Sample records for electrophoretic nmr measurements

  1. Simultaneous sizing and electrophoretic mobility measurement of sub-micron particles using Brownian motion

    PubMed Central

    Palanisami, Akilan; Miller, John H.

    2011-01-01

    The size and surface chemistry of micron scale particles are of fundamental importance in studies of biology and air particulate pollution. However, typical electrophoretic measurements of these and other sub-micron scale particles (300 nm – 1 μm) cannot resolve size information within heterogeneous mixtures unambiguously. Using optical microscopy, we monitor electrophoretic motion together with the Brownian velocity fluctuations—using the latter to measure size by either the Green-Kubo relation or by calibration from known size standards. Particle diameters are resolved to ±12% with 95% confidence. Strikingly, the size resolution improves as particle size decreases due to the increased Brownian motion. The sizing ability of the Brownian assessed electrophoresis method described here complements the electrophoretic mobility resolution of traditional capillary electrophoresis. PMID:20882556

  2. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    DOE PAGES

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; ...

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore » predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  3. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Harris E.; Smith, Megan M.; Hao, Yue

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore » predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  4. NMR measurements on the triumf polarized deuterium target

    NASA Astrophysics Data System (ADS)

    Wait, G. D.; Delheij, P. P. J.; Healey, D. C.

    1989-01-01

    The NMR system and the polarization measurements of the TRIUMF polarized deuterium target are described. The NMR tuned circuit is kept resonant at all frequencies to allow for a high gain in the rf amplifiers and to permit the measurement of the real part of the NMR signal. A Starburst (J-11) and an LSI-11 are used to process the NMR signal at a high sample rate. A synthesizer under the control of an 8085 based microprocessor (TRIMAC) provides the rf sweep. Vector polarizations between -0.33 and -0.40 were routinely achieved during a four week run in the TRIUMF M11 pion beamline with a statistical uncertainty of 3.4% and a systematic uncertainty of 5%.

  5. Electrophoretic kinetics of concentrated TiO2 nanoparticle suspensions in aprotic solvent

    NASA Astrophysics Data System (ADS)

    Lee, So-Yeon; Yim, Jung-Ryoul; Lee, Se-Hee; Choi, In-Suk; Nam, Ki Tae; Joo, Young-Chang

    2018-01-01

    We studied the dependences of the concentration of additive and particle size on the electrophoretic mobility of TiO2 nanoparticles. A high concentration of TiO2 nanoparticles was dispersed in aprotic solvent, which is similar to the operating conditions of electrophoretic applications. Because spectroscopy has limits to measuring the electrophoretic mobility of concentrated suspensions in aprotic solvents, we developed a new measurement to determine the electrophoretic mobility of particles using the reflectance change according to the motion of the particles. TiO2 nanoparticles with sizes of 31 nm to 164 nm were synthesized by hydrolysis and were dispersed in cyclohexanone with a dye (Sudan Black B) for use in the new measurement method. In a concentrated suspension in aprotic solvent, the mobility of the particles was proportional to the dye concentration and was inversely proportional to the size of the particles. This infers that the particle size influences the drag force rather than the surface charge, and therefore, to increase the mobility by changing the surface charge, an additive is effective. [Figure not available: see fulltext.

  6. Multistage Electrophoretic Separators

    NASA Technical Reports Server (NTRS)

    Thomas, Nathan; Doyle, John F.; Kurk, Andy; Vellinger, John C.; Todd, Paul

    2006-01-01

    A multistage electrophoresis apparatus has been invented for use in the separation of cells, protein molecules, and other particles and solutes in concentrated aqueous solutions and suspensions. The design exploits free electrophoresis but overcomes the deficiencies of prior free-electrophoretic separators by incorporating a combination of published advances in mathematical modeling of convection, sedimentation, electro-osmotic flow, and the sedimentation and aggregation of droplets. In comparison with other electrophoretic separators, these apparatuses are easier to use and are better suited to separation in relatively large quantities characterized in the art as preparative (in contradistinction to smaller quantities characterized in the art as analytical). In a multistage electrophoretic separator according to the invention, an applied vertical steady electric field draws the electrically charged particles of interest from within a cuvette to within a collection cavity that has been moved into position of the cuvette. There are multiple collection cavities arranged in a circle; each is aligned with the cuvette for a prescribed short time. The multistage, short-migration-path character of the invention solves, possibly for the first time, the fluid-instability problems associated with free electrophoresis. The figure shows a prototype multistage electrophoretic separator that includes four sample stations and five collection stages per sample. At each sample station, an aqueous solution or suspension containing charged species to be separated is loaded into a cuvette, which is machined into a top plate. The apparatus includes a lower plate, into which 20 collection cavities have been milled. Each cavity is filled with an electrophoresis buffer solution. For the collection of an electrophoretic fraction, the lower plate is rotated to move a designated collection cavity into alignment with the opening of the cuvette. An electric field is then applied between a non

  7. Physicochemical characteristics of LR3-IGF1 protein inclusion bodies: electrophoretic mobility studies.

    PubMed

    Wangsa-Wirawan, N D; O'Neill, B K; Middelberg, A P

    2001-01-01

    A knowledge of the physicochemical properties of inclusion bodies is important for the rational design of potential recovery processes such as flotation and precipitation. In this study, measurement of the size and electrophoretic mobility of protein inclusion bodies and cell debris was undertaken. SDS-PAGE analysis of protein inclusion bodies subjected to different cleaning regimes suggested that electrophoretic mobility provides a qualitative measure of protein inclusion body purity. Electrophoretic mobility as a function of electrolyte type and ionic strength was investigated. The presence of divalent ions produced a stronger effect on electrophoretic mobility compared with monovalent ions. The isoelectric point of cell debris was significantly lower than that for the inclusion bodies. Hence, the contaminating cell debris may be separated from inclusion bodies using flotation by exploiting this difference in isoelectric points. Separation by this method is simple, convenient, and a possible alternative to the conventional route of centrifugation.

  8. NMR-based diffusion pore imaging by double wave vector measurements.

    PubMed

    Kuder, Tristan Anselm; Laun, Frederik Bernd

    2013-09-01

    One main interest of nuclear magnetic resonance (NMR) diffusion experiments is the investigation of boundaries such as cell membranes hindering the diffusion process. NMR diffusion measurements allow collecting the signal from the whole sample. This mainly eliminates the problem of vanishing signal at increasing resolution. It has been a longstanding question if, in principle, the exact shape of closed pores can be determined by NMR diffusion measurements. In this work, we present a method using short diffusion gradient pulses only, which is able to reveal the shape of arbitrary closed pores without relying on a priori knowledge. In comparison to former approaches, the method has reduced demands on relaxation times due to faster convergence to the diffusion long-time limit and allows for a more flexible NMR sequence design, because, e.g., stimulated echoes can be used. Copyright © 2012 Wiley Periodicals, Inc.

  9. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...

  10. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...

  11. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...

  12. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...

  13. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7440 Electrophoretic hemoglobin analysis system. (a) Identification. An electrophoretic hemoglobin...

  14. ELECTROPHORETIC MOBILITY OF MYCOBACTERIUM AVIUM COMPLEX ORGANISMS

    EPA Science Inventory

    The electrophoretic mobilities (EPMs) of thirty Mycobacterium avium Complex (MAC) organisms isolated from clinical and environmental sources were measured in 9.15 mM KH2PO4 buffered water. The EPMs of fifteen clinical isolates ranged from -1.9 to -5.0 µm cm V-1 ...

  15. ELECTROPHORETIC MOBILITY OF MYCOBACTERIUM AVIUM COMPLEX ORGANISMS

    EPA Science Inventory

    The electrophoretic mobilities (EPMs) of thirty Mycobacterium avium Complex (MAC) organisms were measured. The EPMs of fifteen clinical isolates ranged from -1.9 to -5.0 µm cm V-1s-1, and the EPMs of fifteen environmental isolates ranged from -1...

  16. NMR measurement of bitumen at different temperatures.

    PubMed

    Yang, Zheng; Hirasaki, George J

    2008-06-01

    Heavy oil (bitumen) is characterized by its high viscosity and density, which is a major obstacle to both well logging and recovery. Due to the lost information of T2 relaxation time shorter than echo spacing (TE) and interference of water signal, estimation of heavy oil properties from NMR T2 measurements is usually problematic. In this work, a new method has been developed to overcome the echo spacing restriction of NMR spectrometer during the application to heavy oil (bitumen). A FID measurement supplemented the start of CPMG. Constrained by its initial magnetization (M0) estimated from the FID and assuming log normal distribution for bitumen, the corrected T2 relaxation time of bitumen sample can be obtained from the interpretation of CPMG data. This new method successfully overcomes the TE restriction of the NMR spectrometer and is nearly independent on the TE applied in the measurement. This method was applied to the measurement at elevated temperatures (8-90 degrees C). Due to the significant signal-loss within the dead time of FID, the directly extrapolated M0 of bitumen at relatively lower temperatures (<60 degrees C) was found to be underestimated. However, resulting from the remarkably lowered viscosity, the extrapolated M0 of bitumen at over 60 degrees C can be reasonably assumed to be the real value. In this manner, based on the extrapolation at higher temperatures (> or = 60 degrees C), the M0 value of bitumen at lower temperatures (<60 degrees C) can be corrected by Curie's Law. Consequently, some important petrophysical properties of bitumen, such as hydrogen index (HI), fluid content and viscosity were evaluated by using corrected T2.

  17. J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings.

    PubMed

    Atreya, Hanudatta S; Garcia, Erwin; Shen, Yang; Szyperski, Thomas

    2007-01-24

    G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.

  18. Using Electrophoretic Mobility Shift Assays to Measure Equilibrium Dissociation Constants: GAL4-p53 Binding DNA as a Model System

    ERIC Educational Resources Information Center

    Heffler, Michael A.; Walters, Ryan D.; Kugel, Jennifer F.

    2012-01-01

    An undergraduate biochemistry laboratory experiment is described that will teach students the practical and theoretical considerations for measuring the equilibrium dissociation constant (K[subscript D]) for a protein/DNA interaction using electrophoretic mobility shift assays (EMSAs). An EMSA monitors the migration of DNA through a native gel;…

  19. Electrophoretic mobilities of erythrocytes in various buffers

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.

  20. Electrophoretic cell separation by means of immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Smolka, A. J. K.

    1980-01-01

    The electrophoretic mobility of fixed human red blood cells immunologically labeled with polymeric (4-vinyl)pyridine or polyglutaraldehyde microspheres was altered to a considerable extent. This observation was utilized in the preparative scale electrophoretic separation of human and turkey fixed red blood cells, whose mobilities under normal physiological conditions do not differ sufficiently to allow their separation by continuous flow electrophoresis. It is suggested that resolution in the electrophoretic separation of cell subpopulations, currently limited by finite and often overlapping mobility distributions, may be significantly enhanced by immuno-specific labeling of target populations using microspheres.

  1. Electrophoretic cell separation by means of microspheres

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Nerren, B. H.; Margel, S.; Rembaum, A.

    1979-01-01

    The electrophoretic mobility of fixed human erythrocytes immunologically labeled with poly(vinylpyridine) or poly(glutaraldehyde) microspheres was reduced by approximately 40%. This observation was utilized in preparative scale electrophoretic separations of fixed human and turkey erythrocytes, the mobilities of which under normal physiological conditions do not differ sufficiently to allow their separation by continuous flow electrophoresis. We suggest that resolution in the electrophoretic separation of cell subpopulations, currently limited by finite and often overlapping mobility distributions, may be significantly enhanced by immunospecific labeling of target populations using microspheres.

  2. Mobile NMR: Measuring Pixels, Images, and Spectra

    NASA Astrophysics Data System (ADS)

    Bluemich, Bernhard

    2007-03-01

    The vision of bringing nuclear magnetic resonance out of the lab to the doctor's office, the chemical reactor, or the manufacturing site is becoming reality with the development of mobile NMR. Pioneered for well logging in the oil industry, the concept has been explored for materials testing in a more systematic way since the introduction of the NMR-MOUSE. This is a small, one-sided access NMR sensor which acquires the information of one pixel from a particular spot of a large object. As the sensor explores the stray-fields of a permanent magnet and an rf coil, the magnetic fields are inhomogeneous and the sensitive volume is limited to the region, where both fields are orthogonal and the Larmor frequency lies within the excitation bandwidth. By shaping the magnet and the coil geometries, the shape of the sensitive volume can be tailored to a thin slice or a larger volume a certain distance away from the sensor surface. In the first case, there is a strong field gradient in the depth direction, and in the second case, a homogeneous sweet spot of the field profile is desired. The first case is suitable for measuring high-resolution depth profiles, while the second case is suitable for chemical shift resolved spectroscopy and volume imaging. The basic concepts of open and closed mobile NMR sensors will be discussed along with applications from testing polymer products, cultural heritage, medical tissue, and rock cores.

  3. Improved Spin-Echo-Edited NMR Diffusion Measurements

    NASA Astrophysics Data System (ADS)

    Otto, William H.; Larive, Cynthia K.

    2001-12-01

    The need for simple and robust schemes for the analysis of ligand-protein binding has resulted in the development of diffusion-based NMR techniques that can be used to assay binding in protein solutions containing a mixture of several ligands. As a means of gaining spectral selectivity in NMR diffusion measurements, a simple experiment, the gradient modified spin-echo (GOSE), has been developed to reject the resonances of coupled spins and detect only the singlets in the 1H NMR spectrum. This is accomplished by first using a spin echo to null the resonances of the coupled spins. Following the spin echo, the singlet magnetization is flipped out of the transverse plane and a dephasing gradient is applied to reduce the spectral artifacts resulting from incomplete cancellation of the J-coupled resonances. The resulting modular sequence is combined here with the BPPSTE pulse sequence; however, it could be easily incorporated into any pulse sequence where additional spectral selectivity is desired. Results obtained with the GOSE-BPPSTE pulse sequence are compared with those obtained with the BPPSTE and CPMG-BPPSTE experiments for a mixture containing the ligands resorcinol and tryptophan in a solution of human serum albumin.

  4. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields

    PubMed Central

    Sadek, Samir H.; Pimenta, Francisco; Pinho, Fernando T.

    2017-01-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. PMID:27990654

  5. Polymer encapsulated inorganic black pigment nanoparticles and their electrophoretic characteristics.

    PubMed

    Sim, H H; Kim, Y J; Choi, H J

    2012-12-01

    Black inorganic pigment modified with poly(styrene-co-acrylonitrile) was fabricated via dispersion polymerization, and then the synthesized hybrid nanoparticles were examined by SEM to confirm their morphology, while their density and size were studied using a gas pycnometer and electrophoretic light scattering apparatus, respectively. We also confirmed their chemical structure and coated state via FT-IR and TGA. Electrophoretic characteristics including the zeta potential were examined via an electrophoretic light scattering apparatus, while the movement of particles was directly observed by an optical microscopy under an electric field applied. The hybrid nanoparticles were confirmed to possess an electrophoretic property as a potential candidate for the microcapsule-type electrophoretic display.

  6. Column-coupling strategies for multidimensional electrophoretic separation techniques.

    PubMed

    Kler, Pablo A; Sydes, Daniel; Huhn, Carolin

    2015-01-01

    Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the

  7. Electrophoretic manipulation of multiple-emulsion droplets

    NASA Astrophysics Data System (ADS)

    Schoeler, Andreas M.; Josephides, Dimitris N.; Chaurasia, Ankur S.; Sajjadi, Shahriar; Mesquida, Patrick

    2014-02-01

    Electrophoretic manipulation of multiple-emulsion oil-in-water-in-oil (O/W)/O and water-in-oil-in-water-in-oil (W/O/W)/O core-shell droplets is shown. It was found that the electrophoretic mobility of the droplets is determined solely by the outer water shell, regardless of size or composition of the inner droplets. It was observed that the surface charge of the outer water shell can be changed and the polarity can be reversed through contact with a biased electrode in a similar way as with simple W/O droplets. Furthermore, addition of the anionic surfactant, sodium dodecyl sulfate to the outer water shell reverses the initial polarity and hence, electrophoretic mobility of the core-shell droplets before contact with an electrode. The results have practical implications for the manipulation of oil droplets in a continuous oil phase.

  8. Improvements in Technique of NMR Imaging and NMR Diffusion Measurements in the Presence of Background Gradients.

    NASA Astrophysics Data System (ADS)

    Lian, Jianyu

    In this work, modification of the cosine current distribution rf coil, PCOS, has been introduced and tested. The coil produces a very homogeneous rf magnetic field, and it is inexpensive to build and easy to tune for multiple resonance frequency. The geometrical parameters of the coil are optimized to produce the most homogeneous rf field over a large volume. To avoid rf field distortion when the coil length is comparable to a quarter wavelength, a parallel PCOS coil is proposed and discussed. For testing rf coils and correcting B _1 in NMR experiments, a simple, rugged and accurate NMR rf field mapping technique has been developed. The method has been tested and used in 1D, 2D, 3D and in vivo rf mapping experiments. The method has been proven to be very useful in the design of rf coils. To preserve the linear relation between rf output applied on an rf coil and modulating input for an rf modulating -amplifying system of NMR imaging spectrometer, a quadrature feedback loop is employed in an rf modulator with two orthogonal rf channels to correct the amplitude and phase non-linearities caused by the rf components in the rf system. The modulator is very linear over a large range and it can generate an arbitrary rf shape. A diffusion imaging sequence has been developed for measuring and imaging diffusion in the presence of background gradients. Cross terms between the diffusion sensitizing gradients and background gradients or imaging gradients can complicate diffusion measurement and make the interpretation of NMR diffusion data ambiguous, but these have been eliminated in this method. Further, the background gradients has been measured and imaged. A dipole random distribution model has been established to study background magnetic fields Delta B and background magnetic gradients G_0 produced by small particles in a sample when it is in a B_0 field. From this model, the minimum distance that a spin can approach a particle can be determined by measuring

  9. Electrophoretic separator for purifying biologicals, part 1

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.

    1978-01-01

    A program to develop an engineering model of an electrophoretic separator for purifying biologicals is summarized. An extensive mathematical modeling study and numerous ground based tests were included. Focus was placed on developing an actual electrophoretic separator of the continuous flow type, configured and suitable for flight testing as a space processing applications rocket payload.

  10. Two Phase Flow Measurements by Nuclear Magnetic Resonance (NMR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altobelli, Stephen A; Fukushima, Eiichi

    In concentrated suspensions, there is a tendency for the solid phase to migrate from regions of high shear rate to regions of low shear (Leighton & Acrivos, 1987). In the early years that our effort was funded by the DOE Division of Basic Energy Science, quantitative measurement of this process in neutrally buoyant suspensions was a major focus (Abbott, et al., 1991; Altobelli, et al., 1991). Much of this work was used to improve multi-phase numerical models at Sandia National Laboratories. Later, our collaborators at Sandia and the University of New Mexico incorporated body forces into their numerical models ofmore » suspension flow (Rao, Mondy, Sun, et al., 2002). We developed experiments that allow us to study flows driven by buoyancy, to characterize these flows in well-known and useful engineering terms (Altobelli and Mondy, 2002) and to begin to explore the less well-understood area of flows with multiple solid phases (Beyea, Altobelli, et al., 2003). We also studied flows that combine the effects of shear and buoyancy, and flows of suspensions made from non-Newtonian liquids (Rao, Mondy, Baer, et al, 2002). We were able to demonstrate the usefulness of proton NMR imaging of liquid phase concentration and velocity and produced quantitative data not obtainable by other methods. Fluids flowing through porous solids are important in geophysics and in chemical processing. NMR techniques have been widely used to study liquid flow in porous media. We pioneered the extension of these studies to gas flows (Koptyug, et al, 2000, 2000, 2001, 2002). This extension allows us to investigate a wider range of Peclet numbers, and to gather data on problems of interest in catalysis. We devised two kinds of NMR experiments for three-phase systems. Both experiments employ two NMR visible phases and one phase that gives no NMR signal. The earlier method depends on the two visible phases differing in a NMR relaxation property. The second method (Beyea, Altobelli, et al., 2003

  11. NMR measurements in SSC dipole D00001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchnir, M.; Schmidt, E.E.; Hanft, R.W.

    The first 16.5 m long SSC dipole magnet (D00001) had its field intensity measured as a function of position with a custom made NMR magnetometer. A short description of the probe is presented. The data obtained (most of it near 2 T spaced apart by one inch) shows an average transfer function of 1.02830 T/KA with position dependent values deviating from the average by up to .00130 T/KA revealing contruction inhomogeneities that were measured with a sensitivity of 25 ppM.

  12. Squid-based CW NMR system for measuring the magnetization of helium-3 films

    NASA Astrophysics Data System (ADS)

    White, Kevin Spencer

    This thesis describes the design and construction of a SQUID-based CW NMR system together with its application in a study of the two dimensional magnetism of 3He. 3He provides an exemplary system for the study of two-dimensional magnetism. Two-dimensional 3He films of varying coverages may be formed by plating 3He on relatively uniform two-dimensional substrates, such as GTA Grafoil and ZYX graphite substrates. At coverages above approximately 20 atoms/nm. 2 on these substrates, the second layer of 3He exhibits a strong ferromagnetic ordering tendency. The ferromagnetic ordering presents as a rapid onset of measured magnetization that becomes independent of the applied magnetic field as film temperatures approach 1 mK. Very low applied magnetic fields are used to probe the ferromagnetic ordering in order to minimize masking of the measured magnetization and to stay within the available bandwidth of the SQUID. Commensurate with the ferromagnetic ordering, the NMR linewidth increases dramatically at these coverages and temperatures. An increasing linewidth equates to a short decay time with respect to pulsed NMR probing of the two-dimensional 3He magnetization. The decay times at these coverages and temperatures become so short that they fall below the minimum recovery time necessary for a SQUID-based pulsed NMR system to recover from the relatively large tipping pulse and acquire meaningful data. To address this problem, we have designed a SQUID-based CW NMR system to leverage as much of an already-existing pulsed NMR system as possible but allow accurate measurement of the rapid onset of ferromagnetic ordering of the 3He films below the approximate 1 mK temperature limit of the pulsed NMR system.

  13. Measuring Protein Concentration on Nitrocellulose and After the Electrophoretic Transfer of Protein to Nitrocellulose.

    PubMed

    Goldring, J P Dean

    2015-01-01

    Proteins bind to nitrocellulose membranes when applied directly or after electrophoretic transfer from polyacrylamide electrophoresis gels. Proteins can be stained for visualization with organic dyes Ponceau S, amido black, Coomassie Blue, and colloidal silver/gold and the intensity of the stain is directly proportional to the amount of protein present. Chemicals that interfere with dye/protein interactions in solution can be removed by washing the nitrocellulose after protein application. A method is described whereby protein-dye complexes attached to the nitrocellulose can be solubilized, dissolving the nitrocellulose and releasing dye into solution for detection by a spectrophotometer. The concentration of the dyes Ponceau S, amido black, and colloidal silver is proportional to the concentration of protein. Proteins transferred electrophoretically from SDS-PAGE, isoelectric focusing, or 2D gels to nitrocellulose can be stained with amido black, protein bands excised, and the bound dye detected in a spectrophotometer to quantify proteins in the individual protein bands.

  14. An introduction to NMR-based approaches for measuring protein dynamics

    PubMed Central

    Kleckner, Ian R; Foster, Mark P

    2010-01-01

    Proteins are inherently flexible at ambient temperature. At equilibrium, they are characterized by a set of conformations that undergo continuous exchange within a hierarchy of spatial and temporal scales ranging from nanometers to micrometers and femtoseconds to hours. Dynamic properties of proteins are essential for describing the structural bases of their biological functions including catalysis, binding, regulation and cellular structure. Nuclear magnetic resonance (NMR) spectroscopy represents a powerful technique for measuring these essential features of proteins. Here we provide an introduction to NMR-based approaches for studying protein dynamics, highlighting eight distinct methods with recent examples, contextualized within a common experimental and analytical framework. The selected methods are (1) Real-time NMR, (2) Exchange spectroscopy, (3) Lineshape analysis, (4) CPMG relaxation dispersion, (5) Rotating frame relaxation dispersion, (6) Nuclear spin relaxation, (7) Residual dipolar coupling, (8) Paramagnetic relaxation enhancement. PMID:21059410

  15. Velocity distributions in a micromixer measured by NMR imaging.

    PubMed

    Ahola, Susanna; Telkki, Ville-Veikko; Stapf, Siegfried

    2012-04-24

    Velocity distributions (so-called propagators) with two-dimensional spatial resolution inside a chemical micromixer were measured by pulsed-field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR). A surface coil matching the volume of interest was built to enhance the signal-to-noise ratio. This enabled the acquisition of velocity maps with a very high spatial resolution of 29 μm × 39 μm. The measured propagators are compared with theoretical distributions and a good agreement is found. The results show that the propagator data provide much richer information about flow behaviour than conventional NMR velocity imaging and the information is essential for understanding the performance of a micromixer. It reveals, for example, deviations in the shape and size of the channel structures and multicomponent flow velocity distribution of overlapping channels. Propagator data efficiently compensate lost information caused by insufficient 3D resolution in conventional velocity imaging.

  16. Cell and Particle Interactions and Aggregation During Electrophoretic Motion

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    2000-01-01

    The objectives of this research were (i) to perform experiments for observing and quantifying electrophoretic aggregation, (ii) to develop a theoretical description to appropriately analyze and compare with the experimental results, (iii) to study the combined effects of electrophoretic and gravitational aggregation of large particles, and the combined effects of electrophoretic and Brownian aggregation of small particles, and (iv) to perform a preliminary design of a potential future flight experiment involving electrophoretic aggregation. Electrophoresis refers to the motion of charged particles, droplets or molecules in response to an applied electric field. Electrophoresis is commonly used for analysis and separation of biological particles or molecules. When particles have different surface charge densities or potentials, they will migrate at different velocities in an electric field. This differential migration leads to the possibility that they will collide and aggregate, thereby preventing separation.

  17. Electrophoretic interactions and aggregation of colloidal biological particles

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.; Nichols, Scott C.; Loewenberg, Michael; Todd, Paul

    1994-01-01

    The separation of cells or particles from solution has traditionally been accomplished with centrifuges or by sedimentation; however, many particles have specific densities close to unity, making buoyancy-driven motion slow or negligible, but most cells and particles carry surface charges, making them ideal for electrophoretic separation. Both buoyancy-driven and electrophoretic separation may be influenced by hydrodynamic interactions and aggregation of neighboring particles. Aggregation by electrophoresis was analyzed for two non-Brownian particles with different zeta potentials and thin double layers migrating through a viscous fluid. The results indicate that the initial rate of electrophoretically-driven aggregation may exceed that of buoyancy-driven aggregation, even under conditions in which buoyancy-driven relative motion of noninteracting particles is dominant.

  18. Rheo-NMR Measurements of Cocoa Butter Crystallized Under

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudge, E.; Mazzanti, G

    2009-01-01

    Modifications of a benchtop NMR instrument were made to apply temperature control to a shearing NMR cell. This has enabled the determination in situ of the solid fat content (SFC) of cocoa butter under shearing conditions. The cocoa butter was cooled at 3 C/min to three final temperatures of 17.5, 20.0, and 22.5 C with applied shear rates between 45 and 720 s-1. Polymorphic transitions of the cocoa butter were determined using synchrotron X-ray diffraction with an identical shearing system constructed of Lexan. Sheared samples were shown to have accelerated phase transitions compared to static experiments. In experiments where formmore » V was confirmed to be the dominant polymorph, the final SFC averaged around 50%. However, when other polymorphic forms were formed, a lower SFC was measured because the final temperature was within the melting range of that polymorph and only partial crystallization happened. A shear rate of 720 s-1 delayed phase transitions, likely due to viscous heating of the sample. Pulsed NMR is an invaluable tool for determining the crystalline fraction in hydrogen containing materials, yet its use for fundamental and industrial research on fat or alkanes crystallization under shear has only recently been developed.« less

  19. Method and apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise oreintationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions is zero.

  20. Cell and Particle Interactions and Aggregation During Electrophoretic Motion

    NASA Technical Reports Server (NTRS)

    Wang, Hua; Zeng, Shulin; Loewenberg, Michael; Todd, Paul; Davis, Robert H.

    1996-01-01

    The stability and pairwise aggregation rates of small spherical particles under the collective effects of buoyancy-driven motion and electrophoretic migration are analyzed. The particles are assumed to be non-Brownian, with thin double-layers and different zeta potentials. The particle aggregation rates may be enhanced or reduced, respectively, by parallel and antiparallel alignments of the buoyancy-driven and electrophoretic velocities. For antiparallel alignments, with the buoyancy-driven relative velocity exceeding the electrophoretic relative velocity between two widely-separated particles, there is a 'collision-forbidden region' in parameter space due to hydrodynamic interactions; thus, the suspension becomes stable against aggregation.

  1. Electrophoretic fractional elution apparatus employing a rotational seal fraction collector

    NASA Technical Reports Server (NTRS)

    Bier, M. (Inventor)

    1977-01-01

    Electrophoretic fractional elution apparatus which has a column with a rotating seal joint is described. A thin jet of eluting buffer is directed across the lumen of the electrophoretic column in a direction perpendicular to that of electrophoretic migration. Either the content of the column is rotated with respect to the stationary jet, or the jet is rotated with respect to the column. The system may employ electrophoresis either in free solution or in packed columns.

  2. Measurement of Lipid Accumulation in Chlorella vulgaris via Flow Cytometry and Liquid-State ¹H NMR Spectroscopy for Development of an NMR-Traceable Flow Cytometry Protocol

    PubMed Central

    Bono Jr., Michael S.; Garcia, Ravi D.; Sri-Jayantha, Dylan V.; Ahner, Beth A.; Kirby, Brian J.

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r 2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols. PMID:26267664

  3. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    PubMed

    Bono, Michael S; Garcia, Ravi D; Sri-Jayantha, Dylan V; Ahner, Beth A; Kirby, Brian J

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.

  4. A method for determining electrophoretic and electroosmotic mobilities using AC and DC electric field particle displacements.

    PubMed

    Oddy, M H; Santiago, J G

    2004-01-01

    We have developed a method for measuring the electrophoretic mobility of submicrometer, fluorescently labeled particles and the electroosmotic mobility of a microchannel. We derive explicit expressions for the unknown electrophoretic and the electroosmotic mobilities as a function of particle displacements resulting from alternating current (AC) and direct current (DC) applied electric fields. Images of particle displacements are captured using an epifluorescent microscope and a CCD camera. A custom image-processing code was developed to determine image streak lengths associated with AC measurements, and a custom particle tracking velocimetry (PTV) code was devised to determine DC particle displacements. Statistical analysis was applied to relate mobility estimates to measured particle displacement distributions.

  5. Gravity-driven pH adjustment for site-specific protein pKa measurement by solution-state NMR

    NASA Astrophysics Data System (ADS)

    Li, Wei

    2017-12-01

    To automate pH adjustment in site-specific protein pKa measurement by solution-state NMR, I present a funnel with two caps for the standard 5 mm NMR tube. The novelty of this simple-to-build and inexpensive apparatus is that it allows automatic gravity-driven pH adjustment within the magnet, and consequently results in a fully automated NMR-monitored pH titration without any hardware modification on the NMR spectrometer.

  6. 31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes.

    PubMed

    Petersen, A; Kristensen, S R; Jacobsen, J P; Hørder, M

    1990-08-17

    Absolute 31P-NMR measurements of ATP, ADP and 2,3-diphosphoglycerate (2,3-DPG) in oxygenated and partly deoxygenated human erythrocytes, compared to measurements by standard assays after acid extraction, show that ATP is only 65% NMR visible, ADP measured by NMR is unexpectedly 400% higher than the enzymatic measurement and 2,3-DPG is fully NMR visible, regardless of the degree of oxygenation. These results show that binding to hemoglobin is unlikely to cause the decreased visibility of ATP in human erythrocytes as deoxyhemoglobin binds the phosphorylated metabolites more tightly than oxyhemoglobin. The high ADP visibility is unexplained. The levels of free Mg2+ [( Mg2+]free) in human erythrocytes are 225 mumol/l at an oxygen saturation of 98.6% and instead of the expected increase, the level decreased to 196 mumol/l at an oxygen saturation of 38.1% based on the separation between the alpha- and beta-ATP peaks. [Mg2+]free in the erythrocytes decreased to 104 mumol/l at a high 2,3-DPG concentration of 25.4 mmol/l red blood cells (RBC) and a normal ATP concentration of 2.05 mmol/l RBC. By increasing the ATP concentration to 3.57 mmol/l RBC, and with a high 2,3-DPG concentration of 24.7 mmol/l RBC, the 31P-NMR measured [Mg2+]free decreased to 61 mumol/l. These results indicate, that the 31P-NMR determined [Mg2+]free in human erythrocytes, based solely on the separation of the alpha- and beta-ATP peaks, does not give a true measure of intracellular free Mg2+ changes with different oxygen saturation levels. Furthermore the measurement is influenced by the concentration of the Mg2+ binding metabolites ATP and 2,3-DPG. Failure to take these factors into account when interpreting 31P-NMR data from human erythrocytes may explain some discrepancies in the literature regarding [Mg2+]free.

  7. Size and DNA distributions of electrophoretically separated cultured human kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Todd, P. W.

    1985-01-01

    Electrophoretic purification of purifying cultured cells according to function presumes that the size of cycle phase of a cell is not an overriding determinant of its electrophoretic velocity in an electrophoretic separator. The size distributions and DNA distributions of fractions of cells purified by density gradient electrophoresis were determined. No systematic dependence of electrophoretic migration upward in a density gradient column upon either size or DNA content were found. It was found that human leukemia cell populations, which are more uniform function and found in all phases of the cell cycle during exponential growth, separated on a vertical sensity gradient electrophoresis column according to their size, which is shown to be strictly cell cycle dependent.

  8. Controlled method of reducing electrophoretic mobility of macromolecules, particles, or cells

    NASA Technical Reports Server (NTRS)

    Vanalstine, James M. (Inventor)

    1992-01-01

    A method of reducing electrophoretic mobility of macromolecules, particles, cells, and other substances is provided which comprises interacting in a conventional electrophoretic separating procedure, the substances with a polymer-linked affinity compound comprised of a hydrophilic neutral polymer such as polyethylene glycol bound to a second component such as a hydrophobic compound, an immunocompound such as an antibody or antibody active fragment, or a ligand such as a hormone, drug, antigen, or a hapten. The reduction of electrophoretic mobility achieved is directly proportional to the concentration of the polymer-linked affinity compound employed, and such reduction can comprise up to 100 percent for particular particles and cells. The present invention is advantageous in that electrophoretic separation can now be achieved for substances whose native surface charge structure had prevented them from being separated by normal electrophoretic means. Depending on the affinity component utilized, separation can be achieved on the basis of the specific/irreversible, specific/reversible, semi-specific/reversible, relatively nonspecific/reversible, or relatively nonspecific/irreversible ligand-substance interactions.

  9. Measurement and Quantification of Heterogeneity, Flow, and Mass Transfer in Porous Media Using NMR Low-Field Techiques

    NASA Astrophysics Data System (ADS)

    Paciok, E.; Olaru, A. M.; Haber, A.; van Landeghem, M.; Haber-Pohlmeier, S.; Sucre, O. E.; Perlo, J.; Casanova, F.; Blümich, B.; RWTH Aachen Mobile Low-Field NMR

    2011-12-01

    Nuclear magnetic resonance (NMR) is renowned for its unique potential to both reveal and correlate spectroscopic, relaxometric, spatial and dynamic properties in a large variety of organic and inorganic systems. NMR has no restrictions regarding sample opacity and is an entirely non-invasive method, which makes it the ideal tool for the investigation of porous media. However, for years NMR research of soils was limited by the use of high-field NMR devices, which necessitated elaborate NMR experiments and were not applicable to bulky samples or on-site field measurements. The evolution of low-field NMR devices during the past 20 years has brought forth portable, small-scale NMR systems with open and closed magnet arrangements specialized to specific NMR applications. In combination with recent advances in 2D-NMR Laplace methodology [1], low-field NMR has opened up the possibility to study real-life microporous systems ranging from granular media to natural soils and oil well boreholes. Thus, information becomes available, which before has not been accessible with high-field NMR. In this work, we present our recent progress in mobile low-field NMR probe design for field measurements of natural soils: a slim-line logging tool, which can be rammed into the soil of interest on-site. The performance of the device is demonstrated in measurements of moisture profiles of model soils [2] and field measurements of relaxometric properties and moisture profiles of natural soils [3]. Moreover, an improved concept of the slim-line logging tool is shown, with a higher excitation volume and a better signal-to-noise due to an improved coil design. Furthermore, we present our recent results in 2D exchange relaxometry and simulation. These include relaxation-relaxation experiments on natural soils with varying degree of moisture saturation, where we could draw a connection between the relaxometric properties of the soil to its pore size-related diffusivity and to its clay content

  10. Controlled method of reducing electrophoretic mobility of various substances

    NASA Technical Reports Server (NTRS)

    Vanalstine, James M. (Inventor)

    1989-01-01

    A method of reducing electrophoretic mobility of macromolecules, particles, cells, and the like is provided. The method comprises interacting the particles or cells with a polymer-linked affinity compound composed of: a hydrophilic neutral polymer such as polyethylene glycol, and an affinity component consisting of a hydrophobic compound such as a fatty acid ester, an immunocompound such as an antibody or active fragment thereof or simular macromolecule, or other ligands. The reduction of electrophoretic mobility achieved is directly proportional to the concentration of the polymer-linked affinity compound employed, and the mobility reduction obtainable is up to 100 percent for particular particles and cells. The present invention is advantageous in that analytical electrophoretic separation can not be achieved for macromolecules, particles, and cells whose native surface charge structure had prevented them from being separated by normal electrophoretic means. Depending on the affinity component utilized, separation can be achieved on the basis of specific/irreversible, specific/reversible, semi-specific/reversible, relatively nonspecific/reversible, or relatively nonspecific/irreversible ligand-substance interactions. The present method is also advantageous in that it can be used in a variety of standard laboratory electrophoresis equipment.

  11. Low-field NMR logging sensor for measuring hydraulic parameters of model soils

    NASA Astrophysics Data System (ADS)

    Sucre, Oscar; Pohlmeier, Andreas; Minière, Adrien; Blümich, Bernhard

    2011-08-01

    SummaryKnowing the exact hydraulic parameters of soils is very important for improving water management in agriculture and for the refinement of climate models. Up to now, however, the investigation of such parameters has required applying two techniques simultaneously which is time-consuming and invasive. Thus, the objective of this current study is to present only one technique, i.e., a new non-invasive method to measure hydraulic parameters of model soils by using low-field nuclear magnetic resonance (NMR). Hereby, two model clay or sandy soils were respectively filled in a 2 m-long acetate column having an integrated PVC tube. After the soils were completely saturated with water, a low-field NMR sensor was moved up and down in the PVC tube to quantitatively measure along the whole column the initial water content of each soil sample. Thereafter, both columns were allowed to drain. Meanwhile, the NMR sensor was set at a certain depth to measure the water content of that soil slice. Once the hydraulic equilibrium was reached in each of the two columns, a final moisture profile was taken along the whole column. Three curves were subsequently generated accordingly: (1) the initial moisture profile, (2) the evolution curve of the moisture depletion at that particular depth, and (3) the final moisture profile. All three curves were then inverse analyzed using a MATLAB code over numerical data produced with the van Genuchten-Mualem model. Hereby, a set of values ( α, n, θr and θs) was found for the hydraulic parameters for the soils under research. Additionally, the complete decaying NMR signal could be analyzed through Inverse Laplace Transformation and averaged on the 1/ T2 space. Through measurement of the decay in pure water, the effect on the relaxation caused by the sample could be estimated from the obtained spectra. The migration of the sample-related average <1/ T2, Sample> with decreasing saturation speaks for a enhancement of the surface relaxation as

  12. CAPILLARY ELECTROPHORETIC BEHAVIOR OF SEVEN SULFONYLUREAS

    EPA Science Inventory

    The electrophoretic behavior of bensulfuron Me, sulfometuron Me, nicosulfuron (Accent), chlorimuron Et, thifensulfuron Me (Harmony), metsulfuron Me, and chlorsulfuron was studied under capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) conditio...

  13. Electrophoretic Separation of Single Particles Using Nanoscale Thermoplastic Columns.

    PubMed

    Weerakoon-Ratnayake, Kumuditha M; Uba, Franklin I; Oliver-Calixte, Nyoté J; Soper, Steven A

    2016-04-05

    Phenomena associated with microscale electrophoresis separations cannot, in many cases, be applied to the nanoscale. Thus, understanding the electrophoretic characteristics associated with the nanoscale will help formulate relevant strategies that can optimize the performance of separations carried out on columns with at least one dimension below 150 nm. Electric double layer (EDL) overlap, diffusion, and adsorption/desorption properties and/or dielectrophoretic effects giving rise to stick/slip motion are some of the processes that can play a role in determining the efficiency of nanoscale electrophoretic separations. We investigated the performance characteristics of electrophoretic separations carried out in nanoslits fabricated in poly(methyl methacrylate), PMMA, devices. Silver nanoparticles (AgNPs) were used as the model system with tracking of their transport via dark field microscopy and localized surface plasmon resonance. AgNPs capped with citrate groups and the negatively charged PMMA walls (induced by O2 plasma modification of the nanoslit walls) enabled separations that were not apparent when these particles were electrophoresed in microscale columns. The separation of AgNPs based on their size without the need for buffer additives using PMMA nanoslit devices is demonstrated herein. Operational parameters such as the electric field strength, nanoslit dimensions, and buffer composition were evaluated as to their effects on the electrophoretic performance, both in terms of efficiency (plate numbers) and resolution. Electrophoretic separations performed at high electric field strengths (>200 V/cm) resulted in higher plate numbers compared to lower fields due to the absence of stick/slip motion at the higher electric field strengths. Indeed, 60 nm AgNPs could be separated from 100 nm particles in free solution using nanoscale electrophoresis with 100 μm long columns.

  14. Method and sample spinning apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR apparatus and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus spins the sample about an axis. The angle of the axis is mechanically varied such that the time average of two or more Legendre polynomials are zero.

  15. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  16. Discrimination between closed and open forms of lipases using electrophoretic techniques.

    PubMed

    Miled, N; Riviere, M; Cavalier, J F; Buono, G; Berti, L; Verger, R

    2005-03-15

    The enhanced catalytic activity of lipases is often associated with structural changes. The three-dimensional (3D) structures showed that the covalently inhibited lipases exist under their open conformations, in contrast to their native closed forms. We studied the inhibition of various lipases--human and dog gastric lipases, human pancreatic lipase, and Humicola lanuginosa lipase--by the octyl-undecyl phosphonate inhibitor, and we measured the subsequent modifications of their respective electrophoretic mobility. Furthermore, the experimental values of the isoelectric points found for the native (closed) and inhibited (open) lipases are in agreement with theoretical calculations based on the electrostatic potential. We concluded that there is a significant difference in the isoelectric points between the closed (native) and open (inhibited) conformations of the four lipases investigated. Thus, analysis of the electrophoretic pattern is proposed as an easy experimental tool to differentiate between a closed and an open form of a given lipase.

  17. A portable single-sided magnet system for remote NMR measurements of pulmonary function.

    PubMed

    Dabaghyan, Mikayel; Muradyan, Iga; Hrovat, Alan; Butler, James; Frederick, Eric; Zhou, Feng; Kyriazis, Angelos; Hardin, Charles; Patz, Samuel; Hrovat, Mirko

    2014-12-01

    In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). Copyright © 2014 John Wiley & Sons, Ltd.

  18. A portable single-sided magnet system for remote NMR measurements of pulmonary function

    PubMed Central

    Mikayel, Dabaghyan; Iga, Muradyan; James, Butler; Eric, Frederick; Feng, Zhou; Angelos, Kyriazis; Charles, Hardin; Samuel, Patz; Mirko, Hrovat

    2014-01-01

    In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). PMID:24953556

  19. Electrophoretic Process For Purifying Wastewater

    NASA Technical Reports Server (NTRS)

    Sammons, David W.; Twitty, Garland E.; Sharnez, Rizwan; Egen, Ned B.

    1992-01-01

    Microbes, poisonous substances, and colloidal particles removed by combination of electric fields. Electrophoretic process removes pathogenicorganisms, toxins, toxic metals, and cooloidal soil particles from wastewater. Used to render domestic, industrial, and agricultural wastewater streams potable. Process also useful in bioregenerative and other closed systems like in space stations and submarines, where water must be recycled.

  20. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  1. Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates

    DTIC Science & Technology

    1990-08-30

    hydrodynamic drag force exerted on the particle due to the electroosmotic flow of the solvent inside the pore, the electrophoretic force exerted on the...8217 - electrophoretic velocity UN - electroosmotic velocity b - pore mean radius D - diffusion coefficient k - local deposition rate Large Peclet numbers and small...experimentally as the charge is acquired spontaneously on mixing the particles with the solvent and it may be reversed upon addition ot ionic compounds. The

  2. Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates

    DTIC Science & Technology

    1992-09-30

    particle penetration is facilitated by the electrophoretic force exerted on it and the electroosmotic flow of the fluid into the pores. 1 2 The...skeleton showed that the whole cross--section of the graphite was impregnated. - The existence of an electroosmotic effect was demonstrated by the...Pe) and the Damkohler number (A): Pe ((U" + Us)b -kb where U" - electrophoretic velocity Um - electroosmotic velocity b - pore mean radius D

  3. A Semianalytical Analysis of Compressible Electrophoretic Cake Formation

    NASA Astrophysics Data System (ADS)

    Kambham, Kiran K. R.; Tuncay, Kagan; Corapcioglu, M. Yavuz

    1995-05-01

    Leaks in geomembrane liners of waste landfills and liquid impoundments cause chemical contaminants to leak into the subsurface environment. A mathematical model is presented to simulate electrophoretic sealing of impoundment leaks. The model describes the formation of a compressible clay cake because of electrical and gravitational forces. The model includes mass balance equations for the solid particles and liquid phase, modified Darcy's law in an electrical field, and Terzaghi's definition of effective stress. The formulation is presented in the Eulerian coordinates. The resulting second-order, nonlinear partial differential equation and the lower boundary condition are linearized to obtain an analytical solution for time-dependent settlement. After discretizing in time the analytical solution is applied to simulate compression of an accreting sediment. In the simulation of an accreting sediment, solid fluxes on either side of suspension/sediment interface are coupled using a no-jump condition. The velocity of a discrete particle in the suspension zone is assumed to be equal to the algebraic sum of electrophoretic and Stoke's settling velocities. An empirical relationship available in the literature is used to account for the effect of concentration on the velocity of solid particles in the suspension zone. The validity of the semianalytical approach is partially verified using an exact steady state solution for self-weight consolidation. The simulation results obtained for a set of material parameters are presented graphically. It is noted that the electrokinetic consolidation of sediment continues even after the completion of electrophoretic settling of all clay particles. An analysis reveals that the electrophoretic cake formation process is quite sensitive to voltage gradient and the coefficient of compressibility.

  4. Three-dimensional fluorescence analysis of chernozem humic acids and their electrophoretic fractions

    NASA Astrophysics Data System (ADS)

    Trubetskoi, O. A.; Trubetskaya, O. E.

    2017-09-01

    Polyacrylamide gel electrophoresis in combination with size-exclusion chromatography (SEC-PAGE) has been used to obtain stable electrophoretic fractions of different molecular size (MS) from chernozem humic acids (HAs). Three-dimensional fluorescence charts of chernozem HAs and their fractions have been obtained for the first time, and all fluorescence excitation-emission maxima have been identified in the excitation wavelength range of 250-500 nm. It has been found that fractionation by the SEC-PAGE method results in a nonuniform distribution of protein- and humin-like fluorescence of the original HA preparation among the electrophoretic fractions. The electrophoretic fractions of the highest and medium MSs have only the main protein-like fluorescence maximum and traces of humin-like fluorescence. In the electrophoretic fraction of the lowest MS, the intensity of protein-like fluorescence is low, but the major part of humin-like fluorescence is localized there. Relationships between the intensity of protein-like fluorescence and the weight distribution of amino acids have been revealed, as well as between the degree of aromaticity and the intensity of humin-like fluorescence in electrophoretic fractions of different MSs. The obtained relationships can be useful in the interpretation of the spatial structural organization and ecological functions of soil HAs.

  5. Possible 6-qubit NMR quantum computer device material; simulator of the NMR line width

    NASA Astrophysics Data System (ADS)

    Hashi, K.; Kitazawa, H.; Shimizu, T.; Goto, A.; Eguchi, S.; Ohki, S.

    2002-12-01

    For an NMR quantum computer, splitting of an NMR spectrum must be larger than a line width. In order to find a best device material for a solid-state NMR quantum computer, we have made a simulation program to calculate the NMR line width due to the nuclear dipole field by the 2nd moment method. The program utilizes the lattice information prepared by commercial software to draw a crystal structure. By applying this program, we can estimate the NMR line width due to the nuclear dipole field without measurements and find a candidate material for a 6-qubit solid-state NMR quantum computer device.

  6. Electrophoretic separation of gold nanoparticles according to bifunctional molecules-induced charge and size.

    PubMed

    Kim, Jong-Yeob; Kim, Hyung-Bae; Jang, Du-Jeon

    2013-03-01

    Gold nanospheres modified with bifunctional molecules have been separated and characterized by using agarose gel electrophoresis as well as optical spectroscopy and electron microscopy. The electrophoretic mobility of a gold nanosphere capped with 11-mercaptoundecanoic acid (MUA) has been found to depend on the number of MUA molecules per gold nanosphere, indicating that it increases with the surface charge of the nanoparticle. The extinction spectrum of gold nanospheres capped with MUA at an MUA molecules per gold nanosphere value of 1000 and connected via 1,6-hexanedithiol (HDT) decreases by 33% in magnitude and shifts to the red as largely as 22 nm with the increase of the molar ratio of HDT to MUA (R(HM)). Gold nanospheres capped with MUA and connected via HDT have been separated successfully using gel electrophoresis and characterized by measuring reflectance spectra of discrete electrophoretic bands directly in the gel and by monitoring transmission electron microscope images of gold nanoparticles collected from the discrete bands. Electrophoretic mobility has been found to decrease substantially with the increment of HDT to MUA, indicating that the size of aggregated gold nanoparticles increases with the concentration of HDT. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Grunewald, E.; Knight, R.

    2008-12-01

    The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over

  8. (1)H nuclear magnetic resonance (NMR) as a tool to measure dehydration in mice.

    PubMed

    Li, Matthew; Vassiliou, Christophoros C; Colucci, Lina A; Cima, Michael J

    2015-08-01

    Dehydration is a prevalent pathology, where loss of bodily water can result in variable symptoms. Symptoms can range from simple thirst to dire scenarios involving loss of consciousness. Clinical methods exist that assess dehydration from qualitative weight changes to more quantitative osmolality measurements. These methods are imprecise, invasive, and/or easily confounded, despite being practiced clinically. We investigate a non-invasive, non-imaging (1)H NMR method of assessing dehydration that attempts to address issues with existing clinical methods. Dehydration was achieved by exposing mice (n = 16) to a thermally elevated environment (37 °C) for up to 7.5 h (0.11-13% weight loss). Whole body NMR measurements were made using a Bruker LF50 BCA-Analyzer before and after dehydration. Physical lean tissue, adipose, and free water compartment approximations had NMR values extracted from relaxation data through a multi-exponential fitting method. Changes in before/after NMR values were compared with clinically practiced metrics of weight loss (percent dehydration) as well as blood and urine osmolality. A linear correlation between tissue relaxometry and both animal percent dehydration and urine osmolality was observed in lean tissue, but not adipose or free fluids. Calculated R(2) values for percent dehydration were 0.8619 (lean, P < 0.0001), 0.5609 (adipose, P = 0.0008), and 0.0644 (free fluids, P = 0.3445). R(2) values for urine osmolality were 0.7760 (lean, P < 0.0001), 0.5005 (adipose, P = 0.0022), and 0.0568 (free fluids, P = 0.3739). These results suggest that non-imaging (1)H NMR methods are capable of non-invasively assessing dehydration in live animals. Copyright © 2015 John Wiley & Sons, Ltd.

  9. {sup 19}F NMR measurements of NO production in hypertensive ISIAH and OXYS rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobko, Andrey A.; Sergeeva, Svetlana V.; Bagryanskaya, Elena G.

    2005-05-06

    Recently we demonstrated the principal possibility of application of {sup 19}F NMR spin-trapping technique for in vivo {sup {center_dot}}NO detection [Free Radic. Biol. Med. 36 (2004) 248]. In the present study, we employed this method to elucidate the significance of {sup {center_dot}}NO availability in animal models of hypertension. In vivo {sup {center_dot}}NO-induced conversion of the hydroxylamine of the fluorinated nitronyl nitroxide (HNN) to the hydroxylamine of the iminonitroxide (HIN) in hypertensive ISIAH and OXYS rat strains and normotensive Wistar rat strain was measured. Significantly lower HIN/HNN ratios were measured in the blood of the hypertensive rats. The NMR data weremore » found to positively correlate with the levels of nitrite/nitrate evaluated by Griess method and negatively correlate with the blood pressure. In comparison with other traditionally used methods {sup 19}F NMR spectroscopy allows in vivo evaluation of {sup {center_dot}}NO production and provides the basis for in vivo {sup {center_dot}}NO imaging.« less

  10. Characterization of the Cell Surface Properties of Drinking Water Pathogens by Microbial Adhesion to Hydrocarbon and Electrophoretic Mobility Measurements

    EPA Science Inventory

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregati...

  11. Utilizing a Water-Soluble Cryptophane with Fast Xenon Exchange Rates for Picomolar Sensitivity NMR Measurements

    PubMed Central

    Bai, Yubin; Hill, P. Aru; Dmochowski, Ivan J.

    2012-01-01

    Hyperpolarized 129Xe chemical exchange saturation transfer (129Xe Hyper-CEST) NMR is a powerful technique for the ultrasensitive, indirect detection of Xe host molecules (e.g., cryptophane-A). Irradiation at the appropriate Xe-cryptophane resonant radio frequency results in relaxation of the bound hyperpolarized 129Xe and rapid accumulation of depolarized 129Xe in bulk solution. The cryptophane effectively ‘catalyzes’ this process by providing a unique molecular environment for spin depolarization to occur, while allowing xenon exchange with the bulk solution during the hyperpolarized lifetime (T1 ≈ 1 min). Following this scheme, a triacetic acid cryptophane-A derivative (TAAC) was indirectly detected at 1.4 picomolar concentration at 320 K in aqueous solution, which is the record for a single-unit xenon host. To investigate this sensitivity enhancement, the xenon binding kinetics of TAAC in water was studied by NMR exchange lifetime measurement. At 297 K, kon ≈ 1.5 × 106 M−1s−1 and koff = 45 s−1, which represent the fastest Xe association and dissociation rates measured for a high-affinity, water-soluble xenon host molecule near rt. NMR linewidth measurements provided similar exchange rates at rt, which we assign to solvent-Xe exchange in TAAC. At 320 K, koff was estimated to be 1.1 × 103 s−1. In Hyper-CEST NMR experiments, the rate of 129Xe depolarization achieved by 14 pM TAAC in the presence of RF pulses was calculated to be 0.17 µM·s−1. On a per cryptophane basis, this equates to 1.2 × 104 129Xe atoms s−1 (or 4.6 × 104 Xe atoms s−1, all Xe isotopes), which is more than an order of magnitude faster than koff, the directly measurable Xe-TAAC exchange rate. This compels us to consider multiple Xe exchange processes for cryptophane-mediated bulk 129Xe depolarization, which provide at least 107-fold sensitivity enhancements over directly detected hyperpolarized 129Xe NMR signals. PMID:23106513

  12. Electrophoretic separations on paper: Past, present, and future-A review.

    PubMed

    Nanthasurasak, Pavisara; Cabot, Joan Marc; See, Hong Heng; Guijt, Rosanne M; Breadmore, Michael C

    2017-09-08

    Point-of-collection (POC) devices aim for a fast, on-site detection for medical and environmental purposes. In this area, microfluidic Paper-based Analytical Devices (μPADs) have recently gained popularity because these are potentially cheap and environmentally friendly to produce, and easy to use. From an analytical perspective, paper is well known for its use as a substrate for chromatography, but less known for its use in electrophoretic separations. With the recent interest in μPADs, most applications are based on rather simple assays with relatively few applications incorporating an analytical separation. The focus of this review is on paper-based electrophoresis, originating with the key developments in the 1940s and 1950s as well as the recent developments of electrophoretic μPADs, and concluding with a critical discussion of the opportunities and challenges for electrophoretic μPADS in the future. Copyright © 2017. Published by Elsevier B.V.

  13. Ensemble of electrophoretically captured gold nanoparticles as a fingerprint of Boltzmann velocity distribution

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; Kang, M. G.; Lim, J. H.; Hwang, S. W.

    2008-07-01

    An ensemble of electrophoretically captured gold nanoparticles is exploited to fingerprint their velocity distribution in solution. The electrophoretic capture is performed using a dc biased nanogap electrode, and panoramic scanning electron microscopic images are inspected to obtain the regional density of the captured gold nanoparticles. The regional density profile along the surface of the electrode is in a quantitative agreement with the calculated density of the captured nanoparticles. The calculated density is obtained by counting, in the Boltzmann distribution, the number of nanoparticles whose thermal velocity is smaller than the electrophoretic velocity.

  14. Electrophoretic mobilities of cultured human embryonic kidney cells in various buffers

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Data on the electrophoretic mobility distributions of cells in the new D-1 buffer and the interlaboratory standardization of urokinase assay methods are presented. A table of cell strains and recent data on cell dispersal methods are also included. It was decided that glycerol in A-1 electrophoretic mobility data on cultured human embryonic kidney cells subjected to electrophoresis in this buffer. The buffer composition is presented.

  15. A portable NMR sensor to measure dynamic changes in the amount of water in living stems or fruit and its potential to measure sap flow.

    PubMed

    Windt, Carel W; Blümler, Peter

    2015-04-01

    Nuclear magnetic resonance (NMR) and NMR imaging (magnetic resonance imaging) offer the possibility to quantitatively and non-invasively measure the presence and movement of water. Unfortunately, traditional NMR hardware is expensive, poorly suited for plants, and because of its bulk and complexity, not suitable for use in the field. But does it need to be? We here explore how novel, small-scale portable NMR devices can be used as a flow sensor to directly measure xylem sap flow in a poplar tree (Populus nigra L.), or in a dendrometer-like fashion to measure dynamic changes in the absolute water content of fruit or stems. For the latter purpose we monitored the diurnal pattern of growth, expansion and shrinkage in a model fruit (bean pod, Phaseolus vulgaris L.) and in the stem of an oak tree (Quercus robur L.). We compared changes in absolute stem water content, as measured by the NMR sensor, against stem diameter variations as measured by a set of conventional point dendrometers, to test how well the sensitivities of the two methods compare and to investigate how well diurnal changes in trunk absolute water content correlate with the concomitant diurnal variations in stem diameter. Our results confirm the existence of a strong correlation between the two parameters, but also suggest that dynamic changes in oak stem water content could be larger than is apparent on the basis of the stem diameter variation alone. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Electrophoretic properties of BSA-coated quantum dots.

    PubMed

    Bücking, Wendelin; Massadeh, Salam; Merkulov, Alexei; Xu, Shu; Nann, Thomas

    2010-02-01

    Low toxic InP/ZnS quantum dots (QDs), ZnS:Mn(2+)/ZnS nanocrystals and CdSe/ZnS nanoparticles were rendered water-dispersible by different ligand-exchange methods. Eventually, they were coated with bovine serum albumin (BSA) as a model protein. All particles were characterised by isotachophoresis (ITP), laser Doppler velocimetry (LDV) and agarose gel electrophoresis. It was found that the electrophoretic mobility and colloidal stability of ZnS:Mn(2+)/ZnS and CdSe/ZnS nanoparticles, which bore short-chain surface ligands, was primarily governed by charges on the nanoparticles, whereas InP/ZnS nanocrystals were not charged per se. BSA-coated nanoparticles showed lower electrophoretic mobility, which was attributed to their larger size and smaller overall charge. However, these particles were colloidally stable. This stability was probably caused by steric stabilisation of the BSA coating.

  17. Achievement of a 920-MHz High Resolution NMR

    NASA Astrophysics Data System (ADS)

    Hashi, Kenjiro; Shimizu, Tadashi; Goto, Atsushi; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji

    2002-06-01

    We have developed a 920-MHz NMR system and performed the proton NMR measurement of H 2O and ethylbenzene using the superconducting magnet operating at 21.6 T (920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high resolution NMR.

  18. Design Modification of Electrophoretic Equipment

    NASA Technical Reports Server (NTRS)

    Reddick, J. M.; Hirsch, I.

    1973-01-01

    The improved design of a zone electrophoretic sampler is reported that can be used in mass screening for hemoglobin S, the cause of sickle cell anemia. Considered is a high voltage multicell cellulose acetate device that requires 5 to 6 minutes electrophoresis periods; cells may be activitated individually or simultaneously. A multisample hemoglobin applicator standardizes the amount of sample applied and transfers the homolysate to the electrical wires.

  19. NMR and transport measurements of copper chalcogenide and clathrate compounds

    NASA Astrophysics Data System (ADS)

    Sirusi Arvij, Ali

    Due to limited sources of fossil fuels worldwide and a large percentage wasted as heat energy, searching for efficient thermoelectric materials to convert heat to electricity has gained a great deal of attention. Most of the attempts are focused on materials with substantially lower lattice thermal conductivity and narrow band gaps. Among them, inorganic clathrates and copper-based chalcogenides possess intrinsic low thermal conductivity which makes them promising thermoelectrics. In this work, nuclear magnetic resonance (NMR), transport, and magnetic measurements were performed on clathrates and copper-based chalcogenides to investigate their vibrational and electronic charge carrier properties, as well as the unknown structures of Cu2Se and Cu 2Te at low temperatures, and the effect of rattling of guest atoms in the clathrates. The NMR results in Ba8Ga16Ge30 indicate a pseudogap in the Ga electronic density of states, superposed upon a surprisingly large Ba contribution to the conduction band. Meanwhile, the phonon contributions to the Ga relaxation rates are large and increase more rapidly with temperature than typical semiconductors due to enhanced anharmonicity of the propagative phonon modes over a wide range. Moreover, the observed NMR shifts in the Ba8Cu5Si xGe41-x clathrates change in a nonlinear way with increasing Si substitution: from x = 0 to about 20 the shifts are essentially constant, while approaching x = 41 they increase rapidly, demonstrating a significant change in hybridizations vs Si substitution. NMR studies of Cu2Se show an initial appearance of ionic hopping in a narrow temperature range above 100 K, coinciding with the recently observed low-temperature phase transition. At room temperature and above, this goes over to rapid Cu-ion hopping and a single motionally narrowed line both above and below the alpha-beta structural transition. Furthermore, the NMR results on Cu2Te and Cu 1.98Ag0.2Te demonstrate unusually large negative chemical

  20. NMR at Low and Ultra-Low Temperatures

    PubMed Central

    Tycko, Robert

    2017-01-01

    Conspectus Solid state nuclear magnetic resonance (NMR) measurements at low temperatures have been common in physical sciences for many years, and are becoming increasingly important in studies of biomolecular systems. This article reviews a diverse set of projects from my laboratory, dating back to the early 1990s, that illustrate the motivations for low-temperature solid state NMR, the types of information that are available from the measurements, and likely directions for future research. These projects include NMR studies of both physical and biological systems, performed at low (cooled with nitrogen, down to 77 K) and very low (cooled with helium, below 77 K) temperatures, and performed with and without magic-angle spinning (MAS). In NMR studies of physical systems, the main motivation is to study phenomena that occur only at low temperatures. Two examples from my laboratory are studies of molecular rotation and an orientational ordering in solid C60 at low temperatures and studies of unusual electronic states, called skyrmions, in two-dimensionally confined electron systems within semiconductor quantum wells. NMR measurements on quantum wells were facilitated by optical pumping of nuclear spin polarizations, a signal enhancement phenomenon that exists at very low temperatures. In studies of biomolecular systems, motivations for low-temperature NMR include suppression of molecular tumbling (thereby permitting solid state NMR measurements on soluble proteins), suppression of conformational exchange (thereby permitting quantitation of conformational distributions), and trapping of transient intermediate states in a non-equilibrium kinetic process (by rapid freeze-quenching). Solid state NMR measurements on AIDS-related peptide/antibody complexes, chemically denatured states of the model protein HP35, and a transient intermediate in the rapid folding pathway of HP35 illustrate these motivations. NMR sensitivity generally increases with decreasing sample

  1. Comparing nanostructured hydroxyapatite coating on AZ91 alloy samples via sol-gel and electrophoretic deposition for biomedical applications.

    PubMed

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2014-12-01

    Magnesium is one of the most critical elements in hard tissues regeneration and therefore causes speeding up the restoration of harmed bones, while high deterioration rate of magnesium in body fluid restricts it to be used as biodegradable implants. Alloying magnesium with some relatively nobler metals such as aluminium, zinc, rare earth elements, magnesium-bioceramics composites, and surface modification techniques are some of the routes to control magnesium corrosion rate. In this study AZ91 magnesium alloy had been coated by nanostructured hydroxyapatite via sol-gel dip coating and electrophoretical methods to survey the final barricade properties of the obtained coatings. In order to perform electrophoretic coating, powders were prepared by sol-gel method, and then the powders deposited on substrates utilizing direct current electricity. Zeta potentials of the electrophoresis suspensions were measured to determine a best mode for good quality coatings. Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) were used to confirm nanoscale dimension, and the uniformity of the nanostructured hydroxyapatite coating, respectively. Fourier Transform-Infrared and X-ray diffraction analysis were utilized for functional group and phase structure evaluation of the prepared coatings, correspondingly. Electrochemical corrosion tests were performed in SBF at 37±1 (°)C which revealed considerable increase in corrosion protection resistivity and corrosion current density for electrophoretic coated specimens versus sol-gel coated specimens. Results showed that both sol-gel and electrophoretical techniques seem to be suitable to coat magnesium alloys for biomedical applications but electrophoretic coating technique is a better choice due to the more homogeneity and more crystalline structure of the coating.

  2. Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)

    ERIC Educational Resources Information Center

    Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.

    2011-01-01

    Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…

  3. Accumulation of ammonium in Norway spruce (Picea abies) seedlings measured by in vivo 14N-NMR.

    PubMed

    Aarnes, H; Eriksen, A B; Petersen, D; Rise, F

    2007-01-01

    (14)N-NMR and (31)P-NMR have been used to monitor the in vivo pH in roots, stems, and needles from seedlings of Norway spruce, a typical ammonium-tolerant plant. The vacuolar and cytoplasmic pH measured by (31)P-NMR was found to be c. pH 4.8 and 7.0, respectively, with no significant difference between plants growing with ammonium or nitrate as the N-source. The (1)H-coupled (14) NH 4+ resonance is pH-sensitive: at alkaline pH it is a narrow singlet line and below pH 4 it is an increasing multiplet line with five signals. The pH values in ammonium-containing compartments measured by (14)N-NMR ranged from 3.7 to 3.9, notably lower than the estimated pH values of the P(i) pools. This suggests that, in seedlings of Norway spruce, ammonium is stored in vacuoles with low pH possibly to protect the seedlings against the toxic effects of ammonium ( NH 4+) or ammonia (NH3). It was also found that concentrations of malate were 3-6 times higher in stems than in roots and needles, with nitrate-grown plants containing more malate than plants grown with ammonium.

  4. Fabrication of nanoelectrodes for neurophysiology: cathodic electrophoretic paint insulation and focused ion beam milling

    PubMed Central

    Qiao, Yi; Chen, Jie; Guo, Xiaoli; Cantrell, Donald; Ruoff, Rodney; Troy, John

    2005-01-01

    The fabrication and characterization of tungsten nanoelectrodes insulated with cathodic electrophoretic paint is described together with their application within the field of neurophysiology. The tip of a 127 μm diameter tungsten wire was etched down to less than 100 nm and then insulated with cathodic electrophoretic paint. Focused ion beam (FIB) polishing was employed to remove the insulation at the electrode’s apex, leaving a nanoscale sized conductive tip of 100–1000 nm. The nanoelectrodes were examined by scanning electron microscopy (SEM) and their electrochemical properties characterized by steady state linear sweep voltammetry. Electrode impedance at 1 kHz was measured too. The ability of a 700 nm tipped electrode to record well-isolated action potentials extracellularly from single visual neurons in vivo was demonstrated. Such electrodes have the potential to open new populations of neurons to study. PMID:16467926

  5. Effect of pH on the Electrophoretic Mobility of Spores of Bacillus anthracis and Its Surrogates in Aqueous Solutions

    EPA Science Inventory

    Electrophoretic mobility (EPM) of endospores of Bacillus anthracis and surrogates were measured in aqueous solution across a broad pH range and several ionic strengths. EPM values trended around phylogenetic clustering based on the 16S rRNA gene. Measurements reported here prov...

  6. Ultrafast NMR diffusion measurements exploiting chirp spin echoes.

    PubMed

    Ahola, Susanna; Mankinen, Otto; Telkki, Ville-Veikko

    2017-04-01

    Standard diffusion NMR measurements require the repetition of the experiment multiple times with varying gradient strength or diffusion delay. This makes the experiment time-consuming and restricts the use of hyperpolarized substances to boost sensitivity. We propose a novel single-scan diffusion experiment, which is based on spatial encoding of two-dimensional data, employing the spin-echoes created by two successive adiabatic frequency-swept chirp π pulses. The experiment is called ultrafast pulsed-field-gradient spin-echo (UF-PGSE). We present a rigorous derivation of the echo amplitude in the UF-PGSE experiment, justifying the theoretical basis of the method. The theory reveals also that the standard analysis of experimental data leads to a diffusion coefficient value overestimated by a few per cent. Although the overestimation is of the order of experimental error and thus insignificant in many practical applications, we propose that it can be compensated by a bipolar gradient version of the experiment, UF-BP-PGSE, or by corresponding stimulated-echo experiment, UF-BP-pulsed-field-gradient stimulated-echo. The latter also removes the effect of uniform background gradients. The experiments offer significant prospects for monitoring fast processes in real time as well as for increasing the sensitivity of experiments by several orders of magnitude by nuclear spin hyperpolarization. Furthermore, they can be applied as basic blocks in various ultrafast multidimensional Laplace NMR experiments. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. High resolution NMR measurements using a 400MHz NMR with an (RE)Ba2Cu3O7-x high-temperature superconducting inner coil: Towards a compact super-high-field NMR.

    PubMed

    Piao, R; Iguchi, S; Hamada, M; Matsumoto, S; Suematsu, H; Saito, A T; Li, J; Nakagome, H; Takao, T; Takahashi, M; Maeda, H; Yanagisawa, Y

    2016-02-01

    Use of high-temperature superconducting (HTS) inner coils in combination with conventional low-temperature superconducting (LTS) outer coils for an NMR magnet, i.e. a LTS/HTS NMR magnet, is a suitable option to realize a high-resolution NMR spectrometer with operating frequency >1GHz. From the standpoint of creating a compact magnet, (RE: Rare earth) Ba2Cu3O7-x (REBCO) HTS inner coils which can tolerate a strong hoop stress caused by a Lorentz force are preferred. However, in our previous work on a first-generation 400MHz LTS/REBCO NMR magnet, the NMR resolution and sensitivity were about ten times worse than that of a conventional LTS NMR magnet. The result was caused by a large field inhomogeneity in the REBCO coil itself and the shielding effect of a screening current induced in that coil. In the present paper, we describe the operation of a modified 400MHz LTS/REBCO NMR magnet with an advanced field compensation technology using a combination of novel ferromagnetic shimming and an appropriate procedure for NMR spectrum line shape optimization. We succeeded in obtaining a good NMR line shape and 2D NOESY spectrum for a lysozyme aqueous sample. We believe that this technology is indispensable for the realization of a compact super-high-field high-resolution NMR. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. FAST TRACK COMMUNICATION: High material efficiency found in electrophoretic deposition of conjugated polymer

    NASA Astrophysics Data System (ADS)

    Tada, Kazuya; Onoda, Mitsuyoshi

    2009-09-01

    The material efficiency of electrophoretic deposition of a fluorene-based conjugated polymer, poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (PDOF-MEHPV), from suspensions with a mixture of acetonitrile and toluene as dispersant is studied. It has been found that the recovery rate of the electrophoretic deposition from a suspension containing 90% of the poor solvent acetonitrile reaches 98%. Although the recovery rate decreases with decreasing acetonitrile content, almost 70% of the polymer can be deposited on the substrates from the suspension containing equivalent volumes of the good and poor solvents by electrophoretic deposition, from which smooth and transparent films suitable for electronic devices are obtained.

  9. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qing; Shi, Chaowei; Yu, Lu

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in amore » defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.« less

  10. Electrophoretic fabrication of chitosan-zirconium-oxide nanobiocomposite platform for nucleic acid detection.

    PubMed

    Das, Maumita; Dhand, Chetna; Sumana, Gajjala; Srivastava, A K; Nagarajan, R; Nain, Lata; Iwamoto, M; Manaka, Takaaki; Malhotra, B D

    2011-03-14

    The present work describes electrophoretic fabrication of nanostructured chitosan-zirconium-oxide composite (CHIT-NanoZrO(2)) film (180 nm) onto indium-tin-oxide (ITO)-coated glass plate. This nanobiocomposite film has been explored as immobilization platform for probe DNA specific to M. Tuberculosis as model biomolecule to investigate its sensing characteristics. It is revealed that pH-responsive behavior of CHIT and its cationic skeleton is responsible for the movement of CHIT-NanoZrO(2) colloids toward cathode during electrophoretic deposition. The FT-IR, SEM, TEM, and EDX techniques have been employed for the structural, morphological, and composition analysis of the fabricated electrodes. The morphological studies clearly reveal uniform inter-linking and dispersion of hexagonal nanograins of ZrO(2) (30-50 nm) into the chitosan matrix, resulting in homogeneous nanobiocomposite formation. Electrochemical response measurements of DNA/CHIT-NanoZrO(2)/ITO bioelectrode, carried out using cyclic voltammetry and differential pulse voltammetry, reveal that this bioelectrode can specifically detect complementary target DNA up to 0.00078 μM with sensitivity of 6.38 × 10(-6) AμM(-1).

  11. Effect of AOT Microemulsion Composition on the Hydrodynamic Diameter and Electrophoretic Mobility of Titanium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shaparenko, N. O.; Beketova, D. I.; Demidova, M. G.; Bulavchenko, A. I.

    2018-05-01

    The hydrodynamic diameter and electrophoretic mobility of titania nanoparticles in AOT microemulsions are studied depending on their water content (from 0 to 1.5 vol %), chloroform content in n-decane-chloroform mixture (from 0 to 30 vol %) and temperature (from 0 to 60°C). Considerable changes in diameter (from 20 to 400 nm) are detected upon adding water to the microemulsion. The electrophoretic mobility grows by 2-3 times upon adding chloroform, or as the temperature falls. The observed features allow us to halve the time of electrophoretic concentration for 140 nm TiO2 nanoparticles, and to concentrate 14 nm nanoparticles that do not exhibit electrophoretic mobility in the absence of chloroform.

  12. Continuous-flow electrophoretic separator for biologicals

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.; Griffin, R. N.; Locker, R. J.

    1976-01-01

    In the near absence of gravity, a continuous-flow type of electrophoretic separator can be operated with a much thicker separation chamber than is possible under 1 g conditions. This should permit either better resolution or shorter separation time per unit of sample. An apparatus to perform experiments on sounding rockets is under development and will be described. The electrophoresis cell is 5 mm thick by 5 cm wide with 10 cm long electrodes. It is supplied with buffer, sample, and coolant at about 4 C through the use of a passive refrigerant system. UV sample detection and provision for recovery and cold storage of up to 50 sample fractions are now being added to the basic unit. A wide range of operating conditions are electronically programmable into the unit, even up to a short time before flight, and a further range of some parameters can be achieved by exchanging power supplies and by changing gears in the motor drive units of the pump. The preliminary results of some separation studies on various biological products using a commercially available electrophoretic separator are also presented.

  13. Atomic-force-controlled capillary electrophoretic nanoprinting of proteins.

    PubMed

    Lovsky, Yulia; Lewis, Aaron; Sukenik, Chaim; Grushka, Eli

    2010-01-01

    The general nanoprinting and nanoinjection of proteins on non-conducting or conducting substrates with a high degree of control both in terms of positional and timing accuracy is an important goal that could impact diverse fields from biotechnology (protein chips) to molecular electronics and from fundamental studies in cell biology to nanophotonics. In this paper, we combine capillary electrophoresis (CE), a separation method with considerable control of protein movement, with the unparalleled positional accuracy of an atomic force microscope (AFM). This combination provides the ability to electrophoretically or electroosmotically correlate the timing of protein migration with AFM control of the protein deposition at a high concentration in defined locations and highly confined volumes estimated to be 2 al. Electrical control of bovine serum albumin printing on standard protein-spotting glass substrates is demonstrated. For this advance, fountain pen nanolithography (FPN) that uses cantilevered glass-tapered capillaries is amended with the placement of electrodes on the nanopipette itself. This results in imposed voltages that are three orders of magnitude less than what is normally used in capillary electrophoresis. The development of atomic-force-controlled capillary electrophoretic printing (ACCEP) has the potential for electrophoretic separation, with high resolution, both in time and in space. The large voltage drop at the tip of the tapered nanopipettes allows for significant increases in concentration of protein in the small printed volumes. All of these attributes combine to suggest that this methodology should have a significant impact in science and technology.

  14. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  15. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  16. Fabrication and kinetics study of nano-Al/NiO thermite film by electrophoretic deposition.

    PubMed

    Zhang, Daixiong; Li, Xueming

    2015-05-21

    Nano-Al/NiO thermites were successfully prepared as film by electrophoretic deposition (EPD). For the key issue of this EPD, a mixture solvent of ethanol-acetylacetone (1:1 in volume) containing 0.00025 M nitric acid was proved to be a suitable dispersion system for EPD. The kinetics of electrophoretic deposition for both nano-Al and nano-NiO were investigated; the linear relation between deposition weight and deposition time in short time and parabolic relation in prolonged time were observed in both EPDs. The critical transition time between linear deposition kinetics and parabolic deposition kinetics for nano-Al and nano-NiO were 20 and 10 min, respectively. The theoretical calculation of the kinetics of electrophoretic deposition revealed that the equivalence ratio of nano-Al/NiO thermites film would be affected by the behavior of electrophoretic deposition for nano-Al and nano-NiO. The equivalence ratio remained steady when the linear deposition kinetics dominated for both nano-Al and nano-NiO. The equivalence ratio would change with deposition time when deposition kinetics for nano-NiO changed into parabolic kinetics dominated after 10 min. Therefore, the rule was suggested to be suitable for other EPD of bicomposites. We also studied thermodynamic properties of electrophoretic nano-Al/NiO thermites film as well as combustion performance.

  17. A DC electrophoresis method for determining electrophoretic mobility through the pressure driven negation of electro osmosis

    NASA Astrophysics Data System (ADS)

    Karam, Pascal; Pennathur, Sumita

    2016-11-01

    Characterization of the electrophoretic mobility and zeta potential of micro and nanoparticles is important for assessing properties such as stability, charge and size. In electrophoretic techniques for such characterization, the bulk fluid motion due to the interaction between the fluid and the charged surface must be accounted for. Unlike current industrial systems which rely on DLS and oscillating potentials to mitigate electroosmotic flow (EOF), we propose a simple alternative electrophoretic method for optically determining electrophoretic mobility using a DC electric fields. Specifically, we create a system where an adverse pressure gradient counters EOF, and design the geometry of the channel so that the flow profile of the pressure driven flow matches that of the EOF in large regions of the channel (ie. where we observe particle flow). Our specific COMSOL-optimized geometry is two large cross sectional areas adjacent to a central, high aspect ratio channel. We show that this effectively removes EOF from a large region of the channel and allows for the accurate optical characterization of electrophoretic particle mobility, no matter the wall charge or particle size.

  18. NMR Methods, Applications and Trends for Groundwater Evaluation and Management

    NASA Astrophysics Data System (ADS)

    Walsh, D. O.; Grunewald, E. D.

    2011-12-01

    Nuclear magnetic resonance (NMR) measurements have a tremendous potential for improving groundwater characterization, as they provide direct detection and measurement of groundwater and unique information about pore-scale properties. NMR measurements, commonly used in chemistry and medicine, are utilized in geophysical investigations through non-invasive surface NMR (SNMR) or downhole NMR logging measurements. Our recent and ongoing research has focused on improving the performance and interpretation of NMR field measurements for groundwater characterization. Engineering advancements have addressed several key technical challenges associated with SNMR measurements. Susceptibility of SNMR measurements to environmental noise has been dramatically reduced through the development of multi-channel acquisition hardware and noise-cancellation software. Multi-channel instrumentation (up to 12 channels) has also enabled more efficient 2D and 3D imaging. Previous limitations in measuring NMR signals from water in silt, clay and magnetic geology have been addressed by shortening the instrument dead-time from 40 ms to 4 ms, and increasing the power output. Improved pulse sequences have been developed to more accurately estimate NMR relaxation times and their distributions, which are sensitive to pore size distributions. Cumulatively, these advancements have vastly expanded the range of environments in which SNMR measurements can be obtained, enabling detection of groundwater in smaller pores, in magnetic geology, in the unsaturated zone, and nearby to infrastructure (presented here in case studies). NMR logging can provide high-resolution estimates of bound and mobile water content and pore size distributions. While NMR logging has been utilized in oil and gas applications for decades, its use in groundwater investigations has been limited by the large size and high cost of oilfield NMR logging tools and services. Recently, engineering efforts funded by the US Department of

  19. Chiral ionic liquids in chromatographic and electrophoretic separations.

    PubMed

    Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C

    2014-10-10

    This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  1. Electrophoretic study of the genome of human rotavirus from Maceió, Brazil.

    PubMed

    Houly, C A; Uchoa, M M; Zaidan, A M; Gomes-Neto, A; de-Oliveira, F M; Athayde, M A; Almeida, M F; Pereira, H G

    1986-01-01

    Rotaviruses were detected by enzyme immunoassay (EIA) in 53 (13.3%) of 397 fecal samples from children with acute gastroenteritis in the city of Maceió, Alagoas, Brazil. Polyacrylamide gel electrophoretic (PAGE) patterns characteristic of rotavirus double-stranded RNA were detected in 51 (96.2%) of the 53 EIA-positive samples. Of the RNA-positive samples, 1 (2%) was classified as subgroup 1 (short profile), 49 (96%) as subgroup 2 (long profile) and 1 (2%) could not be classified because of the absence of bands 10 and 11. The strains of subgroup 2 showed a great degree of electrophoretic heterogeneity and could be divided into several subcategories. Two samples showed splitting of one of the genome segments. PAGE, a very sensitive method capable of identifying rotavirus RNA genomes, has demonstrated that human rotaviruses detected in Maceió present many differences in RNA electrophoretic patterns.

  2. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites. Copyright © 2015 John Wiley & Sons, Ltd.

  3. NMR measurement system including two synchronized ring buffers, with 128 rf coils for in situ water monitoring in a polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Aoki, Masaru; Hasegawa, Hiroshi; Morisaka, Shinichi; Hashimoto, Seitaro

    2017-01-01

    A small radio-frequency (rf) coil inserted into a polymer electrolyte fuel cell (PEFC) can be used to acquire nuclear magnetic resonance (NMR) signals from the water in a membrane electrode assembly (MEA) or in oxygen gas channels in the PEFC. Measuring the spatial distribution of the water in a large PEFC requires using many rf probes, so an NMR measurement system which acquires NMR signals from 128 rf probes at intervals of 0.5 s was manufactured. The system has eight rf transceiver units with a field-programmable gate array (FPGA) for modulation of the excitation pulse and quadrature phase detection of the NMR signal, and one control unit with two ring buffers for data control. The sequence data required for the NMR measurement were written into one ring buffer. The acquired NMR signal data were then written temporarily into the other ring buffer and then were transmitted to a personal computer (PC). A total of 98 rf probes were inserted into the PEFC that had an electrical generation area of 16 cm × 14 cm, and the water generated in the PEFC was measured when the PEFC operated at 100 A. As a result, time-dependent changes in the spatial distribution of the water content in the MEA and the water in the oxygen gas channels were obtained.

  4. Electrophoretically deposited graphene oxide and carbon nanotube composite for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Ajayi, Obafunso A.; Guitierrez, Daniel H.; Peaslee, David; Cheng, Arthur; Gao, Theodore; Wong, Chee Wei; Chen, Bin

    2015-10-01

    We report a scalable one-step electrode fabrication approach for synthesizing composite carbon-based supercapacitors with synergistic outcomes. Multi-walled carbon nanotubes (MWCNTs) were successfully integrated into our modified electrophoretic deposition process to directly form composite MWCNT-GO electrochemical capacitor electrodes (where GO is graphene oxide) with superior performance to solely GO electrodes. The measured capacitance improved threefold, reaching a maximum specific capacitance of 231 F g-1. Upon thermal reduction, MWCNT-GO electrode sheet resistance decreased by a factor of 8, significantly greater than the 2× decrease of those without MWCNTs.

  5. Demonstrating Electrophoretic Separation in a Straight Paper Channel Delimited by a Hydrophobic Wax Barrier

    ERIC Educational Resources Information Center

    Xu, Chunxiu; Lin, Wanqi; Cai, Longfei

    2016-01-01

    A demonstration is described of electrophoretic separation of carmine and sunset yellow with a paper-based device. The channel in the paper device was fabricated by hand with a wax pen. Electrophoretic separation of carmine and sunset yellow was achieved within a few minutes by applying potential on the channel using a simple and inexpensive power…

  6. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  7. Measuring diffusion-relaxation correlation maps using non-uniform field gradients of single-sided NMR devices.

    PubMed

    Nogueira d'Eurydice, Marcel; Galvosas, Petrik

    2014-11-01

    Single-sided NMR systems are becoming a relevant tool in industry and laboratory environments due to their low cost, low maintenance and capacity to evaluate quantity and quality of hydrogen based materials. The performance of such devices has improved significantly over the last decade, providing increased field homogeneity, field strength and even controlled static field gradients. For a class of these devices, the configuration of the permanent magnets provides a linear variation of the magnetic field and can be used in diffusion measurements. However, magnet design depends directly on its application and, according to the purpose, the field homogeneity may significantly be compromised. This may prevent the determination of diffusion properties of fluids based on the natural inhomogeneity of the field using known techniques. This work introduces a new approach that extends the applicability of diffusion-editing CPMG experiments to NMR devices with highly inhomogeneous magnetic fields, which do not vary linearly in space. Herein, we propose a method to determine a custom diffusion kernel based on the gradient distribution, which can be seen as a signature of each NMR device. This new diffusion kernel is then utilised in the 2D inverse Laplace transform (2D ILT) in order to determine diffusion-relaxation correlation maps of homogeneous multi-phasic fluids. The experiments were performed using NMR MObile Lateral Explore (MOLE), which is a single-sided NMR device designed to maximise the volume at the sweet spot with enhanced depth penetration. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Pulsed field gradient magic angle spinning NMR self-diffusion measurements in liquids

    NASA Astrophysics Data System (ADS)

    Viel, Stéphane; Ziarelli, Fabio; Pagès, Guilhem; Carrara, Caroline; Caldarelli, Stefano

    2008-01-01

    Several investigations have recently reported the combined use of pulsed field gradient (PFG) with magic angle spinning (MAS) for the analysis of molecular mobility in heterogeneous materials. In contrast, little attention has been devoted so far to delimiting the role of the extra force field induced by sample rotation on the significance and reliability of self-diffusivity measurements. The main purpose of this work is to examine this phenomenon by focusing on pure liquids for which its impact is expected to be largest. Specifically, we show that self-diffusion coefficients can be accurately determined by PFG MAS NMR diffusion measurements in liquids, provided that specific experimental conditions are met. First, the methodology to estimate the gradient uniformity and to properly calibrate its absolute strength is briefly reviewed and applied on a MAS probe equipped with a gradient coil aligned along the rotor spinning axis, the so-called 'magic angle gradient' coil. Second, the influence of MAS on the outcome of PFG MAS diffusion measurements in liquids is investigated for two distinct typical rotors of different active volumes, 12 and 50 μL. While the latter rotor led to totally unreliable results, especially for low viscosity compounds, the former allowed for the determination of accurate self-diffusion coefficients both for fast and slowly diffusing species. Potential implications of this work are the possibility to measure accurate self-diffusion coefficients of sample-limited mixtures or to avoid radiation damping interferences in NMR diffusion measurements. Overall, the outlined methodology should be of interest to anyone who strives to improve the reliability of MAS diffusion studies, both in homogeneous and heterogeneous media.

  9. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    NASA Astrophysics Data System (ADS)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-05-01

    The spin dynamics in the helical chain Co(hfac) 2NITPhOMe has been investigated by 1H NMR and μSR relaxation. In the temperature range 15NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived.

  10. Probing porous media with gas diffusion NMR

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Wong, G. P.; Hoffmann, D.; Hurlimann, M. D.; Patz, S.; Schwartz, L. M.; Walsworth, R. L.

    1999-01-01

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.

  11. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs

    PubMed Central

    Krepl, Miroslav; Cléry, Antoine; Blatter, Markus; Allain, Frederic H.T.; Sponer, Jiri

    2016-01-01

    RNA recognition motif (RRM) proteins represent an abundant class of proteins playing key roles in RNA biology. We present a joint atomistic molecular dynamics (MD) and experimental study of two RRM-containing proteins bound with their single-stranded target RNAs, namely the Fox-1 and SRSF1 complexes. The simulations are used in conjunction with NMR spectroscopy to interpret and expand the available structural data. We accumulate more than 50 μs of simulations and show that the MD method is robust enough to reliably describe the structural dynamics of the RRM–RNA complexes. The simulations predict unanticipated specific participation of Arg142 at the protein–RNA interface of the SRFS1 complex, which is subsequently confirmed by NMR and ITC measurements. Several segments of the protein–RNA interface may involve competition between dynamical local substates rather than firmly formed interactions, which is indirectly consistent with the primary NMR data. We demonstrate that the simulations can be used to interpret the NMR atomistic models and can provide qualified predictions. Finally, we propose a protocol for ‘MD-adapted structure ensemble’ as a way to integrate the simulation predictions and expand upon the deposited NMR structures. Unbiased μs-scale atomistic MD could become a technique routinely complementing the NMR measurements of protein–RNA complexes. PMID:27193998

  12. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.

    PubMed

    Sun, Guangfei; Ma, Jun; Zhang, Shengmin

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. 1H-NMR and Hyperpolarized 13C-NMR Assays of Pyruvate-Lactate Exhange: a comparative study

    PubMed Central

    Orton, Matthew R.; Tardif, Nicolas; Parkes, Harold G.; Robinson, Simon P.; Leach, Martin O.; Chung, Yuen-Li; Eykyn, Thomas R.

    2015-01-01

    Pyruvate-lactate exchange is mediated by the enzyme lactate dehydrogenase (LDH) and is central to the altered energy metabolism in cancer cells. Measurement of exchange kinetics using hyperpolarized 13C NMR has provided a biomarker of response to novel therapeutics. In this study we investigated an alternative in vitro 1H assay, using [3-13C]pyruvate, and compared the measured kinetics with a hyperpolarized 13C-NMR assay, using [1-13C]pyruvate, under the same conditions in human colorectal carcinoma SW1222 cells. The apparent forward reaction rate constants (kPL) derived from the two assays showed no significant difference, and both assays had similar reproducibility (kPL = 0.506 ± 0.054 and kPL = 0.441 ± 0.090 nmol/s/106 cells, (mean ± standard deviation, n = 3); 1H, 13C assays respectively). The apparent backward reaction rate constant (kLP) could only be measured with good reproducibility using the 1H-NMR assay (kLP = 0.376 ± 0.091 nmol/s/106 cells, (mean ± standard deviation, n = 3)). The 1H-NMR assay has adequate sensitivity to measure real-time pyruvate-lactate exchange kinetics in vitro, offering a complementary and accessible assay of apparent LDH activity. PMID:23712817

  14. Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation.

    PubMed Central

    Chen, W; Novotny, E J; Zhu, X H; Rothman, D L; Shulman, R G

    1993-01-01

    Spatially localized 1H NMR spectroscopy has been applied to measure changes in brain glucose concentration during 8-Hz photic stimulation. NMR spectroscopic measurements were made in a 12-cm3 volume centered on the calcarine fissure and encompassing the primary visual cortex. The average maximum change in glucose levels was 0.34 mumol.g-1 (n = 5) at 15 min; glucose level had turned toward resting level at 25 min. The glucose change was used to calculate the increase of glucose cerebral metabolic rate in the visual cortex region for individual subjects by using the Michaelis-Menten model of glucose transport on the assumption of constant transport kinetics. The glucose cerebral metabolic rate was calculated to increase over the nonstimulated rate by 22% during the first 15 min of photic stimulation. A model in which the glucose metabolic rate gradually decreases during stimulation was proposed as a possible explanation for the recovery of brain glucose and previously measured lactate concentrations to prestimulus values after 15 min. Images Fig. 1 PMID:8234332

  15. Electrophoretic separation of human kidney cells at zero gravity

    NASA Technical Reports Server (NTRS)

    Barlow, G. H.; Lazer, S. L.; Rueter, A.; Allen, R. E.

    1977-01-01

    Electrophoretic isolation of cells results in a loss of resolution power caused by the sedimentation of the cells in the media. The results of an experiment to extract urokinase from human embryos during the Apollo Soyuz mission are presented and discussed.

  16. Understanding Unimer Exchange Processes in Block Copolymer Micelles using NMR Diffusometry, Time-Resolved NMR, and SANS

    NASA Astrophysics Data System (ADS)

    Madsen, Louis; Kidd, Bryce; Li, Xiuli; Miller, Katherine; Cooksey, Tyler; Robertson, Megan

    Our team seeks to understand dynamic behaviors of block copolymer micelles and their interplay with encapsulated cargo molecules. Quantifying unimer and cargo exchange rates micelles can provide critical information for determining mechanisms of unimer exchange as well as designing systems for specific cargo release dynamics. We are exploring the utility of NMR spectroscopy and diffusometry techniques as complements to existing SANS and fluorescence methods. One promising new method involves time-resolved NMR spin relaxation measurements, wherein mixing of fully protonated and 2H-labeled PEO-b-PCL micelles solutions shows an increase in spin-lattice relaxation time (T1) with time after mixing. This is due to a weakening in magnetic environment surrounding 1H spins as 2H-bearing unimers join fully protonated micelles. We are measuring time constants for unimer exchange of minutes to hours, and we expect to resolve times of <1 min. This method can work on any solution NMR spectrometer and with minimal perturbation to chemical structure (as in dye-labelled fluorescence methods). Multimodal NMR can complement existing characterization tools, expanding and accelerating dynamics measurements for polymer micelle, nanogel, and nanoparticle developers.

  17. Enhanced specific capacitance of an electrophoretic deposited MnO2-carbon nanotube supercapacitor

    NASA Astrophysics Data System (ADS)

    Tagsin, Patin; Klangtakai, Pawinee; Harnchana, Viyada; Amornkitbamrung, Vittaya; Pimanpang, Samuk; Kumnorkaew, Pisist

    2017-12-01

    MnO2 and MnO2-carbon nanotubes (CNT) composite films were grown directly on stainless- steel substrates using an electrophoretic process employing supercapacitor electrodes. An electrophoretic MnO2 film with a nanoplate-like structure was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Supercapacitor performance was studied using cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The specific capacitance (SC) of the electrophoretic MnO2 film was 60 F/g at 1 A/g, with a 38.33% retention of the initial SC values after 1000 cycles. The low SC value of the MnO2 films was attributed to the high series and charge-transfer resistances of 1.70 Ω and 3.20, respectively. The MnO2-CNT composites with the addition of 0.04, 0.06 and 0.08 g CNT to the electrophoretic MnO2 film were found to greatly increase the SC to 300, 206 and 169 F/g at 1 A/g, respectively. The series and charge-transferred resistances of MnO2-CNT composite films decreased to 1.38 - 1.52 Ω and 2.62 - 2.86 Ω, respectively. The SC improvement of the composite electrodes was attributed to presence of two active storage materials (MnO2 and CNT), a high film specific surface area and electrical conductivity.

  18. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    PubMed

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  19. Survival rate of eukaryotic cells following electrophoretic nanoinjection.

    PubMed

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-25

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells.

  20. Survival rate of eukaryotic cells following electrophoretic nanoinjection

    PubMed Central

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-01

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells. PMID:28120926

  1. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry.

    PubMed

    Holtkamp, Hannah; Grabmann, Gerlinde; Hartinger, Christian G

    2016-04-01

    Electrophoretic methods have been widely applied in research on the roles of metal complexes in biological systems. In particular, CE, often hyphenated to a sensitive MS detector, has provided valuable information on the modes of action of metal-based pharmaceuticals, and more recently new methods have been added to the electrophoretic toolbox. The range of applications continues to expand as a result of enhanced CE-to-MS interfacing, with sensitivity often at picomolar level, and evolved separation modes allowing for innovative sample analysis. This article is a followup to previous reviews about CE methods in metallodrug research (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis, 2007, 28, 3436-3446; Electrophoresis, 2012, 33, 622-634), also providing a comprehensive overview of metal species studied by electrophoretic methods hyphenated to MS. It highlights the latest CE developments, takes a sneak peek into gel electrophoresis, traces biomolecule labeling, and focuses on the importance of early-stage drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Overview of the development of high-resolution 920 MHz NMR in NIMS

    NASA Astrophysics Data System (ADS)

    Shimizu, Tadashi; Hashi, Kenjiro; Goto, Atsushi; Tansyo, Masataka; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Kirihara, Noriaki; Suematsu, Hiroto; Kida, Yoshiki; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji

    2004-04-01

    We have developed a 920 MHz NMR system and performed the proton NMR measurement of ethylbenzene and water using the superconducting magnet operating at 21.6 T ( 920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high-resolution NMR. The sensitivity has been examined by 1H NMR of 0.1% ethylbenzene in Wilmad 555 tube and obtained the signal-to-noise ratio as S/ N=2981, which is the highest record, to our knowledge, among the room temperature measurements.

  3. Association of electrophoretic karyotype of Candida stellatoidea with virulence for mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon-Chung, K.J.; Wickes, B.L.; Merz, W.G.

    1988-07-01

    Seven isolates of Candida stellatoidea were studied for their electrophoretic karyotype, virulence for mice, sensitivity to UV radiation, growth rate in vitro, reaction on cycloheximide-indicator medium, and proteinase activity. The isolates exhibited one of two distinct electrophoretic karyotypes as determined by orthogonal field alternating gel electrophoresis (OFAGE). Four isolates, including the type culture of C. stellatoidea, belonged to electrophoretic karyotype type I by OFAGE, showing eight to nine bands of which at least two bands were less than 1,000 kilobases in size as estimated by comparison with the DNA bands of Saccharomyces cerevisiae. These isolates failed to produce fatal infectionmore » in mice within 20 days when 5 X 10(5) cells were injected intravenously. The yeasts were cleared from the kidneys of two of three mice tested by day 30. Type I showed proteinase activity on bovine serum albumin agar at pH 3.8 and produced a negative reaction on cycloheximide-bromcresol green medium within 48 h. The three grouped in type II by OFAGE showed banding patterns similar to those of a well-characterized isolate of Candida albicans. The isolates of type II had an electrophoretic karyotype of six to seven bands approximately 1,200 kilobases or greater in size. All three type II isolates were highly virulent for mice, producing fatality curves similar to those of a previously studied C. albicans isolate. From 80 to 90% of the mice injected with 5 X 10(5) cells intravenously died within 20 days. The type II isolates produced a positive reaction on cycloheximide-bromcresol green agar and showed no proteinase activity on bovine serum albumin agar at the low pH. In addition, the type II isolates grew faster and were significantly more resistant to UV irradiation than the type I isolates.« less

  4. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  5. Stabilization of green bodies via sacrificial gelling agent during electrophoretic deposition

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua D.; Rose, Klint A.

    2016-03-22

    In one embodiment, a method for electrophoretic deposition of a three-dimensionally patterned green body includes suspending a first material in a gelling agent above a patterned electrode of an electrophoretic deposition (EPD) chamber, and gelling the suspension while applying a first electric field to the suspension to cause desired patterning of the first material in a resulting gelation. In another embodiment, a ceramic, metal, or cermet includes a plurality of layers, wherein each layer includes a gradient in composition, microstructure, and/or density in an x-y plane oriented parallel to a plane of deposition of the plurality of layers along a predetermined distance in a z-direction perpendicular to the plane of deposition.

  6. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Bone volume-to-total volume ratio measured in trabecular bone by single-sided NMR devices.

    PubMed

    Brizi, Leonardo; Barbieri, Marco; Baruffaldi, Fabio; Bortolotti, Villiam; Fersini, Chiara; Liu, Huabing; Nogueira d'Eurydice, Marcel; Obruchkov, Sergei; Zong, Fangrong; Galvosas, Petrik; Fantazzini, Paola

    2018-01-01

    Reduced bone strength is associated with a loss of bone mass, usually evaluated by dual-energy X-ray absorptiometry, although it is known that the bone microstructure also affects the bone strength. Here, a method is proposed to measure (in laboratory) the bone volume-to-total volume ratio by single-sided NMR scanners, which is related to the microstructure of the trabecular bone. Three single-sided scanners were used on animal bone samples. These low-field, mobile, low-cost devices are able to detect the NMR signal, regardless of the sample sizes, without the use of ionizing radiations, with the further advantage of signal localization offered by their intrinsic magnetic field gradients. The performance of the different single-sided scanners have been discussed. The results have been compared with bone volume-to-total volume ratio by micro CT and MRI, obtaining consistent values. Our results demonstrate the feasibility of the method for laboratory analyses, which are useful for measurements like porosity on bone specimens. This can be considered as the first step to develop an NMR method based on the use of a mobile single-sided device, for the diagnosis of osteoporosis, through the acquisition of the signal from the appendicular skeleton, allowing for low-cost, wide screening campaigns. Magn Reson Med 79:501-510, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    PubMed

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. NMR crystallography of α-poly(L-lactide).

    PubMed

    Pawlak, Tomasz; Jaworska, Magdalena; Potrzebowski, Marek J

    2013-03-07

    A complementary approach that combines NMR measurements, analysis of X-ray and neutron powder diffraction data and advanced quantum mechanical calculations was employed to study the α-polymorph of L-polylactide. Such a strategy, which is known as NMR crystallography, to the best of our knowledge, is used here for the first time for the fine refinement of the crystal structure of a synthetic polymer. The GIPAW method was used to compute the NMR shielding parameters for the different models, which included the α-PLLA structure obtained by 2-dimensional wide-angle X-ray diffraction (WAXD) at -150 °C (model M1) and at 25 °C (model M2), neutron diffraction (WAND) measurements (model M3) and the fully optimized geometry of the PLLA chains in the unit cell with defined size (model M4). The influence of changes in the chain conformation on the (13)C σ(ii) NMR shielding parameters is shown. The correlation between the σ(ii) and δ(ii) values for the M1-M4 models revealed that the M4 model provided the best fit. Moreover, a comparison of the experimental (13)C NMR spectra with the spectra calculated using the M1-M4 models strongly supports the data for the M4 model. The GIPAW method, via verification using NMR measurements, was shown to be capable of the fine refinement of the crystal structures of polymers when coarse X-ray diffraction data for powdered samples are available.

  10. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John [Berkeley, CA; McDermott, Robert [Louisville, CO; Pines, Alexander [Berkeley, CA; Trabesinger, Andreas Heinz [CH-8006 Zurich, CH

    2007-05-15

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  11. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-05-30

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  12. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John [Berkeley, CA; Pines, Alexander [Berkeley, CA; McDermott, Robert F [Monona, WI; Trabesinger, Andreas H [London, GB

    2008-12-16

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  13. SQUID detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-10-03

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  14. NMR measurements of Ca2+ and H+ transport mediated by A23187 and reconstituted plasma membrane Ca(2+)-ATPase.

    PubMed

    Waldeck, A R; Xu, A S; Roufogalis, B D; Kuchel, P W

    1998-01-01

    NMR-based assays for measuring the fluxes of Ca2+, H+, and ATP in liposomal systems are presented. The 19F NMR Ca(2+)-chelating molecule 5,5-difluoro-1,2-bis(o-amino-phenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA) was trapped inside large unilamellar vesicles and used to monitor passive and A23187-mediated Ca2+ transport into them. The data were analyzed using progress curves of the transport reaction. They demonstrated the general applicability of 5FBAPTA as a 19F NMR probe of active Ca2+ transport. 31P NMR time-courses were used to monitor simultaneously the ATP hydrolysing activity of the reconstituted human erythrocyte Ca(2+)-ATPase and the concomitant acidification of the reaction medium in a suspension of small unilamellar vesicles. Using an estimate of the extraliposomal buffering capacity, the H+/ATP coupling stoichiometry, in the presence of A23187, was estimated from the NMR-derived data at steady state; it amounted to 1.4 +/- 0.3. This result is discussed with respect to the issue of molecular 'slip' in the context of a non-equilibrium thermodynamics model of the pump (accompanying paper in this issue). Importantly, NMR, in contrast to optical detection methods, can potentially register all fluxes and (electro)chemical gradients involved in the Ca(2+)-ATPase-mediated H+/Ca2+ counterport, in a single experiment.

  15. NMR studies of multiphase flows II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  16. Preparation and application of microcapsule-encapsulated color electrophortic fluid in Isopar M system for electrophoretic display

    NASA Astrophysics Data System (ADS)

    Sun, Cui; Feng, Ya-Qing; Zhang, Bao; Li, Xiang-Gao; Shao, Ji-Zhou; Han, Jing-Jing; Chen, Xu

    2013-05-01

    The use of Isopar M as a liquid suspending fluid for electrophoretic display was studied. The dispersion stability and chargeability of pigments suspended in Isopar M were investigated. Polyisobutylene monosuccinimide (T-151) as the charge control additive in Isopar M electrophoretic fluid can provide a good electrophoretic mobility to the particles. The wall materials of a series of blue-white, red-white and yellow-white dual-particle microcapsules were prepared by in situ polymerization of urea and formaldehyde. The mass ratio of wall/core material was a key factor in influencing the yield of microcapsules. The concentration of resorcinol has an impact on the surface morphology and mechanical strength of microcapsule wall. Microcapsules' surface morphologies were characterized by optical microscopy and scanning electron microscopy. The performance of the microcapsules with different binder materials and adhesive layers were investigated. Contrast ratio of microcapsules display device were tested every 10 days for a period of 90 days. The compatibility of Isopar M with both the electrophoretic particles and bounding capsule was studied.

  17. Effect of passage number on electrophoretic mobility distributions of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.

    1985-01-01

    A systematic investigation was undertaken to characterize population shifts that occur in cultured human embryonic kidney cells as a function of passage number in vitro after original explantation. This approach to cell population shift analysis follows the suggestion of Mehreshi, Klein and Revesz that perturbed cell populations can be characterized by electrophoretic mobility distributions if they contain subpopulations with different electrophoretic mobilities. It was shown that this is the case with early passage cultured human embryo cells.

  18. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  19. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munjal, Sandeep, E-mail: drsandeepmunjal@gmail.com; Khare, Neeraj, E-mail: nkhare@physics.iitd.ernet.in

    We have synthesized CoFe{sub 2}O{sub 4} (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible inmore » water and form a stable aqueous solution with high electrophoretic mobility.« less

  20. The electrophoretic deposition of ZnO on highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Ghalamboran, Milad; Jahangiri, Mojtaba; Yousefiazari, Ehsan

    2017-12-01

    Intensive research has been conducted on ZnO thin and thick films in recent years. Such layers, used in different electronic devices, are deposited utilizing various methods, but electrophoretic deposition (EPD) has been chosen because of the advantages like low energy consumption, economical superiority, ecofriendliness, controllability, and high deposition rate. Here, we report electrophoretically depositing ZnO layers onto highly oriented pyrolytic graphite. Well-dispersed and stable ZnO suspensions are used for the deposition of continuous and even layers of ZnO on the substrate. ZnO powder is dispersed in acetone. The electric field applied is in the 250 V/cm to 2000 V/cm range. The morphology of the deposits are studied by SEM at the different stages of the deposition process.

  1. Improved nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, E.; Roeder, S.B.W.; Assink, R.A.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  2. Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2017-10-01

    In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.

  3. Multi-site binding of epigallocatechin gallate to human serum albumin measured by NMR and isothermal titration calorimetry

    PubMed Central

    Eaton, Joshua D.

    2017-01-01

    The affinity of epigallocatechin gallate (EGCG) for human serum albumin (HSA) was measured in physiological conditions using NMR and isothermal titration calorimetry (ITC). NMR estimated the Ka (self-dissociation constant) of EGCG as 50 mM. NMR showed two binding events: strong (n1=1.8 ± 0.2; Kd1 =19 ± 12 μM) and weak (n2∼20; Kd2 =40 ± 20 mM). ITC also showed two binding events: strong (n1=2.5 ± 0.03; Kd1 =21.6 ± 4.0 μM) and weak (n2=9 ± 1; Kd2 =22 ± 4 mM). The two techniques are consistent, with an unexpectedly high number of bound EGCG. The strong binding is consistent with binding in the two Sudlow pockets. These results imply that almost all EGCG is transported in the blood bound to albumin and explains the wide tissue distribution and chemical stability of EGCG in vivo. PMID:28424370

  4. Characterization of the cell surface properties of drinking water pathogens by microbial adhesion to hydrocarbon and electrophoretic mobility measurements.

    PubMed

    Popovici, Jonathan; White, Colin P; Hoelle, Jill; Kinkle, Brian K; Lytle, Darren A

    2014-06-01

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregation, adhesion to surfaces, and stability of the cells within the aqueous environments. These cell characteristics are unique to the bacterial species and are a reflection of the large diversity of surface structures, proteins, and appendages of microorganisms. CSH and EPM of bacterial cells contribute substantially to the effectiveness of drinking water treatment to remove them, and therefore an investigation of these properties will be useful in predicting their removal through drinking water treatment processes and transport through drinking water distribution systems. EPM and CSH measurements of six microbiological pathogen or surrogate species suspended in phosphate-buffered water are reported in this work. Two strains of Vibrio cholerae were hydrophobic, while three strains of Escherichia coli were hydrophilic. Bacillus cereus was categorized as moderately hydrophobic. The strains of E. coli had the highest (most negative) EPM. Based on the measurements, E. coli species is predicted to be most difficult to remove from water while V. cholerae will be the easiest to remove. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Quantitative measurement of regional blood flow with gadolinium diethylenetriaminepentaacetate bolus track NMR imaging in cerebral infarcts in rats: validation with the iodo[14C]antipyrine technique.

    PubMed Central

    Wittlich, F; Kohno, K; Mies, G; Norris, D G; Hoehn-Berlage, M

    1995-01-01

    NMR bolus track measurements were correlated with autoradiographically determined regional cerebral blood flow (rCBF). The NMR method is based on bolus infusion of the contrast agent gadolinium diethylenetriaminepentaacetate and high-speed T*2-sensitive NMR imaging. The first pass of the contrast agent through the image plane causes a transient decrease of the signal intensity. This time course of the signal intensity is transformed into relative concentrations of the contrast agent in each pixel. The mean transit time and relative blood flow and volume are calculated from such indicator dilution curves. We investigated whether this NMR technique correctly expresses the relative rCBF. The relative blood flow data, calculated from NMR bolus track experiments, and the absolute values of iodo[14C]antipyrine autoradiography were compared. A linear relationship was observed, indicating the proportionality of the transient NMR signal change with CBF. Excellent interindividual reproducibility of calibration constants is observed (r = 0.963). For a given NMR protocol, bolus track measurements calibrated with autoradiography after the experiment allow determination of absolute values for rCBF and regional blood volume. Images Fig. 2 Fig. 3 PMID:7892189

  6. NMR investigations of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  7. Hypothesis driven assessment of an NMR curriculum

    NASA Astrophysics Data System (ADS)

    Cossey, Kimberly

    The goal of this project was to develop a battery of assessments to evaluate an undergraduate NMR curriculum at Penn State University. As a chemical education project, we sought to approach the problem of curriculum assessment from a scientific perspective, while remaining grounded in the education research literature and practices. We chose the phrase hypothesis driven assessment to convey this process of relating the scientific method to the study of educational methods, modules, and curricula. We began from a hypothesis, that deeper understanding of one particular analytical technique (NMR) will increase undergraduate students' abilities to solve chemical problems. We designed an experiment to investigate this hypothesis, and data collected were analyzed and interpreted in light of the hypothesis and several related research questions. The expansion of the NMR curriculum at Penn State was funded through the NSF's Course, Curriculum, and Laboratory Improvement (CCLI) program, and assessment was required. The goal of this project, as stated in the grant proposal, was to provide NMR content in greater depth by integrating NMR modules throughout the curriculum in physical chemistry, instrumental, and organic chemistry laboratory courses. Hands-on contact with the NMR spectrometer and NMR data and repeated exposure of the analytical technique within different contexts (courses) were unique factors of this curriculum. Therefore, we maintained a focus on these aspects throughout the evaluation process. The most challenging and time-consuming aspect of any assessment is the development of testing instruments and methods to provide useful data. After key variables were defined, testing instruments were designed to measure these variables based on educational literature (Chapter 2). The primary variables measured in this assessment were: depth of understanding of NMR, basic NMR knowledge, problem solving skills (HETCOR problem), confidence for skills used in class (within

  8. Tridodecylamine, an efficient charge control agent in non-polar media for electrophoretic inks application

    NASA Astrophysics Data System (ADS)

    Noel, Amélie; Mirbel, Déborah; Cloutet, Eric; Fleury, Guillaume; Schatz, Christophe; Navarro, Christophe; Hadziioannou, Georges; CyrilBrochon

    2018-01-01

    In order to obtain efficient electrophoretic inks, Tridodecylamine (Dod3N), has been studied as charge control agent (CCA) in a non-polar paraffin solvent (Isopar G) for various inorganic pigments (TiO2 and Fe2O3). All hydrophobic mineral oxides, i.e. treated with octyltrimethoxysilane (C8) or dodecyltrimethoxysilane (C12), were found to be negatively charged in presence of Dod3N. The electrophoretic mobilities of inorganic pigments seemed to be strongly dependent of their isoelectric point (IEP) and also of the concentration of dod3N with an optimum range between 10 and 20 mM depending on the pigments. Finally, an electrophoretic ink constituted of hydrophobic mineral oxides in presence of Dod3N was tested in a device. Its efficiency as charge control agent to negatively charge hydrophobic particles was confirmed through good optical properties and fast response time (220 ms at 200 kV m-1).

  9. Measurement of Ligand–Target Residence Times by 1H Relaxation Dispersion NMR Spectroscopy

    PubMed Central

    2016-01-01

    A ligand-observed 1H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand–target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime. PMID:27933946

  10. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    PubMed Central

    Jang, Richard; Wang, Yan

    2015-01-01

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement. PMID:25737244

  11. Surface-NMR measurements of the longitudinal relaxation time T1 in a homogeneous sandy aquifer in Skive, Denmark

    NASA Astrophysics Data System (ADS)

    Walbrecker, J.; Behroozmand, A.

    2011-12-01

    Efficient groundwater management requires reliable means of characterizing shallow groundwater aquifers. One key parameter in this respect is hydraulic conductivity. Surface nuclear magnetic resonance (NMR) is a geophysical exploration technique that can potentially provide this type of information in a noninvasive, cost-effective way. The technique is based on measuring the precession of nuclear spins of protons in groundwater molecules. It involves large loop antennas deployed on Earth's surface to generate electromagnetic pulses tuned to specifically excite and detect groundwater proton spins. Naturally, the excited state of spins is transitory - once excited, spins relax back to their equilibrium state. This relaxation process is strongly influenced by the spin environment, which, in the case of groundwater, is defined by the aquifer. By employing empirical relations, changes in relaxation behavior can be used to identify changes in aquifer hydraulic conductivity, making the NMR relaxation signal a very important piece of information. Particularly, efforts are made to record the longitudinal relaxation parameter T1, because it is known from laboratory studies that it often reliably correlates with hydraulic conductivity, even in the presence of magnetic species. In surface NMR, T1 data are collected by recording the NMR signal amplitude following two sequential excitation pulses as a function of the delay time τ between the two pulses. In conventional acquisition, the two pulses have a mutual phase shift of π. Based on theoretical arguments it was recently shown that T1 times acquired according to this conventional surface-NMR scheme are systematically biased. It was proposed that the bias can be minimized by cycling the phase of the two pulses between π and zero in subsequent double-pulse experiments, and subtracting the resulting signal amplitudes (phase-cycled pseudosaturation recovery scheme, pcPSR). We present the first surface-NMR T1 data set recorded

  12. Scanning and storage of electrophoretic records

    DOEpatents

    McKean, Ronald A.; Stiegman, Jeff

    1990-01-01

    An electrophoretic record that includes at least one gel separation is mounted for motion laterally of the separation record. A light source is positioned to illuminate at least a portion of the record, and a linear array camera is positioned to have a field of view of the illuminated portion of the record and orthogonal to the direction of record motion. The elements of the linear array are scanned at increments of motion of the record across the field of view to develop a series of signals corresponding to intensity of light at each element at each scan increment.

  13. High-sensitivity NMR beyond 200,000 atmospheres of pressure.

    PubMed

    Meier, T; Reichardt, S; Haase, J

    2015-08-01

    Pressure-induced changes in the chemical or electronic structure of solids require pressures well into the Giga-Pascal (GPa) range due to the strong bonding. Anvil cell designs can reach such pressures, but their small and mostly inaccessible sample chamber has severely hampered NMR experiments in the past. With a new cell design that has a radio frequency (RF) micro-coil in the high pressure chamber, NMR experiments beyond 20 Giga-Pascal are reported for the first time. (1)H NMR of water shows sensitivity and resolution obtained with the cells, and (63)Cu NMR on a cuprate superconductor (YBa2Cu3O7-δ) demonstrates that single-crystals can be investigated, as well. (115)In NMR of the ternary chalcogenide AgInTe2 discovers an insulator-metal transition with shift and relaxation measurements. The pressure cells can be mounted easily on standard NMR probes that fit commercial wide-bore magnets with regular cryostats for field- and temperature-dependent measurements ready for many applications in physics and chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. High-sensitivity NMR beyond 200,000 atmospheres of pressure

    NASA Astrophysics Data System (ADS)

    Meier, T.; Reichardt, S.; Haase, J.

    2015-08-01

    Pressure-induced changes in the chemical or electronic structure of solids require pressures well into the Giga-Pascal (GPa) range due to the strong bonding. Anvil cell designs can reach such pressures, but their small and mostly inaccessible sample chamber has severely hampered NMR experiments in the past. With a new cell design that has a radio frequency (RF) micro-coil in the high pressure chamber, NMR experiments beyond 20 Giga-Pascal are reported for the first time. 1 H NMR of water shows sensitivity and resolution obtained with the cells, and 63 Cu NMR on a cuprate superconductor (YBa2Cu3O7-δ) demonstrates that single-crystals can be investigated, as well. 115 In NMR of the ternary chalcogenide AgInTe2 discovers an insulator-metal transition with shift and relaxation measurements. The pressure cells can be mounted easily on standard NMR probes that fit commercial wide-bore magnets with regular cryostats for field- and temperature-dependent measurements ready for many applications in physics and chemistry.

  15. 19F NMR measurements of the rotational mobility of proteins in vivo.

    PubMed Central

    Williams, S P; Haggie, P M; Brindle, K M

    1997-01-01

    Three glycolytic enzymes, hexokinase, phosphoglycerate kinase, and pyruvate kinase, were fluorine labeled in the yeast Saccharomyces cerevisiae by biosynthetic incorporation of 5-fluorotryptophan. 19F NMR longitudinal relaxation time measurements on the labeled enzymes were used to assess their rotational mobility in the intact cell. Comparison with the results obtained from relaxation time measurements of the purified enzymes in vitro and from theoretical calculations showed that two of the labeled enzymes, phosphoglycerate kinase and hexokinase, were tumbling in a cytoplasm that had a viscosity approximately twice that of water. There were no detectable signals from pyruvate kinase in vivo, although it could be detected in diluted cell extracts, indicating that there was some degree of motional restriction of the enzyme in the intact cell. PMID:8994636

  16. Microflora on explanted silicone rubber voice prostheses: taxonomy, hydrophobicity and electrophoretic mobility.

    PubMed

    Neu, T R; Verkerke, G J; Herrmann, I F; Schutte, H K; Van der Mei, H C; Busscher, H J

    1994-05-01

    Silicone rubber voice prostheses are implants which are inserted in a non-sterile environment and therefore become quickly colonized by micro-organisms. The micro-organisms exist on the medical grade silicone rubber as mixed biofilms of bacteria and yeasts. A total of 79 bacterial and 39 yeast strains were isolated from these biofilms by soft ultrasonic treatment. Gram-positive/catalase-negative and Gram-positive/catalase-positive cocci represented the dominant bacterial strains. The yeasts were mainly Candida species. Further characterization of cell surface properties such as hydrophobicity by microbial adhesion to hexadecane and electrophoretic mobility showed a distinct difference when the bacterial strains were compared with the yeasts. The bacterial hydrophobicities ranged from 0 to 100% adhesion to hexadecane, whereas the yeast strains, especially the Candida albicans strains, all had markedly hydrophilic cell surfaces. A comparison of the electrophoretic mobilities showed also differences between bacteria and yeast. The values for the bacteria were found to be between -2.5 to -0.5 (10(-8) m2 V-1 s-1), whereas for the yeasts electrophoretic mobilities were more positive. Based on the adhesive properties of the isolated micro-organisms, strategies can now be developed to modify the properties of the silicone rubber to reduce biofilm formation on such prostheses.

  17. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequencymore » of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.« less

  18. Identification and quantitation of morphological cell types in electrophoretically separated human embryonic kidney cell cultures

    NASA Technical Reports Server (NTRS)

    Williams, K. B.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Four major cell types were identified by phase microscopy in early passage human embryonic kidney cell cultures. They are small and large epithelioid, domed, and fenestrated cells. Fibroblasts are also present in some explants. The percent of each cell type changes with passage number as any given culture grows. As a general rule, the fraction of small epithelioid cells increases, while the fraction of fenestrated cells, always small, decreases further. When fibroblasts are present, they always increase in percentage of the total cell population. Electrophoretic separation of early passage cells showed that the domed cells have the highest electrophoretic mobility, fibroblasts have an intermediate high mobility, small epithelioid cells have a low mobility, broadly distributed, and fenestrated cells have the lowest mobility. All cell types were broadly distributed among electrophoretic subfractions, which were never pure but only enriched with respect to a given cell type.

  19. Protein Separation by Electrophoretic-Electroosmotic Focusing on Supported Lipid Bilayers

    PubMed Central

    Liu, Chunming; Monson, Christopher F.; Yang, Tinglu; Pace, Hudson; Cremer, Paul S.

    2011-01-01

    An electrophoretic-electroosmotic focusing (EEF) method was developed and used to separate membrane-bound proteins and charged lipids based on their charge-to-size ratio from an initially homogeneous mixture. EEF uses opposing electrophoretic and electroosmotic forces to focus and separate proteins and lipids into narrow bands on supported lipid bilayers (SLBs). Membrane-associated species were focused into specific positions within the SLB in a highly repeatable fashion. The steady-state focusing positions of the proteins could be predicted and controlled by tuning experimental conditions, such as buffer pH, ionic strength, electric field and temperature. Careful tuning of the variables should enable one to separate mixtures of membrane proteins with only subtle differences. The EEF technique was found to be an effective way to separate protein mixtures with low initial concentrations, and it overcame diffusive peak broadening to allow four bands to be separated simultaneously within a 380 μm wide isolated supported membrane patch. PMID:21958061

  20. Sample injection and electrophoretic separation on a simple laminated paper based analytical device.

    PubMed

    Xu, Chunxiu; Zhong, Minghua; Cai, Longfei; Zheng, Qingyu; Zhang, Xiaojun

    2016-02-01

    We described a strategy to perform multistep operations on a simple laminated paper-based separation device by using electrokinetic flow to manipulate the fluids. A laminated crossed-channel paper-based separation device was fabricated by cutting a filter paper sheet followed by lamination. Multiple function units including sample loading, sample injection, and electrophoretic separation were integrated on a single paper based analytical device for the first time, by applying potential at different reservoirs for sample, sample waste, buffer, and buffer waste. As a proof-of-concept demonstration, mixed sample solution containing carmine and sunset yellow were loaded in the sampling channel, and then injected into separation channel followed by electrophoretic separation, by adjusting the potentials applied at the four terminals of sampling and separation channel. The effects of buffer pH, buffer concentration, channel width, and separation time on resolution of electrophoretic separation were studied. This strategy may be used to perform multistep operations such as reagent dilution, sample injection, mixing, reaction, and separation on a single microfluidic paper based analytical device, which is very attractive for building micro total analysis systems on microfluidic paper based analytical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle

    NASA Astrophysics Data System (ADS)

    Khair, Aditya S.; Squires, Todd M.

    2009-04-01

    Recent theoretical studies have suggested a significant enhancement in electro-osmotic flows over hydrodynamically slipping surfaces, and experiments have indeed measured O(1) enhancements. In this paper, we investigate whether an equivalent effect occurs in the electrophoretic motion of a colloidal particle whose surface exhibits hydrodynamic slip. To this end, we compute the electrophoretic mobility of a uniformly charged spherical particle with slip length λ as a function of the zeta (or surface) potential of the particle ζ and diffuse-layer thickness κ-1. In the case of a thick diffuse layer, κa ≪1 (where a is the particle size), simple arguments show that slip does lead to an O(1) enhancement in the mobility, owing to the reduced viscous drag on the particle. On the other hand, for a thin-diffuse layer κa ≫1, the situation is more complicated. A detailed asymptotic analysis, following the method of O'Brien [J. Colloid Interface Sci. 92, 204 (1983)], reveals that an O(κλ) increase in the mobility occurs at low-to-moderate zeta potentials (with ζ measured on the scale of thermal voltage kBT /e≈25 mV). However, as ζ is further increased, the mobility decreases and ultimately becomes independent of the slip length—the enhancement is lost—which is due to the importance of nonuniform surface conduction within the thin-diffuse layer, at large ζ and large, but finite, κa. Our asymptotic calculations for thick and thin-diffuse layers are corroborated and bridged by computation of the mobility from the numerical solution of the full electrokinetic equations (using the method of O'Brien and White [J. Chem. Soc., Faraday Trans. 2 74, 1607 (1978)]). In summary, then, we demonstrate that hydrodynamic slip can indeed produce an enhancement in the electrophoretic mobility; however, such enhancements will not be as dramatic as the previously studied κa →∞ limit would suggest. Importantly, this conclusion applies not only to electrophoresis but also to

  2. NMR at pressures up to 90 GPa

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Khandarkhaeva, Saiana; Petitgirard, Sylvain; Körber, Thomas; Lauerer, Alexander; Rössler, Ernst; Dubrovinsky, Leonid

    2018-07-01

    The past 15 years have seen an astonishing increase in Nuclear Magnetic Resonance (NMR) sensitivity and accessible pressure range in high-pressure NMR experiments, owing to a series of new developments of NMR spectroscopy applied to the diamond anvil cell (DAC). Recently, with the application of electro-magnetic lenses, so-called Lenz lenses, in toroidal diamond indenter cells, pressures of up to 72 GPa with NMR spin sensitivities of about 1012 spin/Hz1/2 has been achieved. Here, we describe the implementation of a refined NMR resonator structure using a pair of double stage Lenz lenses driven by a Helmholtz coil within a standard DAC, allowing to measure sample volumes as small as 100 pl prior to compression. With this set-up, pressures close to 100 GPa could be realised repeatedly, with enhanced spin sensitivities of about 5 × 1011 spin/Hz1/2. The manufacturing and handling of these new NMR-DACs is relatively easy and straightforward, which will allow for further applications in physics, chemistry, or biochemistry.

  3. Electrophoretic purification of cells in space - Evaluation of results from STS-3

    NASA Technical Reports Server (NTRS)

    Sarnoff, B. E.; Kunze, M. E.; Todd, P.

    1983-01-01

    The procedure and results of Electrophoresis Equipment Verification Test, designed to examine electrophoretic behavior of animal cells is suspension more concentrated than possible on earth and flown on the Shuttle flight STS-3, were discussed. Ground-based laboratory values of electrophoretic mobilities of a mixture of human and rabbit aldehyde-fixed red blood cells (RBC) were compared with those recorded at 11 minute intervals on the Shuttle STS-3. RBC migration and separation observed through photographic records were not as expected. However, cell mobilities and migrating band profiles were consistent with the results of laboratory simulation experiments. It was concluded that zero G electrophoresis of very high concentrations (1 x 10 to the 9th) is possible and similar to electrophoresis of normal cell concentrations on earth.

  4. Improved design of electrophoretic equipment for rapid sickle-cell-anemia screening

    NASA Technical Reports Server (NTRS)

    Reddick, J. M.; Hirsch, I.

    1974-01-01

    Effective mass screening may be accomplished by modifying existing electrophoretic equipment in conjunction with multisample applicator used with cellulose-acetate-matrix test paper. Using this method, approximately 20 to 25 samples can undergo electrophoresis in 5 to 6 minutes.

  5. Electrophoretic characterisation of the outer membrane proteins of Yersinia pestis isolated in north-east Brazil.

    PubMed Central

    Abath, F. G.; Almeida, A. M.; Ferreira, L. C.

    1989-01-01

    The outer membrane proteins of 38 Yersinia pestis isolates from all known plague foci of north-east Brazil were analysed by SDS-PAGE. Approximately 20 bands were consistently found in all strains analysed and 11 were selected for comparative studies. Although qualitative differences among the electrophoretic profiles of outer membrane proteins of wild Y. pestis isolates were not observed, quantitative alterations were clearly noted for most of these proteins. No particular quantitative alteration of the electrophoretic profile of outer membrane proteins could be associated with the period of isolation and geographic origin of the isolates. The 64 kDa outer membrane protein was significantly expressed in higher amounts among Y. pestis strains isolated from a recent plague outbreak. The possible use of electrophoretic profiles of outer membrane proteins of wild Y. pestis isolates as a tool for epidemiological studies and for the analysis of virulence determinants is discussed. Images Fig. 2 PMID:2606164

  6. Local electrophoretic deposition using a nanopipette for micropillar fabrication

    NASA Astrophysics Data System (ADS)

    Iwata, Futoshi; Metoki, Junya

    2017-12-01

    A novel and simple technique was developed for the fabrication of micropillars using a nanopipette that is a tapered glass capillary with a micrometer-sized aperture at the tip. The nanopipette was filled with a colloidal solution that included metal nanoparticles. Its tip was put in contact with a substrate, and the substrate was moved downward for continuous deposition of the metal colloidal solution to form micropillars. To improve fabrication reproducibility, the amount of Au colloidal solution deposited was controlled by a feedback loop that maintained a predefined constant current during electrophoretic deposition. The stiffness of the fabricated micropillars was evaluated by applying a loading force using a microcantilever under scanning electron microscopy. The Young’s modulus of the fabricated pillars was measured to be in the range of 7.7-14.8 GPa, depending on the fabrication parameters of the predefined current and fabrication speed.

  7. Intermediate couplings: NMR at the solids-liquids interface

    NASA Astrophysics Data System (ADS)

    Spence, Megan

    2006-03-01

    Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.

  8. Electrophoretic mobility confirms reassortment bias among geographic isolates of segmented RNA phages

    PubMed Central

    2013-01-01

    Background Sex presents evolutionary costs and benefits, leading to the expectation that the amount of genetic exchange should vary in conditions with contrasting cost-benefit equations. Like eukaryotes, viruses also engage in sex, but the rate of genetic exchange is often assumed to be a relatively invariant property of a particular virus. However, the rates of genetic exchange can vary within one type of virus according to geography, as highlighted by phylogeographic studies of cystoviruses. Here we merge environmental microbiology with experimental evolution to examine sex in a diverse set of cystoviruses, consisting of the bacteriophage ϕ6 and its relatives. To quantify reassortment we manipulated – by experimental evolution – electrophoretic mobility of intact virus particles for use as a phenotypic marker to estimate genetic exchange. Results We generated descendants of ϕ6 that exhibited fast and slow mobility during gel electrophoresis. We identified mutations associated with slow and fast phenotypes using whole genome sequencing and used crosses to establish the production of hybrids of intermediate mobility. We documented natural variation in electrophoretic mobility among environmental isolates of cystoviruses and used crosses against a common fast mobility ϕ6 strain to monitor the production of hybrids with intermediate mobility, thus estimating the amount of genetic exchange. Cystoviruses from different geographic locations have very different reassortment rates when measured against ϕ6, with viruses isolated from California showing higher reassortment rates than those from the Northeastern US. Conclusions The results confirm that cystoviruses from different geographic locations have remarkably different reassortment rates –despite similar genome structure and replication mechanisms– and that these differences are in large part due to sexual reproduction. This suggests that particular viruses may indeed exhibit diverse sexual behavior, but

  9. Hydroxyapatite-anatase-carbon nanotube nanocomposite coatings fabricated by electrophoretic codeposition for biomedical applications.

    PubMed

    Zhang, Bokai; Kwok, Chi Tat

    2011-10-01

    In order to eliminate micro-cracks in the monolithic hydroxyapatite (HA) and composite hydroxyapatite/carbon nanotube (HA/CNT) coatings, novel HA/TiO(2)/CNT nanocomposite coatings on Ti6Al4V were attempted to fabricate by a single-step electrophoretic codeposition process for biomedical applications. The electrophoretically deposited layers with difference contents of HA, TiO(2) (anatase) and CNT nanoparticles were sintered at 800°C for densification with thickness of about 7-10 μm. A dense and crack-free coating was achieved with constituents of 85 wt% HA, 10 wt% TiO(2) and 5 wt% CNT. Open-circuit potential measurements and cyclic potentiodynamic polarization tests were used to investigate the electrochemical corrosion behavior of the coatings in vitro conditions (Hanks' solution at 37°C). The HA/TiO(2)/CNT coatings possess higher corrosion resistance than that of the Ti6Al4V substrate as reflected by nobler open circuit potential and lower corrosion current density. In addition, the surface hardness and adhesion strength of the HA/TiO(2)/CNT coatings are higher than that of the monolithic HA and HA/CNT coatings without compromising their apatite forming ability. The enhanced properties were attributed to the nanostructure of the coatings with the appropriate TiO(2) and CNT contents for eliminating micro-cracks and micro-pores.

  10. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  11. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    DOE PAGES

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  12. Sensitization of a stray-field NMR to vibrations: a potential for MR elastometry with a portable NMR sensor.

    PubMed

    Mastikhin, Igor; Barnhill, Marie

    2014-11-01

    An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and Te 125 NMR measurements in complex tellurides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, E. M.

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S, depends on the free (mobile) carrier concentration, n, and effective mass, m*, as S ~ m*/n 2/3. The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1/T 1, depends on both n and m* as 1/T 1~(m*) 3/2n (within classical Maxwell-Boltzmann statistics) or as 1/T1~(m*) 2n 2/3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown thatmore » the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study Ag xSb xGe 50–2xTe 50, well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Thus, values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.« less

  14. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and Te 125 NMR measurements in complex tellurides

    DOE PAGES

    Levin, E. M.

    2016-06-27

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S, depends on the free (mobile) carrier concentration, n, and effective mass, m*, as S ~ m*/n 2/3. The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1/T 1, depends on both n and m* as 1/T 1~(m*) 3/2n (within classical Maxwell-Boltzmann statistics) or as 1/T1~(m*) 2n 2/3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown thatmore » the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study Ag xSb xGe 50–2xTe 50, well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Thus, values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.« less

  15. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method.

    PubMed

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13 C NMR spectrometry (irm- 13 C NMR) provides the complete 13 C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13 C natural abundance values (50‰), irm- 13 C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13 C NMR. Until now, the conventional strategy to determine the position-specific abundance x i relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13 C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13 C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1 H NMR pulse sequence (named DWET) with a 13 C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T 1 , which forms a serious limitation for irm- 13 C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T 1 variations. Their performance is evaluated on the determination of the 13 C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm- 13 C NMR since it is now possible to perform

  16. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method

    NASA Astrophysics Data System (ADS)

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high

  17. Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar

    2018-02-01

    In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 < E < 0.361 v / nm) covering non-linear response regime, and ionic salt concentration (0.049 < SC < 0.69 [M]) covering weak to strong Debye screening of the colloid. The effect of different colloidal repulsions are then studied on temperature, reduced mobility and zeta potential which is computed based on charge distribution within the spherical colloidal EDL. System temperature and electrophoretic mobility both show a direct and inverse relationship respectively with electric field and colloidal repulsion. Mobility declining with colloidal repulsion reaches a plateau which is a relatively constant value at each electrolyte salinity for Aii > 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  18. Conformational properties of a pyridyl-substituted cinnamic acid studied by NMR measurements and computations

    NASA Astrophysics Data System (ADS)

    Csankó, K.; Forgo, P.; Boros, K.; Hohmann, J.; Sipos, P.; Pálinkó, I.

    2013-07-01

    Following a preliminary exploration of the conformational space by the PM3 and HF/6-31 G*ab initio methods the conformational characteristics of the scarcely available Z isomer of an α-pyridyl-substituted cinnamic acid dimer [Z-2(3‧-pyridyl)-3-phenylpropanoic acid] was studied by NMR spectroscopy (NOESY measurements) in DMSO(d6), methanol(d4) and chloroform(d1). Calculations predicted that full conjugation was overruled by steric interactions and the rotation of the pyridyl ring was not restricted. NOESY measurements verified indeed that in all three solvents the pyridyl group was virtually freely rotating, while some restriction applied for that of the phenyl group.

  19. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero.

  20. Roll-to-roll light directed electrophoretic deposition system and method

    DOEpatents

    Pascall, Andrew J.; Kuntz, Joshua

    2017-06-06

    A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.

  1. Electrophoretic deposited TiO 2 pigment-based back reflectors for thin film solar cells

    DOE PAGES

    Bills, Braden; Morris, Nathan; Dubey, Mukul; ...

    2015-01-16

    Highly reflective coatings with strong light scattering effect have many applications in optical components and optoelectronic devices. This paper reports titanium dioxide (TiO 2) pigment-based reflectors that have 2.5 times higher broadband diffuse reflection than commercially produced aluminum or silver based reflectors and result in efficiency enhancements of a single-junction amorphous Si solar cell. Electrophoretic deposition is used to produce pigment-based back reflectors with high pigment density, controllable film thickness and site-specific deposition. Electrical conductivity of the pigment-based back reflectors is improved by creating electrical vias throughout the pigment-based back reflector by making holes using an electrical discharge / dielectricmore » breakdown approach followed by a second electrophoretic deposition of conductive nanoparticles into the holes. While previous studies have demonstrated the use of pigment-based back reflectors, for example white paint, on glass superstrate configured thin film Si solar cells, this work presents a scheme for producing pigment-based reflectors on complex shape and flexible substrates. Finally, mechanical durability and scalability are demonstrated on a continuous electrophoretic deposition roll-to-roll system which has flexible metal substrate capability of 4 inch wide and 300 feet long.« less

  2. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  3. Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers

    NASA Astrophysics Data System (ADS)

    Behroozmand, Ahmad A.; Knight, Rosemary; Müller-Petke, Mike; Auken, Esben; Barfod, Adrian A. S.; Ferré, Ty P. A.; Vilhelmsen, Troels N.; Johnson, Carole D.; Christiansen, Anders V.

    2017-11-01

    The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high-quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near-surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements.

  4. Probe for high resolution NMR with sample reorientation

    DOEpatents

    Pines, A.; Samoson, A.

    1990-02-06

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero. 8 figs.

  5. Evaluation of nickel ferrite nanoparticles coated with oleylamine by NMR relaxation measurements and magnetic hyperthermia.

    PubMed

    Menelaou, M; Georgoula, K; Simeonidis, K; Dendrinou-Samara, C

    2014-03-07

    Nickel ferrite nanoparticles were synthesized via a facile solvothermal approach. Oleylamine (OAm) was used in all synthetic procedures as a stabilizing agent and solvent. By varying the polarity of the solvents, hydrophobic NiFe2O4 nanoparticles coated with OAm of relatively similar sizes (9-11.7 nm) and in a range of magnetization values (32.0-53.5 emu g(-1)) were obtained. The as-prepared hydrophobic nanoparticles were characterized by XRD, TEM, SEM, TGA and VSM and converted to hydrophilic by two different approaches. The addition of a positively charged ligand (cetyltrimethyl ammonium bromide, CTAB) and the ligand exchange procedure (2,3-dimercaptosuccinic acid, DMSA) have been successfully applied. The aqueous suspensions of NiFe2O4@CTAB and NiFe2O4@DMSA showed good colloidal stability after a long period of time. The different surface modification affected both the NMR relaxometric measurements and the hyperthermia effects. In both techniques CTAB modification demonstrated higher r2 relaxivity (278.9 s(-1) mM(-1) in an NMR spectrometer at 11.7 T) and SAR values (423.4 W g(-1) at an applied AC field with a particle concentration of 0.5 mg mL(-1)). The results indicate that a coating with a larger molecule as CTAB under the same size, shape and magnetization of NiFe2O4 NPs gave rise to NMR relaxometric properties and heating efficacy.

  6. An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution.

    PubMed

    Lee, H G; Cowman, M K

    1994-06-01

    An electrophoretic method is described for determining the molecular weight distribution of hyaluronan (HA). The method involves separation of HA by electrophoresis on a 0.5% agarose gel, followed by detection of HA using the cationic dye Stains-All (3,3'-dimethyl-9-methyl-4,5,4'5'-dibenzothiacarbocyanine). The recommended sample load is 7 micrograms. Calibration of the method with HA standards of known molecular weight has established a linear relationship between electrophoretic mobility and the logarithm of the weight-average molecular weight over the range of approximately 0.2-6 x 10(6). The separated HA pattern may also be visualized after electrotransfer of HA from the agarose gel to a nylon membrane. The membrane may be stained with the dye alcian blue. Alternatively, specific detection of HA from impure samples can be achieved by probing the nylon membrane with biotin-labeled HA-binding protein and subsequent interaction with a streptavidin-linked gold reagent and silver staining for amplification. The electrophoretic method was used to analyze HA in two different liquid connective tissues. Normal human knee joint synovial fluid showed a narrow HA molecular weight distribution, with a peak at 6-7 x 10(6). Owl monkey vitreous HA also showed a narrow molecular weight distribution, with a peak at 5-6 x 10(6). These results agree well with available published data and indicate the applicability of the method to the analysis of impure HA samples which may be available in limited amounts.

  7. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2004-11-16

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  8. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA

    2006-06-27

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  9. Fibre reinforced ceramic matrix composite fabrication by electrophoretic infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kooner, S.; Campaniello, J.J.; Pickering, S.

    Electrophoretic infiltration is a novel technique for the fabrication of fibre reinforced composites. The fibres are arranged as one of the electrodes such that deposition of the colloidal ceramic occurs in the fibre preform. This method has been investigated for the composite system of carbon fibre reinforced Si{sub 3}N{sub 4} and has produced green composite microstructures with good infiltration uniformity and fibre distribution and few macro defects.

  10. Strategies for the capillary electrophoretic separation of indole alkaloids in Psilocybe semilanceata.

    PubMed

    Pedersen-Bjergaard, S; Rasmussen, K E; Sannes, E

    1998-01-01

    While the hallucinogenic mushrooms Psilocybe semilanceata have previously been analyzed for the indole alkaloids psilocybin and baeocystin by capillary zone electrophoresis (CZE) at pH 11.5, the present work focused on the development of an alternative and complementary capillary electrophoretic method for their identification. Owing to their structural similarity and zwitterionic nature, the compounds were difficult to resolve based on different interactions with cationic or anionic micelles. However, while the attempts with micellar electrokinetic chromatography (MEKC) were unsuccessful, rapid derivatization with propyl chloroformate and reanalysis by CZE at pH 11.5 was effective to support identification of the two indole alkaloids. Psilocin was difficult to analyze by CZE at pH 11.5 owing to comigration with the electroosmotic flow. For this compound, the pH of the running buffer was reduced to 7.2 to effectively enhance the electrophoretic mobility.

  11. Interfaces in polymer nanocomposites – An NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Böhme, Ute; Scheler, Ulrich, E-mail: scheler@ipfdd.de

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. {sup 1}H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T{sub 2} is most suited. In this presentation we report on two applications of T{sub 2} measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of themore » polymer dynamics in the melt under shear flow.« less

  12. Gaining insight into the T _2^*-T2 relationship in surface NMR free-induction decay measurements

    NASA Astrophysics Data System (ADS)

    Grombacher, Denys; Auken, Esben

    2018-05-01

    One of the primary shortcomings of the surface nuclear magnetic resonance (NMR) free-induction decay (FID) measurement is the uncertainty surrounding which mechanism controls the signal's time dependence. Ideally, the FID-estimated relaxation time T_2^* that describes the signal's decay carries an intimate link to the geometry of the pore space. In this limit the parameter T_2^* is closely linked to a related parameter T2, which is more closely linked to pore-geometry. If T_2^* ˜eq {T_2} the FID can provide valuable insight into relative pore-size and can be used to make quantitative permeability estimates. However, given only FID measurements it is difficult to determine whether T_2^* is linked to pore geometry or whether it has been strongly influenced by background magnetic field inhomogeneity. If the link between an observed T_2^* and the underlying T2 could be further constrained the utility of the standard surface NMR FID measurement would be greatly improved. We hypothesize that an approach employing an updated surface NMR forward model that solves the full Bloch equations with appropriately weighted relaxation terms can be used to help constrain the T_2^*-T2 relationship. Weighting the relaxation terms requires estimating the poorly constrained parameters T2 and T1; to deal with this uncertainty we propose to conduct a parameter search involving multiple inversions that employ a suite of forward models each describing a distinct but plausible T_2^*-T2 relationship. We hypothesize that forward models given poor T2 estimates will produce poor data fits when using the complex-inversion, while forward models given reliable T2 estimates will produce satisfactory data fits. By examining the data fits produced by the suite of plausible forward models, the likely T_2^*-T2 can be constrained by identifying the range of T2 estimates that produce reliable data fits. Synthetic and field results are presented to investigate the feasibility of the proposed technique.

  13. Comparison of pH measurements made using 31P NMR and a fibreoptic pH meter.

    PubMed

    Jayasundar, R; Hall, L D; Bleehen, N M

    1992-01-01

    The objective of this study was to compare pH measurements made in biological samples using 31P NMR (pHNMR) with those made with a novel, dye-based fibreoptic pH measurement system (pHF), which is compatible with use in electromagnetic fields without field perturbation. Using protein-free model solutions, pHNMR was calibrated against pHF, giving a correlation coefficient of 0.969 and a mean difference (+/- SD) between pHNMR and pHF of 0.037 +/- 0.054 over the pH range 6.8-7.7. Further calibration of pHNMR with pHF was carried out for human red blood lysates and then pHNMR was compared with pHF for whole, packed red blood cells over the pH range 7.0-7.8. Values for pHNMR, the intracellular pH, were consistently lower than for pHF, the extracellular pH, by a mean (+/- SD) of 0.15 +/- 0.02 units. A close correlation of extracellular pHNMR with pHF was demonstrated for a blood sample exhibiting two P(i) peaks, over the pH range 7.03-7.71. We conclude that concurrent use of NMR and the fibreoptic pH meter provides a reliable method of simultaneous measurement of intracellular and extracellular pH in biological systems.

  14. Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation.

    PubMed

    Kakuta, Masaya; Jayawickrama, Dimuthu A; Wolters, Andrew M; Manz, Andreas; Sweedler, Jonathan V

    2003-02-15

    Time-resolved NMR spectroscopy is used to studychanges in protein conformation based on the elapsed time after a change in the solvent composition of a protein solution. The use of a micromixer and a continuous-flow method is described where the contents of two capillary flows are mixed rapidly, and then the NMR spectra of the combined flow are recorded at precise time points. The distance after mixing the two fluids and flow rates define the solvent-protein interaction time; this method allows the measurement of NMR spectra at precise mixing time points independent of spectral acquisition time. Integration of a micromixer and a microcoil NMR probe enables low-microliter volumes to be used without losing significant sensitivity in the NMR measurement. Ubiquitin, the model compound, changes its conformation from native to A-state at low pH and in 40% or higher methanol/water solvents. Proton NMR resonances of the His-68 and the Tyr-59 of ubiquitin are used to probe the conformational changes. Mixing ubiquitin and methanol solutions under low pH at microliter per minute flow rates yields both native and A-states. As the flow rate decreases, yielding longer reaction times, the population of the A-state increases. The micromixer-NMR system can probe reaction kinetics on a time scale of seconds.

  15. Molecular dynamics simulations on PGLa using NMR orientational constraints.

    PubMed

    Sternberg, Ulrich; Witter, Raiker

    2015-11-01

    NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide.

  16. Dynamic electrophoretic fingerprinting of the HIV-1 envelope glycoprotein

    PubMed Central

    2013-01-01

    Background Interactions between the HIV-1 envelope glycoprotein (Env) and its primary receptor CD4 are influenced by the physiological setting in which these events take place. In this study, we explored the surface chemistry of HIV-1 Env constructs at a range of pH and salinities relevant to mucosal and systemic compartments through electrophoretic mobility (EM) measurements. Sexual transmission events provide a more acidic environment for HIV-1 compared to dissemination and spread of infection occurring in blood or lymph node. We hypothesize functional, trimeric Env behaves differently than monomeric forms. Results The dynamic electrophoretic fingerprint of trimeric gp140 revealed a change in EM from strongly negative to strongly positive as pH increased from that of the lower female genital tract (pHx) to that of the blood (pHy). Similar findings were observed using a trimeric influenza Haemagglutinin (HA) glycoprotein, indicating that this may be a general attribute of trimeric viral envelope glycoproteins. These findings were supported by computationally modeling the surface charge of various gp120 and HA crystal structures. To identify the behavior of the infectious agent and its target cells, EM measurements were made on purified whole HIV-1 virions and primary T-lymphocytes. Viral particles had a largely negative surface charge, and lacked the regions of positivity near neutral pH that were observed with trimeric Env. T cells changed their surface chemistry as a function of activation state, becoming more negative over a wider range of pH after activation. Soluble recombinant CD4 (sCD4) was found to be positively charged under a wide range of conditions. Binding studies between sCD4 and gp140 show that the affinity of CD4-gp140 interactions depends on pH. Conclusions Taken together, these findings allow a more complete model of the electrochemical forces involved in HIV-1 Env functionality. These results indicate that the influence of the localized

  17. β-NMR measurements of molecular-scale lithium-ion dynamics in poly(ethylene oxide)-lithium-salt thin films

    NASA Astrophysics Data System (ADS)

    McKenzie, Iain; Cortie, David L.; Harada, Masashi; Kiefl, Robert F.; Levy, C. D. Philip; MacFarlane, W. Andrew; McFadden, Ryan M. L.; Morris, Gerald D.; Ogata, Shin-Ichi; Pearson, Matthew R.; Sugiyama, Jun

    2017-06-01

    β -detected NMR (β -NMR) has been used to study the molecular-scale dynamics of lithium ions in thin films of poly(ethylene oxide) (PEO) containing either lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium trifluoroacetate (LiTFA) salts at monomer-to-salt ratios (EO/Li) of 8.3. The results are compared with previous β -NMR measurements on pure PEO and PEO with lithium triflate (LiOTf) at the same loading [McKenzie et al., J. Am. Chem. Soc. 136, 7833 (2014)]. Activated hopping of 8Li+ was observed in all of the films above ˜250 K, with the hopping parameters strongly correlated with the ionicity of the lithium salt rather than the polymer glass transition temperature. The pre-exponential factor increases exponentially with ionicity, while the activation energy for hopping increases approximately linearly, going from 6.3 ±0.2 kJ mol-1 in PEO:LiTFA to 17.8 ±0.2 kJ mol-1 in PEO:LiTFSI. The more rapid increase in the pre-exponential factor outweighs the effect of the larger activation energy and results in 8Li+ hopping being fastest in PEO followed by PEO:LiTFSI, PEO:LiOTf, and PEO:LiTFA.

  18. β-NMR measurements of molecular-scale lithium-ion dynamics in poly(ethylene oxide)-lithium-salt thin films.

    PubMed

    McKenzie, Iain; Cortie, David L; Harada, Masashi; Kiefl, Robert F; Levy, C D Philip; MacFarlane, W Andrew; McFadden, Ryan M L; Morris, Gerald D; Ogata, Shin-Ichi; Pearson, Matthew R; Sugiyama, Jun

    2017-06-28

    β-detected NMR (β-NMR) has been used to study the molecular-scale dynamics of lithium ions in thin films of poly(ethylene oxide) (PEO) containing either lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium trifluoroacetate (LiTFA) salts at monomer-to-salt ratios (EO/Li) of 8.3. The results are compared with previous β-NMR measurements on pure PEO and PEO with lithium triflate (LiOTf) at the same loading [McKenzie et al., J. Am. Chem. Soc. 136, 7833 (2014)]. Activated hopping of 8 Li + was observed in all of the films above ∼250 K, with the hopping parameters strongly correlated with the ionicity of the lithium salt rather than the polymer glass transition temperature. The pre-exponential factor increases exponentially with ionicity, while the activation energy for hopping increases approximately linearly, going from 6.3±0.2 kJ mol -1 in PEO:LiTFA to 17.8±0.2 kJ mol -1 in PEO:LiTFSI. The more rapid increase in the pre-exponential factor outweighs the effect of the larger activation energy and results in 8 Li + hopping being fastest in PEO followed by PEO:LiTFSI, PEO:LiOTf, and PEO:LiTFA.

  19. NMR of lignins

    Treesearch

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  20. Hydrodynamic sample injection into short electrophoretic capillary in systems with a flow-gating interface.

    PubMed

    Opekar, František; Tůma, Petr

    2017-01-13

    An electrophoretic apparatus with a flow-gating interface has been developed, enabling hydrodynamic sequence injection of the sample into the separation capillary from the liquid flow by underpressure generated in the outlet electrophoretic vessel. The properties of the apparatus were tested on an artificial sample of an equimolar mixture of 100μM potassium and sodium ions and arginine. The repeatability of the injection of the tested ions expressed as RSD (in%) for the peak area, peak height and migration time was in the range 0.76-2.08, 0.18-0.68 and 0.28-0.48, respectively. Under optimum conditions, the apparatus was used for sequence monitoring of the reaction between the antidiabetic drug phenyl biguanide and the glycation agent methyl glyoxal. The reaction solution was continuously sampled by a microdialysis probe from a thermostated external vessel using a syringe pump at a flow rate of 3μLmin -1 and was injected into a separation capillary at certain time intervals. The electrophoretic separation progressed in a capillary with an internal diameter of 50μm with a length of 11.5cm and was monitored using a contactless conductivity detector. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Investigation of electrophoretic exclusion method for the concentration and differentiation of proteins.

    PubMed

    Meighan, Michelle M; Vasquez, Jared; Dziubcynski, Luke; Hews, Sarah; Hayes, Mark A

    2011-01-01

    This work presents a technique termed as "electrophoretic exclusion" that is capable of differentiation and concentration of proteins in bulk solution. In this method, a hydrodynamic flow is countered by the electrophoretic velocity to prevent a species from entering into a channel. The separation can be controlled by changing the flow rate or applied electric potential in order to exclude a certain species selectively while allowing others to pass through the capillary. The exclusion of various proteins is investigated using a flow-injection regime of the method. Concentration of myoglobin of up to 1200 times the background concentration in 60 s was demonstrated. Additionally, negatively charged myoglobin was separated from a solution containing negatively charged allophycocyanin. Cationic cytochrome c was also differentiated from a solution with allophycocyanin. The ability to differentially transport species in bulk solution enables parallel and serial separation modes not available with other separations schemes.

  2. Numerical simulation of stress-strain state of electrophoretic shell molds

    NASA Astrophysics Data System (ADS)

    Sviridov, A. V.; Odinokov, V. I.; Dmitriev, E. A.; Evstigneev, A. I.; Bashkov, O. V.

    2017-10-01

    In the foundry engineering, castings obtained in one-piece non-gas-generating high-refractory electrophoretic shell molds (ShM) by investment patterns (IP) have an increased rejects percentage associated with low deformation resistance and crack resistance of the SM at different stages of their formation and manufacturing. Crack resistance of the ShM based on IP depends mainly on their stress-strain state (SSS) at various stages of mold forming. SSS decrease significantly improves their crack resistance and decreases their rejects percentage of castings occurring due to clogging and surface defects. In addition, the known methods of decreasing the SSS are still poorly understood. Thus, current research trends are to determine SSS at each stage of ShM forming and develop the ways to decrease it. Theoretical predicting of crack formation in multiple-layer axisymmetric shell molds is given in the work [1], and SSS of multiple-layer axisymmetric shell molds is given in the work [2]. Monolayer electrophoretic ShM had a lack of concern in this field, thus it became an argument for the present workMathematical Model of ShM SSS

  3. Relationship between rabbit transferrin electrophoretic patterns and plasma iron concentrations.

    PubMed

    Zaragoza, P; Arana, A; Amorena, B

    1987-01-01

    Rabbit transferrin (Tf) was studied electrophoretically using 1141 blood samples from individuals belonging to seven populations (Spanish Common, Spanish Giant, Butterfly, Lyoné de Bourgogne, New Zealand White, Californian and New Zealand White X Californian hybrids). No Tf polymorphism was found by starch gel electrophoresis, but six patterns, differing in the presence and/or intensity of three bands ('a', anodic; 'b', intermediate; and 'c', cathodic) were observed by polyacrylamide gel electrophoresis. No genetic model could explain these patterns, since they reflect differences in plasma Tf iron content. The electrophoretic test allowed a direct observation of the relative in vivo levels of the different Tf molecular species; saturated (band 'a', Fe2Tf); semi-saturated (band 'b', Fe1Tf); and without iron (band 'c' Fe0Tf, apotransferrin). The degree of iron saturation of Tf varied among individuals and throughout the individual's life. Specifically, in pregnant females, Fe2Tf and Fe1Tf are generally observed, except in late pregnancy (from day 25 to parturition), when mainly apotransferrin is observed. Significantly, within 24 h post-partum, high levels of Fe2Tf are reached in the female's serum.

  4. Experiments in NMR Force Microscopy

    NASA Astrophysics Data System (ADS)

    Manzanera, Isaac; Cardenas, Rosa; Paster, Jeremy; Turbyfill, Amanda; Markert, John

    2012-02-01

    We report details of the construction and use of three nuclear magnetic resonance force microscopy (NMRFM) probes, as well as the development of control systems for three-dimensional nanoscale imaging and spectroscopy. Our variable temperature probe performed position-dependent ^1H NMR force measurements on a 25x15x7 μm^3 single crystal of ammonium sulfate (NH4)2SO4 at room temperature in a sample-on-oscillator geometry. Force signals were detected with a signal-to-noise ratio of 6, and 12 μm resolution, in a one-dimensional scan. Measurements of NMR relaxation times T2^*=1.5±0.2 μs, T2= 44±2 μs, and T1=5.6±0.7 s were obtained. We describe the upgrade of our ^3He NMRFM probe for measurements towards the base temperature of 0.3K for investigation of nanoscale structures and metal oxide interfaces using the iOSCAR technique and perpendicular-cantilever geometry. Force-detected ^11B NMR signals in a 30 μm crystal of superconductor MgB2 have also been achieved using this probe. Efforts in the development of our NMRFM probe for the study of biological samples in liquid media are reported. Magnetic field effects on micromagnet films on cantilevers are being studied for the characterization of the mechanical sensors to be used in these liquid experiments.

  5. NMR at pressures up to 90 GPa.

    PubMed

    Meier, Thomas; Khandarkhaeva, Saiana; Petitgirard, Sylvain; Körber, Thomas; Lauerer, Alexander; Rössler, Ernst; Dubrovinsky, Leonid

    2018-05-14

    The past 15 years have seen an astonishing increase in Nuclear Magnetic Resonance (NMR) sensitivity and accessible pressure range in high-pressure NMR experiments, owing to a series of new developments of NMR spectroscopy applied to the diamond anvil cell (DAC). Recently, with the application of electro-magnetic lenses, so-called Lenz lenses, in toroidal diamond indenter cells, pressures of up to 72 GPa with NMR spin sensitivities of about 10 12  spin/Hz 1/2 has been achieved. Here, we describe the implementation of a refined NMR resonator structure using a pair of double stage Lenz lenses driven by a Helmholtz coil within a standard DAC, allowing to measure sample volumes as small as 100 pl prior to compression. With this set-up, pressures close to 100 GPa could be realised repeatedly, with enhanced spin sensitivities of about 5 × 10 11 spin/Hz 1/2 . The manufacturing and handling of these new NMR-DACs is relatively easy and straightforward, which will allow for further applications in physics, chemistry, or biochemistry. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Compressed NMR: Combining compressive sampling and pure shift NMR techniques.

    PubMed

    Aguilar, Juan A; Kenwright, Alan M

    2017-12-26

    Historically, the resolution of multidimensional nuclear magnetic resonance (NMR) has been orders of magnitude lower than the intrinsic resolution that NMR spectrometers are capable of producing. The slowness of Nyquist sampling as well as the existence of signals as multiplets instead of singlets have been two of the main reasons for this underperformance. Fortunately, two compressive techniques have appeared that can overcome these limitations. Compressive sensing, also known as compressed sampling (CS), avoids the first limitation by exploiting the compressibility of typical NMR spectra, thus allowing sampling at sub-Nyquist rates, and pure shift techniques eliminate the second issue "compressing" multiplets into singlets. This paper explores the possibilities and challenges presented by this combination (compressed NMR). First, a description of the CS framework is given, followed by a description of the importance of combining it with the right pure shift experiment. Second, examples of compressed NMR spectra and how they can be combined with covariance methods will be shown. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Intracellular free calcium concentration measured with /sup 19/F NMR spectroscopy in intact ferret hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marban, E.; Kitakaze, M.; Kusuoka, H.

    1987-08-01

    Changes in the intracellular free Ca/sup 2 +/ concentration, (Ca/sup 2 +/)/sub i/, mediate excitation-contraction coupling in the heart and contribute to cellular injury during ischemia and reperfusion. To study these processes directly, the authors measured (Ca/sup 2 +/)/sub i/ in perfused ferret (Mustela putorius furo) hearts using /sup 19/F NMR spectroscopy to detect the 5,5'-difluoro derivative of the Ca/sup 2 +/ chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). To load cells, hearts were perfused with the acetoxymethyl ester derivative of 5,5'-F/sub 2/-BAPTA. They measured /sup 19/F NMR spectra and left ventricular pressure simultaneously,at rest and during pacing at various external Ca concentrationsmore » ((Ca)/sub 0/). Although contractile force was attenuated by the Ca/sup 2 +/ buffering properties of 5,5'-F/sup 2/-BAPTA, the decrease in pressure could be overcome by raising (Ca)/sub 0/. The mean value of 104 nM for (Ca/sup 2 +/)/sub i/ at rest in the perfused heart agrees well with previous measurements in isolated ventricular muscle. During pacing at 0.6-4 Hz, time-averaged (Ca/sup 2 +/)/sub i/ increased; the effect of pacing was augmented by increasing (Ca)/sub 0/. (Ca/sup 2 +/)/sub i/ more than tripled during 10-20 min of global ischemia, and returned toward control levels upon reperfusion. This approach promises to be particularly useful in investigating the physiology of intact hearts and the pathophysiology of alterations in the coronary circulation« less

  8. Quantitative 13C NMR characterization of fast pyrolysis oils

    DOE PAGES

    Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.

    2016-10-20

    Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.

  9. Quantitative 13C NMR characterization of fast pyrolysis oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.

    Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.

  10. Assessment of 1H NMR-based metabolomics analysis for normalization of urinary metals against creatinine.

    PubMed

    Cassiède, Marc; Nair, Sindhu; Dueck, Meghan; Mino, James; McKay, Ryan; Mercier, Pascal; Quémerais, Bernadette; Lacy, Paige

    2017-01-01

    Proton nuclear magnetic resonance ( 1 H NMR, or NMR) spectroscopy and inductively coupled plasma-mass spectrometry (ICP-MS) are commonly used for metabolomics and metal analysis in urine samples. However, creatinine quantification by NMR for the purpose of normalization of urinary metals has not been validated. We assessed the validity of using NMR analysis for creatinine quantification in human urine samples in order to allow normalization of urinary metal concentrations. NMR and ICP-MS techniques were used to measure metabolite and metal concentrations in urine samples from 10 healthy subjects. For metabolite analysis, two magnetic field strengths (600 and 700MHz) were utilized. In addition, creatinine concentrations were determined by using the Jaffe method. Creatinine levels were strongly correlated (R 2 =0.99) between NMR and Jaffe methods. The NMR spectra were deconvoluted with a target database containing 151 metabolites that are present in urine. A total of 50 metabolites showed good correlation (R 2 =0.7-1.0) at 600 and 700MHz. Metal concentrations determined after NMR-measured creatinine normalization were comparable to previous reports. NMR analysis provided robust urinary creatinine quantification, and was sufficient for normalization of urinary metal concentrations. We found that NMR-measured creatinine-normalized urinary metal concentrations in our control subjects were similar to general population levels in Canada and the United Kingdom. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nuclear magnetic resonance (NMR)-based metabolomics for cancer research.

    PubMed

    Ranjan, Renuka; Sinha, Neeraj

    2018-05-07

    Nuclear magnetic resonance (NMR) has emerged as an effective tool in various spheres of biomedical research, amongst which metabolomics is an important method for the study of various types of disease. Metabolomics has proved its stronghold in cancer research by the development of different NMR methods over time for the study of metabolites, thus identifying key players in the aetiology of cancer. A plethora of one-dimensional and two-dimensional NMR experiments (in solids, semi-solids and solution phases) are utilized to obtain metabolic profiles of biofluids, cell extracts and tissue biopsy samples, which can further be subjected to statistical analysis. Any alteration in the assigned metabolite peaks gives an indication of changes in metabolic pathways. These defined changes demonstrate the utility of NMR in the early diagnosis of cancer and provide further measures to combat malignancy and its progression. This review provides a snapshot of the trending NMR techniques and the statistical analysis involved in the metabolomics of diseases, with emphasis on advances in NMR methodology developed for cancer research. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Shear rheology and 1H TD-NMR combined to low-field RheoNMR: Set-up and application to quiescent and flow-induced crystallization of polymers

    NASA Astrophysics Data System (ADS)

    Räntzsch, Volker; Özen, Mürüvvet Begüm; Ratzsch, Karl-Friedrich; Guthausen, Gisela; Wilhelm, Manfred

    2017-05-01

    Rheology provides access to the flow properties of soft matter, while 1H TD-NMR is a useful technique for the characterization of molecular dynamics. To achieve greater insight into the interplay of these domains, especially under flow, it is desirable to combine these two methods in one set-up. We present a low-field RheoNMR set-up based on a portable 30 MHz 1H NMR unit that was integrated into a commercial strain-controlled shear rheometer. This unique combination can simultaneously conduct a full rheological characterization (G', G", |η*|, FT-Rheology: I3/1, Q0) while monitoring molecular dynamics in-situ via 1H TD-NMR for temperatures from -15 to +210 °C. Possible applications include the quantitative measurement of the composition in multiphase systems (fats, polymers, etc.) and soft matter during the application of flow, e.g. measurements on the flow-induced crystallization of polymers.

  13. NMR imaging of cell phone radiation absorption in brain tissue

    PubMed Central

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  14. NMR imaging of cell phone radiation absorption in brain tissue.

    PubMed

    Gultekin, David H; Moeller, Lothar

    2013-01-02

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry.

  15. Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil

    NASA Astrophysics Data System (ADS)

    Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.

    2017-07-01

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.

  16. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  17. High-field 95 Mo and 183 W static and MAS NMR study of polyoxometalates.

    PubMed

    Haouas, Mohamed; Trébosc, Julien; Roch-Marchal, Catherine; Cadot, Emmanuel; Taulelle, Francis; Martineau-Corcos, Charlotte

    2017-10-01

    The potential of high-field NMR to measure solid-state 95 Mo and 183 W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.

  19. The structure investigations of dehydroacetic acid and 1,8-diaminonaphthalene condensation product by NMR, MS, and X-ray measurements

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.

    2016-05-01

    A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.

  20. Novel Techniques for Pulsed Field Gradient NMR Measurements

    NASA Astrophysics Data System (ADS)

    Brey, William Wallace

    Pulsed field gradient (PFG) techniques now find application in multiple quantum filtering and diffusion experiments as well as in magnetic resonance imaging and spatially selective spectroscopy. Conventionally, the gradient fields are produced by azimuthal and longitudinal currents on the surfaces of one or two cylinders. Using a series of planar units consisting of azimuthal and radial current elements spaced along the longitudinal axis, we have designed gradient coils having linear regions that extend axially nearly to the ends of the coil and to more than 80% of the inner radius. These designs locate the current return paths on a concentric cylinder, so the coils are called Concentric Return Path (CRP) coils. Coils having extended linear regions can be made smaller for a given sample size. Among the advantages that can accrue from using smaller coils are improved gradient strength and switching time, reduced eddy currents in the absence of shielding, and improved use of bore space. We used an approximation technique to predict the remaining eddy currents and a time-domain model of coil performance to simulate the electrical performance of the CRP coil and several reduced volume coils of more conventional design. One of the conventional coils was designed based on the time-domain performance model. A single-point acquisition technique was developed to measure the remaining eddy currents of the reduced volume coils. Adaptive sampling increases the dynamic range of the measurement. Measuring only the center of the stimulated echo removes chemical shift and B_0 inhomogeneity effects. The technique was also used to design an inverse filter to remove the eddy current effects in a larger coil set. We added pulsed field gradient and imaging capability to a 7 T commercial spectrometer to perform neuroscience and embryology research and used it in preliminary studies of binary liquid mixtures separating near a critical point. These techniques and coil designs will find

  1. ODIN-object-oriented development interface for NMR.

    PubMed

    Jochimsen, Thies H; von Mengershausen, Michael

    2004-09-01

    A cross-platform development environment for nuclear magnetic resonance (NMR) experiments is presented. It allows rapid prototyping of new pulse sequences and provides a common programming interface for different system types. With this object-oriented interface implemented in C++, the programmer is capable of writing applications to control an experiment that can be executed on different measurement devices, even from different manufacturers, without the need to modify the source code. Due to the clear design of the software, new pulse sequences can be created, tested, and executed within a short time. To post-process the acquired data, an interface to well-known numerical libraries is part of the framework. This allows a transparent integration of the data processing instructions into the measurement module. The software focuses mainly on NMR imaging, but can also be used with limitations for spectroscopic experiments. To demonstrate the capabilities of the framework, results of the same experiment, carried out on two NMR imaging systems from different manufacturers are shown and compared with the results of a simulation.

  2. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models.

    PubMed

    Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang

    2010-06-01

    In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Quantitative analysis of protein-ligand interactions by NMR.

    PubMed

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  4. Farseer-NMR: automatic treatment, analysis and plotting of large, multi-variable NMR data.

    PubMed

    Teixeira, João M C; Skinner, Simon P; Arbesú, Miguel; Breeze, Alexander L; Pons, Miquel

    2018-05-11

    We present Farseer-NMR ( https://git.io/vAueU ), a software package to treat, evaluate and combine NMR spectroscopic data from sets of protein-derived peaklists covering a range of experimental conditions. The combined advances in NMR and molecular biology enable the study of complex biomolecular systems such as flexible proteins or large multibody complexes, which display a strong and functionally relevant response to their environmental conditions, e.g. the presence of ligands, site-directed mutations, post translational modifications, molecular crowders or the chemical composition of the solution. These advances have created a growing need to analyse those systems' responses to multiple variables. The combined analysis of NMR peaklists from large and multivariable datasets has become a new bottleneck in the NMR analysis pipeline, whereby information-rich NMR-derived parameters have to be manually generated, which can be tedious, repetitive and prone to human error, or even unfeasible for very large datasets. There is a persistent gap in the development and distribution of software focused on peaklist treatment, analysis and representation, and specifically able to handle large multivariable datasets, which are becoming more commonplace. In this regard, Farseer-NMR aims to close this longstanding gap in the automated NMR user pipeline and, altogether, reduce the time burden of analysis of large sets of peaklists from days/weeks to seconds/minutes. We have implemented some of the most common, as well as new, routines for calculation of NMR parameters and several publication-quality plotting templates to improve NMR data representation. Farseer-NMR has been written entirely in Python and its modular code base enables facile extension.

  5. Mechanism and kinetics of electrophoretic deposition of Al{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, P.; Nicholson, P.S.

    1996-06-01

    The four main electrophoretic deposition (EPD) mechanisms are discussed and their shortcomings pointed out. The Hamaker constant for Al{sub 2}O{sub 3} in ethanol suspension is determined by modelling the relationship between particle interaction energy and suspension stability. The Derjagun-Landau-Verwey-Overbeek (DLVO) interaction energy curve for Al{sub 2}O{sub 3} particles in ethanol suspension is calculated and the minimum deposition voltage determined. Three probe dc measurements were conducted to explain discrepancies between the calculated and experimentally-observed voltage. A mechanism proposed is based on the DLVO theory and particle-lyosphere destortion/thinning. Kinetic equations for EPD are developed for constant current and constant voltage deposition usingmore » mass balance conditions and verified by experimental data.« less

  6. Comparing highly ordered monolayers of nanoparticles fabricated using electrophoretic deposition: Cobalt ferrite nanoparticles versus iron oxide nanoparticles

    DOE PAGES

    Dickerson, James H.; Krejci, Alex J.; Garcia, Adriana -Mendoza; ...

    2015-08-01

    Ordered assemblies of nanoparticles remain challenging to fabricate, yet could open the door to many potential applications of nanomaterials. Here, we demonstrate that locally ordered arrays of nanoparticles, using electrophoretic deposition, can be extended to produce long-range order among the constituents. Voronoi tessellations along with multiple statistical analyses show dramatic increases in order compared with previously reported assemblies formed through electric field-assisted assembly. As a result, based on subsequent physical measurements of the nanoparticles and the deposition system, the underlying mechanisms that generate increased order are inferred.

  7. Properties of electrophoretic fractions of human embryonic kidney cells separated on space shuttle flight STS-8

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Lewis, M. L.; Barlow, G. H.; Todd, P. W.; Kunze, M. E.; Sarnoff, B. E.; Li, Z. K.

    1985-01-01

    Suspensions of cultured primary human embryonic kidney cells were subjected to continuous flow electrophoresis on Space Shuttle flight STS-8. The objectives of the experiments were to obtain electrophoretically separated fractions of the original cell populations and to test these fractions for the amount and kind of urokinase (a kidney plasminogen activator that is used medically for digesting blood clots), the morphologies of cells in the individual fractions, and their cellular electrophoretic mobilities after separation and subsequent proliferation. Individual fractions were successfully cultured after return from orbit, and they were found to differ substantially from one another and from the starting sample with respect to all of these properties.

  8. Random phase detection in multidimensional NMR.

    PubMed

    Maciejewski, Mark W; Fenwick, Matthew; Schuyler, Adam D; Stern, Alan S; Gorbatyuk, Vitaliy; Hoch, Jeffrey C

    2011-10-04

    Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency constrains the ability to shorten measuring times. Sign discrimination is typically accomplished by sampling the signal with two different receiver phases or by selecting a reference frequency outside the range of frequencies spanned by the signal and then sampling at a higher rate. In the parametrically sampled (indirect) time dimensions of multidimensional NMR experiments, either method imposes an additional factor of 2 sampling burden for each dimension. We demonstrate that by using a single detector phase at each time sample point, but randomly altering the phase for different points, the sign ambiguity that attends fixed single-phase detection is resolved. Random phase detection enables a reduction in experiment time by a factor of 2 for each indirect dimension, amounting to a factor of 8 for a four-dimensional experiment, albeit at the cost of introducing sampling artifacts. Alternatively, for fixed measuring time, random phase detection can be used to double resolution in each indirect dimension. Random phase detection is complementary to nonuniform sampling methods, and their combination offers the potential for additional benefits. In addition to applications in biomolecular NMR, random phase detection could be useful in magnetic resonance imaging and other signal processing contexts.

  9. A novel NMR-based assay to measure circulating concentrations of branched-chain amino acids: Elevation in subjects with type 2 diabetes mellitus and association with carotid intima media thickness.

    PubMed

    Wolak-Dinsmore, Justyna; Gruppen, Eke G; Shalaurova, Irina; Matyus, Steven P; Grant, Russell P; Gegen, Ray; Bakker, Stephan J L; Otvos, James D; Connelly, Margery A; Dullaart, Robin P F

    2018-04-01

    Plasma branched-chain amino acid (BCAA) levels, measured on nuclear magnetic resonance (NMR) metabolomics research platforms or by mass spectrometry, have been shown to be associated with type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). We developed a new test for quantification of BCAA on a clinical NMR analyzer and used this test to determine the clinical correlates of BCAA in 2 independent cohorts. The performance of the NMR-based BCAA assay was evaluated. A method comparison study was performed with mass spectrometry (LC-MS/MS). Plasma BCAA were measured in the Insulin Resistance Atherosclerosis Study (IRAS, n = 1209; 376 T2DM subjects) and in a Groningen cohort (n = 123; 67 T2DM subjects). In addition, carotid intima media thickness (cIMT) was measured successfully in 119 subjects from the Groningen cohort. NMR-based BCAA assay results were linear over a range of concentrations. Coefficients of variation for inter- and intra-assay precision ranged from 1.8-6.0, 1.7-5.4, 4.4-9.1, and 8.8-21.3%, for total BCAA, valine, leucine, and isoleucine, respectively. BCAA quantified from the same samples using NMR and LC-MS/MS were highly correlated (R 2  = 0.97, 0.95 and 0.90 for valine, leucine and isoleucine). In both cohorts total and individual BCAA were elevated in T2DM (P = 0.01 to ≤0.001). Moreover, cIMT was associated with BCAA independent of age, sex, T2DM and metabolic syndrome (MetS) categorization or alternatively of individual MetS components. BCAA levels, measured by NMR in the clinical laboratory, are elevated in T2DM and may be associated with cIMT, a proxy of subclinical atherosclerosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data.

    PubMed

    Schober, Daniel; Jacob, Daniel; Wilson, Michael; Cruz, Joseph A; Marcu, Ana; Grant, Jason R; Moing, Annick; Deborde, Catherine; de Figueiredo, Luis F; Haug, Kenneth; Rocca-Serra, Philippe; Easton, John; Ebbels, Timothy M D; Hao, Jie; Ludwig, Christian; Günther, Ulrich L; Rosato, Antonio; Klein, Matthias S; Lewis, Ian A; Luchinat, Claudio; Jones, Andrew R; Grauslys, Arturas; Larralde, Martin; Yokochi, Masashi; Kobayashi, Naohiro; Porzel, Andrea; Griffin, Julian L; Viant, Mark R; Wishart, David S; Steinbeck, Christoph; Salek, Reza M; Neumann, Steffen

    2018-01-02

    NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed. Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools and metabolomics reference spectral libraries, e.g., serving as storage format for the MetaboLights data repository. The nmrML open access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation and feedback to increase usability and make it a successful standard.

  11. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    PubMed

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  12. Insight into nanoparticle charging mechanism in nonpolar solvents to control the formation of Pt nanoparticle monolayers by electrophoretic deposition

    DOE PAGES

    Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman; ...

    2016-08-13

    We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.

  13. Insight into nanoparticle charging mechanism in nonpolar solvents to control the formation of Pt nanoparticle monolayers by electrophoretic deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman

    We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.

  14. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azhar, Mueed; Greiner, Andreas; Korvink, Jan G., E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. Aftermore » a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.« less

  15. Fully-Automated High-Throughput NMR System for Screening of Haploid Kernels of Maize (Corn) by Measurement of Oil Content

    PubMed Central

    Xu, Xiaoping; Huang, Qingming; Chen, Shanshan; Yang, Peiqiang; Chen, Shaojiang; Song, Yiqiao

    2016-01-01

    One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed. PMID:27454427

  16. Natural abundant (17) O NMR in a 1.5-T Halbach magnet.

    PubMed

    Sørensen, Morten K; Bakharev, Oleg N; Jensen, Ole; Nielsen, Niels Chr

    2016-06-01

    We present mobile, low-field (17) O NMR as a means for monitoring oxygen in liquids. Whereas oxygen is one of the most important elements, oxygen NMR is limited by a poor sensitivity related to low natural abundance and gyro-magnetic ratio of the NMR active (17) O isotope. Here, we demonstrate (17) O NMR detection at a Larmor frequency of 8.74 MHz in a 1.5-T Halbach neodymium magnet with a home-built digital NMR instrument suitable for large-scale production and in-line monitoring applications. The proposed (17) O NMR sensor may be applied for direct, noninvasive measurements of water content in, for example, oil, manure, or food in automated quality or process control. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. NMR analysis of biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  18. Chromatographic and electrophoretic approaches in ink analysis.

    PubMed

    Zlotnick, J A; Smith, F P

    1999-10-15

    Inks are manufactured from a wide variety of substances that exhibit very different chemical behaviors. Inks designed for use in different writing instruments or printing methods have quite dissimilar components. Since the 1950s chromatographic and electrophoretic methods have played important roles in the analysis of inks, where compositional information may have bearing on the investigation of counterfeiting, fraud, forgery, and other crimes. Techniques such as paper chromatography and electrophoresis, thin-layer chromatography, high-performance liquid chromatography, gas chromatography, gel electrophoresis, and the relatively new technique of capillary electrophoresis have all been explored as possible avenues for the separation of components of inks. This paper reviews the components of different types of inks and applications of the above separation methods are reviewed.

  19. NMR studies of cation transport across membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of themore » transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.« less

  20. Electrophoretic display technologies for e-book readers: system integration aspects

    NASA Astrophysics Data System (ADS)

    Gentric, Philippe

    2011-03-01

    Emerging screen technologies, such as Electrophoretic Displays (EPD) used in E-book Readers, are changing product power requirements due to their advantageous properties such as bi-stability (effective "zero power" static display) and reflective mode of operation (no backlight). We will first review the emerging screen technologies under the angle of system and IC design impact. We will explain power management consequences for IC design, with a focus on Application Engine SOCs for the wireless/portable markets.

  1. Characterization of CNT-MnO{sub 2} nanocomposite by electrophoretic deposition as potential electrode for supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darari, Alfin, E-mail: alfindarari@st.fisika.undip.ac.id; Rismaningsih, Nurmanita; Ardiansah, Hafidh Rahman

    Energy crisis that occured in Indonesia suggests that energy supply could not offset the high rate request and needs an electric energy saving device which can save high voltage, safety, and unlimited lifetime. The weakness of batteries is durable but has a low power density while the capacitor has a high power density but it doesn’t durable. The renewal of this study is CNT-MnO{sub 2} thin film fabrication method using electrophoretic deposition. Electrophoretic deposition is a newest method to deposited CNT using power supply with cheap, and make a good result. The result of FTIR analysis showed that the bestmore » CNT-MnO{sub 2} composition is 75:25 and C-C bond is detected in fingerprint area. The result is electrode thin film homogen and characterized by X-ray diffraction (XRD) peaks 2θ=26,63° is characterization of graphite, and 2θ=43,97° is characterization of diamond Carbon type and measured by Scherrer formula results 52,3 nm material average size .EIS test results its capacitance about 7,86 F. from the data it can be concluded that CNT-MnO{sub 2} potential electrode very promising for further study and has a potential to be a high capacitance, and fast charge supercapacitor which can be applied for electronic devices, energy converter, even electric car.« less

  2. AEM and NMR: Tools for the Future of Groundwater Management

    NASA Astrophysics Data System (ADS)

    Abraham, J. D.; Cannia, J. C.; Lawrie, K.

    2012-12-01

    Within the world, understanding groundwater resources and their management are growing in importance to society as groundwater resources are stressed by drought and continued development. To minimize conflicts, tools and techniques need to be applied to support knowledge-based decisions and management. Airborne electromagnetic (AEM) surveys provide high-quality subsurface data not available from any other source for building the complex hydrogeologic frameworks needed by water-resource managers for effective groundwater management. Traditionally, point data, such as borehole logs, borehole geophysics, surface geophysics, and aquifer tests were interpolated over long distances to create hydrogeologic frameworks. These methods have enjoyed a long history of being the best available technology to inform our understanding of groundwater and how it moves. The AEM techniques proivde pathway for geoscientists to follow to develop more accurate descriptions of the hydrogeological framework. However, the critical and challenging measurements in characterizing aquifers include effective porosity and hydraulic conductivity. These parameters are not reliable derived from AEM. Typically, values for effective porosity and hydraulic conductivity are derived by lithological comparisons with published data; direct measurements of hydraulic conductivity acquired by a few constant head aquifer tests or slug tests; and expensive and time consuming laboratory measurements of cores which can be biased by sampling and the difficulty of making measurements on unconsolidated materials. Aquifer tests are considered to be the best method to gather information on hydraulic conductivity but are rare because of cost and difficult logistics. Also they are unique in design and interpretation from site to site. Nuclear Magnetic Resonance (NMR) can provide a direct measurement of the presence of water in the pore space of aquifer materials. Detection and direct measurement is possible due to the

  3. A small-diameter NMR logging tool for groundwater investigations

    USGS Publications Warehouse

    Walsh, David; Turner, Peter; Grunewald, Elliot; Zhang, Hong; Butler, James J.; Reboulet, Ed; Knobbe, Steve; Christy, Tom; Lane, John W.; Johnson, Carole D.; Munday, Tim; Fitzpatrick, Andrew

    2013-01-01

    A small-diameter nuclear magnetic resonance (NMR) logging tool has been developed and field tested at various sites in the United States and Australia. A novel design approach has produced relatively inexpensive, small-diameter probes that can be run in open or PVC-cased boreholes as small as 2 inches in diameter. The complete system, including surface electronics and various downhole probes, has been successfully tested in small-diameter monitoring wells in a range of hydrogeological settings. A variant of the probe that can be deployed by a direct-push machine has also been developed and tested in the field. The new NMR logging tool provides reliable, direct, and high-resolution information that is of importance for groundwater studies. Specifically, the technology provides direct measurement of total water content (total porosity in the saturated zone or moisture content in the unsaturated zone), and estimates of relative pore-size distribution (bound vs. mobile water content) and hydraulic conductivity. The NMR measurements show good agreement with ancillary data from lithologic logs, geophysical logs, and hydrogeologic measurements, and provide valuable information for groundwater investigations.

  4. High resolution NMR imaging using a high field yokeless permanent magnet.

    PubMed

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  5. Electrophoretic deposition of biomaterials

    PubMed Central

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  6. SPAR electrophoretic separation experiments, part 2

    NASA Technical Reports Server (NTRS)

    Cosmi, F. M.

    1978-01-01

    The opportunity to use a sounding rocket for separation experiments is a logical continuation of earlier electrophoresis demonstrations and experiments. A free-flow electrophoresis system, developed under the Advanced Applications Flight Experiment (AAFE) Program, was designed so that it would fit into a rocket payload. The SPAR program provides a unique opportunity to complete the intial stages of microgravity testing prior to any Shuttle applications. The objective of the work described in this report was to ensure proper operating parameters for the defined experimental samples to be used in the SPAR Electrophoretic Separation Experiment. Ground based experiments were undertaken not only to define flight parameters but also to serve as a point of comparison for flight results. Possible flight experiment problem areas were also studied such as sample interaction due to sedimentation, concentration effects and storage effects. Late in the program anomalies of field strengths and buffer conductivities were also investigated.

  7. Nanoscale NMR spectroscopy and imaging of multiple nuclear species.

    PubMed

    DeVience, Stephen J; Pham, Linh M; Lovchinsky, Igor; Sushkov, Alexander O; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ∼100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species ((1)H, (19)F, (31)P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (∼20 mT) using two complementary sensor modalities.

  8. [Electrophoretic patterns of cell wall protein as a criterion for the identification and classification of Corynebacteria].

    PubMed

    Mykhal's'kyĭ, L O; Furtat, I M; Dem'ianenko, F P; Kostiuchyk, A A

    2001-01-01

    Electrophoretic patterns of cell wall protein of three industrial strains, that were used for production of lysin, and eight collection strains from the genus Corynevacterium were studied to analyze their similarity as well as to estimate an opportunity of using this parameter as an additional criterion for identification and classification of corynebacteria. Similarity coefficient of cell wall overall and main protein electrophoretic patterns were determined by a specially created computer program. Electrophoretic analysis showed that every specie had an individual protein profile. There were determined biopolymers common for the specie, genus and individual among the overall majors and minors. The obtained results showed, that the patterns of main proteins were more conservative and informative in comparison with those ones of overall proteins. The definition of similarity coefficient by the main protein patterns has correlated with the protein profile characteristics of every analyzed strain, and it managed to distribute them into the separate groups. The similarity coefficient of preparations by the main protein patterns allows to separate one specie or a strain from another, and that gives us a chance to claim that this parameter could be used as an additional criterion for differentiation and referring the corynebacteria to a certain taxonomic group.

  9. Summary electrophoretic data base on human embryonic kidney cell strain 8514

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Arquiza, M. V.; Morrison, D. R.; Todd, P. W.

    1985-01-01

    To properly plan the electrophoresis equipment verification test (EEVT) and continuous flow electrophoresis system (CFES) experiments with human embryonic kidney cells, first a candidate cell lot had to be chosen on the basis of electrophoretic heterogeneity, growth potential, cytogenetics, and urokinase production. Cell lot 8514 from MA Bioproducts, Inc. was chosen for this purpose, and several essential analytical electrophoresis experiments were performed to test its final suitability for these experiments.

  10. Structure and equilibria of Ca 2+-complexes of glucose and sorbitol from multinuclear ( 1H, 13C and 43Ca) NMR measurements supplemented with molecular modelling calculations

    NASA Astrophysics Data System (ADS)

    Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.

    2011-05-01

    Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.

  11. NMR-invisible ATP in heart: fact or fiction?

    PubMed

    Bak, M I; Ingwall, J S

    1992-06-01

    31P-nuclear magnetic resonance (31P-NMR) spectroscopy is widely used to monitor sequential changes in the nucleoside triphosphate (NTP) pool in intact tissues. Recently, the validity of this technique to quantitate incremental changes in ATP in heart has been challenged. Accordingly, we compared NTP measured by 31P-NMR and by chemical techniques in isolated isovolumic rat hearts at 16 and 56 min of oxygenated perfusion and in hearts subjected to 28 min of hypoxia, with or without 28 min of reoxygenation, and 12 or 28 min of ischemia, with or without 28 min of reperfusion. NTP content was calculated from 31P-NMR spectra using an external standard. At the end of each protocol the heart was freeze-clamped, and NTP and ATP contents were determined by chemical assay. After 16 min of normoxic perfusion the values for NTP and ATP contents measured by both methods in the same hearts were indistinguishable. Results from all seven experimental conditions show no significant difference between methods (P = 0.262). Thus both methods detect the same incremental change in NTP and ATP.

  12. Quantification of taurine in energy drinks using ¹H NMR.

    PubMed

    Hohmann, Monika; Felbinger, Christine; Christoph, Norbert; Wachter, Helmut; Wiest, Johannes; Holzgrabe, Ulrike

    2014-05-01

    The consumption of so called energy drinks is increasing, especially among adolescents. These beverages commonly contain considerable amounts of the amino sulfonic acid taurine, which is related to a magnitude of various physiological effects. The customary method to control the legal limit of taurine in energy drinks is LC-UV/vis with postcolumn derivatization using ninhydrin. In this paper we describe the quantification of taurine in energy drinks by (1)H NMR as an alternative to existing methods of quantification. Variation of pH values revealed the separation of a distinct taurine signal in (1)H NMR spectra, which was applied for integration and quantification. Quantification was performed using external calibration (R(2)>0.9999; linearity verified by Mandel's fitting test with a 95% confidence level) and PULCON. Taurine concentrations in 20 different energy drinks were analyzed by both using (1)H NMR and LC-UV/vis. The deviation between (1)H NMR and LC-UV/vis results was always below the expanded measurement uncertainty of 12.2% for the LC-UV/vis method (95% confidence level) and at worst 10.4%. Due to the high accordance to LC-UV/vis data and adequate recovery rates (ranging between 97.1% and 108.2%), (1)H NMR measurement presents a suitable method to quantify taurine in energy drinks. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Fay, E. L.; Knight, R. J.; Grunewald, E. D.

    2016-12-01

    Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.

  14. A ferromagnetic shim insert for NMR magnets - Towards an integrated gyrotron for DNP-NMR spectroscopy.

    PubMed

    Ryan, Herbert; van Bentum, Jan; Maly, Thorsten

    2017-04-01

    In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400MHz 1 H NMR, ⩾9.4T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B 1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Indirect detection in solid state NMR: An illustrious history and a bright future

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2018-03-01

    Many of us have a love/hate relationship with nuclear magnetic resonance (NMR). We love the information content of NMR data, which provides us with essential information about structure, dynamics, and material properties that is not available from any other measurement, and we love the fact that NMR methods can be applied to almost any problem in almost any area of science. But we hate the low sensitivity of NMR, which forces us to make big samples, spend many tedious hours or days taking data, or live with marginal signal-to-noise.

  16. Scalable NMR spectroscopy with semiconductor chips

    PubMed Central

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-01-01

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  17. Two dimensional distribution measurement of electric current generated in a polymer electrolyte fuel cell using 49 NMR surface coils.

    PubMed

    Ogawa, Kuniyasu; Sasaki, Tatsuyoshi; Yoneda, Shigeki; Tsujinaka, Kumiko; Asai, Ritsuko

    2018-05-17

    In order to increase the current density generated in a PEFC (polymer electrolyte fuel cell), a method for measuring the spatial distribution of both the current and the water content of the MEA (membrane electrode assembly) is necessary. Based on the frequency shifts of NMR (nuclear magnetic resonance) signals acquired from the water contained in the MEA using 49 NMR coils in a 7 × 7 arrangement inserted in the PEFC, a method for measuring the two-dimensional spatial distribution of electric current generated in a unit cell with a power generation area of 140 mm × 160 mm was devised. We also developed an inverse analysis method to determine the two-dimensional electric current distribution that can be applied to actual PEFC connections. Two analytical techniques, namely coarse graining of segments and stepwise search, were used to shorten the calculation time required for inverse analysis of the electric current map. Using this method and techniques, spatial distributions of electric current and water content in the MEA were obtained when the PEFC generated electric power at 100 A. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Electrophoretic Deposition on Porous Non-Conductors

    NASA Technical Reports Server (NTRS)

    Compson, Charles; Besra, Laxmidhar; Liu, Meilin

    2007-01-01

    A method of electrophoretic deposition (EPD) on substrates that are porous and electrically non-conductive has been invented. Heretofore, in order to perform an EPD, it has been necessary to either (1) use a substrate material that is inherently electrically conductive or (2) subject a non-conductive substrate to a thermal and/or chemical treatment to render it conductive. In the present method, instead of relying on the electrical conductivity of the substrate, one ensures that the substrate is porous enough that when it is immersed in an EPD bath, the solvent penetrates throughout the thickness, thereby forming quasi-conductive paths through the substrate. By making it unnecessary to use a conductive substrate, this method simplifies the overall EPD process and makes new applications possible. The method is expected to be especially beneficial in enabling deposition of layers of ceramic and/or metal for chemical and electrochemical devices, notably including solid oxide fuel cells.

  19. NPK NMR Sensor: Online Monitoring of Nitrogen, Phosphorus, and Potassium in Animal Slurry.

    PubMed

    Sørensen, Morten K; Jensen, Ole; Bakharev, Oleg N; Nyord, Tavs; Nielsen, Niels Chr

    2015-07-07

    Knowledge of the actual content of nitrogen, phosphorus, and potassium (NPK) in animal slurry is highly important to optimize crop production and avoid environmental pollution when slurry is spread on agricultural fields. Here, we present a mobile, low-field nuclear magnetic resonance (NMR) sensor suitable for online monitoring of the NPK content in animal slurry as an alternative to crude estimates or tedious nonspecific, off-site laboratory analysis. The sensor is based on (14)N, (17)O, (31)P, and (39)K NMR in a digital NMR instrument equipped with a 1.5 T Halbach magnet for direct detection of ammonium N, total P, and K and indirect evaluation of the organic N content, covering all practical components of NPK in animal slurry. In correlation studies, the obtained NMR measurements show good agreement with reference measurements from commercial laboratories.

  20. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  1. Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Qu, Yinying; Li, Xiaoshuang; Zhang, Sheng; Wei, Qingsong; Shi, Yusheng; Chen, Lili

    2014-06-01

    Electrophoretic deposition has been widely used for the fabrication of functional coatings onto metal implant. A characteristic feature of this process is that positively charged materials migrate toward the cathode and can deposit on it. In this study, silk fibroin was decorated with tetracycline in aqueous solution to impart positive charge, and then deposited on negatively titanium cathode under certain electric field. The characterization of the obtained coatings indicated that the intermolecular hydrogen bonds formed between the backbone of silk fibroin and tetracycline molecular. In vitro biological tests demonstrated that osteoblast-like cells achieved acceptable cell affinity on the tetracycline cross-linked silk fibroin coatings, although greater cell viability was seen on pure silk fibroin coatings. The cationic silk fibroin coatings showed remarkable antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Therefore, we concluded that electrophoretic deposition was an effective and efficient technique to prepare cationic silk fibroin coatings on the titanium surface and that cationic silk fibroin coatings with acceptable biocompatibility and antibacterial property were promising candidates for further loading of functional agents.

  2. On NMR prediction of the effectiveness of p-phenylenediamine antioxidants

    NASA Astrophysics Data System (ADS)

    Puškárová, Ingrid; Šoral, Michal; Breza, Martin

    2015-10-01

    NMR shifts of N-phenyl-N‧-alkyl-p-phenylenediamines (PPD) in DMSO have been measured as well as evaluated by B3LYP calculations. According to Simon et al. Molar Antioxidant Effectiveness (AEM) of PPD antioxidants depends on the bond strength of hydrogens to amine nitrogens between aromatic rings (NA), to the side aliphatic chain nitrogens (NB) and to its neighboring tertiary carbon atoms (CT). AEM increases with NMR shifts of HA, HB, NA and probably also of CT atoms whereas NMR shifts of NB atoms exhibit a reverse trend. This is very surprising because similar reactions at A and B sites are supposed.

  3. "Cooking the sample": radiofrequency induced heating during solid-state NMR experiments.

    PubMed

    d'Espinose de Lacaillerie, Jean-Baptiste; Jarry, Benjamin; Pascui, Ovidiu; Reichert, Detlef

    2005-09-01

    Dissipation of radiofrequency (RF) energy as heat during continuous wave decoupling in solid-state NMR experiment was examined outside the conventional realm of such phenomena. A significant temperature increase could occur while performing dynamic NMR measurements provided the sample contains polar molecules and the sequence calls for relatively long applications of RF power. It was shown that the methyl flip motion in dimethylsulfone (DMS) is activated by the decoupling RF energy conversion to heat during a CODEX pulse sequence. This introduced a significant bias in the correlation time-temperature dependency measurement used to obtain the activation energy of the motion. By investigating the dependency of the temperature increase in hydrated lead nitrate on experimental parameters during high-power decoupling one-pulse experiments, the mechanisms for the RF energy deposition was identified. The samples were heated due to dissipation of the energy absorbed by dielectric losses, a phenomenon commonly known as "microwave" heating. It was thus established that during solid-state NMR experiments at moderate B0 fields, RF heating could lead to the heating of samples containing polar molecules such as hydrated polymers and inorganic solids. In particular, this could result in systematic errors for slow dynamics measurements by solid-state NMR.

  4. sup 31 P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brindle, K.; Braddock, P.; Fulton, S.

    1990-04-03

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. {sup 31}P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06more » and 0.1 measured directly in cell extracts.« less

  5. Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)

  6. Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.

    PubMed

    Perić, Berislav; Gautier, Régis; Pickard, Chris J; Bosiočić, Marko; Grbić, Mihael S; Požek, Miroslav

    2014-01-01

    Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined δiso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. SBIR Phase II Final Report: Low cost Autonomous NMR and Multi-sensor Soil Monitoring Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, David O.

    In this 32-month SBIR Phase 2 program, Vista Clara designed, assembled and successfully tested four new NMR instruments for soil moisture measurement and monitoring: An enhanced performance man-portable Dart NMR logging probe and control unit for rapid, mobile measurement in core holes and 2” PVC access wells; A prototype 4-level Dart NMR monitoring probe and prototype multi-sensor soil monitoring control unit for long-term unattended monitoring of soil moisture and other measurements in-situ; A non-invasive 1m x 1m Discus NMR soil moisture sensor with surface based magnet/coil array for rapid measurement of soil moisture in the top 50 cm of themore » subsurface; A non-invasive, ultra-lightweight Earth’s field surface NMR instrument for non-invasive measurement and mapping of soil moisture in the top 3 meters of the subsurface. The Phase 2 research and development achieved most, but not all of our technical objectives. The single-coil Dart in-situ sensor and control unit were fully developed, demonstrated and successfully commercialized within the Phase 2 period of performance. The multi-level version of the Dart probe was designed, assembled and demonstrated in Phase 2, but its final assembly and testing were delayed until close to the end of the Phase 2 performance period, which limited our opportunities for demonstration in field settings. Likewise, the multi-sensor version of the Dart control unit was designed and assembled, but not in time for it to be deployed for any long-term monitoring demonstrations. The prototype ultra-lightweight surface NMR instrument was developed and demonstrated, and this result will be carried forward into the development of a new flexible surface NMR instrument and commercial product in 2018.« less

  8. Differential electrophoretic separation of cells and its effect on cell viability

    NASA Technical Reports Server (NTRS)

    Leise, E. M.; Lesane, F.

    1974-01-01

    An electrophoretic separation method was applied to the separation of cells. To determine the efficiency of the separation, it was necessary to apply existing methodology and develop new methods to assess the characteristics and functions of the separated subpopulations. Through appropriate application of the widely used isoelectric focusing procedure, a reproducible separation method was developed. Cells accumulated at defined pH and 70-80% remained viable. The cells were suitable for further biologic, biochemical and immunologic studies.

  9. A new laboratory approach to shale analysis using NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Measurements made using LF-NMR provide information on rock porosity, pore-size distributions, and in some cases, fluid types and saturations (Timur, 1967; Kenyon et al., 1986; Straley et al., 1994; Brown, 2001; Jackson, 2001; Kleinberg, 2001; Hurlimann et al., 2002). Recent improvements in LF-NMR instrument electronics have made it possible to apply methods used to measure pore fluids to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids; therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus T2 relaxation caused by homonuclear dipolar coupling during correlation measurements allows for improved resolution of solid-phase protons. LF-NMR measurements of T1 and T2 relaxation time distributions were carried out on raw oil shale samples from the Eocene Green River Formation and pyrolyzed samples of these shales processed by hydrous pyrolysis and techniques meant to mimic surface and in-situ retorting. Samples processed using the In Situ Simulator approach ranged from bitumen and early oil generation through to depletion of petroleum generating potential. The standard T1-T2 correlation plots revealed distinct peaks representative of solid- and liquid-like organic phases; results on the pyrolyzed shales reflect changes that occurred during thermal processing. The solid-echo T1 and T2 measurements were used to improve assessment of the solid organic phases, specifically

  10. 129 Xe chemical shift in human blood and pulmonary blood oxygenation measurement in humans using hyperpolarized 129 Xe NMR.

    PubMed

    Norquay, Graham; Leung, General; Stewart, Neil J; Wolber, Jan; Wild, Jim M

    2017-04-01

    To evaluate the dependency of the 129 Xe-red blood cell (RBC) chemical shift on blood oxygenation, and to use this relation for noninvasive measurement of pulmonary blood oxygenation in vivo with hyperpolarized 129 Xe NMR. Hyperpolarized 129 Xe was equilibrated with blood samples of varying oxygenation in vitro, and NMR was performed at 1.5 T and 3 T. Dynamic in vivo NMR during breath hold apnea was performed at 3 T on two healthy volunteers following inhalation of hyperpolarized 129 Xe. The 129 Xe chemical shift in RBCs was found to increase nonlinearly with blood oxygenation at 1.5 T and 3 T. During breath hold apnea, the 129 Xe chemical shift in RBCs exhibited a periodic time modulation and showed a net decrease in chemical shift of ∼1 ppm over a 35 s breath hold, corresponding to a decrease of 7-10 % in RBC oxygenation. The 129 Xe-RBC signal amplitude showed a modulation with the same frequency as the 129 Xe-RBC chemical shift. The feasibility of using the 129 Xe-RBC chemical shift to measure pulmonary blood oxygenation in vivo has been demonstrated. Correlation between 129 Xe-RBC signal and 129 Xe-RBC chemical shift modulations in the lung warrants further investigation, with the aim to better quantify temporal blood oxygenation changes in the cardiopulmonary vascular circuit. Magn Reson Med 77:1399-1408, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  11. Metabolic studies with NMR spectroscopy of the alga Dunaliella salina trapped within agarose beads.

    PubMed

    Bental, M; Pick, U; Avron, M; Degani, H

    1990-02-22

    A technique for the entrapment of the unicellular algae Dunaliella salina in agarose beads and their perfusion during NMR measurements is presented. The trapped cells maintained their ability to proliferate under normal growth conditions, and remained viable and stable under steady-state conditions for long periods during NMR measurements. Following osmotic shock in the dark, prominent changes were observed in the intracellular level of ATP and polyphosphates, but little to no changes in the intracellular pH or orthoposphate content. When cells were subjected to hyperosmotic shock, the ATP level decreased. The content of NMR-visible polyphosphates decreased as well, presumably due to the production of longer, NMR-invisible structures. Following hypoosmotic shock, the ATP content increased and longer polyphosphates were broken down to shorter, more mobile polymers.

  12. Improvement of spin-exchange optical pumping of xenon-129 using in situ NMR measurement in ultra-low magnetic field

    NASA Astrophysics Data System (ADS)

    Takeda, Shun; Kumagai, Hiroshi

    2018-02-01

    Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.

  13. Development of LC-13C NMR

    NASA Technical Reports Server (NTRS)

    Dorn, H. C.; Wang, J. S.; Glass, T. E.

    1986-01-01

    This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.

  14. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which…

  15. Electrophoretic separation and analysis of living cells from solid tissues by several methods - Human embryonic kidney cell cultures as a model

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Plank, Lindsay D.; Kunze, M. Elaine; Lewis, Marian L.; Morrison, Dennis R.

    1986-01-01

    The use of free-fluid electrophoresis methods to separate tissue cells having a specific function is discussed. It is shown that cells suspended by trypsinization from cultures of human embryonic kidney are electrophoretically heterogeneous and tolerate a wide range of electrophoresis buffers and conditions without significant attenuation of function. Moreover, these cells do not separate electrophoretically on the basis of size or cell position alone and can be separated according to their ability to give rise to progeny that produce specific plasminogen activators.

  16. Fast electrophoretic analysis of individual mitochondria using microchip capillary electrophoresis with laser induced fluorescence detection.

    PubMed

    Duffy, Ciarán F; MacCraith, Brian; Diamond, Dermot; O'Kennedy, Richard; Arriaga, Edgar A

    2006-08-01

    The analysis of mitochondria by capillary electrophoresis usually takes longer than 20 min per replicate which may compromise the quality of the mitochondria due to degradation. In addition, low sample consumption may be beneficial in the analysis of rare or difficult samples. In this report, we demonstrate the ability to analyze individual mitochondrial events in picoliter-volume samples (approximately 80 pL) taken from a bovine liver preparation using microchip capillary electrophoresis with laser-induced fluorescence detection (micro-chip CE-LIF). Using a commercial "double-T" glass microchip, the sample was electrokinetically loaded in the "double-T" intersection and then subjected to electrophoretic separation along the main separation channel. In order to decrease interactions of mitochondria with channel walls during the analysis, poly(vinyl alcohol) was used as a dynamic coating. This procedure eliminates the need for complicated covalent surface modifications within the channels that were previously used in capillary electrophoresis methods. For analysis, mitochondria, isolated from bovine liver tissue, were selectively labelled using 10-nonyl acridine orange (NAO). The results consist of electropherograms where each mitochondrial event is a narrow spike (240 +/- 44 ms). While the spike intensity is representative of its NAO content, its migration time is used to calculate and describe its electrophoretic mobility, which is a property still largely unexplored for intracellular organelles. The five-fold decrease in separation time (4 min for microchip versus 20 min for capillary electrophoresis) makes microchip electrophoretic separations of organelles a faster, sensitive, low-sample volume alternative for the characterization of individual organelle properties and for investigations of subcellular heterogeneity.

  17. Position-Specific Hydrogen and Carbon Isotope Fractionations of Light Hydrocarbons by Quantitative NMR

    NASA Astrophysics Data System (ADS)

    Liu, C.; Mcgovern, G. P.; Horita, J.

    2015-12-01

    Traditional isotope ratio mass spectrometry methods to measure 2H/1H and 13C/12C ratios of organic molecules only provide average isotopic values of whole molecules. During the measurement process, valuable information of position-specific isotope fractionations (PSIF) between non-equivalent H and C positions is lost, which can provide additional very useful information about the origins and history of organic molecules. Quantitative nuclear magnetic resonance (NMR) spectrometry can measure 2H and 13C PSIF of organic molecules without destruction. The 2H and 13C signals from different positions of a given molecule show up as distinctive peaks in an NMR spectrum, and their peak areas are proportional to the 2H and 13C populations at each position. Moreover, quantitative NMR can be applied to a wide variety of organic molecules. We have been developing quantitative NMR methods to determine 2H and 13C PSIF of light hydrocarbons (propane, butane and pentane), using J-Young and custom-made high-pressure NMR cells. With careful conditioning of the NMR spectrometer (e.g. tuning, shimming) and effective 1H -13C decoupling, precision of ± <10‰ (2H) and ± <1‰ (13C) can be readily attainable after several hours of acquisition. Measurement time depends on the relaxation time of interested nucleus and the total number of scans needed for high signal-to-noise ratios. Our data for commercial, pure hydrocarbon samples showed that 2H PSIF in the hydrocarbons can be larger than 60‰ and that 13C PSIF can be as large as 15‰. Comparison with theoretical calculations indicates that the PSIF patterns of some hydrocarbon samples reflect non-equilibrium processes in their productions.

  18. Magic Angle Spinning NMR Metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi Hu, Jian

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  19. Protein folding by NMR.

    PubMed

    Zhuravleva, Anastasia; Korzhnev, Dmitry M

    2017-05-01

    Protein folding is a highly complex process proceeding through a number of disordered and partially folded nonnative states with various degrees of structural organization. These transiently and sparsely populated species on the protein folding energy landscape play crucial roles in driving folding toward the native conformation, yet some of these nonnative states may also serve as precursors for protein misfolding and aggregation associated with a range of devastating diseases, including neuro-degeneration, diabetes and cancer. Therefore, in vivo protein folding is often reshaped co- and post-translationally through interactions with the ribosome, molecular chaperones and/or other cellular components. Owing to developments in instrumentation and methodology, solution NMR spectroscopy has emerged as the central experimental approach for the detailed characterization of the complex protein folding processes in vitro and in vivo. NMR relaxation dispersion and saturation transfer methods provide the means for a detailed characterization of protein folding kinetics and thermodynamics under native-like conditions, as well as modeling high-resolution structures of weakly populated short-lived conformational states on the protein folding energy landscape. Continuing development of isotope labeling strategies and NMR methods to probe high molecular weight protein assemblies, along with advances of in-cell NMR, have recently allowed protein folding to be studied in the context of ribosome-nascent chain complexes and molecular chaperones, and even inside living cells. Here we review solution NMR approaches to investigate the protein folding energy landscape, and discuss selected applications of NMR methodology to studying protein folding in vitro and in vivo. Together, these examples highlight a vast potential of solution NMR in providing atomistic insights into molecular mechanisms of protein folding and homeostasis in health and disease. Copyright © 2016 Elsevier B.V. All

  20. Calorimetric, FTIR and 1H NMR measurements in combination with DFT calculations for monitoring solid-state changes of dynamics of sibutramine hydrochloride.

    PubMed

    Pajzderska, Aleksandra; Chudoba, Dorota M; Mielcarek, Jadwiga; Wąsicki, Jan

    2012-10-01

    Two forms of sibutramine hydrochloride, monohydrate and anhydrous, have been investigated by calorimetric methods, Fourier transform infrared (FTIR) absorption and (1) H nuclear magnetic resonance (NMR) measurements as well as by density functional theory (DFT) of vibrational frequencies and infrared intensities, calculations of steric hindrances and Monte Carlo simulations. The results of FTIR spectra combined with DFT calculations permitted identification of the bands corresponding to the dynamics and vibrations of water molecules. NMR study and Monte Carlo simulations revealed the occurrence of reorientation jumps of the methyl groups in sibutramine cation and also revealed that the reorientation of isopropyl group is possible only in sibutramine monohydrate hydrochloride. The hydration of sibutramine hydrochloride causes a change in the conformation of sibutramine cation. Copyright © 2012 Wiley-Liss, Inc.

  1. Characterization of wet aggregate stability of soils by ¹H-NMR relaxometry.

    PubMed

    Buchmann, C; Meyer, M; Schaumann, G E

    2015-09-01

    For the assessment of soil structural stability against hydraulic stress, wet sieving or constant head permeability tests are typically used but rather limited in their intrinsic information value. The multiple applications of several tests is the only possibility to assess important processes and mechanisms during soil aggregate breakdown, e.g. the influences of soil fragment release or differential swelling on the porous systems of soils or soil aggregate columns. Consequently, the development of new techniques for a faster and more detailed wet aggregate stability assessment is required. (1)H nuclear magnetic resonance relaxometry ((1)H-NMR relaxometry) might provide these requirements because it has already been successfully applied on soils. We evaluated the potential of (1)H-NMR relaxometry for the assessment of wet aggregate stability of soils, with more detailed information on occurring mechanisms at the same time. Therefore, we conducted single wet sieving and constant head permeability tests on untreated and 1% polyacrylic acid-treated soil aggregates of different textures and organic matter contents, subsequently measured by (1)H-NMR relaxometry after percolation. The stability of the soil aggregates were mainly depending on their organic matter contents and the type of aggregate stabilization, whereby additional effects of clay swelling on the measured wet aggregate stability were identified by the transverse relaxation time (T2) distributions. Regression analyses showed that only the percentage of water stable aggregates could be determined accurately from percolated soil aggregate columns by (1)H-NMR relaxometry measurements. (1)H-NMR relaxometry seems a promising technique for wet aggregate stability measurements but should be further developed for nonpercolated aggregate columns and real soil samples. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Proton NMR study of α-MnH 0.06

    NASA Astrophysics Data System (ADS)

    Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Antonov, V. E.; Antonova, T. E.

    2004-07-01

    Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH 0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH 0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.

  3. Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging

    NASA Astrophysics Data System (ADS)

    Kawada, Yuuki; Hirata, Hiroshi; Fujii, Hirodata

    2007-01-01

    This article reports experimental investigations on the use of RF resonators for continuous-wave electron paramagnetic resonance (cw-EPR) and proton nuclear magnetic resonance (NMR) imaging. We developed a composite resonator system with multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. The resonance frequencies of each resonator were 21.8 MHz for NMR and 670 MHz for EPR. A smaller resonator (22 mm in diameter) for use in EPR was placed coaxially in a larger resonator (40 mm in diameter) for use in NMR. RF magnetic fields in the composite resonator system were visualized by measuring a homogeneous 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (4-hydroxy-TEMPO) solution in a test tube. A phantom of five tubes containing distilled water and 4-hydroxy-TEMPO solution was also measured to demonstrate the potential usefulness of this composite resonator system in biomedical science. An image of unpaired electrons was obtained for 4-hydroxy-TEMPO in three tubes, and was successfully mapped on the proton image for five tubes. Technical problems in the implementation of a composite resonator system are discussed with regard to co-registration EPR/NMR imaging for animal experiments.

  4. The application of absolute quantitative (1)H NMR spectroscopy in drug discovery and development.

    PubMed

    Singh, Suruchi; Roy, Raja

    2016-07-01

    The identification of a drug candidate and its structural determination is the most important step in the process of the drug discovery and for this, nuclear magnetic resonance (NMR) is one of the most selective analytical techniques. The present review illustrates the various perspectives of absolute quantitative (1)H NMR spectroscopy in drug discovery and development. It deals with the fundamentals of quantitative NMR (qNMR), the physiochemical properties affecting qNMR, and the latest referencing techniques used for quantification. The precise application of qNMR during various stages of drug discovery and development, namely natural product research, drug quantitation in dosage forms, drug metabolism studies, impurity profiling and solubility measurements is elaborated. To achieve this, the authors explore the literature of NMR in drug discovery and development between 1963 and 2015. It also takes into account several other reviews on the subject. qNMR experiments are used for drug discovery and development processes as it is a non-destructive, versatile and robust technique with high intra and interpersonal variability. However, there are several limitations also. qNMR of complex biological samples is incorporated with peak overlap and a low limit of quantification and this can be overcome by using hyphenated chromatographic techniques in addition to NMR.

  5. Relationship between pore geometric characteristics and SIP/NMR parameters observed for mudstones

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Slater, L. D.; Keating, K.; Parker, B. L.; Robinson, T.

    2017-12-01

    The reliable estimation of permeability remains one of the most challenging problems in hydrogeological characterization. Cost effective, non-invasive geophysical methods such as spectral induced polarization (SIP) and nuclear magnetic resonance (NMR) offer an alternative to traditional sampling methods as they are sensitive to the mineral surfaces and pore spaces that control permeability. We performed extensive physical characterization, SIP and NMR geophysical measurements on fractured rock cores extracted from a mudstone site in an effort to compare 1) the pore size characterization determined from traditional and geophysical methods and 2) the performance of permeability models based on these methods. We focus on two physical characterizations that are well-correlated with hydraulic properties: the pore volume normalized surface area (Spor) and an interconnected pore diameter (Λ). We find the SIP polarization magnitude and relaxation time are better correlated with Spor than Λ, the best correlation of these SIP measures for our sample dataset was found with Spor divided by the electrical formation factor (F). NMR parameters are, similarly, better correlated with Spor than Λ. We implement previously proposed mechanistic and empirical permeability models using SIP and NMR parameters. A sandstone-calibrated SIP model using a polarization magnitude does not perform well while a SIP model using a mean relaxation time performs better in part by more sufficiently accounting for the effects of fluid chemistry. A sandstone-calibrated NMR permeability model using an average measure of the relaxation time does not perform well, presumably due to small pore sizes which are either not connected or contain water of limited mobility. An NMR model based on the laboratory determined portions of the bound versus mobile portions of the relaxation distribution performed reasonably well. While limitations exist, there are many opportunities to use geophysical data to predict

  6. High-resolution slab gel isoelectric focusing: methods for quantitative electrophoretic transfer and immunodetection of proteins as applied to the study of the multiple isoelectric forms of ornithine decarboxylase.

    PubMed

    Reddy, S G; Cochran, B J; Worth, L L; Knutson, V P; Haddox, M K

    1994-04-01

    A high-resolution isoelectric focusing vertical slab gel method which can resolve proteins which differ by a single charge was developed and this method was applied to the study of the multiple isoelectric forms of ornithine decarboxylase. Separation of proteins at this high level of resolution was achieved by increasing the ampholyte concentration in the gels to 6%. Various lots of ampholytes, from the same or different commercial sources, differed significantly in their protein binding capacity. Ampholytes bound to proteins interfered both with the electrophoretic transfer of proteins from the gel to immunoblotting membranes and with the ability of antibodies to interact with proteins on the immunoblotting membranes. Increasing the amount of protein loaded into a gel lane also decreased the efficiency of the electrophoretic transfer and immunodetection. To overcome these problems, both gel washing and gel electrophoretic transfer protocols for disrupting the ampholyte-protein binding and enabling a quantitative electrophoretic transfer of proteins were developed. Two gel washing procedures, with either thiocyanate or borate buffers, and a two-step electrophoretic transfer method are described. The choice of which method to use to optimally disrupt the ampholyte-protein binding was found to vary with each lot of ampholytes employed.

  7. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Guobin; Li, Xiaofeng; Sun, Xianping; Feng, Jiwen; Ye, Chaohui; Zhou, Xin

    2013-12-01

    We present a Cs atomic magnetometer with a sensitivity of 150 fT/Hz1/2 operating near room temperature. The nuclear magnetic resonance (NMR) signal of 125 μL tap water was detected at an ultralow magnetic field down to 47 nT, with the signal-to-noise ratio (SNR) of the NMR signal approaching 50 after eight averages. Relaxivity experiments with a Gd(DTPA) contrast agent in zero field were performed, in order to show the magnetometer's ability to measure spin-lattice relaxation time with high accuracy. This demonstrates the feasibility of an ultralow field NMR spectrometer based on a Cs atomic magnetometer, which has a low working temperature, short data acquisition time and high sensitivity. This kind of NMR spectrometer has great potential in applications such as chemical analysis and magnetic relaxometry detection in ultralow or zero fields.

  8. Fractional motion model for characterization of anomalous diffusion from NMR signals.

    PubMed

    Fan, Yang; Gao, Jia-Hong

    2015-07-01

    Measuring molecular diffusion has been used to characterize the properties of living organisms and porous materials. NMR is able to detect the diffusion process in vivo and noninvasively. The fractional motion (FM) model is appropriate to describe anomalous diffusion phenomenon in crowded environments, such as living cells. However, no FM-based NMR theory has yet been established. Here, we present a general formulation of the FM-based NMR signal under the influence of arbitrary magnetic field gradient waveforms. An explicit analytic solution of the stretched exponential decay format for NMR signals with finite-width Stejskal-Tanner bipolar pulse magnetic field gradients is presented. Signals from a numerical simulation matched well with the theoretical prediction. In vivo diffusion-weighted brain images were acquired and analyzed using the proposed theory, and the resulting parametric maps exhibit remarkable contrasts between different brain tissues.

  9. Fractional motion model for characterization of anomalous diffusion from NMR signals

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Gao, Jia-Hong

    2015-07-01

    Measuring molecular diffusion has been used to characterize the properties of living organisms and porous materials. NMR is able to detect the diffusion process in vivo and noninvasively. The fractional motion (FM) model is appropriate to describe anomalous diffusion phenomenon in crowded environments, such as living cells. However, no FM-based NMR theory has yet been established. Here, we present a general formulation of the FM-based NMR signal under the influence of arbitrary magnetic field gradient waveforms. An explicit analytic solution of the stretched exponential decay format for NMR signals with finite-width Stejskal-Tanner bipolar pulse magnetic field gradients is presented. Signals from a numerical simulation matched well with the theoretical prediction. In vivo diffusion-weighted brain images were acquired and analyzed using the proposed theory, and the resulting parametric maps exhibit remarkable contrasts between different brain tissues.

  10. NMR Studies of Cartilage Dynamics, Diffusion, Degradation

    NASA Astrophysics Data System (ADS)

    Huster, Daniel; Schiller, Jurgen; Naji, Lama; Kaufmann Jorn; Arnold, Klaus

    An increasing number of people is suffering from rheumatic diseases, and, therefore, methods of early diagnosis of joint degeneration are urgently required. For their establishment, however, an improved knowledge about the molecular organisation of cartilage would be helpful. Cartilage consists of three main components: Water, collagen and chondroitin sulfate (CS) that is (together with further polysaccharides and proteins) a major constituent of the proteoglycans of cartilage. 1H and 13C MAS (magic-angle spinning) NMR (nuclear magnetic resonance) opened new perspectives for the study of the macromolecular components in cartilage. We have primarily studied the mobilities of CS and collagen in bovine nasal and pig articular cartilage (that differ significantly in their collagen/polysaccharide content) by measuring 13C NMR relaxation times as well as the corresponding 13C CP (cross polarisation) MAS NMR spectra. These data clearly indicate that the mobility of cartilage macromolecules is broadly distributed from almost completely rigid (collagen) to highly mobile (polysaccharides), which lends cartilage its mechanical strength and shock-absorbing properties.

  11. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGES

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H– 17O cross-polarization greatly improves the sensitivity and enables the facilemore » measurement of undistorted line shapes and two-dimensional 1H– 17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  12. Electrophoretic Detection and Confocal Microscopic Imaging of Tyrosine Nitrated Proteins in Plant Tissue.

    PubMed

    Arora, Dhara; Singh, Neha; Bhatla, Satish C

    2018-01-01

    Tyrosine nitrated proteins can be detected in plant cells electrophoretically and their distribution can be monitored by confocal laser scanning microscopy (CLSM) imaging. One-dimensional polyacrylamide gel electrophoresis (1D PAGE) followed by Western blotting using polyclonal antibody against 3-nitrotyrosine residues enables detection of tyrosine nitrated proteins in plant cells. Here we describe detection of tyrosine nitrated proteins in the homogenates derived from sunflower (Helianthus annuus L.) seedling cotyledons. Total soluble proteins obtained from tissue homogenates are resolved using vertical gel electrophoresis followed by their electrophoretic transfer on to a microporous membrane support for immunodetection. Spatial distribution of tyrosine nitrated proteins can be visualized using an antibody against 3-nitrotyrosine residues. Immunofluorescent localization is performed by cutting 7 μm thick wax sections of tissue followed by incubation in primary anti-nitrotyrosine antibody (dilution 1:200) and secondary Cy-3 labeled anti-rabbit IgG antibody (dilution 1:1500). Confocal laser scanning microscopy analysis is undertaken using argon lasers (ex: 530-550 nm and em: 570 nm) at pinhole 1. Modulation in the abundance and spatial localization of tyrosine nitrated proteins in plant tissues can be monitored using these techniques.

  13. Coating and Impregnation of Carbon-Carbon Composites with Ceramics by Electrophoretic Deposition

    DTIC Science & Technology

    1989-04-01

    electroosmotic effect 33 4.1.4 Electrophoretic impregnation of a porous substrate with ceramic particles 53 4.1.5 Morphology of induced Si02 60 4.1.6...particles acquire the charge spontaneously when mixed with the solvent. Further, this charge may be reversed upon addition of ionic compounds. According...spontaneously when mixed with the solvent. Further this charge may be reversed upon addition of ions. 2.2 ELECTHOPHORESIS IN POROUS STRUCTURES i In

  14. Features of electrophoretic deposition process of nanostructured electrode materials for planar Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Melkozyorova, N. A.; Zinkevich, K. G.; Lebedev, E. A.; Alekseyev, A. V.; Gromov, D. G.; Kitsyuk, E. P.; Ryazanov, R. M.; Sysa, A. V.

    2017-11-01

    The features of electrophoretic deposition process of composite LiCoO2-based cathode and Si-based anode materials were researched. The influence of the deposition process parameters on the structure and composition of the deposit was revealed. The possibility of a local deposition of composites on a planar lithium-ion battery structure was demonstrated.

  15. Cellular distribution, purification and electrophoretic properties of malate dehydrogenase in Trichuris ovis and inhibition by benzimidazoles and pyrimidine derivatives.

    PubMed

    Sanchez-Moreno, M; Ortega, J E; Valero, A

    1989-12-01

    High levels of malate dehydrogenase were found in Trichuris ovis. Two molecular forms of the enzyme, of different cellular location and electrophoretic pattern, were isolated and purified. The activity of soluble malate dehydrogenase was greater than that of mitochondrial malate dehydrogenase. Both forms also displayed different electrophoretic profiles in comparison with purified extracts from goat (Capra hircus) liver. Substrate concentration directly affected enzyme activity. Host and parasite malate dehydrogenase activity were both inhibited by a series of benzimidazoles and pyrimidine-derived compounds, some of which markedly reduced parasite enzyme activity, but not host enzyme activity. Percentage inhibition by some pyrimidine derivatives was greater than that produced by benzimidazoles.

  16. Parsimony and goodness-of-fit in multi-dimensional NMR inversion

    NASA Astrophysics Data System (ADS)

    Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos

    2017-01-01

    Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.

  17. Portable, low-cost NMR with laser-lathe lithography produced microcoils.

    PubMed

    Demas, Vasiliki; Herberg, Julie L; Malba, Vince; Bernhardt, Anthony; Evans, Lee; Harvey, Christopher; Chinn, Sarah C; Maxwell, Robert S; Reimer, Jeffrey

    2007-11-01

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or "ex-situ" shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on the use of a 2 kg hand-held permanent magnet, laser-fabricated microcoils, and a compact spectrometer. The main limitations for such a system are the low resolution and sensitivity associated with the low field values and quality of small permanent magnets, as well as the lack of large amounts of sample of interest in most cases. The focus of the paper is on the setting up of this system, initial results, sensitivity measurements, discussion of the limitations and future plans. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  18. Hydraulic Conductivity Calibration of Logging NMR in a Granite Aquifer, Laramie Range, Wyoming.

    PubMed

    Ren, Shuangpo; Parsekian, Andrew D; Zhang, Ye; Carr, Bradley J

    2018-05-15

    In granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.e., K NMR ) at high-vertical resolution. On the other hand, FLUTe flexible liner technology can produce a K profile at comparable resolution but requires a fluid driving force between borehole and formation. For three boreholes completed in a fractured granite, we jointly interpreted logging NMR data and FLUTe K estimates to calibrate an empirical equation for translating borehole NMR data to K estimates. For over 90% of the depth intervals investigated from these boreholes, the estimated K NMR are within one order of magnitude of K FLUTe . The empirical parameters obtained from calibrating the NMR data suggest that "intermediate diffusion" and/or "slow diffusion" during the NMR relaxation time may occur in the flowing fractures when hydraulic aperture are sufficiently large. For each borehole, "intermediate diffusion" dominates the relaxation time, therefore assuming "fast diffusion" in the interpretation of NMR data from fractured rock may lead to inaccurate K NMR estimates. We also compare calibrations using inexpensive slug tests that suggest reliable K NMR estimates for fractured rock may be achieved using limited calibration against borehole hydraulic measurements. © 2018, National Ground Water Association.

  19. Determination of the microenvironment-pH and charge and size characteristics of amino acids through their electrophoretic mobilities determined by CZE.

    PubMed

    Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A

    2007-10-01

    Effective electrophoretic mobility data of 20 amino acids reported in the literature are analyzed and interpreted through simple physicochemical models, which are able to provide estimates of coupled quantities like hydrodynamic shape factor, equivalent hydrodynamic radius (size), net charge, actual pK values of ionizing groups, partial charges of ionizing groups, hydration number, and pH near molecule (microenvironment-pH of the BGE). It is concluded that the modeling of the electrophoretic mobility of these analytes requires a careful consideration of hydrodynamic shape coupled to hydration. In the low range of pH studied here, distinctive hydrodynamic behaviors of amino acids are found. For instance, amino acids with basic polar and ionizing side chain remain with prolate shape for pH values varying from 1.99 to 3.2. It is evident that as the pH increases from low values, amino acids get higher hydrations as a consequence each analyte total charge also increases. This result is consistent with the monotonic increase of the hydrodynamic radius, which accounts for both the analyte and the quite immobilized water molecules defining the electrophoretic kinematical unit. It is also found that the actual or effective pK value of the alpha-carboxylic ionizing group of amino acids increases when the pH is changed from 1.99 to 3.2. Several limitations concerning the simple modeling of the electrophoretic mobility of amino acids are presented for further research.

  20. Automated Parallel Capillary Electrophoretic System

    DOEpatents

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  1. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, Richard D.; Olivares, Jose A.

    1989-01-01

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit.

  2. Sealed rotors for in situ high temperature high pressure MAS NMR

    DOE PAGES

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao; ...

    2015-07-06

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less

  3. Sealed rotors for in situ high temperature high pressure MAS NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao

    Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less

  4. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  5. Optical pumping and xenon NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, M. Daniel

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to highmore » magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less

  6. Optical pumping and xenon NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas tomore » high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less

  7. 1H NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata).

    PubMed

    Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S

    2017-04-01

    In this article the NMR data from chemical shifts, coupling constants, and structures of all the characterized compounds were provided, beyond a complementary PCA evaluation for the corresponding manuscript (E.G. Alves Filho, L.M.A. Silva, E.M. Teofilo, F.H. Larsen, E.S. de Brito, 2017) [3]. In addition, a complementary assessment from solid-state NMR data was provided. For further chemometric analysis, numerical matrices from the raw 1 H NMR data were made available in Microsoft Excel workbook format (.xls).

  8. Electrophoretic nanotechnology of composite electrodes for electrochemical supercapacitors.

    PubMed

    Su, Y; Zhitomirsky, I

    2013-02-14

    The electrophoretic deposition (EPD) method has been developed for the fabrication of MnO(2)-multiwalled carbon nanotube (MWCNT) films for application in electrochemical supercapacitors (ESs). For MWCNT applications, which depend on electrical conductivity, it is challenging to achieve dispersion and EPD of pristine MWCNT and avoid defects due to chemical treatment or functionalization. An important finding was the possibility of efficient dispersion and controlled EPD of MWCNT using calconcarboxylic acid (CCA). Moreover, the use of CCA allowed efficient dispersion of MnO(2) in concentrated suspensions and EPD of MnO(2) films. The comparison of the experimental data for chromotrope FB (CFB) and CCA and chemical structures of the molecules provided insight into the mechanism of CCA adsorption on MnO(2). The fabrication of stable suspensions of MnO(2) nanoparticles containing MWCNT, and controlled codeposition of both materials is a crucial aspect in the EPD of composites. The new approach was based on the use of CCA as a charging and dispersing agent for EPD of MnO(2) nanoparticles and MWCNT. The deposition yield measurements at various experimental conditions and Fourier transform infrared spectroscopy data, coupled with results of electron microscopy, thermogravimetric, and differential thermal analysis provided evidence of the formation of MnO(2)-MWCNT composites. The electrochemical testing results and impedance spectroscopy data showed good capacitive behavior of the composite films and the beneficial effect of MWCNTs.

  9. High-concentration zeta potential measurements using light-scattering techniques

    PubMed Central

    Kaszuba, Michael; Corbett, Jason; Watson, Fraser Mcneil; Jones, Andrew

    2010-01-01

    Zeta potential is the key parameter that controls electrostatic interactions in particle dispersions. Laser Doppler electrophoresis is an accepted method for the measurement of particle electrophoretic mobility and hence zeta potential of dispersions of colloidal size materials. Traditionally, samples measured by this technique have to be optically transparent. Therefore, depending upon the size and optical properties of the particles, many samples will be too concentrated and will require dilution. The ability to measure samples at or close to their neat concentration would be desirable as it would minimize any changes in the zeta potential of the sample owing to dilution. However, the ability to measure turbid samples using light-scattering techniques presents a number of challenges. This paper discusses electrophoretic mobility measurements made on turbid samples at high concentration using a novel cell with reduced path length. Results are presented on two different sample types, titanium dioxide and a polyurethane dispersion, as a function of sample concentration. For both of the sample types studied, the electrophoretic mobility results show a gradual decrease as the sample concentration increases and the possible reasons for these observations are discussed. Further, a comparison of the data against theoretical models is presented and discussed. Conclusions and recommendations are made from the zeta potential values obtained at high concentrations. PMID:20732896

  10. Experimental demonstration of selective quantum process tomography on an NMR quantum information processor

    NASA Astrophysics Data System (ADS)

    Gaikwad, Akshay; Rehal, Diksha; Singh, Amandeep; Arvind, Dorai, Kavita

    2018-02-01

    We present the NMR implementation of a scheme for selective and efficient quantum process tomography without ancilla. We generalize this scheme such that it can be implemented efficiently using only a set of measurements involving product operators. The method allows us to estimate any element of the quantum process matrix to a desired precision, provided a set of quantum states can be prepared efficiently. Our modified technique requires fewer experimental resources as compared to the standard implementation of selective and efficient quantum process tomography, as it exploits the special nature of NMR measurements to allow us to compute specific elements of the process matrix by a restrictive set of subsystem measurements. To demonstrate the efficacy of our scheme, we experimentally tomograph the processes corresponding to "no operation," a controlled-NOT (CNOT), and a controlled-Hadamard gate on a two-qubit NMR quantum information processor, with high fidelities.

  11. 23Na and 39K NMR studies of ion transport in human erythrocytes.

    PubMed

    Ogino, T; Shulman, G I; Avison, M J; Gullans, S R; den Hollander, J A; Shulman, R G

    1985-02-01

    Ion transport in human erythrocytes was studied by 23Na and 39K NMR with an anionic paramagnetic shift reagent, Dy(P3O10)2(7-). The intra- and extracellular 23Na and 39K NMR signals were well separated (over 10 ppm) at 5 mM concentration of the shift reagent. The NMR visibility of the intracellular Na+ and K+ was determined to be 100% in human and duck erythrocytes. The intracellular ion concentrations were 8.1 +/- 0.8 mM Na+ (n = 7) and 110 +/- 12 mM K+ (n = 4) for fresh human erythrocytes. The ouabain-sensitive net Na+ efflux was 1.75 +/- 0.08 mmol/hr per liter of cells at 37 degrees C (n = 3). The gramicidin-induced ion transport in human erythrocytes was also studied by 23Na and 39K NMR or by simultaneous measurements of 23Na NMR and a K+-selective electrode. The time courses of the Na+ and K+ transport induced by the ionophore were biphasic. The initial rapid fluxes were due to an exchange of Na+ for K+, which were found to occur with a 1:1 stoichiometry. The subsequent slow components were the net Na+ and K+ effluxes rate-limited by the Cl- permeability and accompanied by a reduction in cell volume. The Cl- permeability determined from the NMR measurements of these slow fluxes was 3.2 +/- 0.5 X 10(-8) cm/sec at 25 degrees C (n = 4).

  12. 23Na and 39K NMR studies of ion transport in human erythrocytes.

    PubMed Central

    Ogino, T; Shulman, G I; Avison, M J; Gullans, S R; den Hollander, J A; Shulman, R G

    1985-01-01

    Ion transport in human erythrocytes was studied by 23Na and 39K NMR with an anionic paramagnetic shift reagent, Dy(P3O10)2(7-). The intra- and extracellular 23Na and 39K NMR signals were well separated (over 10 ppm) at 5 mM concentration of the shift reagent. The NMR visibility of the intracellular Na+ and K+ was determined to be 100% in human and duck erythrocytes. The intracellular ion concentrations were 8.1 +/- 0.8 mM Na+ (n = 7) and 110 +/- 12 mM K+ (n = 4) for fresh human erythrocytes. The ouabain-sensitive net Na+ efflux was 1.75 +/- 0.08 mmol/hr per liter of cells at 37 degrees C (n = 3). The gramicidin-induced ion transport in human erythrocytes was also studied by 23Na and 39K NMR or by simultaneous measurements of 23Na NMR and a K+-selective electrode. The time courses of the Na+ and K+ transport induced by the ionophore were biphasic. The initial rapid fluxes were due to an exchange of Na+ for K+, which were found to occur with a 1:1 stoichiometry. The subsequent slow components were the net Na+ and K+ effluxes rate-limited by the Cl- permeability and accompanied by a reduction in cell volume. The Cl- permeability determined from the NMR measurements of these slow fluxes was 3.2 +/- 0.5 X 10(-8) cm/sec at 25 degrees C (n = 4). PMID:2579385

  13. Interaction of lafutidine in binding to human serum albumin in gastric ulcer therapy: STD-NMR, WaterLOGSY-NMR, NMR relaxation times, Tr-NOESY, molecule docking, and spectroscopic studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; He, Jiawei; Li, Shanshan; Tang, Bin; Li, Hui

    2016-09-15

    In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Recent patents on electrophoretic displays and materials.

    PubMed

    Christophersen, Marc; Phlips, Bernard F

    2010-11-01

    Electrophoretic displays (EPDs) have made their way into consumer products. EPDs enable displays that offer the look and form of a printed page, often called "electronic paper". We will review recent apparatus and method patents for EPD devices and their fabrication. A brief introduction into the basic display operation and history of EPDs is given, while pointing out the technological challenges and difficulties for inventors. Recently, the majority of scientific publications and patenting activity has been directed to micro-segmented EPDs. These devices exhibit high optical reflectance and contrast, wide viewing angle, and high image resolution. Micro-segmented EPDs can also be integrated with flexible transistors technologies into flexible displays. Typical particles size ranges from 200 nm to 2 micrometer. Currently one very active area of patenting is the development of full-color EPDs. We summarize the recent patenting activity for EPDs and provide comments on perceiving factors driving intellectual property protection for EPD technologies.

  15. Mesoscale Particle-Based Model of Electrophoretic Deposition

    DOE PAGES

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; ...

    2016-12-20

    In this paper, we present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increasesmore » and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. Finally, we find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force.« less

  16. 43Ca NMR in solid state

    NASA Astrophysics Data System (ADS)

    Bellot, P.-V.; Trokiner, A.; Zhdanov, Yu.; Yakubovskii, A.

    1998-02-01

    In this paper we show that 43Ca is a suitable NMR probe to study the properties of high-Tc superconducting oxides. In the normal state, we report the temperature and doping dependencies of the spin susceptibility measured by 43Ca NMR. In the superconducting state and more exactly in the mixed state, by analysing 43Ca NMR linewidth, we have studied the magnetic induction distribution due to the presence of vortices and deduced λ, the penetration depth. Dans cet article, on montre que l'isotope 43 du calcium est une bonne sonde RMN pour l'étude des propriétés des oxydes supraconducteurs à haute température. Dans l'état normal, par la détermination du déplacement de la raie, en fonction de la température, on accède à la variation thermique de la susceptibilité de spin. Dans l'état supraconducteur et plus particulièrement dans l'état mixte, la largeur de raie RMN permet d'étudier la distribution d'induction magnétique due à la présence des vortex et de déterminer λ, la longueur de pénétration.

  17. Operating nanoliter scale NMR microcoils in a 1 tesla field.

    PubMed

    McDowell, Andrew F; Adolphi, Natalie L

    2007-09-01

    Microcoil probes enclosing sample volumes of 1.2, 3.3, 7.0, and 81 nanoliters are constructed as nuclear magnetic resonance (NMR) detectors for operation in a 1 tesla permanent magnet. The probes for the three smallest volumes utilize a novel auxiliary tuning inductor for which the design criteria are given. The signal-to-noise ratio (SNR) and line width of water samples are measured. Based on the measured DC resistance of the microcoils, together with the calculated radio frequency (RF) resistance of the tuning inductor, the SNR is calculated and shown to agree with the measured values. The details of the calculations indicate that the auxiliary inductor does not degrade the NMR probe performance. The diameter of the wire used to construct the microcoils is shown to affect the signal line widths.

  18. Hydrogen sensors based on electrophoretically deposited Pd nanoparticles onto InP

    PubMed Central

    2011-01-01

    Electrophoretic deposition of palladium nanoparticles prepared by the reverse micelle technique onto InP substrates is addressed. We demonstrate that the substrate pre-deposition treatment and the deposition conditions can extensively influence the morphology of the deposited palladium nanoparticle films. Schottky diodes based on these films show notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi level pinning. Moreover, electrical characteristics of these diodes are exceptionally sensitive to the exposure to gas mixtures with small hydrogen content. PMID:21711912

  19. Novel NMR tools to study structure and dynamics of biomembranes.

    PubMed

    Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V

    2002-06-01

    Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.

  20. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  1. Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy

    PubMed Central

    Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.

    2017-01-01

    Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522

  2. 1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.

    PubMed

    Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa

    2017-12-01

    The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.

  3. Electrophoretic mobilities of counterions and a polymer in cylindrical pores

    PubMed Central

    Singh, Sunil P.; Muthukumar, M.

    2014-01-01

    We have simulated the transport properties of a uniformly charged flexible polymer chain and its counterions confined inside cylindrical nanopores under an external electric field. The hydrodynamic interaction is treated by describing the solvent molecules explicitly with the multiparticle collision dynamics method. The chain consisting of charged monomers and the counterions interact electrostatically with themselves and with the external electric field. We find rich behavior of the counterions around the polymer under confinement in the presence of the external electric field. The mobility of the counterions is heterogeneous depending on their location relative to the polymer. The adsorption isotherm of the counterions on the polymer depends nonlinearly on the electric field. As a result, the effective charge of the polymer exhibits a sigmoidal dependence on the electric field. This in turn leads to a nascent nonlinearity in the chain stretching and electrophoretic mobility of the polymer in terms of their dependence on the electric field. The product of the electric field and the effective polymer charge is found to be the key variable to unify our simulation data for various polymer lengths. Chain extension and the electrophoretic mobility show sigmoidal dependence on the electric field, with crossovers from the linear response regime to the nonlinear regime and then to the saturation regime. The mobility of adsorbed counterions is nonmonotonic with the electric field. For weaker and moderate fields, the adsorbed counterions move with the polymer and at higher fields they move opposite to the polymer's direction. We find that the effective charge and the mobility of the polymer decrease with a decrease in the pore radius. PMID:25240366

  4. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOEpatents

    Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.

    1989-01-01

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  5. Constrained optimization for position calibration of an NMR field camera.

    PubMed

    Chang, Paul; Nassirpour, Sahar; Eschelbach, Martin; Scheffler, Klaus; Henning, Anke

    2018-07-01

    Knowledge of the positions of field probes in an NMR field camera is necessary for monitoring the B 0 field. The typical method of estimating these positions is by switching the gradients with known strengths and calculating the positions using the phases of the FIDs. We investigated improving the accuracy of estimating the probe positions and analyzed the effect of inaccurate estimations on field monitoring. The field probe positions were estimated by 1) assuming ideal gradient fields, 2) using measured gradient fields (including nonlinearities), and 3) using measured gradient fields with relative position constraints. The fields measured with the NMR field camera were compared to fields acquired using a dual-echo gradient recalled echo B 0 mapping sequence. Comparisons were done for shim fields from second- to fourth-order shim terms. The position estimation was the most accurate when relative position constraints were used in conjunction with measured (nonlinear) gradient fields. The effect of more accurate position estimates was seen when compared to fields measured using a B 0 mapping sequence (up to 10%-15% more accurate for some shim fields). The models acquired from the field camera are sensitive to noise due to the low number of spatial sample points. Position estimation of field probes in an NMR camera can be improved using relative position constraints and nonlinear gradient fields. Magn Reson Med 80:380-390, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Electrophoretic build-up of multi nanoparticle array for a highly sensitive immunoassay

    PubMed Central

    Han, Jin-Hee; Kim, Hee-Joo; Sudheendra, L.; Hass, Elizabeth A.; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2012-01-01

    One of the challenges in shrinking immunoassays to smaller sizes is to immobilize the biological molecules to nanometer-scaled spots. To overcome this complication, we have employed a particle-based immunoassay to create a nanostructured platform with a regular array of sensing elements. The technique makes use of an electrophoretic particle entrapment system (EPES) to immobilize nanoparticles that are coated with biological reagents into wells using a very small trapping potential. To provide useful information for controlling the trapping force and optimal design of the nanoarray, electrophoretic trapping of a nanoparticle was modeled numerically. The trapping efficiency, defined as the fraction of wells occupied by a single particle, was 91%. The performance of the array was demonstrated with a competitive immunoassay for a small molecule analyte, 3-phenoxybenzoic acid (214.2 g mole−1). The limit of detection determined with a basic fluorescence microscope was 0.006 μg l−1 (30 pM); this represented a sixteen-fold improvement in sensitivity compared to a standard 96-well plate-based ELISA; the improvement was attributed to the small size of the sample volume and the presence of light diffraction among factors unique to this structure. The EPES/nanoarray system promises to offer a new standard in applications that require portable, point-of-care and real-time monitoring with high sensitivity. PMID:23021853

  7. Surface characterization of hydrophobic core-shell QDs using NMR techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Chengqi; Zeng, Birong; Palui, Goutam; Mattoussi, Hedi

    2018-02-01

    Using a few solution phase NMR spectroscopy techniques, including 1H NMR and 31P NMR, we have characterized the organic shell on CdSe-ZnS core-shell quantum dots and tracked changes in its composition when the QD dispersions are subjected to varying degrees of purification. Combining solution phase NMR with diffusion ordered spectroscopy (DOSY), we were able to distinguish between freely diffusing ligands in the sample from those bound on the surfaces. Additionally, matrix assisted laser desorption ionization (MALDI) and FTIR measurements were used to provide complementary and supporting information on the organic ligand coating for these nanocrystals. We found that the organic shell is dominated by monomeric or oligomeric n-hexylphosphonic acid (HPA), along with small portion of 1-hexadecyl amine (HDA). The presence of TOP/TOPO (tri-n-octylphosphine / tri-noctylphosphine oxide) molecules is much smaller, even though large excess of TOP/TOPO were used during the QD growth. These results indicate that HPA (alkyl phosphonate) exhibits the strongest coordination affinity to ZnS-rich QD surfaces grown using the high temperature injection route.

  8. Optimized "detectors" for dynamics analysis in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Ernst, Matthias; Meier, Beat H.

    2018-01-01

    Relaxation in nuclear magnetic resonance (NMR) results from stochastic motions that modulate anisotropic NMR interactions. Therefore, measurement of relaxation-rate constants can be used to characterize molecular-dynamic processes. The motion is often characterized by Markov processes using an auto-correlation function, which is assumed to be a sum of multiple decaying exponentials. We have recently shown that such a model can lead to severe misrepresentation of the real motion, when the real correlation function is more complex than the model. Furthermore, multiple distributions of motion may yield the same set of dynamics data. Therefore, we introduce optimized dynamics "detectors" to characterize motions which are linear combinations of relaxation-rate constants. A detector estimates the average or total amplitude of motion for a range of motional correlation times. The information obtained through the detectors is less specific than information obtained using an explicit model, but this is necessary because the information contained in the relaxation data is ambiguous, if one does not know the correct motional model. On the other hand, if one has a molecular dynamics trajectory, one may calculate the corresponding detector responses, allowing direct comparison to experimental NMR dynamics analysis. We describe how to construct a set of optimized detectors for a given set of relaxation measurements. We then investigate the properties of detectors for a number of different data sets, thus gaining an insight into the actual information content of the NMR data. Finally, we show an example analysis of ubiquitin dynamics data using detectors, using the DIFRATE software.

  9. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy

    PubMed Central

    Lu, Yi; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2016-01-01

    NMR measurements do not require separation and chemical modification of samples and therefore rapidly and directly provide non-targeted information on chemical components in complex mixtures. In this study, one-dimensional (1H, 13C, and 31P) and two-dimensional (1H-13C and 1H-31P) NMR spectroscopy were conducted to analyze yogurt without any pretreatment. 1H, 13C, and 31P NMR signals were assigned to 10 types of compounds. The signals of α/β-lactose and α/β-galactose were separately observed in the 1H NMR spectra. In addition, the signals from the acyl chains of milk fats were also successfully identified but overlapped with many other signals. Quantitative difference spectra were obtained by subtracting the diffusion ordered spectroscopy (DOSY) spectra from the quantitative 1H NMR spectra. This method allowed us to eliminate interference on the overlaps; therefore, the correct intensities of signals overlapped with those from the acyl chains of milk fat could be determined directly without separation. Moreover, the 1H-31P HMBC spectra revealed for the first time that N-acetyl-d-glucosamine-1-phosphate is contained in yogurt. PMID:27322339

  10. Signal Enhancement in HPLC/Micro-Coil NMR Using Automated Column Trapping

    PubMed Central

    Djukovic, Danijel; Liu, Shuhui; Henry, Ian; Tobias, Brian; Raftery, Daniel

    2008-01-01

    A new HPLC-NMR system is described that performs analytical separation, pre-concentration, and NMR spectroscopy in rapid succession. The central component of our method is the online pre-concentration sequence that improves the match between post-column analyte peak volume and the micro-coil NMR detection volume. Separated samples are collected on to a C18 guard column with a mobile phase composed of 90% D2O/10% acetonitrile-D3, and back-flashed to the NMR micro-coil probe with 90% acetonitrile-D3/10% D2O. In order to assess the performance of our unit, we separated a standard mixture of 1 mM ibuprofen, naproxen, and phenylbutazone using a commercially available C18 analytical column. The S/N measurements from the NMR acquisitions indicated that we achieved signal enhancement factors up to 10.4 (±1.2)-fold. Furthermore, we observed that pre-concentration factors increased as the injected amount of analyte decreased. The highest concentration enrichment of 14.7 (±2.2)-fold was attained injecting 100 μL solution of 0.2 mM (~4 μg) ibuprofen. PMID:17037915

  11. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, R.D.; Olivares, J.A.

    1989-06-27

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit. 10 figs.

  12. Variations in Paper Electrophoretic Serum Lipoprotein Patterns in Healthy Subjects

    PubMed Central

    Buckley, G. C.; Little, J. A.; Csima, A.

    1970-01-01

    The normal variations in the paper electrophoretic lipoprotein patterns in 240 healthy Canadian males and females, aged 10 to 59 years, have been described and compared with serum cholesterol and triglyceride levels. The incidence of abnormal chylomicra, beta and pre-beta lipoproteins was similar in both sexes and increased with age in both sexes. Chylomicron bands and/or pre-beta trails from the origin occurred in 4% of subjects, pre-beta bands in 27% and “abnormally” dense beta bands in 28%. Five per cent of subjects were considered to have definite hyperlipoproteinemia, another 19% had slight and 21% had questionable hyperlipoproteinemia. Fifty-five per cent were normal. PMID:5538493

  13. Electrophoretic separation of kidney and pituitary cells on STS-8

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Nachtwey, D. S.; Barlow, G. H.; Cleveland, C.; Lanham, J. W.; Farrington, M. A.; Hatfield, J. M.; Hymer, W. C.; Grindeland, R.; Lewis, M. L.

    1984-01-01

    Specific secretory cells were separated from suspensions of cultured primary human embryonic cells and rat pituitary cells in microgravity conditions, with an objective of isolating the subfractions of kidney cells that produce the largest amount of urakinase, and the subfractions of rat pituitary cells that secrete growth hormones (GH), prolactin (PRL), and other hormones. It is inferred from the experimental observations that the surface charge distributions of the GH-containing cells differ from those of the PRL-containing cells, which is explained by the presence of secretory products on the surface of pituitary cells. For kidney cells, the electrophoretic mobility distributions in flight experiments were spread more than the ground controls.

  14. Methods for functionalization of microsized polystyrene beads with titania nanoparticles for cathodic electrophoretic deposition.

    PubMed

    Radice, S; Kern, P; Dietsch, H; Mischler, S; Michler, J

    2008-02-15

    Functionalization of colloidal particles based on the use of polyelectrolytes and heterocoagulation was combined with electrophoretic deposition (EPD), with the aim of depositing titania-polystyrene (TiO(2)-PS) composite particles on Ti6Al4V substrates. The composite particles were obtained by heterocoagulation of TiO(2) nanoparticles on the surface of monosized polystyrene beads of 4.6 microm in diameter. Two alternative methods were developed for the preparation of the TiO(2)-PS suspensions in organic fluids for cathodic electrodeposition. The first method was carried out in alkaline aqueous medium with the use of polyelectrolytes and intermediate control measurements of zeta potential, conductivity, and pH; the second one was carried out directly in the organic solvent used for EPD, typically isopropanol. Examples of deposits obtained by EPD in both suspensions and a comparative analysis between the two methods are presented.

  15. Demonstrating Interactions of Transcription Factors with DNA by Electrophoretic Mobility Shift Assay.

    PubMed

    Yousaf, Nasim; Gould, David

    2017-01-01

    Confirming the binding of a transcription factor with a particular DNA sequence may be important in characterizing interactions with a synthetic promoter. Electrophoretic mobility shift assay is a powerful approach to demonstrate the specific DNA sequence that is bound by a transcription factor and also to confirm the specific transcription factor involved in the interaction. In this chapter we describe a method we have successfully used to demonstrate interactions of endogenous transcription factors with sequences derived from endogenous and synthetic promoters.

  16. Electrophoretic formation of semiconductor layers with adjustable band gap

    NASA Astrophysics Data System (ADS)

    Shindrov, Alexander; Yuvchenko, Sergey; Vikulova, Maria; Tretyachenko, Elena; Zimnyakov, Dmitry; Gorokhovsky, Alexander

    2017-11-01

    The ceramic layers of the potassium polytitanates modified by transition metal salts were electrophoretically deposited onto the surface of glassy substrate coated with indium-tin oxide. The deposition allows obtaining a dense ceramic layer formed by composite agglomerates consisting of nanoscale particles with average size of 130-190 nm. The optical absorption spectra of the coatings modified in the mixtures of aqueous solutions of different transition metal salts were investigated. It was recognized that a bandgap value of these composites can be adjusted in a range from 1.4 to 2.3 eV depending the chemical composition of layered double hydroxide obtained during modification. This might be very promising for optoelectronic applications of such coatings due to an explicit control of optical properties.

  17. Characterizing monoclonal antibody formulations in arginine glutamate solutions using 1H NMR spectroscopy

    PubMed Central

    Kheddo, Priscilla; Cliff, Matthew J.; Uddin, Shahid; van der Walle, Christopher F.; Golovanov, Alexander P.

    2016-01-01

    ABSTRACT Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins. PMID:27589351

  18. Characterizing monoclonal antibody formulations in arginine glutamate solutions using 1H NMR spectroscopy.

    PubMed

    Kheddo, Priscilla; Cliff, Matthew J; Uddin, Shahid; van der Walle, Christopher F; Golovanov, Alexander P

    2016-10-01

    Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1 H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins.

  19. A lateral electrophoretic flow diagnostic assay

    PubMed Central

    Lin, Robert; Skandarajah, Arunan; Gerver, Rachel E.; Neira, Hector D.; Fletcher, Daniel A.

    2015-01-01

    Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a “lateral e-flow assay” and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings. PMID:25608872

  20. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  1. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A strategy to modulate the electrophoretic behavior in plastic microchips using sodium polystyrene sulfonate.

    PubMed

    Guo, Jinxiu; Chen, Yu; Zhao, Lizhi; Sun, Ping; Li, Hongli; Zhou, Lei; Wang, Xiayan; Pu, Qiaosheng

    2016-12-16

    Plastic microchips have been broadly used as disposable microfluidic devices, but the poorly defined surface properties limit their application. Herein, we proved that an anionic polymer could be used as the background electrolyte (BGE) to provide a strong and stable cathodic electroosmotic flow (EOF) and modulate the electrophoretic behavior for efficient separation in relative thicker microchannels (∼75μm id). A cathodic EOF of ∼3.3×10 -4 cm 2 V -1 s -1 was maintained using sodium polystyrene sulfonate (PSSNa) with a molecular weight of 5×10 5 as the BGE, which ensured fluorescein isothiocyanate labeled biogenic amines (BAs) appeared ahead of other components in the electropherograms obtained with microchips of cyclic olefin copolymer. Four selected BAs appeared within 50s and theoretical plate numbers of 8.0×10 5 /m were achieved. The role of PSSNa was evaluated with streaming potential, dynamic light scattering, contact angle and atomic force microscopy. Its functionalities as surface modifier, viscosity regulator and pseudostationary phase were also confirmed. The proposed electrophoretic method was applied in the fast determination of BAs in fish meat samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Unilateral NMR applied to the conservation of works of art.

    PubMed

    Del Federico, Eleonora; Centeno, Silvia A; Kehlet, Cindie; Currier, Penelope; Stockman, Denise; Jerschow, Alexej

    2010-01-01

    In conventional NMR, samples from works of art in sizes above those considered acceptable in the field of art conservation would have to be removed to place them into the bore of large superconducting magnets. The portable permanent-magnet-based systems, by contrast, can be used in situ to study works of art, in a noninvasive manner. One of these portable NMR systems, NMR-MOUSE(R), measures the information contained in one pixel in an NMR image from a region of about 1 cm(2), which can be as thin as 2-3 microm. With such a high depth resolution, profiles through the structures of art objects can be measured to characterize the materials, the artists' techniques, and the deterioration processes. A novel application of the technique to study a deterioration process and to follow up a conservation treatment is presented in which micrometer-thick oil stains on paper are differentiated and characterized. In this example, the spin-spin relaxation T (2) of the stain is correlated to the iodine number and to the degree of cross-linking of the oil, parameters that are crucial in choosing an appropriate conservation treatment to remove them. It is also shown that the variation of T (2) over the course of treatments with organic solvents can be used to monitor the progress of the conservation interventions. It is expected that unilateral NMR in combination with multivariate data analysis will fill a gap within the set of high-spatial-resolution techniques currently available for the noninvasive analysis of materials in works of art, where procedures to study the inorganic components are currently far more developed than those suitable for the study of the organic components.

  4. Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz.

    PubMed

    Yanagisawa, Y; Nakagome, H; Tennmei, K; Hamada, M; Yoshikawa, M; Otsuka, A; Hosono, M; Kiyoshi, T; Takahashi, M; Yamazaki, T; Maeda, H

    2010-04-01

    We have begun a project to develop an NMR spectrometer that operates at frequencies beyond 1 GHz (magnetic field strength in excess of 23.5 T) using a high temperature superconductor (HTS) innermost coil. As the first step, we developed a 500 MHz NMR with a Bi-2223 HTS innermost coil, which was operated in external current mode. The temporal magnetic field change of the NMR magnet after the coil charge was dominated by (i) the field fluctuation due to a DC power supply and (ii) relaxation in the screening current in the HTS tape conductor; effect (i) was stabilized by the 2H field-frequency lock system, while effect (ii) decreased with time due to relaxation of the screening current induced in the HTS coil and reached 10(-8)(0.01 ppm)/h on the 20th day after the coil charge, which was as small as the persistent current mode of the NMR magnet. The 1D (1)H NMR spectra obtained by the 500 MHz LTS/HTS magnet were nearly equivalent to those obtained by the LTS NMR magnet. The 2D-NOESY, 3D-HNCO and 3D-HNCACB spectra were achieved for ubiquitin by the 500 MHz LTS/HTS magnet; their quality was closely equivalent to that achieved by a conventional LTS NMR. Based on the results of numerical simulation, the effects of screening current-induced magnetic field changes are predicted to be harmless for the 1.03 GHz NMR magnet system. 2010 Elsevier Inc. All rights reserved.

  5. Untangle soil-water-mucilage interactions: 1H NMR Relaxometry is lifting the veil

    NASA Astrophysics Data System (ADS)

    Brax, Mathilde; Buchmann, Christian; Schaumann, Gabriele Ellen

    2017-04-01

    Mucilage is mainly produced at the root tips and has a high water holding capacity derived from highly hydrophilic gel-forming substances. The objective of the MUCILAGE project is to understand the mechanistic role of mucilage for the regulation of water supply for plants. Our subproject investigates the chemical and physical properties of mucilage as pure gel and mixed with soil. 1H-NMR Relaxometry and PFG NMR represent non-intrusive powerful methods for soil scientific research by allowing quantification of the water distribution as well as monitoring of the water mobility in soil pores and gel phases.Relaxation of gel water differs from the one of pure water due to additional interactions with the gel matrix. Mucilage in soil leads to a hierarchical pore structure, consisting of the polymeric biohydrogel network surrounded by the surface of soil particles. The two types of relaxation rates 1/T1 and 1/T2 measured with 1H-NMR relaxometry refer to different relaxation mechanisms of water, while PFG-NMR measures the water self-diffusion coefficient. The objective of our study is to distinguish in situ water in gel from pore water in a simplified soil system, and to determine how the "gel effect" affects both relaxation rates and the water self-diffusion coefficient in porous systems. We demonstrate how the mucilage concentration and the soil solution alter the properties of water in the respective gel phases and pore systems in model soils. To distinguish gel-inherent processes from classical processes, we investigated the variations of the water mobility in pure chia mucilage under different conditions by using 1H-NMR relaxometry and PFG NMR. Using model soils, the signals coming from pore water and gel water were differentiated. We combined the equations describing 1H-NMR relaxation in porous systems and our experimental results, to explain how the presence of gel in soil affects 1H-NMR relaxation. Out of this knowledge we propose a method, which determines in

  6. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules

    PubMed Central

    Schanda, Paul; Ernst, Matthias

    2016-01-01

    Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043

  7. Electrophoretic Deposition for Cholesteric Liquid-Crystalline Devices with Memory and Modulation of Reflection Colors.

    PubMed

    Tokunaga, Shoichi; Itoh, Yoshimitsu; Yaguchi, Yuya; Tanaka, Hiroyuki; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo

    2016-06-01

    The first design strategy that allows both memorization and modulation of the liquid-crystalline reflection color is reported. Electrophoretic deposition of a tailored ionic chiral dopant is key to realizing this unprecedented function, which may pave the way for the development of full-color e-paper that can operate without the need of color filters. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet.

    PubMed

    Vennemann, T; Jeong, M; Yoon, D; Magrez, A; Berger, H; Yang, L; Živković, I; Babkevich, P; Rønnow, H M

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO 4 with S = 1/2 (Mo 5+ ) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31 P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  9. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet

    NASA Astrophysics Data System (ADS)

    Vennemann, T.; Jeong, M.; Yoon, D.; Magrez, A.; Berger, H.; Yang, L.; Živković, I.; Babkevich, P.; Rønnow, H. M.

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  10. Assigning uncertainties in the inversion of NMR relaxation data.

    PubMed

    Parker, Robert L; Song, Yi-Qaio

    2005-06-01

    Recovering the relaxation-time density function (or distribution) from NMR decay records requires inverting a Laplace transform based on noisy data, an ill-posed inverse problem. An important objective in the face of the consequent ambiguity in the solutions is to establish what reliable information is contained in the measurements. To this end we describe how upper and lower bounds on linear functionals of the density function, and ratios of linear functionals, can be calculated using optimization theory. Those bounded quantities cover most of those commonly used in the geophysical NMR, such as porosity, T(2) log-mean, and bound fluid volume fraction, and include averages over any finite interval of the density function itself. In the theory presented statistical considerations enter to account for the presence of significant noise in the signal, but not in a prior characterization of density models. Our characterization of the uncertainties is conservative and informative; it will have wide application in geophysical NMR and elsewhere.

  11. Screening of Small Molecule Interactor Library by Using In-Cell NMR Spectroscopy (SMILI-NMR)

    PubMed Central

    Xie, Jingjing; Thapa, Rajiv; Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander

    2011-01-01

    We developed an in-cell NMR assay for screening small molecule interactor libraries (SMILI-NMR) for compounds capable of disrupting or enhancing specific interactions between two or more components of a biomolecular complex. The method relies on the formation of a well-defined biocomplex and utilizes in-cell NMR spectroscopy to identify the molecular surfaces involved in the interaction at atomic scale resolution. Changes in the interaction surface caused by a small molecule interfering with complex formation are used as a read-out of the assay. The in-cell nature of the experimental protocol insures that the small molecule is capable of penetrating the cell membrane and specifically engaging the target molecule(s). Utility of the method was demonstrated by screening a small dipeptide library against the FKBP–FRB protein complex involved in cell cycle arrest. The dipeptide identified by SMILI-NMR showed biological activity in a functional assay in yeast. PMID:19422228

  12. Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles.

    PubMed

    Bendahan, David; Chatel, Benjamin; Jue, Thomas

    2017-12-01

    Muscle contraction requires the physiology to adapt rapidly to meet the surge in energy demand. To investigate the shift in metabolic control, especially between oxygen and metabolism, researchers often depend on near-infrared spectroscopy (NIRS) to measure noninvasively the tissue O 2 Because NIRS detects the overlapping myoglobin (Mb) and hemoglobin (Hb) signals in muscle, interpreting the data as an index of cellular or vascular O 2 requires deconvoluting the relative contribution. Currently, many in the NIRS field ascribe the signal to Hb. In contrast, 1 H NMR has only detected the Mb signal in contracting muscle, and comparative NIRS and NMR experiments indicate a predominant Mb contribution. The present study has examined the question of the NIRS signal origin by measuring simultaneously the 1 H NMR, 31 P NMR, and NIRS signals in finger flexor muscles during the transition from rest to contraction, recovery, ischemia, and reperfusion. The experiment results confirm a predominant Mb contribution to the NIRS signal from muscle. Given the NMR and NIRS corroborated changes in the intracellular O 2 , the analysis shows that at the onset of muscle contraction, O 2 declines immediately and reaches new steady states as contraction intensity rises. Moreover, lactate formation increases even under quite aerobic condition. Copyright © 2017 the American Physiological Society.

  13. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyong; Cai, Shuhui; Zheng, Zhenyao

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials’ structure and dynamics. Because 2D NMR relies on systematic changes in coherences’ phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, “ultrafast” NMR has been developed into an effective and widely applicablemore » methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.« less

  14. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  15. NMR evidence for static local nematicity and its cooperative interplay with low-energy magnetic fluctuations in FeSe under pressure

    DOE PAGES

    Wiecki, P.; Nandi, M.; Bohmer, Anna; ...

    2017-11-13

    Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.

  16. NMR evidence for static local nematicity and its cooperative interplay with low-energy magnetic fluctuations in FeSe under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiecki, P.; Nandi, M.; Bohmer, Anna

    Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.

  17. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  18. Applications of ZVMo NMR spectroscopy. 17. ZVMo and UN relaxation time measurements confirming that (Mo(CN)8)U is dodecahedral in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownlee, R.T.; Shehan, B.P.; Wedd, A.G.

    1987-07-01

    Variable-temperature NMR line width measurements of ZVMo and UN in aqueous solutions of K4(Mo(CN)8) x 2H2O indicate that the stereochemistry of the (Mo(CN)8)U ion in solution is dodecahedral. A value for the ZVMo quadrupole coupling constant of 3.61 MHz is obtained. 27 references, 1 figure, 1 table.

  19. NMR Spectra through the Eyes of a Student: Eye Tracking Applied to NMR Items

    ERIC Educational Resources Information Center

    Topczewski, Joseph J.; Topczewski, Anna M.; Tang, Hui; Kendhammer, Lisa K.; Pienta, Norbert J.

    2017-01-01

    Nuclear magnetic resonance spectroscopy (NMR) plays a key role in introductory organic chemistry, spanning theory, concepts, and experimentation. Therefore, it is imperative that the instruction methods for NMR are both efficient and effective. By utilizing eye tracking equipment, the researchers were able to monitor how second-semester organic…

  20. NMR methods for metabolomics of mammalian cell culture bioreactors.

    PubMed

    Aranibar, Nelly; Reily, Michael D

    2014-01-01

    Metabolomics has become an important tool for measuring pools of small molecules in mammalian cell cultures expressing therapeutic proteins. NMR spectroscopy has played an important role, largely because it requires minimal sample preparation, does not require chromatographic separation, and is quantitative. The concentrations of large numbers of small molecules in the extracellular media or within the cells themselves can be measured directly on the culture supernatant and on the supernatant of the lysed cells, respectively, and correlated with endpoints such as titer, cell viability, or glycosylation patterns. The observed changes can be used to generate hypotheses by which these parameters can be optimized. This chapter focuses on the sample preparation, data acquisition, and analysis to get the most out of NMR metabolomics data from CHO cell cultures but could easily be extended to other in vitro culture systems.

  1. NMR Microscopy - Micron-Level Resolution.

    NASA Astrophysics Data System (ADS)

    Kwok, Wing-Chi Edmund

    1990-01-01

    Nuclear Magnetic Resonance Imaging (MRI) has been developed into a powerful and widely used diagnostic tool since the invention of techniques using linear magnetic field gradients in 1973. The variety of imaging contrasts obtainable in MRI, such as spin density, relaxation times and flow rate, gives MRI a significant advantage over other imaging techniques. For common diagnostic applications, image resolutions have been in the order of millimeters with slice thicknesses in centimeters. For many research applications, however, resolutions in the order of tens of microns or smaller are needed. NMR Imaging in these high resolution disciplines is known as NMR microscopy. Compared with conventional microscopy, NMR microscopy has the advantage of being non-invasive and non-destructive. The major obstacles of NMR microscopy are low signal-to-noise ratio and effects due to spin diffusion. To overcome these difficulties, more sensitive RF probes and very high magnetic field gradients have to be used. The most effective way to increase sensitivity is to build smaller probes. Microscope probes of different designs have been built and evaluated. Magnetic field gradient coils that can produce linear field gradients up to 450 Gauss/cm were also assembled. In addition, since microscope probes often employ remote capacitors for RF tuning, the associated signal loss in the transmission line was studied. Imaging experiments have been carried out in a 2.1 Tesla small bore superconducting magnet using the typical two-dimensional spin warp imaging technique. Images have been acquired for both biological and non-biological samples. The highest resolution was obtained in an image of a nerve bundle from the spinal cord of a racoon and has an in-plane resolution of 4 microns. These experiments have demonstrated the potential application of NMR microscopy to pathological research, nervous system study and non -destructive testings of materials. One way to further improve NMR microscopy is

  2. Multinuclear solid film state NMR studies of metal oxide catalysts and minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, R.S.; Stec, D.F.; Ellis, P.D.

    1996-10-01

    Several of our investigations of heterogeneous process by novel NMR experiments and analyses are reviewed and the utility and limitations of NMR spectroscopy for these areas discussed. Out studies have included the following: dynamics and arrangements of proton-containing adsorbates, primarily Bronsted acid sites and water, on the surface of zirconia and alumina catalysts; hydrogen dynamics and coordinates in synthetic aluminum oxyhydroxides; phase separation and crystallinity of synthetic minerals. In combination with the complementary results obtained in our laboratory via infrared spectroscopy, thermal analysis (primarily TGA and DSC), and catalytic activity measurements, these NMR data provide unique and valuable information onmore » atomic and molecular dynamics, identities, and structures without requiring pristine, single crystal specimens.« less

  3. An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization

    NASA Astrophysics Data System (ADS)

    Chen, Li; Weng, Zhiqiang; Goh, LaiYoong; Garland, Marc

    2002-09-01

    A new algorithm for automatic phase correction of NMR spectra based on entropy minimization is proposed. The optimal zero-order and first-order phase corrections for a NMR spectrum are determined by minimizing entropy. The objective function is constructed using a Shannon-type information entropy measure. Entropy is defined as the normalized derivative of the NMR spectral data. The algorithm has been successfully applied to experimental 1H NMR spectra. The results of automatic phase correction are found to be comparable to, or perhaps better than, manual phase correction. The advantages of this automatic phase correction algorithm include its simple mathematical basis and the straightforward, reproducible, and efficient optimization procedure. The algorithm is implemented in the Matlab program ACME—Automated phase Correction based on Minimization of Entropy.

  4. Quartz Crystal Temperature Sensor for MAS NMR

    NASA Astrophysics Data System (ADS)

    Simon, Gerald

    1997-10-01

    Quartz crystal temperature sensors (QCTS) were tested for the first time as wireless thermometers in NMR MAS rotors utilizing the NMR RF technique itself for exiting and receiving electro-mechanical quartz resonances. This new tool in MAS NMR has a high sensitivity, linearity, and precision. When compared to the frequently used calibration of the variable temperature in the NMR system by a solid state NMR chemical shift thermometer (CST), such as lead nitrate, QCTS shows a number of advantages. It is an inert thermometer in close contact with solid samples operating parallel to the NMR experiment. QCTS can be manufactured for any frequency to be near a NMR frequency of interest (typically 1 to 2 MHz below or above). Due to the strong response of the crystal, signal detection is possible without changing the tuning of the MAS probe. The NMR signal is not influenced due to the relative sharp crystal resonance, restricted excitation by finite pulses, high probeQvalues, and commonly used audio filters. The quadratic dependence of the temperature increase on spinning speed is the same for the QCTS and for the CST lead nitrate and is discussed in terms of frictional heat in accordance with the literature about lead nitrate and with the results of a simple rotor speed jump experiment with differently radial located lead nitrate in the rotor.

  5. Toward Reliable Lipoprotein Particle Predictions from NMR Spectra of Human Blood: An Interlaboratory Ring Test.

    PubMed

    Monsonis Centelles, Sandra; Hoefsloot, Huub C J; Khakimov, Bekzod; Ebrahimi, Parvaneh; Lind, Mads V; Kristensen, Mette; de Roo, Niels; Jacobs, Doris M; van Duynhoven, John; Cannet, Claire; Fang, Fang; Humpfer, Eberhard; Schäfer, Hartmut; Spraul, Manfred; Engelsen, Søren B; Smilde, Age K

    2017-08-01

    Lipoprotein profiling of human blood by 1 H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profiling in metastudies. In this study, a standardized NMR measurement protocol was applied in a ring test performed across three different laboratories in Europe on plasma and serum samples from 28 individuals. Data was evaluated in terms of (i) spectral differences, (ii) differences in LPD predictions obtained using an existing prediction model, and (iii) agreement of predictions with cholesterol concentrations in high- and low-density lipoproteins (HDL and LDL) particles measured by standardized clinical assays. ANOVA-simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4-0.6 ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be exchangeable when the standardized NMR measurement protocol is followed. With the successful implementation of this protocol, which results in reproducible prediction of lipoprotein distributions across laboratories, a step is taken toward bringing NMR more into scope of prognostic and diagnostic biomarkers, reducing the need for less efficient methods such as ultracentrifugation or high-performance liquid chromatography (HPLC).

  6. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, ¹H NMR and ¹³C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen

    2012-09-01

    A new dioxo-molybdenum(VI) complex [MoO(2)(L)(H(2)O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H(2)L) and MoO(2)(acac)(2). The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, (1)H NMR and (13)C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental (1)H NMR spectra. However, the (13)C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6-31+G(2df,p) for other atoms, are in better agreement with experimental (13)C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Water and glucose gradients in the substrate measured with NMR imaging during solid-state fermentation with Aspergillus oryzae.

    PubMed

    Nagel, Frank-Jan; Van As, Henk; Tramper, Johannes; Rinzema, Arjen

    2002-09-20

    Gradients inside substrate particles cannot be prevented in solid-state fermentation. These gradients can have a strong effect on the physiology of the microorganisms but have hitherto received little attention in experimental studies. We report gradients in moisture and glucose content during cultivation of Aspergillus oryzae on membrane-covered wheat-dough slices that were calculated from (1)H-NMR images. We found that moisture gradients in the solid substrate remain small when evaporation is minimized. This is corroborated by predictions of a diffusion model. In contrast, strong glucose gradients developed. Glucose concentrations just below the fungal mat remained low due to high glucose uptake rates, but deeper in the matrix glucose accumulated to very high levels. Integration of the glucose profile gave an average concentration close to the measured average content. On the basis of published data, we expect that the glucose levels in the matrix cause a strong decrease in water activity. The results demonstrate that NMR can play an important role in quantitative analysis of water and glucose gradients at the particle level during solid-state fermentation, which is needed to improve our understanding of the response of fungi to this nonconventional fermentation environment. Copyright 2002 Wiley Periodicals, Inc.

  8. DFT calculations and NMR measurements applied to the conformational analysis of cis and trans-3-phenylaminocyclohexyl N,N-dimethylcarbamates

    NASA Astrophysics Data System (ADS)

    Melo, Ulisses Zonta de; Yamazaki, Diego Alberto dos Santos; Cândido, Augusto de Araújo; Basso, Ernani Abicht; Gauze, Gisele de Freitas

    2018-07-01

    The three-dimensional structure of a potential drug molecule is of critical importance. Factors that determine its conformational stability and, consequently, corresponding biological/physicochemical properties of interest must therefore be carefully analyzed. Conformational properties and molecular structures of cis and trans-3-phenylaminocyclohexyl N,N-dimethylcarbamates were studied by low temperature 1H and 13C NMR spectroscopy and electronic structure calculations. B3LYP and M06-2X methods associated with the 6-311++G(2df,2p) basis set, and the integral-equation-formalism polarizable continuum model were used to study the conformational preferences in dichloromethane, acetone and methanol. NMR measurements indicated that for the cis isomer, the conformer with both substituents in equatorial position is the most stable, while for the trans isomer, the conformer with the carbamate group in the axial position and the arylamine in the equatorial position is favored in all solvents. B3LYP/6-311++G(2df,2p) theory level associated with IEF-PCM described properly the conformational preference in solution. NBO analyses were applied to determine the importance of hyperconjugative interactions in the conformational equilibrium.

  9. Challenges and perspectives in quantitative NMR.

    PubMed

    Giraudeau, Patrick

    2017-01-01

    This perspective article summarizes, from the author's point of view at the beginning of 2016, the major challenges and perspectives in the field of quantitative NMR. The key concepts in quantitative NMR are first summarized; then, the most recent evolutions in terms of resolution and sensitivity are discussed, as well as some potential future research directions in this field. A particular focus is made on methodologies capable of boosting the resolution and sensitivity of quantitative NMR, which could open application perspectives in fields where the sample complexity and the analyte concentrations are particularly challenging. These include multi-dimensional quantitative NMR and hyperpolarization techniques such as para-hydrogen-induced polarization or dynamic nuclear polarization. Because quantitative NMR cannot be dissociated from the key concepts of analytical chemistry, i.e. trueness and precision, the methodological developments are systematically described together with their level of analytical performance. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. An ultra-low cost NMR device with arbitrary pulse programming

    NASA Astrophysics Data System (ADS)

    Chen, Hsueh-Ying; Kim, Yaewon; Nath, Pulak; Hilty, Christian

    2015-06-01

    Ultra-low cost, general purpose electronics boards featuring microprocessors or field programmable gate arrays (FPGA) are reaching capabilities sufficient for direct implementation of NMR spectrometers. We demonstrate a spectrometer based on such a board, implemented with a minimal need for the addition of custom electronics and external components. This feature allows such a spectrometer to be readily implemented using typical knowledge present in an NMR laboratory. With FPGA technology, digital tasks are performed with precise timing, without the limitation of predetermined hardware function. In this case, the FPGA is used for programming of arbitrarily timed pulse sequence events, and to digitally generate required frequencies. Data acquired from a 0.53 T permanent magnet serves as a demonstration of the flexibility of pulse programming for diverse experiments. Pulse sequences applied include a spin-lattice relaxation measurement using a pulse train with small-flip angle pulses, and a Carr-Purcell-Meiboom-Gill experiment with phase cycle. Mixing of NMR signals with a digitally generated, 4-step phase-cycled reference frequency is further implemented to achieve sequential quadrature detection. The flexibility in hardware implementation permits tailoring this type of spectrometer for applications such as relaxometry, polarimetry, diffusometry or NMR based magnetometry.

  11. NMR crystallography to probe the breathing effect of the MIL-53(Al) metal-organic framework using solid-state NMR measurements of 13C-27Al distances.

    PubMed

    Giovine, Raynald; Volkringer, Christophe; Trébosc, Julien; Amoureux, Jean Paul; Loiseau, Thierry; Lafon, Olivier; Pourpoint, Frédérique

    2017-03-01

    The metal-organic framework MIL-53(Al) (aluminium terephthalate) exhibits a structural transition between two porous structures with large pore (lp) or narrow pore (np) configurations. This transition, called the breathing effect, is observed upon changes in temperature or external pressure, as well as with the adsorption of guest molecules, such as H 2 O, within the pores. We show here how these different pore openings can be detected by observing the dephasing of 13 C magnetization under 13 C- 27 Al dipolar couplings using Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR) solid-state NMR experiments with Simultaneous Frequency and Amplitude Modulation (SFAM) recoupling. These double-resonance NMR experiments between 13 C and 27 Al nuclei, which have close Larmor frequencies, are feasible thanks to the use of a frequency splitter. The experimental SFAM-RESPDOR signal fractions agree well with those simulated from the MIL-53(Al)-lp and -np crystal structures obtained from powder X-ray diffraction analysis. Hence, these 13 C- 27 Al solid-state NMR experiments validate these structures and confirm their rigidity. A similar agreement is reported for the framework ligands in the as-synthesized (as) MIL-53(Al), in which the pores contain free ligands. Furthermore, in this case, 13 C-{ 27 Al} SFAM-RESPDOR experiments allow an estimation of the average distance between the free ligands and the 27 Al nuclei of the framework.

  12. NMR-based automated protein structure determination.

    PubMed

    Würz, Julia M; Kazemi, Sina; Schmidt, Elena; Bagaria, Anurag; Güntert, Peter

    2017-08-15

    NMR spectra analysis for protein structure determination can now in many cases be performed by automated computational methods. This overview of the computational methods for NMR protein structure analysis presents recent automated methods for signal identification in multidimensional NMR spectra, sequence-specific resonance assignment, collection of conformational restraints, and structure calculation, as implemented in the CYANA software package. These algorithms are sufficiently reliable and integrated into one software package to enable the fully automated structure determination of proteins starting from NMR spectra without manual interventions or corrections at intermediate steps, with an accuracy of 1-2 Å backbone RMSD in comparison with manually solved reference structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    PubMed

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  14. SPINS: standardized protein NMR storage. A data dictionary and object-oriented relational database for archiving protein NMR spectra.

    PubMed

    Baran, Michael C; Moseley, Hunter N B; Sahota, Gurmukh; Montelione, Gaetano T

    2002-10-01

    Modern protein NMR spectroscopy laboratories have a rapidly growing need for an easily queried local archival system of raw experimental NMR datasets. SPINS (Standardized ProteIn Nmr Storage) is an object-oriented relational database that provides facilities for high-volume NMR data archival, organization of analyses, and dissemination of results to the public domain by automatic preparation of the header files required for submission of data to the BioMagResBank (BMRB). The current version of SPINS coordinates the process from data collection to BMRB deposition of raw NMR data by standardizing and integrating the storage and retrieval of these data in a local laboratory file system. Additional facilities include a data mining query tool, graphical database administration tools, and a NMRStar v2. 1.1 file generator. SPINS also includes a user-friendly internet-based graphical user interface, which is optionally integrated with Varian VNMR NMR data collection software. This paper provides an overview of the data model underlying the SPINS database system, a description of its implementation in Oracle, and an outline of future plans for the SPINS project.

  15. NMR studies of the helical antiferromagnetic compound EuCo2P2

    NASA Astrophysics Data System (ADS)

    Higa, N.; Ding, Q.-P.; Kubota, F.; Uehara, H.; Yogi, M.; Furukawa, Y.; Sangeetha, N. S.; Johnston, D. C.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    In EuCo2P2, 4f electron spins of Eu2+ ions order antiferromagnetically below a Néel temperature TN = 66.5 K . The magnetic structure below TN was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo2P2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicate homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. We have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.

  16. Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.

    PubMed

    Budhiraja, Vikas; Hellums, J David; Post, Jan F M

    2002-11-01

    Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.

  17. An NMR database for simulations of membrane dynamics.

    PubMed

    Leftin, Avigdor; Brown, Michael F

    2011-03-01

    Computational methods are powerful in capturing the results of experimental studies in terms of force fields that both explain and predict biological structures. Validation of molecular simulations requires comparison with experimental data to test and confirm computational predictions. Here we report a comprehensive database of NMR results for membrane phospholipids with interpretations intended to be accessible by non-NMR specialists. Experimental ¹³C-¹H and ²H NMR segmental order parameters (S(CH) or S(CD)) and spin-lattice (Zeeman) relaxation times (T(1Z)) are summarized in convenient tabular form for various saturated, unsaturated, and biological membrane phospholipids. Segmental order parameters give direct information about bilayer structural properties, including the area per lipid and volumetric hydrocarbon thickness. In addition, relaxation rates provide complementary information about molecular dynamics. Particular attention is paid to the magnetic field dependence (frequency dispersion) of the NMR relaxation rates in terms of various simplified power laws. Model-free reduction of the T(1Z) studies in terms of a power-law formalism shows that the relaxation rates for saturated phosphatidylcholines follow a single frequency-dispersive trend within the MHz regime. We show how analytical models can guide the continued development of atomistic and coarse-grained force fields. Our interpretation suggests that lipid diffusion and collective order fluctuations are implicitly governed by the viscoelastic nature of the liquid-crystalline ensemble. Collective bilayer excitations are emergent over mesoscopic length scales that fall between the molecular and bilayer dimensions, and are important for lipid organization and lipid-protein interactions. Future conceptual advances and theoretical reductions will foster understanding of biomembrane structural dynamics through a synergy of NMR measurements and molecular simulations. Copyright © 2010 Elsevier B.V. All

  18. Predicting permeability with NMR imaging in the Edwards Limestone/Stuart City Trend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewitt, H.; Globe, M.; Sorenson, R.

    1996-09-01

    Determining pore size and pore geometry relationships in carbonate rocks and relating both to permeability is difficult using traditional logging methods. This problem is further complicated by the presence of abundant microporosity (pore size less than 62 microns) in the Edwards Limestone. The use of Nuclear Magnetic Resonance Imaging (NMR) allows for an alternative approach to evaluating the pore types present by examining the response of hydrogen nuclei contained within the free fluid pore space. By testing the hypothesis that larger pore types exhibit an NMR signal decay much slower than smaller pore types, an estimate of the pore typemore » present, (i.e.) vuggy, interparticle, or micropores, can be inferred. Calibration of the NMR decay curve to known samples with measured petrophysical properties allows for improved predictability of pore types and permeability. The next stage of the analysis involves the application of the calibration technique to the borehole environment using an NMR logging tool to more accurately predict production performance.« less

  19. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum

    PubMed Central

    Courtney, Joseph M.; Ye, Qing; Nesbitt, Anna E.; Tang, Ming; Tuttle, Marcus D.; Watt, Eric D.; Nuzzio, Kristin M.; Sperling, Lindsay J.; Comellas, Gemma; Peterson, Joseph R.; Morrissey, James H.; Rienstra, Chad M.

    2016-01-01

    Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D 13C-13C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins—GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor—and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. PMID:26365800

  20. Electrophoretic-deposited CNT/MnO2 composites for high-power electrochemical energy storage/conversion applications

    NASA Astrophysics Data System (ADS)

    Xiao, Wei; Xia, Hui; Fuh, Jerry Y. H.; Lu, Li

    2010-05-01

    CNT/MnO2 (birnessite-type) composite films have been successfully deposited on Ni-foil substrate via electrophoretic deposition (EPD). The unique EPD CNT/MnO2 composite film electrode shows enhanced electrical conductivity, good contact between composite films and the substrate and open porous structure, which makes the EPD composite films a promising electrode for high-power supercapacitors and lithium ion batteries.

  1. Alternating current circuit theory and pulsed NMR (Nuclear Magnetic Resonance)

    NASA Astrophysics Data System (ADS)

    Gerstein, B. C.

    1987-06-01

    Pulsed NMR, by definition, deals with time varying excitations. These excitations, supplied by resonant circuits which provide a pulse of radiofrequency (frequencies in the megahertz region) power to a resonant circuit containing, among other things, a coil of wire, or inductor, in which a sample under investigation is placed for purposes of the nuclear magnetic resonance experiment. There are therefore two features of the pulse NMR experiment. First is the fact that we have available a source of continuous wave (CW) alternating current at some angular frequency, omega, measured in radians per second. This source is generally supplied by an ultrastable device called a frequency synthesizer. The second feature of the pulsed NMR experiment is that the sample is not continuously irradiated, but a pulse of radiofrequency oscillation is applied to the sample. This report discusses alternating current theory, resonant circuits and the equipment used in this experiment.

  2. Growth of ZnO films in sol-gel electrophoretic deposition by different solvents

    NASA Astrophysics Data System (ADS)

    Hallajzadeh, Amir Mohammad; Abdizadeh, Hossein; Taheri, Mahtab; Golobostanfard, Mohammad Reza

    2018-01-01

    This article introduces a process to fabricate zinc oxide (ZnO) films through combining sol preparation and electrophoretic deposition (EPD). The experimental results have proved that the EPD process is a powerful route to fabricate ZnO films with desire thickness from stable colloidal suspension under a direct current (DC) electric field. In this method, ZnO sol is prepared by dissolving zinc acetate dehydrate (ZAD) as the main precursor and diethanolamine (DEA) as the additive in various solvents such as methanol (MeOH), ethanol (EtOH), and 2-proponal (2-PrOH). The deposition was performed under a constant voltage of 30 V for 2 min. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS) were used to characterize ZnO films. XRD pattern of the ZnO film prepared by MeOH shows the highest degree of preferential orientation and this is mainly attributed to the higher dielectric constant of the MeOH which results in higher current density in electrophoretic deposit ion. The SEM cross section images also show that the thickness of the ZnO film enhances by decreasing the solvent chain length. According to SEM results, as the viscosity of the medium increased, more compact layers are formed, which can be attributed to the lower deposition rates in heavier alcohols.

  3. HPLC & NMR-based forced degradation studies of ifosfamide: The potential of NMR in stability studies.

    PubMed

    Salman, D; Peron, J-M R; Goronga, T; Barton, S; Swinden, J; Nabhani-Gebara, S

    2016-03-01

    The aim of this study is to conduct a forced degradation study on ifosfamide under several stress conditions to investigate the robustness of the developed HPLC method. It also aims to provide further insight into the stability of ifosfamide and its degradation profile using both HPLC and NMR. Ifosfamide solutions (20mg/mL; n=15, 20mL) were stressed in triplicate by heating (70°C), under acidic (pH 1 & 4) and alkaline (pH 10 & 12) conditions. Samples were analysed periodically using HPLC and FT-NMR. Ifosfamide was most stable under weakly acidic conditions (pH 4). NMR results suggested that the mechanism of ifosfamide degradation involves the cleavage of the PN bond. For all stress conditions, HPLC was not able to detect ifosfamide degradation products that were detected by NMR. These results suggest that the developed HPLC method for ifosfamide did not detect the degradation products shown by NMR. It is possible that degradation products co-elute with ifosfamide, do not elute altogether or are not amenable to the detection method employed. Therefore, investigation of ifosfamide stability requires additional techniques that do not suffer from the aforementioned shortcomings. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  4. Non-destructive Ripeness Sensing by Using Proton NMR [Nuclear Magnetic Resonance

    DOE R&D Accomplishments Database

    Cho, Seong In; Krutz, G. W.; Stroshine, R. L.; Bellon, V.

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz).

  5. Optimal MEMS device for mobility and zeta potential measurements using DC electrophoresis.

    PubMed

    Karam, Pascal R; Dukhin, Andrei; Pennathur, Sumita

    2017-05-01

    We have developed a novel microchannel geometry that allows us to perform simple DC electrophoresis to measure the electrophoretic mobility and zeta potential of analytes and particles. In standard capillary geometries, mobility measurements using DC fields are difficult to perform. Specifically, measurements in open capillaries require knowledge of the hard to measure and often dynamic wall surface potential. Although measurements in closed capillaries eliminate this requirement, the measurements must be performed at infinitesimally small regions of zero flow where the pressure driven-flow completely cancels the electroosmotic flow (Komagata Planes). Furthermore, applied DC fields lead to electrode polarization, further questioning the reliability and accuracy of the measurement. In contrast, our geometry expands and moves the Komagata planes to where velocity gradients are at a minimum, and thus knowledge of the precise location of a Komagata plane is not necessary. Additionally, our microfluidic device prevents electrode polarization because of fluid recirculation around the electrodes. We fabricated our device using standard MEMS fabrication techniques and performed electrophoretic mobility measurements on 500 nm fluorescently tagged polystyrene particles at various buffer concentrations. Results are comparable to two different commercial dynamic light scattering based particle sizing instruments. We conclude with guidelines to further develop this robust electrophoretic tool that allows for facile and efficient particle characterization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Probing the interaction of U (VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE PAGES

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.; ...

    2016-05-30

    The fundamental interaction of U (VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U (VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U (VI) contacted samples revealed that U (VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U (VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31Pmore » NMR on U (VI)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U (VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P– 31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U (VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U (VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  7. Probing the interaction of U (VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.

    The fundamental interaction of U (VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U (VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U (VI) contacted samples revealed that U (VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U (VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31Pmore » NMR on U (VI)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U (VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P– 31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U (VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U (VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  8. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    NASA Astrophysics Data System (ADS)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  9. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids.

    PubMed

    Charpentier, Thibault

    2011-07-01

    In 2001, Mauri and Pickard introduced the gauge including projected augmented wave (GIPAW) method that enabled for the first time the calculation of all-electron NMR parameters in solids, i.e. accounting for periodic boundary conditions. The GIPAW method roots in the plane wave pseudopotential formalism of the density functional theory (DFT), and avoids the use of the cluster approximation. This method has undoubtedly revitalized the interest in quantum chemical calculations in the solid-state NMR community. It has quickly evolved and improved so that the calculation of the key components of NMR interactions, namely the shielding and electric field gradient tensors, has now become a routine for most of the common nuclei studied in NMR. Availability of reliable implementations in several software packages (CASTEP, Quantum Espresso, PARATEC) make its usage more and more increasingly popular, maybe indispensable in near future for all material NMR studies. The majority of nuclei of the periodic table have already been investigated by GIPAW, and because of its high accuracy it is quickly becoming an essential tool for interpreting and understanding experimental NMR spectra, providing reliable assignments of the observed resonances to crystallographic sites or enabling a priori prediction of NMR data. The continuous increase of computing power makes ever larger (and thus more realistic) systems amenable to first-principles analysis. In the near future perspectives, as the incorporation of dynamical effects and/or disorder are still at their early developments, these areas will certainly be the prime target. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Synthesis and application of ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) films using electrophoretic deposition

    DOE PAGES

    Ryu, Jeongjae; No, Kwangsoo; Kim, Yeontae; ...

    2016-11-02

    In this paper, we investigated the deposition kinetics of polyvinylidene fluoride copolymerized with trifluoroethylene (P(VDF-TrFE)) particles on stainless steel substrates during the electrophoretic deposition (EPD) process. The effect of applied voltage and deposition time on the structure and ferroelectric property of the P(VDF-TrFE) films was studied in detail. A method of repeated EPD and heat treatment above melting point were employed to fabricate crack-free P(VDF-TrFE) thick films. This method enabled us to fabricate P(VDF-TrFE) films with variable thicknesses. The morphology of the obtained films was investigated by scanning electron microscopy (SEM), and the formation of β-phase was confirmed by X-raymore » diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. P(VDF-TrFE) films prepared with various thicknesses showed remnant polarization (P r) of around 4 μC/cm 2. To demonstrate the applicability of our processing recipe to complex structures, we fabricated a spring-type energy harvester by depositing P(VDF-TrFE) films on stainless steel springs using EPD process. Our preliminary results show that an electrophoretic deposition can be applied to produce high-quality P(VDF-TrFE) films on planar as well as three-dimensional (3-D) substrates.« less

  11. Synthesis and Application of Ferroelectric Poly(Vinylidene Fluoride-co-Trifluoroethylene) Films using Electrophoretic Deposition

    PubMed Central

    Ryu, Jeongjae; No, Kwangsoo; Kim, Yeontae; Park, Eugene; Hong, Seungbum

    2016-01-01

    In this study, we investigated the deposition kinetics of polyvinylidene fluoride copolymerized with trifluoroethylene (P(VDF-TrFE)) particles on stainless steel substrates during the electrophoretic deposition (EPD) process. The effect of applied voltage and deposition time on the structure and ferroelectric property of the P(VDF-TrFE) films was studied in detail. A method of repeated EPD and heat treatment above melting point were employed to fabricate crack-free P(VDF-TrFE) thick films. This method enabled us to fabricate P(VDF-TrFE) films with variable thicknesses. The morphology of the obtained films was investigated by scanning electron microscopy (SEM), and the formation of β-phase was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. P(VDF-TrFE) films prepared with various thicknesses showed remnant polarization (Pr) of around 4 μC/cm2. To demonstrate the applicability of our processing recipe to complex structures, we fabricated a spring-type energy harvester by depositing P(VDF-TrFE) films on stainless steel springs using EPD process. Our preliminary results show that an electrophoretic deposition can be applied to produce high-quality P(VDF-TrFE) films on planar as well as three-dimensional (3-D) substrates. PMID:27805008

  12. Recommendations of the wwPDB NMR Validation Task Force

    PubMed Central

    Montelione, Gaetano T.; Nilges, Michael; Bax, Ad; Güntert, Peter; Herrmann, Torsten; Richardson, Jane S.; Schwieters, Charles; Vranken, Wim F.; Vuister, Geerten W.; Wishart, David S.; Berman, Helen M.; Kleywegt, Gerard J.; Markley, John L.

    2013-01-01

    As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with the wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment. PMID:24010715

  13. The SPORT-NMR Software: A Tool for Determining Relaxation Times in Unresolved NMR Spectra

    NASA Astrophysics Data System (ADS)

    Geppi, Marco; Forte, Claudia

    1999-03-01

    A software package which allows the correct determination of individual relaxation times for all the nonequivalent nuclei in poorly resolved NMR spectra is described. The procedure used, based on the fitting of each spectrum in the series recorded in the relaxation experiment, should improve the analysis of relaxation data in terms of quantitative dynamic information, especially in anisotropic phases. Tests on simulated data and experimental examples concerning1H and13CT1ρmeasurement in a solid copolymer and2HT1ZandT1Qmeasurement in a liquid crystal are shown and discussed.

  14. [Electrophoretic forms of glucose-6-phosphate dehydrogenase, acid phosphatase and esterase in Amoeba species amoebas].

    PubMed

    Sopina, V A

    2000-01-01

    Glucose-6-phosphate dehydrogenase (G6PD), acid phosphatase and esterases in free-living amoebae of 7 Amoeba species were investigated with the use of disc-electrophoresis in polyacrylamide gel. The evidence provided is suggestive that the electrophoretic isoenzyme patterns of acid phosphatase and esterases (and G6PD in some cases), in addition to a few morphological characters, can serve as a taxonomic criterion for species identification within this genus, as well as for revealing erroneously classified species and strains. It is suggested that A. indica is an independent species whose preliminary diagnosis has been given in this paper. It is concluded that A. discoides and A. lescherae are strains of A. proteus, rather than two independent species. A and As-102 amoebian strains, kept in the collection of protozoan strains and species of the Institute of Cytology RAS and referred to as strains of A. proteus, belong in reality to another Amoeba species and even to another genus within the family Amoebidae. This conclusion has been documented by results of our analysis of electrophoretic patterns of acid phosphatase and esterases in these strains.

  15. An investigation into the effects of pore connectivity on T2 NMR relaxation

    NASA Astrophysics Data System (ADS)

    Ghomeshi, Shahin; Kryuchkov, Sergey; Kantzas, Apostolos

    2018-04-01

    Nuclear Magnetic Resonance (NMR) is a powerful technique used to characterize fluids and flow in porous media. The NMR relaxation curves are closely related to pore geometry, and the inversion of the NMR relaxometry data is known to give useful information with regards to pore size distribution (PSD) through the relative amplitudes of the fluids stored in the small and large pores. While this information is crucial, the main challenge for the successful use of the NMR measurements is the proper interpretation of the measured signals. Natural porous media patterns consist of complex pore structures with many interconnected or "coupled" regions, as well as isolated pores. This connectivity along the throats changes the relaxation distribution and in order to properly interpret this data, a thorough understanding of the effects of pore connectivity on the NMR relaxation distribution is warranted. In this paper we address two main points. The first pertains to the fact that there is a discrepancy between the relaxation distribution obtained from experiments, and the ones obtained from solving the mathematical models of diffusion process in the digitized images of the pore space. There are several reasons that may attribute to this such as the lack of a proper incorporation of surface roughness into the model. However, here we are more interested in the effects of pore connectivity and to understand why the typical NMR relaxation distribution obtained from experiments are wider, while the numerical simulations predict that a wider NMR relaxation distribution may indicate poor connectivity. Secondly, by not taking into account the pore coupling effects, from our experience in interpreting the data, we tend to underestimate the pore volume of small pores and overestimate the amplitudes in the large pores. The role of pore coupling becomes even more prominent in rocks with small pore sizes such as for example in shales, clay in sandstones, and in the microstructures of

  16. Lithological controls on gas hydrate saturation: Insights from signal classification of NMR downhole data

    NASA Astrophysics Data System (ADS)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2016-04-01

    Nuclear magnetic resonance (NMR) downhole data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). NMR logging is a powerful tool to study geological reservoir formations. The measurements are based on interactions between the magnetic moments of protons in geological formation water and an external magnetic field. Inversion of the measured raw data provides so-called transverse relaxation time (T2) distribution curves or spectra. Different parts of the T2 curve are related with distinct pore radii and corresponding fluid components. A common practice in the analysis of T2 distribution curves is to extract single-valued parameters such as apparent total porosity. Moreover, the derived total NMR apparent porosity and the gamma-gamma density log apparent porosity can be combined to estimate gas hydrate saturation in hydrate-bearing sediments. To avoid potential loss of information, in our new approach we analyze the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. The approach is applied to NMR data measured in gas hydrate research well Mallik 5L-38. We use self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR T2 distribution curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, photo-electric factor, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal

  17. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    Magnetic resonance imaging (MRI) of materials is a field of increasing importance. Applications extend from fundamental science like the characterization of fluid transport in porous rock, catalyst pellets and hemodialysers into various fields of engineering for process optimization and product quality control. While the results of MRI imaging are being appreciated by a growing community, the methods of imaging are far more diverse for materials applications than for medical imaging of human beings. Blümich has delivered the first book in this field. It was published in hardback three years ago and is now offered as a paperback for nearly half the price. The text provides an introduction to MRI imaging of materials covering solid-state NMR spectroscopy, imaging methods for liquid and solid samples, and unusual MRI in terms of specialized approaches to spatial resolution such as an MRI surface scanner. The book represents an excellent and thorough treatment which will help to grow research in materials MRI. Blümich developed the treatise over many years for his research students, graduates in chemistry, physics and engineering. But it may also be useful for medical students looking for a less formal discussion of solid-state NMR spectroscopy. The structure of this book is easy to perceive. The first three chapters cover an introduction, the fundamentals and methods of solid-state NMR spectroscopy. The book starts at the ground level where no previous knowledge about NMR is assumed. Chapter 4 discusses a wide variety of transformations beyond the Fourier transformation. In particular, the Hadamard transformation and the 'wavelet' transformation are missing from most related books. This chapter also includes a description of noise-correlation spectroscopy, which promises the imaging of large objects without the need for extremely powerful radio-frequency transmitters. Chapters 5 and 6 cover basic imaging methods. The following chapter about the use of relaxation and

  18. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Rhodopsin-lipid interactions studied by NMR.

    PubMed

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Solution state NMR of lignins

    Treesearch

    John Ralph; Jane M. Marita; Sally A. Ralph; Ronald D. Hatfield; Fachuang Lu; Richard M. Ede; Junpeng Peng; Larry L. Landucci

    1999-01-01

    Despite the rather random and heterogeneous nature of isolated lignins, many of their intimate structural details are revealed by diagnostic NMR experiments. 13C-NMR was recognized early-on as a high-resolution method for detailed structural characterization, aided by the almost exact agreement between chemical shifts of carbons in good low-molecular...

  1. NMR of insensitive nuclei enhanced by dynamic nuclear polarization.

    PubMed

    Miéville, Pascal; Jannin, Sami; Helm, Lothar; Bodenhausen, Geoffrey

    2011-01-01

    Despite the powerful spectroscopic information it provides, Nuclear Magnetic Resonance (NMR) spectroscopy suffers from a lack of sensitivity, especially when dealing with nuclei other than protons. Even though NMR can be applied in a straightforward manner when dealing with abundant protons of organic molecules, it is very challenging to address biomolecules in low concentration and/or many other nuclei of the periodic table that do not provide as intense signals as protons. Dynamic Nuclear Polarization (DNP) is an important technique that provides a way to dramatically increase signal intensities in NMR. It consists in transferring the very high electron spin polarization of paramagnetic centers (usually at low temperature) to the surrounding nuclear spins with appropriate microwave irradiation. DNP can lead to an enhancement of the nuclear spin polarization by up to four orders of magnitude. We present in this article some basic concepts of DNP, describe the DNP apparatus at EPFL, and illustrate the interest of the technique for chemical applications by reporting recent measurements of the kinetics of complexation of 89Y by the DOTAM ligand.

  2. 17O NMR Investigation of Water Structure and Dynamics

    PubMed Central

    Keeler, Eric G.; Michaelis, Vladimir K.; Griffin, Robert G.

    2017-01-01

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with 17O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. 17O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the 17O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of 1H decoupling, we observe a well-resolved 1H–17O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two 1H–17O dipoles and the 1H–1H dipole. PMID:27454747

  3. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingol, Kerem

    Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome manual absolute quantitation step of metabolites in 1D 1H NMR spectra. This provides more consistency between inter-laboratory comparisons. Integration of 2D NMR metabolomics databases under a unified web server allowed very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMRmore » and mass spectrometry. These hybrid NMR/MS approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing to profile ever larger number of metabolites in application studies.« less

  4. Separation of very hydrophobic analytes by micellar electrokinetic chromatography IV. Modeling of the effective electrophoretic mobility from carbon number equivalents and octanol-water partition coefficients.

    PubMed

    Huhn, Carolin; Pyell, Ute

    2008-07-11

    It is investigated whether those relationships derived within an optimization scheme developed previously to optimize separations in micellar electrokinetic chromatography can be used to model effective electrophoretic mobilities of analytes strongly differing in their properties (polarity and type of interaction with the pseudostationary phase). The modeling is based on two parameter sets: (i) carbon number equivalents or octanol-water partition coefficients as analyte descriptors and (ii) four coefficients describing properties of the separation electrolyte (based on retention data for a homologous series of alkyl phenyl ketones used as reference analytes). The applicability of the proposed model is validated comparing experimental and calculated effective electrophoretic mobilities. The results demonstrate that the model can effectively be used to predict effective electrophoretic mobilities of neutral analytes from the determined carbon number equivalents or from octanol-water partition coefficients provided that the solvation parameters of the analytes of interest are similar to those of the reference analytes.

  5. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  6. Refinement of NMR structures using implicit solvent and advanced sampling techniques.

    PubMed

    Chen, Jianhan; Im, Wonpil; Brooks, Charles L

    2004-12-15

    NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified

  7. 31P Solid-state NMR based monitoring of permeation of cell penetrating peptides into skin

    PubMed Central

    Desai, Pinaki R.; Cormier, Ashley R.; Shah, Punit P.; Patlolla, Ram R.; Paravastu, Anant K.; Singh, Mandip

    2013-01-01

    The main objective of the current study was to investigate penetration of cell penetrating peptides (CPPs: TAT, R8, R11 and YKA) through skin intercellular lipids using 31P magic angle spinning (MAS) solid-state NMR. In vitro skin permeation studies were performed on rat skin, sections (0–60, 61–120 and 121–180 µm) were collected and analyzed for 31P NMR signal. The concentration dependent shift of 0, 25, 50, 100 and 200 mg/ml of TAT on skin layers, diffusion of TAT, R8, R11 and YKA in the skin and time dependent permeation of R11 was measured on various skin sections using 31P solid-state NMR. Further, CPPs and CPP-tagged fluorescent dye encapsulate liposomes (FLip) in skin layers were tagged using confocal microscopy. The change in 31P NMR chemical shift was found to depend monotonically on the amount of CPP applied on skin, with saturation behavior above 100 mg/ml CPP concentration. R11 and TAT caused more shift in solid-state NMR peaks compared to other peptides. Furthermore, NMR spectra showed R11 penetration up to 180 µm within 30 min. The results of the solid-state NMR study were in agreement with confocal microscopy studies. Thus, 31P solid-state NMR can be used to track CPP penetration into different skin layers. PMID:23702274

  8. Integrated NMR Core and Log Investigations With Respect to ODP LEG 204

    NASA Astrophysics Data System (ADS)

    Arnold, J.; Pechnig, R.; Clauser, C.; Anferova, S.; Blümich, B.

    2005-12-01

    NMR techniques are widely used in the oil industry and are one of the most suitable methods to evaluate in-situ formation porosity and permeability. Recently, efforts are directed towards adapting NMR methods also to the Ocean Drilling Program (ODP) and the upcoming Integrated Ocean Drilling Program (IODP). We apply a newly developed light-weight, mobile NMR core scanner as a non-destructive instrument to determine routinely rock porosity and to estimate the pore size distribution. The NMR core scanner is used for transverse relaxation measurements on water-saturated core sections using a CPMG sequence with a short echo time. A regularized Laplace-transform analysis yields the distribution of transverse relaxation times T2. In homogeneous magnetic fields, T2 is proportional to the pore diameter of rocks. Hence, the T2 signal maps the pore-size distribution of the studied rock samples. For fully saturated samples the integral of the distribution curve and the CPMG echo amplitude extrapolated to zero echo time are proportional to porosity. Preliminary results show that the NMR core scanner is a suitable tool to determine rock porosity and to estimate pore size distribution of limestones and sandstones. Presently our investigations focus on Leg 204, where NMR Logging-While-Drilling (LWD) was performed for the first time in ODP. Leg 204 was drilled into Hydrate Ridge on the Cascadia accretionary margin, offshore Oregon. All drilling and logging operations were highly successful, providing excellent core, wireline, and LWD data from adjacent boreholes. Cores recovered during Leg 204 consist mainly of clay and claystone. As the NMR core scanner operates at frequencies higher than that of the well-logging sensor it has a shorter dead time. This advantage makes the NMR core scanner sensitive to signals with T2 values down to 0.1 ms as compared to 3 ms in NMR logging. Hence, we can study even rocks with small pores, such as the mudcores recovered during Leg 204. We present

  9. NMR structural study of the prototropic equilibrium in solution of Schiff bases as model compounds.

    PubMed

    Ortegón-Reyna, David; Garcías-Morales, Cesar; Padilla-Martínez, Itzia; García-Báez, Efren; Aríza-Castolo, Armando; Peraza-Campos, Ana; Martínez-Martínez, Francisco

    2013-12-31

    An NMR titration method has been used to simultaneously measure the acid dissociation constant (pKa) and the intramolecular NHO prototropic constant ΔKNHO on a set of Schiff bases. The model compounds were synthesized from benzylamine and substituted ortho-hydroxyaldehydes, appropriately substituted with electron-donating and electron-withdrawing groups to modulate the acidity of the intramolecular NHO hydrogen bond. The structure in solution was established by 1H-, 13C- and 15N-NMR spectroscopy. The physicochemical parameters of the intramolecular NHO hydrogen bond (pKa, ΔKNHO and ΔΔG°) were obtained from 1H-NMR titration data and pH measurements. The Henderson-Hasselbalch data analysis indicated that the systems are weakly acidic, and the predominant NHO equilibrium was established using Polster-Lachmann δ-diagram analysis and Perrin model data linearization.

  10. Probing the stereo-electronic properties of cationic rhodium complexes bearing chiral diphosphine ligands by 103Rh NMR.

    PubMed

    Fabrello, Amandine; Dinoi, Chiara; Perrin, Lionel; Kalck, Philippe; Maron, Laurent; Urrutigoity, Martine; Dechy-Cabaret, Odile

    2010-11-01

    (103)Rh NMR represents a powerful tool to assess the global electronic and steric contribution of diphosphine ligands on [Rh(COD)(diphosphine)](+) complexes. In the case of DIOP, BINAP and MeDUPHOS, this approach proved to be more informative than classical CO-stretching frequency measurements. After validation, this method has been extended to a set of seven diphosphines. (103)Rh NMR measurements on [Rh(COD)(diphosphine)]PF(6) lead to the following order of donor properties: dppe > MeBPE > MeDUPHOS > dppb > DIOP > BINAP > Tol-BINAP. This trend has been validated by DFT in the case of DIOP, BINAP and MeDUPHOS. In conjunction, (31)P NMR chemical shift has been shown to reflect the ring constraints of the Rh-diphosphine scaffold. This contribution is a step towards a mechanistic investigation of the catalytic hydrogenation of unsaturated substrates by (103)Rh NMR and DFT. 2010 John Wiley & Sons, Ltd.

  11. Multivariate analysis relating oil shale geochemical properties to NMR relaxometry

    USGS Publications Warehouse

    Birdwell, Justin E.; Washburn, Kathryn E.

    2015-01-01

    Low-field nuclear magnetic resonance (NMR) relaxometry has been used to provide insight into shale composition by separating relaxation responses from the various hydrogen-bearing phases present in shales in a noninvasive way. Previous low-field NMR work using solid-echo methods provided qualitative information on organic constituents associated with raw and pyrolyzed oil shale samples, but uncertainty in the interpretation of longitudinal-transverse (T1–T2) relaxometry correlation results indicated further study was required. Qualitative confirmation of peaks attributed to kerogen in oil shale was achieved by comparing T1–T2 correlation measurements made on oil shale samples to measurements made on kerogen isolated from those shales. Quantitative relationships between T1–T2 correlation data and organic geochemical properties of raw and pyrolyzed oil shales were determined using partial least-squares regression (PLSR). Relaxometry results were also compared to infrared spectra, and the results not only provided further confidence in the organic matter peak interpretations but also confirmed attribution of T1–T2 peaks to clay hydroxyls. In addition, PLSR analysis was applied to correlate relaxometry data to trace element concentrations with good success. The results of this work show that NMR relaxometry measurements using the solid-echo approach produce T1–T2 peak distributions that correlate well with geochemical properties of raw and pyrolyzed oil shales.

  12. NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct.

    PubMed

    Thrane, Linn W; Berglund, Emily A; Wilking, James N; Vodak, David; Seymour, Joseph D

    2018-06-14

    Nuclear magnetic resonance (NMR) frequency spectra and T 2 relaxation time measurements, using a high-power radio frequency probe, are shown to characterize the presence of an amorphous drug in a porous silica construct. The results indicate the ability of non-solid-state NMR methods to characterize crystalline and amorphous solid structural phases in drugs. Two-dimensional T 1 - T 2 magnetic relaxation time correlation experiments are shown to monitor the impact of relative humidity on the drug in a porous silica tablet.

  13. PSYCHE Pure Shift NMR Spectroscopy.

    PubMed

    Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias

    2018-03-13

    Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Rotational dynamics of benzene and water in an ionic liquid explored via molecular dynamics simulations and NMR T1 measurements.

    PubMed

    Yasaka, Yoshiro; Klein, Michael L; Nakahara, Masaru; Matubayasi, Nobuyuki

    2012-02-21

    The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T(1) measurements. MD trajectories based on an effective potential are used to calculate the (2)H NMR relaxation time, T(1) via Fourier transform of the relevant rotational time correlation function, C(2R)(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T(1) when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C(2R)(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C(2R)(t) is most important to understand frequency and temperature dependencies of T(1) in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T(1) by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T(1) analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in

  15. Rotational dynamics of benzene and water in an ionic liquid explored via molecular dynamics simulations and NMR T1 measurements

    NASA Astrophysics Data System (ADS)

    Yasaka, Yoshiro; Klein, Michael L.; Nakahara, Masaru; Matubayasi, Nobuyuki

    2012-02-01

    The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T1 measurements. MD trajectories based on an effective potential are used to calculate the 2H NMR relaxation time, T1 via Fourier transform of the relevant rotational time correlation function, C2R(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T1 when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C2R(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C2R(t) is most important to understand frequency and temperature dependencies of T1 in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T1 by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T1 analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in an underestimation

  16. Push-through Direction Injectin NMR Automation

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  17. NMR reaction monitoring in flow synthesis.

    PubMed

    Gomez, M Victoria; de la Hoz, Antonio

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  18. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, N.; Ding, Q. -P.; Johnston, D. C.

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  19. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE PAGES

    Higa, N.; Ding, Q. -P.; Johnston, D. C.; ...

    2017-09-18

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  20. Dynamic NMR Study of Model CMP Slurry Containing Silica Particles as Abrasives

    NASA Astrophysics Data System (ADS)

    Odeh, F.; Al-Bawab, A.; Li, Y.

    2018-02-01

    Chemical mechanical planarization (CMP) should provide a good surface planarity with minimal surface defectivity. Since CMP slurries are multi-component systems, it is very important to understand the various processes and interactions taking place in such slurries. Several techniques have been employed for such task, however, most of them lack the molecular recognition to investigate molecular interactions without adding probes which in turn increase complexity and might alter the microenvironment of the slurry. Nuclear magnetic resonance (NMR) is a powerful technique that can be employed in such study. The longitudinal relaxation times (T1) of the different components of CMP slurries were measured using Spin Echo-NMR (SE-NMR) at a constant temperature. The fact that NMR is non-invasive and gives information on the molecular level gives more advantage to the technique. The model CMP slurry was prepared in D2O to enable monitoring of T1 for the various components' protons. SE-NMR provide a very powerful tool to study the various interactions and adsorption processes that take place in a model CMP silica based slurry which contains BTA and/or glycine and/or Cu+2 ions. It was found that BTA is very competitive towards complexation with Cu+2 ions and BTA-Cu complex adsorbs on silica surface.

  1. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE PAGES

    Giera, Brian; Bukosky, Scott; Lee, Elaine; ...

    2018-01-23

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  2. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giera, Brian; Bukosky, Scott; Lee, Elaine

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  3. NMR-based diffusion pore imaging.

    PubMed

    Laun, Frederik Bernd; Kuder, Tristan Anselm; Wetscherek, Andreas; Stieltjes, Bram; Semmler, Wolfhard

    2012-08-01

    Nuclear magnetic resonance (NMR) diffusion experiments offer a unique opportunity to study boundaries restricting the diffusion process. In a recent Letter [Phys. Rev. Lett. 107, 048102 (2011)], we introduced the idea and concept that such diffusion experiments can be interpreted as NMR imaging experiments. Consequently, images of closed pores, in which the spins diffuse, can be acquired. In the work presented here, an in-depth description of the diffusion pore imaging technique is provided. Image artifacts due to gradient profiles of finite duration, field inhomogeneities, and surface relaxation are considered. Gradients of finite duration lead to image blurring and edge enhancement artifacts. Field inhomogeneities have benign effects on diffusion pore images, and surface relaxation can lead to a shrinkage and shift of the pore image. The relation between boundary structure and the imaginary part of the diffusion weighted signal is analyzed, and it is shown that information on pore coherence can be obtained without the need to measure the phase of the diffusion weighted signal. Moreover, it is shown that quite arbitrary gradient profiles can be used for diffusion pore imaging. The matrices required for numerical calculations are stated and provided as supplemental material.

  4. Cytotoxic Effects of Sarcophyton sp. Soft Corals—Is There a Correlation to Their NMR Fingerprints?

    PubMed Central

    Farag, Mohamed A.; Fekry, Mostafa I.; Al-Hammady, Montasser A.; Khalil, Mohamed N.; El-Seedi, Hesham R.; Meyer, Achim; Westphal, Hildegard; Wessjohann, Ludger A.

    2017-01-01

    Sarcophyton sp. soft corals are rich in cembranoid diterpenes, which represent the main chemical defense of corals against their natural predators in addition to their myriad biological effects in humans. Quantitative NMR (qNMR) was applied for assessing the diterpene variation in 16 soft coral specimens in the context of their genotype, origin, and growing habitat. qNMR revealed high diterpene levels in Sarcophyton sp. compared to Sinularia and Lobophyton, with (ent)sarcophines as major components (17–100 µg/mg) of the coral tissues. Multivariate data analysis was employed to classify samples based on the quantified level of diterpenes, and compared to the untargeted NMR approach. Results revealed that qNMR provided a stronger classification model of Sarcophyton sp. than untargeted NMR fingerprinting. Additionally, cytotoxicity of soft coral crude extracts was assessed against androgen-dependent prostate cancer cell lines (PC3) and androgen-independent colon cancer cell lines (HT-29), with IC50 values ranging from 10–60 µg/mL. No obvious correlation between the extracts’ IC50 values and their diterpene levels was found using either Spearman or Pearson correlations. This suggests that this type of bioactivity may not be easily predicted by NMR metabolomics in soft corals, or is not strongly correlated to measured diterpene levels. PMID:28677625

  5. Cytotoxic Effects of Sarcophyton sp. Soft Corals-Is There a Correlation to Their NMR Fingerprints?

    PubMed

    Farag, Mohamed A; Fekry, Mostafa I; Al-Hammady, Montasser A; Khalil, Mohamed N; El-Seedi, Hesham R; Meyer, Achim; Porzel, Andrea; Westphal, Hildegard; Wessjohann, Ludger A

    2017-07-04

    Sarcophyton sp. soft corals are rich in cembranoid diterpenes, which represent the main chemical defense of corals against their natural predators in addition to their myriad biological effects in humans. Quantitative NMR (qNMR) was applied for assessing the diterpene variation in 16 soft coral specimens in the context of their genotype, origin, and growing habitat. qNMR revealed high diterpene levels in Sarcophyton sp. compared to Sinularia and Lobophyton , with (ent)sarcophines as major components (17-100 µg/mg) of the coral tissues. Multivariate data analysis was employed to classify samples based on the quantified level of diterpenes, and compared to the untargeted NMR approach. Results revealed that qNMR provided a stronger classification model of Sarcophyton sp. than untargeted NMR fingerprinting. Additionally, cytotoxicity of soft coral crude extracts was assessed against androgen-dependent prostate cancer cell lines (PC3) and androgen-independent colon cancer cell lines (HT-29), with IC 50 values ranging from 10-60 µg/mL. No obvious correlation between the extracts' IC 50 values and their diterpene levels was found using either Spearman or Pearson correlations. This suggests that this type of bioactivity may not be easily predicted by NMR metabolomics in soft corals, or is not strongly correlated to measured diterpene levels.

  6. Numerical simulation of multi-dimensional NMR response in tight sandstone

    NASA Astrophysics Data System (ADS)

    Guo, Jiangfeng; Xie, Ranhong; Zou, Youlong; Ding, Yejiao

    2016-06-01

    Conventional logging methods have limitations in the evaluation of tight sandstone reservoirs. The multi-dimensional nuclear magnetic resonance (NMR) logging method has the advantage that it can simultaneously measure transverse relaxation time (T 2), longitudinal relaxation time (T 1) and diffusion coefficient (D). In this paper, we simulate NMR measurements of tight sandstone with different wettability and saturations by the random walk method and obtain the magnetization decays of Carr-Purcell-Meiboom-Gill pulse sequences with different wait times (TW) and echo spacings (TE) under a magnetic field gradient, resulting in D-T 2-T 1 maps by the multiple echo trains joint inversion method. We also study the effects of wettability, saturation, signal-to-noise ratio (SNR) of data and restricted diffusion on the D-T 2-T 1 maps in tight sandstone. The results show that with decreasing wetting fluid saturation, the surface relaxation rate of the wetting fluid gradually increases and the restricted diffusion phenomenon becomes more and more obvious, which leads to the wetting fluid signal moving along the direction of short relaxation and the direction of the diffusion coefficient decreasing in D-T 2-T 1 maps. Meanwhile, the non-wetting fluid position in D-T 2-T 1 maps does not change with saturation variation. With decreasing SNR, the ability to identify water and oil signals based on NMR maps gradually decreases. The wetting fluid D-T 1 and D-T 2 correlations in NMR diffusion-relaxation maps of tight sandstone are obtained through expanding the wetting fluid restricted diffusion models, and are further applied to recognize the wetting fluid in simulated D-T 2 maps and D-T 1 maps.

  7. NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine.

    PubMed

    Bingol, Kerem; Brüschweiler, Rafael

    2015-06-05

    A novel metabolite identification strategy is presented for the combined NMR/MS analysis of complex metabolite mixtures. The approach first identifies metabolite candidates from 1D or 2D NMR spectra by NMR database query, which is followed by the determination of the masses (m/z) of their possible ions, adducts, fragments, and characteristic isotope distributions. The expected m/z ratios are then compared with the MS(1) spectrum for the direct assignment of those signals of the mass spectrum that contain information about the same metabolites as the NMR spectra. In this way, the mass spectrum can be assigned with very high confidence, and it provides at the same time validation of the NMR-derived metabolites. The method was first demonstrated on a model mixture, and it was then applied to human urine collected from a pool of healthy individuals. A number of metabolites could be detected that had not been reported previously, further extending the list of known urine metabolites. The new analysis approach, which is termed NMR/MS Translator, is fully automated and takes only a few seconds on a computer workstation. NMR/MS Translator synergistically uses the power of NMR and MS, enhancing the accuracy and efficiency of the identification of those metabolites compiled in databases.

  8. Shimming of a Magnet for Calibration of NMR Probes for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Bielajew, Rachel

    2013-10-01

    The Muon g-2 Experiment at Fermilab aims to measure the anomalous magnetic moment aμ ≡ (g-2)/2 of the muon to the precision of 0.14 parts per million. This experimental value of aμ can then be compared to the similarly precise theoretical predictions of the Standard Model in order to test the completeness of the model. The value of aμ is extracted from muons precessing in a magnetic field. The magnetic field will be measured with a set of 400 Nuclear Magnetic Resonance (NMR) probes, which have the ability to measure the field to a precision of tens of parts per billion. Before the Muon g-2 Experiment can take place, new NMR probes must be designed, built, and tested using a 1.45 Tesla test magnet at the University of Washington Center for Experimental Nuclear Physics and Astrophysics (CENPA). In order to achieve a significant signal from NMR probes, the magnetic field in which the probes are immersed must be extremely uniform. The existing magnet at CENPA has an approximately linear gradient in magnetic field of about 1 Gauss per centimeter in the smoothest direction. A pair of adjacent square Helmholtz coils was designed and built to create a linear gradient in order to cancel the existing gradient. The length of the NMR signals improved with the implementation of the coils. The results of the addition of the coils to the magnet on the signals from the NMR probes will be presented.

  9. Characterisation of indomethacin and nifedipine using variable-temperature solid-state NMR.

    PubMed

    Apperley, David C; Forster, Angus H; Fournier, Romain; Harris, Robin K; Hodgkinson, Paul; Lancaster, Robert W; Rades, Thomas

    2005-11-01

    We have characterised the stable polymorphic forms of two drug molecules, indomethacin (1) and nifedipine (2) by 13C CPMAS NMR and the resonances have been assigned. The signal for the C-Cl carbon of indomethacin has been studied as a function of applied magnetic field, and the observed bandshapes have been simulated. Variable-temperature 1H relaxation measurements of static samples have revealed a T1rho minimum for indomethacin at 17.8 degrees C. The associated activation energy is 38 kJ mol(-1). The relevant motion is probably an internal rotation and it is suggested that this involves the C-OCH3 group. Since the two drug compounds are potential candidates for formulation in the amorphous state, we have examined quench-cooled melts in detail by variable-temperature 13C and 1H NMR. There is a change in slope for T1H and T1rhoH at the glass transition temperature (Tg) for indomethacin, but this occurs a few degrees below Tg for nifedipine, which is perhaps relevant to the lower real-time stability of the amorphous form for the latter compound. Comparison of relaxation time data for the crystalline and amorphous forms of each compound reveals a greater difference for nifedipine than for indomethacin, which again probably relates to real-time stabilities. Recrystallisation of the two drugs has been followed by proton bandshape measurements at higher temperatures. It is shown that, under the conditions of the experiments, recrystallisation of nifedipine can be detected already at 70 degrees C, whereas this does not occur until 110 degrees C for indomethacin. The effect of crushing the amorphous samples has been studied by 13C NMR; nifedipine recrystallises but indomethacin does not. The results were supported by DSC, powder XRD, FTIR and solution-state NMR measurements. Copyright (c) 2005 John Wiley & Sons, Ltd.

  10. Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR

    PubMed Central

    Fenwick, R. Bryn; van den Bedem, Henry; Fraser, James S.; Wright, Peter E.

    2014-01-01

    Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond–nanosecond) of bond vector fluctuations, whereas high-resolution X-ray diffraction experiments can reveal the presence of and provide atomic coordinates for multiple, weakly populated substates in the protein conformational ensemble. Here we report a hybrid NMR and X-ray crystallography analysis that provides a more complete dynamic picture and a more quantitative description of the timescale and amplitude of fluctuations in atomic coordinates than is obtainable from the individual methods alone. Order parameters (S2) were calculated from single-conformer and multiconformer models fitted to room temperature and cryogenic X-ray diffraction data for dihydrofolate reductase. Backbone and side-chain order parameters derived from NMR relaxation experiments are in excellent agreement with those calculated from the room-temperature single-conformer and multiconformer models, showing that the picosecond timescale motions observed in solution occur also in the crystalline state. These motions are quenched in the crystal at cryogenic temperatures. The combination of NMR and X-ray crystallography in iterative refinement promises to provide an atomic resolution description of the alternate conformational substates that are sampled through picosecond to nanosecond timescale fluctuations of the protein structure. The method also provides insights into the structural heterogeneity of nonmethyl side chains, aromatic residues, and ligands, which are less commonly analyzed by NMR relaxation measurements. PMID:24474795

  11. Relaxation time estimation in surface NMR

    DOEpatents

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  12. 1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels.

    PubMed

    Nolan, Christine M; Gelbaum, Leslie T; Lyon, L Andrew

    2006-10-01

    We describe investigations of insulin release from thermoresponsive microgels using variable temperature (1)H NMR. Microgel particles composed of poly(N-isopropylacrylamide) were loaded with the peptide via a swelling technique, and this method was compared to simple equilibrium partitioning. Variable temperature (1)H NMR studies suggest that the swelling loading method results in enhanced entrapment of the peptide versus equilibrium partitioning. A centrifugation-loading assay supports this finding. Pseudo-temperature jump (1)H NMR measurements suggest that the insulin release rate is partially decoupled from microgel collapse. These types of direct release investigations could prove to be useful methods in the future design of controlled macromolecule drug delivery devices.

  13. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  14. NMR reaction monitoring in flow synthesis

    PubMed Central

    Gomez, M Victoria

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed. PMID:28326137

  15. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.

    PubMed

    Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M

    2015-10-06

    Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 53Cr NMR study of CuCrO2 multiferroic

    NASA Astrophysics Data System (ADS)

    Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Yakubovskii, A. Yu.; Kumagai, K.; Furukawa, Y.; Sadykov, A. F.; Piskunov, Yu. V.; Gerashchenko, A. P.; Barilo, S. N.; Shiryaev, S. V.

    2015-11-01

    The magnetically ordered phase of the CuCrO2 single crystal has been studied by the nuclear magnetic resonance (NMR) method on 53Cr nuclei in the absence of an external magnetic field. The 53Cr NMR spectrum is observed in the frequency range νres = 61-66 MHz. The shape of the spectrum depends on the delay tdel between pulses in the pulse sequence τπ/2- t del-τπ- t del-echo. The spin-spin and spin-lattice relaxation times have been measured. Components of the electric field gradient, hyperfine fields, and the magnetic moment on chromium atoms have been estimated.

  17. 1H NMR Measurement of the Trans Cis Photoisomerization of Cinnamic Acid Derivatives

    NASA Astrophysics Data System (ADS)

    Danylec, Basil; Iskander, Magdy N.

    2002-08-01

    1H NMR spectroscopy was used to follow the course of the photochemical conversion of methyl p-hydroxy-trans-cinnamate to the thermodynamically less stable cis isomer. Integration of the new olefinic cis proton doublet (5.66 ppm, J = 12.9 Hz), which was then compared to the trans isomer (6.15 ppm, J = 15.9 Hz), allowed the determination of the relative amounts of these two isomers.

  18. Detecting Microbially Induced Calcite Precipitation in a Model Well-Bore Using Downhole Low-Field NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkland, Catherine M.; Zanetti, Sam; Grunewald, Elliot

    Microbially induced calcite precipitation (MICP) has been widely researched recently due to its relevance for subsurface engineering applications including sealing leakage pathways and permeability modification. These applications of MICP are inherently difficult to monitor nondestructively in time and space. Nuclear magnetic resonance (NMR) can characterize the pore size distributions, porosity, and permeability of subsurface formations. This investigation used a low-field NMR well-logging probe to monitor MICP in a sand-filled bioreactor, measuring NMR signal amplitude and T 2 relaxation over an 8 day experimental period. Following inoculation with the ureolytic bacteria, Sporosarcina pasteurii, and pulsed injections of urea and calcium substrate,more » the NMR measured water content in the reactor decreased to 76% of its initial value. T 2 relaxation distributions bifurcated from a single mode centered about approximately 650 ms into a fast decaying population ( T 2 less than 10 ms) and a larger population with T 2 greater than 1000 ms. The combination of changes in pore volume and surface minerology accounts for the changes in the T 2 distributions. Destructive sampling confirmed final porosity was approximately 88% of the original value. Here, these results indicate the low-field NMR well-logging probe is sensitive to the physical and chemical changes caused by MICP in a laboratory bioreactor.« less

  19. Detecting Microbially Induced Calcite Precipitation in a Model Well-Bore Using Downhole Low-Field NMR

    DOE PAGES

    Kirkland, Catherine M.; Zanetti, Sam; Grunewald, Elliot; ...

    2016-12-20

    Microbially induced calcite precipitation (MICP) has been widely researched recently due to its relevance for subsurface engineering applications including sealing leakage pathways and permeability modification. These applications of MICP are inherently difficult to monitor nondestructively in time and space. Nuclear magnetic resonance (NMR) can characterize the pore size distributions, porosity, and permeability of subsurface formations. This investigation used a low-field NMR well-logging probe to monitor MICP in a sand-filled bioreactor, measuring NMR signal amplitude and T 2 relaxation over an 8 day experimental period. Following inoculation with the ureolytic bacteria, Sporosarcina pasteurii, and pulsed injections of urea and calcium substrate,more » the NMR measured water content in the reactor decreased to 76% of its initial value. T 2 relaxation distributions bifurcated from a single mode centered about approximately 650 ms into a fast decaying population ( T 2 less than 10 ms) and a larger population with T 2 greater than 1000 ms. The combination of changes in pore volume and surface minerology accounts for the changes in the T 2 distributions. Destructive sampling confirmed final porosity was approximately 88% of the original value. Here, these results indicate the low-field NMR well-logging probe is sensitive to the physical and chemical changes caused by MICP in a laboratory bioreactor.« less

  20. Fine refinement of solid state structure of racemic form of phospho-tyrosine employing NMR Crystallography approach.

    PubMed

    Paluch, Piotr; Pawlak, Tomasz; Oszajca, Marcin; Lasocha, Wieslaw; Potrzebowski, Marek J

    2015-02-01

    We present step by step facets important in NMR Crystallography strategy employing O-phospho-dl-tyrosine as model sample. The significance of three major techniques being components of this approach: solid state NMR (SS NMR), X-ray diffraction of powdered sample (PXRD) and theoretical calculations (Gauge Invariant Projector Augmented Wave; GIPAW) is discussed. Each experimental technique provides different set of structural constraints. From the PXRD measurement the size of the unit cell, space group and roughly refined molecular structure are established. SS NMR provides information about content of crystallographic asymmetric unit, local geometry, molecular motion in the crystal lattice and hydrogen bonding pattern. GIPAW calculations are employed for validation of quality of elucidation and fine refinement of structure. Crystal and molecular structure of O-phospho-dl-tyrosine solved by NMR Crystallography is deposited at Cambridge Crystallographic Data Center under number CCDC 1005924. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Electrophoretic deposition of ultrasonicated and functionalized nanomaterials for multifunctional composites

    NASA Astrophysics Data System (ADS)

    An, Qi

    Recent advances in the synthesis and characterization of nanostructured composite materials have enabled a broad range of opportunities for engineering the properties of polymer-matrix materials. Carbon nanotubes (CNTs) are known to have exceptional mechanical, electrical and thermal properties. Because of their small size, CNTs can occupy regions between traditional micro-scale reinforcements and create a hierarchical micro/nano structure spanning several orders of magnitude. Since CNTs possess critical reinforcement dimensions below 100 nm, new opportunities exist for tailoring the fiber/matrix interphase regions and ultimately the mechanical and electrical performance of advanced fiber-composites with minimal impact on the fiber-dominated properties. This growing interest in nanoscale hybridization with conventional fiber reinforcement has highlighted the need to develop new processing techniques for successful CNT integration. In this work, a novel and industrially scalable approach for producing multi-scale hybrid carbon nanotube/fiber composites using an electrophoretic deposition (EPD) technique has been studied as an alternative to in situ chemical vapor deposition growth (CVD). EPD is a widely used industrial coating process employed in areas ranging from automotive to electronics production. The method has a number of benefits which include low energy use and the ability to homogenously coat complex shapes with well adhered films of controlled thickness and density. A stable aqueous dispersion of multi-walled carbon nanotubes (MWCNTs) was produced using a novel ozonolysis and ultrasonication (USO) technique that results in dispersion and functionalization in a single step. Networks of CNTs span between adjacent fibers and the resulting composites exhibit significant increases in electrical conductivity and considerable improvements in the interlaminar shear strength and fracture toughness. In order to better understand the underlying mechanisms behind the

  2. Interfacial development of electrophoretically deposited graphene oxide films on Al alloys

    DOE PAGES

    Jin, Sumin; Dickerson, James H.; Pham, Viet Hung; ...

    2015-07-28

    Adhesion between film and substrate is critical for electronic device and coating applications. Interfacial development between electrophoretically deposited graphene oxide films on Al 1100 and Al 5052 alloys were investigated using FT-IR and XPS depth profiling techniques. Obtained results suggest metal ion permeation from the substrates into deposited graphene oxide films. The interface between the films and the substrates were primarily composed of Al-O-C bonds from oxygenated defects on graphene oxide plane rather than expected Al-C formation. Films heat treated at 150 °C had change in microstructure and peak shifts in XPS spectra suggesting change in chemical structure of bondsmore » between the films and the substrates.« less

  3. Modeling the electrophoretic separation of short biological molecules in nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Fayad, Ghassan; Hadjiconstantinou, Nicolas

    2010-11-01

    Via comparisons with Brownian Dynamics simulations of the worm-like-chain and rigid-rod models, and the experimental results of Fu et al. [Phys. Rev. Lett., 97, 018103 (2006)], we demonstrate that, for the purposes of low-to-medium field electrophoretic separation in periodic nanofilter arrays, sufficiently short biomolecules can be modeled as point particles, with their orientational degrees of freedom accounted for using partition coefficients. This observation is used in the present work to build a particularly simple and efficient Brownian Dynamics simulation method. Particular attention is paid to the model's ability to quantitatively capture experimental results using realistic values of all physical parameters. A variance-reduction method is developed for efficiently simulating arbitrarily small forcing electric fields.

  4. Unesterified plant sterols and stanols do not affect LDL electrophoretic characteristics in hypercholesterolemic subjects.

    PubMed

    Charest, Amélie; Desroches, Sophie; Vanstone, Catherine A; Jones, Peter J H; Lamarche, Benoît

    2004-03-01

    The extent to which sterols and stanols modulate LDL particle size is unknown. We examined the effects of supplementation with unesterified plant sterols and stanols on several LDL electrophoretic characteristics. Healthy hypercholesterolemic subjects (n = 14) consumed each of four experimental diets contained plant sterols (S), plant stanols (SN), a 50:50 mixture of sterols and stanols (SSN), or cornstarch (control) in a randomized crossover design. The butter component of the diet was blended with unesterified sterols and stanols at a dose of 1.8 g/d. The LDL particles were characterized by polyacrylamide gradient gel electrophoresis of whole plasma. LDL cholesterol (LDL-C) concentrations decreased by 8.8, 13.6, and 13.1% in the S, SN, and SSN groups, respectively (P < 0.01) with a significant increase of 4.3% in the control group. None of the treatments with sterols and stanols induced significant changes in LDL peak particle diameter or in the cholesterol levels of the small LDL subfraction (<25.5 nm). The reduction in plasma LDL-C levels with SN consumption was due mainly to a decrease (P < 0.05) in the concentration of cholesterol in the large subfraction (>26.0 nm). The significant reduction in plasma LDL-C concentrations by sterol and stanol consumption in subjects was not paralleled by any beneficial changes in LDL electrophoretic characteristics.

  5. Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Debasish; Basu, Rajendra N., E-mail: rnbasu@cgcri.res.in

    2013-09-01

    Graphical abstract: - Highlights: • Stable suspension of yttria stabilized zirconia (YSZ) obtained in isopropanol medium. • Suspension chemistry and process parameters for electrophoretic deposition optimized. • Deposited film quality changed with iodine and water (dispersants) concentration. • Dense YSZ film (∼5 μm) fabricated onto non-conducting porous NiO-YSZ anode substrate. - Abstract: Suspensions of 8 mol% yttria stabilized zirconia (YSZ) particulates in isopropanol medium are prepared using acetylacetone, iodine and water as dispersants. The effect of dispersants concentration on suspension stability, particle size distribution, electrical conductivity and pH of the suspensions are studied in detail to optimize the suspension chemistry.more » Electrophoretic deposition (EPD) has been conducted to produce thin and dense YSZ electrolyte films. Deposition kinetics have been studied in depth and good quality films on conducting substrate are obtained at an applied voltage of 15 V for 3 min. YSZ films are also fabricated on non-conducting NiO-YSZ anode substrate using a steel plate on the reverse side of the substrate. Upon co-firing at 1400 °C for 6 h a dense YSZ film of thickness ∼5 μm is obtained. Such a half cell (anode + electrolyte) can be used to fabricate a solid oxide fuel cell on applying a suitable cathode layer.« less

  6. NMR in the SPINE Structural Proteomics project.

    PubMed

    Ab, E; Atkinson, A R; Banci, L; Bertini, I; Ciofi-Baffoni, S; Brunner, K; Diercks, T; Dötsch, V; Engelke, F; Folkers, G E; Griesinger, C; Gronwald, W; Günther, U; Habeck, M; de Jong, R N; Kalbitzer, H R; Kieffer, B; Leeflang, B R; Loss, S; Luchinat, C; Marquardsen, T; Moskau, D; Neidig, K P; Nilges, M; Piccioli, M; Pierattelli, R; Rieping, W; Schippmann, T; Schwalbe, H; Travé, G; Trenner, J; Wöhnert, J; Zweckstetter, M; Kaptein, R

    2006-10-01

    This paper describes the developments, role and contributions of the NMR spectroscopy groups in the Structural Proteomics In Europe (SPINE) consortium. Focusing on the development of high-throughput (HTP) pipelines for NMR structure determinations of proteins, all aspects from sample preparation, data acquisition, data processing, data analysis to structure determination have been improved with respect to sensitivity, automation, speed, robustness and validation. Specific highlights are protonless (13)C-direct detection methods and inferential structure determinations (ISD). In addition to technological improvements, these methods have been applied to deliver over 60 NMR structures of proteins, among which are five that failed to crystallize. The inclusion of NMR spectroscopy in structural proteomics pipelines improves the success rate for protein structure determinations.

  7. STD-NMR-Based Protein Engineering of the Unique Arylpropionate-Racemase AMDase G74C.

    PubMed

    Gaßmeyer, Sarah Katharina; Yoshikawa, Hiroyuki; Enoki, Junichi; Hülsemann, Nadine; Stoll, Raphael; Miyamoto, Kenji; Kourist, Robert

    2015-06-23

    Structure-guided protein engineering achieved a variant of the unique racemase AMDase G74C, with 40-fold increased activity in the racemisation of several arylaliphatic carboxylic acids. Substrate binding during catalysis was investigated by saturation-transfer-difference NMR (STD-NMR) spectroscopy. All atoms of the substrate showed interactions with the enzyme. STD-NMR measurements revealed distinct nuclear Overhauser effects in experiments with and without molecular conversion. The spectroscopic analysis led to the identification of several amino acid residues whose substitutions increased the activity of G74C. Single amino acid exchanges increased the activity moderately; structure-guided saturation mutagenesis yielded a quadruple mutant with a 40 times higher reaction rate. This study presents STD-NMR as versatile tool for the analysis of enzyme-substrate interactions in catalytically competent systems and for the guidance of protein engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. In vivo observation of tree drought response with low-field NMR and neutron imaging

    DOE PAGES

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; ...

    2016-05-06

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature inmore » the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.« less

  9. In vivo observation of tree drought response with low-field NMR and neutron imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature inmore » the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.« less

  10. Magnetic Nanoparticles and microNMR for Diagnostic Applications

    PubMed Central

    Shao, Huilin; Min, Changwook; Issadore, David; Liong, Monty; Yoon, Tae-Jong; Weissleder, Ralph; Lee, Hakho

    2012-01-01

    Sensitive and quantitative measurements of clinically relevant protein biomarkers, pathogens and cells in biological samples would be invaluable for disease diagnosis, monitoring of malignancy, and for evaluating therapy efficacy. Biosensing strategies using magnetic nanoparticles (MNPs) have recently received considerable attention, since they offer unique advantages over traditional detection methods. Specifically, because biological samples have negligible magnetic background, MNPs can be used to obtain highly sensitive measurements in minimally processed samples. This review focuses on the use of MNPs for in vitro detection of cellular biomarkers based on nuclear magnetic resonance (NMR) effects. This detection platform, termed diagnostic magnetic resonance (DMR), exploits MNPs as proximity sensors to modulate the spin-spin relaxation time of water molecules surrounding the molecularly-targeted nanoparticles. With new developments such as more effective MNP biosensors, advanced conjugational strategies, and highly sensitive miniaturized NMR systems, the DMR detection capabilities have been considerably improved. These developments have also enabled parallel and rapid measurements from small sample volumes and on a wide range of targets, including whole cells, proteins, DNA/mRNA, metabolites, drugs, viruses and bacteria. The DMR platform thus makes a robust and easy-to-use sensor system with broad applications in biomedicine, as well as clinical utility in point-of-care settings. PMID:22272219

  11. Preparation of guinea pig macrophage for electrophoretic experiments in space

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Methods of storage and cultivation of macrophage cells in preparation for space experiments were investigated. Results show that freezing and thawing immediately after extraction did not cause any change in viability or electrophoretic mobility of the cells. A prolonged storage at -80 C did cause cell damage as indicated by a 95% reduction in variable cells. Cell damage was decreased when Glycerol or Dimethyl Sulfoxide (DMSO) was added as a cryogenic protective agent. A 100% viability was observed in cultivation experiments after two weeks due to the additional serum. Results from gamma-glutamyl transpeptidase study showed a zero activity rate. It is suggested that a flat stationary field be used for the collection and use of macrophage. It was found that a 24-hour delay in obtaining macrophage cells helps to maintain a pure culture.

  12. NMR analyses of complex d-glucose anomerization.

    PubMed

    Kaufmann, Martin; Mügge, Clemens; Kroh, Lothar W

    2018-11-01

    Analyzing the 1 H NMR spectrum of d-glucose, the resonance frequencies of the anomeric protons of five d-glucose anomers could be determined in dependence on temperature. Besides, the relative concentrations of all cyclic d-glucose anomers could be quantified. Based on that, thermodynamic parameters were calculated. In addition, ring opening rate constants of all cyclic d-glucose anomers were measured for the first time using 1 H selective blind saturation transfer NMR spectroscopy. The results presented here give rise to the assumption that furanoid anomers highly influence the reactivity of total d-glucose. Finally, the complex anomeric equilibration curves for a freshly prepared solution of crystalline α-d-glucopyranose are presented. Based on that, it is hypothesized that the reactivity of a solution of a reducing sugar in general and d-glucose in particular depends on time until the thermodynamic equilibrium state is reached. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Progress in NMR Studies of Liquid Ceramic Materials

    NASA Astrophysics Data System (ADS)

    Marzke, Robert F.; Piwowarczyk, Jeremy; Boucher, Susan; Wolf, George H.

    2003-10-01

    The availability of molten, levitated samples of Al-containing ceramics at temperatures of 2,000^oC and higher permits a broad range of important materials to be investigated by the powerful techniques of NMR.footnote Coutures, J-P., Massiot, D., Bessada, C., Echegut, P., Rifflet, J-C. & Taulelle F., Etude par RMN 27Al daluminates liquides dans le domaine 1600-2100 ^oC. C.R. Acad. Sci. Paris, 1990, 310, 1041. Standard measurements of chemical shift as a function of composition yield information concerning the bonding of Al and the structure of liquid phases, for both novel and well-studied refractory materials. Studies of incoherent motions in a sample, such as Al diffusion or time-dependent convective currents, may also be performed when magnetic field gradients are incorporated into the experimental NMR probe. Recent advances are reviewed, in several research areas.

  14. Measurement of the relaxation rate of the magnetization in Mn12O12-acetate using proton NMR echo

    PubMed

    Jang; Lascialfari; Borsa; Gatteschi

    2000-03-27

    We present a novel method to measure the relaxation rate W of the magnetization of Mn 12O (12)-acetate (Mn12) magnetic molecular cluster in its S = 10 ground state at low T. It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions.

  15. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals.

    PubMed

    Mathew, Dennis; Bhardwaj, Garima; Wang, Qi; Sun, Linlin; Ercan, Batur; Geetha, Manisavagam; Webster, Thomas J

    2014-01-01

    Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significantly increases hydroxyapatite crystal growth into the nonbiologically inspired micron regime. There has been a push to create nanotopographies on implant surfaces to mimic the physiological nanostructure of native bone and, thus, improve osteoblast (bone-forming cell) functions and inhibit bacteria functions. Among the several techniques that have been adopted to develop nanocoatings, electrophoretic deposition (EPD) is an attractive, versatile, and effective material-processing technique. The in vitro study reported here aimed to determine for the first time bacteria responses to hydroxyapatite coated on Ti via EPD. There were six and three times more osteoblasts on the electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 5 days of culture, respectively. Impressively, there were 2.9 and 31.7 times less Staphylococcus aureus on electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 18 hours of culture, respectively. Compared with uncoated Ti and plasma-sprayed hydroxyapatite coated on Ti, the results provided significant promise for the use of EPD to improve bone-cell density and be used as an antibacterial coating without resorting to the use of antibiotics.

  16. Microscopic insights into the NMR relaxation based protein conformational entropy meter

    PubMed Central

    Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua

    2013-01-01

    Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504

  17. NMR Structural Studies of Antimicrobial Peptides: LPcin Analogs.

    PubMed

    Jeong, Ji-Ho; Kim, Ji-Sun; Choi, Sung-Sub; Kim, Yongae

    2016-01-19

    Lactophoricin (LPcin), a component of proteose peptone (113-135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing (1)H-(15)N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting (15)N 1D and 2D (1)H-(15)N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built (1)H-(15)N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55-75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy.

    PubMed

    Sans, Victor; Porwol, Luzian; Dragone, Vincenza; Cronin, Leroy

    2015-02-01

    A configurable platform for synthetic chemistry incorporating an in-line benchtop NMR that is capable of monitoring and controlling organic reactions in real-time is presented. The platform is controlled via a modular LabView software control system for the hardware, NMR, data analysis and feedback optimization. Using this platform we report the real-time advanced structural characterization of reaction mixtures, including 19 F, 13 C, DEPT, 2D NMR spectroscopy (COSY, HSQC and 19 F-COSY) for the first time. Finally, the potential of this technique is demonstrated through the optimization of a catalytic organic reaction in real-time, showing its applicability to self-optimizing systems using criteria such as stereoselectivity, multi-nuclear measurements or 2D correlations.

  19. Non-invasive NMR stratigraphy of a multi-layered artefact: an ancient detached mural painting.

    PubMed

    Di Tullio, Valeria; Capitani, Donatella; Presciutti, Federica; Gentile, Gennaro; Brunetti, Brunetto Giovanni; Proietti, Noemi

    2013-10-01

    NMR stratigraphy was used to investigate in situ, non-destructively and non-invasively, the stratigraphy of hydrogen-rich layers of an ancient Nubian detached mural painting. Because of the detachment procedure, a complex multi-layered artefact was obtained, where, besides layers of the original mural painting, also the materials used during the procedure all became constitutive parts of the artefact. NMR measurements in situ enabled monitoring of the state of conservation of the artefact and planning of minimum representative sampling to validate results obtained in situ by solid-state NMR analysis of the samples. This analysis enabled chemical characterization of all organic materials. Use of reference compounds and prepared specimens assisted data interpretation.

  20. NMR Shielding in Metals Using the Augmented Plane Wave Method

    PubMed Central

    2015-01-01

    We present calculations of solid state NMR magnetic shielding in metals, which includes both the orbital and the complete spin response of the system in a consistent way. The latter contains an induced spin-polarization of the core states and needs an all-electron self-consistent treatment. In particular, for transition metals, the spin hyperfine field originates not only from the polarization of the valence s-electrons, but the induced magnetic moment of the d-electrons polarizes the core s-states in opposite direction. The method is based on DFT and the augmented plane wave approach as implemented in the WIEN2k code. A comparison between calculated and measured NMR shifts indicates that first-principle calculations can obtain converged results and are more reliable than initially concluded based on previous publications. Nevertheless large k-meshes (up to 2 000 000 k-points in the full Brillouin-zone) and some Fermi-broadening are necessary. Our results show that, in general, both spin and orbital components of the NMR shielding must be evaluated in order to reproduce experimental shifts, because the orbital part cancels the shift of the usually highly ionic reference compound only for simple sp-elements but not for transition metals. This development paves the way for routine NMR calculations of metallic systems. PMID:26322148

  1. Bayesian peak picking for NMR spectra.

    PubMed

    Cheng, Yichen; Gao, Xin; Liang, Faming

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein-DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method. Copyright © 2013. Production and hosting by Elsevier Ltd.

  2. Bayesian Peak Picking for NMR Spectra

    PubMed Central

    Cheng, Yichen; Gao, Xin; Liang, Faming

    2013-01-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method. PMID:24184964

  3. Evolution of Quantitative Measures in NMR: Quantum Mechanical qHNMR Advances Chemical Standardization of a Red Clover (Trifolium pratense) Extract

    PubMed Central

    2017-01-01

    Chemical standardization, along with morphological and DNA analysis ensures the authenticity and advances the integrity evaluation of botanical preparations. Achievement of a more comprehensive, metabolomic standardization requires simultaneous quantitation of multiple marker compounds. Employing quantitative 1H NMR (qHNMR), this study determined the total isoflavone content (TIfCo; 34.5–36.5% w/w) via multimarker standardization and assessed the stability of a 10-year-old isoflavone-enriched red clover extract (RCE). Eleven markers (nine isoflavones, two flavonols) were targeted simultaneously, and outcomes were compared with LC-based standardization. Two advanced quantitative measures in qHNMR were applied to derive quantities from complex and/or overlapping resonances: a quantum mechanical (QM) method (QM-qHNMR) that employs 1H iterative full spin analysis, and a non-QM method that uses linear peak fitting algorithms (PF-qHNMR). A 10 min UHPLC-UV method provided auxiliary orthogonal quantitation. This is the first systematic evaluation of QM and non-QM deconvolution as qHNMR quantitation measures. It demonstrates that QM-qHNMR can account successfully for the complexity of 1H NMR spectra of individual analytes and how QM-qHNMR can be built for mixtures such as botanical extracts. The contents of the main bioactive markers were in good agreement with earlier HPLC-UV results, demonstrating the chemical stability of the RCE. QM-qHNMR advances chemical standardization by its inherent QM accuracy and the use of universal calibrants, avoiding the impractical need for identical reference materials. PMID:28067513

  4. In vivo NMR imaging of sodium-23 in the human head.

    PubMed

    Hilal, S K; Maudsley, A A; Ra, J B; Simon, H E; Roschmann, P; Wittekoek, S; Cho, Z H; Mun, S K

    1985-01-01

    We report the first clinical nuclear magnetic resonance (NMR) images of cerebral sodium distribution in normal volunteers and in patients with a variety of pathological lesions. We have used a 1.5 T NMR magnet system. When compared with proton distribution, sodium shows a greater variation in its concentration from tissue to tissue and from normal to pathological conditions. Image contrast calculated on the basis of sodium concentration is 7 to 18 times greater than that of proton spin density. Normal images emphasize the extracellular compartments. In the clinical studies, areas of recent or old cerebral infarction and tumors show a pronounced increase of sodium content (300-400%). Actual measurements of image density values indicate that there is probably a further accentuation of the contrast by the increased "NMR visibility" of sodium in infarcted tissue. Sodium imaging may prove to be a more sensitive means for early detection of some brain disorders than other imaging methods.

  5. NMR evidence of charge fluctuations in multiferroic CuBr2

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Qi; Zheng, Jia-Cheng; Chen, Tao; Wang, Peng-Shuai; Zhang, Jin-Shan; Cui, Yi; Wang, Chao; Li, Yuan; Xu, Sheng; Yuan, Feng; Yu, Wei-Qiang

    2018-03-01

    We report combined magnetic susceptibility, dielectric constant, nuclear quadruple resonance (NQR), and zero-field nuclear magnetic resonance (NMR) measurements on single crystals of multiferroics CuBr2. High quality of the sample is demonstrated by the sharp magnetic and magnetic-driven ferroelectric transition at {T}{{N}}={T}{{C}}≈ 74 K. The zero-field 79Br and 81Br NMR are resolved below T N. The spin-lattice relaxation rates reveal charge fluctuations when cooled below 60 K. Evidences of an increase of NMR linewidth, a reduction of dielectric constant, and an increase of magnetic susceptibility are also seen at low temperatures. These data suggest an emergent instability which competes with the spiral magnetic ordering and the ferroelectricity. Candidate mechanisms are discussed based on the quasi-one-dimensional nature of the magnetic system. Project supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant No. 11374364), the Fundamental Research Funds for the Central Universities of China, and the Research Funds of Renmin University, China (Grant No. 14XNLF08).

  6. Analytical challenges in drug counterfeiting and falsification-The NMR approach.

    PubMed

    Holzgrabe, Ulrike; Malet-Martino, Myriam

    2011-06-25

    Counterfeiting of products is a global problem. As long as clothes, clocks, leather wear, etc. are faked there is no danger, but when it comes to drugs, counterfeiting can be life-threatening. In the last years sub-standard active pharmaceutical ingredients (APIs) were found more often even though the use of the quality-ensuring methods of international pharmacopoeias should have detected additional impurities and the low content of the API. Methods orthogonal to the separating methods used in the pharmacopoeias are necessary to find counterfeits. Beside Raman and NIR spectroscopies as well as powder X-ray analysis, NMR spectroscopy being a primary ratio method of measurement is highly suitable to identify and quantify a drug and its related substances as well as to recognize a drug of sub-standard quality. DOSY experiments are suitable to identify the ingredients of formulations and therefore to identify wrong and/or additional ingredients. This review gives an overview of the application of quantitative NMR spectroscopy and DOSY NMR in anticounterfeiting. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Observation of NMR noise from solid samples.

    PubMed

    Schlagnitweit, Judith; Dumez, Jean-Nicolas; Nausner, Martin; Jerschow, Alexej; Elena-Herrmann, Bénédicte; Müller, Norbert

    2010-11-01

    We demonstrate that proton NMR noise signals, i.e. NMR spectra without excitation by radio frequency, can be obtained from solid samples. Experimental results are shown for static and magic-angle spinning conditions. In addition, a tuning procedure based on the probes' NMR noise characteristics and similar to the one described previously for liquids probes can also be used to optimize signal-to-noise ratios in ¹H-MAS experiments. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants.

    PubMed

    Pishbin, Fatemehsadat; Mouriño, Viviana; Flor, Sabrina; Kreppel, Stefan; Salih, Vehid; Ryan, Mary P; Boccaccini, Aldo R

    2014-06-11

    Despite their widespread application, metallic orthopaedic prosthesis failure still occurs because of lack of adequate bone-bonding and the incidence of post-surgery infections. The goal of this research was to develop multifunctional composite chitosan/Bioglass coatings loaded with gentamicin antibiotic as a suitable strategy to improve the surface properties of metallic implants. Electrophoretic deposition (EPD) was applied as a single-step technology to simultaneously deposit the biopolymer, bioactive glass particles, and the antibiotic on stainless steel substrate. The microstructure and composition of the coatings were characterized using SEM/EDX, XRD, FTIR, and TGA/DSC, respectively. The in vitro bioactivity of the coatings was demonstrated by formation of hydroxyapatite after immersion in simulated body fluid (SBF) in a short period of 2 days. High-performance liquid chromatography (HPLC) measurements indicated the release of 40% of the loaded gentamicin in phosphate buffered saline (PBS) within the first 5 days. The developed composite coating supported attachment and proliferation of MG-63 cells up to 10 days. Moreover, disc diffusion test showed improved bactericidal effect of gentamicin-loaded composite coatings against S. aureus compared to control non-gentamicin-loaded coatings.

  9. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR.

    PubMed

    Mobli, Mehdi; Hoch, Jeffrey C

    2014-11-01

    Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR

    PubMed Central

    Mobli, Mehdi; Hoch, Jeffrey C.

    2017-01-01

    Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR. PMID:25456315

  11. Contact replacement for NMR resonance assignment.

    PubMed

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-07-01

    Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein-protein and protein-ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1-2 AA), noise (250-600%) and missings (10-40%). Our algorithm achieves very good overall assignment accuracy, above 80% in alpha-helices, 70% in beta-sheets and 60% in loop regions. Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  12. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  13. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  14. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  15. 27Al-NMR studies of the structural phase transition in LaPd2Al2

    NASA Astrophysics Data System (ADS)

    Aoyama, Taisuke; Kobayashi, Fumiaki; Kotegawa, Hisashi; Tou, Hideki; Doležal, Petr; Kriegner, Dominik; Javorský, Pavel; Uhlířová, Klára

    2018-05-01

    We performed 27Al-NMR measurements for the CaBe2Ge2 type single crystalline LaPd2Al2 in the temperature range from 100 K to 5 K to investigate the origin of the structural phase transition. We found that the line profile of the 27Al-NMR spectrum does not change entirely on passing through the structural phase transition at Tst. Meanwhile, the peak position of the central line slightly change (≈ 30 ppm) below 70 K, suggesting the orbital shift changes below Tst. The present 27Al-NMR studies evidence that the local electronic state at Al site is hardly affected by the structural phase transition.

  16. Software Library for Bruker TopSpin NMR Data Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A software library for parsing and manipulating frequency-domain data files that have been processed using the Bruker TopSpin NMR software package. In the context of NMR, the term "processed" indicates that the end-user of the Bruker TopSpin NMR software package has (a) Fourier transformed the raw, time-domain data (the Free Induction Decay) into the frequency-domain and (b) has extracted the list of NMR peaks.

  17. NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

    1993-01-01

    Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

  18. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  19. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).

    PubMed

    Otten, Renee; Villali, Janice; Kern, Dorothee; Mulder, Frans A A

    2010-12-01

    To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ (1)H Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [(1)H, (13)C]-d-glucose in ∼100% D(2)O, which yields CHD(2) methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using (13)C TOCSY NMR spectroscopy, as was recently demonstrated (Otten, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure (1)H CPMG relaxation dispersion profiles for CHD(2) methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-δ1 and Thr-γ2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong (13)C scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone (15)N CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the (1)H line width were detected for 21 methyl

  20. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Treesearch

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  1. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  2. Reduction of magnetic field fluctuations in powered magnets for NMR using inductive measurements and sampled-data feedback control.

    PubMed

    Li, Mingzhou; Schiano, Jeffrey L; Samra, Jenna E; Shetty, Kiran K; Brey, William W

    2011-10-01

    Resistive and hybrid (resistive/superconducting) magnets provide substantially higher magnetic fields than those available in low-temperature superconducting magnets, but their relatively low spatial homogeneity and temporal field fluctuations are unacceptable for high resolution NMR. While several techniques for reducing temporal fluctuations have demonstrated varying degrees of success, this paper restricts attention to methods that utilize inductive measurements and feedback control to actively cancel the temporal fluctuations. In comparison to earlier studies using analog proportional control, this paper shows that shaping the controller frequency response results in significantly higher reductions in temporal fluctuations. Measurements of temporal fluctuation spectra and the frequency response of the instrumentation that cancels the temporal fluctuations guide the controller design. In particular, we describe a sampled-data phase-lead-lag controller that utilizes the internal model principle to selectively attenuate magnetic field fluctuations caused by the power supply ripple. We present a quantitative comparison of the attenuation in temporal fluctuations afforded by the new design and a proportional control design. Metrics for comparison include measurements of the temporal fluctuations using Faraday induction and observations of the effect that the fluctuations have on nuclear resonance measurements. Copyright © 2011. Published by Elsevier Inc.

  3. NMR studies of protein-nucleic acid interactions.

    PubMed

    Varani, Gabriele; Chen, Yu; Leeper, Thomas C

    2004-01-01

    Protein-DNA and protein-RNA complexes play key functional roles in every living organism. Therefore, the elucidation of their structure and dynamics is an important goal of structural and molecular biology. Nuclear magnetic resonance (NMR) studies of protein and nucleic acid complexes have common features with studies of protein-protein complexes: the interaction surfaces between the molecules must be carefully delineated, the relative orientation of the two species needs to be accurately and precisely determined, and close intermolecular contacts defined by nuclear Overhauser effects (NOEs) must be obtained. However, differences in NMR properties (e.g., chemical shifts) and biosynthetic pathways for sample productions generate important differences. Chemical shift differences between the protein and nucleic acid resonances can aid the NMR structure determination process; however, the relatively limited dispersion of the RNA ribose resonances makes the process of assigning intermolecular NOEs more difficult. The analysis of the resulting structures requires computational tools unique to nucleic acid interactions. This chapter summarizes the most important elements of the structure determination by NMR of protein-nucleic acid complexes and their analysis. The main emphasis is on recent developments (e.g., residual dipolar couplings and new Web-based analysis tools) that have facilitated NMR studies of these complexes and expanded the type of biological problems to which NMR techniques of structural elucidation can now be applied.

  4. Improved Bacterial and Viral Recoveries from 'Complex' Samples using Electrophoretically Assisted Acoustic Focusing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, K; Rose, K; Jung, B

    2008-03-27

    Automated front-end sample preparation technologies can significantly enhance the sensitivity and reliability of biodetection assays [1]. We are developing advanced sample preparation technologies for biowarfare detection and medical point-of-care diagnostics using microfluidic systems with continuous sample processing capabilities. Here we report an electrophoretically assisted acoustic focusing technique to rapidly extract and enrich viral and bacterial loads from 'complex samples', applied in this case to human nasopharyngeal samples as well as simplified surrogates. The acoustic forces capture and remove large particles (> 2 {micro}m) such as host cells, debris, dust, and pollen from the sample. We simultaneously apply an electric fieldmore » transverse to the flow direction to transport small ({le} 2 {micro}m), negatively-charged analytes into a separate purified recovery fluid using a modified H-filter configuration [Micronics US Patent 5,716,852]. Hunter and O'Brien combined transverse electrophoresis and acoustic focusing to measure the surface charge on large particles, [2] but to our knowledge, our work is the first demonstration combining these two techniques in a continuous flow device. Marina et al. demonstrated superimposed dielectrophoresis (DEP) and acoustic focusing for enhanced separations [3], but these devices have limited throughput due to the rapid decay of DEP forces. Both acoustic standing waves and electric fields exert significant forces over the entire fluid volume in microchannels, thus allowing channels with larger dimensions (> 100 {micro}m) and high throughputs (10-100 {micro}L/min) necessary to process real-world volumes (1 mL). Previous work demonstrated acoustic focusing of microbeads [4] and biological species [5] in various geometries. We experimentally characterized our device by determining the biological size-cutoff where acoustic radiation pressure forces no longer transport biological particles. Figure 1 shows images of E

  5. A thin porous substrate using bonded particles for reverse-emulsion electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Ahumada, M.; Bryning, M.; Cromer, R.; Hartono, M.; Lee, S. J.

    2012-03-01

    A thin porous layer of bonded ceramic microparticles has been developed to provide structural integrity and a stationary matrix for use in reflective-mode reverse-emulsion electrophoretic displays (REED), based on self-assembled nanodroplets dispersed in a non-polar liquid. REED ink uses low-cost materials and manufacturing processes, yet is capable of video speed and low voltage operation below 10 V. Porous layers of titanium dioxide (TiO2) are prepared as thin as 10 microns by fluidizing the particles in a water-based slurry with polymeric adhesive. The slurry is distributed between glass shear plates, one of which serves as the substrate for the working device. Particle morphology is examined using scanning electron microscopy and layer uniformity is characterized by opacity measurements using a throughbeam fiber optic sensor. Performance of the bonded matrix with REED ink is compared to baseline performance of a paste mixture, comprised of the same ink and unbonded TiO2 particles. Results show that at 25% volume fraction, the bonded substrate improves image bistability and is better able to maintain both light and dark intensity after extensive switching. The same bonded substrate also improves image bistability when power is disconnected, even compared to a paste with 40% volume fraction of TiO2.

  6. NMR-Fragment Based Virtual Screening: A Brief Overview.

    PubMed

    Singh, Meenakshi; Tam, Benjamin; Akabayov, Barak

    2018-01-25

    Fragment-based drug discovery (FBDD) using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern the competence of NMR in fragment based drug discovery are discussed, as well as later steps that involve optimization of hits obtained by NMR-FBDD.

  7. One-dimensional scanning of moisture in heated porous building materials with NMR.

    PubMed

    van der Heijden, G H A; Huinink, H P; Pel, L; Kopinga, K

    2011-02-01

    In this paper we present a new dedicated NMR setup which is capable of measuring one-dimensional moisture profiles in heated porous materials. The setup, which is placed in the bore of a 1.5 T whole-body scanner, is capable of reaching temperatures up to 500 °C. Moisture and temperature profiles can be measured quasi simultaneously with a typical time resolution of 2-5 min. A methodology is introduced for correcting temperature effects on NMR measurements at these elevated temperatures. The corrections are based on the Curie law for paramagnetism and the observed temperature dependence of the relaxation mechanisms occurring in porous materials. Both these corrections are used to obtain a moisture content profile from the raw NMR signal profile. To illustrate the methodology, a one-sided heating experiment of concrete with a moisture content in equilibrium with 97% RH is presented. This kind of heating experiment is of particular interest in the research on fire spalling of concrete, since it directly reveals the moisture and heat transport occurring inside the concrete. The obtained moisture profiles reveal a moisture peak building up behind the boiling front, resulting in a saturated layer. To our knowledge the direct proof of the formation of a moisture peak and subsequent moisture clogging has not been reported before. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Fluid-Rock Characterization and Interactions in NMR Well Logging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silicamore » sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.« less

  9. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes

    PubMed Central

    Sharp, Kim A.; O’Brien, Evan; Kasinath, Vignesh; Wand, A. Joshua

    2015-01-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O2NH) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O2NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O2axis. A calibration curve for backbone entropy vs. O2NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O2NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O2axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. PMID:25739366

  10. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    PubMed

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  11. Experimental aspects in acquisition of wide bandwidth solid-state MAS NMR spectra of low-γ nuclei with different opportunities on two commercial NMR spectrometers

    NASA Astrophysics Data System (ADS)

    Jakobsen, Hans J.; Bildsøe, Henrik; Gan, Zhehong; Brey, William W.

    2011-08-01

    The acquisition and different appearances observed for wide bandwidth solid-state MAS NMR spectra of low-γ nuclei, using 14N as an illustrative nucleus and employing two different commercial spectrometers (Varian, 14.1 T and Bruker, 19.6 T), have been compared/evaluated and optimized from an experimental NMR and an electronic engineering point of view, to account for the huge differences in these spectra. The large differences in their spectral appearances, employing the recommended/standard experimental set-up for the two different spectrometers, are shown to be associated with quite large differences in the electronic design of the two types of preamplifiers, which are connected to their respective probes through a 50 Ω cable, and are here completely accounted for. This has led to different opportunities for optimum performances in the acquisition of nearly ideal wide bandwidth spectra for low-γ nuclei on the two spectrometers by careful evaluation of the length for the 50 Ω probe-to-preamp cable for the Varian system and appropriate changes to the bandwidth ( Q) of the NMR probe used on the Bruker spectrometer. Earlier, we reported quite distorted spectra obtained with Varian Unity INOVA spectrometers (at 11.4 and 14.1 T) in several exploratory wide bandwidth 14N MAS NMR studies of inorganic nitrates and amino acids. These spectra have now been compared/evaluated with fully analyzed 14N MAS spectra correspondingly acquired at 19.6 T on a Bruker spectrometer. It is shown that our upgraded version of the STARS simulation/iterative-fitting software is capable of providing identical sets for the molecular spectral parameters and corresponding fits to the experimental spectra, which fully agree with the electronic measurements, despite the highly different appearances for the MAS NMR spectra acquired on the Varian and Bruker spectrometers.

  12. Continuous electrophoretic purification of individual analytes from multicomponent mixtures.

    PubMed

    McLaren, David G; Chen, David D Y

    2004-04-15

    Individual analytes can be isolated from multicomponent mixtures and collected in the outlet vial by carrying out electrophoretic purification through a capillary column. Desired analytes are allowed to migrate continuously through the column under the electric field while undesired analytes are confined to the inlet vial by application of a hydrodynamic counter pressure. Using pressure ramping and buffer replenishment techniques, 18% of the total amount present in a bulk sample can be purified when the resolution to the adjacent peak is approximately 3. With a higher resolution, the yield could be further improved. Additionally, by periodically introducing fresh buffer into the sample, changes in pH and conductivity can be mediated, allowing higher purity (>or=99.5%) to be preserved in the collected fractions. With an additional reversed cycle of flow counterbalanced capillary electrophoresis, any individual component in a sample mixture can be purified providing it can be separated in an electrophoresis system.

  13. Formation of diamond nanoparticle thin films by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Goto, Yosuke; Ohishi, Fujio; Tanaka, Kuniaki; Usui, Hiroaki

    2016-03-01

    Thin films of diamond nanoparticles were prepared by electrophoretic deposition (EPD) using 0.5 wt % dispersions in water, ethanol, and 2-propanol. The film growth rate increased with increasing voltage applied to the electrodes. However, an excessive increase in voltage caused the degradation of film morphology. The optimum voltage was 4 V with an electrode separation of 5 mm. The film growth rate was higher in organic solvents than in water. The deposited film had a smooth surface with an average surface roughness comparable to the size of primary particles of the source material. It is notable that the EPD films had a considerably higher physical stability than spin-coated and cast films. The stability was further improved by thermally annealing the films. IR analysis revealed that the diamond nanoparticles have carboxy and amino groups on their surfaces. It is considered that the stability of the EPD films originate from a chemical reaction between these functional groups.

  14. Method for in-situ calibration of electrophoretic analysis systems

    DOEpatents

    Liu, Changsheng; Zhao, Hequan

    2005-05-08

    An electrophoretic system having a plurality of separation lanes is provided with an automatic calibration feature in which each lane is separately calibrated. For each lane, the calibration coefficients map a spectrum of received channel intensities onto values reflective of the relative likelihood of each of a plurality of dyes being present. Individual peaks, reflective of the influence of a single dye, are isolated from among the various sets of detected light intensity spectra, and these can be used to both detect the number of dye components present, and also to establish exemplary vectors for the calibration coefficients which may then be clustered and further processed to arrive at a calibration matrix for the system. The system of the present invention thus permits one to use different dye sets to tag DNA nucleotides in samples which migrate in separate lanes, and also allows for in-situ calibration with new, previously unused dye sets.

  15. Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, P.; Nicholson, P.S.

    1996-08-01

    The mechanisms of electrophoretic deposition (EPD) are discussed and their shortcomings identified. The kinetics of the processes involved are analyzed for constant-current and constant-voltage conditions. A method of determining the Hamaker constant of suspended particles is developed by modeling the relationship between the particle interaction energy and the suspension stability. A three-probe dc technique is used to map the voltage profile around the depositing electrode, and the results are used to explain discrepancies between the calculated and experimentally observed voltage drops during deposition. A mechanism of deposition is proposed based on DLVO theory and particle double-layer distortion/thinning on application ofmore » a dc field to the suspension. Kinetic equations are developed for constant-current and constant-voltage EPD using mass balance conditions; these are verified by experiments. After the phenomenon is introduced and discussed, a critique of the application of EPD to the synthesis of ceramic shapes and coatings is given.« less

  16. Theoretical NMR correlations based Structure Discussion.

    PubMed

    Junker, Jochen

    2011-07-28

    The constitutional assignment of natural products by NMR spectroscopy is usually based on 2D NMR experiments like COSY, HSQC, and HMBC. The actual difficulty of the structure elucidation problem depends more on the type of the investigated molecule than on its size. The moment HMBC data is involved in the process or a large number of heteroatoms is present, a possibility of multiple solutions fitting the same data set exists. A structure elucidation software can be used to find such alternative constitutional assignments and help in the discussion in order to find the correct solution. But this is rarely done. This article describes the use of theoretical NMR correlation data in the structure elucidation process with WEBCOCON, not for the initial constitutional assignments, but to define how well a suggested molecule could have been described by NMR correlation data. The results of this analysis can be used to decide on further steps needed to assure the correctness of the structural assignment. As first step the analysis of the deviation of carbon chemical shifts is performed, comparing chemical shifts predicted for each possible solution with the experimental data. The application of this technique to three well known compounds is shown. Using NMR correlation data alone for the description of the constitutions is not always enough, even when including 13C chemical shift prediction.

  17. Theoretical Modeling of (99)Tc NMR Chemical Shifts.

    PubMed

    Hall, Gabriel B; Andersen, Amity; Washton, Nancy M; Chatterjee, Sayandev; Levitskaia, Tatiana G

    2016-09-06

    Technetium-99 (Tc) displays a rich chemistry due to its wide range of accessible oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and (99)Tc nuclear magnetic resonance (NMR) spectroscopy is widely used to probe chemical environments of Tc in odd oxidation states. However, interpretation of (99)Tc NMR data is hindered by the lack of reference compounds. Density functional theory (DFT) calculations can help to fill this gap, but to date few computational studies have focused on (99)Tc NMR of compounds and complexes. This work evaluates the effectiveness of both pure generalized gradient approximation and their corresponding hybrid functionals, both with and without the inclusion of scalar relativistic effects, to model the (99)Tc NMR spectra of Tc(I) carbonyl compounds. With the exception of BLYP, which performed exceptionally well overall, hybrid functionals with inclusion of scalar relativistic effects are found to be necessary to accurately calculate (99)Tc NMR spectra. The computational method developed was used to tentatively assign an experimentally observed (99)Tc NMR peak at -1204 ppm to fac-Tc(CO)3(OH)3(2-). This study examines the effectiveness of DFT computations for interpretation of the (99)Tc NMR spectra of Tc(I) coordination compounds in high salt alkaline solutions.

  18. Protein structure estimation from NMR data by matrix completion.

    PubMed

    Li, Zhicheng; Li, Yang; Lei, Qiang; Zhao, Qing

    2017-09-01

    Knowledge of protein structures is very important to understand their corresponding physical and chemical properties. Nuclear Magnetic Resonance (NMR) spectroscopy is one of the main methods to measure protein structure. In this paper, we propose a two-stage approach to calculate the structure of a protein from a highly incomplete distance matrix, where most data are obtained from NMR. We first randomly "guess" a small part of unobservable distances by utilizing the triangle inequality, which is crucial for the second stage. Then we use matrix completion to calculate the protein structure from the obtained incomplete distance matrix. We apply the accelerated proximal gradient algorithm to solve the corresponding optimization problem. Furthermore, the recovery error of our method is analyzed, and its efficiency is demonstrated by several practical examples.

  19. Enhanced efficiency of solid-state NMR investigations of energy materials using an external automatic tuning/matching (eATM) robot

    NASA Astrophysics Data System (ADS)

    Pecher, Oliver; Halat, David M.; Lee, Jeongjae; Liu, Zigeng; Griffith, Kent J.; Braun, Marco; Grey, Clare P.

    2017-02-01

    We have developed and explored an external automatic tuning/matching (eATM) robot that can be attached to commercial and/or home-built magic angle spinning (MAS) or static nuclear magnetic resonance (NMR) probeheads. Complete synchronization and automation with Bruker and Tecmag spectrometers is ensured via transistor-transistor-logic (TTL) signals. The eATM robot enables an automated "on-the-fly" re-calibration of the radio frequency (rf) carrier frequency, which is beneficial whenever tuning/matching of the resonance circuit is required, e.g. variable temperature (VT) NMR, spin-echo mapping (variable offset cumulative spectroscopy, VOCS) and/or in situ NMR experiments of batteries. This allows a significant increase in efficiency for NMR experiments outside regular working hours (e.g. overnight) and, furthermore, enables measurements of quadrupolar nuclei which would not be possible in reasonable timeframes due to excessively large spectral widths. Additionally, different tuning/matching capacitor (and/or coil) settings for desired frequencies (e.g.7Li and 31P at 117 and 122 MHz, respectively, at 7.05 T) can be saved and made directly accessible before automatic tuning/matching, thus enabling automated measurements of multiple nuclei for one sample with no manual adjustment required by the user. We have applied this new eATM approach in static and MAS spin-echo mapping NMR experiments in different magnetic fields on four energy storage materials, namely: (1) paramagnetic 7Li and 31P MAS NMR (without manual recalibration) of the Li-ion battery cathode material LiFePO4; (2) paramagnetic 17O VT-NMR of the solid oxide fuel cell cathode material La2NiO4+δ; (3) broadband 93Nb static NMR of the Li-ion battery material BNb2O5; and (4) broadband static 127I NMR of a potential Li-air battery product LiIO3. In each case, insight into local atomic structure and dynamics arises primarily from the highly broadened (1-25 MHz) NMR lineshapes that the eATM robot is uniquely

  20. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm).