structure investigation of isolated peptide ions and reactive intermediates. Two new types of pulse experiments are reported. In the first one called UV/Vis photodissociation-electron transfer dissociation (UVPD-ETD), diazirine-labeled peptide ions are shown to undergo photodissociation in the gas phase to form new covalent bonds, guided by the ion conformation, and the products are analyzed by electron transfer dissociation. In the second experiment, called ETD-UVPD wherein synthetic labels are not necessary, electron transfer forms new cation-peptide radical chromophores that absorb at 355?nm and undergo specific backbone photodissociation reactions. The new method is applied to distinguish isomeric ions produced by ETD of arginine containing peptides. PMID:25800183

  9. Global electronic funds transfer between small and medium sized companies

    E-print Network

    Stovall, Shawn Eric

    2006-01-01

    Cross-border electronic funds transfer is a rapidly expanding field for business and consumer payments. Large multi-national corporations have been able to invest the capital necessary to create infrastructures or work ...

  10. 76 FR 709 - Electronic Funds Transfer of Depository Taxes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ...guidance relating to Federal tax deposits (FTDs) by Electronic Funds Transfer (EFT). The temporary and final regulations provide rules under which depositors must use EFT for all FTDs and eliminate the rules regarding FTD coupons. DATES: This...

  11. 75 FR 52485 - Electronic Funds Transfer of Depository Taxes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ...the Federal Register on Monday, August 23, 2010, relating to Federal tax deposits (FTDs) by Electronic Funds Transfer (EFT). FOR FURTHER INFORMATION CONTACT: Michael E. Hara, (202) 622-4910 (not a toll-free number). SUPPLEMENTARY...

  12. Observing Vibrational Wavepackets during an Ultrafast Electron Transfer Reaction.

    PubMed

    Rafiq, Shahnawaz; Dean, Jacob C; Scholes, Gregory D

    2015-12-10

    Recent work has proposed that coherent effects impact ultrafast electron transfer reactions. Here we report studies using broadband pump-probe and two-dimensional electronic spectroscopy of intramolecular nuclear motion on the time scale of the electron transfer between oxazine 1 (Ox1) and dimethylaniline (DMA). We performed time-frequency analysis on the time domain data to assign signal amplitude modulations to ground or excited electronic states in the reactive system (Ox1 in DMA) relative to the control system (Ox1 in chloronaphthalene). It was found that our ability to detect vibrational coherence via the excited electronic state of Ox1 diminishes on the time scale that population is lost by electron transfer. However, the vibrational wavepacket is not damped by the electron transfer process and has been observed previously by detecting the Ox1 radical transient absorption. The analysis presented here indicates that the "addition" of an electron to the photoexcited electron acceptor does not significantly perturb the vibrational coherence, suggesting its presence as a spectator, consistent with the Born-Oppenheimer separation of electronic and nuclear degrees of freedom. PMID:26587757

  13. Electron energy transfer rates for vibrational excitation of N2.

    SciTech Connect

    Campbell, L.; Cartwright, D. C.; Tuebner, P. J. O.; Brunger, M. J.

    2003-01-01

    The calculation of the electron density and electron temperature distribution in our ionosphere (from {approx} 150-600 km) requires a knowledge of the various heating, cooling and energy flow processes that occur. The energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N2 in this is particularly significant.

  14. Marcus rate for electron transfer and the Goldilocks principle

    E-print Network

    Lev Mourokh; Seth Lloyd

    2013-06-09

    We examine electron transfer between two quantum states in the presence of a dissipative environment represented as a set of independent harmonic oscillators. For this simple model, the Marcus transfer rates can be derived and we show that these rates are associated to an explicit expression for the environment correlation time. We demonstrate that as a manifestation of the Goldilocks principle, the optimal transfer is governed by a single parameter which is equal to just the inverse root square of two.

  15. Frontier orbital symmetry control of intermolecular electron transfer. Final report, September 15, 1988--December 31, 1994

    SciTech Connect

    Stevens, B.

    1997-07-01

    This report discusses the following topics: the recovery of intermolecular transfer parameters from fluorescence quenching in liquids; photoinduced intramolecular electron transfer in flexible donor/space/acceptor systems containing an extended unsaturated spacer; electron transfer sensitized reaction; the recovery of solute and fractal dimensions from electron transfer quenching data; and frontier orbital symmetry control of back electron transfer.

  16. LASER FORWARD TRANSFER OF ELECTRONIC AND POWER GENERATING MATERIALS

    E-print Network

    Arnold, Craig B.

    written 3D pixels or voxels resulting from the laser forward #12;340 Laser Ablation and its Applications The laser forward transfer process was first used in depositing copper metal patterns inside a vacuumChapter 14 LASER FORWARD TRANSFER OF ELECTRONIC AND POWER GENERATING MATERIALS Alberto Piqué1

  17. Electronic reorganization triggered by electron transfer: the intervalence charge transfer of a Fe³?/Fe²? bimetallic complex.

    PubMed

    Domingo, Alex; Angeli, Celestino; de Graaf, Coen; Robert, Vincent

    2015-04-30

    The key role of the molecular orbitals in describing electron transfer processes is put in evidence for the intervalence charge transfer (IVCT) of a synthetic nonheme binuclear mixed-valence Fe(3+)/Fe(2+) compound. The electronic reorganization induced by the IVCT can be quantified by controlling the adaptation of the molecular orbitals to the charge transfer process. We evaluate the transition energy and its polarization effects on the molecular orbitals by means of ab initio calculations. The resulting energetic profile of the IVCT shows strong similarities to the Marcus' model, suggesting a response behaviour of the ensemble of electrons analogue to that of the solvent. We quantify the extent of the electronic reorganization induced by the IVCT process to be 11.74 eV, a very large effect that induces the crossing of states reducing the total energy of the transfer to 0.89 eV. PMID:25739890

  18. Optimal rates for electron transfer in Marcus theory

    NASA Astrophysics Data System (ADS)

    Mourokh, Lev; Lloyd, Seth

    2013-10-01

    We examine electron transfer between two quantum states in the presence of a dissipative environment represented as a set of independent harmonic oscillators. For this simple model, the Marcus transfer rates can be derived from the equations of motion for electronic operators and we show that these rates are associated to an explicit expression for the environment correlation time. We demonstrate that as a manifestation of the Goldilocks principle, the optimal transfer is governed by a single parameter which is equal to just the inverse square root of 2.

  19. Optimal rates for electron transfer in Marcus theory.

    PubMed

    Mourokh, Lev; Lloyd, Seth

    2013-10-01

    We examine electron transfer between two quantum states in the presence of a dissipative environment represented as a set of independent harmonic oscillators. For this simple model, the Marcus transfer rates can be derived from the equations of motion for electronic operators and we show that these rates are associated to an explicit expression for the environment correlation time. We demonstrate that as a manifestation of the Goldilocks principle, the optimal transfer is governed by a single parameter which is equal to just the inverse square root of 2. PMID:24229237

  20. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  1. 76 FR 29901 - Electronic Fund Transfers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... Board anticipates that final rules on remittance transfers will be issued by the Bureau. \\26\\ 75 FR... be edited to remove any identifying or contact information. Public comments may also be viewed... a.m. and 5 p.m. on weekdays. FOR FURTHER INFORMATION CONTACT: Dana Miller, Mandie Aubrey or...

  2. Direct simulation of electron transfer reactions in DNA radical cations

    PubMed Central

    Steinbrecher, Thomas; Koslowski, Thorsten; Case, David A.

    2009-01-01

    The electron transfer properties of DNA radical cations are important in DNA damage and repair processes. Fast long-range charge transfer has been demonstrated experimentally, but the subtle influences that experimental conditions as well as DNA sequences and geometries have on the details of electron transfer parameters are still poorly understood. In this work, we employ an atomistic QM/MM approach, based on a one-electron tight binding Hamiltonian and a classical molecular mechanics forcefield, to conduct nanosecond length MD simulations of electron holes in DNA oligomers. Multiple spontaneous electron transfer events were observed in 100 ns simulations with neighbouring adenine or guanine bases. Marcus parameters of charge transfer could be extracted directly from the simulations. The reorganisation energy ? for hopping between neighbouring bases was found to be ca. 25 kcal/mol and charge transfer rates of 4.1×109 s?1 for AA hopping and 1.3×109 s?1 for GG hopping were obtained. PMID:19049302

  3. Direct simulation of electron transfer reactions in DNA radical cations.

    PubMed

    Steinbrecher, Thomas; Koslowski, Thorsten; Case, David A

    2008-12-25

    The electron transfer properties of DNA radical cations are important in DNA damage and repair processes. Fast long-range charge transfer has been demonstrated experimentally, but the subtle influences that experimental conditions as well as DNA sequences and geometries have on the details of electron transfer parameters are still poorly understood. In this work, we employ an atomistic QM/MM approach, based on a one-electron tight binding Hamiltonian and a classical molecular mechanics forcefield, to conduct nanosecond length MD simulations of electron holes in DNA oligomers. Multiple spontaneous electron transfer events were observed in 100 ns simulations with neighboring adenine or guanine bases. Marcus parameters of charge transfer could be extracted directly from the simulations. The reorganization energy lambda for hopping between neighboring bases was found to be ca. 25 kcal/mol and charge transfer rates of 4.1 x 10(9) s(-1) for AA hopping and 1.3 x 10(9) s(-1) for GG hopping were obtained. PMID:19049302

  4. Chemical Reaction Dynamics accompanying Electron-Transfer Osamu SUGINO

    E-print Network

    Katsumoto, Shingo

    Chemical Reaction Dynamics accompanying Electron-Transfer Osamu SUGINO Institute for Solid State Physics, the University of Tokyo 5-1-5 Kashiwanoha, Chiba 277-8581 1. Introduction Many chemical reactions and the dynamics goes nonadiabatically. The former appears typically in chemical reactions that accompany electron

  5. Alternative ground states enable pathway switching in biological electron transfer

    PubMed Central

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  6. The electronic structure of iron and nickel catalysts and their activity in coal hydrogenation

    SciTech Connect

    A.M. Gyul'maliev; A.S. Maloletnev; M.Ya. Shpirt; L.A. Zekel; M.A. Gyul'malieva

    2009-07-01

    The thermodynamic and quantum-chemical aspects of hydrogenation of coal organic matter in the presence of iron and nickel compounds as catalysts were considered. A thermodynamic analysis of the formation reaction of catalytically active catalyst entities under hydrogenation conditions was performed. The electronic structure of FeO, FeS, FeS{sub 2}, NiO, and NiS with the minimal number of iron and nickel atoms and their activated complexes with an H{sub 2} molecule were calculated by the ab initio Hartree-Fock method using the STO 6-311G basis set. A comparative catalytic activity of transition states of this kind was evaluated.

  7. Electron transfer pathways in photosystem I reaction centers

    NASA Astrophysics Data System (ADS)

    Ivashin, Nikolaj; Larsson, Sven

    2003-07-01

    Electron transfer following charge separation in the photosystem I (PSI) reaction center of Synechococcus elongatus is studied using theoretical methods. The difference in rate between two almost symmetrical A- and B-branches is caused by a difference in a single residue (Trp B673 versus Gly A693), close to the F X iron-sulfur cluster. Partly due to its polar environment, Trp B673 acts as an electron acceptor in its ?-system. The rate increases on the B-side due to shortened distances for electron transfer.

  8. Lewis Acid Coupled Electron Transfer of Metal-Oxygen Intermediates.

    PubMed

    Fukuzumi, Shunichi; Ohkubo, Kei; Lee, Yong-Min; Nam, Wonwoo

    2015-12-01

    Redox-inactive metal ions and Brønsted acids that function as Lewis acids play pivotal roles in modulating the redox reactivity of metal-oxygen intermediates, such as metal-oxo and metal-peroxo complexes. The mechanisms of the oxidative C?H bond cleavage of toluene derivatives, sulfoxidation of thioanisole derivatives, and epoxidation of styrene derivatives by mononuclear nonheme iron(IV)-oxo complexes in the presence of triflic acid (HOTf) and Sc(OTf)3 have been unified as rate-determining electron transfer coupled with binding of Lewis acids (HOTf and Sc(OTf)3 ) by iron(III)-oxo complexes. All logarithms of the observed second-order rate constants of Lewis acid-promoted oxidative C?H bond cleavage, sulfoxidation, and epoxidation reactions of iron(IV)-oxo complexes exhibit remarkably unified correlations with the driving forces of proton-coupled electron transfer (PCET) and metal ion-coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes were taken into account. The binding of HOTf and Sc(OTf)3 to the metal-oxo moiety has been confirmed for Mn(IV) -oxo complexes. The enhancement of the electron-transfer reactivity of metal-oxo complexes by binding of Lewis acids increases with increasing the Lewis acidity of redox-inactive metal ions. Metal ions can also bind to mononuclear nonheme iron(III)-peroxo complexes, resulting in acceleration of the electron-transfer reduction but deceleration of the electron-transfer oxidation. Such a control on the reactivity of metal-oxygen intermediates by binding of Lewis acids provides valuable insight into the role of Ca(2+) in the oxidation of water to dioxygen by the oxygen-evolving complex in photosystem?II. PMID:26404482

  9. MANAGING ELECTRONIC DATA TRANSFER IN ENVIRONMENTAL CLEANUPS

    EPA Science Inventory

    The use of computers and electronic information poses a complex problem for potential litigation in space law. The problem currently manifests itself in at least two ways. First, the Environmental Protection Agency (EPA) enforcement of Comprehensive Environmental Response, Compen...

  10. Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator.

    PubMed

    Zhao, Yixin; Swierk, John R; Megiatto, Jackson D; Sherman, Benjamin; Youngblood, W Justin; Qin, Dongdong; Lentz, Deanna M; Moore, Ana L; Moore, Thomas A; Gust, Devens; Mallouk, Thomas E

    2012-09-25

    Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light. PMID:22547794

  11. Engineered electron-transfer chain in photosystem 1 based photocathodes outperforms electron-transfer rates in natural photosynthesis.

    PubMed

    Kothe, Tim; Pöller, Sascha; Zhao, Fangyuan; Fortgang, Philippe; Rögner, Matthias; Schuhmann, Wolfgang; Plumeré, Nicolas

    2014-08-25

    Photosystem?1 (PS1) triggers the most energetic light-induced charge-separation step in nature and the in vivo electron-transfer rates approach 50?e(-) ?s(-1) ?PS1(-1). Photoelectrochemical devices based on this building block have to date underperformed with respect to their semiconductor counterparts or to natural photosynthesis in terms of electron-transfer rates. We present a rational design of a redox hydrogel film to contact PS1 to an electrode for photocurrent generation. We exploit the pH-dependent properties of a poly(vinyl)imidazole Os(bispyridine)2Cl polymer to tune the redox hydrogel film for maximum electron-transfer rates under optimal conditions for PS1 activity. The PS1-containing redox hydrogel film displays electron-transfer rates of up to 335±14?e(-) ?s(-1) ?PS1(-1), which considerably exceeds the rates observed in natural photosynthesis or in other semiartificial systems. Under O2 supersaturation, photocurrents of 322±19??A?cm(-2) were achieved. The photocurrents are only limited by mass transport of the terminal electron acceptor (O2). This implies that even higher electron-transfer rates may be achieved with PS1-based systems in general. PMID:25066901

  12. Plugging in or going wireless: strategies for interspecies electron transfer

    PubMed Central

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena

    2014-01-01

    Interspecies exchange of electrons enables a diversity of microbial communities to gain energy from reactions that no one microbe can catalyze. The first recognized strategies for interspecies electron transfer were those that relied on chemical intermediates that are recycled through oxidized and reduced forms. Well-studied examples are interspecies H2 transfer and the cycling of sulfur intermediates in anaerobic photosynthetic communities. Direct interspecies electron transfer (DIET) in which two species establish electrical contact is an alternative. Electrical contacts documented to date include electrically conductive pili, as well as conductive iron minerals and conductive carbon moieties such as activated carbon and biochar. Interspecies electron transfer is central to the functioning of methane-producing microbial communities. The importance of interspecies H2 transfer in many methanogenic communities is clear, but under some circumstances DIET predominates. It is expected that further mechanistic studies and broadening investigations to a wider range of environments will help elucidate the factors that favor specific forms of interspecies electron exchange under different environmental conditions. PMID:24904551

  13. Electronic excitation transfer in clustered chromophore systems: Calculation of time-resolved observables for intercluster transfer

    E-print Network

    Fayer, Michael D.

    Electronic excitation transfer in clustered chromophore systems: Calculation of time description is given for electronic excitation transport among interacting clusters of chromophores. Each of the solution to the transport master equation. G"(t) the probability of finding the excitation on the initially

  14. [Electron transfer, ionization, and excitation in atomic collisions]. Progress report

    SciTech Connect

    Not Available

    1992-12-31

    Fundamental processes of electron transfer, ionization, and excitation in ion-atom and ion-ion collisions are studied. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-ion core can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. At intermediate collision energies (e.g., proton energies for p-He{sup +} collisions on the order of 100 kilo-electron volts), many electronic states are strongly coupled during the collision, a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. At higher collision energies (million electron-volt energies) the coupling is weaker with, however, many more states being coupled together, so that high-order perturbation theory is essential.

  15. Electron transfer through rigid organic molecular wires enhanced by electronic and electron-vibration coupling.

    PubMed

    Sukegawa, Junpei; Schubert, Christina; Zhu, Xiaozhang; Tsuji, Hayato; Guldi, Dirk M; Nakamura, Eiichi

    2014-10-01

    Electron transfer (ET) is a fundamental process in a wide range of biological systems, photovoltaics and molecular electronics. Therefore to understand the relationship between molecular structure and ET properties is of prime importance. For this purpose, photoinduced ET has been studied extensively using donor-bridge-acceptor molecules, in which ?-conjugated molecular wires are employed as bridges. Here, we demonstrate that carbon-bridged oligo-p-phenylenevinylene (COPV), which is both rigid and flat, shows an 840-fold increase in the ET rate compared with the equivalent flexible molecular bridges. A 120-fold rate enhancement is explained in terms of enhanced electronic coupling between the electron donor and the electron acceptor because of effective conjugation through the COPVs. The remainder of the rate enhancement is explained by inelastic electron tunnelling through COPV caused by electron-vibration coupling, unprecedented for organic molecular wires in solution at room temperature. This type of nonlinear effect demonstrates the versatility and potential practical utility of COPVs in molecular device applications. PMID:25242485

  16. Synthesis and characterization of novel antibacterial polymers and clay delivery systems and polymeric phase transfer catalysts

    NASA Astrophysics Data System (ADS)

    Dizman, Bekir

    The research presented in this dissertation involves the syntheses of both novel antibacterial polymers and nanocomposites and polymeric phase transfer catalysts. The first section describes the synthesis, characterization, and antibacterial activities of new acrylate/methacrylate and acrylamide/methacrylamide polymers containing pendant quaternary ammonium compounds and norfloxacin. The first part of this section focuses on the syntheses and antibacterial activities of new water-soluble bis-quaternary ammonium methacrylate monomers and polymers (Chapter II). The monomers and polymers showed antibacterial activities against Staphylococcus aureus and Escherichia coli and the activity increased as the alkyl chain length in ammonium groups increased from 4 to 6 carbons. The results are very encouraging since polymers with quaternary ammonium compounds containing short alkyl chains are generally not active against bacteria. The second part of the first section involves the syntheses and antibacterial activities of various new monomers and polymers with amine and mono-quaternary ammonium groups on the side chain (Chapter III). The monomers were either the derivatives of 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) or based on acrylamide and methacrylamide derivatives. All monomers were homopolymerized and copolymerized with 2-hydroxyethylmethacrylate (HEMA). Amine monomers, their homopolymers and copolymers did not show any antibacterial activity against S. aureus and E. coli while the quaternized AHM-3-(aminomethyl) pyridine monomer, its homopolymer and copolymer with HEMA showed antibacterial activities against both bacteria. It was also found that the antibacterial activity of the quaternized methacrylamide-3-(aminomethyl) pyridine monomers and polymers increased as the alkyl chain length in ammonium groups increased. (Abstract shortened by UMI.)

  17. Vectorial electron transfer in spatially ordered arrays

    SciTech Connect

    Fox, M.A.

    1992-01-01

    Progress has been made in four areas: the synthesis of new materials for directional electron; the preparation and characterization of anisotropic composites bearing organic and inorganic components; the elaboration of mechanisms of electrocatalysis; and the development of new methods for surface modification of metals and semiconductors.

  18. Photoinduced electron transfer processes in homogeneous and microheterogeneous solutions

    SciTech Connect

    Whitten, D.G.

    1991-10-01

    The focus of the work described in this report is on single electron transfer reactions of excited states which culminate in the formation of stable or metastable even electron species. For the most part the studies have involved even electron organic substrates which are thus converted photochemically to odd electron species and then at some stage reconvert to even electron products. These reactions generally fall into two rather different categories. In one set of studies we have examined reactions in which the metastable reagents generated by single electron transfer quenching of an excited state undergo novel fragmentation reactions, chiefly involving C-C bond cleavage. These reactions often culminate in novel and potentially useful chemical reactions and frequently have the potential for leading to new chemical products otherwise unaffordable by conventional reaction paths. In a rather different investigation we have also studied reactions in which single electron transfer quenching of an excited state is followed by subsequent reactions which lead reversibly to metastable two electron products which, often stable in themselves, can nonetheless be reacted with each other or with other reagents to regenerate the starting materials with release of energy. 66 refs., 9 figs., 1 tab.

  19. Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri

    PubMed Central

    Shrestha, Pravin Malla; Liu, Fanghua; Markovaite, Beatrice; Chen, Shanshan; Nevin, Kelly P.; Lovley, Derek R.

    2014-01-01

    Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P. carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable, making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells. PMID:24837373

  20. Studying Fischer-Tropsch catalysts using transmission electron microscopy and model systems of nanoparticles on planar supports.

    SciTech Connect

    Thune, P. C.; Weststrate, C. J.; Moodley, P.; Saib, A. M.; van de Loosdrecht, J.; Miller, J. T.; Niemantsverdriet, J. W.

    2011-01-01

    Nanoparticle model systems on planar supports form a versatile platform for studying morphological and compositional changes of catalysts due to exposure to realistic reaction conditions. We review examples from our work on iron and cobalt catalysts, which can undergo significant rearrangement in the reactive environment of the Fischer-Tropsch synthesis. The use of specially designed, silicon based supports with thin film SiO{sub 2} enables the application of transmission electron microscopy, which has furnished important insight into e.g. the mechanisms of catalyst regeneration.

  1. Progress towards quantitative electron microscopy of catalysts Thomas W. Hansen1, Jakob B. Wagner1, Linus D. L. Duchstein1, Filippo Cavalca1,

    E-print Network

    Dunin-Borkowski, Rafal E.

    Progress towards quantitative electron microscopy of catalysts Thomas W electron microscopy has resulted from the development of aberration correctors provide an interesting set of challenges for electron microscopy. There is now

  2. Ultrafast Intramolecular Electron and Proton Transfer in Bis(imino)isoindole Derivatives.

    PubMed

    Driscoll, Eric; Sorenson, Shayne; Dawlaty, Jahan M

    2015-06-01

    Concerted motion of electrons and protons in the excited state is pertinent to a wide range of chemical phenomena, including those relevant for solar-to-fuel light harvesting. The excited state dynamics of small proton-bearing molecules are expected to serve as models for better understanding such phenomena. In particular, for designing the next generation of multielectron and multiproton redox catalysts, understanding the dynamics of more than one proton in the excited state is important. Toward this goal, we have measured the ultrafast dynamics of intramolecular excited state proton transfer in a recently synthesized dye with two equivalent transferable protons. We have used a visible ultrafast pump to initiate the proton transfer in the excited state, and have probed the transient absorption of the molecule over a wide bandwidth in the visible range. The measurement shows that the signal which is characteristic of proton transfer emerges within ?710 fs. To identify whether both protons were transferred in the excited state, we have measured the ultrafast dynamics of a related derivative, where only a single proton was available for transfer. The measured proton transfer time in that molecule was ?427 fs. The observed dynamics in both cases were reasonably fit with single exponentials. Supported by the ultrafast observations, steady-state fluorescence, and preliminary computations of the relaxed excited states, we argue that the doubly protonated derivative most likely transfers only one of its two protons in the excited state. We have performed calculations of the frontier molecular orbitals in the Franck-Condon region. The calculations show that in both derivatives, the excitation is primarily from the HOMO to LUMO causing a large rearrangement of the electronic charge density immediately after photoexcitation. In particular, charge density is shifted away from the phenolic protons and toward the proton acceptor nitrogens. The proton transfer is hypothesized to occur both due to enhanced acidity of the phenolic proton and enhanced basicity of the nitrogen in the excited state. We hope this study can provide insight for better understanding of the general class of excited state concerted electron-proton dynamics. PMID:25932563

  3. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples

    E-print Network

    Gunner, Marilyn

    Modification of quinone electrochemistry by the proteins in the biological electron transfer chains . Electrochemistry Quinones are the primary intramembrane, mobile, electron carriers in the energy-coupling electron

  4. Length-Dependence of Electron Transfer in Conjugated Molecular Wires

    NASA Astrophysics Data System (ADS)

    Karna, Shashi; Mallick, Govind; Pandey, Ravindra

    2007-03-01

    The electron transfer (ET) properties of ?-electron conjugated molecular wires consisting of polyene chain, [>C=C<]n, (n=1-11) has been investigated in the framework of ab initio molecular orbital theory. As expected, magnitude of the ET coupling matrix element VDA decreases exponentially with increase in the length of the molecular wire. However, in contrast with the rigid ?-bonded molecular wires, the decay constant, ?, for the conjugated systems exhibits three different regimes over the calculated length. This is attributed to the delocalized nature of the electrons along molecular length that facilitates retention of the electron coupling even at large separations between the donor and acceptor centers.

  5. Marcus Electron Transfer Reactions with Bulk Metallic Catalysis

    E-print Network

    Widom, A; Srivastava, Y N

    2015-01-01

    Electron transfer organic reaction rates are considered employing the classic physical picture of Marcus wherein the heats of reaction are deposited as the energy of low frequency mechanical oscillations of reconfigured molecular positions. If such electron transfer chemical reaction events occur in the neighborhood of metallic plates, then electrodynamic interface fields must also be considered in addition to mechanical oscillations. Such electrodynamic interfacial electric fields in principle strongly effect the chemical reaction rates. The thermodynamic states of the metal are unchanged by the reaction which implies that metallic plates are purely catalytic chemical agents.

  6. Electron Transfer Dissociation Mass Spectrometry of Hemoglobin on Clinical Samples

    NASA Astrophysics Data System (ADS)

    Coelho Graça, Didia; Lescuyer, Pierre; Clerici, Lorella; Tsybin, Yury O.; Hartmer, Ralf; Meyer, Markus; Samii, Kaveh; Hochstrasser, Denis F.; Scherl, Alexander

    2012-10-01

    A mass spectrometry-based assay combining the specificity of selected reaction monitoring and the protein ion activation capabilities of electron transfer dissociation was developed and employed for the rapid identification of hemoglobin variants from whole blood without previous proteolytic cleavage. The analysis was performed in a robust ion trap mass spectrometer operating at nominal mass accuracy and resolution. Subtle differences in globin sequences, resulting with mass shifts of about one Da, can be unambiguously identified. These results suggest that mass spectrometry analysis of entire proteins using electron transfer dissociation can be employed on clinical samples in a workflow compatible with diagnostic applications.

  7. Mimicking the antenna-electron transfer properties of photosynthesis

    PubMed Central

    Sykora, Milan; Maxwell, Kimberly A.; DeSimone, Joseph M.; Meyer, Thomas J.

    2000-01-01

    A molecular assembly based on derivatized polystyrene is described, which mimics both the light-harvesting and energy-conversion steps of photosynthesis. The system is unique in that the two key parts of a photosynthetic system are incorporated in a functional assembly constructed from polypyridine complexes of RuII. This system is truly artificial, as none of the components used in construction of the assembly are present in a natural photosynthetic system. Quantitative evaluation of the energy and electron transfer dynamics after transient irradiation by visible light offers important insights into the mechanisms of energy transport and electron transfer that lead to photosynthetic light-to-chemical energy conversion. PMID:10884400

  8. Solvent Reorganization Energy and Electronic Coupling for Intramolecular Electron Transfer in Biphenyl-Acceptor Anion Radicals

    NASA Astrophysics Data System (ADS)

    Wang, Jing-bo; Ma, Jian-yi; Li, Xiang-yuan; He, Fu-cheng; Fu, Ke-xiang

    2008-02-01

    A novel algorithm was designed and implemented to realize the numerical calculation of the solvent reorganization energy for electron transfer reactions, on the basis of nonequilibrium solvation theory and the dielectric polarizable continuum model. Applying the procedure to the well-investigated intramolecular electron transfer in biphenyl-androstane-naphthyl and biphenyl-androstane-phenanthryl systems, the numerical results of solvent reorganization energy were determined to be around 60 kJ/mol, in good agreement with experimental data. Koopman's theorem was adopted for the calculation of the electron transfer coupling element, associated with the linear reaction coordinate approximation. The values for this quantity obtained are acceptable when compared with experimental results.

  9. Intra-channel mass and heat-transfer modeling in diesel oxidation catalysts

    E-print Network

    Tennessee, University of

    correlations to multi- channel simulations of a diesel oxidation catalyst, the steady-state conversions differ at near stoichiometric conditions. Pressures for increased fuel economy are encouraging the development

  10. Photoinitiated electron transfer in multi-chromophoric species: Synthetic tetrads and pentads

    SciTech Connect

    Not Available

    1990-02-14

    This research project involves the design, synthesis and study of the molecules which mimic many of the important aspects of photosynthetic electron and energy transfer. Specifically, the molecules are designed to mimic the following aspects of natural photosynthetic multistep electron transfer: electron donation from a tetrapyrrole excited singlet state, electron transfer between tetrapyrroles, electron transfer from tetrapyrroles to quinones, and electron transfer between quinones with different redox properties. In addition, they model carotenoid antenna function in photosynthesis (singlet-singlet energy transfer from carotenoid polyenes to chlorophyll) and carotenoid photoprotection from singlet oxygen damage (triplet-triplet energy transfer from chlorophyll to carotenoids).

  11. Theory of ultrafast heterogeneous electron transfer: Contributions of direct charge transfer excitations to the absorbance

    SciTech Connect

    Wang, Luxia; Willig, Frank; May, Volkhard

    2007-04-07

    Absorption spectra related to heterogeneous electron transfer are analyzed with the focus on direct charge transfer transition from the surface attached molecule into the semiconductor band states. The computations are based on a model of reduced dimensionality with a single intramolecular vibrational coordinate but a complete account for the continuum of conduction band states. The applicability of this model to perylene on TiO{sub 2} has been demonstrated in a series of earlier papers. Here, based on a time-dependent formulation, the absorbance is calculated with the inclusion of charge transfer excitations. A broad parameter set inspired by the perylene TiO{sub 2} systems is considered. In particular, the description generalizes the Fano effect to heterogeneous electron transfer reactions. Preliminary simulations of measured spectra are presented for perylene-catechol attached to TiO{sub 2}.

  12. Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer

    PubMed Central

    Choi, Gilbert J.; Knowles, Robert R.

    2015-01-01

    Here we describe a dual catalyst system comprised of an iridium photocatalyst and weak phosphate base that is capable of both selectively homolyzing the N–H bonds of N-arylamides (bond dissociation free energies ~ 100 kcal/mol) via concerted proton-coupled electron transfer (PCET) and mediating efficient carboamination reactions of the resulting amidyl radicals. This manner of PCET activation, which finds its basis in numerous biological redox processes, enables the formal homolysis of a stronger amide N–H bond in the presence of weaker allylic C–H bonds, a selectivity that is uncommon in conventional molecular H atom acceptors. Moreover, this transformation affords access to a broad range of structurally complex heterocycles from simple amide starting materials. The design, synthetic scope, and mechanistic evaluation of the PCET process are described. PMID:26166022

  13. Magnetic resonance studies of photo-induced electron transfer reactions

    SciTech Connect

    van Willigen, H.

    1992-11-01

    Fourier Transform Electron Paramagnetic Resonance (FT EPR) is useful in study of photochemical reactions: a microwave pulse rotates the electron spin magnetization vector from z (magnetic field) into xy plane ([pi]/2 pulse); the time evolution of magnetization in xy plane, the free induction decay (FID), is sampled. Fourier transform of FID gives the frequency domain EPR spectrum of the free radicals, and the method is ideal for time-resolved studies of free radicals produced by pulsed-laser excitation. Investigations of electron transfer reactions focused on porphyrin (donor) - quinone (acceptor) systems. First, two hydrogen abstraction reactions were studied with FT EPR: photoreduction of acetone with 2-propanol, yielding the acetone ketyl radical, and the reaction of 2-propanol with t-butoxy radicals. Then, the FT EPR study of benzoquinone or duroquinone anion radicals generated by pulsed-laser induced electron transfer from zinc tetraphenylporphyrin (ZnTPP) or tetrasulfonated Zn(TPP), was carried out in homogeneous solution, micellar solutions, and silica gel. Finally, FT EPR was used to study electron transfer quenching of triplet C[sub 60] by electron donors.

  14. Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal

    SciTech Connect

    Lian, Tianquan

    2014-04-22

    The long-term goal of the proposed research is to understand electron transfer dynamics in nanoparticle/liquid interface. This knowledge is essential to many semiconductor nanoparticle based devices, including photocatalytic waste degradation and dye sensitized solar cells.

  15. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion. PMID:26193994

  16. Activation of molecular catalysts using semiconductor quantum dots

    DOEpatents

    Meyer, Thomas J. (Chapel Hill, NC); Sykora, Milan (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM)

    2011-10-04

    Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.

  17. CORRELATING ELECTRONIC AND VIBRATIONAL MOTIONS IN CHARGE TRANSFER SYSTEMS

    SciTech Connect

    Khalil, Munira

    2014-06-27

    The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.

  18. Energetics of Electron-Transfer Reactions in Soft Condensed

    E-print Network

    Matyushov, Dmitry

    parameters in addition to G0 in order to connect the activation barrier to the reaction Gibbs energyEnergetics of Electron-Transfer Reactions in Soft Condensed Media DMITRY V. MATYUSHOV Department in the non- Arrhenius reaction kinetics. Solvent dynamics make a particularly strong impact on the activation

  19. Shewanella secretes flavins that mediate extracellular electron transfer

    E-print Network

    Weiblen, George D

    to the electrode. A combination of methods identified a mixture of ribofla- vin and riboflavin-5 -phosphate in supernatants from biofilm reac- tors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes

  20. HCFA proposal takes zip out of EFTs (electronic fund transfers).

    PubMed

    Gardner, E

    1991-09-01

    HCFA recently proposed reimbursing providers through electronic fund transfer, a low-cost, fast, efficient means of deposit and payment now commonplace throughout the country. EFTs promise hospitals benefits such as clerical savings through computerization, but regulations proposed by HCFA would inhibit the increased efficiency and cash flow such transactions also can offer. PMID:10112504

  1. 75 FR 51707 - Electronic Funds Transfer of Depository Taxes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... (TD 8723, 62 FR 37490) were issued. These final regulations phased in depositors to the EFT system..., 64 FR 37675) were issued. Under those regulations, which are currently in effect, depositors whose... Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 RIN 1545-BJ13 Electronic Funds Transfer...

  2. 76 FR 708 - Electronic Funds Transfer of Depository Taxes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... regulations (TD 9507) that were published in the Federal Register on Tuesday, December 7, 2010 (75 FR 75897... Accordingly, the final and temporary regulations (TD 9507), that are the subject of FR Doc. 2010-30526, are... Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 RIN 1545-BJ13 Electronic Funds Transfer...

  3. 75 FR 52485 - Electronic Funds Transfer of Depository Taxes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... 23, 2010 (75 FR 51707), contain errors that may prove to be misleading and are in need of... notice of public hearing (REG-153340-09), which was the subject of FR Doc. 2010-20737, is corrected as... Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 RIN 1545-BJ13 Electronic Funds Transfer...

  4. A molecularly based theory for electron transfer reorganization energy.

    PubMed

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory. PMID:26671385

  5. UNIVERSITY OF CALIFORNIA, BERKELEY FOUNDATION* Electronic Fund Transfer Authorization Form

    E-print Network

    Korpela, Eric J.

    UNIVERSITY OF CALIFORNIA, BERKELEY FOUNDATION* Electronic Fund Transfer Authorization Form Yes, I on the financial institution account identified herein, I hereby authorize the UNIVERSITY OF CALIFORNIA, BERKELEY with the financial institution account identified herein, and which are received by the UNIVERSITY OF CALIFORNIA

  6. 77 FR 40459 - Electronic Fund Transfers (Regulation E); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ..., the Bureau published the Final Rule (77 FR 6194), which implements the Electronic Fund Transfer Act... changes made to Sec. 1005.3(a) in the interim final rule published on December 27, 2011 (76 FR 81020). The... on December 27, 2011 (76 FR 81020) for which the Bureau found good cause to conclude that...

  7. Tryptophan-to-heme electron transfer in ferrous myoglobins

    PubMed Central

    Monni, Roberto; Al Haddad, André; van Mourik, Frank; Auböck, Gerald; Chergui, Majed

    2015-01-01

    It was recently demonstrated that in ferric myoglobins (Mb) the fluorescence quenching of the photoexcited tryptophan 14 (*Trp14) residue is in part due to an electron transfer to the heme porphyrin (porph), turning it to the ferrous state. However, the invariance of *Trp decay times in ferric and ferrous Mbs raises the question as to whether electron transfer may also be operative in the latter. Using UV pump/visible probe transient absorption, we show that this is indeed the case for deoxy-Mb. We observe that the reduction generates (with a yield of about 30%) a low-valence Fe–porphyrin ? [FeII(porph??)] -anion radical, which we observe for the first time to our knowledge under physiological conditions. We suggest that the pathway for the electron transfer proceeds via the leucine 69 (Leu69) and valine 68 (Val68) residues. The results on ferric Mbs and the present ones highlight the generality of Trp–porphyrin electron transfer in heme proteins. PMID:25902517

  8. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer.

    PubMed

    Sotiriou, Georgios A; Blattmann, Christoph O; Deligiannakis, Yiannis

    2015-12-23

    Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol(-1) and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. PMID:26505730

  9. Shewanella secretes flavins that mediate extracellular electron transfer

    PubMed Central

    Marsili, Enrico; Baron, Daniel B.; Shikhare, Indraneel D.; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.

    2008-01-01

    Bacteria able to transfer electrons to metals are key agents in biogeochemical metal cycling, subsurface bioremediation, and corrosion processes. More recently, these bacteria have gained attention as the transfer of electrons from the cell surface to conductive materials can be used in multiple applications. In this work, we adapted electrochemical techniques to probe intact biofilms of Shewanella oneidensis MR-1 and Shewanella sp. MR-4 grown by using a poised electrode as an electron acceptor. This approach detected redox-active molecules within biofilms, which were involved in electron transfer to the electrode. A combination of methods identified a mixture of riboflavin and riboflavin-5?-phosphate in supernatants from biofilm reactors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes by >70%, consistent with a role as a soluble redox shuttle carrying electrons from the cell surface to external acceptors. Differential pulse voltammetry and cyclic voltammetry revealed a layer of flavins adsorbed to electrodes, even after soluble components were removed, especially in older biofilms. Riboflavin adsorbed quickly to other surfaces of geochemical interest, such as Fe(III) and Mn(IV) oxy(hydr)oxides. This in situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces. Moreover, the known ability of isoalloxazine rings to act as metal chelators, along with their electron shuttling capacity, suggests that extracellular respiration of minerals by Shewanella is more complex than originally conceived. PMID:18316736

  10. Peptide Self-Assembled Biofilm with Unique Electron Transfer Flexibility for Highly Efficient Visible-Light-Driven Photocatalysis.

    PubMed

    Pan, Yun-Xiang; Cong, Huai-Ping; Men, Yu-Long; Xin, Sen; Sun, Zheng-Qing; Liu, Chang-Jun; Yu, Shu-Hong

    2015-11-24

    Inspired by natural photosynthesis, biomaterial-based catalysts are being confirmed to be excellent for visible-light-driven photocatalysis, but are far less well explored. Herein, an ultrathin and uniform biofilm fabricated from cold-plasma-assisted peptide self-assembly was employed to support Eosin Y (EY) and Pt nanoparticles to form an EY/Pt/Film catalyst for photocatalytic water splitting to H2 and photocatalytic CO2 reduction with water to CO, under irradiation of visible light. The H2 evolution rate on EY/Pt/Film is 62.1 ?mol h(-1), which is about 5 times higher than that on Pt/EY and 1.5 times higher than that on the EY/Pt/TiO2 catalyst. EY/Pt/Film exhibits an enhanced CO evolution rate (19.4 ?mol h(-1)), as compared with Pt/EY (2.8 ?mol h(-1)) and EY/Pt/TiO2 (6.1 ?mol h(-1)). The outstanding activity of EY/Pt/Film results from the unique flexibility of the biofilm for an efficient transfer of the photoinduced electrons. The present work is helpful for designing efficient biomaterial-based catalysts for visible-light-driven photocatalysis and for imitating natural photosynthesis. PMID:26473307

  11. Spin selectivity in electron transfer in photosystem I.

    PubMed

    Carmeli, Itai; Senthil Kumar, Karuppannan; Heifler, Omri; Carmeli, Chanoch; Naaman, Ron

    2014-08-18

    Photosystem I (PSI) is one of the most studied electron transfer (ET) systems in nature; it is found in plants, algae, and bacteria. The effect of the system structure and its electronic properties on the electron transfer rate and yield was investigated for years in details. In this work we show that not only those system properties affect the ET efficiency, but also the electrons' spin. Using a newly developed spintronic device and a technique which enables control over the orientation of the PSI monolayer relative to the device (silver) surface, it was possible to evaluate the degree and direction of the spin polarization in ET in PSI. We find high-spin selectivity throughout the entire ET path and establish that the spins of the electrons being transferred are aligned parallel to their momenta. The spin selectivity peaks at 300?K and vanishes at temperatures below about 150?K. A mechanism is suggested in which the chiral structure of the protein complex plays an important role in determining the high-spin selectivity and its temperature dependence. Our observation of high light induced spin dependent ET in PSI introduces the possibility that spin may play an important role in ET in biology. PMID:24989350

  12. Syntrophic growth via quinone-mediated interspecies electron transfer

    PubMed Central

    Smith, Jessica A.; Nevin, Kelly P.; Lovley, Derek R.

    2015-01-01

    The mechanisms by which microbial species exchange electrons are of interest because interspecies electron transfer can expand the metabolic capabilities of microbial communities. Previous studies with the humic substance analog anthraquinone-2,6-disulfonate (AQDS) suggested that quinone-mediated interspecies electron transfer (QUIET) is feasible, but it was not determined if sufficient energy is available from QUIET to support the growth of both species. Furthermore, there have been no previous studies on the mechanisms for the oxidation of anthrahydroquinone-2,6-disulfonate (AHQDS). A co-culture of Geobacter metallireducens and G. sulfurreducens metabolized ethanol with the reduction of fumarate much faster in the presence of AQDS, and there was an increase in cell protein. G. sulfurreducens was more abundant, consistent with G. sulfurreducens obtaining electrons from acetate that G. metallireducens produced from ethanol, as well as from AHQDS. Co-cultures initiated with a citrate synthase-deficient strain of G. sulfurreducens that was unable to use acetate as an electron donor also metabolized ethanol with the reduction of fumarate and cell growth, but acetate accumulated over time. G. sulfurreducens and G. metallireducens were equally abundant in these co-cultures reflecting the inability of the citrate synthase-deficient strain of G. sulfurreducens to metabolize acetate. Evaluation of the mechanisms by which G. sulfurreducens accepts electrons from AHQDS demonstrated that a strain deficient in outer-surface c-type cytochromes that are required for AQDS reduction was as effective at QUIET as the wild-type strain. Deletion of additional genes previously implicated in extracellular electron transfer also had no impact on QUIET. These results demonstrate that QUIET can yield sufficient energy to support the growth of both syntrophic partners, but that the mechanisms by which electrons are derived from extracellular hydroquinones require further investigation. PMID:25741332

  13. Nanostructural and Chemical Characterization of Complex Oxide Catalysts by Analytical Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Weng, Weihao

    Complex oxide catalysts are used as heterogeneous catalysts for producing various important organic chemicals. In this thesis, three types of complex oxide catalysts prepared using novel preparation methods have been studied. Each of them has been evaluated for its catalytic performance, namely (i) the selective oxidation of n-butane to maleic anhydride over vanadium phosphate (V-P-O) materials; (ii) the oxidative dehydrogenation (ODH) of ethane to ethylene over niobium phosphate (Nb-P-O) materials, and (iii) the oxidation of methanol to formaldehyde over iron molybdate (Fe-Mo-O) materials. Analytical electron microscopy, X-ray diffraction and other related characterization techniques have been used to provide useful information regarding the morphology, crystallography and chemical composition of these complex oxide catalysts. The underlying aim of this work is to uncover meaningful synthesis-structure-performance relationships for these three complex catalyst systems. Firstly, a standard methodology for generating V-P-O materials, i.e. the VPD route, has been revisited and modified. A variety of alkanes have been added during the alcohol reduction step of VOPO4·2H2O (dihydrate), which were found to have a remarkable influence on the morphology and structure of the V-P-O materials produced. Either VOHPO4·0.5H2O (hemihydrate) or VO(H2PO4)2 material can be produced depending on the precise alcohol:alkane volume ratio used in the reaction. In addition, the specific order in which the alkane and alcohol are added to VOPO 4·2H2O during the VPD route has a dramatic effect on the morphology of the resultant precursor. Through detailed electron microscopy studies we have been able to unveil the epitaxial relationship between the dihyrate and hemihydrate crystalline phases as being [001]dihydrate // [001]hemihydrate and [100]dihydrate // [110]hemihydrate. A two-step mechanism by which the topotactic transformation from dihydrate to hemihydrate occurs has been proposed. Secondly, three different novel synthesis routes have been explored for producing V-P-O catalysts. The first route, involving the addition of various V-P-O 'seeds' during the VPD process, was found to have a profound effect on the morphology of the V-P-O precursor and on inducing certain unexpected phase transformations. Specifically, the V-P-O seed was found to induce the transformation of VO(H2PO4)2 to hemihydrate phase in a 3-octanol solution. The second route, namely the use of a di-block copolymer template in the VPO route, was found to generate a more crystalline hemihydrate precursor with a rhomboidal morphology, which could be activated in a much shorter time period as compared to conventional V-P-O precursors. The third route involved encapsulating the fragile V-P-O rosette-type catalysts within a mechanically protective SiO2 shell. When used in a circulating fluidized bed reactor, these core/shell V-P-O catalysts showed a promising initial catalytic performance, but suffered a severe degradation in performance after two years-on-line. We have been able to attribute this degradation to three contributing factors; namely (i) the generation of inactive V 5+ (e.g. beta-VOPO4) phases, (ii) densification of the SiO2 shell and (iii) loss of core V-P-O materials. In addition, through this latter study, the novel X-ray ultramicroscopy (XuM) technique has been shown to have great potential for the non-destructive study of micron-scale catalyst particles. Thirdly, three different niobium phosphate materials, namely the Nb 2P4O15, NbOPO4 and Nb1.91P 2.82O12 phases, have been synthesized. Each of them was evaluated for the ODH of ethane to ethylene and the oxidation of methanol to formaldehyde, respectively. It was found that the Nb1.91P2.82O 12 phase is the most desirable structure for ethane ODH, whereas the NbOPO4 phase is more effective for methanol oxidation. The morphological and structural changes induced by both reactions on these Nb-P-O catalysts have been monitored, and correlated to the measured changes in their catalytic performance. Finally, a highly

  14. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akira; Inuzuka, Riko; Takashima, Toshihiro; Hayashi, Toru; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-06-01

    Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides. Pyridine and its derivatives, which have pKa values intermediate to the water ligand bound to manganese(II) and manganese(III), are used as proton-coupled electron transfer induction reagents. The induction of concerted proton-coupled electron transfer is demonstrated by the detection of deuterium kinetic isotope effects and compliance of the reactions with the libido rule. Although proton-coupled electron transfer regulation is essential for the facial redox change of manganese in photosystem II, most manganese oxides impair these regulatory mechanisms. Thus, the present findings may provide a new design rationale for functional analogues of the oxygen-evolving complex for efficient water splitting at neutral pH.

  15. Simulations of charge transfer in Electron Multiplying Charge Coupled Devices

    NASA Astrophysics Data System (ADS)

    Bush, N.; Stefanov, K.; Hall, D.; Jordan, D.; Holland, A.

    2014-12-01

    Electron Multiplying Charge Coupled Devices (EMCCDs) are a variant of traditional CCD technology well suited to applications that demand high speed operation in low light conditions. On-chip signal amplification allows the sensor to effectively suppress the noise introduced by readout electronics, permitting sub-electron read noise at MHz pixel rates. The devices have been the subject of many detailed studies concerning their operation, however there has not been a study into the transfer and multiplication process within the EMCCD gain register. Such an investigation has the potential to explain certain observed performance characteristics, as well as inform further optimisations to their operation. In this study, the results from simulation of charge transfer within an EMCCD gain register element are discussed with a specific focus on the implications for serial charge transfer efficiency (CTE). The effects of operating voltage and readout speed are explored in context with typical operating conditions. It is shown that during transfer, a small portion of signal charge may become trapped at the semiconductor-insulator interface that could act to degrade the serial CTE in certain operating conditions.

  16. Hydrogen-bond relays in concerted proton-electron transfers.

    PubMed

    Bonin, Julien; Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel; Tard, Cédric

    2012-03-20

    Reaction mechanisms in which electron and proton transfers are coupled are central to a huge number of processes, both natural and synthetic. Moreover, most of the new approaches to address modern energy challenges involve proton-coupled electron transfer (PCET). Recent research has focused on the possibility that the two steps are concerted, that is, concerted proton-electron transfer (CPET) reactions, rather than stepwise pathways in which proton transfer precedes (PET) or follows (EPT) electron transfer. CPET pathways have the advantage of bypassing the high-energy intermediates of stepwise pathways, although this thermodynamic benefit may have a kinetic cost. Concerted processes require short distances between the group being oxidized and the proton acceptor (and vice versa for a reduction process), which usually involves the formation of a hydrogen bond. Unlike the electron in outer-sphere electron-transfer reactions, the distance a proton may travel in a CPET is therefore rather limited. The idea has recently emerged, however, that this distance may be substantially increased via a H-bond relay located between the electron-transfer-triggered proton source and the proton acceptor. Generally speaking, the relay is a group bearing a H atom able to accept a H-bond from the moiety being oxidized and, at the same time, to form a H-bond with the proton-accepting group without going through a protonated intermediate. Although these molecules do not retain all the properties of chains of water molecules engaged in Grotthuss-type transport of a proton, the OH group in these molecules does possess a fundamental property of water molecules: namely, it is both a hydrogen-bond acceptor and a hydrogen-bond donor. Despite centuries of study, the mechanisms of proton movement in water remain active experimental and theoretical research areas, but so far with no connection to CPET reactions. In this Account, we bring together recent results concerning (i) the oxidative response of molecules containing a H-bond relay and (ii) the oxidation of phenol with water (in water) as the proton acceptor. In the first case, a nondestructive electrochemical method (cyclic voltammetry) was used to investigate the oxidation of phenol molecules containing one H-bond relay and an amine proton acceptor compared with a similar amino phenol deprived of relay. In the second, the kinetics of phenol oxidation with water (in water) as proton acceptor is contrasted with that of conventional proton acceptors (such as hydrogen phosphate and pyridine) to afford evidence of the concerted nature of Grotthuss-type proton displacement with electron transfer. First indications were provided by the same electrochemical method, whereas a more complete kinetic characterization was obtained from laser flash photolysis. Older electrochemical results concerning the reduction of superoxide ion in the presence of water are also examined. The result is a timely picture of current insight into concerted mechanisms involving electron transfer coupled with proton transport over simple H-bond relays and over H-bond networks. PMID:22029773

  17. Mechanistic studies of photo-induced proton-coupled electron transfer and oxygen atom transfer reactions in model systems

    E-print Network

    Hodgkiss, Justin M. (Justin Mark), 1978-

    2007-01-01

    Time-resolved optical spectroscopy has been employed for mechanistic studies in model systems designed to undergo photo-induced proton-coupled electron transfer (PCET) and oxygen atom transfer (OAT) reactions, both of which ...

  18. Spectroscopic investigation of photo-induced proton-coupled electron transfer and Dexter energy transfer in model systems

    E-print Network

    Young, Elizabeth R. (Elizabeth Renee), 1980-

    2009-01-01

    Spectroscopic investigations of systems designed to advance the mechanistic interrogation of photo-induced proton coupled electron transfer (PCET) and proton-coupled (through-bond) energy transfer (PCEnT) are presented. ...

  19. Inclusive electron - nucleus scattering at large momentum transfer

    SciTech Connect

    J. Arrington; C. S. Armstrong; T. Averett; O. K. Baker; L. de Bever; C. W. Bochna; W. Boeglin; B. Bray; R. D. Carlini; G. Collins; C. Cothran; D. Crabb; D. Day; J. A. Dunne; D. Dutta; R. Ent; B. W. Filippone; A. Honegger; E. W. Hughes; J. Jensen; J. Jourdan; C. E. Keppel; D. M. Koltenuk; R. Lindgren; A. Lung; D. J. Mack; J. McCarthy; R. D. McKeown; D. Meekins; J. H. Mitchell; H. G. Mkrtchyan; G. Niculescu; I. Niculescu; T. Petitjean; O. Rondon; I. Sick; C. Smith; B. Terburg; W. F. Vulcan; S. A. Wood; C. Yan; J. Zhao; and B. Zihlmann

    1999-03-01

    Inclusive electron scattering is measured with 4.045 GeV incident beam energy from C, Fe, and Au targets. The measured energy transfers and angles correspond to a kinematic range for Bjorken x>1 and momentum transfers from Q2 = 1-7 (GeV/c)2. When analyzed in terms of the y-scaling function the data show for the first time an approach to scaling for values of the initial nucleon momenta significantly greater than the nuclear matter Fermi momentum (i.e., >0.3 GeV/c).

  20. Electron Transfer Mechanisms of DNA Repair by Photolyase

    NASA Astrophysics Data System (ADS)

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.

  1. Electron transfer mechanisms of DNA repair by photolyase.

    PubMed

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer. PMID:25830375

  2. Electronic energy transfer: vibrational control and nonlinear wavepacket interferometry

    E-print Network

    Dmitri S. Kilin; Jeffrey A. Cina; Oleg V. Prezhdo

    2004-12-31

    The time-development of photoexcitations in molecular aggregates exhibits specific dynamics of electronic states and vibrational wavefunction. We discuss the dynamical formation of entanglement between electronic and vibrational degrees of freedom in molecular aggregates with theory of electronic energy transfer and the method of vibronic 2D wavepackets [Cina, Kilin, Humble, J. Chem. Phys. 118, 46 (2003)]. The vibronic dynamics is also described by applying Jaynes-Cummings model to the electronic energy transfer [Kilin, Pereverzev, Prezhdo, J. Chem. Phys. 120, 11209 (2004);math-ph/0403023]. Following the ultrafast excitation of donor[chem-ph/9411004] the population of acceptor rises by small portions per each vibrational period, oscillates force and back between donor and acceptor with later damping and partial revivals of this oscillation. The transfer rate gets larger as donor wavepacket approaches the acceptor equilibrium configuration, which is possible at specific energy differences of donor and acceptor and at maximal amount of the vibrational motion along the line that links donor and acceptor equilibria positions. The four-pulse phase-locked nonlinear wavepacket 2D interferograms reflect the shape of the relevant 2D vibronic wavepackets and have maxima at longer delay between excitation pulses for dimers with equal donor-acceptor energy difference compare to dimers with activationless energy configuration [Cina, Fleming, J. Phys. Chem. A. 108, 11196 (2004)].

  3. Alternating electron and proton transfer steps in photosynthetic water oxidation.

    PubMed

    Klauss, André; Haumann, Michael; Dau, Holger

    2012-10-01

    Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) ? S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (?, approximately 30 µs at 20?°C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) ? S(1) transition are similar (?, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established. PMID:22988080

  4. Proton-Coupled Electron Transfer in Molecular Electrocatalysis: Theoretical Methods and Design Principles

    SciTech Connect

    Solis, Brian H.; Hammes-Schiffer, Sharon

    2014-07-07

    Molecular electrocatalysts play an essential role in a wide range of energy conversion processes. The objective of electrocatalyst design is to maximize the turnover frequency and minimize the overpotential for the overall catalytic cycle. Typically the catalytic cycle is dominated by key proton-coupled electron transfer (PCET) processes comprised of sequential or concerted electron transfer and proton transfer steps. A variety of theoretical methods have been developed to investigate the mechanisms, thermodynamics, and kinetics of PCET processes in electrocatalytic cycles. Electronic structure methods can be used to calculate the reduction potentials and pKa’s and to generate thermodynamic schemes, free energy reaction pathways, and Pourbaix diagrams, which indicate the most stable species at each pH and potential. These types of calculations have assisted in identifying the thermodynamically favorable mechanisms under specified experimental conditions, such as acid strength and overpotential. Such calculations have also revealed linear correlations among the thermodynamic properties, which can be used to predict the impact of modifying the ligand, substituents, or metal center. The role of non-innocent ligands, namely ligand protonation or reduction, has also been examined theoretically. In addition, the rate constants for electron and proton transfer reactions, as well as concerted PCET reactions, have been calculated to investigate the kinetics of molecular electrocatalysts. The concerted PCET mechanism is thought to lower the overpotential required for catalysis by avoiding high-energy intermediates. Rate constant calculations have revealed that the concerted mechanism involving intramolecular proton transfer will be favored by designing more flexible ligands that facilitate the proton donor-acceptor motion while also maintaining a sufficiently short equilibrium proton donor-acceptor distance. Overall, theoretical methods have assisted in the interpretation of experimental data and the design of more effective molecular electrocatalysts. The research on the Ni(P2N2)2 catalysts was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  5. Neutral histidine and photoinduced electron transfer in DNA photolyases.

    PubMed

    Domratcheva, Tatiana

    2011-11-16

    The two major UV-induced DNA lesions, the cyclobutane pyrimidine dimers (CPD) and (6-4) pyrimidine-pyrimidone photoproducts, can be repaired by the light-activated enzymes CPD and (6-4) photolyases, respectively. It is a long-standing question how the two classes of photolyases with alike molecular structure are capable of reversing the two chemically different DNA photoproducts. In both photolyases the repair reaction is initiated by photoinduced electron transfer from the hydroquinone-anion part of the flavin adenine dinucleotide (FADH(-)) cofactor to the photoproduct. Here, the state-of-the-art XMCQDPT2-CASSCF approach was employed to compute the excitation spectra of the respective active site models. It is found that protonation of His365 in the presence of the hydroquinone-anion electron donor causes spontaneous, as opposed to photoinduced, coupled proton and electron transfer to the (6-4) photoproduct. The resulting neutralized biradical, containing the neutral semiquinone and the N3'-protonated (6-4) photoproduct neutral radical, corresponds to the lowest energy electronic ground-state minimum. The high electron affinity of the N3'-protonated (6-4) photoproduct underlines this finding. Thus, it is anticipated that the (6-4) photoproduct repair is assisted by His365 in its neutral form, which is in contrast to the repair mechanisms proposed in the literature. The repair via hydroxyl group transfer assisted by neutral His365 is considered. The repair involves the 5'base radical anion of the (6-4) photoproduct which in terms of electronic structure is similar to the CPD radical anion. A unified model of the CPD and (6-4) photoproduct repair is proposed. PMID:21970417

  6. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Wang, Jianji; Stell, George

    2006-10-01

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

  7. Vibronic couplings and coherent electron transfer in bridged systems.

    PubMed

    Borrelli, Raffaele; Capobianco, Amedeo; Landi, Alessandro; Peluso, Andrea

    2015-11-18

    A computational strategy to analyze the dynamics of coherent electron transfer processes in bridged systems, involving three or more electronic states, is presented. The approach is based on partitioning of the Hilbert space of the time independent basis functions in subspaces of increasing dimensionality, which allows us to easily check the convergence of the time dependent wave function. Vibronic couplings are determined by Duschinsky's analysis of the equilibrium position displacements, carried out using the equilibrium geometries and normal modes of the redox partners obtained at the DFT computational level. PMID:26172426

  8. Dissociative Electron Transfer, Substitution, and Borderline Mechanisms in Reactions of Ketyl Radical Anions. Differences

    E-print Network

    Schlegel, H. Bernhard

    Dissociative Electron Transfer, Substitution, and Borderline Mechanisms in Reactions of Ketyl a mechanistic family consisting of substitution, electron transfer, and borderline situations. Molecular dynamics studies may be necessary to explore the borderline situations. Introduction Recently two of us

  9. ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES

    EPA Science Inventory

    Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...

  10. 49 CFR 225.37 - Magnetic media transfer and electronic submission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Magnetic media transfer and electronic submission. ...INVESTIGATIONS § 225.37 Magnetic media transfer and electronic submission. ...updates, and amendments by way of magnetic media (computer diskette or magnetic...

  11. 77 FR 22067 - Proposed Collection of Information: Trace Request for Electronic Funds Transfer (EFT) Payment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ...Proposed Collection of Information: Trace Request for Electronic Funds Transfer...on a continuing information collection. By...Trace Request for Electronic Funds Transfer...Highway, Records and Information Management...

  12. 77 FR 71035 - Financial Management Service; Proposed Collection of Information: Electronic Funds Transfer (EFT...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... Fiscal Service Financial Management Service; Proposed Collection of Information: Electronic Funds Transfer (EFT) Market Research Study AGENCY: Financial Management Service, Fiscal Service, Treasury. ACTION... Financial Management Service solicits comments concerning the ``Electronic Funds Transfer (EFT)...

  13. 76 FR 35219 - Federal Acquisition Regulation; Information Collection; Payment by Electronic Fund Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... From the Federal Register Online via the Government Printing Office DEPARTMENT OF DEFENSE GENERAL...; Information Collection; Payment by Electronic Fund Transfer AGENCY: Department of Defense (DOD), General... previously approved information collection requirement concerning payment by electronic fund transfer....

  14. Correlated Single Quantum Dot Blinking and Interfacial Electron Transfer Dynamics

    PubMed Central

    Jin, Shengye; Hsiang, Jung-Cheng; Zhu, Haiming; Song, Nianhui; Dickson, Robert M.; Lian, Tianquan

    2011-01-01

    The electron transfer (ET) dynamics from core/multi-shell (CdSe/CdS3MLZnCdS2MLZnS2ML) quantum dots (QDs) to adsorbed Fluorescein (F27) molecules have been studied by single particle spectroscopy to probe the relationship between single QD interfacial electron transfer and blinking dynamics. Electron transfer from the QD to F27 and the subsequent recombination were directly observed by ensemble-averaged transient absorption spectroscopy. Single QD-F27 complexes show correlated fluctuation of fluorescence intensity and lifetime, similar to those observed in free QDs. With increasing ET rate (controlled by F27-to-QD ratio), the lifetime of on states decreases and relative contribution of off states increases. It was shown that ET is active for QDs in on states, the excited state lifetime of which reflects the ET rate, whereas in the off state QD excitons decay by Auger relaxation and ET is not a competitive quenching pathway. Thus, the blinking dynamics of single QDs modulate their interfacial ET activity. Furthermore, interfacial ET provides an additional pathway for generating off states, leading to correlated single QD interfacial ET and blinking dynamics in QD-acceptor complexes. Because blinking is a general phenomenon of single QDs, it appears that the correlated interfacial ET and blinking and the resulting intermittent ET activity are general phenomena for single QDs. PMID:21915369

  15. Electron transfer mediated decay of outer-valence ionised states

    NASA Astrophysics Data System (ADS)

    Gokhberg, Kirill; Stumpf, Vasili; Cederbaum, Lorenz S.

    2014-05-01

    Electronically excited states of atoms and molecules embedded in an environment may efficiently decay by ionising neighbouring species in the energy or charge transfer mediated processes. The energy transfer driven interatomic Coulombic decay (ICD) has been shown to proceed on a fs time scale in weakly bonded systems upon the production of a localised electronic excitation. Related electron transfer mediated decay (ETMD) is usually a slower process and becomes an important relaxation pathway whenever ICD channel is unavailable. In this talk we show that this situation is realised for singly and multiply outer-valence ionised atoms in a medium leading to unexpected physical effects. In particular, we demonstrate that ETMD provides an efficient and general neutralisation pathway for multiply charged ions produced via Auger decay in an environment. As an example we show the results of an ab initio study of the NeKr2 cluster following the Auger decay of 1s vacancy of Ne. We also discuss how the single photon double ionisation efficiency can be dramatically enhanced in a medium due to ETMD. As an example we show that the double ionization cross section of Mg in MgHe cluster becomes three orders of magnitude larger than the respective cross section of the isolated Mg atom.

  16. The electron transfer system of syntrophically grown Desulfovibrio vulgaris

    SciTech Connect

    Walker, C.B.; He, Z.; Yang, Z.K.; Ringbauer, Jr., J.A.; He, Q.; Zhou, J.; Voordouw, G.; Wall, J.D.; Arkin, A.P.; Hazen, T.C.; Stolyar, S.; Stahl, D.A.

    2009-05-01

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic couplings between hydrogen producers and consumers are a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent upon growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, D. vulgaris up-regulated numerous genes involved in electron transfer and energy generation when compared with sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn) and the well-characterized high-molecular weight cytochrome (Hmc) were among the most highly expressed and up-regulated. Additionally, a predicted operon coding for genes involved in lactate transport and oxidation exhibited up-regulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd and Hyn impaired or severely limited syntrophic growth but had little affect on growth via sulfate-respiration. These results demonstrate that syntrophic growth and sulfate-respiration use largely independent energy generation pathways and imply that understanding of microbial processes sustaining nutrient cycling must consider lifestyles not captured in pure culture.

  17. The electron transfer system of synthrophically grown desulfovibrio vulgaris

    SciTech Connect

    Walker, Christopher; He, Zhili; Yang, Zamin Koo; Ringbauer, Joseph; HE, Qiang; Zhou, Jizhong; Voordouw, Gerrit; Wall, Judy; Arkin, Adam; Hazen, Terry; Stolyar, Sergey; Stahl, David

    2009-01-01

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic coupling between hydrogen producers and consumers is a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent on growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, numerous genes involved in electron transfer and energy generation were upregulated in D. vulgaris compared with their expression in sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn), and the well-characterized high-molecular-weight cytochrome (Hmc) were among the most highly expressed and upregulated genes. Additionally, a predicted operon containing genes involved in lactate transport and oxidation exhibited upregulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd, and Hyn impaired or severely limited syntrophic growth but had little effect on growth via sulfate respiration. These results demonstrate that syntrophic growth and sulfate respiration use largely independent energy generation pathways and imply that to understand microbial processes that sustain nutrient cycling, lifestyles not captured in pure culture must be considered.

  18. The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris

    SciTech Connect

    PBD; ENIGMA; GTL; VIMSS; Walker, Christopher B.; He, Zhili; Yang, Zamin K.; Ringbauer Jr., Joseph A.; He, Qiang; Zhou, Jizhong; Voordouw, Gerrit; Wall, Judy D.; Arkin, Adam P.; Hazen, Terry C.; Stolyar, Sergey; Stahl, David A.

    2009-06-22

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic couplings between hydrogen producers and consumers are a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent upon growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, D. vulgaris up-regulated numerous genes involved in electron transfer and energy generation when compared with sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn) and the well-characterized high-molecular weight cytochrome (Hmc) were among the most highly expressed and up-regulated. Additionally, a predicted operon coding for genes involved in lactate transport and oxidation exhibited up-regulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd and Hyn impaired or severely limited syntrophic growth but had little affect on growth via sulfate-respiration. These results demonstrate that syntrophic growth and sulfate-respiration use largely independent energy generation pathways and imply that understanding of microbial processes sustaining nutrient cycling must consider lifestyles not captured in pure culture.

  19. Improving electronic structure methods to predict nano-optoelectronics and nano-catalyst functions.

    SciTech Connect

    Nielsen, Ida Marie B.; Marzari, Nicola; Shelnutt, John Allen; Kulik, Heather J.; Medforth, Craig John; Leung, Kevin

    2009-10-01

    This report focuses on quantum chemistry and ab initio molecular dynamics (AIMD) calculations applied to elucidate the mechanism of the multi-step, 2-electron, electrochemical reduction of the green house gas molecule carbon dioxide (CO{sub 2}) to carbon monoxide (CO) in aqueous media. When combined with H{sub 2} gas to form synthesis ('syn') gas, CO becomes a key precursor to methane, methanol, and other useful hydrocarbon products. To elucidate the mechanism of this reaction, we apply computational electrochemistry which is a fledgling, important area of basic science critical to energy storage. This report highlights several approaches, including the calculation of redox potentials, the explicit depiction of liquid water environments using AIMD, and free energy methods. While costly, these pioneering calculations reveal the key role of hydration- and protonation-stabilization of reaction intermediates, and may inform the design of CO{sub 2}-capture materials as well as its electrochemical reduction. In the course of this work, we have also dealt with the challenges of identifying and applying electronic structure methods which are sufficiently accurate to deal with transition metal ion complex-based catalyst. Such electronic structure methods are also pertinent to the accurate modeling of actinide materials and therefore to nuclear energy research. Our multi-pronged effort towards achieving this titular goal of the LDRD is discussed.

  20. Electron-Transfer Properties of Cytochrome c Langmuir-Blodgett Films and Interactions of Cytochrome

    E-print Network

    Tao, Nongjian

    Electron-Transfer Properties of Cytochrome c Langmuir-Blodgett Films and Interactions of Cytochrome and electron-transfer properties of cytochrome c (Cyt c) Langmuir-Blodgett (LB) films have been studied-transfer reaction after transferring onto a graphite surface using the Langmuir- Blodgett (L-B) technique. We have

  1. Photoinitiated electron transfer in multichromophoric species: Synthetic tetrads and pentads. Technical progress report

    SciTech Connect

    Gust, J.D. Jr.; Moore, T.A.

    1988-04-12

    This research project involves the design, synthesis and study of molecules which mimic many of the important aspects of photosynthetic electron and energy transfer. The knowledge gained from the study of synthetic model systems which abstract features of the natural photosynthetic apparatus can be used to design artificial photosynthetic systems which employ the basic physics and chemistry of photosynthesis to help meet mankind`s energy needs. More specifically, the proposed models are designed to mimic the following aspects of natural photosynthetic multistep electron transfer: electron donation from a tetrapyrrole excited singlet state, electron transfer between tetrapyrroles, electron transfer from tetrapyrroles to quinones, and electron transfer between quinones with different redox properties.

  2. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.

    PubMed

    Wegener, Gunter; Krukenberg, Viola; Riedel, Dietmar; Tegetmeyer, Halina E; Boetius, Antje

    2015-10-22

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 °C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia. PMID:26490622

  3. 12 CFR 205.15 - Electronic fund transfer of government benefits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.15 Electronic fund transfer of government benefits. (a) Government agency subject to regulation. (1) A government agency is deemed to be a financial... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Electronic fund transfer of government...

  4. Photoinduced electron transfer and geminate recombination in liquids on short time scales: Experiments and theory

    E-print Network

    Fayer, Michael D.

    Photoinduced electron transfer and geminate recombination in liquids on short time scales 23 February 2006 The coupled processes of intermolecular photoinduced forward electron transfer of the donor excited state due to forward electron transfer and the survival kinetics of the radicals produced

  5. Photoinduced electron transfer and geminate recombination for photoexcited acceptors in a pure donor solvent

    E-print Network

    Fayer, Michael D.

    Photoinduced electron transfer and geminate recombination for photoexcited acceptors in a pure, Stanford, California 94305 Received 29 January 2004; accepted 2 March 2004 Photoinduced electron transfer as R ), an electron is transferred from DMA to give the neutral radical R and the cation DMA . Because

  6. 12 CFR 205.15 - Electronic fund transfer of government benefits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Electronic fund transfer of government benefits. 205.15 Section 205.15 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.15 Electronic fund transfer of government benefits. (a) Government agency subject...

  7. Gunn effect and transferred electron devices. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Reed, W. E.

    1980-06-01

    A bibliography containing 99 abstracts addressing the Gunn effect and transferred electron devices is presented. The application of Gunn effect and transferred electron devices to microwave generation, amplification, and control is included. The Gunn effect in semiconductors is dicussed along with the design, fabrication, and properties of Gunn diodes and transferred electron devices.

  8. 45 CFR 162.1601 - Health care electronic funds transfers (EFT) and remittance advice transaction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Health care electronic funds transfers (EFT) and... Services ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Health Care Electronic Funds Transfers (EFT) and Remittance Advice § 162.1601 Health care electronic funds transfers...

  9. 45 CFR 162.1601 - Health care electronic funds transfers (EFT) and remittance advice transaction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Health care electronic funds transfers (EFT) and... SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Health Care Electronic Funds Transfers (EFT) and Remittance Advice § 162.1601 Health care electronic funds transfers...

  10. 45 CFR 162.1601 - Health care electronic funds transfers (EFT) and remittance advice transaction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Health care electronic funds transfers (EFT) and... SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS ADMINISTRATIVE REQUIREMENTS Health Care Electronic Funds Transfers (EFT) and Remittance Advice § 162.1601 Health care electronic funds transfers...

  11. Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345

    SciTech Connect

    Ghirardi, M.; Svedruzic, D.

    2013-07-01

    The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

  12. Coherence Transfer by Passage Pulses in Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Jeschke, Gunnar; Pribitzer, Stephan; Doll, Andrin

    2015-10-29

    Linear passage pulses provide a simple approach to ultra-wideband electron paramagnetic resonance (EPR) spectroscopy. We show by numerical simulations that the efficiency of inversion of polarization or coherence order on a single transition by idealized passage pulses is an exponential function of critical adiabaticity during passage, which allows for defining an effective flip angle for fast passage. This result is confirmed by experiments on E' centers in Herasil glass. Deviations from the exponential law arise due to relaxation and a distribution of the adiabaticity parameter that comes from inhomogeneity of the irradiation field. Such inhomogeneity effects as well as edge effects in finite sweep bands cause a distribution of dynamic phase shifts, which can be partially refocused in echo experiments. In multilevel systems, passage of several transitions leads to generation of coherence on formally forbidden transitions that can also be described by the concept of an effective flip angle. On the one hand, such transfer to coherence on forbidden transitions is a significant magnetization loss mechanism for dipole-dipole coupled electron spin pairs at distances below about 2 nm. On the other hand, it can potentially be harnessed for electron spin echo envelope modulation (ESEEM) experiments, where matching of the irradiation field strength to the nuclear Zeeman frequency leads to efficient generation of nuclear coherence and efficient back transfer to electron coherence on allowed transitions at high adiabaticity. PMID:25941897

  13. Electron Transfer Dissociation (ETD) of Peptides Containing Intrachain Disulfide Bonds

    NASA Astrophysics Data System (ADS)

    Cole, Scott R.; Ma, Xiaoxiao; Zhang, Xinrong; Xia, Yu

    2012-02-01

    The fragmentation chemistry of peptides containing intrachain disulfide bonds was investigated under electron transfer dissociation (ETD) conditions. Fragments within the cyclic region of the peptide backbone due to intrachain disulfide bond formation were observed, including: c (odd electron), z (even electron), c-33 Da, z + 33 Da, c + 32 Da, and z-32 Da types of ions. The presence of these ions indicated cleavages both at the disulfide bond and the N-C? backbone from a single electron transfer event. Mechanistic studies supported a mechanism whereby the N-C? bond was cleaved first, and radical-driven reactions caused cleavage at either an S-S bond or an S-C bond within cysteinyl residues. Direct ETD at the disulfide linkage was also observed, correlating with signature loss of 33 Da (SH) from the charge-reduced peptide ions. Initial ETD cleavage at the disulfide bond was found to be promoted amongst peptides ions of lower charge states, while backbone fragmentation was more abundant for higher charge states. The capability of inducing both backbone and disulfide bond cleavages from ETD could be particularly useful for sequencing peptides containing intact intrachain disulfide bonds. ETD of the 13 peptides studied herein all showed substantial sequence coverage, accounting for 75%-100% of possible backbone fragmentation.

  14. 48 CFR 52.232-35 - Designation of Office for Government Receipt of Electronic Funds Transfer Information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...Government Receipt of Electronic Funds Transfer Information. 52.232-35...Government Receipt of Electronic Funds Transfer Information. As prescribed...Government Receipt of Electronic Funds Transfer Information (MAY 1999)...

  15. Catalytic conversion of polycyclic aromatic hydrocarbons: Mechanistic investigations of hydrogen transfer from an iron-based catalyst to alkylarenes

    SciTech Connect

    Autrey, T.; Linehan, J.C.; Camaioni, D.M.; Powers, T.R.; McMillan, E.F.; Franz, J.A.

    1995-08-01

    Results of our model compound studies suggest that free radical hydrogen transfer pathways from the catalyst to the alkylarene are responsible for the scission of strong carbon-carbon bonds. There are two requisites for the observed selective bond scission. First is the stability of the ipso adduct precursor leading to displacement, the more stable the adduct the more probable bond scission. This explains why benzyl radical displacement > phenoxy radical displacement in benzyldiphenyl ether and explains why PhCH{sub 2}CH{sub 2}PhCH{sub 2} radical > naphthylmethyl radical from NMBB. Second, given equal ipso adduct precursor stabilities, e.g. methyldiphenylmethane, the stability of the departing radical determines the selectivity. this explains benzyl radical > methyl radical in the methylated diphenylmethanes and explains why {alpha}-hydroxyphenethyl radical > methyl radical in 1,2-ditolylethanol. We have assumed little physical interaction between the molecules and the catalytic surface and have been able to satisfactorily explain most of the observed selectivity. However, for NMBB we expect a higher selectivity for -A- bond scission relative to -B- bond scission, given the ca. 6 kcal/mol difference between the radical adduct formed by the hydrogen atom addition to 1-methylnaphthalene and p-xylene. It is possible that physical properties play a role in lowering the selectivity in -B- bond scission. Also, catalysts prepared by other methods may contain different activity sites and operate by different mechanisms.

  16. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ? CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  17. Macroscopic turbulent models for heat and mass transfer in catalyst reactors

    NASA Astrophysics Data System (ADS)

    Mathey, Fabrice

    2012-05-01

    Tthis paper reports the development and validation of a Computational Fluid Dynamics (CFD) up-scaling approach to predict wit a porous media approximation the heat transfer efficiency of arbitrary randomly packed bed tubular reactors. The results demonstrate the feasibility to predict the flow, temperature and global heat transfer with macroscopic simulations with a good accuracy.

  18. Enantioselective a-amination enabled by a BINAM-derived phase-transfer catalyst

    E-print Network

    Toste, Dean

    . Patel, H. P. Shunatona and F. D. Toste* Chiral anion phase-transfer of aryldiazonium cations method.6 In this scenario, chiral anion phase-transfer of an insoluble aryldiazonium cation would are attractive targets for enantioselective meth- odology due to their prominent representation amongst bioac

  19. Membrane catalyst layer for fuel cells

    DOEpatents

    Wilson, Mahlon S. (Los Alamos, NM)

    1993-01-01

    A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

  20. Deficiency of electron transfer flavoprotein or electron transfer flavoprotein:ubiquinone oxidoreductase in glutaric acidemia type II fibroblasts.

    PubMed Central

    Frerman, F E; Goodman, S I

    1985-01-01

    Glutaric acidemia type II (GA II) is a human genetic disorder. It has been suggested that the primary defect in this disorder is a deficiency of a protein involved in electron transport between the acyl-CoA dehydrogenases and the bc1 complex of the mitochondrial respiratory chain. Antisera were raised to purified porcine electron transfer flavoprotein (ETF) and electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). The antisera were used to detect the two electron transferases in control and GA II fibroblasts by immunoblotting. Fibroblasts from three unrelated GA II patients were deficient in immunologically detectable ETF:QO and extracts from these three fibroblast lines contained no detectable ETF:QO catalytic activity. Fibroblasts from parents of two of these patients had ETF:QO activity intermediate between activities in control fibroblasts and fibroblasts from the patients. These data indicate that the primary defect in these patients is a deficiency of ETF:QO and that the mode of transmission of the gene is autosomal recessive. Fibroblasts from two other patients with severe GA II had normal levels of ETF-QO activity and antigen but were deficient in immunoreactive ETF. These findings show that GA II results from a deficiency of ETF in some patients and ETF:QO in others. In addition, these investigations provide strong evidence for the specificity and physiological function of the iron-sulfur flavoprotein ETF:QO. Images PMID:2989828

  1. Dynamic and steady state 1-D model of mediated electron transfer in a porous enzymatic electrode.

    PubMed

    Do, T Q N; Varni?i?, M; Flassig, R J; Vidakovi?-Koch, T; Sundmacher, K

    2015-12-01

    A 1-D mathematical model of a porous enzymatic electrode exhibiting the mediated electron transfer (MET) mechanism has been developed. As a model system, glucose oxidation catalyzed by immobilized glucose oxidase (GOx) in the presence of a co-immobilized tetrathiafulvalene (TTF) mediator in the porous electrode matrix has been selected. The balance equations for potential fields in the electron- and ion-conducting phases as well as concentration field have been formulated, solved numerically and validated experimentally under steady state conditions. The relevant kinetic parameters of the lumped reaction kinetics have been obtained by global optimization. The confidence intervals (CIs) of each parameter have been extracted from the respective likelihood. The parameter study has shown that the parameters related to mediator consumption/regeneration steps can be responsible for the shift of the reaction onset potential. Additionally, the model has shown that diffusion of the oxidized mediator out of the catalyst layer (CL) plays a significant role only at more positive potentials and low glucose concentrations. Only concentration profiles in different layers influence the electrode performance while other state fields like potential distributions in different phases have no impact on the performance. The concentration profiles reveal that all electrodes work through; the observed limiting currents are diffusion-reaction limiting. The normalized electrode activity decreases with an increase of enzyme loading. According to the model, the reason for this observation is glucose depletion along the CL at higher enzyme loadings. Comparison with experiments advices a decrease of enzyme utilization at higher enzyme loadings. PMID:26257008

  2. Modeling biofilms with dual extracellular electron transfer mechanisms

    SciTech Connect

    Renslow, Ryan S.; Babauta, Jerome T.; Kuprat, Andrew P.; Schenk, Jim; Ivory, Cornelius; Fredrickson, Jim K.; Beyenal, Haluk

    2013-11-28

    Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as their terminal electron acceptor for metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce components requisite for both mechanisms. In this study, a generic model is presented that incorporates both diffusion- and conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to Shewanella oneidensis and Geobacter sulfurreducens biofilms using experimentally generated data found the literature. Our simulation results showed that 1) biofilms having both mechanisms available, especially if they can interact, may have metabolic advantage over biofilms that can use only a single mechanism; 2) the thickness of Geobacter sulfurreducens biofilms is likely not limited by conductivity; 3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and 4) the local biofilm potential and redox potential are two distinct measurements and cannot be assumed to have identical values. Finally, we determined that cyclic and squarewave voltammetry are currently not good tools to determine the specific percentage of extracellular electron transfer mechanisms used by biofilms. The developed model will be a critical tool in designing experiments to explain EET mechanisms.

  3. Front-End Electron Transfer Dissociation: A New Ionization Source

    PubMed Central

    Earley, Lee; Anderson, Lissa C.; Bai, Dina L.; Mullen, Christopher; Syka, John E. P.; English, A. Michelle; Dunyach, Jean-Jacques; Stafford, George C.; Shabanowitz, Jeffrey; Hunt, Donald F.; Compton, Philip D.

    2013-01-01

    Electron transfer dissociation (ETD), a technique that provides efficient fragmentation while depositing little energy into vibrational modes, has been widely integrated into proteomics workflows. Current implementations of this technique, as well as other ion–ion reactions like proton transfer, involve sophisticated hardware, lack robustness, and place severe design limitations on the instruments to which they are attached. Described herein is a novel, electrical discharge-based reagent ion source that is located in the first differentially pumped region of the mass spectrometer. The reagent source was found to produce intense reagent ion signals over extended periods of time while having no measurable impact on precursor ion signal. Further, the source is simple to construct and enables implementation of ETD on any instrument without modification to footprint. Finally, in the context of hybrid mass spectrometers, relocation of the reagent ion source to the front of the mass spectrometer enables new approaches to gas phase interrogation of intact proteins. PMID:23909443

  4. Single Electron Transfer Living Radical Polymerization via a New Initiator

    NASA Astrophysics Data System (ADS)

    Bai, Xiongxiong; Hu, Ying; Zhang, Xu; Ai, Lingling; Cheng, Chuanjie

    2014-08-01

    Research and development of novel initiating system such as single electron transfer living radical polymerization (SET-LRP) is of high importance in polymer chemistry. A new SET-LRP initiator was synthesized and applied to prepare end-functionalized poly(methyl methacrylate) (PMMA) in this study. ?-Trichloromethyl benzyl alcohol was firstly synthesized, followed by preparation of PMMA under SET-LRP conditions. Conversion of MMA was 81.9%, and the molecular weight of PMMA was about 2.5 kDa at 60 °C for 1 h. Consistency of the number-average molecular weight of PMMA from NMR, GPC and theoretical calculation indicated that the polymerization featured controllable property. Broad molecular weight distribution (MWD) may be ascribed to branched polymers formed by initiation and chain transfer.

  5. Photoinduced electron transfer from dialkyl nitroxides to halogenated solvents

    SciTech Connect

    Chateauneuf, J. ); Lusztyk, J.; Ingold, K.U. )

    1990-02-02

    Laser flash photolysis (LFP) at wavelengths within the charge-transfer absorption present in CCl{sub 4} solutions of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) yields the oxoammonium chloride of TEMPO, 1 ({lambda}{sub max} = 460 nm), and the trichloromethyl radical in an essentially instantaneous ({le}18 ps) process. The primary photochemical event is an electron transfer from TEMPO to CCl{sub 4}, and this is followed by immediate decomposition of the CCl{sub 4}{sup {sm bullet}{minus}} radical anion to Cl{sup {minus}} and Cl{sub 3}C{sup {sm bullet}}. An independent synthesis of 1 confirmed that the absorption attributed to this species has been correctly assigned. The formation of Cl{sub 3}C{sup {sm bullet}} was inferred by its trapping by molecular oxygen. LFP of TEMPO in other halogenated solvents and of other nitroxides in halogenated solvents has confirmed the generality of these photoreactions.

  6. Report on picosecond studies of electron transfer in photosynthetic models

    SciTech Connect

    Netzel, T.L.; Bucks, R.R.; Boxer, S.G.; Fujita, I.

    1980-01-01

    Considerable spectroscopic work on reaction centers 8RC) from photosynthetic bacteria and on photosystem I (PSI) particles from green plants has established that the initial photochemical step in these systems is the subnanosecond tranfer of an electron resulting in the creation of an oxidized donor and a reduced acceptor. For both of these systems the electron donor is a dimer. The acceptor for bacterial RC's is bacteriopheophytin, a metal-free bacteriochlorophyll. The acceptor for PSI is thought to be chlorophyll/sub a/. Dimeric and trimeric model molecules containing PChl/sub a/ were studied. However, rather than relying on chemical equilibria to join the potential electron donors and acceptors, we covalently attached all of the subunits to form a single large molecule. The distance was altered between the donor and acceptor subunits by using both 10 atom and 5 atom chains. Also, the effects of altering the relative orientation of the donor and acceptor were probed by contrasting the kinetics observed with added pyridine too those observed with added alcohol. The addition of pyridine prevents the dimer and trimer models from aggregating. However, the addition of alcohol causes intramolecular bonding of the model's subunits though R-OH bridges. Because the dielectric constant (epsilon) of the solvent directly affects the kinetics of electron transfer reactions, several solvents were used: toluene, CH/sub 2/Cl/sub 2/, and CH/sub 3/CN. Also, since a goal of this type of research is to correlate electrochemical, spectroscopic and structural information to predict the likelihood of electron transfer reactions, we varied the redox span of the potential photoproducts.

  7. Vibrational dynamics in photoinduced electron transfer. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect

    Spears, K.G.

    1993-09-08

    Objective is to perform a new type of measurement for optically excited electron transfer processes that can provide unique experimental insight into the molecular mechanism of electron transfer. Measurements of optically excited electron transfer are done with picosecond infrared (IR) absorption spectroscopy to monitor the vibrational motions of the molecules immediately after electron transfer. Theory and experiment suggest that molecular vibrations and distortions are important controlling elements for electron transfer, and direct information has yet to be obtained on these elements of electron transfer mechanisms. The second period of funding has been dedicated to finishing technique development and performing studies of electron transfer in ion pair systems to identify if vibrational dependent electron transfer rates are present in this system. We have succeeded in measuring, for the first time, electron transfer rates as a function of vibrational state in an ion pair complex in solution. In a different area of electron transfer research we have proposed a new mechanism of solvent gated electron transfer.

  8. Ab initio quantum chemical study of electron transfer in carboranes

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.

    2005-05-01

    The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.

  9. Light induced electron transfer reactions of metal complexes

    SciTech Connect

    Sutin, N.; Creutz, C.

    1980-01-01

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed.

  10. Computer simulation studies of electron transfer in methanol

    NASA Astrophysics Data System (ADS)

    Fonseca, Teresa; Ladanyi, Branka M.

    1994-02-01

    We describe the results of our molecular dynamics (MD) simulation studies of intramolecular electron transfer reactions in methanol. We consider the reactions of the type DA?D+A- in which the reactant state is nonpolar and the product state polar. Equilibrium MD is used to construct the solvent-dependent reaction free energy profiles and nonequilibrium MD simulations are used to calculate the reaction dynamics for barrierless and low barrier photochemical reactions. The roles of solute size, hydrogen-bonding, solvation dynamics for solutes of different polarity, and reaction driving force are investigated.

  11. Secondary electron transfer processes in membranes of Heliobacillus mobilis

    SciTech Connect

    Lin, S.; Chiou, H.C.; Blankenship, R.E.

    1995-10-03

    Picosecond transient absorption difference spectroscopic experiments were performed on membranes of the antenna/reaction center complex of Heliobacillus mobilis to study the electron transfer processes. Particular emphasis was placed on the blue spectral region, where the difference spectra of iron-sulfur centers and quinones are significantly different. Spectra were measured at room temperature in the wavelength region from 400 to 470 nm and from 630 to 730 nm. Laser excitation was into the 788 nm Q, band of the bacteriochlorophyll g of the reaction center complex. 50 refs., 6 figs.

  12. Photoinduced Electron Transfer Based Ion Sensing within an Optical Fiber

    PubMed Central

    Englich, Florian V.; Foo, Tze Cheung; Richardson, Andrew C.; Ebendorff-Heidepriem, Heike; Sumby, Christopher J.; Monro, Tanya M.

    2011-01-01

    We combine suspended-core microstructured optical fibers with the photoinduced electron transfer (PET) effect to demonstrate a new type of fluorescent optical fiber-dip sensing platform for small volume ion detection. A sensor design based on a simple model PET-fluoroionophore system and small core microstructured optical fiber capable of detecting sodium ions is demonstrated. The performance of the dip sensor operating in a high sodium concentration regime (925 ppm Na+) and for lower sodium concentration environments (18.4 ppm Na+) is explored and future approaches to improving the sensor’s signal stability, sensitivity and selectivity are discussed. PMID:22163712

  13. ATP-induced electron transfer by redox-selective partner recognition

    NASA Astrophysics Data System (ADS)

    Hennig, Sandra E.; Goetzl, Sebastian; Jeoung, Jae-Hun; Bommer, Martin; Lendzian, Friedhelm; Hildebrandt, Peter; Dobbek, Holger

    2014-08-01

    Thermodynamically unfavourable electron transfers are enabled by coupling to an energy-supplying reaction. How the energy is transduced from the exergonic to the endergonic process is largely unknown. Here we provide the structural basis for an energy transduction process in the reductive activation of B12-dependent methyltransferases. The transfer of one electron from an activating enzyme to the cobalamin cofactor is energetically uphill and relies on coupling to an ATPase reaction. Our results demonstrate that the key to coupling is, besides the oxidation state-dependent complex formation, the conformational gating of the electron transfer. Complex formation induces a substitution of the ligand at the electron-accepting Co ion. Addition of ATP initiates electron transfer by provoking conformational changes that destabilize the complex. We show how remodelling of the electron-accepting Co2+ promotes ATP-dependent electron transfer; an efficient strategy not seen in other electron-transferring ATPases.

  14. Molecular structures of porphyrin-quinone models for electron transfer

    SciTech Connect

    Fajer, J.; Barkigia, K.M.; Melamed, D.; Sweet, R.M.; Kurreck, H.; Gersdorff, J. von; Plato, M.; Rohland, H.C.; Elger, G.; Moebius, K.

    1996-08-15

    Synthetic porphyrin-quinone complexes are commonly used to mimic electron transport in photosynthetic reaction centers and to probe the effects of energetics, distances, and relative orientations on rates of electron transfer between donor-acceptor couples. The structures of two such models have been determined by X-ray diffraction. The redox pairs consist of a zinc porphyrin covalently linked to benzoquinone in cis and trans configurations via a cyclohexanediyl bridge. The crystallographic studies were undertaken to provide a structural foundation for the extensive body of experimental and theoretical results that exists for these compounds in both the ground and photoinduced charge-separated states. The results validate conclusions reached from theoretical calculations, EPR and two-dimensional NMR results for these states. 15 refs., 6 figs., 2 tabs.

  15. The electronic transfer of information and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a motor role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  16. Biochemical Mechanisms Controlling Terminal Electron Transfer in Geobacter sulfurreducens

    NASA Astrophysics Data System (ADS)

    Helmus, R.; Liermann, L. J.; Brantley, S. L.; Tien, M.

    2009-04-01

    The ability of Geobacter sulfurreducens to use a variety of metals as terminal electron acceptors (TEAs) for cellular respiration makes it attractive for use in bioremediation and implies its importance to mineral cycling in the environment. This study is aimed at understanding the biochemical mechanisms that allow Geobacter sulfurreducens to use soluble and insoluble iron and manganese forms as TEAs for cellular respiration and is the first of its kind to address the kinetics of manganese use as a TEA by G. sulfurreducens. First, G. sulfurreducens was conditioned to grow on various soluble and insoluble iron and manganese forms. G. sulfurreducens demonstrated enhanced growth rates when cultured using soluble TEAs compared with insoluble TEAs. However, the lower growth rate on insoluble iron compared with soluble iron was observed concomitantly with a 1-2 log lower cell density in stationary phase in insoluble iron cultures and a lower growth yield per electron donor used in log growth phase. Furthermore, the growth yield per electron was similar with both soluble and insoluble iron. These results suggest that the net amount of energy available for biomass production achieved from reducing insoluble iron is lower than with soluble iron, which may be due to a different biochemical mechanism catalyzing the electron transfer to TEA dependent upon the solubility of the TEA. One scenario consistent with this notion is that protein(s) in the outer membrane of G. sulfurreducens that transfers electrons to insoluble TEAs does so in a manner that uncouples electron flow from the proton pump in the cellular membrane, similar to what we have observed with Shewanella oneidensis MR-1. Both the growth rate and growth yield of G. sulfurreducens on insoluble manganese were higher than on insoluble iron, indicating that there is a difference in the flow of electrons to the TEA in these two situations. While the different redox potentials of these elements may affect these values, it is also possible that differential protein expression occurs when G. sulfurreducens is grown with insoluble iron versus insoluble iron. These initial results indicate that G. sulfurreducens allocates energy to unique cellular functions depending on the type of TEA used, suggesting that novel mechanisms are used to enable use of various metal forms for respiration. Follow-up protein expression studies were then conducted and are now being used to begin to delineate what biochemical mechanisms and cellular pathways are involved in these processes.

  17. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines.

    PubMed

    Zuo, Weiwei; Lough, Alan J; Li, Young Feng; Morris, Robert H

    2013-11-29

    A rational approach is needed to design hydrogenation catalysts that make use of Earth-abundant elements to replace the rare elements such as ruthenium, rhodium, and palladium that are traditionally used. Here, we validate a prior mechanistic hypothesis that partially saturated amine(imine)diphosphine ligands (P-NH-N-P) activate iron to catalyze the asymmetric reduction of the polar bonds of ketones and imines to valuable enantiopure alcohols and amines, with isopropanol as the hydrogen donor, at turnover frequencies as high as 200 per second at 28°C. We present a direct synthetic approach to enantiopure ligands of this type that takes advantage of the iron(lI) ion as a template. The catalytic mechanism is elucidated by the spectroscopic detection of iron hydride and amide intermediates. PMID:24288329

  18. Electron emission and electron transfer processes in proton-naphthalene collisions at intermediate velocities

    NASA Astrophysics Data System (ADS)

    Mishra, P. M.; Rajput, J.; Safvan, C. P.; Vig, S.; Kadhane, U.

    2013-11-01

    We investigate the fragmentation and ionization of naphthalene by protons at intermediate velocities (between 1.41 and 2.68 a.u.). Relative cross sections for electron capture (EC), electron emission (EE), and capture ionization are measured. The EC cross sections decrease rapidly over the energy range under consideration (50-150 keV) and are lower than EE cross sections. The EE cross sections, on the other hand, change very slowly in this energy range. The energetics of interactions is quantified by comparing the mass spectra with the photodissociation breakdown curves from literature. In the case of single capture, resonant electron transfer to n = 1 state in H+ is seen to dominate the interaction but is shown to be accompanied by a small amount of electronic energy loss. In the EE mode, two mechanisms are shown to be active in the collision process: large impact parameter plasmon excitation mode, and closer encounters with higher amounts of electronic energy loss.

  19. MD studies of electron transfer at ambient and elevated pressures

    NASA Astrophysics Data System (ADS)

    Giles, Alex; Spooner, Jacob; Weinberg, Noham

    2013-06-01

    The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).

  20. Optical investigation of the electron transfer protein azuringold nanoparticle system Ines Delfino , Salvatore Cannistraro

    E-print Network

    Tuscia, Università Degli Studi Della

    Optical investigation of the electron transfer protein azurin­gold nanoparticle system Ines Delfino: Electron transfer protein Azurin Gold nanoparticle Fluorescence quenching Energy transfer The hybrid system obtained by conjugating the protein azurin, which is a very stable and well-described protein showing

  1. Electronic effects in Ziegler-Natta polymerization of propylene and ethylene using soluble metallocene catalysts

    SciTech Connect

    Lee, Ik-Mo; Gauthier, W.J.; Ball, J.M.; Iyengar, B.; Collins, S.

    1992-06-01

    ({eta}{sup 5}-5,6-X{sub 2}C{sub 9}H{sub 5}){sub 2}ZrCl{sub 2} catalysts (4a, X = H; 4b, X = CH{sub 3}; 4d, X = OCH{sub 3}; 4e, X = Cl) were investigated as catalysts for the polymerization of ethylene. In addition, polymerization of propylene and ethylene was studied by using corresponding racemic, ethylene-bridged analogues (5a, X = H; 5b, X = CH{sub 3}; 5d, X = OCH{sub 3}). Both the bridged and non-bridged catalysts were effective as catalysts for both ethylene and propylene polymerization, but the molecular weights were generally lower with the ethylene-bridged catalyst. 19 refs., 3 tabs.

  2. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  3. Interfacial Electron Transfer and Transient Photoconductivity Studied with Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Milot, Rebecca Lee

    Terahertz spectroscopy is distinguished from other far infrared and millimeter wave spectroscopies by its inherent phase sensitivity and sub-picosecond time resolution making it a versatile technique to study a wide range of physical phenomena. As THz spectroscopy is still a relatively new field, many aspects of THz generation mechanisms have not been fully examined. Using terahertz emission spectroscopy (TES), THz emission from ZnTe(110) was analyzed and found to be limited by two-photon absorption and free-carrier generation at high excitation fluences. Due to concerns about the continued use of fossil fuels, solar energy has been widely investigated as a promising source of renewable energy. Dye-sensitized solar cells (DSSCs) have been developed as a low-cost alternative to conventional photovoltaic solar cells. To solve the issues of the intermittency and inefficient transport associated with solar energy, researchers are attempting to adapt DSSCs for water oxidation and chemical fuel production. Both device designs incorporate sensitizer molecules covalently bound to metal oxide nanoparticles. The sensitizer, which is comprised of a chromophore and anchoring group, absorbs light and transfers an electron from its excited state to the conduction band of the metal oxide, producing an electric current. Using time-resolved THz spectroscopy (TRTS), an optical pump/THz probe technique, the efficiency and dynamics of electron injection from sensitizers to metal oxides was evaluated as a function of the chromophore, its anchoring group, and the metal oxide identity. Experiments for studying fully functioning DSSCs and water oxidation devices are also described. Bio-inspired pentafluorophenyl porphyrin chromophores have been designed and synthesized for use in photoelectrochemical water oxidation cells. Influences on the efficiency and dynamics of electron injection from the chromophores into TiO2 and SnO2 nanoparticles due to changes in both the central substituent to the porphyrin ring and degree of fluorination of ring substituents were analyzed. Due to the high reduction potentials of these sensitizers, injection into TiO2 was generally not observed. Injection timescales from the porphyrins into SnO2 depended strongly on the identity of the central substituent and were affected by competition with excited-state deactivation processes. The carboxylate anchoring group is commonly used to bind DSSC sensitizers to metal oxide surfaces but is typically not stable under the aqueous and oxidative conditions required for water oxidation. Electron injection efficiency and water stability of several alternative anchoring groups, including phosphonic acid, hydroxamic acid, acerylacetone, and boronic acid, were evaluated. While all of the anchoring groups exhibited water stability superior to carboxylate, the hydroxamate anchor had the best combination of ease of handling and electron injection efficiency. The effects on photoconductivity due to metal oxide morphology and the addition of dopants were also analyzed. Mixtures of anatase and rutile TiO 2 nanoparticles are known to exhibit cooperative effects which increase the efficiency of DSSCs and photocatalysis relative to the pure-phase materials. Through analysis of TRTS measurements, the mechanism of this synergistic effect was found to involve electron transfer from the lower-mobility, higher surface area rutile nanoparticles to anatase particles, resulting in a higher charge collection efficiency. In addition to morphology, doping has been investigated as a means of expanding the spectral range of visible absorption of photocatalysts. Doping ZnO nanowires with manganese(II) was found to significantly decrease the electron mobility, and doping with cobalt(II) increased the timescale for electron trapping. These differences can be understood by considering the changes to the band structure of ZnO effected by the dopants. Preliminary analyses of the solvent and electrolyte dependence on the electron injection rate and efficiency suggest that electron injection can be affected by

  4. Unusual non-bifunctional mechanism for Co-PNP complex catalyzed transfer hydrogenation governed by the electronic configuration of metal center.

    PubMed

    Hou, Cheng; Jiang, Jingxing; Li, Yinwu; Zhang, Zhihan; Zhao, Cunyuan; Ke, Zhuofeng

    2015-10-01

    The mimic of hydrogenases has unleashed a myriad of bifunctional catalysts, which are widely used in the catalytic hydrogenation of polar multiple bonds. With respect to ancillary ligands, the bifunctional mechanism is generally considered to proceed via the metal-ligand cooperation transition state. Inspired by the interesting study conducted by Hanson et al. (Chem Commun., 2013, 49, 10151), we present a computational study of a distinctive example, where a Co(II)-PNP catalyst with an ancillary ligand exhibits efficient transfer hydrogenation through a non-bifunctional mechanism. Both the bifunctional and non-bifunctional mechanisms are discussed. The calculated results, which are based on a full model of the catalyst, suggest that the inner-sphere non-bifunctional mechanism is more favorable (by ?11 kcal mol(-1)) than the outer-sphere bifunctional mechanism, which is in agreement with the experimental observations. The origin of this mechanistic preference of the Co(II)-PNP catalyst can be attributed to its preference for the square planar geometry. A traditional bifunctional mechanism is less plausible for Co(II)-PNP due to the high distortion energy caused by the change in electronic configuration with the varied ligand field. Considering previous studies that focus on the development of ligands more often, this computational study indicates that the catalytic hydrogenation mechanism is controlled not only by the structure of the ligand but also by the electronic configuration of the metal center. PMID:26332273

  5. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging

    PubMed Central

    Jiang, Xiaocheng; Hu, Jinsong; Fitzgerald, Lisa A.; Biffinger, Justin C.; Xie, Ping; Ringeisen, Bradley R.; Lieber, Charles M.

    2010-01-01

    Microbial fuel cells (MFCs) represent a promising approach for sustainable energy production as they generate electricity directly from metabolism of organic substrates without the need for catalysts. However, the mechanisms of electron transfer between microbes and electrodes, which could ultimately limit power extraction, remain controversial. Here we demonstrate optically transparent nanoelectrodes as a platform to investigate extracellular electron transfer in Shewanella oneidensis MR-1, where an array of nanoholes precludes or single window allows for direct microbe-electrode contacts. Following addition of cells, short-circuit current measurements showed similar amplitude and temporal response for both electrode configurations, while in situ optical imaging demonstrates that the measured currents were uncorrelated with the cell number on the electrodes. High-resolution imaging showed the presence of thin, 4- to 5-nm diameter filaments emanating from cell bodies, although these filaments do not appear correlated with current generation. Both types of electrodes yielded similar currents at longer times in dense cell layers and exhibited a rapid drop in current upon removal of diffusible mediators. Reintroduction of the original cell-free media yielded a rapid increase in current to ?80% of original level, whereas imaging showed that the positions of > 70% of cells remained unchanged during solution exchange. Together, these measurements show that electron transfer occurs predominantly by mediated mechanism in this model system. Last, simultaneous measurements of current and cell positions showed that cell motility and electron transfer were inversely correlated. The ability to control and image cell/electrode interactions down to the single-cell level provide a powerful approach for advancing our fundamental understanding of MFCs. PMID:20837546

  6. Outer-sphere electron transfer in polar solvents: Quantum scaling of strongly interacting systems

    E-print Network

    Song, Xueyu

    Outer-sphere electron transfer in polar solvents: Quantum scaling of strongly interacting systems 1993) The spin-boson Hamiltonian model is used to study electron transfer (ET) reactions of strongly of perturbation theory in electronic coupling is derived. The rate formula is applicable in a wide range

  7. Time-optimal polarization transfer from an electron spin to a nuclear spin

    E-print Network

    Haidong Yuan; Robert Zeier; Nikolas Pomplun; Steffen J. Glaser; Navin Khaneja

    2015-09-07

    Polarization transfers from an electron spin to a nuclear spin are essential for various physical tasks, such as dynamic nuclear polarization in nuclear magnetic resonance and quantum state transformations on hybrid electron-nuclear spin systems. We present time-optimal schemes for electron-nuclear polarization transfers which improve on conventional approaches and will have wide applications.

  8. Bridge mediated two-electron transfer reactions: On the influence of intersite Coulomb interactions

    E-print Network

    Röder, Beate

    Bridge mediated two-electron transfer reactions: On the influence of intersite Coulomb interactions 17 June 2004 Donor-acceptor two-electron transfer TET mediated by a linear molecular bridge of a strong electronic intersite coupling within the bridge and against the background of fast vibrational

  9. Proton-coupled electron transfer reactions in solution: Molecular dynamics with quantum transitions for model systems

    E-print Network

    Hammes-Schiffer, Sharon

    Proton-coupled electron transfer reactions in solution: Molecular dynamics with quantum transitions A general minimal model for proton-coupled electron transfer PCET reactions in solution is presented. This model consists of three coupled degrees of freedom that represent an electron, a proton, and a solvent

  10. Aqueous systems from first-principles : structure, dynamics and electron-transfer reactions

    E-print Network

    Sit, Patrick Hoi Land

    2006-01-01

    In this thesis, we show for the first time how it is possible to calculated fully from first-principles the diabatic free-energy surfaces of electron-transfer reactions. The excitation energy corresponding to the transfer ...

  11. Photoinduced Bimolecular Electron Transfer from Cyano Anions in Ionic Liquids.

    PubMed

    Wu, Boning; Liang, Min; Maroncelli, Mark; Castner, Edward W

    2015-11-19

    Ionic liquids with electron-donating anions are used to investigate rates and mechanisms of photoinduced bimolecular electron transfer to the photoexcited acceptor 9,10-dicyanoanthracene (9,10-DCNA). The set of five cyano anion ILs studied comprises the 1-ethyl-3-methylimidazolium cation paired with each of these five anions: selenocyanate, thiocyanate, dicyanamide, tricyanomethanide, and tetracyanoborate. Measurements with these anions dilute in acetonitrile and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide show that the selenocyanate and tricyanomethanide anions are strong quenchers of the 9,10-DCNA fluorescence, thiocyanate is a moderately strong quencher, dicyanamide is a weak quencher, and no quenching is observed for tetracyanoborate. Quenching rates are obtained from both time-resolved fluorescence transients and time-integrated spectra. Application of a Smoluchowski diffusion-and-reaction model showed that the complex kinetics observed can be fit using only two adjustable parameters, D and V0, where D is the relative diffusion coefficient between donor and acceptor and V0 is the value of the electronic coupling at donor-acceptor contact. PMID:26501776

  12. Photoinduced electron transfer and geminate recombination in liquids on short time scales: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Goun, Alexei; Glusac, Ksenija; Fayer, M. D.

    2006-02-01

    The coupled processes of intermolecular photoinduced forward electron transfer and geminate recombination between the (hole) donor (Rhodamine 3B) and (hole) acceptors (N,N-dimethylaniline) are studied in three molecular liquids: acetonitrile, butyronitrile, and benzonitrile. Two color pump-probe experiments on time scales from ˜100fs to hundreds of picoseconds give information about the depletion of the donor excited state due to forward electron transfer and the survival kinetics of the radicals produced by forward electron transfer. The data are analyzed with a model presented previously that includes distance dependent forward and back electron transfer rates, donor and acceptor diffusion, solvent structure, and the hydrodynamic effect in a mean-field theory of through solvent electron transfer. The forward electron transfer is in the normal regime, and the Marcus equation for the distance dependence of the transfer rate is used. The forward electron transfer data for several concentrations in the three solvents are fitted to the theory with a single adjustable parameter, the electronic coupling matrix element Jf at contact. Within experimental error all concentrations in all three solvents are fitted with the same value of Jf. The geminate recombination (back transfer) is in the inverted region, and semiclassical treatment developed by Jortner [J. Chem. Phys. 64, 4860 (1976)] is used to describe the distance dependence of the back electron transfer. The data are fitted with the single adjustable parameter Jb. It is found that the value of Jb decreases as the solvent viscosity increases. Possible explanations are discussed.

  13. Electronic shift register memory based on molecular electron-transfer reactions

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.

    1989-01-01

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.

  14. Catalysts for electrochemical generation of oxygen

    NASA Technical Reports Server (NTRS)

    Hagans, P.; Yeager, E.

    1978-01-01

    Single crystal surfaces of platinum and gold and transition metal oxides of the spinel type were studied to find more effective catalysts for the electrolytic evolution of oxygen and to understand the mechanism and kinetics for the electrocatalysis in relation to the surface electronic and lattice properties of the catalyst. The single crystal studies involve the use of low energy electron diffraction (LEED) and Auger electron spectroscopy as complementary tools to the electrochemical measurements. Modifications to the transfer system and to the thin-layer electrochemical cell used to facilitate the transfer between the ultrahigh vacuum environment of the electron surface physics equipment and the electrochemical environment with a minimal possibility of changes in the surface structure, are described. The electrosorption underpotential deposition of Pb onto the Au(111), (100) and (110) single crystal surfaces with the thin-layer cell-LEED-Auger system is discussed as well as the synthesis of spinels for oxygen evolution studies.

  15. Light-induced electron transfer vs. energy transfer in molecular thin-film systems

    SciTech Connect

    Renschler, C. L.; Faulkner, L. R.

    1980-01-01

    Quenching of fluoranthene (FA) singlets by tetrabromo-o-benzoquinone (TBBQ) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was studied both in xylene solutions and in spin-cast polystyrene (PS) films. Emphasis was placed on time-resolved fluorescence transients resulting from pulsed excitation. Linear Stern-Volmer plots were obtained for quenching in solution and gave diffusion-controlled rate constants, of 1.45 x 10/sup 10/ M/sup -1/ sec/sup -1/ and 1.53 x 10/sup 10/ M/sup -1/ sec/sup -1/ for TBBQ and TMPD, respectively. TBBQ was found to quench FA singlets in PS over the studied concentration range 12 mM < (TBBQ) < 48 mM, but in its presence FA singlets decayed nonexponentially. The results were interpreted quantitatively in terms of pure Foerster's transfer from FA to TBBQ without diffusion of excitons. The critical transfer radius R/sub 0/ was experimentally determined to be 24.3 A, which is in good agreement with the theoretical value of 23 A calculated from spectral data. Quenching of FA singlets in PS films was found to be independent of FA concentration over a 300 mM to 1200 mM FA concentration range for a constant TBBQ concentration of 24.0 mM. TMPD was only slightly effective as a quencher of FA singlets in PS because it apparently behaves strictly as a contact quencher based on reversible charge transfer. The implications of these results for the design of systems intended to exploit light-induced electron transfer are discussed.

  16. Photoinduced charge accumulation by metal ion-coupled electron transfer.

    PubMed

    Bonn, Annabell G; Wenger, Oliver S

    2015-10-01

    An oligotriarylamine (OTA) unit, a Ru(bpy)3(2+) photosensitizer moiety (Ru), and an anthraquinone (AQ) entity were combined to a molecular dyad (Ru-OTA) and a molecular triad (AQ-Ru-OTA). Pulsed laser excitation at 532 nm led to the formation of charge-separated states of the type Ru(-)-OTA(+) and AQ(-)-Ru-OTA(+) with lifetimes of ?10 ns and 2.4 ?s, respectively, in de-aerated CH3CN at 25 °C. Upon addition of Sc(OTf)3, very long-lived photoproducts were observed. Under steady-state irradiation conditions using a flux of (6.74 ± 0.21) × 10(15) photons per second at 450 nm, the formation of twofold oxidized oligotriarylamine (OTA(2+)) was detected in aerated CH3CN containing 0.02 M Sc(3+), as demonstrated unambiguously by comparison with UV-Vis absorption spectra obtained in the course of chemical oxidation with Cu(2+). Photodriven charge accumulation on the OTA unit of Ru-OTA and AQ-Ru-OTA is possible due to the lowering of the O2 reduction potential caused by the interaction of superoxide with the strong Lewis acid Sc(3+). The presence of the anthraquinone unit in AQ-Ru-OTA accelerates the rate-determining reaction step for charge accumulation by a factor of 10 compared to the Ru-OTA dyad. This is attributed to the formation of Sc(3+)-stabilized anthraquinone radical anion intermediates in the triad. Possible mechanistic pathways leading to charge accumulation are discussed. Photodriven charge accumulation is of key importance for solar fuels because their production will have to rely on multi-electron chemistry rather than single-electron reaction steps. Our study is the first to demonstrate that metal ion-coupled electron transfer (MCET) can be exploited to accumulate charges on a given molecular unit using visible light as an energy input. The approach of using a combination of intra- and intermolecular electron transfer reactions which are enabled by MCET is conceptually novel, and the fundamental insights gained from our study are relevant in the greater context of solar energy conversion. PMID:26312416

  17. Surface Activation of Electrocatalysis at Oxide Electrodes. Concerted Electron-Proton Transfer

    SciTech Connect

    Gagliardi, Christopher J.; Jurss, Jonah W.; Thorp, H. Holden; Meyer, Thomas J.

    2011-03-21

    Dramatic rate enhancements are observed for the oxidation of phenols, including tyrosine, at indium-tin oxide electrodes modified by the addition of the electron-transfer relays [MII(bpy)2(4,4'-(HO)2P(O)CH2)2bpy)]2+ (M = Ru, Os) with clear evidence for the importance of proton-coupled electron transfer and concerted electron-proton transfer.

  18. A stochastic reorganizational bath model for electronic energy transfer

    SciTech Connect

    Fujita, Takatoshi E-mail: aspuru@chemistry.harvard.edu; Huh, Joonsuk; Aspuru-Guzik, Alán E-mail: aspuru@chemistry.harvard.edu

    2014-06-28

    Environmentally induced fluctuations of the optical gap play a crucial role in electronic energy transfer dynamics. One of the simplest approaches to incorporate such fluctuations in energy transfer dynamics is the well known Haken-Strobl-Reineker (HSR) model, in which the energy-gap fluctuation is approximated as white noise. Recently, several groups have employed molecular dynamics simulations and excited-state calculations in conjunction to account for excitation energies’ thermal fluctuations. On the other hand, since the original work of HSR, many groups have employed stochastic models to simulate the same transfer dynamics. Here, we discuss a rigorous connection between the stochastic and the atomistic bath models. If the phonon bath is treated classically, time evolution of the exciton-phonon system can be described by Ehrenfest dynamics. To establish the relationship between the stochastic and atomistic bath models, we employ a projection operator technique to derive the generalized Langevin equations for the energy-gap fluctuations. The stochastic bath model can be obtained as an approximation of the atomistic Ehrenfest equations via the generalized Langevin approach. Based on this connection, we propose a novel scheme to take account of reorganization effects within the framework of stochastic models. The proposed scheme provides a better description of the population dynamics especially in the regime of strong exciton-phonon coupling. Finally, we discuss the effect of the bath reorganization in the absorption and fluorescence spectra of ideal J-aggregates in terms of the Stokes shifts. We find a simple expression that relates the reorganization contribution to the Stokes shifts – the reorganization shift – to the ideal or non-ideal exciton delocalization in a J-aggregate. The reorganization shift can be described by three parameters: the monomer reorganization energy, the relaxation time of the optical gap, and the exciton delocalization length. This simple relationship allows one to understand the physical origin of the Stokes shifts in molecular aggregates.

  19. Structural studies of photoinduced intramolecular electron transfer in cyclopentadienylnickelnitrosyl

    SciTech Connect

    Chen, L.X.; Bowman, M.K.; Wang, Zhiyu; Norris, J.R. |; Montano, P.A. |

    1994-03-01

    A structural study based on EXAFS, FTIR, and optical absorption spectroscopies has been conducted on a photogenerated, metastable state of cyclopentadienylnickelnitrosyl (CpNiNO) produced by a reversible photochemical reaction. The photogenerated, metastable state with distinctively different EXAFS, IR, and optical absorption spectra from those of the ground state molecules was created by irradiating the sample with the 365 nm line of a mercury lamp at 20K . At the same temperature, the reverse reaction was induced by irradiation with the 313 nm line from the mercury lamp. Based on the analysis of the EXAFS data, the photogenerated, metastable state of CpNiNO has undergone considerable nuclear rearrangements compared to its ground state. The nuclear movement is characterized by a 0.12{angstrom} elongation of Ni-N bond and by a bending of Ni-N-O. A shift of the N-O stretching frequency from 1824 to 1387 cm{sup {minus}1} was observed in the photoinduced reaction with 365 nm light, implying that a NO{sup {minus}} like species results from intramolecular electron transfer from Ni to NO. The changes in the absorption spectra for the same reaction showed reduced absorption of the 385 nm band and a newly generated broad band near IR region. Temperature dependence of the Debye-Waller factor of CpNiNO was in good agreement with the diatomic harmonic oscillator for the Ni-N bond, but deviated for the Ni-O and the Ni-C bonds. Based on the structures obtained from EXAFS, ZINDO calculations for both the ground state and the photogenerated, metastable state of CpNiNO reproduced the general features of the observed absorption spectra and qualitatively explained the wavelength dependence of the reaction. The calculated partial charges on each atom in the ground state and the photogenerated, metastable state of CpNiNO are consistent with intramolecular electron transfer upon photoexcitation by 365 nm light.

  20. Dynamic structural evolution of supported palladium–ceria core–shell catalysts revealed by in situ electron microscopy

    PubMed Central

    Zhang, Shuyi; Chen, Chen; Cargnello, Matteo; Fornasiero, Paolo; Gorte, Raymond J.; Graham, George W.; Pan, Xiaoqing

    2015-01-01

    The exceptional activity for methane combustion of modular palladium–ceria core–shell subunits on silicon-functionalized alumina that was recently reported has created renewed interest in the potential of core–shell structures as catalysts. Here we report on our use of advanced ex situ and in situ electron microscopy with atomic resolution to show that the modular palladium–ceria core–shell subunits undergo structural evolution over a wide temperature range. In situ observations performed in an atmospheric gas cell within this temperature range provide real-time evidence that the palladium and ceria nanoparticle constituents of the palladium–ceria core–shell participate in a dynamical process that leads to the formation of an unanticipated structure comprised of an intimate mixture of palladium, cerium, silicon and oxygen, with very high dispersion. This finding may open new perspectives about the origin of the activity of this catalyst. PMID:26160065

  1. Dynamic structural evolution of supported palladium-ceria core-shell catalysts revealed by in situ electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Shuyi; Chen, Chen; Cargnello, Matteo; Fornasiero, Paolo; Gorte, Raymond J.; Graham, George W.; Pan, Xiaoqing

    2015-07-01

    The exceptional activity for methane combustion of modular palladium-ceria core-shell subunits on silicon-functionalized alumina that was recently reported has created renewed interest in the potential of core-shell structures as catalysts. Here we report on our use of advanced ex situ and in situ electron microscopy with atomic resolution to show that the modular palladium-ceria core-shell subunits undergo structural evolution over a wide temperature range. In situ observations performed in an atmospheric gas cell within this temperature range provide real-time evidence that the palladium and ceria nanoparticle constituents of the palladium-ceria core-shell participate in a dynamical process that leads to the formation of an unanticipated structure comprised of an intimate mixture of palladium, cerium, silicon and oxygen, with very high dispersion. This finding may open new perspectives about the origin of the activity of this catalyst.

  2. Photoinitiated proton-coupled electron transfer and radical transport kinetics in class la ribonucleotide reductase

    E-print Network

    Pizano, Arturo A. (Arturo Alejandro)

    2013-01-01

    Proton-coupled electron transfer (PCET) is a critical mechanism in biology, underpinning key processes such as radical transport, energy transduction, and enzymatic substrate activation. Ribonucleotide reductases (RNRs) ...

  3. Chemo- and Enantioselective Addition and ?-Hydrogen Transfer Reduction of Carbonyl Compounds with Diethylzinc Reagent in One Pot Catalyzed by a Single Chiral Organometallic Catalyst.

    PubMed

    Huang, Huayin; Zong, Hua; Bian, Guangling; Song, Ling

    2015-12-18

    Using a single chiral phosphoramide-Zn(II) complex as the catalyst, the asymmetric ?-H transfer reduction of aromatic ?-trifluoromethyl ketones and enantioselective addition of aromatic aldehydes with Et2Zn in one pot were successfully realized, affording the corresponding additive products of secondary alcohols in high yields (up to 99%) with excellent enantioselectivities (up to 98% ee) and the reduction products of ?-trifluoromethyl alcohols in good to excellent yields with up to 77% ee. PMID:26579727

  4. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.

    PubMed

    Hammarström, Leif

    2015-03-17

    The conversion and storage of solar energy into a fuel holds promise to provide a significant part of the future renewable energy demand of our societies. Solar energy technologies today generate heat or electricity, while the large majority of our energy is used in the form of fuels. Direct conversion of solar energy to a fuel would satisfy our needs for storable energy on a large scale. Solar fuels can be generated by absorbing light and converting its energy to chemical energy by electron transfer leading to separation of electrons and holes. The electrons are used in the catalytic reduction of a cheap substrate with low energy content into a high-energy fuel. The holes are filled by oxidation of water, which is the only electron source available for large scale solar fuel production. Absorption of a single photon typically leads to separation of a single electron-hole pair. In contrast, fuel production and water oxidation are multielectron, multiproton reactions. Therefore, a system for direct solar fuel production must be able to accumulate the electrons and holes provided by the sequential absorption of several photons in order to complete the catalytic reactions. In this Account, the process is termed accumulative charge separation. This is considerably more complicated than charge separation on a single electron level and needs particular attention. Semiconductor materials and molecular dyes have for a long time been optimized for use in photovoltaic devices. Efforts are made to develop new systems for light harvesting and charge separation that are better optimized for solar fuel production than those used in the early devices presented so far. Significant progress has recently been made in the discovery and design of better homogeneous and heterogeneous catalysts for solar fuels and water oxidation. While the heterogeneous ones perform better today, molecular catalysts based on transition metal complexes offer much greater tunability of electronic and structural properties, they are typically more amenable to mechanistic analysis, and they are small and therefore require less material. Therefore, they have arguably greater potential as future efficient catalysts but must be efficiently coupled to accumulative charge separation. This Account discusses accumulative charge separation with focus on molecular and molecule-semiconductor hybrid systems. The coupling between charge separation and catalysis involves many challenges that are often overlooked, and they are not always apparent when studying water oxidation and fuel formation as separate half-reactions with sacrificial agents. Transition metal catalysts, as well as other multielectron donors and acceptors, cycle through many different states that may quench the excited sensitizer by nonproductive pathways. Examples where this has been shown, often with ultrafast rates, are reviewed. Strategies to avoid these competing energy-loss reactions and still obtain efficient coupling of charge separation to catalysis are discussed. This includes recent examples of dye-sensitized semiconductor devices with molecular catalysts and dyes that realize complete water splitting, albeit with limited efficiency. PMID:25675365

  5. Ultrafast photoinduced electron transfer in viologen-linked BODIPY dyes.

    PubMed

    Frath, Denis; Yarnell, James E; Ulrich, Gilles; Castellano, Felix N; Ziessel, Raymond

    2013-10-01

    New boron-dipyrromethene (BODIPY) dyes linked to viologen are prepared and their photophysical and electrochemical properties are investigated. Both synthesized molecules have similar electronic absorption spectra with the absorption maximum localized at 517 and 501 nm for dye 1 and dye 2, respectively. They exhibit well-defined redox behavior, highlighting the presence of BODIPY and viologen subunits, with little perturbation of the redox potential of both subunits with respect to the parent compounds. Both dyes are heavily quenched by photoinduced electron transfer from the BODIPY to the viologen subunit. The transient absorption technique demonstrates that dye 2 forms the viologen radical within a timeframe of 7.1 ps, and that the charge-separated species has a lifetime of 59 ps. Sustained irradiation of dye 2 in the presence of a tertiary amine allows for the accumulation of BODIPY-methyl-4,4'-bipyridinium (BODIPY-MV(+)), as observed by its characteristic absorption at 396 and 603 nm. However, dye 2 does not generate catalytic amounts of hydrogen under standard conditions. PMID:23946241

  6. Electron transfer in peptides: on the formation of silver nanoparticles.

    PubMed

    Kracht, Sonja; Messerer, Matthias; Lang, Matthieu; Eckhardt, Sonja; Lauz, Miriam; Grobéty, Bernard; Fromm, Katharina M; Giese, Bernd

    2015-03-01

    Some microorganisms perform anaerobic mineral respiration by reducing metal ions to metal nanoparticles, using peptide aggregates as medium for electron transfer (ET). Such a reaction type is investigated here with model peptides and silver as the metal. Surprisingly, Ag(+) ions bound by peptides with histidine as the Ag(+)-binding amino acid and tyrosine as photoinducible electron donor cannot be reduced to Ag nanoparticles (AgNPs) under ET conditions because the peptide prevents the aggregation of Ag atoms to form AgNPs. Only in the presence of chloride ions, which generate AgCl microcrystals in the peptide matrix, does the synthesis of AgNPs occur. The reaction starts with the formation of 100?nm Ag@AgCl/peptide nanocomposites which are cleaved into 15?nm AgNPs. This defined transformation from large nanoparticles into small ones is in contrast to the usually observed Ostwald ripening processes and can be followed in detail by studying time-resolved UV/Vis spectra which exhibit an isosbestic point. PMID:25663127

  7. Photoinitiated electron transfer in multi-chromophoric species: Synthetic tetrads and pentads. Technical progress report, 1987--1990

    SciTech Connect

    Not Available

    1990-02-14

    This research project involves the design, synthesis and study of the molecules which mimic many of the important aspects of photosynthetic electron and energy transfer. Specifically, the molecules are designed to mimic the following aspects of natural photosynthetic multistep electron transfer: electron donation from a tetrapyrrole excited singlet state, electron transfer between tetrapyrroles, electron transfer from tetrapyrroles to quinones, and electron transfer between quinones with different redox properties. In addition, they model carotenoid antenna function in photosynthesis (singlet-singlet energy transfer from carotenoid polyenes to chlorophyll) and carotenoid photoprotection from singlet oxygen damage (triplet-triplet energy transfer from chlorophyll to carotenoids).

  8. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOEpatents

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  9. DETERMINATION OF HETEROGENEOUS ELECTRON TRANSFER RATE CONSTANTS AT MICROFABRICATED IRIDIUM ELECTRODES. (R825511C022)

    EPA Science Inventory

    There has been an increasing use of both solid metal and microfabricated iridium electrodes as substrates for various types of electroanalysis. However, investigations to determine heterogeneous electron transfer rate constants on iridium, especially at an electron beam evapor...

  10. Ion-pairing control of excited-state electron-transfer reactions. Quenching, charge recombination, and back electron transfer

    SciTech Connect

    Clark, C.D.; Hoffman, M.Z.

    1996-05-02

    The rate constants for the oxidative quenching of {sup *}Ru(bpy){sub 3}{sup 2+} by MV{sup 2+} (k{sub q}) and the charge recombination reaction between Ru(bpy){sub 3}{sup 3+} and MV{sup .+} in bulk solution (k{sub rec}) and the cage escape yields of the redox products ({eta}{sub ce}) were determined as a function of added electrolytes (Na{sup +} salts of oxyanions and halides) and temperature (10-60{degree}C) in aqueous solution. At 25{degree}C and constant [anion], k{sub q} and k{sub rec} are a function of the specific anion. Activation energies for k{sub q} and k{sub rec} for ClO{sub 4}{sup -} are nearly 30% lower than the average values for the other salts. Values of {eta}{sub ce} show anion-specific trends opposite to those for k{sub q} and k{sub rec}. The reactant cations are extensively ion-paired by the dominant anions in bulk solution, and a similar situation is proposed to exist within the quenching solvent cage. {Delta}H{sup dagger} (activation enthalpy) and {lambda} (solvent reorganization energy) were evaluated for k{sub ip} and back electron transfer within the solvent cage (k{sub bt}) and were found to be smallest for ClO{sub 4}{sup -} and I{sup -}. The correlation that exists between k{sub ip} or k{sub bt} and the standard free energy of hydration ({Delta} G{degree}{sub hyd}) of the anions indicates that the rates of electron transfer between the cationic reactants are greatest in the presence of anions that have the most weakly-held hydration sphere and the greatest ability to break the water structure. 33 refs., 7 figs., 3 tabs.

  11. Photoinduced electron transfer from aliphatic amines to coumarin dyes

    NASA Astrophysics Data System (ADS)

    Nad, Sanjukta; Pal, Haridas

    2002-01-01

    Electron transfer (ET) interactions of a series of 7-aminocoumarin dyes with aliphatic amine donors have been investigated using steady-state (SS) and time-resolved (TR) fluorescence quenching, picosecond laser flash photolysis (LFP) and pulse radiolysis (PR) techniques. For different coumarin-amine pairs, the estimated quenching constants (kq) from SS and TR fluorescence measurements are found to be similar within the experimental error. That ET from amine donors to excited (S1) coumarin dyes takes place has been established from the LFP and the PR results. For different coumarin-amine pairs, the kq values are seen to correlate well with the free energy changes (?G0) for the ET reactions following Marcus' outer-sphere ET theory. The total reorganization energy (?) estimated from this correlation is seen to be just similar to the solvent reorganization energy (?s). The leveled-off kq value under diffusion-controlled condition (kqDC) appears to be much lower (˜2.5 times) for the present systems compared to the corresponding value obtained for the ET reactions in coumarin-aromatic amine systems. The large difference in the kqDC values with aliphatic and aromatic amines as the electron donors has been rationalized on the basis of the shapes of the highest occupied molecular orbitals (HOMO) of the amine donors. For aliphatic amines, since their HOMOs are largely localized on the amino group, a large orientation factor is involved in the encounter complexes for the ET reaction to take place. With ? like HOMOs, such orientational restriction is just nominal with the aromatic amines as the electron donors. Present ET results under diffusive conditions have also been discussed with a comparison to the ET rates observed under nondiffusive conditions, where the amines are directly used as the solvent donors.

  12. Femtosecond dynamics of DNA-mediated electron transfer

    PubMed Central

    Wan, Chaozhi; Fiebig, Torsten; Kelley, Shana O.; Treadway, Christopher R.; Barton, Jacqueline K.; Zewail, Ahmed H.

    1999-01-01

    Diverse biophysical and biochemical studies have sought to understand electron transfer (ET) in DNA in part because of its importance to DNA damage and its repair. However, the dynamics and mechanisms of the elementary processes of ET in this medium are not fully understood and have been heavily debated. Two fundamental issues are the distance over which charge is transported and the time-scale on which the transport through the ?-stack of the DNA base pairs may occur. With femtosecond resolution, we report direct observation in DNA of ultrafast ET, initiated by excitation of tethered ethidium (E), the intercalated electron acceptor (A); the electron donor (D) is 7-deazaguanine (Z), a modified base, placed at different, fixed distances from A. The ultrafast ET between these reactants in DNA has been observed with time constants of 5 ps and 75 ps and was found to be essentially independent of the D–A separation (10–17 ?). However, the ET efficiency does depend on the D–A distance. The 5-ps decay corresponds to direct ET observed from 7-deazaguanine but not guanine to E. From measurements of orientation anisotropies, we conclude that the slower 75-ps process requires the reorientation of E before ET, similar to E/nucleotide complexes in water. These results reveal the nature of ultrafast ET and its mechanism: in DNA, ET cannot be described as in proteins simply by a phenomenological parameter, ?. Instead, the involvement of the base pairs controls the time scale and the degree of coherent transport. PMID:10339533

  13. Modeling Charge Transfer in Fullerene Collisions via Real-Time Electron Dynamics

    SciTech Connect

    Jakowski, Jacek; Irle, Stephan; Morokuma, Keiji; Sumpter, Bobby G

    2012-01-01

    An approach for performing real-time dynamics of electron transfer in a prototype redox reaction that occurs in reactive collisions between neutral and ionic fullerenes is discussed. The quantum dynamical simulations show that the electron transfer occurs within 60 fs directly preceding the collision of the fullerenes, followed by structural changes and relaxation of electron charge. The consequences of real-time electron dynamics are fully elucidated for the far from equilibrium processes of collisions between neutral and multiply charged fullerenes.

  14. Electron transfer process from marine biofilms to graphite electrodes in seawater.

    PubMed

    Xu, Fengling; Duan, Jizhou; Hou, Baorong

    2010-04-01

    It is known that electron transfer processes exist between microorganisms and electrodes. Many anaerobic bacteria, which can transfer electrons to solid electrodes, had been identified. However, little attention has been paid to the interactions between aerobic biofilms and electrodes. In this study, marine biofilms formation on graphite electrodes was characterized by open circuit potential and field emission scanning electron microscopy. Electron transfer between marine aerobic biofilms and graphite electrodes was investigated primarily by cyclic voltammograms and electrochemical impedance spectroscopy techniques. Herein, we suggest that marine biofilms are a kind of conductive biofilms that can transfer electrons to graphite electrodes under anaerobic and aerobic conditions. Some cytochrome species in bacterial biofilms may play a key role in the electron transfer process. PMID:19840906

  15. Intermolecular Electron-Transfer Reactions in Soluble Methane Monooxygenase: A Role for Hysteresis in Protein Function

    PubMed Central

    Blazyk, Jessica L.; Gassner, George T.

    2005-01-01

    Electron transfer from reduced nicotinamide adenine dinucleotide (NADH) to the hydroxylase component (MMOH) of soluble methane monooxygenase (sMMO) primes its non-heme diiron centers for reaction with dioxygen to generate high-valent iron intermediates that convert methane to methanol. This intermolecular electron-transfer step is facilitated by a reductase (MMOR), which contains [2Fe-2S] and flavin adenine dinucleotide (FAD) prosthetic groups. To investigate interprotein electron transfer, chemically reduced MMOR was mixed rapidly with oxidized MMOH in a stopped-flow apparatus, and optical changes associated with reductase oxidation were recorded. The reaction proceeds via four discrete kinetic phases corresponding to the transfer of four electrons into the two dinuclear iron sites of MMOH. Pre-equilibrating the hydroxylase with sMMO auxiliary proteins MMOB or MMOD severely diminishes electron-transfer throughput from MMOR, primarily by shifting the bulk of electron transfer to the slowest pathway. The biphasic reactions for electron transfer to MMOH from several MMOR ferredoxin analogues are also inhibited by MMOB and MMOD. These results, in conjunction with the previous finding that MMOB enhances electron-transfer rates from MMOR to MMOH when preformed MMOR-MMOH-MMOB complexes are allowed to react with NADH [Gassner, G. T.; Lippard, S. J. Biochemistry 1999, 38, 12768-12785], suggest that isomerization of the initial ternary complex is required for maximal electron-transfer rates. To account for the slow electron transfer observed for the ternary precomplex in this work, a model is proposed in which conformational changes imparted to the hydroxylase by MMOR are retained throughout the catalytic cycle. Several electron-transfer schemes are discussed with emphasis on those that invoke multiple interconverting MMOH populations. PMID:16332086

  16. A bifurcated molecular pentad capable of sequential electronic energy transfer and intramolecular charge transfer.

    PubMed

    Harriman, Anthony; Stachelek, Patrycja; Sutter, Alexandra; Ziessel, Raymond

    2015-10-21

    An extended molecular array, comprising three distinct types of chromophores and two additional redox-active subunits, that harvests photons over most of the visible spectral range has been synthesized and characterised. The array exhibits a rich variety of electrochemical waves when examined by cyclic voltammetry but assignment can be made on the basis of control compounds and molecular orbital calculations. Stepwise electronic energy transfer occurs along the molecular axis, corresponding to a gradient of excitation energies, to populate the lowest-energy excited state of the ultimate acceptor. The latter species, which absorbs and emits in the far-red region, enters into light-induced charge transfer with a terminal amine group. The array is relatively stable under illumination with white light but degrades slowly via a series of well-defined steps, the first of which is autocatalytic. One of the main attributes of this system is the capability to harvest an unusually high fraction of sunlight while providing protection against exposure to UV light. PMID:26381219

  17. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles

    PubMed Central

    Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.

    2011-01-01

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685

  18. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer

    PubMed Central

    Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G.H.; Felby, Claus

    2015-01-01

    Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert. PMID:26686263

  19. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer.

    PubMed

    Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G H; Felby, Claus

    2015-01-01

    Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert. PMID:26686263

  20. Vibrational and Electronic Energy Transfer and Dissociation of Diatomic Molecules by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also, the average electron temperature is expected to be between 10,000 and 20,000 K. Thus only data for low energy electrons are relevant to the model.

  1. Photoinduced energy and electron transfer in rubrene-benzoquinone and rubrene-porphyrin systems

    NASA Astrophysics Data System (ADS)

    Khan, Jafar I.; Abbas, Abdullah Saud; Aly, Shawkat M.; Usman, Anwar; Melnikov, Vasily A.; Alarousu, Erkki; Mohammed, Omar F.

    2014-11-01

    Excited-state electron and energy transfer from singlet excited rubrene (Ru) to benzoquinone (BQ) and tetra-(4-aminophenyl) porphyrin (TAPP) were investigated by steady-state absorption and emission, time-resolved transient absorption, and femtosecond (fs)-nanosecond (ns) fluorescence spectroscopy. The low reduction potential of BQ provides the high probability of electron transfer from the excited Ru to BQ. Steady-state and time-resolved results confirm such an excited electron transfer scenario. On the other hand, strong spectral overlap between the emission of Ru and absorption of TAPP suggests that energy transfer is a possible deactivation pathway of the Ru excited state.

  2. Nonspherical nanoparticles with controlled morphologies via seeded surface-initiated single electron transfer radical polymerization in soap-free emulsion.

    PubMed

    Yuan, Jinfeng; Wang, Lixia; Zhu, Lei; Pan, Mingwang; Wang, Wenjie; Liu, Ying; Liu, Gang

    2015-04-14

    This work reports a facile novel approach to prepare asymmetric poly(vinylidene fluoride)/polystyrene (PVDF/PS) composite latex particles with controllable morphologies using one-step soap-free seeded emulsion polymerization, i.e., surface-initiated single electron transfer radical polymerization (SET-RP) of styrene (St) at the surface of PVDF seed particles. It was observed that the morphology was influenced mainly by the St/PVDF feed ratio, the polymerization temperature, and the length of the catalyst Cu(0) wire (? 1.00 mm). When the feed ratio was St/PVDF = 5.0 g/1.0 g, snowman-like Janus particles were exclusively obtained. Raspberry-like and popcorn-like composite particles were observed at a higher reaction temperature or a shorter length of the catalyst wire. The reaction kinetics plots demonstrated some unique features. The formation of nonspherical composite nanoparticles can be ascribed to the surface nucleation of PS bulges following the SET-RP. PMID:25797695

  3. Sodium tanshinone IIA sulfonate mediates electron transfer reaction in rat heart mitochondria

    E-print Network

    Jiang, Wen

    / / / Sodium tanshinone IIA sulfonate mediates electron transfer reaction in rat heart mitochondria in rat heart mitochondria. It was found that STS could stimulate mitochondrial NADH oxidation dose-reperfusion injury through an electron transfer reaction in mitochondria against forming reactive oxygen radicals

  4. 49 CFR 225.37 - Optical media transfer and electronic submission.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Optical media transfer and electronic submission. ...AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. ...updates, and amendments by way of optical media (CD-ROM), or by means of...

  5. 49 CFR 225.37 - Optical media transfer and electronic submission.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Optical media transfer and electronic submission. ...AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. ...updates, and amendments by way of optical media (CD-ROM), or by means of...

  6. 49 CFR 225.37 - Optical media transfer and electronic submission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Optical media transfer and electronic submission. ...AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. ...updates, and amendments by way of optical media (CD-ROM), or by means of...

  7. 49 CFR 225.37 - Optical media transfer and electronic submission.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Optical media transfer and electronic submission. ...AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. ...updates, and amendments by way of optical media (CD-ROM), or by means of...

  8. Electron Transfer from the Rieske Iron-Sulfur Protein (ISP) to Cytochrome f in Vitro

    E-print Network

    Electron Transfer from the Rieske Iron-Sulfur Protein (ISP) to Cytochrome f in Vitro IS A GUIDED soluble domains of the Rieske iron-sulfur protein (ISP) and cytochrome f subunits of the cytochrome b6f, and one [2Fe-2S] cluster in the Rieske iron-sulfur protein (1­3). The electron transfer pathway

  9. Control of Electron Transfer Rates in Liquid Crystalline Media Mark Lilichenko and Dmitry V. Matyushov*

    E-print Network

    Matyushov, Dmitry

    parameters is important for clarifying the effect of anisotropy in biological systems and may helpControl of Electron Transfer Rates in Liquid Crystalline Media Mark Lilichenko and Dmitry V to control electron-transfer rates arising from solvation anisotropy is discussed. 1. Introduction

  10. Distance dependence of electron transfer from liposome-embedded (alkanephosphocholine-porphinato) zinc

    SciTech Connect

    Tsuchida, E.; Kaneko, M.; Nishide, H.; Hoshino, M.

    1986-05-22

    (Alkanephosphocholine-porphinato)zinc forms a geometrically well-defined bilayer liposome with phospholipid. Electron transfer from the liposome-embedded (porphinato)zincs with different alkyl chain lengths to methylviologen present in the outer bulk solution is measured by laser flash photolysis: the intermolecular electron transfer was observed only when the porphyrin plane is located within 12 A from the surface.

  11. 49 CFR 225.37 - Magnetic media transfer and electronic submission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Magnetic media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Magnetic media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of magnetic media...

  12. AUTHORIZATION FOR AUTOMATED ELECTRONIC FUNDS TRANSFERS (EFT) FOR A GIFT TO SUPPORT UB

    E-print Network

    Krovi, Venkat

    AUTHORIZATION FOR AUTOMATED ELECTRONIC FUNDS TRANSFERS (EFT) FOR A GIFT TO SUPPORT UB I will make a gift in support of the University at Buffalo, through Electronic Funds Transfers (EFT). Name Address Account Number Gift Amount: $__________________ per month ($5 minimum) Gift purpose: The area of greatest

  13. 27 CFR 26.267 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...making payment by electronic fund transfer (EFT), as defined in paragraph (c) of...by this section, to make remittances by EFT. For purposes of this section, the...determining who is required to make remittances by EFT. (c) Electronic fund transfer...

  14. 27 CFR 27.48a - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...making payment by electronic fund transfer (EFT), as defined in paragraph (c) of this...by this section, to make remittances by EFT. For purposes of this section, the...determining who is required to make remittances by EFT. (c) Electronic fund transfer...

  15. Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends

    NASA Astrophysics Data System (ADS)

    Song, Yin; Clafton, Scott N.; Pensack, Ryan D.; Kee, Tak W.; Scholes, Gregory D.

    2014-09-01

    The conversion of photoexcitations into charge carriers in organic solar cells is facilitated by the dissociation of excitons at the donor/acceptor interface. The ultrafast timescale of charge separation demands sophisticated theoretical models and raises questions about the role of coherence in the charge-transfer mechanism. Here, we apply two-dimensional electronic spectroscopy to study the electron transfer process in poly(3-hexylthiophene)/PCBM (P3HT/PCBM) blends. We report dynamics maps showing the pathways of charge transfer that clearly expose the significance of hot electron transfer. During this ultrafast electron transfer, vibrational coherence is directly transferred from the P3HT exciton to the P3HT hole polaron in the crystalline domain. This result reveals that the exciton converts to a hole with a similar spatial extent on a timescale far exceeding other photophysical dynamics including vibrational relaxation.

  16. Photochemical reactions of electron-deficient olefins with N,N,N?,N?-tetramethylbenzidine via photoinduced electron-transfer

    NASA Astrophysics Data System (ADS)

    Pan, Yang; Zhao, Junshu; Ji, Yuanyuan; Yan, Lei; Yu, Shuqin

    2006-01-01

    Photoinduced electron transfer reactions of several electron-deficient olefins with N, N, N', N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields 3TMB* after rapid intersystem crossing from 1TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), ?-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property (?-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the kqT values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants kqS have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic kq values for CN and CrN in endergonic region may be the disturbance of exciplexs formation.

  17. 77 FR 6310 - Electronic Fund Transfers (Regulation E)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ...described above would create information overload for consumers. Subsequent...transfer that contains accurate information about the transfer. The Bureau...described above would create information overload for consumers. The...

  18. Photoinduced Electron Transfer on the Surfaces of Micelles Kristin Weidemaier, H. L. Tavernier, and M. D. Fayer*

    E-print Network

    Fayer, Michael D.

    Photoinduced Electron Transfer on the Surfaces of Micelles Kristin Weidemaier, H. L. Tavernier 10, 1997; In Final Form: September 4, 1997X Photoinduced electron transfer between N, pronounced differences in the electron-transfer kinetics are observed, with the overall amount of electron

  19. Environmental TEM study of electron beam induced electro-chemistry of Pr????Ca????MnO? catalysts for oxygen evolution

    SciTech Connect

    Mildner, Stephanie; Beleggia, Marco; Mierwaldt, Daniel; Hansen, Thoma Willum; Wagner, Jakob Birkedal; Yazdi, Sadegh; Kasama, Takeshi; Ciston, Jim; Zhu, Yimei; Jooss, Christian

    2015-03-12

    Environmental Transmission Electron Microscopy (ETEM) studies offer great potential for gathering atomic scale information on the electronic state of electrodes in contact with reactants but also pose big challenges due to the impact of the high energy electron beam. In this article, we present an ETEM study of a Pr????Ca????MnO? (PCMO) thin film electro-catalyst for water splitting and oxygen evolution in contact with water vapor. We show by means of off-axis electron holography and electrostatic modeling that the electron beam gives rise to a positive electric sample potential due to secondary electron emission. The value of the electric potential depends on the primary electron flux, the sample -conductivity and grounding, and gas properties. We present evidence that two observed electro-chemical reactions are driven by a beam induced electrostatic potential of the order of a volt. The first reaction is an anodic electrochemical oxidation reaction of oxygen depleted amorphous PCMO which results in recrystallization of the perovskite structure. The second reaction is oxygen evolution which can be detected by the oxidation of a silane additive and formation of SiO2–x at catalytically active surfaces. Recently published in-situ XANES observation of subsurface oxygen vacancy formation during oxygen evolution at a positive potential [³²] is confirmed in this work. The quantification of beam induced potentials is an important step for future controlled electro-chemical experiments in an ETEM.

  20. Environmental TEM study of electron beam induced electro-chemistry of Pr????Ca????MnO? catalysts for oxygen evolution

    DOE PAGESBeta

    Mildner, Stephanie; Beleggia, Marco; Mierwaldt, Daniel; Hansen, Thoma Willum; Wagner, Jakob Birkedal; Yazdi, Sadegh; Kasama, Takeshi; Ciston, Jim; Zhu, Yimei; Jooss, Christian

    2015-03-12

    Environmental Transmission Electron Microscopy (ETEM) studies offer great potential for gathering atomic scale information on the electronic state of electrodes in contact with reactants but also pose big challenges due to the impact of the high energy electron beam. In this article, we present an ETEM study of a Pr????Ca????MnO? (PCMO) thin film electro-catalyst for water splitting and oxygen evolution in contact with water vapor. We show by means of off-axis electron holography and electrostatic modeling that the electron beam gives rise to a positive electric sample potential due to secondary electron emission. The value of the electric potential dependsmore »on the primary electron flux, the sample -conductivity and grounding, and gas properties. We present evidence that two observed electro-chemical reactions are driven by a beam induced electrostatic potential of the order of a volt. The first reaction is an anodic electrochemical oxidation reaction of oxygen depleted amorphous PCMO which results in recrystallization of the perovskite structure. The second reaction is oxygen evolution which can be detected by the oxidation of a silane additive and formation of SiO2–x at catalytically active surfaces. Recently published in-situ XANES observation of subsurface oxygen vacancy formation during oxygen evolution at a positive potential [³²] is confirmed in this work. The quantification of beam induced potentials is an important step for future controlled electro-chemical experiments in an ETEM.« less

  1. Modulation of microwave power with electron transfer diodes

    NASA Astrophysics Data System (ADS)

    Kolomoytsev, V. F.; Krys, V. Y.; Sokolovskiy, I. I.

    1984-05-01

    An experimental study was made of a microwave amplitude modulator using AA 703B electron-transfer diodes, the object being to determine its performance characteristics and the mechanisms on which they depend. The test equipment included a microwave oscillator transmitting continuous signals through a rectifier, an attenuator, a frequency meter, a circulator, and a double-throw switch to either of two modulator cells. Modulated signals were either reflected through one circular arm, another rectifier, a directional coupler, and a high-precision attenuator to an oscillograph, or transmitted through the other circulator arm and a wideband detector to a millimeter. A modulator cell consisted of a rectangular waveguide segment 23 x 3.5 sq mm in cross section with a Gunn-effect diode inside and three tuning screws inserted through holes in one of the wide walls. Measurements over the 9.95-10.08 GHz operating frequency range have revealed an increase of the modulation factor with increasing microwave signal power at a constant microwave signal power.

  2. Effects of quantum coherence in metalloprotein electron transfer

    NASA Astrophysics Data System (ADS)

    Dorner, Ross; Goold, John; Heaney, Libby; Farrow, Tristan; Vedral, Vlatko

    2012-09-01

    Many intramolecular electron transfer (ET) reactions in biology are mediated by metal centers in proteins. This process is commonly described by a model of diffusive hopping according to the semiclassical theories of Marcus and Hopfield. However, recent studies have raised the possibility that nontrivial quantum mechanical effects play a functioning role in certain biomolecular processes. Here, we investigate the potential effects of quantum coherence in biological ET by extending the semiclassical model to allow for the possibility of quantum coherent phenomena using a quantum master equation based on the Holstein Hamiltonian. We test the model on the structurally defined chain of seven iron-sulfur clusters in nicotinamide adenine dinucleotide plus hydrogen:ubiquinone oxidoreductase (complex I), a crucial respiratory enzyme and one of the longest chains of metal centers in biology. Using experimental parameters where possible, we find that, in limited circumstances, a small quantum mechanical contribution can provide a marked increase in the ET rate above the semiclassical diffusive-hopping rate. Under typical biological conditions, our model reduces to well-known diffusive behavior.

  3. Single cell activity reveals direct electron transfer in methanotrophic consortia

    NASA Astrophysics Data System (ADS)

    McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.; Orphan, Victoria J.

    2015-10-01

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.

  4. Single cell activity reveals direct electron transfer in methanotrophic consortia.

    PubMed

    McGlynn, Shawn E; Chadwick, Grayson L; Kempes, Christopher P; Orphan, Victoria J

    2015-10-22

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer. PMID:26375009

  5. Effect of 2-Propanol on the Transfer Hydrogenation of Aldehydes by Aqueous Sodium Formate using a Rhodium(I)-sulfonated Triphenylphosphine Catalyst.

    PubMed

    Kathó, Ágnes; Szatmári, Imre; Papp, Gábor; Joó, Ferenc

    2015-01-01

    In water/2-propanol mixtures [RhCl(mtppms)(3)] (mtppms = monosulfonated triphenylphosphine) was an efficient catalyst for the selective C=C reduction of trans-3-phenyl-2-propenal (trans-cinnamaldehyde) by hydrogen transfer from formate at temperatures as low as 30 °C. An outstandingly high catalyst turnover frequency of 1214 h(-1) was determined at 70 °C. A possible mechanism of the reaction is suggested on the basis of kinetic studies and (1)H- and (31)P-NMR spectroscopic identification of the major Rh(I) species in the reaction mixtures as cis-mer-[H(2)RhX(mtppms)(3)] (X = HCOO(-) or H(2)O). It was established that a large part but not all of the rate increase observed in water/2-propanol mixtures in comparison with systems with neat water as solvent was the consequence of complete dissolution of trans-cinnamaldehyde on the effect of the co-solvent. Nevertheless, the rate showed a significant further increase with increasing 2-propanol concentration even in homogeneous solution and this was ascribed to changes in the solvent structure. The high catalyst activity in this solvent mixture allowed the transfer hydrogenation of citral. Although good to excellent conversions were observed at 30-70 °C, a useful degree of selectivity in hydrogenation of C=C vs. C=O bonds could not be achieved. PMID:26507479

  6. Long-range electron transfer across Peptide bridges: the transition from electron superexchange to hopping.

    PubMed

    Malak, Rouba Abdel; Gao, Zhinong; Wishart, James F; Isied, Stephan S

    2004-11-01

    Long-range electron transfer rate constants for complexes of the type [(bpy)2RuIIL-Pron-apyRuIII)(NH3)5]5++ proline residues (n) varying from 0 to 9 were determined by complementary electron pulse radiolysis and flash photolysis techniques from the picosecond to the millisecond time scales. The activationless kmax values from both techniques coalesce into one data set. The distance dependence of the reactions is consistent with a smooth transition from a superexchange mechanism with attenuation constant beta = 1.4 A-1 to a hopping mechanism with attenuation constant beta = 0.17 A-1. The transition occurs between n = 3 and 4 prolines, and the virtual hopping rate constant at the shortest distance is about 1 x 106 times slower than that observed for the superexchange value. PMID:15506726

  7. The Iron-Sulfur Cluster of Electron Transfer Flavoprotein-ubiquinone Oxidoreductase (ETF-QO) is the Electron Acceptor for Electron Transfer Flavoprotein†

    PubMed Central

    Swanson, Michael A.; Usselman, Robert J.; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2011-01-01

    Electron-transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron-transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone-pool. It contains one [4Fe-4S]2+,1+ and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S]2+,1+ to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S]+ at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 mV and ?30 mV for wild type to ?11 mV and ?19 mV, respectively. The N338A mutation decreased the potentials to ?37 mV and ?49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF1e? catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone, but not in electron transfer from ETF to ETF-QO. Therefore the iron-sulfur cluster is the immediate acceptor from ETF. PMID:18672901

  8. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry.

    PubMed

    Gul, Sheraz; Ng, Jia Wei Desmond; Alonso-Mori, Roberto; Kern, Jan; Sokaras, Dimosthenis; Anzenberg, Eitan; Lassalle-Kaiser, Benedikt; Gorlin, Yelena; Weng, Tsu-Chien; Zwart, Petrus H; Zhang, Jin Z; Bergmann, Uwe; Yachandra, Vittal K; Jaramillo, Thomas F; Yano, Junko

    2015-04-14

    Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. K? X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based on the von Hamos geometry was used to disperse K? signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. The detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions. PMID:25747045

  9. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.

    PubMed

    Vl?ek, Antonín; Kvapilová, Hana; Towrie, Michael; Záliš, Stanislav

    2015-03-17

    Ultrafast electron transfer (ET) processes are important primary steps in natural and artificial photosynthesis, as well as in molecular electronic/photonic devices. In biological systems, ET often occurs surprisingly fast over long distances of several tens of angströms. Laser-pulse irradiation is conveniently used to generate strongly oxidizing (or reducing) excited states whose reactions are then studied by time-resolved spectroscopic techniques. While photoluminescence decay and UV-vis absorption supply precise kinetics data, time-resolved infrared absorption (TRIR) and Raman-based spectroscopies have the advantage of providing additional structural information and monitoring vibrational energy flows and dissipation, as well as medium relaxation, that accompany ultrafast ET. We will discuss three cases of photoinduced ET involving the Re(I)(CO)3(N,N) moiety (N,N = polypyridine) that occur much faster than would be expected from ET theories. [Re(4-N-methylpyridinium-pyridine)(CO)3(N,N)](2+) represents a case of excited-state picosecond ET between two different ligands that remains ultrafast even in slow-relaxing solvents, beating the adiabatic limit. This is caused by vibrational/solvational excitation of the precursor state and participation of high-frequency quantum modes in barrier crossing. The case of Re-tryptophan assemblies demonstrates that excited-state Trp ? *Re(II) ET is accelerated from nanoseconds to picoseconds when the Re(I)(CO)3(N,N) chromophore is appended to a protein, close to a tryptophan residue. TRIR in combination with DFT calculations and structural studies reveals an interaction between the N,N ligand and the tryptophan indole. It results in partial electronic delocalization in the precursor excited state and likely contributes to the ultrafast ET rate. Long-lived vibrational/solvational excitation of the protein Re(I)(CO)3(N,N)···Trp moiety, documented by dynamic IR band shifts, could be another accelerating factor. The last discussed process, back-ET in a porphyrin-Re(I)(CO)3(N,N) dyad, demonstrates that formation of a hot product accelerates highly exergonic ET in the Marcus inverted region. Overall, it follows that ET can be accelerated by enhancing the electronic interaction and by vibrational excitation of the reacting system and its medium, stressing the importance of quantum nuclear dynamics in ET reactivity. These effects are experimentally accessible by time-resolved vibrational spectroscopies (IR, Raman) in combination with quantum chemical calculations. It is suggested that structural dynamics play different mechanistic roles in light-triggered ET involving electronically excited donors or acceptors than in ground-state processes. While TRIR spectroscopy is well suitable to elucidate ET processes on a molecular-level, transient 2D-IR techniques combining optical and two IR (or terahertz) laser pulses present future opportunities for investigating, driving, and controlling ET. PMID:25699661

  10. Catalyst by Design

    SciTech Connect

    Narula, Chaitanya Kumar; DeBusk, Melanie Moses

    2014-01-01

    The development of new catalytic materials is still dominated by trial and error methods. Although it has been successful, the empirical development of catalytic materials is time consuming and expensive with no guarantee of success. In our laboratories, we are developing a comprehensive catalysts by design that involves state-of-the-art first principle density functional theory calculations, experimental design of catalyst sites, and sub- ngstr m resolution imaging with an aberration-corrected electron microscope to characterize the microstructure. In this chapter, we focus on supported platinum cluster catalyst systems which are one of the most important industrial catalysts and attempt to demonstrate the feasibility of the catalyst by design concept.

  11. Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers.

    PubMed

    Chen, Shengli; Liu, Yuwen; Chen, Junxiang

    2014-08-01

    Heterogeneous electron-transfer (ET) processes at solid electrodes play key roles in molecular electronics and electrochemical energy conversion and sensing. Electrode nanosization and/or nanostructurization are among the major current strategies for performance promotion in these fields. Besides, nano-sized/structured electrodes offer great opportunities to characterize electrochemical structures and processes with high spatial and temporal resolution. This review presents recent insights into the nanoscopic size and structure effects of electrodes and electrode materials on heterogeneous ET kinetics, by emphasizing the importance of the electric double-layer (EDL) at the electrode/electrolyte interface and the electronic structure of electrode materials. It is shown, by general conceptual analysis and recent example demonstrations of representative electrode systems including electrodes of nanometer sizes and gaps and of nanomaterials such as sp(2) hybridized nanocarbons and semiconductor quantum dots, how the heterogeneous ET kinetics, the electronic structures of electrodes, the EDL structures at the electrode/electrolyte interface and the nanoscopic electrode sizes and structures may be related. PMID:24871071

  12. A Comparison of Electron-Transfer Dynamics inIonic Liquids and Neutral Solvents

    SciTech Connect

    Wishart J. F.; Lee, H.Y.; Issa, J.B.; Isied, S.S.; Castner, Jr., E.W.; Pan, Y.; Hussey, C.L.; Lee, K.S.

    2012-03-01

    The effect of ionic liquids on photoinduced electron-transfer reactions in a donor-bridge-acceptor system is examined for two ionic liquid solvents, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide and tributylmethylammonium bis(trifluoromethylsulfonyl)amide. The results are compared with those for the same system in methanol and acetonitrile solution. Electron-transfer rates were measured using time-resolved fluorescence quenching for the donor-bridge-acceptor system comprising a 1-N,1-N-dimethylbenzene-1,4-diamine donor, a proline bridge, and a coumarin 343 acceptor. The photoinduced electron-transfer processes are in the inverted regime (-{Delta}G > {lambda}) in all four solvents, with driving forces of -1.6 to -1.9 eV and estimated reorganization energies of about 1.0 eV. The observed electron-transfer kinetics have broadly distributed rates that are generally slower in the ionic liquids compared to the neutral solvents, which also have narrower rate distributions. To describe the broad distributions of electron-transfer kinetics, we use two different models: a distribution of exponential lifetimes and a discrete sum of exponential lifetimes. Analysis of the donor-acceptor electronic coupling shows that for ionic liquids this intramolecular electron-transfer reaction should be treated using a solvent-controlled electron-transfer model.

  13. Solid-supported reagents composed of a copolymer possessing 2-O-sulfonyl mannosides and phase-transfer catalysts for the synthesis of 2-fluoroglucose.

    PubMed

    Takeuchi, Ryota; Sakai, Yuki; Tanaka, Hiroshi; Takahashi, Takashi

    2015-12-01

    We described the synthesis of a solid-supported co-polymer possessing mannosides and phase-transfer catalysts and synthesis of 2-fluoroglucoside from it. We first prepared a soluble copolymer from two allene monomers possessing a precursor for the synthesis of 2-fluoroglycose and a crown ether. The copolymerization of the monomers via the ?-ally nickel-catalyst smoothly proceeded at room temperature to provide a desired copolymer without decomposition of the sulfonate esters. The copolymer exhibited high reactivity towards fluorination in comparison with a conventional precursor. We next synthesized the solid-supported copolymer by using the solid-supported initiator attached with TentaGel® resins. TentaGel® enabled polymerization under stirring with stirring bar without decomposition. The solid-supported copolymer exhibited comparable reactivity towards fluorination in comparison with the soluble copolymer. In addition, it can be easily separated from the reaction vessel by filtration. PMID:26525864

  14. Photoinduced bimolecular electron transfer kinetics in small unilamellar vesicles

    SciTech Connect

    Choudhury, Sharmistha Dutta; Kumbhakar, Manoj; Nath, Sukhendu; Pal, Haridas

    2007-11-21

    Photoinduced electron transfer (ET) from N,N-dimethylaniline to some coumarin derivatives has been studied in small unilamellar vesicles (SUVs) of the phospholipid, DL-{alpha}-dimyristoyl-phosphatidylcholine, using steady-state and time-resolved fluorescence quenching, both below and above the phase transition temperature of the vesicles. The primary interest was to examine whether Marcus inversion [H. Sumi and R. A. Marcus, J. Chem. Phys. 84, 4894 (1986)] could be observed for the present ET systems in these organized assemblies. The influence of the topology of SUVs on the photophysical properties of the reactants and consequently on their ET kinetics has also been investigated. Absorption and fluorescence spectral data of the coumarins in SUVs and the variation of their fluorescence decays with temperature indicate that the dyes are localized in the bilayer of the SUVs. Time-resolved area normalized emission spectra analysis, however, reveals that the dyes are distributed in two different microenvironments in the SUVs, which we attribute to the two leaflets of the bilayer, one toward bulk water and the other toward the inner water pool. The microenvironments in the two leaflets are, however, not indicated to be that significantly different. Time-resolved anisotropy decays were biexponential for all the dyes in SUVs, and this has been interpreted in terms of the compound motion model according to which the dye molecules can experience a fast wobbling-in-cone type of motion as well as a slow overall rotating motion of the cone containing the molecule. The expected bimolecular diffusion-controlled rates in SUVs, as estimated by comparing the microviscosities in SUVs (determined from rotational correlation times) and that in acetonitrile solution, are much slower than the observed fluorescence quenching rates, suggesting that reactant diffusion (translational) does not play any role in the quenching kinetics in the present systems. Accordingly, clear inversions are observed in the correlation of the fluorescence quenching rate constants k{sub q} with the free energy change, {delta}G{sup 0} of the reactions. However, the coumarin dyes, C152 and C481 (cf. Scheme 1), show unusually high k{sub q} values and high activation barriers, which is not expected from Marcus ET theory. This unusual behavior is explained on the basis of participation of the twisted intramolecular charge transfer states of these two dyes in the ET kinetics.

  15. Photoinduced bimolecular electron transfer kinetics in small unilamellar vesicles

    NASA Astrophysics Data System (ADS)

    Choudhury, Sharmistha Dutta; Kumbhakar, Manoj; Nath, Sukhendu; Pal, Haridas

    2007-11-01

    Photoinduced electron transfer (ET) from N,N-dimethylaniline to some coumarin derivatives has been studied in small unilamellar vesicles (SUVs) of the phospholipid, DL-?-dimyristoyl-phosphatidylcholine, using steady-state and time-resolved fluorescence quenching, both below and above the phase transition temperature of the vesicles. The primary interest was to examine whether Marcus inversion [H. Sumi and R. A. Marcus, J. Chem. Phys. 84, 4894 (1986)] could be observed for the present ET systems in these organized assemblies. The influence of the topology of SUVs on the photophysical properties of the reactants and consequently on their ET kinetics has also been investigated. Absorption and fluorescence spectral data of the coumarins in SUVs and the variation of their fluorescence decays with temperature indicate that the dyes are localized in the bilayer of the SUVs. Time-resolved area normalized emission spectra analysis, however, reveals that the dyes are distributed in two different microenvironments in the SUVs, which we attribute to the two leaflets of the bilayer, one toward bulk water and the other toward the inner water pool. The microenvironments in the two leaflets are, however, not indicated to be that significantly different. Time-resolved anisotropy decays were biexponential for all the dyes in SUVs, and this has been interpreted in terms of the compound motion model according to which the dye molecules can experience a fast wobbling-in-cone type of motion as well as a slow overall rotating motion of the cone containing the molecule. The expected bimolecular diffusion-controlled rates in SUVs, as estimated by comparing the microviscosities in SUVs (determined from rotational correlation times) and that in acetonitrile solution, are much slower than the observed fluorescence quenching rates, suggesting that reactant diffusion (translational) does not play any role in the quenching kinetics in the present systems. Accordingly, clear inversions are observed in the correlation of the fluorescence quenching rate constants kq with the free energy change, ?G0 of the reactions. However, the coumarin dyes, C152 and C481 (cf. Scheme 1), show unusually high kq values and high activation barriers, which is not expected from Marcus ET theory. This unusual behavior is explained on the basis of participation of the twisted intramolecular charge transfer states of these two dyes in the ET kinetics.

  16. Bidirectional Electron Transfer Capability in Phthalocyanine-Sc3N@Ih-C80 Complexes.

    PubMed

    Trukhina, Olga; Rudolf, Marc; Bottari, Giovanni; Akasaka, Takeshi; Echegoyen, Luis; Torres, Tomas; Guldi, Dirk M

    2015-10-14

    To activate oxidative and/or reductive electron transfer reactions, N-pyridyl-substituted Sc3N@Ih-C80 (4) and C60 (3) fulleropyrrolidines have been prepared and axially coordinated to electron-rich (1) or electron-deficient (2) Zn(II)phthalocyanines (Zn(II)Pcs) through zinc-pyridyl, metal-ligand coordination affording a full-fledged family of electron donor-acceptor ensembles. An arsenal of photophysical assays as they were carried out with, for example, 1/4 and 2/4 show unambiguously that a Zn(II)Pc-to-Sc3N@Ih-C80 photoinduced electron transfer takes place in the former ensemble, whereas a Sc3N@Ih-C80-to-Zn(II)Pc electron transfer occurs in the latter ensemble. To the best of our knowledge, this is the first time that a fullerene-based molecular building block shows an electron transfer dichotomy, namely acting both as electron-acceptor or electron-donor, and its outcome is simply governed by the electronic nature of its counterpart. In light of the latter, the present work, which involves the use of Sc3N@Ih-C80, one of the most abundant and easy-to-purify endohedral metallofullerenes, is, on one hand, a paradigmatic change and, on the other hand, an important milestone en-route toward the construction of easy-to-prepare molecular materials featuring switchable electron transfer reactivity. PMID:26401549

  17. Performance of alumina-supported Pt catalysts in an electron-beam-sustained CO2 laser amplifier

    NASA Astrophysics Data System (ADS)

    Cunningham, D. L.; Jones, P. L.; Miyake, C. I.; Moody, S. E.

    1990-06-01

    The performance of an alumina-supported Pt catalyst system used to maintain the gas purity in an electron-beam-sustained (636) isotope CO2 laser amplifier has been tested. The system characteristics using the two-zone, parallel flow reactor were determined for both continuous- and end-of-day reactor operation using on-line mass spectrometric sampling. The laser amplifier was run with an energy loading of typically 110 J-l/atm and an electron-beam current of 4 mA/sq cm. With these conditions and a pulse repetition frequency of 10 Hz for up to 10,000 shots, increases on the order of 100 ppm O2 were observed with the purifier on and 150 ppm with it off. The 1/e time recovery time was found to be approximately 75 minutes.

  18. Performance of alumina-supported Pt catalysts in an electron-beam-sustained CO2 laser amplifier

    NASA Technical Reports Server (NTRS)

    Cunningham, D. L.; Jones, P. L.; Miyake, C. I.; Moody, S. E.

    1990-01-01

    The performance of an alumina-supported Pt catalyst system used to maintain the gas purity in an electron-beam-sustained (636) isotope CO2 laser amplifier has been tested. The system characteristics using the two-zone, parallel flow reactor were determined for both continuous- and end-of-day reactor operation using on-line mass spectrometric sampling. The laser amplifier was run with an energy loading of typically 110 J-l/atm and an electron-beam current of 4 mA/sq cm. With these conditions and a pulse repetition frequency of 10 Hz for up to 10,000 shots, increases on the order of 100 ppm O2 were observed with the purifier on and 150 ppm with it off. The 1/e time recovery time was found to be approximately 75 minutes.

  19. Observation of orientation-dependent electron transfer in molecule–surface collisions

    PubMed Central

    Bartels, Nils; Golibrzuch, Kai; Bartels, Christof; Chen, Li; Auerbach, Daniel J.; Wodtke, Alec M.; Schäfer, Tim

    2013-01-01

    Molecules typically must point in specific relative directions to participate efficiently in energy transfer and reactions. For example, Förster energy transfer favors specific relative directions of each molecule’s transition dipole [Förster T (1948) Ann Phys 2(1-2):55–75] and electron transfer between gas-phase molecules often depends on the relative orientation of orbitals [Brooks PR, et al. (2007) J Am Chem Soc 129(50):15572–15580]. Surface chemical reactions can be many orders of magnitude faster than their gas-phase analogs, a fact that underscores the importance of surfaces for catalysis. One reason surface reactions can be so fast is the labile change of oxidation state that commonly takes place upon adsorption, a process involving electron transfer between a solid metal and an approaching molecule. By transferring electrons to or from the adsorbate, the process of bond weakening and/or cleavage is initiated, chemically activating the reactant [Yoon B, et al. (2005) Science 307(5708):403–407]. Here, we show that the vibrational relaxation of NO—an example of electronically nonadiabatic energy transfer that is driven by an electron transfer event [Gadzuk JW (1983) J Chem Phys 79(12):6341–6348]—is dramatically enhanced when the molecule approaches an Au(111) surface with the N atom oriented toward the surface. This represents a rare opportunity to investigate the steric influences on an electron transfer reaction happening at a surface. PMID:24127598

  20. Protein electron transfer: is biology (thermo)dynamic?

    PubMed

    Matyushov, Dmitry V

    2015-12-01

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life's ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein's elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic activated kinetics, which extends the transition-state theory to dynamically dispersive media. Releasing the grip of thermodynamics in kinetic calculations through nonergodicity provides the mechanism for an efficient optimization between reaction rates and the spectrum of relaxation times of the protein-water thermal bath. Bath dynamics, it appears, play as important role as the free energy in optimizing biology's performance. PMID:26558324

  1. Protein electron transfer: is biology (thermo)dynamic?

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2015-12-01

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life’s ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein’s elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic activated kinetics, which extends the transition-state theory to dynamically dispersive media. Releasing the grip of thermodynamics in kinetic calculations through nonergodicity provides the mechanism for an efficient optimization between reaction rates and the spectrum of relaxation times of the protein-water thermal bath. Bath dynamics, it appears, play as important role as the free energy in optimizing biology’s performance.

  2. A Dinuclear Ruthenium-Based Water Oxidation Catalyst: Use of Non-Innocent Ligand Frameworks for Promoting Multi-Electron Reactions

    PubMed Central

    Laine, Tanja M; Kärkäs, Markus D; Liao, Rong-Zhen; Siegbahn, Per E M; Åkermark, Björn

    2015-01-01

    Insight into how H2O is oxidized to O2 is envisioned to facilitate the rational design of artificial water oxidation catalysts, which is a vital component in solar-to-fuel conversion schemes. Herein, we report on the mechanistic features associated with a dinuclear Ru-based water oxidation catalyst. The catalytic action of the designed Ru complex was studied by the combined use of high-resolution mass spectrometry, electrochemistry, and quantum chemical calculations. Based on the obtained results, it is suggested that the designed ligand scaffold in Ru complex 1 has a non-innocent behavior, in which metal–ligand cooperation is an important part during the four-electron oxidation of H2O. This feature is vital for the observed catalytic efficiency and highlights that the preparation of catalysts housing non-innocent molecular frameworks could be a general strategy for accessing efficient catalysts for activation of H2O. PMID:25925847

  3. A Dinuclear Ruthenium-Based Water Oxidation Catalyst: Use of Non-Innocent Ligand Frameworks for Promoting Multi-Electron Reactions.

    PubMed

    Laine, Tanja M; Kärkäs, Markus D; Liao, Rong-Zhen; Siegbahn, Per E M; Åkermark, Björn

    2015-07-01

    Insight into how H2 O is oxidized to O2 is envisioned to facilitate the rational design of artificial water oxidation catalysts, which is a vital component in solar-to-fuel conversion schemes. Herein, we report on the mechanistic features associated with a dinuclear Ru-based water oxidation catalyst. The catalytic action of the designed Ru complex was studied by the combined use of high-resolution mass spectrometry, electrochemistry, and quantum chemical calculations. Based on the obtained results, it is suggested that the designed ligand scaffold in Ru complex 1 has a non-innocent behavior, in which metal-ligand cooperation is an important part during the four-electron oxidation of H2 O. This feature is vital for the observed catalytic efficiency and highlights that the preparation of catalysts housing non-innocent molecular frameworks could be a general strategy for accessing efficient catalysts for activation of H2 O. PMID:25925847

  4. Demonstration of Lignin-to-Peroxidase Direct Electron Transfer

    PubMed Central

    Sáez-Jiménez, Verónica; Baratto, Maria Camilla; Pogni, Rebecca; Rencoret, Jorge; Gutiérrez, Ana; Santos, José Ignacio; Martínez, Angel T.; Ruiz-Dueñas, Francisco Javier

    2015-01-01

    Versatile peroxidase (VP) is a high redox-potential peroxidase of biotechnological interest that is able to oxidize phenolic and non-phenolic aromatics, Mn2+, and different dyes. The ability of VP from Pleurotus eryngii to oxidize water-soluble lignins (softwood and hardwood lignosulfonates) is demonstrated here by a combination of directed mutagenesis and spectroscopic techniques, among others. In addition, direct electron transfer between the peroxidase and the lignin macromolecule was kinetically characterized using stopped-flow spectrophotometry. VP variants were used to show that this reaction strongly depends on the presence of a solvent-exposed tryptophan residue (Trp-164). Moreover, the tryptophanyl radical detected by EPR spectroscopy of H2O2-activated VP (being absent from the W164S variant) was identified as catalytically active because it was reduced during lignosulfonate oxidation, resulting in the appearance of a lignin radical. The decrease of lignin fluorescence (excitation at 355 nm/emission at 400 nm) during VP treatment under steady-state conditions was accompanied by a decrease of the lignin (aromatic nuclei and side chains) signals in one-dimensional and two-dimensional NMR spectra, confirming the ligninolytic capabilities of the enzyme. Simultaneously, size-exclusion chromatography showed an increase of the molecular mass of the modified residual lignin, especially for the (low molecular mass) hardwood lignosulfonate, revealing that the oxidation products tend to recondense during the VP treatment. Finally, mutagenesis of selected residues neighboring Trp-164 resulted in improved apparent second-order rate constants for lignosulfonate reactions, revealing that changes in its protein environment (modifying the net negative charge and/or substrate accessibility/binding) can modulate the reactivity of the catalytic tryptophan. PMID:26240145

  5. High throughput electron transfer from carbon dots to chloroplast: a rationale of enhanced photosynthesis

    NASA Astrophysics Data System (ADS)

    Chandra, Sourov; Pradhan, Saheli; Mitra, Shouvik; Patra, Prasun; Bhattacharya, Ankita; Pramanik, Panchanan; Goswami, Arunava

    2014-03-01

    A biocompatible amine functionalized fluorescent carbon dots were developed and isolated for gram scale applications. Such carbogenic quantum dots can strongly conjugate over the surface of the chloroplast and due to that strong interaction the former can easily transfer electrons towards the latter by assistance of absorbed light or photons. An exceptionally high electron transfer from carbon dots to the chloroplast can directly effect the whole chain electron transfer pathway in a light reaction of photosynthesis, where electron carriers play an important role in modulating the system. As a result, carbon dots can promote photosynthesis by modulating the electron transfer process as they are capable of fastening the conversion of light energy to the electrical energy and finally to the chemical energy as assimilatory power (ATP and NADPH).A biocompatible amine functionalized fluorescent carbon dots were developed and isolated for gram scale applications. Such carbogenic quantum dots can strongly conjugate over the surface of the chloroplast and due to that strong interaction the former can easily transfer electrons towards the latter by assistance of absorbed light or photons. An exceptionally high electron transfer from carbon dots to the chloroplast can directly effect the whole chain electron transfer pathway in a light reaction of photosynthesis, where electron carriers play an important role in modulating the system. As a result, carbon dots can promote photosynthesis by modulating the electron transfer process as they are capable of fastening the conversion of light energy to the electrical energy and finally to the chemical energy as assimilatory power (ATP and NADPH). Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06079a

  6. A framework for modeling electroactive microbial biofilms performing direct electron transfer.

    PubMed

    Korth, Benjamin; Rosa, Luis F M; Harnisch, Falk; Picioreanu, Cristian

    2015-12-01

    A modeling platform for microbial electrodes based on electroactive microbial biofilms performing direct electron transfer (DET) is presented. Microbial catabolism and anabolism were coupled with intracellular and extracellular electron transfer, leading to biofilm growth and current generation. The model includes homogeneous electron transfer from cells to a conductive biofilm component, biofilm matrix conduction, and heterogeneous electron transfer to the electrode. Model results for Geobacter based anodes, both at constant electrode potential and in voltammetric (dynamic electrode potential) conditions, were compared to experimental data from different sources. The model can satisfactorily describe microscale (concentration, pH and redox gradients) and macroscale (electric currents, biofilm thickness) properties of Geobacter biofilms. The concentration of electrochemically accessible redox centers, here denominated as cytochromes, involved in the extracellular electron transfer, plays the key role and may differ between constant potential (300 mM) and dynamic potential (3mM) conditions. Model results also indicate that the homogeneous and heterogeneous electron transfer rates have to be within the same order of magnitude (1.2 s(-1)) for reversible extracellular electron transfer. PMID:25921352

  7. Synthesis, structure and charge transport properties of Yb(5)Al(2)Sb(6): a zintl phase with incomplete electron transfer.

    PubMed

    Todorov, Iliya; Chung, Duck Young; Ye, Linhui; Freeman, Arthur J; Kanatzidis, Mercouri G

    2009-06-01

    We report the synthesis, structure, spectroscopic properties, charge and thermal transport, and electronic structure of a new member of the Zintl family, Yb(5)Al(2)Sb(6). The compound crystallizes in the Ba(5)Al(2)Bi(6) structure type and requires the addition of Ge or Si in the synthesis, which appears to act as a catalyst. Yb(5)Al(2)Sb(6) has an anisotropic structure with infinite anionic double chains cross-linked by Yb(2+) ions. Polycrystalline ingots of Yb(5)Al(2)Sb(6) prepared in the presence of 0.5 mol equiv of Ge showed room-temperature conductivity, thermopower, and thermal conductivity of approximately 1100 S/cm, approximately 20 microV/K, and approximately 3.8 W/m.K, respectively. Investigations of other solid solutions of Yb(5)Al(2)Sb(6), doping effects, and chemical modifications are discussed. Sr only partially replaces Yb in the structure leading to Sr(0.85)Yb(4.15)Al(2)Sb(6). Electronic structure calculations performed using a highly precise full-potential linearized augmented plane wave method within the density functional theory scheme show the presence of a negative band gap and suggest incomplete electron transfer and a metallic character to the compound. PMID:19374366

  8. Coherent transfer of light polarization to electron spins in a semiconductor

    E-print Network

    Hideo Kosaka; Hideki Shigyou; Yasuyoshi Mitsumori; Yoshiaki Rikitake; Hiroshi Imamura; Takeshi Kutsuwa; Koichiro Arai; Keiichi Edamatsu

    2007-10-20

    We demonstrate that the superposition of light polarization states is coherently transferred to electron spins in a semiconductor quantum well. By using time-resolved Kerr rotation we observe the initial phase of Larmor precession of electron spins whose coherence is transferred from light. To break the electron-hole spin entanglement, we utilized the big discrepancy between the transverse g-factors of electrons and light holes. The result encourages us to make a quantum media converter between flying photon qubits and stationary electron spin qubits in semiconductors.

  9. Localization of alkali metal ions in sodium-promoted palladium catalysts as studied by low energy ion scattering and transmission electron microscopy

    SciTech Connect

    Liotta, L.F.; Deganello, G.; Delichere, P.

    1996-12-01

    Three series of palladium-based catalysts have been studied by Low Energy Ion Scattering (LEIS) and Transmission Electron Microscopy (TEM). The first series is comprised of Na-Pd/SiO{sub 2} catalysts, obtained by addition of palladium to a silica support and by further addition of sodium ions with a Na/Pd atomic ratio (R) equal to 0,6.4 and 25.6. The second series consists of palladium catalysts supported on natural pumice, in which, due to a different loading of supported palladium, R{prime}, the (Na+K)/Pd atomic ratio, is equal to 17.0 and 39.4. The third series is represented by two palladium-based catalysts supported on {open_quotes}model pumices,{close_quotes} synthetic silico-aluminates, obtained by sol-gel techniques, with a different amount of sodium, and R equal to 2.1 and 6.1 respectively. LEIS experiments and electron microscopy demonstrate a different location of alkali metal ions in the first two series: in the Na-Pd/SiO{sub 2} catalysts sodium is distributed in a way which is not uniform on the support and on the palladium metal, which is partly decorated with Na ions, whereas in the Pd/natural-pumice series the palladium surface is sodium-free. The results on the third series of catalysts, Pd/model pumice, are not definitive on the basis of the LEIS and TEM analyses, but by FTIR study of CO and CO{sub 2} adsorption, the decoration of palladium by sodium ions could be excluded. The results confirm the importance of the alkali metal ion location in alkali-promoted palladium catalysts and open new possibilities in the design of palladium-supported catalysts by a better control of promoter location. 18 refs., 5 figs., 2 tabs.

  10. High throughput electron transfer from carbon dots to chloroplast: a rationale of enhanced photosynthesis.

    PubMed

    Chandra, Sourov; Pradhan, Saheli; Mitra, Shouvik; Patra, Prasun; Bhattacharya, Ankita; Pramanik, Panchanan; Goswami, Arunava

    2014-04-01

    A biocompatible amine functionalized fluorescent carbon dots were developed and isolated for gram scale applications. Such carbogenic quantum dots can strongly conjugate over the surface of the chloroplast and due to that strong interaction the former can easily transfer electrons towards the latter by assistance of absorbed light or photons. An exceptionally high electron transfer from carbon dots to the chloroplast can directly effect the whole chain electron transfer pathway in a light reaction of photosynthesis, where electron carriers play an important role in modulating the system. As a result, carbon dots can promote photosynthesis by modulating the electron transfer process as they are capable of fastening the conversion of light energy to the electrical energy and finally to the chemical energy as assimilatory power (ATP and NADPH). PMID:24562190

  11. The Potential Use of Electronic File Transfer in the National Archives.

    ERIC Educational Resources Information Center

    Thornton, Roberta

    This paper reviews the incompatibilities among federal government electronic records and explores the potential use of electronic file transfer in the National Archives. It begins by explaining the procedures of the current Center for Electronic Records (NNX) for dealing with accessioning, preservation, and reference tapes. The advantages and…

  12. On the efficient electron transfer through GEM C.Richter a, #

    E-print Network

    the pulse-height resolution. On the contrary, detectors based on photoemission or secondary-electron emission from a solid converter [2] or on gas-deposited single electron counting techniques [3], have1 On the efficient electron transfer through GEM C.Richter a, # , A. Breskin a , R. Chechik a

  13. Rates and Routes of Electron Transfer of [NiFe]-Hydrogenase in an Enzymatic Fuel Cell.

    PubMed

    Petrenko, Alexander; Stein, Matthias

    2015-10-29

    Hydrogenase enzymes are being used in enzymatic fuel cells immobilized on a graphite or carbon electrode surface, for example. The enzyme is used for the anodic oxidation of molecular hydrogen (H2) to produce protons and electrons. The association and orientation of the enzyme at the anode electrode for a direct electron transfer is not completely resolved. The distal FeS-cluster in [NiFe]-hydrogenases contains a histidine residue which is known to play a critical role in the intermolecular electron transfer between the enzyme and the electrode surface. The [NiFe]-hydrogenase graphite electrode association was investigated using Brownian Dynamics simulations. Residues that were shown to be in proximity to the electrode surface were identified (His184, Ser196, Glu461, Glu464), and electron transfer routes connecting the distal FeS-cluster with the surface residues were investigated. Several possible pathways for electron transfer between the distal FeS-cluster and the terminal amino acid residues were probed in terms of their rates of electron transfer using DFT methods. The reorganization energies ? of the distal iron-sulfur cluster and coronene as a molecular model for graphite were calculated. The reorganization energy of the distal (His)(Cys)3 cluster was found to be not very different from that of a standard cubane clusters with a (Cys)4 coordination. Electronic coupling matrix elements and rates of electron transfer for the different pathways were calculated according to the Marcus equation. The rates for glutamate-mediated electrode binding were found to be incompatible with experimental data. A direct electron transfer from the histidine ligand of the distal FeS-cluster to the electrode yielded rates of electron transfer in excellent agreement with experiment. A second pathway, however, from the distal FeS-cluster to the Ser196 residue was found to be equally efficient and feasible. PMID:26218232

  14. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect

    Hoffman, M.Z.

    1992-07-31

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes. (DLC)

  15. Study of intermediates from transition metal excited-state electron-transfer reactions

    NASA Astrophysics Data System (ADS)

    Hoffman, M. Z.

    1992-07-01

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes.

  16. Time-optimal polarization transfer from an electron spin to a nuclear spin

    NASA Astrophysics Data System (ADS)

    Yuan, Haidong; Zeier, Robert; Pomplun, Nikolas; Glaser, Steffen J.; Khaneja, Navin

    2015-11-01

    Polarization transfers from an electron spin to a nuclear spin are essential for various physical tasks, such as dynamic nuclear polarization in nuclear magnetic resonance and quantum information processing on hybrid electron-nuclear spin systems. We present time-optimal schemes for electron-nuclear polarization transfers which improve on conventional approaches, and we thereby establish an important class of faster controls. We highlight how time-optimal polarization transfers and their optimality are related to the time optimality of unitary transformations. Moreover, our work develops generally applicable analytic methods for analyzing the limits in controlling quantum systems.

  17. Efficient photoinduced orthogonal energy and electron transfer reactions via phospholipid membrane-bound donors and acceptors

    SciTech Connect

    Clapp, P.J.; Armitage, B.; Roosa, P.; O'Brien, D.F. )

    1994-10-05

    A three component, liposome-bound photochemical molecular device (PMD) consisting of energy and electron transfer reactions is described. Bilayer membrane surface-associated dyes, 5,10,15,20-tetrakis[4-(trimethylammonio)-phenyl]-21H,2 3H-porphine tetra-p-tosylate salt and N,N[prime]-bis[(3-trimethylammonio)propyl]thiadicarbocya nine tribromide, are the energy donor and acceptor, respectively, in a blue light stimulated energy transfer reaction along the vesicle surface. The electronically excited cyanine is quenched by electron transfer from the phospholipid membrane bound triphenylbenzyl borate anion, which is located in the lipid bilayer interior. The PMD exhibits sequential reactions following electronic excitation with the novel feature that the steps proceed with orthogonal orientation: energy transfer occurs parallel to the membrane surface, and electron transfer occurs perpendicular to the surface. Photobleaching and fluorescence quenching experiments verify the transfer reactions, and Stern-Volmer analysis was used to estimate the reaction rate constants. At the highest concentrations examined of energy and electron acceptor ca. 60% of the photoexcited porphyrins were quenched by energy transfer to the cyanine. 56 refs., 6 figs., 3 tabs.

  18. Effects of anharmonicity on diffusive-controlled symmetric electron transfer rates: From the weak to the strong electronic coupling regions

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan; Zhao, Yi

    2008-11-01

    The approach for the diffusive-controlled electron transfer rates [W. Zhu and Y. Zhao, J. Chem. Phys. 126, 184105 (2007)], which is modeled after the Sumi-Marcus theory, is applied to symmetric electron-transfer reactions in a solvent environment with anharmonic potential functions. The electron-transfer rates are evaluated using the quantum R-matrix theory for dealing with the intramolecular vibrational motions and imaginary-time split operator technique for solving the diffusive equations, thereby taking explicit account of the weak-to-strong electronic couplings. The effect of anharmonicity for both the solvent and intramolecular vibrational degrees of freedom are investigated. It is found that the anharmonicity of the intramolecular modes always enhances the rate while the solvent anharmonicity decreases the rate, compared with the harmonic modes. The possible mechanisms have been clarified.

  19. Experimental insights on the electron transfer and energy transfer processes between Ce3+-Yb3+ and Ce3+-Tb3+ in borate glass

    NASA Astrophysics Data System (ADS)

    Sontakke, Atul D.; Ueda, Jumpei; Katayama, Yumiko; Dorenbos, Pieter; Tanabe, Setsuhisa

    2015-03-01

    A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce3+-Yb3+ exhibits a steady rise with temperature, whereas the Ce3+-Tb3+ energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host. The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.

  20. The Role of Protein Fluctuation Correlations in Electron Transfer in Photosynthetic Complexes

    E-print Network

    Alexander I. Nesterov; Gennady P. Berman

    2014-11-28

    We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtain analytic expressions for the electron transfer rates. We compare the correlated and uncorrelated regimes, and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.

  1. Role of protein fluctuation correlations in electron transfer in photosynthetic complexes

    NASA Astrophysics Data System (ADS)

    Nesterov, Alexander I.; Berman, Gennady P.

    2015-04-01

    We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtained analytic expressions for the electron transfer rates and found the range of parameters for their applicability by comparing with the exact numerical simulations. We also compared the correlated and uncorrelated regimes and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.

  2. On the connection of semiclassical instanton theory with Marcus theory for electron transfer in solution

    NASA Astrophysics Data System (ADS)

    Shushkov, Philip

    2013-06-01

    We present a derivation of Marcus theory of electron transfer in solution starting from semiclassical instanton theory. The conventional semiclassical instanton theory provides an inadequate description of the electron transfer process in the inverted Marcus regime. This has been attributed to the lack of backscattering in the product region, which is represented as a semi-infinite continuum of states. For electron transfer processes in condensed phase, the electronic states in the acceptor well are bound, which violates the continuum assumption. We show by detailed analysis of the minimum action path of a model system for electron transfer that the proper tunneling coordinate is a delocalized, "bead-count" mode. The tunneling mode is analytically continued in the complex plane as in the traditional derivation. Unlike the traditional analysis where the method of steepest descent is used, the tunneling coordinate is treated as a quasi-zero mode. This feature allows including the influence of backscattering in the acceptor well and leads to the recovery of the Marcus formula for the rate of electron transfer. The results have implications on the performance of ring polymer molecular dynamics for the study of electron transfer dynamics.

  3. Pulse radiolytic studies of electron transfer processes and applications to solar photochemistry. Progress report

    SciTech Connect

    Neta, P.

    1995-02-01

    The pulse radiolysis technique is applied to the study of electron transfer processes in a variety of chemical systems. Reactive intermediates are produced in solution by electron pulse irradiation and the kinetics of their reactions are followed by time resolved absorption spectrophotometry. Complementary experiments are carried out with excimer laser flash photolysis. These studies are concerned with mechanisms, kinetics, and thermodynamics of reactions of organic and inorganic radicals and unstable oxidation states of metal ions. Reactions are studied in both aqueous and non-aqueous solutions. The studies focus on the unique ability of pulse radiolysis to provide absolute rate constants for reactions of many inorganic radicals and organic peroxyl radicals, species that are key intermediates in many chemical processes. A special concern of this work is the study of electron transfer reactions of metalloporphyrins, which permits evaluation of these molecules as intermediates in solar energy conversion. Metalloporphyrins react with free radicals via electron transfer, involving the ligand or the metal center, or via bonding to the metal, leading to a variety of chemical species whose behavior is also investigated. The highlights of the results during the past three years are summarized below under the following sections: (a) electron transfer reactions of peroxyl radicals, concentrating on the characterization of new peroxyl radicals derived from vinyl, phenyl, other aryl, and pyridyl; (b) solvent effects on electron transfer reactions of inorganic and organic peroxyl radicals, including reactions with porphyrins, and (c) electron transfer and alkylation reactions of metalloporphyrins and other complexes.

  4. On the connection of semiclassical instanton theory with Marcus theory for electron transfer in solution.

    PubMed

    Shushkov, Philip

    2013-06-14

    We present a derivation of Marcus theory of electron transfer in solution starting from semiclassical instanton theory. The conventional semiclassical instanton theory provides an inadequate description of the electron transfer process in the inverted Marcus regime. This has been attributed to the lack of backscattering in the product region, which is represented as a semi-infinite continuum of states. For electron transfer processes in condensed phase, the electronic states in the acceptor well are bound, which violates the continuum assumption. We show by detailed analysis of the minimum action path of a model system for electron transfer that the proper tunneling coordinate is a delocalized, "bead-count" mode. The tunneling mode is analytically continued in the complex plane as in the traditional derivation. Unlike the traditional analysis where the method of steepest descent is used, the tunneling coordinate is treated as a quasi-zero mode. This feature allows including the influence of backscattering in the acceptor well and leads to the recovery of the Marcus formula for the rate of electron transfer. The results have implications on the performance of ring polymer molecular dynamics for the study of electron transfer dynamics. PMID:23781778

  5. On the connection of semiclassical instanton theory with Marcus theory for electron transfer in solution

    SciTech Connect

    Shushkov, Philip

    2013-06-14

    We present a derivation of Marcus theory of electron transfer in solution starting from semiclassical instanton theory. The conventional semiclassical instanton theory provides an inadequate description of the electron transfer process in the inverted Marcus regime. This has been attributed to the lack of backscattering in the product region, which is represented as a semi-infinite continuum of states. For electron transfer processes in condensed phase, the electronic states in the acceptor well are bound, which violates the continuum assumption. We show by detailed analysis of the minimum action path of a model system for electron transfer that the proper tunneling coordinate is a delocalized, 'bead-count' mode. The tunneling mode is analytically continued in the complex plane as in the traditional derivation. Unlike the traditional analysis where the method of steepest descent is used, the tunneling coordinate is treated as a quasi-zero mode. This feature allows including the influence of backscattering in the acceptor well and leads to the recovery of the Marcus formula for the rate of electron transfer. The results have implications on the performance of ring polymer molecular dynamics for the study of electron transfer dynamics.

  6. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    NASA Astrophysics Data System (ADS)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-09-01

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  7. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C-O bond in the catalyzed electrochemical reduction of CO2.

    PubMed

    Costentin, Cyrille; Drouet, Samuel; Passard, Guillaume; Robert, Marc; Savéant, Jean-Michel

    2013-06-19

    Most of the electrocatalytic processes of interest in the resolution of modern energy challenges are associated with proton transfer. In the cases where heavy atom bond cleavage occurs concomitantly, the question arises of the exact nature of its coupling with proton-electron transfer within the catalytic cycle. The cleavage of a C-O bond in the catalyzed electrochemical conversion of CO2 to CO offers the opportunity to address this question. Electrochemically generated iron(0) porphyrins are efficient, specific, and durable catalysts provided they are coupled with Lewis or Brönsted acids. The cocatalyst properties of four Brönsted acids of increasing strength, water, trifluoroethanol, phenol, and acetic acid, have been systematically investigated. Preparative-scale electrolyses showed that carbon monoxide is the only product of the catalytic reaction. Methodic application of a nondestructive technique, cyclic voltammetry, with catalyst and CO2 concentrations, as well as H/D isotope effect, as diagnostic parameters allowed the dissection of the reaction mechanism. It appears that the key step of the reaction sequence consists of an electron transfer from the catalyst concerted with the cleavage of a C-O bond and the transfer of one proton. This is the second example, and an intermolecular version of such a concerted proton-electron bond-breaking reaction after a similar electrochemical process involving the cleavage of O-O bonds has been identified. It is the first time that a proton-electron transfer concerted with bond breaking has been uncovered as the crucial step in a catalytic multistep reaction. PMID:23692448

  8. Application of Degenerately Doped Metal Oxides in the Study of Photoinduced Interfacial Electron Transfer.

    PubMed

    Farnum, Byron H; Morseth, Zachary A; Brennaman, M Kyle; Papanikolas, John M; Meyer, Thomas J

    2015-06-18

    Degenerately doped In2O3:Sn semiconductor nanoparticles (nanoITO) have been used to study the photoinduced interfacial electron-transfer reactivity of surface-bound [Ru(II)(bpy)2(4,4'-(PO3H2)2-bpy)](2+) (RuP(2+)) molecules as a function of driving force over a range of 1.8 eV. The metallic properties of the ITO nanoparticles, present within an interconnected mesoporous film, allowed for the driving force to be tuned by controlling their Fermi level with an external bias while their optical transparency allowed for transient absorption spectroscopy to be used to monitor electron-transfer kinetics. Photoinduced electron transfer from excited-state -RuP(2+*) molecules to nanoITO was found to be dependent on applied bias and competitive with nonradiative energy transfer to nanoITO. Back electron transfer from nanoITO to oxidized -RuP(3+) was also dependent on the applied bias but without complication from inter- or intraparticle electron diffusion in the oxide nanoparticles. Analysis of the electron injection kinetics as a function of driving force using Marcus-Gerischer theory resulted in an experimental estimate of the reorganization energy for the excited-state -RuP(3+/2+*) redox couple of ?* = 0.83 eV and an electronic coupling matrix element, arising from electronic wave function overlap between the donor orbital in the molecule and the acceptor orbital(s) in the nanoITO electrode, of Hab = 20-45 cm(-1). Similar analysis of the back electron-transfer kinetics yielded ? = 0.56 eV for the ground-state -RuP(3+/2+) redox couple and Hab = 2-4 cm(-1). The use of these wide band gap, degenerately doped materials provides a unique experimental approach for investigating single-site electron transfer at the surface of oxide nanoparticles. PMID:25668488

  9. 78 FR 30661 - Electronic Fund Transfers (Regulation E)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ...specifically related to a remittance transfer. For organizational purposes, the December Proposal divided comment...Similarly, there are limited data on consumer behavior, which would be essential for quantifying the benefits or costs to...

  10. 78 FR 49365 - Electronic Fund Transfers (Regulation E); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ...final rules issued by the Bureau in February, July, and August 2012 (collectively the 2012 Final Rule) that implement section 1073 of the Dodd-Frank Wall Street Reform and Consumer Protection Act (Dodd-Frank Act) regarding remittance transfers....

  11. Evidence for two active branches for electron transfer in photosystem I

    E-print Network

    is used as a terminal acceptor. PS I uses iron-sulfur clusters as terminal acceptors, and the quinone, the electrons are transferred to an iron-sulfur cluster, FX, and then to the terminal iron-sulfur acceptors, FA

  12. Proton-coupled electron transfer : from basic principles to small molecule activation

    E-print Network

    Rosenthal, Joel, 1979-

    2007-01-01

    Proton-coupled electron transfer (PCET) is the basic mechanism for bioenergetic conversion. Hallmark examples of such reactivities include water oxidation which is coupled to photosynthesis and oxygen reduction which is ...

  13. Photochemical ribonucleotide reductase for the study of proton-coupled electron transfer

    E-print Network

    Reece, Steven Y., 1980-

    2007-01-01

    Charge transport and catalysis in enzymes often rely on amino acid radicals as intermediates. The generation and transport of these radicals are synonymous with proton-coupled electron transfer (PCET), which intrinsically ...

  14. 77 FR 34127 - Financial Management Service; Proposed Collection of Information: Electronic Transfer Account...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... Fiscal Service Financial Management Service; Proposed Collection of Information: Electronic Transfer Account (ETA) Financial Agency Agreement AGENCY: Financial Management Service, Fiscal Service, Treasury. ACTION: Notice and Request for comments. SUMMARY: The Financial Management Service, as part of...

  15. Small-molecule activation chemistry catalyzed by proton-coupled electron transfer

    E-print Network

    Chang, Christopher J., 1974-

    2002-01-01

    Proton-coupled electron transfer (PCET) is the basic mechanism for bioenergetic conversion. Consummate examples include water oxidation in photosynthesis and oxygen reduction in respiration. Despite the importance of PCET ...

  16. Nonadiabatic electron transfer in the condensed phase, via semiclassical and Langevin equation approach

    E-print Network

    Song, XiaoGeng, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    In this dissertation, we discuss two methods developed during my PhD study to simulate electron transfer systems. The first method, the semi-classical approximation, is derived from the stationary phase approximation to ...

  17. 36 CFR 1235.50 - What specifications and standards for transfer apply to electronic records?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...maintained by or for a Federal, national, or international standards organization. Acceptable transfer formats include the Geography Markup Language (GML) as defined by the Open GIS Consortium. (d) Textual documents . Electronic textual...

  18. 36 CFR 1235.50 - What specifications and standards for transfer apply to electronic records?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...maintained by or for a Federal, national, or international standards organization. Acceptable transfer formats include the Geography Markup Language (GML) as defined by the Open GIS Consortium. (d) Textual documents . Electronic textual...

  19. Comparative absorption, electroabsorption and electrochemical studies of intervalence electron transfer and

    E-print Network

    and ac- ceptor orbitals have lost their separate identities. Thus, for electron transfer to occur be normalized by application of Eq. (3), where Sab characterizes direct overlap between the orbitals a and b: c2

  20. 27 CFR 53.158 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...taxpayments) by electronic fund transfer (EFT). A taxpayer who elects to make remittance by EFT must use that method of remitting excise taxes...quarters. A taxpayer who makes remittance by EFT for a calendar quarter may not use any...

  1. 41 CFR 102-118.70 - Must my agency make all payments via electronic funds transfer?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...make all payments via electronic funds transfer? Yes, under 31 U.S.C. 3332, et seq., your agency must make all payments for goods and services via EFT (this includes goods and services ordered using charge...

  2. 76 FR 67153 - Federal Acquisition Regulation; Submission for OMB Review; Payment by Electronic Fund Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...under the contract by electronic fund transfer (EFT). The information necessary to make the EFT transaction is specified in clause 52.232-33...Central Contractor Registration, which requires EFT information to be provided as specified by...

  3. 75 FR 59172 - Electronic Funds Transfer of Depository Taxes; Hearing Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ...document cancels a public hearing on proposed regulation relating to Federal tax deposits (FTDs) by Electronic Funds Transfer (EFT). The proposed regulations affect all taxpayers that currently use FTD coupons. DATES: The public hearing, originally...

  4. Quantized orbital angular momentum transfer and magnetic dichroism in the interaction of electron vortices with matter.

    PubMed

    Lloyd, Sophia; Babiker, Mohamed; Yuan, Jun

    2012-02-17

    Following the very recent experimental realization of electron vortices, we consider their interaction with matter, in particular, the transfer of orbital angular momentum in the context of electron energy-loss spectroscopy, and the recently observed dichroism in thin film magnetized iron samples. We show here that orbital angular momentum exchange does indeed occur between electron vortices and the internal electronic-type motion, as well as center-of-mass motion of atoms in the electric dipole approximation. This contrasts with the case of optical vortices where such transfer only occurs in transitions involving multipoles higher than the dipole. The physical basis of the observed dichroism is explained. PMID:22401214

  5. Time-bin state transfer to electron spin coherence in solids

    SciTech Connect

    Kosaka, Hideo; Inagaki, Takahiro; Hitomi, Ryuta; Izawa, Fumishige; Mitsumori, Yasuyoshi; Edamatsu, Keiichi; Rikitake, Yoshiaki; Imamura, Hiroshi

    2014-12-04

    We demonstrate that a coherent superposition state of two temporally separated optical pulses, called a time-bin state, can be transferred to that of up/down electron spins in a semiconductor by synchronizing the time separation to the precession period of either electrons or holes. The time-bin transfer scheme does not require polarization mode degeneracy and can map the time-bin state to the electron spin state that is not accessible directly using only polarization. The scheme offers a new approach for quantum interfaces between photons and electron spins.

  6. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    PubMed

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-01-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor. PMID:26689792

  7. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    PubMed Central

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov’yov, Ilia A.

    2015-01-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome–a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor. PMID:26689792

  8. Vibrationaly Driven Electron Transfer in CH3NO2-CdotCH3I Clusters

    NASA Astrophysics Data System (ADS)

    Knurr, Benjamin J.; Adams, Christopher L.; Weber, J. Mathias

    2011-06-01

    Excitation of vibrations in species with weakly bound electrons can lead to the loss of electrons by vibrational autodetachment (VAD). If the molecular host of a weakly bound electron is stabilized by solvation, VAD can become energetically disallowed. However, electron transfer can take the role of VAD if the solvent can accept an excess electron. The analog of such a process via electronic excitation is known as charge transfer to solvent and can be seen as distinct absorption bands in the UV spectra of bulk solutions and clusters. We investigate vibrationally driven charge transfer in CH3NO2-CdotCH3I clusters, initiated by excitation of CH stretching and HCH bending fundamental transitions in the cluster. In the initial configuration, the excess electron is localized on the nitro group of the CH3NO2 moiety. Upon excitation and subsequent vibrational relaxation, charge transfer to the CH3I molecule leads to dissociative attachment of the excess electron and formation of an I- fragment. No other fragments are observed, leading to the conclusion that the charge transfer reaction is the most favorable pathway. The reaction can be shut down by solvation of the cluster ion by two or more Ar atoms, in which case Ar evaporation becomes the only observed channel. Isotopic substitution using CD3I is used to identify the vibrational modes in the action spectra in concert with calculated infrared spectra of the complex.

  9. Theoretical Study of Photoinduced Proton-Coupled Electron Transfer through Asymmetric Salt Bridges

    E-print Network

    Hammes-Schiffer, Sharon

    Theoretical Study of Photoinduced Proton-Coupled Electron Transfer through Asymmetric Salt Bridges transfer is 102 times slower through a donor-(amidinium-carboxylate)-acceptor salt bridge than through a donor-(amidinium-carboxylate)-acceptor salt bridge and the corresponding switched interface donor

  10. 48 CFR 52.232-33 - Payment by Electronic Funds Transfer-Central Contractor Registration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Fedwire Transfer System. The rules governing Federal payments through the ACH are contained in 31 CFR part... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Payment by Electronic Funds Transfer-Central Contractor Registration. 52.232-33 Section 52.232-33 Federal...

  11. 48 CFR 52.232-33 - Payment by Electronic Funds Transfer-Central Contractor Registration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Fedwire Transfer System. The rules governing Federal payments through the ACH are contained in 31 CFR part... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Payment by Electronic Funds Transfer-Central Contractor Registration. 52.232-33 Section 52.232-33 Federal...

  12. 48 CFR 52.232-33 - Payment by Electronic Funds Transfer-Central Contractor Registration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Fedwire Transfer System. The rules governing Federal payments through the ACH are contained in 31 CFR part... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Payment by Electronic Funds Transfer-Central Contractor Registration. 52.232-33 Section 52.232-33 Federal...

  13. Orbital Specific Charge Transfer Distances, Solvent Reorganization Energies, and Electronic Coupling Energies

    E-print Network

    Orbital Specific Charge Transfer Distances, Solvent Reorganization Energies, and Electronic: For the mixed-valent chromophore, (NC)5OsII-CN-RuIII(NH3)5 -, spin-orbit coupling and ligand-field asymmetry from an Os 5d orbital that is nominally orthogonal to the charge transfer axis. The lower energy

  14. Ground and Excited State Intramolecular Proton Transfer in Salicylic Acid: an Ab Initio Electronic Structure Investigation

    E-print Network

    Chowdhury, Arindam

    Ground and Excited State Intramolecular Proton Transfer in Salicylic Acid: an Ab Initio Electronic, India ReceiVed: April 12, 1999 Energetics of the ground and excited state intramolecular proton transfer at the restricted Hartree-Fock (RHF) and configuration interaction-single excitation (CIS) levels and also using

  15. Computational Studies on Electron and Proton Transfer in Phenol-Imidazole-Base Triads

    E-print Network

    Mukamel, Shaul

    Computational Studies on Electron and Proton Transfer in Phenol-Imidazole-Base Triads SHIHAI YAN,1 and proton transfer in phenol-imidazole-base systems (base 5 NH2 2 or OH2 ) were investi- gated by density was discussed in comparison with the phenol-base systems (base 5 imidazole, H2O, NH3, OH2 , and NH2 2

  16. 48 CFR 52.232-33 - Payment by Electronic Funds Transfer-Central Contractor Registration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...shall be made by electronic funds transfer (EFT), except as provided in paragraph (a...clause. As used in this clause, the term “EFT” refers to the funds transfer and may...unable to release one or more payments by EFT, the Contractor agrees to either—...

  17. Experimental and Theoretical Demonstrations for the Mechanism behind Enhanced Microbial Electron Transfer by CNT Network

    PubMed Central

    Liu, Xian-Wei; Chen, Jie-Jie; Huang, Yu-Xi; Sun, Xue-Fei; Sheng, Guo-Ping; Li, Dao-Bo; Xiong, Lu; Zhang, Yuan-Yuan; Zhao, Feng; Yu, Han-Qing

    2014-01-01

    Bioelectrochemical systems (BESs) share the principle of the microbially catalyzed anodic substrate oxidation. Creating an electrode interface to promote extracellular electron transfer from microbes to electrode and understanding such mechanisms are crucial for engineering BESs. In this study, significantly promoted electron transfer and a 10-times increase in current generation in a BES were achieved by the utilization of carbon nanotube (CNT) network, compared with carbon paper. The mechanisms for the enhanced current generation with the CNT network were elucidated with both experimental approach and molecular dynamic simulations. The fabricated CNT network was found to be able to substantially enhance the interaction between the c-type cytochromes and solid electron acceptor, indicating that the direct electron transfer from outer-membrane decaheme c-type cytochromes to electrode might occur. The results obtained in this study will benefit for the optimized design of new materials to target the outer membrane proteins for enhanced electron exchanges. PMID:24429552

  18. Rerouting Electron Transfer in Molecular Assemblies by Redox-Pair Matching.

    PubMed

    Balgley, Renata; Shankar, Sreejith; Lahav, Michal; van der Boom, Milko E

    2015-10-12

    We demonstrate how the distance over which electron transfer occurs through organic materials can be controlled and extended. Coating of conductive surfaces with nanoscale layers of redox-active metal complexes allows the electrochemical addressing of distant layers that are otherwise electrochemically silent. Our materials can pass electrons selectively in directions that are determined by positioning of layers of metal complexes and the distances between them. These electron-transfer processes can be made dominantly uni- or bidirectional. The design involves 1)?a set of isostructural metal complexes with different electron affinities, 2)?a scalable metal-organic spacer, and 3) a versatile assembly approach that allows systematic variation of composition, structure, and electron-transfer properties. We control the electrochemical communication between interfaces by the deposition sequence and the spacer length, therefore we are able to program the bulk properties of the assemblies. PMID:26356009

  19. Measurement of the charge transfer efficiency of electrons clocked on superfluid helium

    SciTech Connect

    Sabouret, G.; Lyon, S.A.

    2006-06-19

    Electrons floating on the surface of liquid helium are possible qubits for quantum information processing. Varying electric potentials do not modify spin states, which allows their transport on helium using a charge-coupled device (CCD)-like array of underlying gates. This scheme depends on an efficient intergate electron transfer and on the absence of electron traps. We will present a measurement of the charge transfer efficiency (CTE) of electrons clocked back and forth above a short CCD-like structure. The CTE obtained at low clocking frequencies is 0.999 with an electron density of about 4 electrons/{mu}m{sup 2}. We find no evidence for deep electron trapping.

  20. Activation of Single-Component Nickel(II) Polyethylene Catalysts via Phase Transfer of Fluorous Phosphine Ligands.

    PubMed

    Xi, Zhenxing; Bazzi, Hassan S; Gladysz, John A

    2015-09-01

    The nickel salicylaldiminato phosphine complexes [1,2,3-C6H3(9-anthracenyl)O(CH?N(2,6-C6H3(iPr)2)]Ni(Me)[P(4-C6H4R)3] (4; R = a, (CH2)2Rf8; b, (CH2)3Rf8; c, H (Rf8 = (CF2)7CF3)) are prepared from the corresponding phosphines 3a-c and nickel NCMe adduct (46-68%). These are applied as catalysts for ethylene polymerization in toluene and fluorous/toluene liquid/liquid biphasic mixtures. Under the latter conditions, the fluorous phosphines 3a,b that must dissociate to generate the active catalyst migrate to the fluorous phase (partition coefficients 97.5:2.5 and 66.6:33.4 vs <0.5:>99.5 for 4a,b). Catalysts 4a,b show marked accelerations under biphasic conditions, but 4c (which has a lipophilic phosphine ligand) does not. Under all conditions, 4a,b are faster catalysts than the Ni(Ph)(PPh3) analogue, a previously reported benchmark. PMID:26300472

  1. Structural basis of inter-protein electron transfer for nitrite reduction in denitrification.

    PubMed

    Nojiri, Masaki; Koteishi, Hiroyasu; Nakagami, Takuya; Kobayashi, Kazuo; Inoue, Tsuyoshi; Yamaguchi, Kazuya; Suzuki, Shinnichiro

    2009-11-01

    Recent earth science studies have pointed out that massive acceleration of the global nitrogen cycle by anthropogenic addition of bio-available nitrogen has led to a host of environmental problems. Nitrous oxide (N(2)O) is a greenhouse gas that is an intermediate during the biological process known as denitrification. Copper-containing nitrite reductase (CuNIR) is a key enzyme in the process; it produces a precursor for N(2)O by catalysing the one-electron reduction of nitrite (NO2-) to nitric oxide (NO). The reduction step is performed by an efficient electron-transfer reaction with a redox-partner protein. However, details of the mechanism during the electron-transfer reaction are still unknown. Here we show the high-resolution crystal structure of the electron-transfer complex for CuNIR with its cognate cytochrome c as the electron donor. The hydrophobic electron-transfer path is formed at the docking interface by desolvation owing to close contact between the two proteins. Structural analysis of the interface highlights an essential role for the loop region with a hydrophobic patch for protein-protein recognition; it also shows how interface construction allows the variation in atomic components to achieve diverse biological electron transfers. PMID:19890332

  2. pH-Dependent Reduction Potentials and Proton-Coupled Electron Transfer Mechanisms in Hydrogen-Producing Nickel Molecular Electrocatalysts

    SciTech Connect

    Horvath, Samantha; Fernandez, Laura; Appel, Aaron M.; Hammes-Schiffer, Sharon

    2013-04-01

    The nickel-based Ph Bz 2 2 P N electrocatalysts, which are comprised of a nickel atom and two 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane ligands, have been shown to effectively catalyze H2 production in acetonitrile. Recent electrochemical experiments revealed a linear dependence of the NiII/I reduction potential on pH, suggesting a proton-coupled electron transfer (PCET) reaction. In the proposed mechanism, the catalytic cycle begins with a PCET process involving electrochemical electron transfer to the nickel center and intermolecular proton transfer from an acid to the pendant amine ligand. This paper presents quantum mechanical calculations of this PCET process to examine the thermodynamics of the sequential mechanisms, in which either the electron or the proton transfers first (ET–PT and PT–ET, respectively), and the concerted mechanism (EPT). The favored mechanism depends on a balance among many factors, including the acid strength, association free energy for the acid–catalyst complex, PT free energy barrier, and ET reduction potential. The ET reduction potential is less negative after PT, favoring the PT–ET mechanism, and the association free energy is less positive after reduction, favoring the ET–PT mechanism. The calculations, along with analysis of the experimental data, indicate that the sequential ET–PT mechanism is favored for weak acids because of the substantial decrease in the association free energy after reduction. For strong acids, however, the PT–ET mechanism may be favored because the association free energy is somewhat smaller and PT is more thermodynamically favorable. The concerted mechanism could also occur, particularly for intermediate acid strengths. In the context of the entire catalytic cycle for H2 production, the initial PCET process involving intermolecular PT has a more negative reduction potential than the subsequent PCET process involving intramolecular PT. As a result, the second PCET should occur spontaneously, which is consistent with cyclic voltammogram experiments. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  3. Intramolecular, photoinduced electron transfer in ruthenium(II) bipyridine-quinone complexes

    SciTech Connect

    Opperman, K.A.; Mecklenburg, S.L.; Meyer, T.J.

    1994-11-09

    Adsorption spectroscopy and transient emission spectroscopy were used to follow intramolecular electron transfer quenching after metal-to-ligand charge transfer (MLCT) excitation of Ru(II)bipyridine-quinone complexes. Studies of various N-((4{prime}methyl-2-2{prime}-bipyridyl)-4-methyl)-9,10-anthraquinone-2-carboxamide (bpy-AQ) complexes, revealed that these complexes quench by rapid electron transfer from ligand radical excited states to the metal center. A donor-chromophore-acceptor complex with the bpy-AQ ligand and the (10-[4({prime}-methyl-2,2{prime}-bipyridin-4-yl)methylphenothiazine)] (bpy-PTZ) ligand displays redox separation on excitation.

  4. Building model systems to understand Proton-Coupled Electron Transfer in heme : spectroscopic investigation of charge transfer to axially bound diimide acceptors

    E-print Network

    Hanson, Christina J

    2013-01-01

    Proton-Coupled Electron Transfer (PCET) is an important mechanistic motif in chemistry, which allows for efficient charge transport in many biological systems. We seek to understand how the proton and electron motions are ...

  5. Correlating structure and function for nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Henkelman, Graeme

    2014-03-01

    Better oxygen reduction catalysts are needed to improve the efficiency and lower the cost of fuel cells. Metal nanoparticles are good candidates for new catalysts because their catalytic properties are different from bulk metals, and are sensitive to particle size, shape and composition. The electronic structure can be determined for small particles, making it possible to optimize particles for a desired reaction. Here, we calculate the electronic structure of 1 nm core/shell particles and show how the energy of electrons in the shell can tune the binding of oxygen by varying the core metal. Transition state calculations for O2 dissociation on the nanoparticle surface show that the d-band center is a good measure of the activation and reaction energies. Two factors are found to be significant for determining the catalytic activity of small nanoparticles; charge transfer in core/shell particles and the rigidity of alloy particles.

  6. Frontier orbital symmetry control of intermolecular electron transfer

    SciTech Connect

    Stevens, B.

    1991-09-01

    This report contains sections describing the selection of electron donor-acceptor systems, the synthesis and photophysical properties of linked electron-donor-acceptor systems, the estimation of photoinduced charge-separation rate constants from fluorescence quenching data, and radical ion-pair recombination by picosecond transient absorption spectroscopy. 9 refs., 1 fig., 7 tabs.

  7. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor

    SciTech Connect

    Kumazaki, Shigeichi; Kandori, Hideki; Yoshihara, Keitaro ); Iwaki, Masayo; Itoh, Shigeru ); Ikegamu, Isamu )

    1994-10-27

    Rates of sequential electron transfer reactions from the primary electron donor chlorophyll dimer (P700) to the electron acceptor chlorophyll a-686 (A[sub 0]) and to the secondary acceptor quinone (Q[sub [phi

  8. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  9. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes

    PubMed Central

    Westlake, Brittany C.; Brennaman, M. Kyle; Concepcion, Javier J.; Paul, Jared J.; Bettis, Stephanie E.; Hampton, Shaun D.; Miller, Stephen A.; Lebedeva, Natalia V.; Forbes, Malcolm D. E.; Moran, Andrew M.; Meyer, Thomas J.; Papanikolas, John M.

    2011-01-01

    The simultaneous, concerted transfer of electrons and protons—electron-proton transfer (EPT)—is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4?-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H+ is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck–Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated +H?B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state. PMID:21555541

  10. Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method

    NASA Astrophysics Data System (ADS)

    Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2015-06-01

    We report a simple, versatile, and wafer-scale water-assisted transfer printing method (WTP) that enables the transfer of nanowire devices onto diverse nonconventional substrates that were not easily accessible before, such as paper, plastics, tapes, glass, polydimethylsiloxane (PDMS), aluminum foil, and ultrathin polymer substrates. The WTP method relies on the phenomenon of water penetrating into the interface between Ni and SiO2. The transfer yield is nearly 100%, and the transferred devices, including NW resistors, diodes, and field effect transistors, maintain their original geometries and electronic properties with high fidelity.

  11. Transferred metal electrode films for large-area electronic devices

    SciTech Connect

    Yang, Jin-Guo; Kam, Fong-Yu; Chua, Lay-Lay

    2014-11-10

    The evaporation of metal-film gate electrodes for top-gate organic field-effect transistors (OFETs) limits the minimum thickness of the polymer gate dielectric to typically more than 300?nm due to deep hot metal atom penetration and damage of the dielectric. We show here that the self-release layer transfer method recently developed for high-quality graphene transfer is also capable of giving high-quality metal thin-film transfers to produce high-performance capacitors and OFETs with superior dielectric breakdown strength even for ultrathin polymer dielectric films. Dielectric breakdown strengths up to 5–6 MV cm{sup ?1} have been obtained for 50-nm thin films of polystyrene and a cyclic olefin copolymer TOPAS{sup ®} (Zeon). High-quality OFETs with sub-10?V operational voltages have been obtained this way using conventional polymer dielectrics and a high-mobility polymer semiconductor poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene-2,5-diyl]. The transferred metal films can make reliable contacts without damaging ultrathin polymer films, self-assembled monolayers and graphene, which is not otherwise possible from evaporated or sputtered metal films.

  12. 78 FR 30661 - Electronic Fund Transfers (Regulation E)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... implement the remittance transfer provisions in section 1073 of the Dodd-Frank Act. See 76 FR 29902 (May 23... effective October 28, 2013. The effective date of the rules published February 7, 2012 (77 FR 6194), July 10, 2012 (77 FR 40459), and August 20, 2012 (77 FR 50244), which were delayed on January 29, 2013 (78...

  13. 77 FR 6193 - Electronic Fund Transfers (Regulation E)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ...transfers sent through the FedGlobal's Canadian and European services were commercial...63-2-503.1j; Letter from Bobi Shields- Farrelly, United Nations Federal Credit...conduct. However, nothing in the rule shields agents from liability, nor does it...

  14. Observation of proton transfer in 2-aminopyridine dimer by electron and mass spectroscopy.

    PubMed

    Samoylova, Elena; Radloff, Wolfgang; Ritze, Hans-Hermann; Schultz, Thomas

    2009-07-23

    A photoinitiated intermolecular electron-proton transfer reaction in 2-aminopyridine dimer was investigated by femtosecond pump-probe electron-ion coincidence spectroscopy and accompanying theory. Excited-state population dynamics were observed in real time by time-resolved mass spectroscopy, and the respective excited-state character of locally excited and proton/hydrogen transfer states was identified in coincident electron spectra. Two reaction channels for an ultrafast (sub-50 fs) and a slower (approximately 75 ps) proton/hydrogen transfer were observed and indicate that vibrational energy redistribution may lead to efficient population trapping in the excited state. Spectroscopic evidence of an unexpected hydrogen-transfer reaction in photoexcited aminopyridine monomer is also presented. PMID:19569694

  15. Electron transfer of carbonylmetalate radical pairs: femtosecond visible spectroscopy of optically excited ion pairs

    SciTech Connect

    Wen, X.; Spears, K.G.; Wiederrecht, G.P.; Wasielewski, M.R.

    1997-02-01

    Charge transfer excitation at 640 nm of the cobaltocenium tetracarbonylcobaltate ion pair, [Cp{sub 2}Co{sup +}{vert_bar}Co(CO){sub 4}{sup -}], was monitored in 1,2- dichloroethane solution by femtosecond transient visible absorption spectroscopy. The absorption prepares a neutral radical pair that can undergo spontaneous back electron transfer, and which shows a double peaked spectrum with features at 760 and 815 nm at 3 ps delay time. Transient decay times of 5.8{+-}0.5 ps were measured by monitoring the decay of Co(CO){sub 4} at 757 nm and 780 nm, and these are assigned to the back electron transfer step. The ET kinetics are consistent with the previously reported rates of electron transfer that were measured for specific vibrational states by picosecond transient IR.

  16. Parameterization of diffusion-limited electron-transfer quenching in the finite sink approximation

    NASA Astrophysics Data System (ADS)

    Stevens, B.; Biver, C. J., III; McKeithan, D. N.

    1991-12-01

    The electron-transfer quenching of 9,10-dicyanoanthracene fluorescence by a series of amine donors in 1,2-ethanediol has been investigated. Application of the finite sink modification of the time-independent Smoluchowski—Collins—Kimball expression both establishes the diffusion-limited condition and permits independent recovery of the relative diffusion coefficient D and effective transfer distance R from the quenching data. The increase in R from 420 pm for benzylamine ( EQ +/Q =1.2 V) to 840 pm for N,N'-dimethylaniline ( EQ +/Q =0.81 V) is consistent with (long-range) electron transfer in the solvent separated reactant pair for the more exergonic system, which may effectively mask activated electron transfer in the "inverted" region at the encounter separation. Alternatively a concomitant increase in diffusion coefficient may signify different quenching encounter trajectories of these ellipsoidal diffusants.

  17. Demonstration of Proton-coupled Electron Transfer in the Copper-containing Nitrite Reductases*S

    E-print Network

    partner protein and is buried 7 Å beneath the protein surface (10), and the other copper is a type 2 electron donor for the blue NiRs are the small copper protein azurin (14 kDa) (7) and cyto- chrome c551 (7Demonstration of Proton-coupled Electron Transfer in the Copper-containing Nitrite Reductases

  18. Cyclic electron transfer in plant leaf Pierre Joliot* and Anne Joliot

    E-print Network

    process in algae or plants operates according to two nonmutually exclusive modes: linear and cyclicCyclic electron transfer in plant leaf Pierre Joliot* and Anne Joliot Institut de Biologie Physico) in broken chloroplasts. In unicellular algae, a cyclic electron flow operates in anaerobic conditions (3, 4

  19. Electron transfer reaction dynamics of p-nitroaniline in water from liquid to supercritical conditions.

    PubMed

    Osawa, Koji; Terazima, Masahide; Kimura, Yoshifumi

    2012-09-20

    Photoexcitation dynamics of p-nitroaniline (pNA) have been investigated by femto-second transient absorption spectroscopy in water from liquid to supercritical conditions; along the isochoric line from the ambient condition to 664 K at 40.1 MPa and along the isothermal line from 40.1 to 36.1 MPa at 664 K. The rates of the back electron transfer reaction from the photoexcited charge transfer state to the electronic ground state was determined by the bleach recovery of the ground state absorption, and the successive vibrational relaxation in the electronic ground state was determined by the hot-band decay which was apparent at the red edge of the absorption. The variation of the back electron transfer rate was compared with the prediction based on the electron transfer theory including the Franck-Condon active vibrational modes. The results indicated that both the free energy change of the reaction and the change of the intramolecular vibrational reorganization energy cause the characteristic density (or temperature) dependence of the back electron transfer rate. The density dependence of the vibrational relaxation rate was compared with the collision frequency and the coordination number of the solvent molecule around the solute estimated by the molecular dynamics simulations. The density dependence of the coordination of a water oxygen atom to an amino hydrogen atom of pNA was found to be correlated with the density dependence of vibrational relaxation rate. PMID:22909090

  20. Excitation of the ligand-to-metal charge transfer band induces electron tunnelling in azurin

    NASA Astrophysics Data System (ADS)

    Baldacchini, Chiara; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2014-03-01

    Optical excitation of azurin blue copper protein immobilized on indium-tin oxide, in resonance with its ligand-to-metal charge transfer absorption band, resulted in a light-induced current tunnelling within the protein milieu. The related electron transport rate is estimated to be about 105 s-1. A model based on resonant tunnelling through an azurin excited molecular state is proposed. The capability of controlling electron transfer processes through light pulses opens interesting perspectives for implementation of azurin in bio-nano-opto-electronic devices.

  1. Excitation of the ligand-to-metal charge transfer band induces electron tunnelling in azurin

    SciTech Connect

    Baldacchini, Chiara; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2014-03-03

    Optical excitation of azurin blue copper protein immobilized on indium-tin oxide, in resonance with its ligand-to-metal charge transfer absorption band, resulted in a light-induced current tunnelling within the protein milieu. The related electron transport rate is estimated to be about 10{sup 5}?s{sup ?1}. A model based on resonant tunnelling through an azurin excited molecular state is proposed. The capability of controlling electron transfer processes through light pulses opens interesting perspectives for implementation of azurin in bio-nano-opto-electronic devices.

  2. Electron transfer within xanthine oxidase: A solvent kinetic isotope effect study

    SciTech Connect

    Hille, R. )

    1991-09-03

    Solvent kinetic isotope effect studies of electron transfer within xanthine oxidase have been performed, using a stopped-flow pH-jump technique to perturb the distribution of reducing equivalents within partially reduced enzyme and follow the kinetics of reequilibration spectrophotometrically. It is found that the rate constant for electron transfer between the flavin and one of the iron-sulfur centers of the enzyme observed when the pH is jumped from 10 to 6 decreases from 173 to 25 s{sup {minus}1} on going from HJ{sub 2}O to D{sub 2}O, giving an observed solvent kinetic isotope effect of 6.9. An effect of comparable magnitude is observed for the pH jump in the opposite direction, the rate constant decreasing form 395 to 56 s{sup {minus}1}. The solvent kinetic isotope effect on k{sub obs} is found to be directly proportional to the mole fraction of D{sub 2}O in the reaction mix for the pH jump in each direction, consistent with the effect arising from a single exchangeable proton. Calculations of the microscopic rate constants for electron transfer between the flavin and the iron-sulfur center indicate that the intrinsic solvent kinetic isotope effect for electron transfer from the neutral flavin semiquinone to the iron-sulfur center designated Fe/S I is substantially greater than for electron transfer in the opposite direction and that the observed solvent kinetic isotope effect is a weighted average of the intrinsic isotope effects for the forward and reverse microscopic electron-transfer steps. The results emphasize the importance of prototropic equilibria in the kinetic as well as thermodynamic behavior of xanthine oxidase and indicate that protonation/deprotonation of the isoalloxazine ring is concomitant with electron transfer in the xanthine oxidase system.

  3. Expression for momentum-transfer scattering in inelastic collisions in electron transport in a collisional plasma

    NASA Astrophysics Data System (ADS)

    Makabe, Toshiaki; White, Ronald

    2015-12-01

    An expression for the inelastic momentum-transfer scattering on the collision integral of the Boltzmann equation is derived in order to reflect the effect of an inelastic collision of an electron with a molecule on the electron kinetics in gases and collisional plasmas. To our knowledge, this is the first attempt to formulate the explicit effect of the momentum-transfer scattering of an inelastic collision. The present procedure is a traditional one in which the Boltzmann equation of electrons is expanded in spherical-harmonics in velocity space. It is shown that the effect of the inelastic momentum-transfer on the electron transport is expressed only when we consider the first anisotropic part of the velocity distribution in the expanded Boltzmann equation. In addition, case studies are performed by considering the dependence of the scattering angle and the magnitude distribution.

  4. Direct electron transfer from electrode to electrochemically active bacteria in a bioelectrochemical dechlorination system.

    PubMed

    Liu, Ding; Lei, Lecheng; Yang, Bin; Yu, Qingni; Li, Zhongjian

    2013-11-01

    Pentachlorophenol (PCP) was dechlorinated by electrochemically active bacteria using an electrode as the direct electron donor. Dechlorination efficiency and coulombic efficiency (CE) were investigated. When hydrogen evolution reaction was eliminated by controlling the potential, both dechlorination efficiency and CE increase as the potential decreases, which implied the dechlorination was stimulated by electric current rather than hydrogen gas. Further investigation of the cyclic voltammetry characterization of the medium revealed nearly no redox mediator secreted by the bacteria. Moreover, the comparison of dechlorination experiments carried out with filtered and unfiltered medium provided convincible evidence that the dominating electron transfer mechanism for the dechlorination is direct electron transfer. Additionally, 454 pyrosequencing technique was employed to gain a comprehensive understanding of the biocathodic microbial community. The results showed Proteobacteria, Bacteroidetes and Firmicutes were the three predominant groups. This paper demonstrated the direct electron transfer mechanism could be involved in PCP dechlorination with a biocathode. PMID:24035815

  5. Photo-induced electron transfer between a dendritic zinc(II) phthalocyanine and methyl viologen

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Chen, Jiangxu; Huang, Lishan; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2013-01-01

    The intermolecular electron transfer between the carboxylic dendritic zinc(II) phthalocyanines [G1-ZnPc( and G2-ZnPc(] and methyl viologen (MV) is studied by steady-state fluorescence and UV/Vis absorption spectroscopic method. The effect of dendron generation of this series of dendritic phthalocyanines on intermolecular electron transfer is investigated. The results show that the fluorescence emission of these dendritic phthalocyanines could be greatly quenched by MV upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer is decreased with increasing dendron generations. Our study suggests that these dendritic phthalocyanines are an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.

  6. Simulation of heat transfer in zone plate optics irradiated by X-ray free electron laser radiation

    E-print Network

    Simulation of heat transfer in zone plate optics irradiated by X-ray free electron laser radiation Zone plate XFEL Heat transfer a b s t r a c t Zone plates are high quality optics that have substrate irradiated by 0.1 nm X-rays from the European X-ray Free Electron Laser. The heat transfer

  7. Resolution of proton and electron transfer events in the photosynthetic reaction center and the cytochrome-bc1 complex of

    E-print Network

    Steinhoff, Heinz-Jürgen

    S12-005 Resolution of proton and electron transfer events in the photosynthetic reaction center; Keywords: proton transfer, electron transfer, bc1 complex, Rhodobacter capsulatus. 1. Introduction. Flashes potential and the acidification of the chromatophore interior. As a result, protons are driven out

  8. Electron Transfer and Proton-Coupled Electron Transfer Reactivity and Self-Exchange of Synthetic [2Fe–2S] Complexes: Models for Rieske and mitoNEET Clusters

    PubMed Central

    2015-01-01

    This report describes the thermochemistry, proton-coupled electron transfer (PCET) reactions and self-exchange rate constants for a set of bis-benzimidazolate-ligated [2Fe–2S] clusters. These clusters serve as a model for the chemistry of biological Rieske and mitoNEET clusters. PCET from [Fe2S2(Prbbim)(PrbbimH)]2– (4) and [Fe2S2(Prbbim)(PrbbimH2)]1– (5) to TEMPO occurs via concerted proton–electron transfer (CPET) mechanisms (PrbbimH2 = 4,4-bis-(benzimidazol-2-yl)heptane). Intermolecular electron transfer (ET) self-exchange between [Fe2S2(Prbbim)2]2– (1) and [Fe2S2(Prbbim)2]3– (2) occurs with a rate constant of (1.20 ± 0.06) × 105 M–1 s–1 at 26 °C. A similar self-exchange rate constant is found for the related [2Fe–2S] cluster [Fe2S2(SArO)2]2–/3–, SArO2– = thiosalicylate. These are roughly an order of magnitude slower than that reported for larger [4Fe–4S] clusters and 1 order of magnitude faster than that reported for N-ligated high-spin iron complexes. These results suggest that the rate of intermolecular ET to/from [Fe–S] clusters is modulated by cluster size. The measured PCET self-exchange rate constant for 1 and 4 at ?30 °C is (3.8 ± 0.7) × 104 M–1 s–1. Analysis of rate constants using the Marcus cross-relation suggests that this process likely occurs via a concerted proton–electron transfer (CPET) mechanism. The implications of these findings to biological systems are also discussed, including the conclusion that histidine-ligated [2Fe–2S] clusters should not have a strong bias to undergo concerted e–/H+ transfers. PMID:24592857

  9. Whitehead Institute stock gift instructions > Donating securities is best accomplished by electronic transfer via a broker > Following the stock transfer, please notify the

    E-print Network

    Sabatini, David M.

    Whitehead Institute stock gift instructions > Donating securities is best accomplished by electronic transfer via a broker > Following the stock transfer, please notify the Whitehead Institute 02110 617.261.1000 800.225.2374 Following the stock transfer, please notify the Whitehead Institute

  10. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  11. Transfer printing of thermoreversible ion gels for flexible electronics.

    PubMed

    Lee, Keun Hyung; Zhang, Sipei; Gu, Yuanyan; Lodge, Timothy P; Frisbie, C Daniel

    2013-10-01

    Thermally assisted transfer printing was employed to pattern thin films of high capacitance ion gels on polyimide, poly(ethylene terephthalate), and SiO2 substrates. The ion gels consisted of 20 wt?% block copolymer poly(styrene-b-ethylene oxide-b-styrene and 80 wt?% ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)amide. Patterning resolution was on the order of 10 ?m. Importantly, ion gels containing the block polymer with short PS end blocks (3.4 kg/mol) could be transfer-printed because of thermoreversible gelation that enabled intimate gel-substrate contact at 100 °C, while gels with long PS blocks (11 kg/mol) were not printable at the same temperature due to poor wetting contact between the gel and substrates. By using printed ion gels as high-capacitance gate insulators, electrolyte-gated thin-film transistors were fabricated that operated at low voltages (<1 V) with high on/off current ratios (?10(5)). Statistical analysis of carrier mobility, turn-on voltage, and on/off ratio for an array of printed transistors demonstrated the excellent reproducibility of the printing technique. The results show that transfer printing is an attractive route to pattern high-capacitance ion gels for flexible thin-film devices. PMID:24028461

  12. Designed Surface Residue Substitutions in [NiFe] Hydrogenase that Improve Electron Transfer Characteristics

    PubMed Central

    Yonemoto, Isaac T.; Smith, Hamilton O.; Weyman, Philip D.

    2015-01-01

    Photobiological hydrogen production is an attractive, carbon-neutral means to convert solar energy to hydrogen. We build on previous research improving the Alteromonas macleodii “Deep Ecotype” [NiFe] hydrogenase, and report progress towards creating an artificial electron transfer pathway to supply the hydrogenase with electrons necessary for hydrogen production. Ferredoxin is the first soluble electron transfer mediator to receive high-energy electrons from photosystem I, and bears an electron with sufficient potential to efficiently reduce protons. Thus, we engineered a hydrogenase-ferredoxin fusion that also contained several other modifications. In addition to the C-terminal ferredoxin fusion, we truncated the C-terminus of the hydrogenase small subunit, identified as the available terminus closer to the electron transfer region. We also neutralized an anionic patch surrounding the interface Fe-S cluster to improve transfer kinetics with the negatively charged ferredoxin. Initial screening showed the enzyme tolerated both truncation and charge neutralization on the small subunit ferredoxin-binding face. While the enzyme activity was relatively unchanged using the substrate methyl viologen, we observed a marked improvement from both the ferredoxin fusion and surface modification using only dithionite as an electron donor. Combining ferredoxin fusion and surface charge modification showed progressively improved activity in an in vitro assay with purified enzyme. PMID:25603181

  13. Influence of adsorbates on the electronic structure, bond strain, and thermal properties of an alumina-supported Pt catalyst.

    PubMed

    Small, Matthew W; Sanchez, Sergio I; Marinkovic, Nebojsa S; Frenkel, Anatoly I; Nuzzo, Ralph G

    2012-06-26

    We describe the results of an X-ray absorption spectroscopy (XAS) study of adsorbate and temperature-dependent alterations of the atomic level structure of a prototypical, noble metal hydrogenation and reforming catalyst: ?1.0 nm Pt clusters supported on gamma alumina (Pt/?-Al(2)O(3)). This work demonstrates that the metal-metal (M-M) bonding in these small clusters is responsive to the presence of adsorbates, exhibiting pronounced coverage-dependent strains in the clusters' M-M bonding, with concomitant modifications of their electronic structures. Hydrogen and CO adsorbates demonstrate coverage-dependent bonding that leads to relaxation of the M-M bond strains within the clusters. These influences are partially compensated, and variably mediated, by the temperature-dependent electronic perturbations that arise from cluster-support and adsorbate-support interactions. Taken together, the data reveal a strikingly fluxional system with implications for understanding the energetics of catalysis. We estimate that a 9.1 ± 1.1 kJ/mol strain exists for these clusters under H(2) and that this strain increases to 12.8 ± 1.7 kJ/mol under CO. This change in the energy of the particle is in addition to the different heats of adsorption for each gas (64 ± 3 and 126 ± 2 kJ/mol for H(2) and CO, respectively). PMID:22575058

  14. Energy- and electron-transfer shuttling by a soluble, bifunctional redox polymer

    SciTech Connect

    Younathan, J.N.; Jones, W.E. Jr.; Meyer, T.J. )

    1991-01-10

    A soluble, bifunctional polymer ((PS-An{sub 28.5}PTZ{sub 1.5})) based on derivatized polystyrene was prepared in which there are both energy-transfer acceptors (modified anthracene, An) and electron-transfer donors (derivatized phenothiazene, PTZ). The polymer was successfully incorporated into a photochemical electron-transfer sequence based on (Ru(BPY){sub 3}){sup 2+} (bpy is 2,2{prime}-bipyridine) in which separate oxidative and reductive equivalents were generated in solution. In the sequence, sensitized formation of the triplet excited state of the polymer-bound anthryl sites ((PS-{sup 3}An*An{sub 27.5}PTZ{sub 1.5})) occurred by diffusion and energy transfer from (Ru(bpy){sub 3}){sup 2+}* following visible excitation of (Ru(bpy){sub 3}){sup 2+}. In the presence of the oxidative quencher paraquat (PQ{sup 2+}), a series of electron-transfer steps led, ultimately, to the appearance of (PS-An{sub 28.5}PTZ{sup +}PTZ{sub 0.5}) and monomeric PQ{sup +} in solution. The recombination rate constant between PQ{sup +} and (PS-An{sub 28.5}PTZ{sup +}PTZ{sub 0.5}) was reduced by a factor of {approximately} 7 relative to back electron transfer between the unbound, 10-methylphenothiazene cation (10-MePTZ{sup +}) and PQ{sup +}.

  15. Thiols and selenols as electron-relay catalysts for disulfide-bond reduction.

    PubMed

    Lukesh, John C; Vanveller, Brett; Raines, Ronald T

    2013-12-01

    Pass them on! Dithiobutylamine immobilized on a resin is a useful reagent for the reduction of disulfide bonds. Its ability to reduce a disulfide bond in a protein is enhanced greatly if used along with a soluble strained cyclic disulfide or mixed diselenide that relays electrons from the resin to the protein. This electron-relay catalysis system provides distinct advantages over the use of excess soluble reducing agent alone. PMID:24123634

  16. DFT and time-resolved IR investigation of electron transfer between photogenerated 17-and 19-electron organometallic radicals q

    E-print Network

    Kling, Matthias

    effects Step-scan FTIR spectroscopy a b s t r a c t The photochemical disproportionation mechanism of [Cp-scales with step-scan FTIR time-resolved infrared spec- troscopy. Laser excitation (532 nm) was used shown to participate in important cat- alytic and electron-transfer reactions [1,2]. Seventeen

  17. Phase-Transfer and Other Types of Catalysis with Cyclopropenium Ions

    PubMed Central

    Bandar, Jeffrey S.; Tanaset, Anont; Lambert, Tristan H.

    2015-01-01

    This work establishes the cyclopropenium ion as a viable platform for efficient phase transfer catalysis of a diverse range of organic transformations. The amenability of these catalysts to large-scale synthesis and structural modification is demonstrated. Evaluation of the molecular structure of an optimal catalyst reveals some unique structural features of these systems. Finally a discussion of electronic charge distribution underscores an important consideration for catalyst design. PMID:25820636

  18. Fast electron transfer through a single molecule natively structured redox protein.

    PubMed

    Della Pia, Eduardo Antonio; Chi, Qijin; Macdonald, J Emyr; Ulstrup, Jens; Jones, D Dafydd; Elliott, Martin

    2012-11-21

    The electron transfer properties of proteins are normally measured as molecularly averaged ensembles. Through these and related measurements, proteins are widely regarded as macroscopically insulating materials. Using scanning tunnelling microscopy (STM), we present new measurements of the conductance through single-molecules of the electron transfer protein cytochrome b(562) in its native conformation, under pseudo-physiological conditions. This is achieved by thiol (SH) linker pairs at opposite ends of the molecule through protein engineering, resulting in defined covalent contact between a gold surface and a platinum-iridium STM tip. Two different orientations of the linkers were examined: a long-axis configuration (SH-LA) and a short-axis configuration (SH-SA). In each case, the molecular conductance could be 'gated' through electrochemical control of the heme redox state. Reproducible and remarkably high conductance was observed in this relatively complex electron transfer system, with single-molecule conductance values peaking around 18 nS and 12 nS for the SH-SA and SH-LA cytochrome b(562) molecules near zero electrochemical overpotential. This strongly points to the important role of the heme co-factor bound to the natively structured protein. We suggest that the two-step model of protein electron transfer in the STM geometry requires a multi-electron transfer to explain such a high conductance. The model also yields a low value for the reorganisation energy, implying that solvent reorganisation is largely absent. PMID:23069929

  19. Electron Transfer Pathways and Dynamics of Chloroplast NADPH-dependent Thioredoxin Reductase C (NTRC)*

    PubMed Central

    Bernal-Bayard, Pilar; Hervás, Manuel; Cejudo, Francisco J.; Navarro, José A.

    2012-01-01

    NADPH-dependent thioredoxin reductases (NTRs) contain a flavin cofactor and a disulfide as redox-active groups. The catalytic mechanism of standard NTR involves a large conformational change between two configurations. Oxygenic photosynthetic organisms possess a plastid-localized NTR, called NTRC, with a thioredoxin module fused at the C terminus. NTRC is an efficient reductant of 2-Cys peroxiredoxins (2-Cys Prxs) and thus is involved in the protection against oxidative stress, among other functions. Although the mechanism of electron transfer of canonical NTRs is well established, it is not yet known in NTRC. By employing stopped-flow spectroscopy, we have carried out a comparative kinetic study of the electron transfer reactions involving NTRC, the truncated NTR module of NTRC, and NTRB, a canonical plant NTR. Whereas the three NTRs maintain the conformational change associated with the reductive cycle of catalysis, NTRC intramolecular electron transfer to the thioredoxin module presents two kinetic components (kET of ?2 and 0.1 s?1), indicating the occurrence of additional dynamic motions. Moreover, the dynamic features associated with the electron transfer to the thioredoxin module are altered in the presence of 2-Cys Prx. NTRC shows structural constraints that may locate the thioredoxin module in positions with different efficiencies for electron transfer, the presence of 2-Cys Prx shifting the conformational equilibrium of the thioredoxin module to a specific position, which is not the most efficient. PMID:22833674

  20. Electron transfer between [4Fe-4S] clusters

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2010-07-01

    Iron-sulfur clusters [4Fe-4S] are major components in biological electron transport (ET). Using the DFT/B3LYP method, we calculate electronic coupling for low- and high-potential ET between [4Fe-4S] clusters and explore its sensitivity to structural parameters of the system and external electric field. As an example, we consider a model of the bacterial respiratory complex I and estimate the role of neighboring amino acids in facilitating the ET process between the clusters. Our results suggest that the superexchange mechanism rather than hole hopping should be operative in ET between [4Fe-4S] redox centers.

  1. [Electron transfer, ionization, and excitation in atomic collisions]. [Pennsylvania State Univ

    SciTech Connect

    Not Available

    1992-01-01

    Fundamental processes of electron transfer, ionization, and excitation in ion-atom and ion-ion collisions are studied. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-ion core can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. At intermediate collision energies (e.g., proton energies for p-He[sup +] collisions on the order of 100 kilo-electron volts), many electronic states are strongly coupled during the collision, a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. At higher collision energies (million electron-volt energies) the coupling is weaker with, however, many more states being coupled together, so that high-order perturbation theory is essential.

  2. Hydrogen and electron transfer in the photoreduction reaction of quinones

    NASA Astrophysics Data System (ADS)

    Lazarev, G. G.; Lebedev, Ya. S.; Prokof'ev, A. I.; Rakhimov, R. R.

    1983-03-01

    The primary products of the photoreduction reaction of 3,6-di t-butyl- o-quinone in single crystals of 3,6-di- t-butyl-pyrocatechol are studied by EPR spectroscopy. Ion radical and neutral radical pairs are identified distinctly. In the case of the same o-quinone in single crystals of 2-6-di t-butyl-4-methylphenol the primary product is the radical pair composed of the two hydroxyphenoxyl radicals of phenol. This indicates the possibility of transfer of two hydrogen atoms in a single elementary photochemical event.

  3. Kinetics of electron transfer through the respiratory chain.

    PubMed

    Jin, Qusheng; Bethke, Craig M

    2002-10-01

    We show that the rate at which electrons pass through the respiratory chain in mitochondria and respiring prokaryotic cells is described by the product of three terms, one describing electron donation, one acceptance, and a third, the thermodynamic drive. We apply the theory of nonequilibrium thermodynamics in the context of the chemiosmotic model of proton translocation and energy conservation. This approach leads to a closed-form expression that predicts steady-state electron flux as a function of chemical conditions and the proton motive force across the mitochondrial inner membrane or prokaryotic cytoplasmic membrane. The rate expression, derived considering reverse and forward electron flow, is the first to account for both thermodynamic and kinetic controls on the respiration rate. The expression can be simplified under specific conditions to give rate laws of various forms familiar in cellular physiology and microbial ecology. The expression explains the nonlinear dependence of flux on electrical potential gradient, its hyperbolic dependence on substrate concentration, and the inhibiting effects of reaction products. It provides a theoretical basis for investigating life under unusual conditions, such as microbial respiration in alkaline waters. PMID:12324402

  4. 75 FR 75897 - Electronic Funds Transfer of Depository Taxes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ...the Electronic Federal Tax Payment System (EFTPS...abatement. According to IRS research, however, employers...depositor of Form 943 taxes is determined according...deposit of employment taxes attributable to payments...be considered to be in compliance with Sec. Sec....

  5. Vibrational coherence transfer in an electronically decoupled molecular dyad

    PubMed Central

    Schweighöfer, Felix; Dworak, Lars; Braun, Markus; Zastrow, Marc; Wahl, Jan; Burghardt, Irene; Rück-Braun, Karola; Wachtveitl, Josef

    2015-01-01

    The ring opening of a dithienylethene photoswitch incorporated in a bridged boron-dipyrromethene - dithienylethene molecular dyad was investigated with ultrafast spectroscopy. Coherent vibrations in the electronic ground state of the boron-dipyrromethene are triggered after selective photoexcitation of the closed dithienylethene indicating vibrational coupling although the two moieties are electronically isolated. A distribution of short-lived modes and a long-lived mode at 143?cm?1 are observed. Analysis of the theoretical frequency spectrum indicates two modes at 97?cm?1 and 147?cm?1 which strongly modulate the electronic transition energy. Both modes exhibit a characteristic displacement of the bridge suggesting that the mechanical momentum of the initial geometry change after photoexcitation of the dithienylethene is transduced to the boron-dipyrromethene. The relaxation to the dithienylethene electronic ground state is accompanied by significant heat dissipation into the surrounding medium. In the investigated dyad, the boron-dipyrromethene acts as probe for the ultrafast photophysical processes in the dithienylethene. PMID:25797419

  6. 40 CFR Table I-2 to Subpart I - Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics...Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics...Fluorinated GHGs and fluorinated heat transfer fluids used during...

  7. 40 CFR Table I-2 to Subpart I of... - Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics...Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics...Fluorinated GHGs and fluorinated heat transfer fluids used during...

  8. Rapid Electron Transfer between Monomers when the Cytochrome bc1 Complex Dimer Is Reduced through Center N*S

    E-print Network

    Trumpower, Bernard L.

    Rapid Electron Transfer between Monomers when the Cytochrome bc1 Complex Dimer Is Reduced through for electron transfer be- tween cytochrome b subunits of the yeast bc1 complex dimer by analyzing pre-linearly and could only be fitted to a model in which electrons entering through one center N can equilibrate between

  9. Inter-flavin electron transfer in cytochrome P450 reductase effects of solvent and pH identify hidden

    E-print Network

    Inter-flavin electron transfer in cytochrome P450 reductase ­ effects of solvent and pH identify to the endoplasmic retic- ulum by a hydrophobic N-terminal membrane anchor Keywords electron transfer; pH dependence and kinetic effects of pH and solvent on two- and four-electron reduction in this diflavin enzyme. pH

  10. 45 CFR 162.1603 - Operating rules for health care electronic funds transfers (EFT) and remittance advice transaction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Operating rules for health care electronic funds... REQUIREMENTS Health Care Electronic Funds Transfers (EFT) and Remittance Advice § 162.1603 Operating rules for health care electronic funds transfers (EFT) and remittance advice transaction. On and after January...

  11. 45 CFR 162.1603 - Operating rules for health care electronic funds transfers (EFT) and remittance advice transaction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Operating rules for health care electronic funds... REQUIREMENTS Health Care Electronic Funds Transfers (EFT) and Remittance Advice § 162.1603 Operating rules for health care electronic funds transfers (EFT) and remittance advice transaction. On and after January...

  12. 45 CFR 162.1603 - Operating rules for health care electronic funds transfers (EFT) and remittance advice transaction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Operating rules for health care electronic funds... REQUIREMENTS Health Care Electronic Funds Transfers (EFT) and Remittance Advice § 162.1603 Operating rules for health care electronic funds transfers (EFT) and remittance advice transaction. On and after January...

  13. Bidirectional microbial electron transfer: Switching an acetate oxidizing biofilm to nitrate reducing conditions.

    PubMed

    Pous, Narcís; Carmona-Martínez, Alessandro A; Vilajeliu-Pons, Anna; Fiset, Erika; Bañeras, Lluis; Trably, Eric; Balaguer, M Dolors; Colprim, Jesús; Bernet, Nicolas; Puig, Sebastià

    2016-01-15

    Up to date a few electroactive bacteria embedded in biofilms are described to catalyze both anodic and cathodic reactions in bioelectrochemical systems (i.e. bidirectional electron transfer). How these bacteria transfer electrons to or from the electrode is still uncertain. In this study the extracellular electron transfer mechanism of bacteria within an electroactive biofilm was investigated by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). First, a mature anodic electroactive biofilm was developed from an activated sludge sample (inoculum), acetate as electron donor and a poised electrode (+397mV vs. SHE). Later, this biofilm was "switched" to biocathodic conditions by feeding it with a medium containing nitrates and poising the electrode at -303mV vs. SHE. The electrochemical characterization indicated that both, acetate oxidation and nitrate reduction took place at a similar formal potential of -175±05 and -175±34mV vs. SHE, respectively. The biofilm was predominantly composed by Geobacter sp. at both experimental conditions. Taken together, the results indicated that both processes could be catalyzed by using the same electron conduit, and most likely by the same bacterial consortium. Hence, this study suggests that electroactive bacteria within biofilms could use the same electron transfer conduit for catalyzing anodic and cathodic reactions. PMID:26339932

  14. Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer

    SciTech Connect

    Reslan, Randa; Lopata, Kenneth A.; Arntsen, Christopher D.; Govind, Niranjan; Neuhauser, Daniel

    2012-12-14

    We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene dimers. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1 - LUMO of the neutral dimer, or HOMO - LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offer a word of caution for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.

  15. A redox beginning: Which came first phosphoryl, acyl, or electron transfer ?. [Abstract only

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1994-01-01

    Thermodynamic and kinetic information available on the synthesis of prebiotic monomers and polymers will be examined in order to illuminate the prebiotic plausibility of polymer syntheses based on (a) phosphoryl transfer that yields phosphodiester polymers, (b) acyl transfer that gives polyamides, and (c) electron transfer that produces polydisulfide or poly(thio)ester polymers. New experimental results on the oxidative polymerization of 2,3-dimercaptopropanol by ferric ions on the surface of ferric hydroxide oxide will be discussed as a chemical model of polymerization by electron transfer. This redox polymerization that yields polymers with a polydisulfide backbone was found to give oligomers up to the 15-mer from 1 mM of 2,3-dimercaptopropanol after one day at 25 C. High pressure liquid chromatography (HPLC) analysis of the oligomers was carried out on an Alltech OH-100 column eluted with acetonitrile-water.

  16. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity.

    PubMed

    ?ukowska, Karolina; Pump, Eva; Pazio, Aleksandra E; Wo?niak, Krzysztof; Cavallo, Luigi; Slugovc, Christian

    2015-01-01

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes. PMID:26425202

  17. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    PubMed Central

    Pump, Eva; Pazio, Aleksandra E; Wo?niak, Krzysztof; Cavallo, Luigi

    2015-01-01

    Summary Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes. PMID:26425202

  18. Electronic promotion effect of double proton transfer on conduction of DNA through improvement of transverse electronic communication of base pairs

    NASA Astrophysics Data System (ADS)

    Liu, Haiying; Li, Genqin; Zhang, Laibin; Li, Jilai; Wang, Meishan; Bu, Yuxiang

    2011-10-01

    The effect of double proton transfer (DPT) on charge migration of DNA was investigated by the nonequilibrium Green's function method combined with density functional theory. The results revealed that DPT not only lowers ionization potentials, but also improves the delocalization of the localized ?-orbitals at each base moiety through adjusting energy levels and spatial distributions of their molecular orbitals. Furthermore, DPT leads to both the strengthening of the second-order interactions of the Watson-Crick H-bond zones, and the promotion of the charge transfer transitions between two pairing bases in the UV absorption spectra. Electronic transport calculations indicated that DPT can improve the charge migration along the DNA duplex for specific sequences through enhancing transverse base-to-base electronic communication. This work will provide a new insight into the understanding of DNA charge conduction which can be electronically promoted or regulated by DPT.

  19. Rhodium Catalysts in the Oxidation of CO by O2 and NO: Shape, Composition, and Hot Electron Generation

    SciTech Connect

    Renzas, James R.

    2010-03-08

    It is well known that the activity, selectivity, and deactivation behavior of heterogeneous catalysts are strongly affected by a wide variety of parameters, including but not limited to nanoparticle size, shape, composition, support, pretreatment conditions, oxidation state, and electronic state. Enormous effort has been expended in an attempt to understand the role of these factors on catalytic behavior, but much still remains to be discovered. In this work, we have focused on deepening the present understanding of the role of nanoparticle shape, nanoparticle composition, and hot electrons on heterogeneous catalysis in the oxidation of carbon monoxide by molecular oxygen and nitric oxide. These reactions were chosen because they are important for environmental applications, such as in the catalytic converter, and because there is a wide range of experimental and theoretical insight from previous single crystal work as well as experimental data on nanoparticles obtained using new state-of-the-art techniques that aid greatly in the interpretation of results on complex nanoparticle systems. In particular, the studies presented in this work involve three types of samples: {approx} 6.5 nm Rh nanoparticles of different shapes, {approx} 15 nm Rh1-xPdx core-shell bimetallic polyhedra nanoparticles, and Rh ultra-thin film ({approx} 5 nm) catalytic nanodiodes. The colloidal nanoparticle samples were synthesized using a co-reduction of metal salts in alcohol and supported on silicon wafers using the Langmuir-Blodgett technique. This synthetic strategy enables tremendous control of nanoparticle size, shape, and composition. Nanoparticle shape was controlled through the use of different organic polymer capping layers. Bimetallic core-shell nanoparticles were synthesized by careful choice of metal salt precursors. Rh/TiO{sub x} and Rh/GaN catalytic nanodiodes were fabricated using a variety of thin film device fabrication techniques, including reactive DC magnetron sputtering, electron beam evaporation, and rapid thermal annealing. The combination of these techniques enabled control of catalytic nanodiode morphology, geometry, and electrical properties.

  20. Formation of a long-lived electron-transfer state in mesoporous silica-alumina composites enhances photocatalytic oxygenation reactivity

    PubMed Central

    Fukuzumi, Shunichi; Doi, Kaoru; Itoh, Akinori; Suenobu, Tomoyoshi; Ohkubo, Kei; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    A simple donor-acceptor linked dyad, 9-mesityl-10-methylacridinium ion (Acr+-Mes) was incorporated into nanosized mesoporous silica-alumina to form a composite, which in acetonitrile is highly dispersed. In this medium, upon visible light irradiation, the formation of an extremely long-lived electron-transfer state (Acr•-Mes•+) was confirmed by EPR and laser flash photolysis spectroscopic methods. The composite of Acr+-Mes-incorporated mesoporous silica-alumina with an added copper complex [(tmpa)CuII] (tmpa = tris(2-pyridylmethyl)amine) acts as an efficient and robust photocatalyst for the selective oxygenation of p-xylene by molecular oxygen to produce p-tolualdehyde and hydrogen peroxide. Thus, incorporation of Acr+-Mes into nanosized mesoporous silica-alumina combined with an O2-reduction catalyst ([(tmpa)CuII]2+) provides a promising method in the development of efficient and robust organic photocatalysts for substrate oxygenation by dioxygen, the ultimate environmentally benign oxidant. PMID:22543164

  1. Effect of ultrasound in the free radical polymerization of acrylonitrile under a new multi-site phase-transfer catalyst - a kinetic study.

    PubMed

    Selvaraj, Varathan; Sakthivel, Perumal; Rajendran, Venugopal

    2015-01-01

    The kinetics of polymerization of acrylonitrile (AN) was carried out under heterogeneous condition using a new multi-site phase-transfer catalyst (MPTC), viz., N,N'-dihexyl-4,4'-bipyridinium dibromide in the presence of water soluble initiator, potassium peroxydisulphate (PDS) under chlorobenzene/water two phase system assisted by ultrasound irradiation at constant temperature 60+1°C under nitrogen atmosphere. The rate of polymerization increases with an increasing the concentrations of AN, MPTC and PDS. The order with respect to [AN], [MPTC], and [PDS] were found to be 1.01, 1.03 and 0.52, respectively. Based on the observed results a suitable mechanism has been proposed to account for the experimental observations followed by a discussion on its significance. PMID:24880766

  2. A Simple Chiral Cu(II) Complex as an Effective Phase-Transfer Catalyst for the Enantioselective Alkylation of Dissymmetric Glycinate Ketimines.

    PubMed

    Bafqiren, Hanane; Zouihri, Hafid; Gmouh, Said; Jamal Eddine, Jamal

    2015-12-01

    Catalytic asymmetric benzylation of a dissymmetric tert-butylglycinate ketimine, incorporating 1-naphthyl and phenyl groups as the Schiff base substituents, under phase-transfer conditions was investigated. It was interesting to note that the sense of asymmetric induction of the alkylation of Z-imine stereoisomer is opposite to that of the corresponding E stereoisomer with a similar degree of enantioselectivity. More interestingly, the chiral Cu(II) complex of the Schiff base derived from (R)-2-phenylglycinol and 2-hydroxy-1-naphthaldehyde was found to catalyze the same reaction under solid-liquid conditions with comparable enantioselectivity (up to 60% ee) with respect to known cinchona alkaloid catalysts. The solvent/base-system parameter was shown to control the optimal catalytic activity. Chirality 27:944-950, 2015. © 2015 Wiley Periodicals, Inc. PMID:26431347

  3. Femtosecond laser field induced modifications of electron-transfer processes in Ne{sup +}-He collisions

    SciTech Connect

    Lu Zhenzhong; Chen Deying; Fan Rongwei; Xia Yuanqin

    2012-01-02

    We demonstrate the presence of femtosecond laser induced charge transfer in Ne{sup +}-He collisions. Electron transfer in ion-atom collisions is considerably modified when the collision is embedded in a strong laser field with the laser intensity of {approx}10{sup 15} W/cm{sup 2}. The observed anisotropy of the He{sup +} angular distribution confirms the prediction of early work that the capture probability varies significantly with the laser polarization angle.

  4. Quenching of the excited state of hydrated Europium(III) ions by electron transfer

    SciTech Connect

    Christensen, K.

    1993-08-01

    This thesis explores the oxidation-reduction chemistry of the excited state of Eu(III) ions, *Eu{sub aq}{sup 3+}, in aqueous solutions. Evidence is presented for the quenching of *Eu{sup 3+} by reductive electron transfer. It is concluded that *Eu{sup 3+} is not a strong energy transfer reagent. The reactivity of *Eu{sub aq}{sup 3+} is compared with that of *UO{sub 2}{sup 2+}.

  5. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect

    Hoffman, M.Z.

    1991-12-31

    During this period, conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used for the characterization of the intermediates that are involved in transition metal excited-state electron-transfer reactions. The intermediates of interest were the excited states of Ru(II) and Cr(III) photosensitizers, their reduced forms, and the species formed in the reactions of redox quenchers and electron-transfer agents. Of particular concern has been the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes.

  6. Temperature-Driven Changeover in the Electron-Transfer Mechanism of a Thermophilic Plastocyanin.

    PubMed

    Olloqui-Sariego, José Luis; Moreno-Beltrán, Blas; Díaz-Quintana, Antonio; De la Rosa, Miguel A; Calvente, Juan José; Andreu, Rafael

    2014-03-01

    Electron-transfer kinetics of the thermophilic protein Plastocyanin from Phormidium laminosum adsorbed on 1,?-alkanedithiol self-assembled monolayers (SAMs) deposited on gold have been investigated. The standard electron-transfer rate constant has been determined as a function of electrode-protein distance and solution viscosity over a broad temperature range (0-90 °C). For either thin or thick SAMs, the electron-transfer regime remains invariant with temperature, whereas for the 1,11-undecanethiol SAM of intermediate chain length, a kinetic regime changeover from a gated or friction-controlled mechanism at low temperature (0-30 °C) to a nonadiabatic mechanism above 40 °C is observed. To the best of our knowledge, this is the first time a thermal-induced transition between these two kinetic regimes is reported for a metalloprotein. PMID:26274087

  7. Parameterization of diffusion-influenced intermolecular electron transfer in the static quenching limit

    NASA Astrophysics Data System (ADS)

    Stevens, B.; Biver, C. J., III

    1994-08-01

    For the quenching of 9,10-dicyanoanthracene fluorescence by a series of aromatic amines in acetonitrile, a finite-sink analysis provides values of the effective electron-transfer distance R which increase with exergonicity (-? G0) from 420 pm for benzylamine (? G0 = -0.77 eV), close to that expected for a contact pair, to 1000 pm for N,N,N',N'-tetramethyl- p-phenylenediamine ? G0 = -1.81 eV) which exceeds that associated with a solvent-separated pair. Similar values of R are recovered for the same systems in n-hexane and t-butylbenzene. Estimates of effective electron transfer rate constants vt > 10 12 s - at R are independent of temperature and solvent polarity and show no systematic variance with R, qualitatively consistent with long-range electron transfer from quencher to fluor with increasing probability as their separation is reduced by diffusive approach in the 'inverted' region.

  8. Probe-based measurement of lateral single-electron transfer between individual molecules

    PubMed Central

    Steurer, Wolfram; Fatayer, Shadi; Gross, Leo; Meyer, Gerhard

    2015-01-01

    The field of molecular electronics aims at using single molecules as functional building blocks for electronics components, such as switches, rectifiers or transistors. A key challenge is to perform measurements with atomistic control over the alignment of the molecule and its contacting electrodes. Here we use atomic force microscopy to examine charge transfer between weakly coupled pentacene molecules on insulating films with single-electron sensitivity and control over the atomistic details. We show that, in addition to the imaging capability, the probe tip can be used to control the charge state of individual molecules and to detect charge transfers to/from the tip, as well as between individual molecules. Our approach represents a novel route for molecular charge transfer studies with a host of opportunities, especially in combination with single atom/molecule manipulation and nanopatterning techniques. PMID:26387533

  9. Directionality of electron transfer in cyanobacterial photosystem I at 298 and 77K.

    PubMed

    Makita, Hiroki; Hastings, Gary

    2015-06-01

    Electron transfer processes in cyanobacterial photosystem I particles from Synechocystis sp. PCC 6803 with a high potential naphthoquinone (2,3-dichloro-1,4-naphthoquinone) incorporated into the A1 binding site have been studied at 298 and 77K using time-resolved visible and infrared difference spectroscopy. The high potential naphthoquinone inhibits electron transfer past A1, and biphasic P700(+)A1(-) radical pair recombination is observed. The two phases are assigned to P700(+)A1B(-) and P700(+)A1A(-) recombination. Analyses of the transient absorption changes indicate that the ratio of A- and B-branch electron transfer is 95:5 at 77 K and 77:23 at 298 K. PMID:25962848

  10. Electron transfer in phenothiazine/Ru(bpy){sub 3}{sup 2+} Donor-chromophore complexes

    SciTech Connect

    Larson, S.L.; Elliott, C.M.; Kelley, D.F.

    1996-03-27

    Time-resolved emission studies have been performed on a series of covalently linked Ru(bipyridine){sub 3}-phenothiazine complexes. The emissive Ru(bipyridine){sub 3} metal-to-ligand charge-transfer (MLCT) excited state is quenched by electron donation from a phenothiazine (PTZ) donor. The rates of electron transfer (ET) to the MLCT states from the PTZ donor have been analyzed in terms of Marcus theory, in which each phenothiazine acts independently of other phenothiazines in the complex. Reaction energetics were determined from electrochemical data for Ru(2+/1+) and PTZ(1+/0) reduction potentials and MLCT state energies. Quantitative agreement was found between the model`s predictions and measured ET times. The results are compared to those obtained for the analogous electron transfer leading to charge separated state formation in a related donor-chromophore-acceptor system.

  11. Studies of Photosynthetic Energy and Charge Transfer by Two-dimensional Fourier transform electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogilvie, Jennifer

    2010-03-01

    Two-dimensional (2D) Fourier transform electronic spectroscopy has recently emerged as a powerful tool for the study of energy transfer in complex condensed-phase systems. Its experimental implementation is challenging but can be greatly simplified by implementing a pump-probe geometry, where the two phase-stable collinear pump pulses are created with an acousto-optic pulse-shaper. This approach also allows the use of a continuum probe pulse, expanding the available frequency range of the detection axis and allowing studies of energy transfer and electronic coupling over a broad range of frequencies. We discuss several benefits of 2D electronic spectroscopy and present 2D data on the D1-D2 reaction center complex of Photosystem II from spinach. We discuss the ability of 2D spectroscopy to distinguish between current models of energy and charge transfer in this system.

  12. Challenges in reduction of dinitrogen by proton and electron transfer.

    PubMed

    van der Ham, Cornelis J M; Koper, Marc T M; Hetterscheid, Dennis G H

    2014-08-01

    Ammonia is an important nutrient for the growth of plants. In industry, ammonia is produced by the energy expensive Haber-Bosch process where dihydrogen and dinitrogen form ammonia at a very high pressure and temperature. In principle one could also reduce dinitrogen upon addition of protons and electrons similar to the mechanism of ammonia production by nitrogenases. Recently, major breakthroughs have taken place in our understanding of biological fixation of dinitrogen, of molecular model systems that can reduce dinitrogen, and in the electrochemical reduction of dinitrogen at heterogeneous surfaces. Yet for efficient reduction of dinitrogen with protons and electrons major hurdles still have to be overcome. In this tutorial review we give an overview of the different catalytic systems, highlight the recent breakthroughs, pinpoint common grounds and discuss the bottlenecks and challenges in catalytic reduction of dinitrogen. PMID:24802308

  13. Multiple electron transfer processes in collisions of N6+ and O7+ with methane

    NASA Astrophysics Data System (ADS)

    Guevara, N. L.; Teixeira, E.; Hall, B.; Deumens, E.; Öhrn, Y.; Sabin, J. R.

    2009-12-01

    Recent experiments on collision processes of O7+ and N6+ ions colliding with methane at the same velocity show unexpected differences in the fragmentation cross sections of the methane. Despite the expected similarity of these two processes, as both projectiles are hydrogenic, the mechanisms of electron transfer are different and lead to different fragmentation cross sections. In the present work, the collisions between N6+ and O7+ ions and methane are investigated theoretically at equal velocities corresponding to projectile energies of 30 and 35 keV, respectively. Electron-nuclear dynamics is used to study multiple electron transfer processes occurring in these collisions. Several multiple charge transfer probabilities are calculated and results, averaged over various orientations of the methane molecule, are reported. The collisions proceed in two stages: a fast stage of electron transfer from methane to the ion, and a much slower stage of breakup of the methane. We find and explain the intuitively unexpected result that the total charge transfer cross section for N6+ is slightly larger, but that the O7+ leaves the methane in a higher charged state with higher probability, leading to more fragmentation in the collisions with O7+ .

  14. Influence of the donor chemical structure on the effective distance in photoinduced electron transfer

    NASA Astrophysics Data System (ADS)

    Jacques, P.; Allonas, X.

    1995-02-01

    In the context of the finite sink approximation, a parametrization of diffusion-limited electron transfer quenching of 9,10-dicyanoanthracene fluorescence by '?' and 'n' donors is reported. The effective transfer distance R increases with exergonicity for '?' donors (as shown by previous authors) and for 'n' donors although in a different manner. Therefore, our caveat about the necessity of distinguishing '?' from 'n' donors for quenching rates is confirmed by the investigation of the effective transfer distance. This is illustrated by a detailed discussion of the data concerning a mixed donor: benzylamine.

  15. Controllable Quantum State Transfer Between a Josephson Charge Qubit and an Electronic Spin Ensemble

    NASA Astrophysics Data System (ADS)

    Yan, Run-Ying; Wang, Hong-Ling; Feng, Zhi-Bo

    2015-05-01

    We propose a theoretical scheme to implement controllable quantum state transfer between a superconducting charge qubit and an electronic spin ensemble of nitrogen-vacancy centers. By an electro-mechanical resonator acting as a quantum data bus, an effective interaction between the charge qubit and the spin ensemble can be achieved in the dispersive regime, by which state transfers are switchable due to the adjustable electrical coupling. With the accessible experimental parameters, we further numerically analyze the feasibility and robustness. The present scheme could provide a potential approach for transferring quantum states controllably with the hybrid system.

  16. An efficient implementation of the localized operator partitioning method for electronic energy transfer

    NASA Astrophysics Data System (ADS)

    Nagesh, Jayashree; Izmaylov, Artur F.; Brumer, Paul

    2015-02-01

    The localized operator partitioning method [Y. Khan and P. Brumer, J. Chem. Phys. 137, 194112 (2012)] rigorously defines the electronic energy on any subsystem within a molecule and gives a precise meaning to the subsystem ground and excited electronic energies, which is crucial for investigating electronic energy transfer from first principles. However, an efficient implementation of this approach has been hindered by complicated one- and two-electron integrals arising in its formulation. Using a resolution of the identity in the definition of partitioning, we reformulate the method in a computationally efficient manner that involves standard one- and two-electron integrals. We apply the developed algorithm to the 9 - ((1 - naphthyl) - methyl) - anthracene (A1N) molecule by partitioning A1N into anthracenyl and CH2 - naphthyl groups as subsystems and examine their electronic energies and populations for several excited states using configuration interaction singles method. The implemented approach shows a wide variety of different behaviors amongst the excited electronic states.

  17. Fast electron transfer from PbSe quantum dots to TiO{sub 2}

    SciTech Connect

    Masumoto, Yasuaki; Takagi, Hayato; Umino, Hikaru; Suzumura, Eri

    2013-12-04

    Fast electron transfer from PbSe quantum dots (QDs) to the porous anatase TiO{sub 2} film was observed in transient absorption, when the lowest unoccupied molecular orbital level of PbSe QDs is higher than that of TiO{sub 2}. In PbSe QDs 2.7nm in diameter linked to the TiO{sub 2} film the bleaching recovery decay shortened to 1ps from 650ps observed in the non-linked PbSe QDs. The electron transfer from the quantum state in small PbSe QDs to TiO{sub 2} takes place fast and efficiently.

  18. Electronic memory switching in a new charge transfer-complex thin film

    NASA Astrophysics Data System (ADS)

    Wang, K. Z.; Xue, Z. Q.; Ouyang, M.; Zhang, H. X.; Huang, C. H.

    1995-11-01

    Charge transfer-complex thin films of 1,4-bis(2,2-dicyanovinyl)benzene(BDCB) with silver, sandwiched between two silver elctrodes, show current-controlled bistable electronic switching and memory behavior. The switching from a high to low impedance is believed to be associated with chemical phase change similar to that for charge transfer-complex thin films of TCNQ with either copper or silver. The films are analyzed by infrared, ultraviolet-visible spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction.

  19. Proton-Coupled Electron Transfer Reactions Catalysed by 3?d Metal Complexes.

    PubMed

    Siewert, Inke

    2015-10-19

    Proton-coupled electron transfer (PCET) reactions are essential for a wide range of natural energy-conversion reactions and recently, the impact of PCET pathways has been exploited in artificial systems, too. The Minireview highlights PCET reactions catalysed by first-row transition-metal complexes, with a focus on the water oxidation, the oxygen reduction, the hydrogen evolution, and the CO2 reduction reaction. Special attention will be paid to systems in which the impact of such pathways is deduced by comparison to systems with "electron-only"-transfer pathways. PMID:26249557

  20. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-08-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (?=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  1. Experimental studies of fundamental issues in electron transfer through nanometer scale devices

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiromichi

    Electron transfer reactions constitute many of the primary events in materials science, chemistry, physics, and biochemistry, e.g. the electron transport properties and photoexcited processes in solids and molecules, chemical reactions, corrosion, photosynthesis, respiration, and so forth. A self-assembled monolayer (SAM) film provides us with a unique environment not only to understand and manipulate the surface electronic properties of a solid, but also to control electron transfer processes at the interface. The first topic in this thesis describes the structure and electron tunneling characterization of alkanethiol SAMs on InP(100). Angle-resolved X-ray photoelectron spectroscopy was used to characterize the bonding of alkanethiols to n-InP surfaces and to measure the monolayer thickness. The results showed that the sulfur binds to In atoms on the surface, and provided film thicknesses of 6.4 A for C8H17SH, 11.1 A for C12H25SH, and 14.9 A for C16H 33SH, resulting in an average tilt angle of 55°. The analysis indicated that super-exchange coupling between the alkane chains plays an important role in defining electron tunneling barriers, especially for highly tilted chains. The second topic describes studies of cytochrome c bound to pure and mixed SAMs of o-terminated alkanethiol (terminated with pyridine, imidazole or nitrile groups) and alkanethiol on gold. Electrochemical methods are used to determine electron transfer rate constants of cytochrome c, and scanning tunneling microscopy to observe the cytochrome c on the SAM. Detailed analysis revealed direct association of the heme of cytochrome c with the terminal groups of the SAMs and a 'turning-over' of the electron transfer of cytochrome c from adiabatic to non-adiabatic regime. The third topic describes studies of oxidation and reduction of cytochrome c in solution through eleven different self-assembled monolayers (SAMs) on gold electrodes by cyclic voltammetry. Electron transfer rate constants of cytochrome c through the eleven SAMs ranged from ?10-4 to ˜10-1 cm/sec. A strong correlation between the electron transfer rate constants and the hydrogen bonding ability of the SAM is identified. This correlation is discussed in terms of the dependence of the rate constant on the outer-sphere reorganization energy and the electronic coupling between the cytochrome and the differently terminated monolayer films.

  2. The First Events in Photosynthesis: Electronic Coupling and Energy Transfer Dynamics in the Photosynthetic Reaction Center from Rhodobacter sphaeroides

    E-print Network

    Scherer, Norbert F.

    The First Events in Photosynthesis: Electronic Coupling and Energy Transfer Dynamics in photosynthesis. The reaction center contains six chlorophyll-like pigments arranged with approximate C2 symmetry

  3. DFT and time-resolved IR investigation of electron transfer between photogenerated 17- and 19-electron organometallic radicals

    SciTech Connect

    Cahoon, James B.; Kling, Matthias F.; Sawyer, Karma R.; Andersen, Lars K.; Harris, Charles B.

    2008-04-30

    The photochemical disproportionation mechanism of [CpW(CO){sub 3}]{sub 2} in the presence of Lewis bases PR{sub 3} was investigated on the nano- and microsecond time-scales with Step-Scan FTIR time-resolved infrared spectroscopy. 532 nm laser excitation was used to homolytically cleave the W-W bond, forming the 17-electron radicals CpW(CO){sub 3} and initiating the reaction. With the Lewis base PPh{sub 3}, disproportionation to form the ionic products CpW(CO){sub 3}PPh{sub 3}{sup +} and CpW(CO){sub 3}{sup -} was directly monitored on the microsecond time-scale. Detailed examination of the kinetics and concentration dependence of this reaction indicates that disproportionation proceeds by electron transfer from the 19-electron species CpW(CO){sub 3}PPh{sub 3} to the 17-electron species CpW(CO){sub 3}. This result is contrary to the currently accepted disproportionation mechanism which predicts electron transfer from the 19-electron species to the dimer [CpW(CO){sub 3}]{sub 2}. With the Lewis base P(OMe){sub 3} on the other hand, ligand substitution to form the product [CpW(CO){sub 2}P(OMe){sub 3}]{sub 2} is the primary reaction on the microsecond time-scale. Density Functional Theory (DFT) calculations support the experimental results and suggest that the differences in the reactivity between P(OMe){sub 3} and PPh{sub 3} are due to steric effects. The results indicate that radical-to-radical electron transfer is a previously unknown but important process for the formation of ionic products with the organometallic dimer [CpW(CO){sub 3}]{sub 2} and may also be applicable to the entire class of organometallic dimers containing a single metal-metal bond.

  4. Role of electron transfer in Ce3+ sensitized Yb3+ luminescence in borate glass

    NASA Astrophysics Data System (ADS)

    Sontakke, Atul D.; Ueda, Jumpei; Katayama, Yumiko; Zhuang, Yixi; Dorenbos, Pieter; Tanabe, Setsuhisa

    2015-01-01

    In a Ce3+-Yb3+ system, two mechanisms are proposed so far namely, the quantum cutting mechanism and the electron transfer mechanism explaining Yb3+ infrared luminescence under Ce3+ excitation. Among them, the quantum cutting mechanism, where one Ce3+ photon (ultraviolet/blue) gives rise to two Yb3+ photons (near infrared) is widely sought for because of its huge potential in enhancing the solar cell efficiency. In present study on Ce3+-Yb3+ codoped borate glasses, Ce3+ sensitized Yb3+ luminescence at ˜1 ?m have been observed on Ce3+ 5d state excitation. However, the intensity of sensitized Yb3+ luminescence is found to be very weak compared to the strong quenching occurred in Ce3+ luminescence in Yb3+ codoped glasses. Moreover, the absolute luminescence quantum yield also showed a decreasing trend with Yb3+ codoping in the glasses. The overall behavior of the luminescence properties and the quantum yield is strongly contradicting with the quantum cutting phenomenon. The results are attributed to the energetically favorable electron transfer interactions followed by Ce3+-Yb3+ ? Ce4+-Yb2+ inter-valence charge transfer and successfully explained using the absolute electron binding energies of dopant ions in the studied borate glass. Finally, an attempt has been presented to generalize the electron transfer mechanism among opposite oxidation/reduction property dopant ions using the vacuum referred electron binding energy (VRBE) scheme for lanthanide series.

  5. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  6. Photoinduced electron transfer in donor-acceptor complexes of ethylene with molecular and atomic iodine.

    PubMed

    Kalume, Aimable; George, Lisa; Powell, Andrew D; Dawes, Richard; Reid, Scott A

    2014-08-28

    Building upon our recent studies of radical addition pathways following excitation of the I2 chromophore in the donor-acceptor complex of ethylene and I2 (C2H4···I2), in this article, we extend our studies to examine photoinduced electron transfer. Thus, irradiation into the intense charge-transfer band of the complex (?max = 247 nm) gave rise to a band at 366 nm that is assigned to the bridged ethylene-I radical complex on the basis of our prior work. The formation of the radical complex is explained by a mechanism that involves rapid back electron transfer leading to I-I bond fission. Excitation into the charge-transfer band of the radical complex led to regeneration of the parent complex and the formation of the final photoproduct, anti- and gauche-1,2-diiodoethane, which confirms that the reaction proceeds ultimately by a radical addition mechanism. This finding is contrasted with our previous study of the C2H4···Br2 complex, where CT excitation led to only one product, anti-1,2-dibromoethane, a result explained by a single electron-transfer mechanism proceeding via a bridged bromonium ion intermediate. For the I2 complex, the breakup of the photolytically generated I2(-•) anion radical is apparently sufficiently slow to render it uncompetitive with back electron transfer. Finally, we report a detailed computational examination of the parent and radical complexes of both bromine and iodine, using high-level single- and multireference methods, which provide insight into the different behaviors of the charge-transfer states of the two radicals and the role of spin-orbit coupling. PMID:25075444

  7. The onset of electron-induced proton-transfer in hydrated azabenzene cluster anions.

    PubMed

    Wang, Yi; Zhang, Xinxing; Lyapustina, Svetlana; Nilles, Michael M; Xu, Shoujun; Graham, Jacob D; Bowen, Kit H; Kelly, John T; Tschumper, Gregory S; Hammer, Nathan I

    2015-12-23

    The prospect that protons from water may be transferred to N-heterocyclic molecules due to the presence of an excess electron is studied in hydrated azabenzene cluster anions using anion photoelectron spectroscopy and computational chemistry. In the case of s-triazine (C3H3N3), which has a positive adiabatic electron affinity, proton transfer is not energetically favored nor observed experimentally. Heterocyclic rings with only 1 or 2 nitrogen atoms have negative electron affinities, but the addition of solvating water molecules can yield stable negative ions. In the case of the diazines (C4H4N2: pyrazine, pyrimidine, and pyridazine) the addition of one water molecule is enough to stabilize the negative ion, with the majority of the excess electron density in a ?* orbital of the heterocycle but not significantly extended over the hydrogen bonded water network. Pyridine (C5H5N), with the most negative electron affinity, requires three water molecules to stabilize its negative ion. Although our computations suggest proton transfer to be energetically viable in all five N-heterocyclic systems studied here when three or more water molecules are present, proton transfer is not observed experimentally in the triazine nor in the diazine series. In pyridine, however, proton transfer competes energetically with hydrogen bonding (solvation), when three water molecules are present, i.e., both motifs are observed. Pyridine clusters containing four or more water molecules almost exclusively exhibit proton transfer along with solvated [C6-xH6-x+1Nx·OH](-) ions. PMID:26327590

  8. Electron transfer and capture dynamics in ZnSe quantum wells grown on GaAs

    SciTech Connect

    Dongol, A.; Wagner, H. P.

    2013-12-04

    We investigate the transfer and capture dynamics of electrons in phase coherent photorefractive ZnSe quantum wells grown on GaAs using degenerate three-beam four-wave-mixing. The measurements reveal electron capture times by the quantum well in the order of several tens of picoseconds and a transit time of approximately 5 picoseconds from the GaAs substrate through the ZnMgSe barrier.

  9. Charge transfer and electronic doping in nitrogen-doped graphene.

    PubMed

    Joucken, Frédéric; Tison, Yann; Le Fèvre, Patrick; Tejeda, Antonio; Taleb-Ibrahimi, Amina; Conrad, Edward; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Ghijsen, Jacques; Sporken, Robert; Amara, Hakim; Ducastelle, François; Lagoute, Jérôme

    2015-01-01

    Understanding the modification of the graphene's electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy (XPS). The comparison between tunneling and angle-resolved photoelectron spectra reveals the spatial inhomogeneity of the Dirac energy shift and that a phonon correction has to be applied to the tunneling measurements. XPS data demonstrate the dependence of the N 1s binding energy of graphitic nitrogen on the nitrogen concentration. The measure of the Dirac energy for different nitrogen concentrations reveals that the ratio usually computed between the excess charge brought by the dopants and the dopants' concentration depends on the latter. This is supported by a tight-binding model considering different values for the potentials on the nitrogen site and on its first neighbors. PMID:26411651

  10. Charge transfer and electronic doping in nitrogen-doped graphene

    PubMed Central

    Joucken, Frédéric; Tison, Yann; Le Fèvre, Patrick; Tejeda, Antonio; Taleb-Ibrahimi, Amina; Conrad, Edward; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Ghijsen, Jacques; Sporken, Robert; Amara, Hakim; Ducastelle, François; Lagoute, Jérôme

    2015-01-01

    Understanding the modification of the graphene’s electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy (XPS). The comparison between tunneling and angle-resolved photoelectron spectra reveals the spatial inhomogeneity of the Dirac energy shift and that a phonon correction has to be applied to the tunneling measurements. XPS data demonstrate the dependence of the N 1s binding energy of graphitic nitrogen on the nitrogen concentration. The measure of the Dirac energy for different nitrogen concentrations reveals that the ratio usually computed between the excess charge brought by the dopants and the dopants’ concentration depends on the latter. This is supported by a tight-binding model considering different values for the potentials on the nitrogen site and on its first neighbors. PMID:26411651

  11. Charge transfer and electronic doping in nitrogen-doped graphene

    NASA Astrophysics Data System (ADS)

    Joucken, Frédéric; Tison, Yann; Le Fèvre, Patrick; Tejeda, Antonio; Taleb-Ibrahimi, Amina; Conrad, Edward; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Ghijsen, Jacques; Sporken, Robert; Amara, Hakim; Ducastelle, François; Lagoute, Jérôme

    2015-09-01

    Understanding the modification of the graphene’s electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy (XPS). The comparison between tunneling and angle-resolved photoelectron spectra reveals the spatial inhomogeneity of the Dirac energy shift and that a phonon correction has to be applied to the tunneling measurements. XPS data demonstrate the dependence of the N 1s binding energy of graphitic nitrogen on the nitrogen concentration. The measure of the Dirac energy for different nitrogen concentrations reveals that the ratio usually computed between the excess charge brought by the dopants and the dopants’ concentration depends on the latter. This is supported by a tight-binding model considering different values for the potentials on the nitrogen site and on its first neighbors.

  12. Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens

    PubMed Central

    Feist, Adam M.; Nagarajan, Harish; Rotaru, Amelia-Elena; Tremblay, Pier-Luc; Zhang, Tian; Nevin, Kelly P.; Lovley, Derek R.; Zengler, Karsten

    2014-01-01

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. PMID:24762737

  13. The ‘porin–cytochrome’ model for microbe-to-mineral electron transfer

    SciTech Connect

    Richardson, David J.; Butt, Julea N.; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang; Edwards, Marcus J.; White, Gaye F.; Baiden, Nanakow; Gates, Andrew J.; Marritt, Sophie; Clarke, Thomas A.

    2012-05-30

    Many species of bacteria can couple anaerobic growth to the respiratory reduction of insoluble minerals containing Fe(III) or Mn(III/IV). It has been suggested that in Shewanella species electrons cross the outer membrane to extracellular substrates via 'porin-cytochrome' electron transport modules. The molecular structure of an outer-membrane extracellular-facing deca-haem terminus for such a module has recently been resolved. It is debated how, once outside the cells, electrons are transferred from outer-membrane cytochromes to insoluble electron sinks. This may occur directly or by assemblies of cytochromes, perhaps functioning as 'nanowires', or via electron shuttles. Here we review recent work in this field and explore whether it allows for unification of the electron transport mechanisms supporting extracellular mineral respiration in Shewanella that may extend into other genera of Gram-negative bacteria.

  14. Powering microbes with electricity: direct electron transfer from electrodes to microbes

    SciTech Connect

    Lovley, DR

    2010-09-16

    P>The discovery of electrotrophs, microorganisms that can directly accept electrons from electrodes for the reduction of terminal electron acceptors, has spurred the investigation of a wide range of potential applications. To date, only a handful of pure cultures have been shown to be capable of electrotrophy, but this process has also been inferred in many studies with undefined consortia. Potential electron acceptors include: carbon dioxide, nitrate, metals, chlorinated compounds, organic acids, protons and oxygen. Direct electron transfer from electrodes to cells has many advantages over indirect electrical stimulation of microbial metabolism via electron shuttles or hydrogen production. Supplying electrons with electrodes for the bioremediation of chlorinated compounds, nitrate or toxic metals may be preferable to adding organic electron donors or hydrogen to the subsurface or bioreactors. The most transformative application of electrotrophy may be microbial electrosynthesis in which carbon dioxide and water are converted to multi-carbon organic compounds that are released extracellularly. Coupling photovoltaic technology with microbial electrosynthesis represents a novel photosynthesis strategy that avoids many of the drawbacks of biomass-based strategies for the production of transportation fuels and other organic chemicals. The mechanisms for direct electron transfer from electrodes to microorganisms warrant further investigation in order to optimize envisioned applications.

  15. Laser pulse control of ultrafast heterogeneous electron transfer: A computational study

    E-print Network

    Röder, Beate

    Laser pulse control of ultrafast heterogeneous electron transfer: A computational study Luxia Wang, Germany Received 31 March 2004; accepted 30 July 2004 Laser pulse control of the photoinduced 90 fs charge in which way the charge injection time can be changed by tailored laser pulses. In a second step a pump

  16. Marcus Theory: Thermodynamics CAN Control the Kinetics of Electron Transfer Reactions

    ERIC Educational Resources Information Center

    Silverstein, Todd P.

    2012-01-01

    Although it is generally true that thermodynamics do not influence kinetics, this is NOT the case for electron transfer reactions in solution. Marcus Theory explains why this is so, using straightforward physical chemical principles such as transition state theory, Arrhenius' Law, and the Franck-Condon Principle. Here the background and…

  17. Modeling the free energy surfaces of electron transfer in condensed phases

    E-print Network

    Matyushov, Dmitry

    PROOF COPY 509037JCP Modeling the free energy surfaces of electron transfer in condensed phases analytical solution for the ET free energy surfaces demonstrates the following features: i the range of ET reaction coordinates is limited by a one-sided fluctuation band, ii the ET free energies are infinite

  18. Distance Dependence of Electron Transfer in DNA: The Role of the Reorganization Energy and Free Energy

    E-print Network

    Fayer, Michael D.

    Distance Dependence of Electron Transfer in DNA: The Role of the Reorganization Energy and Free of the solvent reorganization energy and free energy in the heterogeneous DNA environment. DNA is modeled represents water. Model calculations show the importance of including the reorganization energy and the free

  19. Proton transfer in phenol-amine complexes: phenol electronic effects on free energy profile in solution.

    PubMed

    Aono, Shinji; Kato, Shigeki

    2010-12-01

    Free energy profiles for the proton transfer reactions in hydrogen-bonded complex of phenol with trimethylamine in methyl chloride solvent are studied with the reference interaction site model self-consistent field method. The reactions in both the electronic ground and excited states are considered. The second-order Møller-Plesset perturbation (MP) theory or the second-order multireference MP theory is used to evaluate the effect of the dynamical electron correlation on the free energy profiles. The free energy surface in the ground state shows a discrepancy with the experimental results for the related hydrogen-bonded complexes. To resolve this discrepancy, the effects of chloro-substitutions in phenol are examined, and its importance in stabilizing the ionic form is discussed. The temperature effect is also studied. In contrast to the ground state, the ??* excited state of phenol-trimethylamine complex exhibits the proton transfer reaction with a low barrier. The reaction is almost thermoneutral. This is attributed to the reduction of proton affinity of phenol by the ??* electronic excitation. We further examine the possibility of the electron-proton-coupled transfer in the ??* state through the surface crossing with the charge transfer type ??* state. PMID:20602442

  20. 36 CFR 1235.50 - What specifications and standards for transfer apply to electronic records?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., College Park, MD 20740, phone number (301) 837-1578 about electronic records in other formats. (2... Road, College Park, MD 20740, phone number (301) 837-1578 to initiate transfer discussions. (b) Data... Services Division (NWCS), 8601 Adelphi Road, College Park, MD 20740, phone number 301-837-2903 for...