Science.gov

Sample records for electroweak scalar bosons

  1. Electroweak Baryogenesis and Colored Scalars

    SciTech Connect

    Cohen, Timothy; Pierce, Aaron; /Michigan U., MCTP

    2012-02-15

    We consider the 2-loop finite temperature effective potential for a Standard Model-like Higgs boson, allowing Higgs boson couplings to additional scalars. If the scalars transform under color, they contribute 2-loop diagrams to the effective potential that include gluons. These 2-loop effects are perhaps stronger than previously appreciated. For a Higgs boson mass of 115 GeV, they can increase the strength of the phase transition by as much as a factor of 3.5. It is this effect that is responsible for the survival of the tenuous electroweak baryogenesis window of the Minimal Supersymmetric Standard Model. We further illuminate the importance of these 2-loop diagrams by contrasting models with colored scalars to models with singlet scalars. We conclude that baryogenesis favors models with light colored scalars. This motivates searches for pair-produced di-jet resonances or jet(s) + = E{sub T}.

  2. Inert scalars and vacuum metastability around the electroweak scale

    NASA Astrophysics Data System (ADS)

    Świeżewska, Bogumiła

    2015-07-01

    We analyse effective potential around the electroweak (EW) scale in the Standard Model (SM) extended with a heavy scalar doublet. We show that the additional scalars can have a strong impact on vacuum stability. Although the additional heavy scalars may improve the behaviour of running Higgs self-coupling at large field values, we prove that they can destabilise the vacuum due to EW-scale effects. A new EW symmetry conserving minimum of the effective potential can appear rendering the electroweak symmetry breaking (EWSB) minimum meta- or unstable. However, for the case of the inert doublet model (IDM) with a 125 GeV Higgs boson we demonstrate that the parameter space region where the vacuum is meta- or unstable cannot be reconciled with the constraints from perturbative unitarity, electroweak precision tests (EWPT) and dark matter relic abundance measurements.

  3. Tevatron Measurements of Electroweak Boson Production

    SciTech Connect

    Hooper, Ryan J.; /Lewis U.

    2011-08-01

    With a large and still increasing dataset, W and Z boson physics studies at the Tevatron p{bar p} collider are particularly useful for testing many aspects of the Standard Model. In this proceeding, we present measurements of electroweak boson properties, distributions, and charge asymmetries. We examine both solitary W and Z production as well as production in association with jets. These measurements are compared to NLO QCD predictions, are used to extract fundamental Standard Model parameters, and constrain parton distribution functions.

  4. Electroweak baryogenesis in a scalar-assisted vectorlike fermion model

    NASA Astrophysics Data System (ADS)

    Xiao, Ming-Lei; Yu, Jiang-Hao

    2016-07-01

    We extend the standard model to a scalar-assisted vectorlike fermion model to realize electroweak baryogenesis. The extended Cabibbo-Kobayashi-Maskawa matrix, due to the mixing among the vectorlike quark and the standard model quarks, provides additional sources of the C P violation. Together with the enhancement from a large vectorlike quark mass, a large enough baryon-to-photon ratio could be obtained. The strongly first-order phase transition could be realized via the potential barrier which separates the broken minimum and the symmetric minimum in the scalar potential. We investigate in detail the one loop temperature-dependent effective potential and perform a random parameter scan to study the allowed parameter region that satisfies the strongly first order phase transition criteria vc≥Tc. Several distinct patterns of phase transition are classified and discussed. Among these patterns, a large trilinear mass term between the Higgs boson and the scalar is preferred, for it controls the width of the potential barrier. Our results indicate large quartic scalar couplings and a moderate mixing angle between the Higgs boson and the new scalar. This parameter region could be further explored at the Run 2 LHC.

  5. Standard electroweak interactions and Higgs bosons

    SciTech Connect

    Cox, B.; Gilman, F.J.

    1984-09-01

    In the standard model, only one basic component remains to be found: the Higgs boson. The specifics of Higgs boson production and detection, with decay to t anti t and a particular t quark mass range in mind, have not been examined in detail. As such, the working group on Standard Electroweak Interactions and Higgs Bosons at this meeting decided to concentrate on Higgs boson production and detection at SSC energies in the particular case where the Higgs mass is in the range so as to make t anti t quark-antiquark pairs the dominant decay mode. The study of this case, that of the so-called intermediate mass Higgs, had already been launched in the Berkeley PSSC Workshop on Electroweak Symmetry Breaking, and was continued and extended here. The problems of t quark jet identification and detection efficiency and the manner of rejection of background (especially from b quark jets) with realistic detectors then occupied much of the attention of the group. The subject of making precise measurements of parameters in the standard model at SSC energies is briefly examined. Then we delve into the Higgs sector, with an introduction to the neutral Higgs of the standard model together with its production cross-sections in various processes and the corresponding potential backgrounds. A similar, though briefer, discussion for a charged Higgs boson (outside the Standard Model) follows. The heart of the work on identifying and reconstructing the t and then the Higgs boson in the face of backgrounds is discussed. The problems with semileptonic decays, low energy jet fragments, mass resolution, and b-t discrimination all come to the fore. We have tried to make a serious step here towards a realistic assessment of the problems entailed in pulling a signal out of the background, including a rough simulation of calorimeter-detector properties. 25 references.

  6. Electroweak boson production in double parton scattering

    NASA Astrophysics Data System (ADS)

    Golec-Biernat, Krzysztof; Lewandowska, Emilia

    2014-11-01

    We study the W+W- and Z0Z0 electroweak boson production in double parton scattering using QCD evolution equations for double parton distributions. In particular, we analyze the impact of splitting terms in the evolution equations on the double parton scattering cross sections. Unlike the standard terms, the splitting terms are not suppressed for large values of the relative momentum of two partons in the double parton scattering. Thus, they play an important role which we discuss in detail for the single splitting contribution to the cross sections under the study.

  7. Electroweak Boson Production in Association with Jets

    NASA Astrophysics Data System (ADS)

    Focke, Christfried Hermann

    The high energies involved in modern collider experiments lead to hadronic final states that are often boosted inside collimated jets and surrounded by soft radiation. Together with tracking and energy information from leptons and photons, these jets contain essential information about a collision event. A good theoretical understanding is vital for measurements within the Standard Model (SM) as well as for background modeling required for new physics searches. Often one is interested in hadronic final states with cuts on jets in order to reduce backgrounds. For example, by imposing a central jet veto pcut in H → WW → lnulnu one can greatly reduce contamination from tt¯ → WW bb¯. Imposing such a jet veto comes at the cost of introducing potentially large logarithms L = ln pcut/Q into the cross section (Q is the hard scale), since the cuts restrict the cancellation of soft and collinear divergences between real and virtual diagrams. There are at most two powers of L for each power of the strong coupling constant alphas and this can spoil the convergence of the perturbative series when alpha sL2 ˜ 1 . We resume these logarithmically enhanced terms to all orders within the framework of Soft-Collinear Effective Theory (SCET) in order to recover the convergence and obtain reliable predictions for several processes. Another focus of this dissertation is the application of SCET in fixed order predictions of electroweak boson production in association with an exclusive number of final state jets. We employ the N-jettiness event-shape TN to resolve the infrared singularity structure of QCD in the presence of N signal jets. This allows us to obtain the first complete next-to-next-to leading order predictions for W, Z and Higgs boson production in association with one jet.

  8. Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies

    NASA Astrophysics Data System (ADS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Wainwright, Carroll L.; Winslow, Peter

    2015-02-01

    We update the phenomenology of gauge-singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. Considering the introduction of one real scalar singlet to the scalar potential, we analyze present constraints on the potential parameters from Higgs coupling measurements at the Large Hadron Collider (LHC) and electroweak precision observables for the kinematic regime in which no new scalar decay modes arise. We then show how future precision measurements of Higgs boson signal strengths and the Higgs self-coupling could probe the scalar potential parameter space associated with a strong first-order electroweak phase transition. We illustrate using benchmark precision for several future collider options, including the high-luminosity LHC, the International Linear Collider, Triple-Large Electron-Positron collider, the China Electron-Positron Collider, and a 100 TeV proton-proton collider, such as the Very High Energy LHC or the Super Proton-Proton Collider. For the regions of parameter space leading to a strong first-order electroweak phase transition, we find that there exists considerable potential for observable deviations from purely Standard Model Higgs properties at these prospective future colliders.

  9. LHC signals for warped electroweak charged gauge bosons

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Gopalakrishna, Shrihari; Han, Tao; Huang, Gui-Yu; Soni, Amarjit

    2009-10-01

    We study signals at the LHC for the Kaluza-Klein (KK) excitations of electroweak charged gauge bosons in the framework of the standard model (SM) fields propagating in the bulk of a warped extra dimension. Such a scenario can solve both the Planck-weak and flavor hierarchy problems of the SM. There are two such charged states in this scenario with couplings to light quarks and leptons being suppressed relative to those in the SM, whereas the couplings to top/bottom quarks are enhanced, similar to the case of electroweak neutral gauge bosons previously studied. However, unlike the case of electroweak neutral gauge bosons, there is no irreducible QCD background (including pollution from possibly degenerate KK gluons) for decays to top+bottom final states so that this channel is useful for the discovery of the charged states. Moreover, decays of electroweak charged gauge bosons to longitudinal W, Z and Higgs are enhanced just as for the neutral bosons. However, unlike for the neutral gauge bosons, the purely leptonic (and hence clean) decay mode of the WZ is fully reconstructible so that the ratio of the signal to the SM (electroweak) background can potentially be enhanced by restricting to the resonance region more efficiently. We show that such final states can give sensitivity to 2(3) TeV masses with an integrated luminosity of 100(300)fb-1. We emphasize that improvements in discriminating a QCD jet from a highly boosted hadronically decaying W, and a highly boosted top jet from a bottom jet will enhance the reach for these KK particles, and that the signals we study for the warped extra dimensional model might actually be applicable also to a wider class of nonsupersymmetric models of electroweak symmetry breaking.

  10. Probing trilinear gauge boson interactions via single electroweak gauge boson production at the CERN LHC

    SciTech Connect

    Eboli, O.J.P.; Gonzalez-Garcia, M.C.

    2004-10-01

    We analyze the potential of the CERN Large Hadron Collider (LHC) to study anomalous trilinear vector-boson interactions W{sup +}W{sup -}{gamma} and W{sup +}W{sup -}Z through the single production of electroweak gauge bosons via the weak boson fusion processes qq{yields}qqW({yields}l{sup {+-}}{nu}) and qq{yields}qqZ({yields}l{sup +}l{sup -}) with l=e or {mu}. After a careful study of the standard model backgrounds, we show that the single production of electroweak bosons at the LHC can provide stringent tests on deviations of these vertices from the standard model prediction. In particular, we show that single gauge-boson production exhibits a sensitivity to the couplings {delta}{kappa}{sub Z,{gamma}} similar to that attainable from the analysis of electroweak boson pair production.

  11. Electroweak boson pair production at the Tevatron

    SciTech Connect

    Errede, S.M.

    1994-12-01

    Preliminary results from CDF and D{O} on W{gamma}, Z{gamma} and WW, WZ, ZZ boson pair production in {radical}s = 1.8 TeV {anti p}-p collisions from the 1992--93 collider run are presented. Direct limits on CP-conserving and CP-violating WW{gamma}, WWZ, ZZ{gamma} and Z{gamma}{gamma} anomalous couplings have been obtained. The results are consistent with Standard Model expectations. In the static limit, the direct experimental limits on WW{gamma} and ZZ{gamma} anomalous couplings are related to bounds on the higher-order static (transition) EM moments of the W(Z) bosons. Expectations from the on-going and future Tevatron collider runs are discussed.

  12. Electroweak interacting dark matter with a singlet scalar portal

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Senaha, Eibun

    2015-11-01

    We investigate an electroweak interacting dark matter (DM) model in which the DM is the neutral component of the SU(2)L triplet fermion that couples to the standard model (SM) Higgs sector via an SM singlet Higgs boson. In this setup, the DM can have a CP-violating coupling to the singlet Higgs boson at the renormalizable level. As long as the nonzero Higgs portal coupling (singlet-doublet Higgs boson mixing) exists, we can probe CP violation of the DM via the electric dipole moment of the electron. Assuming the O (1) CP-violating phase in magnitude, we investigate the relationship between the electron EDM and the singlet-like Higgs boson mass and coupling. It is found that for moderate values of the Higgs portal couplings, current experimental EDM bound is not able to exclude the wide parameter space due to a cancellation mechanism at work. We also study the spin-independent cross section of the DM in this model. It is found that although a similar cancellation mechanism may diminish the leading-order correction, as often occurs in the ordinary Higgs portal DM scenarios, the residual higher-order effects leave an O (10-47) cm2 correction in the cancellation region. It is shown that our benchmark scenarios would be fully tested by combining all future experiments of the electron EDM, DM direct detection and Higgs physics.

  13. Electroweak boson pair production at CDF

    SciTech Connect

    CDF Collaboration

    1994-06-01

    Preliminary results from CDF on W + {gamma}, Z + {gamma} and W{sup +}W{sup {minus}}, WZ, ZZ boson pair production in {radical}s = 1.8 TeV {anti p}-p collisions from the 1992--93 collider run are presented. Measurements of the production cross section {times} decay branching ratios {sigma} * B(W + {gamma}) and {sigma} * B(Z + {gamma}) have been obtained. The cross section ratios R(W{gamma}/W), R(Z{gamma}/Z), R(W{gamma}/Z{gamma}) and R(W/Z) are discussed. The authors extract direct limits on CP-conserving and CP-violating WW{gamma}, WWZ, ZZ{gamma} and Z{gamma}{gamma} anomalous couplings. In the static limit, the direct experimental limits on WW{gamma} and ZZ{gamma} anomalous couplings are related to bounds on the higher-order static (transition) EM moments of the W (Z) bosons. Expectations from the on-going and future Tevatron collider runs are discussed.

  14. Noninertial effects on the quantum dynamics of scalar bosons

    NASA Astrophysics Data System (ADS)

    Castro, Luis B.

    2016-02-01

    The noninertial effect of rotating frames on the quantum dynamics of scalar bosons embedded in the background of a cosmic string is considered. In this work, scalar bosons are described by the Duffin-Kemmer-Petiau (DKP) formalism. Considering the DKP oscillator in this background the combined effects of a rotating frames and cosmic string on the equation of motion, energy spectrum, and DKP spinor are analyzed and discussed in detail. Additionally, the effect of rotating frames on the scalar bosons' localization is studied.

  15. Gamma-ray constraints on dark-matter annihilation to electroweak gauge and Higgs bosons

    SciTech Connect

    Fedderke, Michael A.; Kolb, Edward W.; Lin, Tongyan; Wang, Lian-Tao E-mail: Rocky.Kolb@uchicago.edu E-mail: liantaow@uchicago.edu

    2014-01-01

    Dark-matter annihilation into electroweak gauge and Higgs bosons results in γ-ray emission. We use observational upper limits on the fluxes of both line and continuum γ-rays from the Milky Way Galactic Center and from Milky Way dwarf companion galaxies to set exclusion limits on allowed dark-matter masses. (Generally, Galactic Center γ-ray line search limits from the Fermi-LAT and the H.E.S.S. experiments are most restrictive.) Our limits apply under the following assumptions: a) the dark matter species is a cold thermal relic with present mass density equal to the measured dark-matter density of the universe; b) dark-matter annihilation to standard-model particles is described in the non-relativistic limit by a single effective operator O∝J{sub DM}⋅J{sub SM}, where J{sub DM} is a standard-model singlet current consisting of dark-matter fields (Dirac fermions or complex scalars), and J{sub SM} is a standard-model singlet current consisting of electroweak gauge and Higgs bosons; and c) the dark-matter mass is in the range 5 GeV to 20 TeV. We consider, in turn, the 34 possible operators with mass dimension 8 or lower with non-zero s-wave annihilation channels satisfying the above assumptions. Our limits are presented in a large number of figures, one for each of the 34 possible operators; these limits can be grouped into 13 classes determined by the field content and structure of the operators. We also identify three classes of operators (coupling to the Higgs and SU(2){sub L} gauge bosons) that can supply a 130 GeV line with the desired strength to fit the putative line signal in the Fermi-LAT data, while saturating the relic density and satisfying all other indirect constraints we consider.

  16. Dynamic transition to spontaneous scalarization in boson stars

    SciTech Connect

    Alcubierre, Miguel; Degollado, Juan C.; Nunez, Dario; Salgado, Marcelo; Ruiz, Milton

    2010-06-15

    We show that the phenomenon of spontaneous scalarization predicted in neutron stars within the framework of scalar-tensor tensor theories of gravity, also takes place in boson stars without including a self-interaction term for the boson field (other than the mass term), contrary to what was claimed before. The analysis is performed in the physical (Jordan) frame and is based on a 3+1 decomposition of spacetime assuming spherical symmetry.

  17. CERN LHC signals for warped electroweak neutral gauge bosons

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Davoudiasl, Hooman; Gopalakrishna, Shrihari; Han, Tao; Huang, Gui-Yu; Perez, Gilad; Si, Zong-Guo; Soni, Amarjit

    2007-12-01

    We study signals at the Large Hadron Collider (LHC) for Kaluza-Klein (KK) excitations of the electroweak gauge bosons in the framework with the standard model (SM) gauge and fermion fields propagating in a warped extra dimension. Such a framework addresses both the Planck-weak and flavor hierarchy problems of the SM. Unlike the often studied Z' cases, in this framework, there are three neutral gauge bosons due to the underlying SU(2)L×SU(2)R×U(1)X gauge group in the bulk. Furthermore, couplings of these KK states to light quarks and leptons are suppressed, whereas those to top and bottom quarks are enhanced compared to the SM gauge couplings. Therefore, the production of light quark and lepton states is suppressed relative to other beyond the SM constructions, and the fermionic decays of these states are dominated by the top and bottom quarks, which are, though, overwhelmed by KK gluons dominantly decaying into them. However, as we emphasize in this paper, decays of these states to longitudinal W, Z and Higgs are also enhanced similarly to the case of top and bottom quarks. We show that the W, Z and Higgs final states can give significant sensitivity at the LHC to ˜2(3)TeV KK scale with an integrated luminosity of ˜100fb-1 (˜1ab-1). Since current theoretical framework(s) favor KK masses ≳3TeV, a luminosity upgrade of LHC is likely to be crucial in observing these states.

  18. LIPSS results for photons coupling to light neutral scalar bosons

    SciTech Connect

    Andrei Afanasev; Oliver K. Baker; Kevin Beard; George Biallas; James Boyce; Minarni Minarni; Roopchan Ramdon; Michelle D. Shinn; Penny Slocum

    2008-06-01

    The LIPSS search for a light neutral scalar boson coupling to optical photons is reported. The search covers a region of parameter space of approximately 1.0 meV and coupling strength greater than 10^-6 GeV^-1. The LIPSS results show no evidence for scalar coupling in this region of parameter space.

  19. Electroweak baryogenesis from exotic electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Blinov, Nikita; Kozaczuk, Jonathan; Morrissey, David E.; Tamarit, Carlos

    2015-08-01

    We investigate scenarios in which electroweak baryogenesis can occur during an exotic stage of electroweak symmetry breaking in the early Universe. This transition is driven by the expectation value of a new electroweak scalar instead of the standard Higgs field. A later, second transition then takes the system to the usual electroweak minimum, dominated by the Higgs boson, while preserving the baryon asymmetry created in the first transition. We discuss the general requirements for such a two-stage electroweak transition to be suitable for electroweak baryogenesis and present a toy model that illustrates the necessary ingredients. We then apply these results to construct an explicit realization of this scenario within the inert two Higgs doublet model. Despite decoupling the Higgs from the symmetry-breaking transition required for electroweak baryogenesis, we find that this picture generically predicts new light states that are accessible experimentally.

  20. Genesis of electroweak and dark matter scales from a bilinear scalar condensate

    NASA Astrophysics Data System (ADS)

    Kubo, Jisuke; Yamada, Masatoshi

    2016-04-01

    The condensation of scalar bilinear in a classically scale invariant strongly interacting hidden sector is used to generate the electroweak scale, where the excitation of the condensate is identified as dark matter. We formulate an effective theory for the condensation of the scalar bilinear and find in the self-consistent mean field approximation that the dark matter mass is of O (1 ) TeV with the spin-independent elastic cross section off the nucleon slightly below the LUX upper bound.

  1. Scalar representations in the light of electroweak phase transition and cold dark matter phenomenology

    SciTech Connect

    AbdusSalam, Shehu S.; Chowdhury, Talal Ahmed E-mail: chowdhu@sissa.it

    2014-05-01

    The extension of the standard model's minimal Higgs sector with an inert SU(2){sub L} scalar doublet can provide light dark matter candidate and simultaneously induce a strong phase transition for explaining Baryogenesis. There is however no symmetry reasons to prevent the extension using scalars with higher SU(2){sub L} representations. By making random scans over the models' parameters, we show that in the light of electroweak physics constraints, strong first order electroweak phase transition and the possibility of having sub-TeV cold dark matter candidate the higher representations are rather disfavored compared to the inert doublet. This is done by computing generic perturbativity behavior and impact on electroweak phase transitions of higher representations in comparison with the inert doublet model. Explicit phase transition and cold dark matter phenomenology within the context of the inert triplet and quartet representations are used for detailed illustrations.

  2. Dark matter coupling to electroweak gauge and Higgs bosons: An effective field theory approach

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yuan; Kolb, Edward W.; Wang, Lian-Tao

    2013-12-01

    If dark matter is a new species of particle produced in the early universe as a cold thermal relic (a weakly-interacting massive particle-WIMP), its present abundance, its scattering with matter in direct-detection experiments, its present-day annihilation signature in indirect-detection experiments, and its production and detection at colliders, depend crucially on the WIMP coupling to standard-model (SM) particles. It is usually assumed that the WIMP couples to the SM sector through its interactions with quarks and leptons. In this paper we explore the possibility that the WIMP coupling to the SM sector is via electroweak gauge and Higgs bosons. In the absence of an ultraviolet-complete particle-physics model, we employ effective field theory to describe the WIMP-SM coupling. We consider both scalars and Dirac fermions as possible dark-matter candidates. Starting with an exhaustive list of operators up to dimension 8, we present detailed calculation of dark-matter annihilations to all possible final states, including γγ, γZ, γh, ZZ, Zh, W+W-, hh, and ffbar, and demonstrate the correlations among them. We compute the mass scale of the effective field theory necessary to obtain the correct dark-matter mass density, and well as the resulting photon line signals.

  3. QCD and electroweak interference in Higgs production by gauge boson fusion

    SciTech Connect

    Andersen, Jeppe R.; Smillie, Jennifer M.

    2007-02-01

    We explicitly calculate the contribution to Higgs production at the LHC from the interference between gluon fusion and weak vector boson fusion, and compare it to the pure QCD and pure electroweak result. While the effect is small at tree level, we speculate it will be significantly enhanced by loop effects.

  4. Polarisation of electroweak gauge bosons at the LHC

    NASA Astrophysics Data System (ADS)

    Stirling, James; Vryonidou, Eleni

    2013-05-01

    We present results for the polarisation of gauge bosons produced at the LHC. Polarisation effects for W bosons manifest themselves in the angular distributions of the lepton and in the distributions of lepton transverse momentum and missing transverse energy. The polarisation is discussed for a range of different processes producing W bosons such as W+jets and W from top production. The relative contributions of the different polarisation states vary from process to process, reflecting the dynamics of the underlying hardscattering process. We also calculate the polarisation of the Z boson produced in association with QCD jets at the LHC.

  5. Gravitational waves as a probe of extended scalar sectors with the first order electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Kakizaki, Mitsuru; Kanemura, Shinya; Matsui, Toshinori

    2015-12-01

    We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. Such spectra are numerically evaluated without high temperature expansion in a set of extended scalar sectors with additional N isospin-singlet fields as a concrete example of renormalizable theories. We find that the produced gravitational waves can be significant, so that they are detectable at future gravitational wave interferometers such as DECIGO and BBO. Furthermore, since the spectra strongly depend on N and the mass of the singlet fields, our results indicate that future detailed observation of gravitational waves can be in general a useful probe of extended scalar sectors with the first order phase transition.

  6. Electroweak and QCD corrections to Higgs production via vector-boson fusion at the CERN LHC

    SciTech Connect

    Ciccolini, M.; Denner, A.; Dittmaier, S.

    2008-01-01

    The radiative corrections of the strong and electroweak interactions are calculated at next-to-leading order for Higgs-boson production in the weak-boson-fusion channel at hadron colliders. Specifically, the calculation includes all weak-boson fusion and quark-antiquark annihilation diagrams to Higgs-boson production in association with two hard jets, including all corresponding interferences. The results on the QCD corrections confirm that previously made approximations of neglecting s-channel diagrams and interferences are well suited for predictions of Higgs production with dedicated vector-boson fusion cuts at the LHC. The electroweak corrections, which also include real corrections from incoming photons and leading heavy Higgs-boson effects at two-loop order, are of the same size as the QCD corrections, viz. typically at the level of 5%-10% for a Higgs-boson mass up to {approx}700 GeV. In general, both types of corrections do not simply rescale differential distributions, but induce distortions at the level of 10%. The discussed corrections have been implemented in a flexible Monte Carlo event generator.

  7. Boson stars: Gravitational equilibria of self-interacting scalar fields

    SciTech Connect

    Colpi, M.; Shapiro, S.L.; Wasserman, I.

    1986-11-17

    Spherically symmetric gravitational equilibria of self-interacting scalar fields phi with interaction potential V(phi) = (1/4)lambdachemically bondphichemically bond/sup 4/ are determined. Surprisingly, the resulting configurations may differ markedly from the noninteracting case even when lambda<<1. Contrary to generally accepted astrophysical folklore, it is found that the maximum masses of such boson stars may be comparable to the Chandrasekhar mass for fermions of mass m/sub fermion/--lambda/sup -1/4/m/sub boson/. .AE

  8. Electroweak symmetry breaking via QCD.

    PubMed

    Kubo, Jisuke; Lim, Kher Sham; Lindner, Manfred

    2014-08-29

    We propose a new mechanism to generate the electroweak scale within the framework of QCD, which is extended to include conformally invariant scalar degrees of freedom belonging to a larger irreducible representation of SU(3)c. The electroweak symmetry breaking is triggered dynamically via the Higgs portal by the condensation of the colored scalar field around 1 TeV. The mass of the colored boson is restricted to be 350  GeV≲mS≲3  TeV, with the upper bound obtained from perturbative renormalization group evolution. This implies that the colored boson can be produced at the LHC. If the colored boson is electrically charged, the branching fraction of the Higgs boson decaying into two photons can slightly increase, and moreover, it can be produced at future linear colliders. Our idea of nonperturbative electroweak scale generation can serve as a new starting point for more realistic model building in solving the hierarchy problem. PMID:25215976

  9. LHC signals for coset electroweak gauge bosons in warped/composite pseudo-Goldstone boson Higgs models

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Azatov, Aleksandr; Han, Tao; Li, Yingchuan; Si, Zong-Guo; Zhu, Lijun

    2010-05-01

    The framework of a warped extra dimension with the standard model (SM) fields propagating in it is a very well-motivated extension of the SM since it can address both the Planck-weak and flavor hierarchy problems of the SM. Within this framework, solution to the little hierarchy problem motivates extending the SM electroweak (EW) 5D gauge symmetry in such a way that its breakdown to the SM delivers the SM Higgs boson. We study signals at the large hadron collider (LHC) for the extra EW (called coset) gauge bosons, a fundamental ingredient of this framework. The coset gauge bosons, due to their unique EW gauge quantum numbers [doublets of SU(2)L], do not couple at leading order to two SM particles. We find that, using the associated production of the charged coset gauge bosons via their coupling to bottom quark and a (light) Kaluza-Klein excitation of the top quark, the LHC can have a 3σ reach of ˜2(2.6)TeV for the coset gauge boson masses with ˜100(1000)fb-1 luminosity. Since current theoretical framework(s) suggest an indirect lower limit on coset gauge boson masses of ≳3TeV, luminosity or energy upgrade of LHC is likely to be crucial in observing these states.

  10. Electroweak gauge-boson production in association with b jets at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Febres Cordero, F.; Reina, L.

    2015-06-01

    The production of both charged and neutral electroweak gauge bosons in association with b jets has attracted a lot of experimental and theoretical attention in recent years because of its central role in the physics programs of both the Fermilab Tevatron and the CERN Large Hadron Collider. The improved level of accuracy achieved both in the theoretical predictions and experimental measurements of these processes can promote crucial developments in modeling b-quark jets and b-quark parton distribution functions, and can provide a more accurate description of some of the most important backgrounds to the measurement of Higgs-boson couplings and several new physics searches. In this paper, we review the status of theoretical predictions for cross sections and kinematic distributions of processes in which an electroweak gauge boson is produced in association with up to two b jets in hadronic collisions, namely p\\bar {p}, pp → V + 1b jet and p\\bar {p}, pp → V + 2b jets with V = W±, Z/γ*, γ. Available experimental measurements at both the Fermilab Tevatron and the CERN Large Hadron Collider are also reviewed and their comparison with theoretical predictions is discussed.

  11. Electroweak Baryogenesis and Higgs Properties

    SciTech Connect

    Cohen, Timothy; Morrissey, David E.; Pierce, Aaron; /Michigan U., MCTP

    2012-03-13

    We explore the connection between the strength of the electroweak phase transition and the properties of the Higgs boson. Our interest is in regions of parameter space that can realize electroweak baryogenesis. We do so in a simplified framework in which a single Higgs field couples to new scalar fields charged under SU(3){sub c} by way of the Higgs portal. Such new scalars can make the electroweak phase transition more strongly first-order, while contributing to the effective Higgs boson couplings to gluons and photons through loop effects. For Higgs boson masses in the range 115 {approx}< m{sub h} {approx}< 130 GeV, whenever the phase transition becomes strong enough for successful electroweak baryogenesis, we find that Higgs boson properties are modified by an amount observable by the LHC. We also discuss the baryogenesis window of the minimal supersymmetric standard model (MSSM), which appears to be under tension. Furthermore, we argue that the discovery of a Higgs boson with standard model-like couplings to gluons and photons will rule out electroweak baryogenesis in the MSSM.

  12. NLO QCD and electroweak corrections to W + γ production with leptonic W-boson decays

    NASA Astrophysics Data System (ADS)

    Denner, Ansgar; Dittmaier, Stefan; Hecht, Markus; Pasold, Christian

    2015-04-01

    We present a calculation of the next-to-leading-order electroweak corrections to W+γ production, including the leptonic decay of the W boson and taking into account all off-shell effects of the W boson, where the finite width of the W boson is implemented using the complex-mass scheme. Corrections induced by incoming photons are fully included and find particular emphasis in the discussion of phenomenological predictions for the LHC. The corresponding next-to-leading-order QCD corrections are reproduced as well. In order to separate hard photons from jets, a quark-to-photon fragmentation function á la Glover and Morgan is employed. Our results are implemented into Monte Carlo programs allowing for the evaluation of arbitrary differential cross sections. We present integrated cross sections for the LHC at 7 TeV, 8 TeV, and 14 TeV as well as differential distributions at 14 TeV for bare muons and dressed leptons. Finally, we discuss the impact of anomalous W W γ couplings.

  13. Pseudo-scalar Higgs boson production at threshold N^3LO and N^3LL QCD

    NASA Astrophysics Data System (ADS)

    Ahmed, Taushif; Kumar, M. C.; Mathews, Prakash; Rana, Narayan; Ravindran, V.

    2016-06-01

    We present the first results on the production of pseudo-scalar Higgs boson through gluon fusion at the LHC to N^3LO in QCD taking into account only soft-gluon effects. We have used the effective Lagrangian that describes the coupling of the pseudo-scalar Higgs boson with the gluons in the large top quark mass limit. We have used quantities that have recently become available, namely the three-loop pseudo-scalar Higgs boson form factor and the third order universal soft function in QCD to achieve this. Along with the fixed order results, we also present the process dependent resummation coefficient for a threshold resummation to N^3LL in QCD. Phenomenological impact of these threshold N^3LO corrections to pseudo-scalar Higgs boson production at the LHC is presented and their role in the reduction of the renormalization scale dependence is demonstrated.

  14. Polarized lepton-nucleon elastic scattering and a search for a light scalar boson

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Sheng; Miller, Gerald A.

    2015-09-01

    Lepton-nucleon elastic scattering, using the one-photon and one-scalar-boson exchange mechanisms considering all possible polarizations, is used to study searches for a new scalar boson and suggest new measurements of the nucleon form factors. A new light scalar boson, which feebly couples to leptons and nucleons, may account for the proton radius and muon g -2 puzzles. We show that the scalar boson produces relatively large effects in a certain kinematic region when using sufficient control of lepton and nucleon spin polarization. We generalize current techniques to measure the ratio GE:GM and present a new method to separately measure GM2 and GE2 using polarized incoming and outgoing muons.

  15. Electroweak Corrections to pp→μ^{+}μ^{-}e^{+}e^{-}+X at the LHC: A Higgs Boson Background Study.

    PubMed

    Biedermann, B; Denner, A; Dittmaier, S; Hofer, L; Jäger, B

    2016-04-22

    The first complete calculation of the next-to-leading-order electroweak corrections to four-lepton production at the LHC is presented, where all off-shell effects of intermediate Z bosons and photons are taken into account. Focusing on the mixed final state μ^{+}μ^{-}e^{+}e^{-}, we study differential cross sections that are particularly interesting for Higgs boson analyses. The electroweak corrections are divided into photonic and purely weak corrections. The former exhibit patterns familiar from similar W- or Z-boson production processes with very large radiative tails near resonances and kinematical shoulders. The weak corrections are of the generic size of 5% and show interesting variations, in particular, a sign change between the regions of resonant Z-pair production and the Higgs signal. PMID:27152792

  16. Electroweak Corrections to p p →μ+μ-e+e-+X at the LHC: A Higgs Boson Background Study

    NASA Astrophysics Data System (ADS)

    Biedermann, B.; Denner, A.; Dittmaier, S.; Hofer, L.; Jäger, B.

    2016-04-01

    The first complete calculation of the next-to-leading-order electroweak corrections to four-lepton production at the LHC is presented, where all off-shell effects of intermediate Z bosons and photons are taken into account. Focusing on the mixed final state μ+μ-e+e-, we study differential cross sections that are particularly interesting for Higgs boson analyses. The electroweak corrections are divided into photonic and purely weak corrections. The former exhibit patterns familiar from similar W - or Z -boson production processes with very large radiative tails near resonances and kinematical shoulders. The weak corrections are of the generic size of 5% and show interesting variations, in particular, a sign change between the regions of resonant Z -pair production and the Higgs signal.

  17. Signals for new spin-1 resonances in electroweak gauge boson pair production at the LHC

    SciTech Connect

    Alves, A.; Eboli, O. J. P.; Netto, D. Goncalves; Gonzalez-Garcia, M. C.; Mizukoshi, J. K.

    2009-10-01

    The mechanism of electroweak symmetry breaking (EWSB) will be directly scrutinized soon at the CERN Large Hadron Collider. We analyze the LHC potential to look for new vector bosons associated with the EWSB sector, presenting a possible model independent approach to search for these new spin-1 resonances. We show that the analyses of the processes pp{yields}l{sup +}l{sup '-}Ee{sub T}, l{sup {+-}}jjEe{sub T}, l{sup '{+-}}l{sup +}l{sup -}Ee{sub T}, l{sup {+-}}jjEe{sub T}, and l{sup +}l{sup -}jj (with l, l{sup '}=e or {mu} and j=jet) have a large reach at the LHC and can lead to the discovery or exclusion of many EWSB scenarios such as Higgsless models.

  18. Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Huang, Peisi; Mickelson, Dan; Mustafayev, Azar; Tata, Xerxes

    2013-06-01

    Models of natural supersymmetry seek to solve the little hierarchy problem by positing a spectrum of light Higgsinos ≲200-300GeV and light top squarks ≲600GeV along with very heavy squarks and TeV-scale gluinos. Such models have low electroweak fine-tuning and satisfy the LHC constraints. However, in the context of the minimal supersymmetric standard model, they predict too low a value of mh, are frequently in conflict with the measured b→sγ branching fraction, and the relic density of thermally produced Higgsino-like weakly interacting massive particles (WIMPs) falls well below dark matter measurements. We propose a framework dubbed radiative natural supersymmetry (RNS), which can be realized within the minimal supersymmetric standard model (avoiding the addition of extra exotic matter) and which maintains features such as gauge coupling unification and radiative electroweak symmetry breaking. The RNS model can be generated from supersymmetry (SUSY) grand unified theory type models with nonuniversal Higgs masses. Allowing for high-scale soft SUSY breaking Higgs mass mHu>m0 leads to automatic cancellations during renormalization group running and to radiatively-induced low fine-tuning at the electroweak scale. Coupled with large mixing in the top-squark sector, RNS allows for fine-tuning at the 3%-10% level with TeV-scale top squarks and a 125 GeV light Higgs scalar h. The model allows for at least a partial solution to the SUSY flavor, CP, and gravitino problems since first-/second-generation scalars (and the gravitino) may exist in the 10-30 TeV regime. We outline some possible signatures for RNS at the LHC, such as the appearance of low invariant mass opposite-sign isolated dileptons from gluino cascade decays. The smoking gun signature for RNS is the appearance of light Higgsinos at a linear e+e- collider. If the strong CP problem is solved by the Peccei-Quinn mechanism, then RNS naturally accommodates mixed axion-Higgsino cold dark matter, where the

  19. QCD and electroweak corrections to Z Z +jet production with Z -boson leptonic decays at the LHC

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Zhang, Ren-You; Ma, Wen-Gan; Li, Xiao-Zhou; Guo, Lei

    2016-07-01

    In this paper we present the full next-to-leading-order (NLO) QCD +NLO electroweak (EW) corrections to the Z -boson pair production in association with a hard jet at the LHC. The subsequent Z -boson leptonic decays are included by adopting both the naive narrow-width approximation and madspin methods for comparison. Since the Z Z +jet production is an important background for single Higgs boson production and new physics searches at hadron colliders, the theoretical predictions with high accuracy for the hadronic production of Z Z +jet are necessary. We present the numerical results of the integrated cross section and various kinematic distributions of final particles, and conclude that it is necessary to take into account the spin correlation and finite-width effects from the Z -boson leptonic decays. We also find that the NLO EW correction is quantitatively non-negligible in matching the experimental accuracy at the LHC, particularly in the high-transverse-momentum region.

  20. Electroweak Sudakov Corrections using Effective Field Theory

    SciTech Connect

    Chiu Juiyu; Golf, Frank; Kelley, Randall; Manohar, Aneesh V.

    2008-01-18

    Electroweak Sudakov corrections of the form {alpha}{sup n}log{sup m}s/M{sub W,Z}{sup 2} are summed using renormalization group evolution in soft-collinear effective theory. Results are given for the scalar, vector, and tensor form factors for fermion and scalar particles. The formalism for including massive gauge bosons in soft-collinear effective theory is developed.

  1. NLO QCD and electroweak corrections to Z + γ production with leptonic Z-boson decays

    NASA Astrophysics Data System (ADS)

    Denner, Ansgar; Dittmaier, Stefan; Hecht, Markus; Pasold, Christian

    2016-02-01

    The next-to-leading-order electroweak corrections to ppto {l}+{l}-/overline{ν}ν +\\upgamma +X production, including all off-shell effects of intermediate Z bosons in the complex-mass scheme, are calculated for LHC energies, revealing the typically expected large corrections of tens of percent in the TeV range. Contributions from quark-photon and photon-photon initial states are taken into account as well, but their impact is found to be moderate or small. Moreover, the known next-to-leading-order QCD corrections are reproduced. In order to separate hard photons from jets, both a quark-to-photon fragmentation function á la Glover/Morgan and Frixione's cone isolation are employed. The calculation is available in the form of Monte Carlo programs allowing for the evaluation of arbitrary differential cross sections. Predictions for integrated cross sections are presented for the LHC at 7 TeV, 8 TeV, and 14 TeV, and differential distributions are discussed at 14 TeV for bare muons and dressed leptons. Finally, we consider the impact of anomalous ZZγ and Zγγ couplings.

  2. Spinning boson stars and Kerr black holes with scalar hair: The effect of self-interactions

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Radu, Eugen; Rúnarsson, Helgi F.

    2016-05-01

    Self-interacting boson stars (BSs) have been shown to alleviate the astrophysically low maximal mass of their nonself-interacting counterparts. We report some physical features of spinning self-interacting BSs, namely their compactness, the occurrence of ergo-regions and the scalar field profiles, for a sample of values of the coupling parameter. The results agree with the general picture that these BSs are comparatively less compact than the nonself-interacting ones. We also briefly discuss the effect of scalar self-interactions on the properties of Kerr black holes with scalar hair.

  3. Symmetry breaking in (gravitating) scalar field models describing interacting boson stars and Q-balls

    SciTech Connect

    Brihaye, Yves; Caebergs, Thierry; Hartmann, Betti; Minkov, Momchil

    2009-09-15

    We investigate the properties of interacting Q-balls and boson stars that sit on top of each other in great detail. The model that describes these solutions is essentially a (gravitating) two-scalar field model where both scalar fields are complex. We construct interacting Q-balls or boson stars with arbitrarily small charges but finite mass. We observe that in the interacting case--where the interaction can be either due to the potential or due to gravity--two types of solutions exist for equal frequencies: one for which the two-scalar fields are equal, but also one for which the two-scalar fields differ. This constitutes a symmetry breaking in the model. While for Q-balls asymmetric solutions have always corresponding symmetric solutions and are thus likely unstable to decay to symmetric solutions with lower energy, there exists a parameter regime for interacting boson stars, where only asymmetric solutions exist. We present the domain of existence for two interacting nonrotating solutions as well as for solutions describing the interaction between rotating and nonrotating Q-balls and boson stars, respectively.

  4. Electroweak bosons in heavy-ion collisions with the CMS detector at =2.76 TeV

    NASA Astrophysics Data System (ADS)

    Florent, Alice; Cms Collaboration

    2013-09-01

    Electroweak gauge bosons W and Z, do not interact strongly, and thus constitute clean probes of the initial state of nucleus-nucleus collisions. The comparison of their production cross-sections in pp and in nuclear collisions provides an estimate of the nuclear parton distribution functions. Despite the low production cross section of weak bosons compared to other nuclear processes, the relatively clean signal of their leptonic decay channel allows their detection. This paper reports measurements of Z and W bosons, produced in PbPb and pp collisions both at nucleon-nucleon center of mass energy =2.76 TeV with the CMS detector. The Z boson yield and the nuclear modification factor (RAA) corresponding to the integrated luminosity of 150 μb-1 for PbPb collisions are presented. The search for W bosons has been performed in the muon plus neutrino channel, using the data sample with integrated luminosity of 7.2 μb-1 for PbPb collisions. Event centrality an muon pseudorapidity dependencies are studied for the complete W candidate sample as well as samples separated by charge (W+ and W-).

  5. Vector and Scalar Bosons at DØ and ATLAS

    SciTech Connect

    Lammers, Sabine Sabine

    2014-09-26

    Vector Boson Fusion (VBF) has never been measured in hadron collisions, but it is one of the most sensitive modes for low mass Standard Model Higgs production at ATLAS. The objective of this proposal is to measure VBF production of W and Z bosons at the DØ Experiment taking place at the Tevatron Collider near Chicago, Illinois, and at the ATLAS Experiment, running at the Large Hadron Collider in Geneva, Switzerland. The framework developed in these measurements will be used to discover and study the Higgs Boson produced through the same mechanism (VBF) at ATLAS. The 10 f b−1 dataset recently collected by the DØ experiment provides a unique opportunity to observe evidence of VBF production of W Bosons, which will provide the required theoretical knowledge - VBF cross sections - and experimental knowledge - tuning of measurement techniques - on which to base the VBF measurements at the LHC. At the time of this writing, the ATLAS experiment has recorded 5 fb−1 of data at √s = 7 TeV, and expects to collect at least another 5 in 2012. Assuming Standard Model cross sections, this dataset will allow for the observation of VBF production of W, Z and Higgs bosons. The major challenges for the first observation of VBF interactions are: developing highly optimized forward jet identification algorithms, and accurately modeling both rates and kinematics of background processes. With the research program outlined in this grant proposal, I plan to address each of these areas, paving the way for VBF observation. The concentration on VBF production for the duration of this grant will be at ATLAS where the anticipated high pileup rates necessitates a cleaner signal. My past experience with forward jet identification at the ZEUS experiment, and with W+(n)Jets measurements at DØ , puts me in a unique position to lead this effort. The proposed program will have a dual focus: on DØ where the VBF analysis effort is mature and efforts of a postdoc will be required to bring the

  6. Higgs bosons, electroweak symmetry breaking, and the physics of the Large Hadron Collider

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2007-02-01

    The Large Hadron Collider, a 7 {circle_plus} 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electroweak symmetry? Why do particle physicists anticipate a great harvest of discoveries within reach of the LHC?

  7. Strong and Electroweak Corrections to the Production of a Higgs Boson+2 Jets via Weak Interactions at the Large Hadron Collider

    SciTech Connect

    Ciccolini, M.; Denner, A.; Dittmaier, S.

    2007-10-19

    Radiative corrections of strong and electroweak interactions are presented at next-to-leading order for the production of a Higgs boson plus two hard jets via weak interactions at the CERN Large Hadron Collider. The calculation includes all weak-boson fusion and quark-antiquark annihilation diagrams as well as the corresponding interferences. The electroweak corrections, which are discussed here for the first time, reduce the cross sections by 5% and thus are of the same order of magnitude as the QCD corrections.

  8. Thermal corrections to Electroweak Decays

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    2016-03-01

    We study the electroweak processes at finite temperatures. This includes the decay rates of electroweak gauge bosons and beta decays. Major thermal corrections come from QED type radiative corrections. Heavy mass of the electroweak gauge bosons helps to suppress the radiative corrections due to the electroweak gauge boson loops. Therefore, dominant thermal corrections are due to the photon loops. We also discuss the relevance of our results to astrophysics and cosmology.

  9. Electroweak top-quark pair production at the LHC with Z ' bosons to NLO QCD in POWHEG

    NASA Astrophysics Data System (ADS)

    Bonciani, Roberto; Ježo, Tomáš; Klasen, Michael; Lyonnet, Florian; Schienbein, Ingo

    2016-02-01

    We present the calculation of the NLO QCD corrections to the electroweak production of top-antitop pairs at the CERN LHC in the presence of a new neutral gauge boson. The corrections are implemented in the parton shower Monte Carlo program POWHEG. Standard Model (SM) and new physics interference effects are properly taken into account. QED singularities, first appearing at this order, are consistently subtracted. Numerical results are presented for SM and Z ' total cross sections and distributions in invariant mass, transverse momentum, azimuthal angle and rapidity of the top-quark pair. The remaining theoretical uncertainty from scale and PDF variations is estimated, and the potential of the charge asymmetry to distinguish between new physics models is investigated for the Sequential SM and a leptophobic topcolor model.

  10. Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP

    NASA Astrophysics Data System (ADS)

    ALEPH Collaboration; DELPHI Collaboration; L3 Collaboration; OPAL Collaboration; LEP Electroweak Working Group 1

    2013-11-01

    Electroweak measurements performed with data taken at the electron-positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb-1 collected by the four LEP experiments ALEPH, DELPHI, L3 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV.

  11. Have we observed the Higgs boson (imposter)?

    NASA Astrophysics Data System (ADS)

    Low, Ian; Lykken, Joseph; Shaughnessy, Gabe

    2012-11-01

    We interpret the new particle at the Large Hadron Collider as a CP-even scalar and investigate its electroweak quantum number. Assuming an unbroken custodial invariance as suggested by precision electroweak measurements, only four possibilities are allowed if the scalar decays to pairs of gauge bosons, as exemplified by a dilaton/radion, a nondilatonic electroweak singlet scalar, an electroweak doublet scalar, and electroweak triplet scalars. We show that current LHC data already strongly disfavor both the “plain-vanilla” dilatonic and nondilatonic singlet imposters. On the other hand, a generic Higgs doublet gives excellent fits to the measured event rates of the newly observed scalar resonance, while the Standard Model Higgs boson gives a slightly worse overall fit due to the lack of a signal in the ττ channel. The triplet imposter exhibits some tension with the data. The global fit indicates that the enhancement in the diphoton channel could be attributed to an enhanced partial decay width, while the production rates are consistent with the Standard Model expectations. We emphasize that more precise measurements of the ratio of event rates in the WW over ZZ channels, as well as the event rates in bb¯ and ττ channels, are needed to further distinguish the Higgs doublet from the triplet imposter.

  12. Electroweak Phase Transitions

    NASA Astrophysics Data System (ADS)

    Anderson, Gregory Wayne

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles, and completes at a temperature where the order parameter, _ {T}, is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially sensitive function of T. In very minimal extensions of the standard model it is quite easy to increase T so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal extensions of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state = 246 GeV unstable. The requirement that the state = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field. Semi-classical reasoning suggests that, when a particle receives a contribution to its mass from the vacuum expectation value of a scalar, under certain conditions, the ground state of particle number one contains a 'dimple' or shallow scalar field condensate around the particle. We argue that this is not the case. A careful analysis, taking into account quantum mechanics, shows that the semi-classical approximation is a poor one. We find that there are no energetically favored one-particle dimple solutions for perturbative couplings.

  13. Radiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar field

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Kikuchi, Mariko; Yagyu, Kei

    2016-06-01

    We calculate renormalized Higgs boson couplings with gauge bosons and fermions at the one-loop level in the model with an additional isospin singlet real scalar field. These coupling constants can deviate from the predictions in the standard model due to tree-level mixing effects and one-loop contributions of the extra neutral scalar boson. We investigate how they can be significant under the theoretical constraints from perturbative unitarity and vacuum stability and also the condition of avoiding the wrong vacuum. Furthermore, comparing with the predictions in the Type I two Higgs doublet model, we numerically demonstrate how the singlet extension model can be distinguished and identified by using precision measurements of the Higgs boson couplings at future collider experiments.

  14. Electroweak corrections and anomalous triple gauge-boson couplings in W{sup +}W{sup -} and W{sup {+-}}Z production at the CERN LHC

    SciTech Connect

    Accomando, E.; Kaiser, A.

    2006-05-01

    We have analyzed the production of WZ and WW vector-boson pairs at the LHC. These processes give rise to four-fermion final states, and are particularly sensitive to possible nonstandard trilinear gauge-boson couplings. We have studied the interplay between the influence of these anomalous couplings and the effect of the complete logarithmic electroweak O({alpha}) corrections. Radiative corrections to the standard model processes in double-pole approximation and nonstandard terms due to trilinear couplings are implemented into a Monte Carlo program for pp{yields}4f(+{gamma}) with final states involving four or two charged leptons. We numerically investigate purely leptonic final states and find that electroweak corrections can fake new-physics signals, modifying the observables by the same amount and shape, in kinematical regions of statistical significance.

  15. Indications for an extra neutral gauge boson in electroweak precision data

    PubMed

    Erler; Langacker

    2000-01-10

    A new analysis of the hadronic peak cross section at LEP 1 implies a small amount of missing invisible width in Z decays, while the effective weak charge in atomic parity violation has been determined recently to 0.6% accuracy, indicating a significantly negative S parameter. As a consequence, the data are described well if the presence of an extra Z' boson, such as predicted in grand unified theories, is assumed. Moreover, the data are now rich enough to study an arbitrary extra Z' boson and to determine its couplings in a model independent way. An excellent fit to the data is obtained in this case, suggestive of a family nonuniversal Z' similar to those predicted in a class of superstring theories. PMID:11015875

  16. Associated production of heavy quarkonia and electroweak bosons at present and future colliders

    NASA Astrophysics Data System (ADS)

    Kniehl, Bernd A.; Palisoc, Caesar P.; Zwirner, Lennart

    2002-12-01

    We investigate the associated production of heavy quarkonia, with angular-momentum quantum numbers 2S+1LJ=1S0,3S1,1P1,3PJ (J=0,1,2), and photons, Z bosons, and W bosons in photon-photon, photon-hadron, and hadron-hadron collisions within the factorization formalism of nonrelativistic quantum chromodynamics providing all contributing partonic cross sections in analytic form. In the case of photoproduction, we also include the resolved-photon contributions. We present numerical results for the processes involving J/ψ and χcJ mesons appropriate for the Fermilab Tevatron, CERN LHC, DESY TESLA, operated in the e+e- and γγ modes, and DESY THERA.

  17. Neutral triple electroweak gauge boson production in the large extra-dimension model at the LHC

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.; Seth, Satyajit

    2012-05-01

    We study the prospects of probing large extra-dimension models at the LHC through neutral triple gauge boson production processes. In theories with extra dimensions these processes result from the exchange of a tower of massive graviton modes between the SM particles. We consider γγγ, γγZ, γZZ, and ZZZ production processes, and present our results for various kinematic distributions at the LHC for S=14TeV.

  18. A search for neutral Higgs bosons in the MSSM and models with two scalar field doublets

    NASA Astrophysics Data System (ADS)

    Ackerstaff, K.; Alexander, G.; Allison, J.; Altekamp, N.; Anderson, K. J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S. F.; Axen, D.; Azuelos, G.; Ball, A. H.; Barberio, E.; Barlow, R. J.; Bartoldus, R.; Batley, J. R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S. D.; Blobel, V.; Bloodworth, I. J.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, R. M.; Burckhart, H. J.; Burgard, C.; Bürgin, R.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrisman, D.; Clarke, P. E. L.; Cohen, I.; Conboy, J. E.; Cooke, O. C.; Couyoumtzelis, C.; Coxe, R. L.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G. M.; Davis, R.; de Jong, S.; Del Pozo, L. A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M. S.; Doucet, M.; Dnchovni, E.; Duckeck, G.; Duerdoth, I. P.; Eatough, D.; Estabrooks, P. G.; Etzion, E.; Evans, H. G.; Evans, M.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A. A.; Feld, L.; Fiedler, F.; Fierro, M.; Fischer, H. M.; Fleck, I.; Folman, R.; Fong, D. G.; Foucher, M.; Fiirtjes, A.; Futyan, D. I.; Gagnon, P.; Gary, J. W.; Gascon, J.; Gascon-Shotkin, S. M.; Geddes, N. I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W. R.; Gingrich, D. M.; Glenzinski, D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwé, M.; Hajdu, C.; Hanson, G. G.; Hansroul, M.; Hapke, M.; Hargrove, C. K.; Hart, P. A.; Hartmann, C.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Hemingway, R. J.; Hcrndon, M.; Herten, G.; Heuer, R. D.; Hildreth, M. D.; Hill, J. C.; Hillier, S. J.; Hobson, P. R.; Hocker, A.; Homer, R. J.; Honma, A. K.; Horvath, D.; Hossain, K. R.; Howard, R.; Hüntemeyer, P.; Hutchcroft, D. E.; Igo-Kemenes, P.; Imrie, D. C.; Ishii, K.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C. R.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T. R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P. I.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D. S.; Kokott, T. P.; Kolrep, M.; Komamiya, S.; Kowalewski, R. V.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G. D.; Lahmann, R.; Lai, W. P.; Lanske, D.; Lauber, J.; Lautenschlager, S. R.; Lawson, I.; Layter, J. G.; Lazic, D.; Lee, A. M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; List, B.; Lloyd, S. L.; Loebinger, F. K.; Long, G. D.; Losty, M. J.; Ludwig, J.; Lui, D.; Maechiolo, A.; MacPherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Markus, C.; Martin, A. J.; Martin, J. P.; Martinez, G.; Mashimo, T.; Mättig, P.; McDonald, W. J.; McKenna, J.; McKigney, E. A.; McMahon, T. J.; McPherson, R. A.; Meijers, F.; Menke, S.; Merritt, F. S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D. J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Mihara, S.; Nagai, K.; Nakaumra, I.; Neal, H. A.; Nellen, B.; Nisius, R.; O'Neale, S. W.; Oakham, F. G.; Odorici, F.; Ogren, H. O.; Oh, A.; Oldershaw, N. J.; Oreglia, M. J.; Orito, S.; Pálinkás, J.; Pásztor, G.; Pater, J. R.; Patrick, G. N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Rembser, C.; Robertson, S.; Robins, S. A.; Rodning, N.; Roney, J. M.; Rooke, A.; Rossi, A. M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D. R.; Sachs, K.; Saeki, T.; Sahr, O.; M. Sang, W.; Sarkisyan, E. K. G.; Sbarra, C.; Schalle, A. D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schöning, A.; Schröder, M.; Schumacher, M.; Schwick, C.; Scott, W. G.; Shears, T. G.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Sherwood, P.; Siroli, G. P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A. M.; Snow, G. A.; Sobie, R.; Söldner-Rembold, S.; Springer, R. W.; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, D.; Ströhmer, R.; Szymanski, P.; Tafirout, R.; Talbot, S. D.; Taras, P.; Tarera, S.; Teuscher, R.; Thiergen, M.; Thomson, M. A.; von Törne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsányi, Z.; Tsur, E.; Turcot, A. S.; Turner-Watson, M. F.; Ueda, I.; Utzat, P.; van Koten, R.; Vannerem, P.; Verzocchi, M.; Vikas, P.; Vokurka, E. H.; Voss, H.; Wäckerle, F.; Wagner, A.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wermes, N.; White, J. S.; Wilson, G. W.; Wilson, J. A.; Wyatt, T. R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-08-01

    A search is described for the neutral Higgs bosons h0 and A0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z0h0 and h0A0 production channels is based on data corresponding to an integrated luminosity of 25 pb-1 from e+e- collisions at centre-of-mass energies between 130 and 172 GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z0 resonance to set limits on mh and ma in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan β > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits mh > 59.0 GeV and ma > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan.

  19. VBFNLO: A parton level Monte Carlo for processes with electroweak bosons

    NASA Astrophysics Data System (ADS)

    Arnold, K.; Bähr, M.; Bozzi, G.; Campanario, F.; Englert, C.; Figy, T.; Greiner, N.; Hackstein, C.; Hankele, V.; Jäger, B.; Klämke, G.; Kubocz, M.; Oleari, C.; Plätzer, S.; Prestel, S.; Worek, M.; Zeppenfeld, D.

    2009-09-01

    VBFNLO is a fully flexible parton level Monte Carlo program for the simulation of vector boson fusion, double and triple vector boson production in hadronic collisions at next-to-leading order in the strong coupling constant. VBFNLO includes Higgs and vector boson decays with full spin correlations and all off-shell effects. In addition, VBFNLO implements CP-even and CP-odd Higgs boson via gluon fusion, associated with two jets, at the leading-order one-loop level with the full top- and bottom-quark mass dependence in a generic two-Higgs-doublet model. A variety of effects arising from beyond the Standard Model physics are implemented for selected processes. This includes anomalous couplings of Higgs and vector bosons and a Warped Higgsless extra dimension model. The program offers the possibility to generate Les Houches Accord event files for all processes available at leading order. Program summaryProgram title:VBFNLO Catalogue identifier: AEDO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL version 2 No. of lines in distributed program, including test data, etc.: 339 218 No. of bytes in distributed program, including test data, etc.: 2 620 847 Distribution format: tar.gz Programming language: Fortran, parts in C++ Computer: All Operating system: Linux, should also work on other systems Classification: 11.1, 11.2 External routines: Optionally Les Houches Accord PDF Interface library and the GNU Scientific library Nature of problem: To resolve the large scale dependence inherent in leading order calculations and to quantify the cross section error induced by uncertainties in the determination of parton distribution functions, it is necessary to include NLO corrections. Moreover, whenever stringent cuts are required on decay products and/or identified jets the question arises whether the scale dependence and a k-factor, defined

  20. Electroweak corrections and unitarity in linear moose models

    SciTech Connect

    Chivukula, R. Sekhar; Simmons, Elizabeth H.; He, H.-J.; Kurachi, Masafumi; Tanabashi, Masaharu

    2005-02-01

    We calculate the form of the corrections to the electroweak interactions in the class of Higgsless models which can be deconstructed to a chain of SU(2) gauge groups adjacent to a chain of U(1) gauge groups, and with the fermions coupled to any single SU(2) group and to any single U(1) group along the chain. The primary advantage of our technique is that the size of corrections to electroweak processes can be directly related to the spectrum of vector bosons ('KK modes'). In Higgsless models, this spectrum is constrained by unitarity. Our methods also allow for arbitrary background 5D geometry, spatially dependent gauge-couplings, and brane kinetic energy terms. We find that, due to the size of corrections to electroweak processes in any unitary theory, Higgsless models with localized fermions are disfavored by precision electroweak data. Although we stress our results as they apply to continuum Higgsless 5D models, they apply to any linear moose model including those with only a few extra vector bosons. Our calculations of electroweak corrections also apply directly to the electroweak gauge sector of 5D theories with a bulk scalar Higgs boson; the constraints arising from unitarity do not apply in this case.

  1. Scalar Bosons Evolving in an Asymptotically A d S 5 Bulk with A d S-Branes Everywhere

    NASA Astrophysics Data System (ADS)

    Dariescu, Ciprian; Dariescu, Marina-Aura

    2015-10-01

    In a brane scenario, we are investigating the behavior of scalar bosons evolving in an asymptotically A d S 5 bulk, with k = -1-RW branes, assuming that the scalar field supporting the geometry is depending on the fifth coordinate alone. For the derived scale function and warp factor, we write down the full expression of the orthonormal modes characterizing the scalar test particle, pointing out the allowed KK-mass spectrum and a non-trivial quantization law for the bulk mass parameter.

  2. A study of multi-jet production in association with an electroweak vector boson

    DOE PAGESBeta

    Frederix, R.; Frixione, S.; Papaefstathiou, A.; Prestel, S.; Torrielli, P.

    2016-02-19

    Here, we consider the production of a single Z or W boson in association with jets at the LHC. We compute the corresponding cross sections by matching NLO QCD predictions with the Herwig++ and Pythia8 parton showers, and by merging all of the underlying matrix elements with up to two light partons at the Born level. We compare our results with several 7-TeV measurements by the ATLAS and CMS collaborations, and overall we find a good agreement between theory and data.

  3. A study of multi-jet production in association with an electroweak vector boson

    DOE PAGESBeta

    Frederix, R.; Frixione, S.; Papaefstathiou, A.; Prestel, S.; Torrielli, P.

    2016-02-19

    We consider the production of a single Z or W boson in association with jets at the LHC. We compute the corresponding cross sections by matching NLO QCD predictions with the Herwig++ and Pythia 8 parton showers, and by merging all of the underlying matrix elements with up to two light partons at the Born level. Lastly, we compare our results with several 7-TeV measurements by the ATLAS and CMS collaborations, and overall we find a good agreement between theory and data.

  4. Determination of the spin of new resonances in electroweak gauge boson pair production at the LHC

    SciTech Connect

    Eboli, O. J. P.; Fong, Chee Sheng; Gonzalez-Fraile, J.; Gonzalez-Garcia, M. C.

    2011-05-01

    The appearance of spin-1 resonances associated with the electroweak symmetry breaking sector is expected in many extensions of the standard model. We analyze the CERN Large Hadron Collider potential to probe the spin of possible new charged and neutral vector resonances through the purely leptonic processes pp{yields}Z{sup '{yields}}l{sup +}l{sup '-}Ee{sub T}, and pp{yields}W{sup '{yields}}l{sup '{+-}l+}l{sup -}Ee{sub T}, with l, l{sup '}=e or {mu}. We perform a model-independent analysis and demonstrate that the spin of the new states can be determined with 99% C.L. in a large fraction of the parameter space where these resonances can be observed with 100 fb{sup -1}. We show that the best sensitivity to the spin is obtained by directly studying correlations between the final state leptons, without the need of reconstructing the events in their center-of-mass frames.

  5. Directly Measuring the Tensor Structure of the Scalar Coupling to Gauge Bosons

    SciTech Connect

    Stolarski, Daniel; Vega-Morales, Roberto

    2012-12-01

    Kinematic distributions in the decays of the newly discovered resonance to four leptons can provide a direct measurement of the tensor structure of the particle's couplings to gauge bosons. Even if the particle is shown to be a parity even scalar, measuring this tensor structure is a necessary step in determining if this particle is responsible for giving mass to the Z. We consider a Standard Model like coupling as well as coupling via a dimension five operator to either ZZ or Z\\gamma. We show that using full kinematic information from each event allows discrimination between renormalizable and higher dimensional coupling to ZZ at the 95% confidence level with O(50) signal events, and coupling to Z\\gamma can be distinguished with as few as 20 signal events. This shows that these measurements can be useful even with this year's LHC data.

  6. New production mechanism of neutral Higgs bosons with right scalar tau neutrino as the LSP

    NASA Astrophysics Data System (ADS)

    Chou, C.-L.; Lai, H.-L.; Yuan1, C.-P.

    2000-09-01

    Inspired by the neutrino oscillation data, we consider the lightest tau sneutrino ν~τ1 (which is mostly the right tau sneutrino) to be the lightest supersymmetric particle (LSP) in the framework of the minimal supersymmetric Standard Model. Both the standard and the non-standard trilinear scalar coupling terms are included for the right tau sneutrino interactions. The decay branching ratio of ν~τ2-- >ν~τ1+h0 can become so large that the production rate of the lightest neutral Higgs boson (h0) can be largely enhanced at electron or hadron colliders, either from the direct production of ν~τ2 or from the decay of charginos, neutralinos, sleptons, and the cascade decay of squarks and gluinos, etc. Furthermore, because of the small LSP annihilation rate, ν~τ1 can be a good candidate for cold dark matter.

  7. Search for Dimuon Decays of a Light Scalar Boson in Radiative Transitions Y -> gamma A^0

    SciTech Connect

    Aubert, B.

    2009-06-02

    We search for evidence of a light scalar boson in the radiative decays of the {Upsilon}(2S) and {Upsilon}(3S) resonances: {Upsilon}(2S, 3S) {yields} {gamma}A{sup 0}, A{sup 0} {yields} {mu}{sup +}{mu}{sup -}. Such a particle appears in extensions of the Standaard Model, where a light CP-odd Higgs boson naturally couples strongly to b-quarks. We find no evidence for such processes in the mass range 0.212 {<=} m{sub A{sup 0}} {<=} 9.3 GeV in the samples of 99 x 10{sup 6} {Upsilon}(2S) and 122 x 10{sup 6} {Upsilon}(3S) decays collected by the BABAR detector at the PEP-II B-factory and set stringent upper limits on the effective coupling of the b quark to the A{sup 0}. We also limit the dimuon branching fraction of the {eta}{sub b} meson: {Beta}({eta}{sub b} {yields} {mu}{sup +}{mu}{sup -}) < 0.9% at 90% confidence level.

  8. Higgs couplings and electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Katz, Andrey; Perelstein, Maxim

    2014-07-01

    We argue that extensions of the Standard Model (SM) with a strongly first-order electroweak phase transition generically predict significant deviations of the Higgs couplings to gluons, photons, and Z bosons from their SM values. Precise experimental measurements of the Higgs couplings at the LHC and at the proposed next-generation facilities will allow for a robust test of the phase transition dynamics. To illustrate this point, in this paper we focus on the scenario in which loops of a new scalar field are responsible for the first-order phase transition, and study a selection of benchmark models with various SM gauge quantum numbers of the new scalar. We find that the current LHC measurement of the Higgs coupling to gluons already excludes the possibility of a first-order phase transition induced by a scalar in a sextet, or larger, representation of the SU(3) c . Future LHC experiments (including HL-LHC) will be able to definitively probe the case when the new scalar is a color triplet. If the new scalar is not colored, an electron-positron Higgs factory, such as the proposed ILC or TLEP, would be required to test the nature of the phase transition. The extremely precise measurement of the Higgsstrahlung cross section possible at such machines will allow for a comprehensive and definitive probe of the possibility of a first-order electroweak phase transition in all models we considered, including the case when the new scalar is a pure gauge singlet.

  9. Crucial role of neutrinos in the electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Smetana, Adam

    2013-12-01

    Not only the top-quark condensate appears to be the natural significant source of dynamical electroweak symmetry breaking. Provided the seesaw scenario, the neutrinos can have their Dirac masses large enough so that their condensates contribute significantly to the electroweak scale as well. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry within the simplifying two-composite-Higgs-doublet model. Mandatory is to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV, and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that, the number of right-handed neutrinos participating on the seesaw mechanism turns out to be rather large, O(100-1000).

  10. Crucial role of neutrinos in the electroweak symmetry breaking

    SciTech Connect

    Smetana, Adam

    2013-12-30

    Not only the top-quark condensate appears to be the natural significant source of dynamical electroweak symmetry breaking. Provided the seesaw scenario, the neutrinos can have their Dirac masses large enough so that their condensates contribute significantly to the electroweak scale as well. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry within the simplifying two-composite-Higgs-doublet model. Mandatory is to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV, and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that, the number of right-handed neutrinos participating on the seesaw mechanism turns out to be rather large, O(100–1000)

  11. Electroweak Physics with CDF

    SciTech Connect

    A. Sidoti

    2003-11-03

    The CDF experiment at the Tevatron has used p{bar p} collisions at {radical}s = 1.96 TeV to perform electroweak physics measurements. A program of precision electroweak tests of SM started measuring W and Z bosons cross section using different leptonic final states, evaluating dielectron Forward-Backward Asymmetry A{sub FB} and di-boson cross section production.

  12. Collider Detector at Fermilab (CDF): Data from W, Z bosons and Drell Yan lepton pairs research of the CDF Electroweak Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Electroweak group studies production and properties of W, Z bosons and Drell Yan lepton pairs. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  13. Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    DOE PAGESBeta

    Khachatryan, Vardan

    2014-09-26

    Our searches for the direct electroweak production of supersymmetric charginos, neutralinos, and sleptons in a variety of signatures with leptons and W, Z, and Higgs bosons are presented. Results are based on a sample of proton-proton collision data collected at center-of-mass energy √s=8TeV with the CMS detector in 2012, corresponding to an integrated luminosity of 19.5 fb-1. These observed event rates are in agreement with expectations from the standard model. Finally, these results probe charginos and neutralinos with masses up to 720 GeV, and sleptons up to 260 GeV, depending on the model details.

  14. A new dynamics of electroweak symmetry breaking with classically scale invariance

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Ishida, Hiroyuki; Kitazawa, Noriaki; Yamaguchi, Yuya

    2016-04-01

    We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu-Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu-Goldstone bosons, and show they can decay fast enough without cosmological problems. We further show that our model can make the electroweak vacuum stable.

  15. Electroweak phase transitions

    SciTech Connect

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l angle}{phi}{r angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l angle}{phi}{r angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l angle}{phi}{r angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l angle}{phi}{r angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l angle}{phi}{r angle} = 246 GeV unstable. The requirement that the state {l angle}{phi}{r angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  16. Electroweak phase transitions

    SciTech Connect

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l_angle}{phi}{r_angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l_angle}{phi}{r_angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l_angle}{phi}{r_angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l_angle}{phi}{r_angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l_angle}{phi}{r_angle} = 246 GeV unstable. The requirement that the state {l_angle}{phi}{r_angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  17. Electroweak interactions

    SciTech Connect

    Renton, P.

    1990-01-01

    The central part of the book consists of a comprehensive discussion of many scattering and decay processes involving electromagnetic, weak and strong interactions. A list of topics includes electron-proton scattering, Compton scattering, muon decay, electron-positron annihilation, photon and hadron structure functions, neutrino-nucleus scattering, Cabibbo theory, tau-lepton decays, W and Z boson decays, mixing phenomena and many others. For most processes, the author presents the appropriate Feynman diagrams, first-order matrix elements and the resulting cross sections or decay rates. The last section of Electroweak Interactions discusses some of the open or unanswered questions in the standard model, including the undiscovered top quark, the Higgs mechanism of electroweak symmetry breaking and detailed tests involving radiative effects. The book concludes with a brief account of ideas that extend beyond the standard model, such as left-right symmetric models, grand unified theories, compositeness, supersymmetry and string theory.

  18. Top Quark Produced Through the Electroweak Force: Discovery Using the Matrix Element Analysis and Search for Heavy Gauge Bosons Using Boosted Decision Trees

    SciTech Connect

    Pangilinan, Monica

    2010-05-01

    The top quark produced through the electroweak channel provides a direct measurement of the Vtb element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb-1 of data from the D0 detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.30-1.20+0.98 pb. The measured result corresponds to a 4.9σ Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 ± 0.88 pb with a significance of 5.0σ, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |Vtb| < 1, the 95% confidence level (C.L.) lower limit is |Vtb| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600-950 GeV. For four general models of W{prime} boson production using decay channel W' → t$\\bar{p}$, the lower mass limits are the following: M(W'L with SM couplings) > 840 GeV; M(W'R) > 880 GeV or 890 GeV if the right-handed neutrino is

  19. Electroweak results from the tevatron

    SciTech Connect

    Wood, D.

    1997-01-01

    Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings.

  20. Observation of electroweak W+jets production and kinematic tests of vector boson fusion using the atlas detector at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Dattagupta, Aparajita

    The first observation of electroweak W+jets production in the Vector Boson Fusion (VBF) topology using the ATLAS detector at the Large Hadron Collider (LHC) is presented. VBF probes the triple gauge vertex, a rare process that is validated in this measurement, and has begun to be explored in the Higgs sector. The signal in W boson production presented in this thesis is measured using proton-proton collisions at [special characters omitted] and 8 TeV at a statistical significance of greater than 5 standard deviations. Studies of the event kinematics are also presented via differential cross-section measurements as a function of various observables that are sensitive to VBF production. These are the first differential cross-section measurements for the VBF process. Results reflect the most precise measurements of electroweak and strong interactions in this kinematic domain. These measurements will serve as a reference point for related analyses using data at higher collision energies at the LHC. Results from this thesis will also contribute towards improving our theoretical understanding of the largest irreducible background in this analysis coming from strongly produced W+jets. Measurements presented, when representing potential backgrounds, will also be useful to studies of top quark and Higgs production, as well as new physics searches that deal with similar backgrounds.

  1. Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with h → ττ

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; El Sawy, M.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.

    2016-04-01

    A search for a heavy scalar boson H decaying into a pair of lighter standard-model-like 125 GeV Higgs bosons hh and a search for a heavy pseudoscalar boson A decaying into a Z and an h boson are presented. The searches are performed on a data set corresponding to an integrated luminosity of 19.7 fb-1 of pp collision data at a centre-of-mass energy of 8 TeV, collected by CMS in 2012. A final state consisting of two τ leptons and two b jets is used to search for the H → hh decay. A final state consisting of two τ leptons from the h boson decay, and two additional leptons from the Z boson decay, is used to search for the decay A → Zh. The results are interpreted in the context of two-Higgs-doublet models. No excess is found above the standard model expectation and upper limits are set on the heavy boson production cross sections in the mass ranges 260

  2. The electroweak theory

    SciTech Connect

    Chris Quigg

    2001-08-10

    After a short essay on the current state of particle physics, the author reviews the antecedents of the modern picture of the weak and electromagnetic interactions and then undertakes a brief survey of the SU(2){sub L} {circle_times} U(1){sub Y} electroweak theory. The authors reviews the features of electroweak phenomenology at tree level and beyond, presents an introduction to the Higgs boson and the 1-TeV scale, and examines arguments for enlarging the electroweak theory. The author concludes with a brief look at low-scale gravity.

  3. Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    SciTech Connect

    Khachatryan, Vardan

    2014-09-26

    Our searches for the direct electroweak production of supersymmetric charginos, neutralinos, and sleptons in a variety of signatures with leptons and W, Z, and Higgs bosons are presented. Results are based on a sample of proton-proton collision data collected at center-of-mass energy √s=8TeV with the CMS detector in 2012, corresponding to an integrated luminosity of 19.5 fb-1. These observed event rates are in agreement with expectations from the standard model. Finally, these results probe charginos and neutralinos with masses up to 720 GeV, and sleptons up to 260 GeV, depending on the model details.

  4. Measurement of electroweak production of two jets in association with a Z boson in proton-proton collisions at $\\sqrt{s}=8\\,\\text {TeV}$

    SciTech Connect

    Khachatryan, Vardan

    2015-02-10

    The purely electroweak (EW) cross section for the production of two jets in association with a Z boson, in proton–proton collisions at √s=8TeV, is measured using data recorded by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 19.7fb-1. We also defined the electroweak cross section for the ℓℓjj final state (with ℓ=e or μ and j representing the quarks produced in the hard interaction) in the kinematic region by Mℓℓ>50 GeV, Mjj>120GeV, transverse momentum pTj>25 GeV, and pseudorapidity |ηj|<5, is found to be σEW(ℓℓjj)=174±15(stat)±40(syst)\\,fb, in agreement with the standard model prediction. Finallly, the associated jet activity of the selected events is studied, in particular in a signal-enriched region of phase space, and the measurements are found to be in agreement with QCD predictions.

  5. Measurement of electroweak production of two jets in association with a Z boson in proton-proton collisions at $$\\sqrt{s}=8\\,\\text {TeV}$$

    DOE PAGESBeta

    Khachatryan, Vardan

    2015-02-10

    The purely electroweak (EW) cross section for the production of two jets in association with a Z boson, in proton–proton collisions at √s=8TeV, is measured using data recorded by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 19.7fb-1. We also defined the electroweak cross section for the ℓℓjj final state (with ℓ=e or μ and j representing the quarks produced in the hard interaction) in the kinematic region by Mℓℓ>50 GeV, Mjj>120GeV, transverse momentum pTj>25 GeV, and pseudorapidity |ηj|<5, is found to be σEW(ℓℓjj)=174±15(stat)±40(syst)\\,fb, in agreement with the standard model prediction. Finallly, the associated jetmore » activity of the selected events is studied, in particular in a signal-enriched region of phase space, and the measurements are found to be in agreement with QCD predictions.« less

  6. Unanswered Questions in the Electroweak Theory

    SciTech Connect

    Quigg, Chris

    2009-11-01

    This article is devoted to the status of the electroweak theory on the eve of experimentation at CERN's Large Hadron Collider. A compact summary of the logic and structure of the electroweak theory precedes an examination of what experimental tests have established so far. The outstanding unconfirmed prediction of the electroweak theory is the existence of the Higgs boson, a weakly interacting spin-zero particle that is the agent of electroweak symmetry breaking, the giver of mass to the weak gauge bosons, the quarks, and the leptons. General arguments imply that the Higgs boson or other new physics is required on the TeV energy scale. Indirect constraints from global analyses of electroweak measurements suggest that the mass of the standard-model Higgs boson is less than 200 GeV. Once its mass is assumed, the properties of the Higgs boson follow from the electroweak theory, and these inform the search for the Higgs boson. Alternative mechanisms for electroweak symmetry breaking are reviewed, and the importance of electroweak symmetry breaking is illuminated by considering a world without a specific mechanism to hide the electroweak symmetry. For all its triumphs, the electroweak theory has many shortcomings.

  7. Flavor from the electroweak scale

    SciTech Connect

    Bauer, Martin; Carena, Marcela; Gemmler, Katrin

    2015-11-04

    We discuss the possibility that flavor hierarchies arise from the electroweak scale in a two Higgs doublet model, in which the two Higgs doublets jointly act as the flavon. Quark masses and mixing angles are explained by effective Yukawa couplings, generated by higher dimensional operators involving quarks and Higgs doublets. Modified Higgs couplings yield important effects on the production cross sections and decay rates of the light Standard Model like Higgs. In addition, flavor changing neutral currents arise at tree-level and lead to strong constraints from meson-antimeson mixing. Remarkably, flavor constraints turn out to prefer a region in parameter space that is in excellent agreement with the one preferred by recent Higgs precision measurements at the Large Hadron Collider (LHC). Direct searches for extra scalars at the LHC lead to further constraints. Precise predictions for the production and decay modes of the additional Higgs bosons are derived, and we present benchmark scenarios for searches at the LHC Run II. As a result, flavor breaking at the electroweak scale as well as strong coupling effects demand a UV completion at the scale of a few TeV, possibly within the reach of the LHC.

  8. Flavor from the electroweak scale

    DOE PAGESBeta

    Bauer, Martin; Carena, Marcela; Gemmler, Katrin

    2015-11-04

    We discuss the possibility that flavor hierarchies arise from the electroweak scale in a two Higgs doublet model, in which the two Higgs doublets jointly act as the flavon. Quark masses and mixing angles are explained by effective Yukawa couplings, generated by higher dimensional operators involving quarks and Higgs doublets. Modified Higgs couplings yield important effects on the production cross sections and decay rates of the light Standard Model like Higgs. In addition, flavor changing neutral currents arise at tree-level and lead to strong constraints from meson-antimeson mixing. Remarkably, flavor constraints turn out to prefer a region in parameter spacemore » that is in excellent agreement with the one preferred by recent Higgs precision measurements at the Large Hadron Collider (LHC). Direct searches for extra scalars at the LHC lead to further constraints. Precise predictions for the production and decay modes of the additional Higgs bosons are derived, and we present benchmark scenarios for searches at the LHC Run II. As a result, flavor breaking at the electroweak scale as well as strong coupling effects demand a UV completion at the scale of a few TeV, possibly within the reach of the LHC.« less

  9. Electroweak Theory

    NASA Astrophysics Data System (ADS)

    Paschos, E. A.

    2005-01-01

    The electroweak theory unifies two basic forces of nature: the weak force and electromagnetism. This book is a concise introduction to the structure of the electroweak theory and its applications. It describes the structure and properties of field theories with global and local symmetries, leading to the construction of the standard model. It describes the new particles and processes predicted by the theory, and compares them with experimental results. It also covers neutral currents, the properties of W and Z bosons, the properties of quarks and mesons containing heavy quarks, neutrino oscillations, CP-asymmetries in K, D, and B meson decays, and the search for Higgs particles. Each chapter contains problems, stemming from the long teaching experience of the author, to supplement the text. This will be of great interest to graduate students and researchers in elementary particle physics. Password protected solutions are available to lecturers at www.cambridge.org/9780521860987. Each chapter has an introduction highlighting its contents and giving a historical perspective. Chapters are cross-referenced, interrelating concepts and sections of the book. Contains 49 exercises

  10. Radiative electroweak symmetry breaking model perturbative all the way to the Planck scale.

    PubMed

    Chway, Dongjin; Dermíšek, Radovan; Jung, Tae Hyun; Kim, Hyung Do

    2014-08-01

    We discuss an extension of the standard model by fields not charged under standard model gauge symmetry in which the electroweak symmetry breaking is driven by the Higgs quartic coupling itself without the need for a negative mass term in the potential. This is achieved by a scalar field S with a large coupling to the Higgs field at the electroweak scale which is driven to very small values at high energies by the gauge coupling of a hidden symmetry under which S is charged. This model can remain perturbative all the way to the Planck scale. The Higgs boson is fully standard-model-like in its couplings to fermions and gauge bosons. However, the effective cubic and quartic self-couplings of the Higgs boson are significantly enhanced. PMID:25126909

  11. Associated production of electroweak bosons and heavy mesons at LHCb and the prospects to observe double parton interactions

    NASA Astrophysics Data System (ADS)

    Baranov, S. P.; Lipatov, A. V.; Malyshev, M. A.; Snigirev, A. M.; Zotov, N. P.

    2016-05-01

    The production of weak gauge bosons in association with heavy flavored mesons at the LHCb conditions is considered, and a detailed study of the different contributing processes is presented including single and double parton scattering (DPS) mechanisms. We find that the usual DPS factorization formula needs to be corrected for the limited partonic phase space, and that including the relevant corrections reduces discrepancies in the associated Z D production. We conclude finally that double parton scattering dominates the production of same-sign W±D± states, as well as the production of W- bosons associated with B mesons. The latter processes can thus be regarded as new useful DPS indicators.

  12. Minimal semi-annihilating Bbb ZN scalar dark matter

    NASA Astrophysics Data System (ADS)

    Bélanger, Geneviève; Kannike, Kristjan; Pukhov, Alexander; Raidal, Martti

    2014-06-01

    We study the dark matter from an inert doublet and a complex scalar singlet stabilized by Bbb ZN symmetries. This field content is the minimal one that allows dimensionless semi-annihilation couplings for N > 2. We consider explicitly the Bbb Z3 and Bbb Z4 cases and take into account constraints from perturbativity, unitarity, vacuum stability, necessity for the electroweak Bbb ZN preserving vacuum to be the global minimum, electroweak precision tests, upper limits from direct detection and properties of the Higgs boson. Co-annihilation and semi-annihilation of dark sector particles as well as dark matter conversion significantly modify the cosmic abundance and direct detection phenomenology.

  13. Electroweak asymmetries from SLD

    SciTech Connect

    Bellodi, G.

    2002-06-01

    We present a summary of the results on electroweak asymmetries performed by the SLD experiment at the Stanford Linear Collider (SLC). Most of these results are final and are based, unless otherwise stated, on the full 1993-1998 data set of approximately 550,000 hadronic decays of Z{sup 0} bosons, produced with an average electron beam polarization of 73%.

  14. A few words about resonances in the electroweak effective Lagrangian

    NASA Astrophysics Data System (ADS)

    Rosell, Ignasi; Pich, Antonio; Santos, Joaquín; Sanz-Cillero, Juan José

    2016-01-01

    Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2)L ⊗ SU (2)R → SU (2)L + R that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass mh = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculation of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.

  15. Search for dimuon decays of a light scalar boson in radiative transitions Upsilon-->gammaA0.

    PubMed

    Aubert, B; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Martinelli, M; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Battaglia, M; Brown, D N; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Petigura, E; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Randle-Conde, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Atmacan, H; Gary, J W; Liu, F; Long, O; Vitug, G M; Yasin, Z; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Ongmongkolku, P; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Wilson, R J; Feltresi, E; Hauke, A; Jasper, H; Karbach, T M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Nogowski, R; Schubert, K R; Schwierz, R; Volk, A; Bernard, D; Latour, E; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Fioravanti, E; Franchini, P; Luppi, E; Munerato, M; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Guido, E; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Tosi, S; Chaisanguanthum, K S; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Bernlochner, F U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Tibbetts, M; Behera, P K; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Derkach, D; Firmino da Costa, J; Grosdidier, G; Le Diberder, F; Lepeltier, V; Lutz, A M; Malaescu, B; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Paramesvaran, S; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Hafner, A; Alwyn, K E; Bailey, D; Barlow, R J; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Salvati, E; Cowan, R; Dujmic, D; Fisher, P H; Henderson, S W; Sciolla, G; Spitznagel, M; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Schram, M; Biassoni, P; Lazzaro, A; Lombardo, V; Palombo, F; Stracka, S; Bauer, J M; Cremaldi, L; Godang, R; Kroeger, R; Sonnek, P; Summers, D J; Zhao, H W; Simard, M; Taras, P; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Wang, W F; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; del Amo Sanchez, P; Ben-Haim, E; Bonneaud, G R; Briand, H; Chauveau, J; Hamon, O; Leruste, Ph; Marchiori, G; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Esteve, L; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Allen, M T; Aston, D; Bartoldus, R; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Franco Sevilla, M; Gabareen, A M; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Young, C C; Ziegler, V; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Burchat, P R; Edwards, A J; Miyashita, T S; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Soffer, A; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Wray, B C; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; King, G J; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Puccio, E M T; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Prepost, R; Vuosalo, C O; Wu, S L

    2009-08-21

    We search for evidence of a light scalar boson in the radiative decays of the Upsilon(2S) and Upsilon(3S) resonances: Upsilon(2S,3S)-->gammaA0, A0-->mu+mu-. Such a particle appears in extensions of the standard model, where a light CP-odd Higgs boson naturally couples strongly to b quarks. We find no evidence for such processes in the mass range 0.212 < or = mA0 < or = 9.3 GeV in the samples of 99 x 10(6) Upsilon(2S) and 122 x 10(6) Upsilon(3S) decays collected by the BABAR detector at the SLAC PEP-II B factory and set stringent upper limits on the effective coupling of the b quark to the A0. We also limit the dimuon branching fraction of the etab meson: B(etab-->mu+mu-)<0.9% at 90% confidence level. PMID:19792717

  16. Electroweak baryogenesis with anomalous Higgs couplings

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Wu, Lei; Yue, Jason

    2016-04-01

    We investigate feasibility of efficient baryogenesis at the electroweak scale within the effective field theory framework based on a non-linear realisation of the electroweak gauge symmetry. In this framework the LHC Higgs boson is described by a singlet scalar field, which, therefore, admits new interactions. Assuming that Higgs couplings with the eletroweak gauge bosons are as in the Standard Model, we demonstrate that the Higgs cubic coupling and the CP-violating Higgs-top quark anomalous couplings alone may drive the a strongly first-order phase transition. The distinguished feature of this transition is that the anomalous Higgs vacuum expectation value is generally non-zero in both phases. We identify a range of anomalous couplings, consistent with current experimental data, where sphaleron rates are sufficiently fast in the `symmetric' phase and are suppressed in the `broken' phase and demonstrate that the desired baryon asymmetry can indeed be generated in this framework. This range of the Higgs anomalous couplings can be further constrained from the LHC Run 2 data and be probed at high luminosity LHC and beyond.

  17. Dark matter as the trigger of strong electroweak phase transition

    SciTech Connect

    Chowdhury, Talal Ahmed; Nemevšek, Miha; Senjanović, Goran; Zhang, Yue E-mail: miha@ictp.it E-mail: yuezhang@ictp.it

    2012-02-01

    In this paper, we propose a new possible connection between dark matter relic density and baryon asymmetry of the universe. The portal between standard model sector and dark matter not only controls the relic density and detections of dark matter, but also allows the dark matter to trigger the first order electroweak phase transition. We discuss systematically possible scalar dark matter candidates, starting from a real singlet to arbitrary high representations. We show that the simplest realization is provided by a doublet, and that strong first-order electroweak phase transition implies a lower bound on the dark matter direct detection rate. The mass of dark matter lies between 45 and 80 GeV, allowing for an appreciable invisible decay width of the Standard Model Higgs boson, which is constrained to be lighter than 130 GeV for the sake of the strong phase transition.

  18. Unparticles and electroweak symmetry breaking

    SciTech Connect

    Lee, Jong-Phil

    2008-11-23

    We investigate a scalar potential inspired by the unparticle sector for the electroweak symmetry breaking. The scalar potential contains the interaction between the standard model fields and unparticle sector. It is described by the non-integral power of fields that originates from the nontrivial scaling dimension of the unparticle operator. It is found that the electroweak symmetry is broken at tree level when the interaction is turned on. The scale invariance of unparticle sector is also broken simultaneously, resulting in a physical Higgs and a new lighter scalar particle.

  19. Light dark matter, naturalness, and the radiative origin of the electroweak scale

    DOE PAGESBeta

    Altmannshofer, Wolfgang; Bardeen, William A.; Bauer, Martin; Carena, Marcela; Lykken, Joseph D.

    2015-01-09

    We study classically scale invariant models in which the Standard Model Higgs mass term is replaced in the Lagrangian by a Higgs portal coupling to a complex scalar field of a dark sector. We focus on models that are weakly coupled with the quartic scalar couplings nearly vanishing at the Planck scale. The dark sector contains fermions and scalars charged under dark SU(2) × U(1) gauge interactions. Radiative breaking of the dark gauge group triggers electroweak symmetry breaking through the Higgs portal coupling. Requiring both a Higgs boson mass of 125.5 GeV and stability of the Higgs potential up tomore » the Planck scale implies that the radiative breaking of the dark gauge group occurs at the TeV scale. We present a particular model which features a long-range abelian dark force. The dominant dark matter component is neutral dark fermions, with the correct thermal relic abundance, and in reach of future direct detection experiments. The model also has lighter stable dark fermions charged under the dark force, with observable effects on galactic-scale structure. Collider signatures include a dark sector scalar boson with mass ≲ 250 GeV that decays through mixing with the Higgs boson, and can be detected at the LHC. As a result, the Higgs boson, as well as the new scalar, may have significant invisible decays into dark sector particles.« less

  20. Light dark matter, naturalness, and the radiative origin of the electroweak scale

    SciTech Connect

    Altmannshofer, Wolfgang; Bardeen, William A.; Bauer, Martin; Carena, Marcela; Lykken, Joseph D.

    2015-01-09

    We study classically scale invariant models in which the Standard Model Higgs mass term is replaced in the Lagrangian by a Higgs portal coupling to a complex scalar field of a dark sector. We focus on models that are weakly coupled with the quartic scalar couplings nearly vanishing at the Planck scale. The dark sector contains fermions and scalars charged under dark SU(2) × U(1) gauge interactions. Radiative breaking of the dark gauge group triggers electroweak symmetry breaking through the Higgs portal coupling. Requiring both a Higgs boson mass of 125.5 GeV and stability of the Higgs potential up to the Planck scale implies that the radiative breaking of the dark gauge group occurs at the TeV scale. We present a particular model which features a long-range abelian dark force. The dominant dark matter component is neutral dark fermions, with the correct thermal relic abundance, and in reach of future direct detection experiments. The model also has lighter stable dark fermions charged under the dark force, with observable effects on galactic-scale structure. Collider signatures include a dark sector scalar boson with mass ≲ 250 GeV that decays through mixing with the Higgs boson, and can be detected at the LHC. As a result, the Higgs boson, as well as the new scalar, may have significant invisible decays into dark sector particles.

  1. Dynamical Electroweak Symmetry Breaking with a Heavy Fermion in Light of Recent LHC Results

    DOE PAGESBeta

    Hung, Pham Q.

    2013-01-01

    The recent announcement of a discovery of a possible Higgs-like particle—its spin and parity are yet to be determined—at the LHC with a mass of 126 GeV necessitates a fresh look at the nature of the electroweak symmetry breaking, in particular if this newly-discovered particle will turn out to have the quantum numbers of a Standard Model Higgs boson. Even if it were a 0 + scalar with the properties expected for a SM Higgs boson, there is still the quintessential hierarchy problem that one has to deal with and which, by itself, suggests a new physics energy scale aroundmore » 1 TeV. This paper presents a minireview of one possible scenario: the formation of a fermion-antifermion condensate coming from a very heavy fourth generation, carrying the quantum number of the SM Higgs field, and thus breaking the electroweak symmetry.« less

  2. Introduction to Electroweak Symmetry Breaking

    SciTech Connect

    Dawson,S.

    2008-10-02

    The Standard Model (SM) is the backbone of elementary particle physics-not only does it provide a consistent framework for studying the interactions of quark and leptons, but it also gives predictions which have been extensively tested experimentally. In these notes, I review the electroweak sector of the Standard Model, discuss the calculation of electroweak radiative corrections to observables, and summarize the status of SM Higgs boson searches. Despite the impressive experimental successes, however, the electroweak theory is not completely satisfactory and the mechanism of electroweak symmetry breaking is untested. I will discuss the logic behind the oft-repeated statement: 'There must be new physics at the TeV scale'. These lectures reflect my strongly held belief that upcoming results from the LHC will fundamentally change our understanding of electroweak symmetry breaking. In these lectures, I review the status of the electroweak sector of the Standard Model, with an emphasis on the importance of radiative corrections and searches for the Standard Model Higgs boson. A discussion of the special role of the TeV energy scale in electroweak physics is included.

  3. Precision electroweak physics at future collider experiments

    SciTech Connect

    Baur, U.; Demarteau, M.

    1996-11-01

    We present an overview of the present status and prospects for progress in electroweak measurements at future collider experiments leading to precision tests of the Standard Model of Electroweak Interactions. Special attention is paid to the measurement of the {ital W} mass, the effective weak mixing angle, and the determination of the top quark mass. Their constraints on the Higgs boson mass are discussed.

  4. Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into τ leptons in pp collisions at √{s}=8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.

    2016-01-01

    A search for a very light Higgs boson decaying into a pair of τ leptons is presented within the framework of the next-to-minimal supersymmetric standard model. This search is based on a data set corresponding to an integrated luminosity of 19.7 fb-1 of proton-proton collisions collected by the CMS experiment at a centre-of-mass energy of 8 TeV. The signal is defined by the production of either of the two lightest scalars, h1 or h2, via gluon-gluon fusion and subsequent decay into a pair of the lightest Higgs bosons, a1 or h1. The h1 or h2 boson is identified with the observed state at a mass of 125 GeV. The analysis searches for decays of the a1 (h1) states into pairs of τ leptons and covers a mass range for the a1 (h1) boson of 4 to 8 GeV. The search reveals no significant excess in data above standard model background expectations, and an upper limit is set on the signal production cross section times branching fraction as a function of the a1 (h1) boson mass. The 95% confidence level limit ranges from 4.5 pb at {m}_{{a}_1} ({m}_{{h}_1})=8 GeV to 10.3 pb at {m}_{{a}_1} ({m}_{{h}_1})=5 GeV. [Figure not available: see fulltext.

  5. Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into $$\\tau$$ leptons in pp collisions at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGESBeta

    Khachatryan, Vardan

    2016-01-13

    Our search for a very light Higgs boson decaying into a pair of t leptons is presented within the framework of the next-to-minimal supersymmetric standard model. This search is based on a data set corresponding to an integrated luminosity of 19.7 fb-1 of proton-proton collisions collected by the CMS experiment at a centre-of-mass energy of 8 TeV. The signal is defined by the production of either of the two lightest scalars, h1 or h2, via gluon-gluon fusion and subsequent decay into a pair of the lightest Higgs bosons, a1 or h1. The h1 or h2 boson is identified with themore » observed state at a mass of 125 GeV. The analysis searches for decays of the a1 (h1) states into pairs of t leptons and covers a mass range for the a1 (h1) boson of 4 to 8 GeV. Furthermore, the search reveals no significant excess in data above standard model background expectations, and an upper limit is set on the signal production cross section times branching fraction as a function of the a1 (h1) boson mass. The 95% confidence level limit ranges from 4.5 pb at ma1 (mh1 ) = 8 GeV to 10.3 pb at ma1 (mh1 ) = 5 GeV.« less

  6. Enabling electroweak baryogenesis through dark matter

    NASA Astrophysics Data System (ADS)

    Lewicki, Marek; Rindler-Daller, Tanja; Wells, James D.

    2016-06-01

    We study the impact on electroweak baryogenesis from a swifter cosmological expansion induced by dark matter. We detail the experimental bounds that one can place on models that realize it, and we investigate the modifications of these bounds that result from a non-standard cosmological history. The modifications can be sizeable if the expansion rate of the Universe increases by several orders of magnitude. We illustrate the impact through the example of scalar field dark matter, which can alter the cosmological history enough to enable a strong-enough first-order phase transition in the Standard Model when it is supplemented by a dimension six operator directly modifying the Higgs boson potential. We show that due to the modified cosmological history, electroweak baryogenesis can be realized, while keeping deviations of the triple Higgs coupling below HL-LHC sensitivies. The required scale of new physics to effectuate a strong-enough first order phase transition can change by as much as twenty percent as the expansion rate increases by six orders of magnitude.

  7. Associated production of the doubly-charged scalar pair with the Higgs boson in the Georgi-Machacek model at the ILC

    NASA Astrophysics Data System (ADS)

    Yu, Yi; Bi, Yan-Ping; Shen, Jie-Fen

    2016-08-01

    Besides the SM-like Higgs boson h, the Georgi-Machacek (GM) model predicts the existence of doubly-charged Higgs bosons H5±± in the 5-plet representation, which can be seen the typical particles in this model. We first used the latest Higgs boson diphoton signal strength data to find the allowed region at 2σ confidence level on the plane of the scalar mass values mH and the triple scalar coupling parameter ghHH, and then focus on the study of the triple Higgs production process e+e- → h H5++ H5-- at the future International Linear collider (ILC). Our numerical results show that, the values of the production cross section are very sensitive to the triple Higgs coupling strength ghHH and can reach the level several fb in the reasonable parameter space. Considering the same-sign diboson decay H5±± →W±W±, the expected discovery reach at the future ILC experiments are also studied.

  8. Strong coupling electroweak symmetry breaking

    SciTech Connect

    Barklow, T.L.; Burdman, G.; Chivukula, R.S.

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  9. Latest Electroweak Results from CDF

    SciTech Connect

    Lancaster, Mark

    2010-05-01

    The latest results in electroweak physics from proton anti-proton collisions at the Fermilab Tevatron recorded by the CDF detector are presented. The results provide constraints on parton distribution functions, the mass of the Higgs boson and beyond the Standard Model physics.

  10. Precision Electroweak Physics at the LHC

    NASA Astrophysics Data System (ADS)

    Freitas, Ayres

    2015-04-01

    The current status of precision tests of the electroweak Standard Model is summarized, and a short review of the theory input from higher-order loop corrections is given. The most constraining quantities are the masses and couplings of the W and Z bosons, and it is shown how these put strong bounds on various examples of new physics. Furthermore, the impact of current and future LHC data on electroweak precision tests is described in some detail. It is also briefly discussed how measurements of anomalous gauge boson couplings provide complementary information about the electroweak theory.

  11. Δ r and the W-boson mass in the singlet extension of the standard model

    NASA Astrophysics Data System (ADS)

    López-Val, D.; Robens, T.

    2014-12-01

    The link between the electroweak gauge boson masses and the Fermi constant via the muon lifetime measurement is instrumental for constraining and eventually pinning down new physics. We consider the simplest extension of the standard model with an additional real scalar S U (2 )L⊗U (1 )Y singlet and compute the electroweak precision parameter Δ r , along with the corresponding theoretical prediction for the W-boson mass. When confronted with the experimental W-boson mass measurement, our predictions impose limits on the singlet model parameter space. We identify regions, especially in the mass range which is accessible by the LHC, where these correspond to the most stringent experimental constraints that are currently available.

  12. Stealth dark matter: Dark scalar baryons through the Higgs portal

    NASA Astrophysics Data System (ADS)

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X.-Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.; Lattice Strong Dynamics LSD Collaboration

    2015-10-01

    We present a new model of stealth dark matter: a composite baryonic scalar of an S U (ND) strongly coupled theory with even ND≥4 . All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to S U (4 ), and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB≳300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. We briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.

  13. Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into $\\tau$ leptons in pp collisions at $\\sqrt{s} =$ 8 TeV

    SciTech Connect

    Khachatryan, Vardan

    2015-10-23

    Our search for a very light Higgs boson decaying into a pair of t leptons is presented within the framework of the next-to-minimal supersymmetric standard model. This search is based on a data set corresponding to an integrated luminosity of 19.7 fb-1 of proton-proton collisions collected by the CMS experiment at a centre-of-mass energy of 8 TeV. The signal is defined by the production of either of the two lightest scalars, h1 or h2, via gluon-gluon fusion and subsequent decay into a pair of the lightest Higgs bosons, a1 or h1. The h1 or h2 boson is identified with the observed state at a mass of 125 GeV. The analysis searches for decays of the a1 (h1) states into pairs of t leptons and covers a mass range for the a1 (h1) boson of 4 to 8 GeV. Furthermore, the search reveals no significant excess in data above standard model background expectations, and an upper limit is set on the signal production cross section times branching fraction as a function of the a1 (h1) boson mass. The 95% confidence level limit ranges from 4.5 pb at ma1 (mh1 ) = 8 GeV to 10.3 pb at ma1 (mh1 ) = 5 GeV.

  14. Recent Electroweak Results from the Tevatron

    SciTech Connect

    Zhu, Junjie; /SUNY, Stony Brook

    2009-07-01

    W and Z bosons are mainly produced via quark-antiquark annihilations at the Fermilab Tevatron collider. Precision measurements with these gauge bosons provide us with high precision tests of the Standard Model (SM) as well as indirect search for possible new physics beyond the SM. I present the recent electroweak measurements related to single W, Z boson and diboson productions from the CDF and D0 experiments at the Fermilab Tevatron collider.

  15. Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale.

    PubMed

    Espinosa, J R; Grojean, C; Panico, G; Pomarol, A; Pujolàs, O; Servant, G

    2015-12-18

    Recently, a new mechanism to generate a naturally small electroweak scale has been proposed. It exploits the coupling of the Higgs boson to an axionlike field and a long era in the early Universe where the axion unchains a dynamical screening of the Higgs mass. We present a new realization of this idea with the new feature that it leaves no sign of new physics at the electroweak scale, and up to a rather large scale, 10^{9}  GeV, except for two very light and weakly coupled axionlike states. One of the scalars can be a viable dark matter candidate. Such a cosmological Higgs-axion interplay could be tested with a number of experimental strategies. PMID:26722916

  16. Scalar excitation with Leggett frequency in 3He -B and the 125 GeV Higgs particle in top quark condensation models as pseudo-Goldstone bosons

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.; Zubkov, M. A.

    2015-09-01

    We consider the scenario in which the light Higgs scalar boson appears as the pseudo-Goldstone boson. We discuss examples in both condensed matter and relativistic field theory. In 3He -B the symmetry breaking gives rise to four Nambu-Goldstone (NG) modes and 14 Higgs modes. At lower energy one of the four NG modes becomes the Higgs boson with a small mass. This is the mode measured in experiments with the longitudinal NMR, and the Higgs mass corresponds to the Leggett frequency MH=ℏΩB . The formation of the Higgs mass is the result of the violation of the hidden spin-orbit symmetry at low energy. In this scenario the symmetry-breaking energy scale Δ (the gap in the fermionic spectrum) and the Higgs mass scale MH are highly separated: MH≪Δ . On the particle physics side we consider the model inspired by the models of Refs. Cheng et al. [J. High Energy Phys. 08 (014) 095] and Fukano et al. [Phys. Rev. D 90, 055009 (2014)]. At high energies the SU(3) symmetry is assumed which relates the left-handed top and bottom quarks to the additional fermion χL. This symmetry is softly broken at low energies. As a result the only C P -even Goldstone boson acquires a mass and may be considered as a candidate for the 125 GeV scalar boson. We consider a condensation pattern different from that typically used in top-seesaw models, where the condensate ⟨t¯ LχR⟩ is off-diagonal. In our case the condensates are mostly diagonal. Unlike the work of Cheng et al. [J. High Energy Phys. 08 (014) 095] and Fukano et al. [Phys. Rev. D 90, 055009 (2014)], the explicit mass terms are absent and the soft breaking of SU(3) symmetry is given solely by the four-fermion terms. This reveals a complete analogy with 3He, where there is no explicit mass term and the spin-orbit interaction has the form of the four-fermion interaction.

  17. Particle physics after the Higgs boson discovery: opportunities for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Quigg, Chris

    2016-04-01

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. A new round of experimentation is beginning, with the energy of the proton--proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. This article summarizes what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  18. Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider

    DOE PAGESBeta

    Quigg, Chris

    2015-08-24

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. Then, a new round of experimentation is beginning, with the energy of the proton–proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. I summarize what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  19. The electroweak axion, dark energy, inflation and baryonic matter

    SciTech Connect

    McLerran, L.

    2015-03-15

    In a previous paper [1], the standard model was generalized to include an electroweak axion which carries baryon plus lepton number, B + L. It was shown that such a model naturally gives the observed value of the dark energy, if the scale of explicit baryon number violation A was chosen to be of the order of the Planck mass. In this paper, we consider the effect of the modulus of the axion field. Such a field must condense in order to generate the standard Goldstone boson associated with the phase of the axion field. This condensation breaks baryon number. We argue that this modulus might be associated with inflation. If an additional B − L violating scalar is introduced with a mass similar to that of the modulus of the axion field, we argue that decays of particles associated with this field might generate an acceptable baryon asymmetry.

  20. Strong Electroweak Symmetry Breaking in the Large Hadron Collider Era

    NASA Astrophysics Data System (ADS)

    Evans, Jared Andrew

    2011-12-01

    With the Large Hadron Collider collecting data, both the pursuit of novel detection techniques and the exploration of new ideas are more important than ever. Novel detection techniques are essential in order for the community to garner the most worth from the machine. New ideas are needed both to expand the boundaries of what could be observed and to foster the creative mindset of the community that moves particle physics into fascinating, and often unexpected, directions. Discovering whether electroweak symmetry is broken strongly or weakly is one of the most pressing questions to be answered. Exploring the possibility of strong electroweak symmetry breaking is the topic of this work. The first of two major sectors in this work concerns the theory of conformal technicolor. We present the low energy minimal model for conformal technicolor and verify that it can satisfy current constraints from experiment. We will also provide a UV completion for this model, which realistically extends the sector with high-energy supersymmetry. Two complete models of flavor are presented. This is the first example of a complete, consistent model of strong electroweak symmetry breaking. The second of the two sectors discusses experimental signatures arising in a large class of general technicolor models at the Large Hadron Collider. The possible existence of narrow scalar states that can be produced via gluon-gluon fusion is first discussed. These states can decay into exotic final states of multiple electroweak gauge bosons, third generation particles and even light composite Higgs particles. A two Higgs doublet model is proposed as an effective way to model these exciting states. Lastly, we discuss the array of possible final states and their possible discovery.

  1. Electroweak Baryogenesis with Anomalous Higgs Couplings

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Wu, Lei; Yue, Jason

    2016-07-01

    In non-linear realisation of the electroweak gauge symmetry, the LHC Higgs boson can be assumed to be a singlet under SU(2)L ⊗ U(1)Y. In such scenario, the Standard Model particle content can be kept but new sets of couplings are allowed. We identify a range of anomalous Higgs cubic and the 𝒞𝒫-violating Higgs-top quark couplings that leads to first order phase transition and successful baryogenesis at the electroweak scale.

  2. Electroweak vacuum stability and diphoton excess at 750 GeV

    NASA Astrophysics Data System (ADS)

    Zhang, Jue; Zhou, Shun

    2016-08-01

    Recently, both ATLAS and CMS collaborations at the CERN Large Hadron Collider (LHC) announced their observations of an excess of diphoton events around the invariant mass of 750 GeV with a local significance of 3.6σ and 2.6σ, respectively. In this paper, we interpret the diphoton excess as the on-shell production of a real singlet scalar in the pp → S → γγ channel. To accommodate the observed production rate, we further introduce a vector-like fermion F, which carries both color and electric charges. The viable regions of model parameters are explored for this simple extension of the Standard Model (SM). Moreover, we revisit the problem of electroweak vacuum stability in the same scenario, and find that the requirement for the electroweak vacuum stability up to high energy scales imposes serious constraints on the Yukawa coupling of the vector-like fermion and the quartic couplings of the SM Higgs boson and the new singlet scalar. Consequently, a successful explanation for the diphoton excess and the absolute stability of electroweak vacuum cannot be achieved simultaneously in this economical setup. Supported by Innovation Program of the Institute of High Energy Physics (Y4515570U1), National Youth Thousand Talents Program, and CAS Center for Excellence in Particle Physics (CCEPP)

  3. Electroweak results from D0

    SciTech Connect

    Demarteau, M.; D0 Collaboration

    1993-05-01

    Preliminary results from D0 are presented on properties of the W{sup {plus_minus}} and Z{sup 0} electroweak gauge bosons, using final states containing electrons and muons. In particular, preliminary measurements of the W{sup {plus_minus}} and Z{sup 0} production cross sections with decay into final states containing electrons are shown and a status report on the determination of M{sub w}/M{sub z} is given.

  4. Vector boson fusion searches for dark matter at the LHC

    NASA Astrophysics Data System (ADS)

    Brooke, James; Buckley, Matthew R.; Dunne, Patrick; Penning, Bjoern; Tamanas, John; Zgubič, Miha

    2016-06-01

    The vector boson fusion (VBF) event topology at the Large Hadron Collider (LHC) allows efficient suppression of dijet backgrounds and is therefore a promising target for new physics searches. We consider dark matter models which interact with the standard model through the electroweak sector—either through new scalar and pseudoscalar mediators which can be embedded into the Higgs sector or via effective operators suppressed by some higher scale—and therefore have significant VBF production cross sections. Using realistic simulations of the ATLAS and CMS analysis chain, including estimates of major error sources, we project the discovery and exclusion potential of the LHC for these models over the next decade.

  5. Electroweak physics results from the Tevatron

    SciTech Connect

    Demarteau, M.

    1996-11-01

    An overview of recent electroweak physics results from the Tevatron is given. Properties of the W{sup {+-}} and Z{sup 0} gauge bosons using final states containing electrons and muons based on large integrated luminosities are presented. In particular, measurements of the W{sup {+-}} and Z{sup 0} production cross sections, the W-charge asymmetry and the measurement of the W-mass are summarized. Gauge boson self interactions are measured by studying gauge boson pair production and Emits on anomalous gauge boson couplings are discussed.

  6. Supersymmetric Higgs Bosons in Weak Boson Fusion

    SciTech Connect

    Hollik, Wolfgang; Plehn, Tilman; Rauch, Michael; Rzehak, Heidi

    2009-03-06

    We compute the complete supersymmetric next-to-leading-order corrections to the production of a light Higgs boson in weak-boson fusion. The size of the electroweak corrections is of similar order as the next-to-leading-order corrections in the standard model. The supersymmetric QCD corrections turn out to be significantly smaller than expected and than their electroweak counterparts. These corrections are an important ingredient to a precision analysis of the (supersymmetric) Higgs sector at the LHC, either as a known correction factor or as a contribution to the theory error.

  7. Electroweak relaxation from finite temperature

    NASA Astrophysics Data System (ADS)

    Hardy, Edward

    2015-11-01

    We study theories which naturally select a vacuum with parametrically small Electroweak Scale due to finite temperature effects in the early universe. In particular, there is a scalar with an approximate shift symmetry broken by a technically natural small coupling to the Higgs, and a temperature dependent potential. As the temperature of the universe drops, the scalar follows the minimum of its potential altering the Higgs mass squared parameter. The scalar also has a periodic potential with amplitude proportional to the Higgs expectation value, which traps it in a vacuum with a small Electroweak Scale. The required temperature dependence of the potential can occur through strong coupling effects in a hidden sector that are suppressed at high temperatures. Alternatively, it can be generated perturbatively from a one-loop thermal potential. In both cases, for the scalar to be displaced, a hidden sector must be reheated to temperatures significantly higher than the visible sector. However this does not violate observational constraints provided the hidden sector energy density is transferred to the visible sector without disrupting big bang nucleosynthesis. We also study how the mechanism can be implemented when the visible sector is completed to the Minimal Supersymmetric Standard Model at a high scale. Models with a UV cutoff of 10 TeV and no fields taking values over a range greater than 1012 GeV are possible, although the scalar must have a range of order 108 times the effective decay constant in the periodic part of its potential.

  8. Pair production of 125 GeV Higgs boson in the SM extension with color-octet scalars at the LHC

    NASA Astrophysics Data System (ADS)

    Heng, Zhaoxia; Shang, Liangliang; Zhang, Yanming; Zhang, Yang; Zhu, Jingya

    2014-02-01

    Although the Higgs boson mass and single production rate have been determined more or less precisely, its other properties may deviate significantly from its predictions in the standard model (SM) due to the uncertainty of Higgs data. In this work we study the Higgs pair production at the LHC in the Manohar-Wise model, which extends the SM by one family of color-octet and isospin-doublet scalars. We first scanned over the parameter space of the Manohar-Wise model considering experimental constraints and performed fits in the model to the latest Higgs data by using the ATLAS and CMS data separately. Then we calculated the Higgs pair production rate and investigated the potential of its discovery at the LHC14. We conclude that: (i) Under current constrains including Higgs data after Run I of the LHC, the cross section of Higgs pair production in the Manohar-Wise model can be enhanced up to even 103 times prediction in the SM. (ii) Moreover, the sizable enhancement comes from the contributions of the CP-odd color-octet scalar . For lighter scalar and larger values of |λI|, the cross section of Higgs pair production can be much larger. (iii) After running again of LHC at 14 TeV, most of the parameter spaces in the Manohar-Wise model can be test. For an integrated luminosity of 100 fb-1 at the LHC14, when the normalized ratio R = 10, the process of Higgs pair production can be detected.

  9. Review of Physics Results from the Tevatron. Electroweak Physics

    SciTech Connect

    Kotwal, Ashutosh V.; Schellman, Heidi; Sekaric, Jadranka

    2015-02-17

    We summarize an extensive Tevatron (1984–2011) electroweak physics program that involves a variety of W and Z boson precision measurements. The relevance of these studies using single and associated gauge boson production to our understanding of the electroweak sector, quantum chromodynamics and searches for new physics is emphasized. Furthermore,we discuss the importance of the W boson mass measurement, the W/Z boson distributions and asymmetries, and diboson studies. We also highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.

  10. Electroweak Symmetry Breaking in Historical Perspective

    NASA Astrophysics Data System (ADS)

    Quigg, Chris

    2015-10-01

    The discovery of the Higgs boson is a major milestone in our progress toward understanding the natural world. A particular aim of this review is to show how diverse ideas came together in the conception of electroweak symmetry breaking that led up to the discovery. I also survey what we know now that we did not know before, what properties of the Higgs boson remain to be established, and what new questions we may now hope to address.

  11. Electroweak Symmetry Breaking in Historical Perspective

    DOE PAGESBeta

    Quigg, Chris

    2015-10-01

    The discovery of the Higgs boson is a major milestone in our progress toward understanding the natural world. A particular aim of my review is to show how diverse ideas came together in the conception of electroweak symmetry breaking that led up to the discovery. Furthermore, I survey what we know now that we did not know before, what properties of the Higgs boson remain to be established, and what new questions we may now hope to address.

  12. Inert dark matter and strong electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Gil, Grzegorz; Chankowski, Piotr; Krawczyk, Maria

    2012-10-01

    The main virtue of the Inert Doublet Model (IDM) is that one of its spinless neutral bosons can play the role of Dark Matter. Assuming that the additional sources of CP violation are present in the form of higher dimensional operator(s) we reexamine the possibility that the model parameters for which the right number density of relic particles is predicted are compatible with the first-order phase transition that could lead to electroweak baryogenesis. We find, taking into account recent indications from the LHC and the constraints from the electroweak precision data, that for a light DM (40-60 GeV) particle H0 and heavy, almost degenerate additional scalars H± and A0 this is indeed possible but the two parameters most important for the strength of the phase transition: the common mass of H± and A0 and the trilinear coupling of the Higgs particle h0 to DM are then strongly constrained. H± and A0 must weight less than ∼ 440 GeV if the inert minimum is to be the lowest one and the value of the h0H0H0 coupling is limited by the XENON 100 data. We stress the important role of the zero-temperature part of the effective potential for the strength of the phase transition.

  13. Pursuing the origin of electroweak symmetry breaking: a 'Bayesian Physics' argument for sqrt(s) <~; 600 GeV e+e- collider

    SciTech Connect

    Kane, G.L.; Wells, James D.

    2000-08-09

    High-energy data has been accumulating over the last ten years, and it should not be ignored when making decisions about the future experimental program. In particular, we argue that the electroweak data collected at LEP, SLC and Tevatron indicate a light scalar particle with mass less than 500 GeV. This result is based on considering a wide variety of theories including the Standard Model, supersymmetry, large extra dimensions, and composite models. We argue that a high luminosity, 600 GeV e{sup +}e{sup -} collider would then be the natural choice to feel confident about finding and studying states connected to electroweak symmetry breaking. We also argue from the data that worrying about resonances at multi-TeV energies as the only signal for electroweak symmetry breaking is not as important a discovery issue for the next generation of colliders. Such concerns should perhaps be replaced with more relevant discovery issues such as a Higgs boson that decays invisibly, and ''new physics'' that could conspire with a heavier Higgs boson to accommodate precision electroweak data. An e{sup +}e{sup -} collider with {radical}s {approx}< 600 GeV is ideally suited to cover these possibilities.

  14. Prospects for observing the standard model Higgs boson decaying into bb final states produced in weak boson fusion with an associated photon at the LHC

    SciTech Connect

    Asner, D. M.; Cunningham, M.; Dejong, S.; Randrianarivony, K.; Santamarina, C.; Schram, M.

    2010-11-01

    One of the primary goals of the Large Hadron Collider is to understand the electroweak symmetry breaking mechanism. In the standard model, electroweak symmetry breaking is described by the Higgs mechanism which includes a scalar Higgs boson. Electroweak measurements constrain the standard model Higgs boson mass to be in the 114.4 to 157 GeV/c{sup 2} range. For m{sub h}<135 GeV/c{sup 2}, the Higgs predominantly decays into two b-quarks. As such, we investigate the prospect of observing the standard model Higgs decaying to bb produced in weak-boson-fusion with an associated central photon. An isolated, high p{sub T}, central photon trigger is expected to be available at the ATLAS and CMS experiments. In this study, we investigated the effects originating from showering, hadronization, the underlying event model, and jet performance including b-jet calibration on the sensitivity of this channel. We found that the choice of Monte Carlo simulation and its tune has a large effect on the efficacy of the central jet veto and consequently the signal significance. A signal significance of 1.6{sub -0.3}{sup +0.5} can be achieved for m{sub h}=115 GeV/c{sup 2} with 100 fb{sup -1} of integrated luminosity which correspond to 1 yr at design luminosity at 14 TeV pp collisions.

  15. Synergy between measurements of gravitational waves and the triple-Higgs coupling in probing the first-order electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Hashino, Katsuya; Kakizaki, Mitsuru; Kanemura, Shinya; Matsui, Toshinori

    2016-07-01

    Probing the Higgs potential and new physics behind the electroweak symmetry breaking is one of the most important issues of particle physics. In particular, the nature of the electroweak phase transition is essential for understanding the physics of the early Universe, such that the strongly first-order phase transition is required for a successful scenario of electroweak baryogenesis. The strongly first-order phase transition is expected to be tested by precisely measuring the triple Higgs boson coupling at future colliders like the International Linear Collider. It can also be explored via the spectrum of stochastic gravitational waves to be measured at future space-based interferometers such as eLISA and DECIGO. We discuss the complementarity of both the methods in testing the strongly first-order phase transition of the electroweak symmetry in models with additional isospin singlet scalar fields with and without classical scale invariance. We find that they are synergetic in identifying specific models of electroweak symmetry breaking in more detail.

  16. Search for Di-Muon Decays of a Light Scalar Higgs Boson in Radiative Upsilon(1S) Decays

    SciTech Connect

    Prasad, Vindhyawasini

    2013-08-01

    We search for di-muon decays of a low-mass Higgs boson (A0) in the fully reconstructed decay chain of Υ(2S, 3S ) → π+π-Υ(1S ), Υ(1S ) → γA0, A0 → μ+μ+. The A0 is predicted by several extensions of the Standard Model (SM), including the Next-to-Minimal Supersymmetric Standard Model (NMSSM). NMSSM introduces a CP-odd light Higgs boson whose mass could be less than 10 GeV/c2. The data samples used in this analysis contain 92.8 × 106 Υ(2S ) and 116.8 × 106 Υ(3S ) events collected by the BABAR detector. The Υ(1S ) sample is selected by tagging the pion pair in the Υ(2S, 3S ) → π+π-Υ(1S ) transitions. We find no evidence for A0 production and set 90% confidence level (C.L.) upper limits on the product branching fraction B(Υ(1S ) → γA0) × B(A0 → μ+μ-) in the range of (0.28 - 9.7) × 10-6 for 0.212 ≤ mA0 ≤ 9.20 GeV/c2. We also combine our results with previous BABAR results of Υ(2S, 3S ) → γA0, A0 → μ+μ- to set limits on the effective coupling ( fΥ) of the b-quark to the A0, f 2 Υ × B(A0 → μ+μ-), at the level of (0.29- 40) × 10-6 for 0.212 ≤ mA0 ≤ 9.2 GeV/c2.

  17. SU(8) Family Unification with Boson Fermion Balance

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2015-03-01

    We formulate an SU(8) family unification model motivated by requiring that the theory should incorporate the graviton, gravitinos, and the fermions and gauge fields of the standard model, with boson.fermion balance. Gauge field SU(8) anomalies cancel between the gravitinos and spin 1/2 fermions. The 56 of scalars breaks SU(8) to SU(3)family×SU(5)×U(1)/Z5, with the fermion representation content needed for "flipped" SU(5) with three families, and with residual scalars in the 10 and overline {10} representations that break flipped SU(5) to the standard model. Dynamical symmetry breaking can account for the generation of 5 representation scalars needed to break the electroweak group. Yukawa couplings of the 56 scalars to the fermions are forbidden by chiral and gauge symmetries, so in the first stage of SU(8) breaking fermions remain massless. In the limit of vanishing gauge coupling, there are N = 1 and N = 8 supersymmetries relating the scalars to the fermions, which restrict the form of scalar self-couplings and should improve the convergence of perturbation theory, if not making the theory finite and "calculable." In an Appendix we give an analysis of symmetry breaking by a Higgs component, such as the (1, 1)(-15) of the SU(8) 56 under SU(8) ⊃ SU(3) × SU(5) × U(1), which has nonzero U(1) generator.

  18. Stealth Dark Matter: Dark scalar baryons through the Higgs portal

    DOE PAGESBeta

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. -Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; et al

    2015-10-23

    We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(ND) strongly coupled theory with even ND ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision measurements,more » basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.« less

  19. Stealth Dark Matter: Dark scalar baryons through the Higgs portal

    SciTech Connect

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. -Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.

    2015-10-23

    We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(ND) strongly coupled theory with even ND ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.

  20. History of electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Kibble, T. W. B.

    2015-07-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.

  1. Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-11-30

    The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb-1 of pp collision data at √s=7 TeV and 20.3 fb-1 at √s=8 TeV. In the current study, the measured production and decay rates of the observed Higgs boson in the γγ, ZZ, W W , Zγ, bb, τ τ , and μμ decay channels, along with results from the associated production of a Higgs boson with a top-quark pair, are used to probe the scaling of the couplingsmore » with mass. The limits are set on parameters in extensions of the Standard Model including a composite Higgs boson, an additional electroweak singlet, and two-Higgs-doublet models. Together with the measured mass of the scalar Higgs boson in the γγ and ZZ decay modes, a lower limit is set on the pseudoscalar Higgs boson mass of mA > 370 GeV in the “hMSSM” simplified Minimal Supersymmetric Standard Model. Results from direct searches for heavy Higgs bosons are also interpreted in the hMSSM. Finally, direct searches for invisible Higgs boson decays in the vector-boson fusion and associated production of a Higgs boson with W/Z (Z → ℓℓ, W/Z → jj) modes are statistically combined to set an upper limit on the Higgs boson invisible branching ratio of 0.25. As a result, the use of the measured visible decay rates in a more general coupling fit improves the upper limit to 0.23, constraining a Higgs portal model of dark matter.« less

  2. Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Denis, R. D. St.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2015-11-01

    The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb-1 of pp collision data at √{s}=7 TeV and 20.3 fb-1 at √{s}=8 TeV. In the current study, the measured production and decay rates of the observed Higgs boson in the γγ, ZZ, W W , Zγ, bb, τ τ , and μμ decay channels, along with results from the associated production of a Higgs boson with a top-quark pair, are used to probe the scaling of the couplings with mass. Limits are set on parameters in extensions of the Standard Model including a composite Higgs boson, an additional electroweak singlet, and two-Higgs-doublet models. Together with the measured mass of the scalar Higgs boson in the γγ and ZZ decay modes, a lower limit is set on the pseudoscalar Higgs boson mass of m A > 370 GeV in the "hMSSM" simplified Minimal Supersymmetric Standard Model. Results from direct searches for heavy Higgs bosons are also interpreted in the hMSSM. Direct searches for invisible Higgs boson decays in the vector-boson fusion and associated production of a Higgs boson with W/Z ( Z → ℓℓ, W/Z → jj) modes are statistically combined to set an upper limit on the Higgs boson invisible branching ratio of 0.25. The use of the measured visible decay rates in a more general coupling fit improves the upper limit to 0.23, constraining a Higgs portal model of dark matter. [Figure not available: see fulltext.

  3. Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-11-30

    The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb-1 of pp collision data at √s=7 TeV and 20.3 fb-1 at √s=8 TeV. In the current study, the measured production and decay rates of the observed Higgs boson in the γγ, ZZ, W W , Zγ, bb, τ τ , and μμ decay channels, along with results from the associated production of a Higgs boson with a top-quark pair, are used to probe the scaling of the couplings with mass. The limits are set on parameters in extensions of the Standard Model including a composite Higgs boson, an additional electroweak singlet, and two-Higgs-doublet models. Together with the measured mass of the scalar Higgs boson in the γγ and ZZ decay modes, a lower limit is set on the pseudoscalar Higgs boson mass of mA > 370 GeV in the “hMSSM” simplified Minimal Supersymmetric Standard Model. Results from direct searches for heavy Higgs bosons are also interpreted in the hMSSM. Finally, direct searches for invisible Higgs boson decays in the vector-boson fusion and associated production of a Higgs boson with W/Z (Z → ℓℓ, W/Z → jj) modes are statistically combined to set an upper limit on the Higgs boson invisible branching ratio of 0.25. As a result, the use of the measured visible decay rates in a more general coupling fit improves the upper limit to 0.23, constraining a Higgs portal model of dark matter.

  4. Minimal semi-annihilating Z{sub N} scalar dark matter

    SciTech Connect

    Bélanger, Geneviève; Kannike, Kristjan; Raidal, Martti; Pukhov, Alexander E-mail: kristjan.kannike@cern.ch E-mail: martti.raidal@cern.ch

    2014-06-01

    We study the dark matter from an inert doublet and a complex scalar singlet stabilized by Z{sub N} symmetries. This field content is the minimal one that allows dimensionless semi-annihilation couplings for N > 2. We consider explicitly the Z{sub 3} and Z{sub 4} cases and take into account constraints from perturbativity, unitarity, vacuum stability, necessity for the electroweak Z{sub N} preserving vacuum to be the global minimum, electroweak precision tests, upper limits from direct detection and properties of the Higgs boson. Co-annihilation and semi-annihilation of dark sector particles as well as dark matter conversion significantly modify the cosmic abundance and direct detection phenomenology.

  5. Minimal semi-annihilating ℤ{sub N} scalar dark matter

    SciTech Connect

    Bélanger, Geneviève; Kannike, Kristjan; Pukhov, Alexander; Raidal, Martti

    2014-06-10

    We study the dark matter from an inert doublet and a complex scalar singlet stabilized by ℤ{sub N} symmetries. This field content is the minimal one that allows dimensionless semi-annihilation couplings for N>2. We consider explicitly the ℤ{sub 3} and ℤ{sub 4} cases and take into account constraints from perturbativity, unitarity, vacuum stability, necessity for the electroweak ℤ{sub N} preserving vacuum to be the global minimum, electroweak precision tests, upper limits from direct detection and properties of the Higgs boson. Co-annihilation and semi-annihilation of dark sector particles as well as dark matter conversion significantly modify the cosmic abundance and direct detection phenomenology.

  6. Top and Electroweak Measurements at the Tevatron

    SciTech Connect

    Bartos, P.

    2016-01-01

    In this report, we summarize the latest results of the top-quark mass and electroweak measurements from the Tevatron. Since the world combination of top-quark mass measurements was done, CDF and D0 experiments improved the precision of several results. Some of them reach the relative precition below 1% for a single measurement. From the electroweak results, we report on the WW and WZ production cross section, measurements of the weak mixing angle and indirect measurements of W boson mass. The Tevatron results of the weak mixing angle are still the most precise ones of hadron colliders.

  7. Inflation at the electroweak scale

    NASA Technical Reports Server (NTRS)

    Knox, Lloyd; Turner, Michael S.

    1993-01-01

    We present a model for slow-rollover inflation where the vacuum energy that drives inflation is of the order of G(F) exp -2; unlike most models, the conversion of vacuum energy to radiation ('reheating') is moderately efficient. The scalar field responsible for inflation is a standard-model singlet, develops a vacuum expectation value of 4 x 10 exp 6 GeV, has a mass of about 1 GeV, and can play a role in electroweak phenomena. We also discuss models where the energy scale of inflation is somewhat larger, but still well below the unification scale.

  8. Searches for electroweak neutralino and chargino production in channels with Higgs, Z , and W bosons in pp collisions at 8 TeV

    SciTech Connect

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D’Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Plestina, R.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.

    2014-11-01

    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb-1 of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E$miss\\atop{T}$). A second aspect is chargino-neutralino pair production, leading to hW states with E$miss\\atop{T}$. The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values.

  9. Diphoton and diboson probes of fermiophobic Higgs bosons at the LHC

    NASA Astrophysics Data System (ADS)

    Delgado, Antonio; Garcia-Pepin, Mateo; Quirós, Mariano; Santiago, José; Vega-Morales, Roberto

    2016-06-01

    Extensions of the Standard Model Higgs sector with electroweak charged scalars can possess exotic `Higgs' bosons with vanishing or suppressed couplings to Standard Model fermions. These `fermiophobic' scalars, which cannot be produced via gluon fusion, are constrained by LHC measurements of the 125 GeV Higgs boson to have a small vacuum expectation value. This implies that vector boson fusion and associated vector boson production are in general suppressed rendering conventional Higgs searches insensitive. However, Drell-Yan Higgs pair production, which is not present in the SM, can be sizeable even in the limit of vanishing exotic Higgs vacuum expectation value. We utilize this to show that diphoton searches at 8 TeV LHC already rule out a large class of neutral fermiophobic Higgs bosons below ˜ 110 GeV. This includes fermiophobic scalars found in two Higgs doublet as well as Higgs triplet and Georgi-Machacek type models. Our results extend the only relevant limit on fermiophobic Higgs bosons obtained by a recent CDF analysis of 4 γ + X Tevatron data. Furthermore, diphoton limits are independent of the decay of the second Higgs boson and thus apply even for degenerate masses in contrast to the CDF search. We also find that if the fermiophobic Higgs has very enhanced couplings to photons, masses as large as ˜ 150 GeV can be ruled out while if these couplings are somehow highly suppressed, masses below ˜ 90 GeV can still be ruled out. Finally, we show that WW and ZZ diboson searches may serve as complementary probes for masses above the diphoton limit up to ˜ 250 GeV and discuss prospects at 13 TeV LHC.

  10. Electroweak Physics at the Tevatron

    SciTech Connect

    Sekaric, J.; /Kansas U.

    2011-06-08

    The most recent Electroweak results from the Tevatron are presented. The importance of precise Standard Model measurements in the Higgs sector, quantum chromodynamics and searches for new physics is emphasized. Analyzed data correspond to 1-7 fb{sup -1} of integrated luminosity recorded by the CDF and D0 detectors at the Tevatron Collider at {radical}s = 1.96 TeV during the period between 2002-2010. The main goal of the Electroweak (EW) physics is to probe the mechanism of the EW symmetry breaking. An important aspect of these studies is related to precise measurements of the Standard Model (SM) parameters and tests of the SU(2) x U(1) gauge symmetry. Deviations from the SM may be indicative of new physics. Thus, the interplay between the tests of the 'standard' physics and searches for a 'nonstandard' physics is an important aspect of the EW measurements. The observables commonly used in these measurements are cross sections, gauge boson couplings, differential distributions, asymmetries, etc. Besides, many EW processes represent a non-negligible background in a Higgs boson and top quark production, and production of supersymmetric particles. Therefore, the complete and detailed understanding of EW processes is a mandatory precondition for early discoveries of very small new physics signals. Furthermore, several EW analyses represent a proving ground for analysis techniques and statistical treatments used in the Tevatron Higgs searches.

  11. Physics Beyond the Standard Model, search for non-perturbative models of electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Cheng, Michael

    2012-03-01

    The Standard Model provides an elegant mechanism for electroweak symmetry breaking (EWSB) via the introduction of a scalar Higgs field. However, the Standard Model Higgs mechanism is not the only way to explain EWSB. A class of models, broadly known as Technicolor, postulates the existence of a new strongly-interacting gauge sector at the TeV scale, coupled to the Standard Model through technifermions charged under electroweak. In technicolor, the spontaneous breaking of chiral symmetry triggers EWSB, with the resulting Goldstone bosons ``eaten'' by the massive W, Z gauge bosons. Because they are strongly-coupled and inherently non-perturbative, numerical lattice gauge theory provides an ideal arena in which technicolor can be explored. The maturation of lattice methods and availability of sufficient computing power has spurred the investigation of technicolor using lattice gauge theory techniques, in particular one variant known as ``walking'' technicolor. A technicolor model that resembles QCD is problematic that it does not satisfy the constraints of precision electro-weak observables, most notably those encapsulated by the Peskin-Takeuchi parameters, as well as the contraints on flavor-changing neutral currents. Walking technicolor is a class of models where the theory is near-conformal, i.e. the gauge coupling runs very slowly (``walks'') over some large range of energy scales. This walking behavior produces a large separation of scales between the natural cut-off for the theory and the EWSB scale, allowing one to naturally generate fermion masses without violating contrainsts on flavor-changing neutral currents. The dynamics of walking theories may also allow it to satisfy the bounds on the Peskin-Takeuchi parameters. We discuss the results of recent lattice calculations that explore the properties of walking technicolor models and the its implications on possible physics beyond the Standard Model.

  12. Non-minimal CW inflation, electroweak symmetry breaking and the 750 GeV anomaly

    NASA Astrophysics Data System (ADS)

    Marzola, L.; Racioppi, A.; Raidal, M.; Urban, F. R.; Veermäe, H.

    2016-03-01

    We study whether the hinted 750 GeV resonance at the LHC can be a Coleman-Weinberg inflaton which is non-minimally coupled to gravity. Since the inflaton must couple to new charged and coloured states to reproduce the LHC diphoton signature, the same interaction can generate its effective potential and trigger the electroweak symmetry breaking via the portal coupling to the Higgs boson. This inflationary scenario predicts a lower bound on the tensor-to-scalar ratio of r ≳ 0.006, where the minimal value corresponds to the measured spectral index n s ≃ 0.97. However, we find that the compatibility with the LHC diphoton signal requires exotic new physics at energy scales accessible at the LHC. We study and quantify the properties of the predicted exotic particles.

  13. Third generation sfermion decays into Z and W gauge bosons: Full one-loop analysis

    SciTech Connect

    Arhrib, Abdesslam; Benbrik, Rachid

    2005-05-01

    The complete one-loop radiative corrections to third-generation scalar fermions into gauge bosons Z and W{sup {+-}} is considered. We focus on f-tilde{sub 2}{yields}Zf-tilde{sub 1} and f-tilde{sub i}{yields}W{sup {+-}}f-tilde{sub j}{sup '}, f,f{sup '}=t,b. We include SUSY-QCD, QED, and full electroweak corrections. It is found that the electroweak corrections can be of the same order as the SUSY-QCD corrections. The two sets of corrections interfere destructively in some region of parameter space. The full one-loop correction can reach 10% in some supergravity scenario, while in model independent analysis like general the minimal supersymmetric standard model, the one-loop correction can reach 20% for large tan{beta} and large trilinear soft breaking terms A{sub b}.

  14. A new CP violation mechanism generated by the standard neutral Higgs boson: the η → π + π case

    NASA Astrophysics Data System (ADS)

    Pham, X. Y.; Gourdin, M.

    1996-02-01

    Strictly within the standard electro-weak interaction, CP violation in the flavour conserving process η → π + π could originate from the mixing of the η meson with the virtual scalar Higgs boson H0 via W and top quark exchange. The parity-violation carried by weak gauge bosons makes the mixing possible by quantum effect at two-loop level. Nowhere the Kobayashi-Maskawa (KM) phase mechanism is needed. The phenomenon reveals an unexpected new role of the Higgs boson in the CP symmetry breaking. For the Higgs mass between 100-600 GeV, the η → π + π branching ratio is found to be 3.6 · 10 -26 - 2.4 · 10 -29, hence CP violation mechanisms beyond the Standard Model are the only ones that could give rise to its observation at existing or near future η factories, unless the Higgs mass is improbably as light as 550 MeV.

  15. Electroweak fragmentation functions for dark matter annihilation

    SciTech Connect

    Cavasonza, Leila Ali; Krämer, Michael; Pellen, Mathieu

    2015-02-18

    Electroweak corrections can play a crucial role in dark matter annihilation. The emission of gauge bosons, in particular, leads to a secondary flux consisting of all Standard Model particles, and may be described by electroweak fragmentation functions. To assess the quality of the fragmentation function approximation to electroweak radiation in dark matter annihilation, we have calculated the flux of secondary particles from gauge-boson emission in models with Majorana fermion and vector dark matter, respectively. For both models, we have compared cross sections and energy spectra of positrons and antiprotons after propagation through the galactic halo in the fragmentation function approximation and in the full calculation. Fragmentation functions fail to describe the particle fluxes in the case of Majorana fermion annihilation into light fermions: the helicity suppression of the lowest-order cross section in such models cannot be lifted by the leading logarithmic contributions included in the fragmentation function approach. However, for other classes of models like vector dark matter, where the lowest-order cross section is not suppressed, electroweak fragmentation functions provide a simple, model-independent and accurate description of secondary particle fluxes.

  16. Strongly first-order electroweak phase transition and classical scale invariance

    NASA Astrophysics Data System (ADS)

    Farzinnia, Arsham; Ren, Jing

    2014-10-01

    In this work, we examine the possibility of realizing a strongly first-order electroweak phase transition within the minimal classically scale-invariant extension of the standard model (SM), previously proposed and analyzed as a potential solution to the hierarchy problem. By introducing one complex gauge-singlet scalar and three (weak scale) right-handed Majorana neutrinos, the scenario was successfully rendered capable of achieving a radiative breaking of the electroweak symmetry (by means of the Coleman-Weinberg mechanism), inducing nonzero masses for the SM neutrinos (via the seesaw mechanism), presenting a pseudoscalar dark matter candidate (protected by the CP symmetry of the potential), and predicting the existence of a second CP-even boson (with suppressed couplings to the SM content) in addition to the 125 GeV scalar. In the present treatment, we construct the full finite-temperature one-loop effective potential of the model, including the resummed thermal daisy loops, and demonstrate that finite-temperature effects induce a first-order electroweak phase transition. Requiring the thermally driven first-order phase transition to be sufficiently strong at the onset of the bubble nucleation (corresponding to nucleation temperatures TN˜100-200 GeV) further constrains the model's parameter space; in particular, an O(0.01) fraction of the dark matter in the Universe may be simultaneously accommodated with a strongly first-order electroweak phase transition. Moreover, such a phase transition disfavors right-handed Majorana neutrino masses above several hundreds of GeV, confines the pseudoscalar dark matter masses to ˜1-2 TeV, predicts the mass of the second CP-even scalar to be ˜100-300 GeV, and requires the mixing angle between the CP-even components of the SM doublet and the complex singlet to lie within the range 0.2≲sinω ≲0.4. The obtained results are displayed in comprehensive exclusion plots, identifying the viable regions of the parameter space

  17. The Electroweak Phase Transition: Corralling the Higgs with Colliders & Cosmology

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.

    Through this thesis, I investigate the way in which the electroweak phase transition, and therefore the Higgs boson, bridges high energy particle physics and early universe cosmology; moreover, I argue that it is particularly interesting to explore this bridge today as experiments such as the Large Hadron Collider begin to uncover the nature of physics at the electroweak scale. I will discuss how measurements of the properties of the Higgs boson at the Large Hadron Collider allow one to determine the nature of the phase transition that was responsible for electroweak symmetry breaking in the early universe. That information in turn will allow one to assess whether the asymmetry between the abundances of matter and anti-matter in the universe may have been generated during the electroweak phase transition. Additionally, I will discuss the impact of the electroweak phase transition on another cosmological relic: namely, the dark matter. Precise measurements of the mass and abundance of dark matter today yield further information about the nature of the electroweak phase transition, in some scenarios. This information may be used to test the hypothesis that the cosmological constant, assumed to be a good model of dark energy, is finely tuned. In this way, I hope to demonstrate the importance of the electroweak phase transition as a bridge between terrestrial tests of high energy physics and cosmological tests of the physics of the early universe.

  18. Proceedings of the 1992 workshops on high-energy physics with colliding beams. Volume 3, Electroweak symmetry breaking at colliding-beam facilities

    SciTech Connect

    Rogers, J.

    1992-12-31

    This report contains viewgraphs on the following topics: Introduction to Electroweak Symmetry Breaking: Intermediate-Mass Higgs Bosons; Extended Higgs Sectors and Novel Searches; and Heavy Higgs Bosons and Strong WW Scattering.

  19. Electroweak and B physics results from the Fermilab Tevatron Collider

    SciTech Connect

    Pitts, K.T.

    2001-01-30

    This writeup is an introduction to some of the experimental issues involved in performing electroweak and b physics measurements at the Fermilab Tevatron. In the electroweak sector, we discuss W and Z boson cross section measurements as well as the measurement of the mass of the W boson. For b physics, we discuss measurements of B{sup 0}/{bar B}{sup 0} mixing and CP violation. This paper is geared towards nonexperts who are interested in understanding some of the issues and motivations for these measurements and how the measurements are carried out.

  20. Higgs boson production with heavy quarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher B.

    2005-11-01

    One of the remaining puzzles in particle physics is the origin of electroweak symmetry breaking. In the Standard Model (SM), a single doublet of complex scalar fields is responsible for breaking the SU(2) L x U(1)Y gauge symmetry thus giving mass to the electroweak gauge bosons via the Higgs mechanism and to the fermions via Yukawa couplings. The remnant of the process is a vet to he discovered scalar particle, the Higgs boson (h). However, current and future experiments at hadron colliders hold great promise. Of particular interest at hadron colliders is the production of a Higgs boson in association with a pair of heavy quarks, pp¯(pp) → QQ¯h, where Q can be either a top or a bottom quark. Indeed, the production of a Higgs boson with a pair of top quarks provides a very distinctive signal in hadronic collisions where background processes are formidable, and it will be instrumental in the discovery of a Higgs boson below about 130 GeV at the LHC. On the other hand, the production of a Higgs boson with bottom quarks can be strongly enhanced in models of new physics beyond the SM, e.g. supersymmetric models. If this is the case, bb¯h production will play a crucial role at the Tevatron where it could provide the first signal of new physics. Given the prominent role that Higgs production with heavy quarks can play at hadron colliders, it becomes imperative to have precise theoretical predictions for total and differential cross sections. In this dissertation, we outline and present detailed results for the next-to-leading order (NLO) calculation of the Quantum Chromodynamic (QCD) corrections to QQ¯h production at both the Tevatron and the LHC. This calculation involves several difficult issues due to the three massive particles in the final state, a situation which is at the frontier of radiative correction calculations in quantum field theory. We detail the novel techniques developed to deal with these challenges. The calculation of pp¯(pp) → bb¯h at NLO in

  1. Quaternion scalar field

    SciTech Connect

    De Leo, S. ); Rotelli, P. )

    1992-01-15

    We discuss the extension of a version of {ital quaternion} quantum mechanics to field theory and in particular to the simplest example, the free scalar field. A previous difficulty with the conservation of four-momentum for the anomalous'' bosonic particles is resolved.

  2. Can the new resonance at LHC be a CP-odd Higgs boson?

    NASA Astrophysics Data System (ADS)

    Bečirević, D.; Bertuzzo, E.; Sumensari, O.; Zukanovich Funchal, R.

    2016-06-01

    A plausible explanation of the recent experimental indication of a resonance in the two-photon spectrum at LHC is that it corresponds to the CP-odd Higgs boson. We explore such a possibility in a generic framework of the two Higgs doublet models (2HDM), and combine mA ≈ 750 GeV with the known mh = 125.7 (4) GeV to show that the charged Higgs boson and the other CP-even scalar masses become bounded from bellow and from above. We show that this possibility is also consistent with the electroweak precision data and the low energy observables, which we test in a few leptonic and semileptonic decay modes.

  3. Precision experiments in electroweak interactions

    SciTech Connect

    Swartz, M.L.

    1990-03-01

    The electroweak theory of Glashow, Weinberg, and Salam (GWS) has become one of the twin pillars upon which our understanding of all particle physics phenomena rests. It is a brilliant achievement that qualitatively and quantitatively describes all of the vast quantity of experimental data that have been accumulated over some forty years. Note that the word quantitatively must be qualified. The low energy limiting cases of the GWS theory, Quantum Electrodynamics and the V-A Theory of Weak Interactions, have withstood rigorous testing. The high energy synthesis of these ideas, the GWS theory, has not yet been subjected to comparably precise scrutiny. The recent operation of a new generation of proton-antiproton (p{bar p}) and electron-positron (e{sup +}e{sup {minus}}) colliders has made it possible to produce and study large samples of the electroweak gauge bosons W{sup {plus minus}} and Z{sup 0}. We expect that these facilities will enable very precise tests of the GWS theory to be performed in the near future. In keeping with the theme of this Institute, Physics at the 100 GeV Mass Scale, these lectures will explore the current status and the near-future prospects of these experiments.

  4. Probing a light CP-odd scalar in di-top-associated production at the LHC

    NASA Astrophysics Data System (ADS)

    Casolino, Mirkoantonio; Farooque, Trisha; Juste, Aurelio; Liu, Tao; Spannowsky, Michael

    2015-10-01

    CP-odd scalars are an integral part of many extensions of the Standard Model. Recently, electroweak-scale pseudoscalars have received increased attention in explaining the diffuse gamma-ray excess from the Galactic Centre. Elusive due to absence of direct couplings to gauge bosons, these particles receive only weak constraints from direct searches at LEP or searches performed during the first LHC runs. We investigate the LHC's sensitivity in probing a CP-odd scalar in the mass range 20 ≤ m_A ≤ 100 GeV via di-top-associated production using jet-substructure-based reconstruction techniques. We parameterise the scalar's interactions using a simplified model approach and relate the obtained upper limits to couplings within type-I and type-II 2HDMs as well as the NMSSM. We find that in di-top-associated production, experiments at the LHC can set tight limits on CP-odd scalars that fit the Galactic Centre excess. However, direct sensitivity to light CP-odd scalars from the NMSSM remains challenging.

  5. pp{yields}jje{sup {+-}}{mu}{sup {+-}}{nu}{nu} and jje{sup {+-}}{mu}{sup {+-}}{nu}{nu} at O({alpha}{sub em}{sup 6}) and O({alpha}{sub em}{sup 4}{alpha}{sub s}{sup 2}) for the study of the quartic electroweak gauge boson vertex at CERN LHC

    SciTech Connect

    Eboli, O. J. P.; Gonzalez-Garcia, M. C.; Mizukoshi, J. K.

    2006-10-01

    We analyze the potential of the CERN Large Hadron Collider (LHC) to study the structure of quartic vector-boson interactions through the pair production of electroweak gauge bosons via weak boson fusion qq{yields}qqWW. In order to study these couplings we have performed a partonic level calculation of all processes pp{yields}jje{sup {+-}}{mu}{sup {+-}}{nu}{nu} and pp{yields}jje{sup {+-}}{mu}{sup {+-}}{nu}{nu} at the LHC using the exact matrix elements at O({alpha}{sub em}{sup 6}) and O({alpha}{sub em}{sup 4}{alpha}{sub s}{sup 2}) as well as a full simulation of the tt plus 0 to 2 jets backgrounds. A complete calculation of the scattering amplitudes is necessary not only for a correct description of the process but also to preserve all correlations between the final-state particles which can be used to enhance the signal. Our analyses indicate that the LHC can improve by more than 1 order of magnitude the bounds arising at the present from indirect measurements.

  6. Radiative mixing of the one Higgs boson and emergent self-interacting dark matter

    NASA Astrophysics Data System (ADS)

    Ma, Ernest

    2016-03-01

    In all scalar extensions of the standard model of particle interactions, the one Higgs boson responsible for electroweak symmetry breaking always mixes with other neutral scalars at tree level unless a symmetry prevents it. An unexplored important option is that the mixing may be radiative, and thus guaranteed to be small. Two first such examples are discussed. One is based on the soft breaking of the discrete symmetry Z3. The other starts with the non-Abelian discrete symmetry A4 which is then softly broken to Z3, and results in the emergence of an interesting dark-matter candidate together with a light mediator for the dark matter to have its own long-range interaction.

  7. Sakurai Prize Lecture: Thirty Years of Precision Electroweak Physics

    NASA Astrophysics Data System (ADS)

    Sirlin, Alberto

    2002-04-01

    We discuss the development of the theory of electroweak radiative corrections and its role in testing the Standard Model, predicting the top quark mass, constraining the Higgs boson mass, and searching for deviations that may signal the presence of new physics.

  8. Combined QCD and electroweak analysis of HERA data

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Behnke, O.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Boos, E. G.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Dementiev, R. K.; Devenish, R. C. E.; Dusini, S.; Foster, B.; Gach, G.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Golubkov, Yu. A.; Grzelak, G.; Guzik, M.; Gwenlan, C.; Hain, W.; Hlushchenko, O.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Januschek, F.; Jomhari, N. Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malka, J.; Mastroberardino, A.; Mohamad Idris, F.; Mohammad Nasir, N.; Myronenko, V.; Nagano, K.; Nobe, T.; Nowak, R. J.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N. S.; Polini, A.; Przybycień, M.; Roloff, P.; Ruspa, M.; Saxon, D. H.; Schioppa, M.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sztuk-Dambietz, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zotkin, D. S.; ZEUS Collaboration

    2016-05-01

    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarization of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u - and d -type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.

  9. Research on Electroweak and Flavor Symmetry Breaking

    SciTech Connect

    Lane, Kenneth Douglas

    2013-05-01

    Abstract of Project Summary, as written in August 2012: The objective of this research is the primary one of the Large Hadron Collider (LHC) at CERN in Geneva: the discovery and study of the origin of electroweak symmetry breaking (EWSB). This is the mission of the LHC's two large general-purpose detectors, ATLAS and CMS. Lane's approach to this goal assumes that a new strong interaction at the electroweak energy scale of 100's of GeV, called ``technicolor'' (TC), is responsible for triggering EWSB. He is one of the developers of technicolor, particularly of its flavor-physics component, called extended technicolor (ETC). The TC/ETC theory of this physics provides not only the dynamics of EWSB, but also an understanding of the types (flavors) of quarks and leptons and of their masses and mixing. The main thrust of this research involves close collaboration with members of ATLAS and CMS to search for the signatures of TC/ETC that are most accessible experimentally. These are new, rather heavy, spin-one particles --- technivector bosons ($\\tro$, $\\tom$, $\\ta$) --- readily produced at the LHC and decaying into electroweak bosons, $\\gamma, W, Z$, and spin-zero bosons called technipions, $\\tpi$. If these particles exist, they hold the key to understanding flavor physics. A very important recent development at the LHC is the discovery of a new 125-GeV boson decaying into $\\gamma\\gamma$, $ZZ$ and $WW$. This particle is widely suspected to be the long-sought Higgs boson, a basic component of the so-called standard model of EWSB. But, from a purely theoretical standpoint, this resolution to the origin of EWSB is very unsatisfactory. Moreover, there are interesting and possibly significant discrepancies of the data with this interpretation. Lane and collaborators are proposing that this boson is, in fact, a special kind of technipion. He is also working with ATLAS experimentalists to test this hypothesis. The LHC data to be collected and analyzed by ATLAS and CMS over

  10. Composite scalar dark matter from vector-like SU(2) confinement

    NASA Astrophysics Data System (ADS)

    Pasechnik, Roman; Beylin, Vitaly; Kuksa, Vladimir; Vereshkov, Grigory

    2016-03-01

    A toy-model with SU(2)TC dynamics confined at high scales ΛTC ≫ 100GeV enables to construct Dirac UV completion from the original chiral multiplets predicting a vector-like nature of their weak interactions consistent with electroweak precision tests. In this work, we investigate a potential of the lightest scalar baryon-like (T-baryon) state B0 = UD with mass mB ≳ 1TeV predicted by the simplest two-flavor vector-like confinement model as a dark matter (DM) candidate. We show that two different scenarios with the T-baryon relic abundance formation before and after the electroweak (EW) phase transition epoch lead to symmetric (or mixed) and asymmetric DM, respectively. Such a DM candidate evades existing direct DM detection constraints since its vector coupling to Z boson absents at tree level, while one-loop gauge boson mediated contribution is shown to be vanishingly small close to the threshold. The dominating spin-independent (SI) T-baryon-nucleon scattering goes via tree-level Higgs boson exchange in the t-channel. The corresponding bound on the effective T-baryon-Higgs coupling has been extracted from the recent LUX data and turns out to be consistent with naive expectations from the light technipion case mπ˜ ≪ ΛTC. The latter provides the most stringent phenomenological constraint on strongly-coupled SU(2)TC dynamics so far. Future prospects for direct and indirect scalar T-baryon DM searches in astrophysics as well as in collider measurements have been discussed.

  11. Spin-independent interferences and spin-dependent interactions with scalar dark matter

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Ochoa, F.

    2016-05-01

    We explore mechanisms of interferences under which the spin-independent interaction in the scattering of scalar dark matter with nucleus is suppressed in relation to the spin-dependent one. We offer a detailed derivation of the nuclear amplitudes based on the interactions with quarks in the framework of a nonuniversal U(1)' extension of the standard model. By assuming a range of parameters compatible with collider searches, electroweak observables and dark matter abundance, we find scenarios for destructive interferences with and without isospin symmetry. The model reveals solutions with mutually interfering scalar particles, canceling the effective spin-independent coupling with only scalar interactions, which requires an extra Higgs boson with mass M H > 125 GeV. The model also possesses scenarios with only vector interactions through two neutral gauge bosons, Z and Z', which do not exhibit interference effects. Due to the nonuniversality of the U(1)' symmetry, we distinguish two family structures of the quark sector with different numerical predictions. In one case, we obtain cross sections that pass all the Xenon-based detector experiments. In the other case, limits from LUX experiment enclose an exclusion region for dark matter between 9 and 800 GeV. We examine a third scenario with isospin-violating couplings where interferences between scalar and vector boson exchanges cancel the scattering. We provide solutions where interactions with Xenon-based detectors is suppressed for light dark matter, below 6 GeV, while interactions with Germanium- and Silicon-based detectors exhibit solutions up to the regions of interest for positive signals reported by CoGeNT and CDMS-Si experiments, and compatible with the observed DM relic density for DM mass in the range 8 .3-10 GeV. Spin-dependent interactions become the dominant source of scattering around the interference regions, where Maxwellian speed distribution is considered.

  12. Precision electroweak measurements

    SciTech Connect

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro {ital e}{sup +}{ital e}{sup -} and {ital p{anti p}} colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct {ital m{sub t}} measurements. Using the world`s electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs` mass are discussed.

  13. Production Cross-Section Estimates for Strongly-Interacting Electroweak-Symmetry Breaking Sector Resonances at Particle Colliders

    NASA Astrophysics Data System (ADS)

    Dobado, Antonio; Guo, Feng-Kun; Llanes-Estrada, Felipe J.

    2015-12-01

    We are exploring a generic strongly-interacting Electroweak Symmetry Breaking Sector (EWSBS) with the low-energy effective field theory for the four experimentally known particles (W±L, ZL, h) and its dispersion-relation based unitary extension. In this contribution we provide simple estimates for the production cross-section of pairs of the EWSBS bosons and their resonances at proton-proton colliders as well as in a future e-e+ (or potentially a μ-μ+) collider with a typical few-TeV energy. We examine the simplest production mechanisms, tree-level production through a W (dominant when quantum numbers allow) and the simple effective boson approximation (in which the electroweak bosons are considered as collinear partons of the colliding fermions). We exemplify with custodial isovector and isotensor resonances at 2 TeV, the energy currently being discussed because of a slight excess in the ATLAS 2-jet data. We find it hard, though not unthinkable, to ascribe this excess to one of these WLWL rescattering resonances. An isovector resonance could be produced at a rate smaller than, but close to earlier CMS exclusion bounds, depending on the parameters of the effective theory. The ZZ excess is then problematic and requires additional physics (such as an additional scalar resonance). The isotensor one (that would describe all charge combinations) has smaller cross-section. Supported by the Spanish Excellence Network on Hadronic Physics FIS2014-57026-REDT, by Spanish Grants Universidad Complutense UCM:910309 and Ministerio de Economia y Competitividad MINECO:FPA2011-27853-C02-01, MINECO:FPA2014-53375-C2-1-P, by the Deutsche Forschungsgemeinschaft and National Natural Science Foundation of China through Funds Provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11261130311) and by NSFC (Grant No. 11165005)

  14. Electroweak results from CDF

    SciTech Connect

    D. S. Waters

    2004-06-02

    Inclusive W and Z production cross-sections have been measured by CDF and certain electroweak parameters extracted with high precision from these measurements. New results on diboson production at the Tevatron are also presented.

  15. Low energy strong electroweak sector with decoupling

    SciTech Connect

    Casalbuoni, R.; Dominici, D. |; Deandrea, A.; Gatto, R.; De Curtis, S.; Grazzini, M. |

    1996-05-01

    We discuss possible symmetries of effective theories describing spinless and spin-1 bosons, mainly to concentrate on an intriguing phenomenological possibility: that of a hardly noticeable strong electroweak sector at relatively low energies. Specifically, a model with both vector and axial vector strong interacting bosons may possess a discrete symmetry imposing degeneracy of the two sets of bosons (degenerate BESS model). In such a case its effects at low energies become almost invisible and the model easily passes all low energy precision tests. The reason lies essentially in the fact that the model automatically satisfies decoupling, contrary to models with only vectors. For large mass of the degenerate spin-one bosons the model becomes identical at the classical level to the standard model taken in the limit of infinite Higgs boson mass. For these reasons we have thought it worthwhile to fully develop the model, together with its possible generalizations, and to study the expected phenomenology. For instance, just because of its invisibility at low energy, it is conceivable that degenerate BESS has low mass spin-one states and gives quite visible signals at existing or forthcoming accelerators. {copyright} {ital 1996 The American Physical Society.}

  16. Results from a search for a neutral Scalar produced in association with a W boson in p pbar collisions at squareroot s = 1.8 TeV

    SciTech Connect

    Abachi, S.

    1996-08-01

    This paper presents a search for production of a hypothetical heavy particle {ital X} in association with a {ital W} boson. For the search presented here, the kinematics and acceptance are modelled under the assumption that the {ital X} particle has the spin and decay properties of the standard model Higgs boson with the modification that only {ital X} {r_arrow} {ital b}{ital {anti b}} decays are allowed. The {ital W} is required to decay via either the electron or muon mode. The complete D{null} 1992-1995 data set is used. This sample has an integrated luminosity of 100 pb{sup -1} and was taken at a center of mass energy of 1.8 TeV. Limits are placed on the number of associated production events and the production cross section.

  17. Viability of strongly coupled scenarios with a light Higgs-like boson.

    PubMed

    Pich, Antonio; Rosell, Ignasi; Sanz-Cillero, Juan José

    2013-05-01

    We present a one-loop calculation of the oblique S and T parameters within strongly coupled models of electroweak symmetry breaking with a light Higgs-like boson. We use a general effective Lagrangian, implementing the chiral symmetry breaking SU(2)(L) [Symbol: see text]SU(2)(R) → SU(2)(L+R) with Goldstone bosons, gauge bosons, the Higgs-like scalar, and one multiplet of vector and axial-vector massive resonance states. Using a dispersive representation and imposing a proper ultraviolet behavior, we obtain S and T at the next-to-leading order in terms of a few resonance parameters. The experimentally allowed range forces the vector and axial-vector states to be heavy, with masses above the TeV scale, and suggests that the Higgs-like scalar should have a WW coupling close to the standard model one. Our conclusions are generic and apply to more specific scenarios such as the minimal SO(5)/SO(4) composite Higgs model. PMID:23683189

  18. Quasi-exactly-solvable confining solutions for spin-1 and spin-0 bosons in (1+1)-dimensions with a scalar linear potential

    SciTech Connect

    Castro, Luis B.; Castro, Antonio S. de

    2014-12-15

    We point out a misleading treatment in the recent literature regarding confining solutions for a scalar potential in the context of the Duffin–Kemmer–Petiau theory. We further present the proper bound-state solutions in terms of the generalized Laguerre polynomials and show that the eigenvalues and eigenfunctions depend on the solutions of algebraic equations involving the potential parameter and the quantum number.

  19. Studies of strong electroweak symmetry breaking at future e{sup +}e{sup {minus}} linear colliders

    SciTech Connect

    Barklow, T.L.

    1994-08-01

    Methods of studying strong electroweak symmetry breaking at future e{sup +}e{sup {minus}} linear colliders are reviewed. Specifically, we review precision measurements of triple gauge boson vertex parameters and the rescattering of longitudinal W bosons in the process e{sup +}e{sup {minus}} {yields} W{sup +}W{sup {minus}}. Quantitative estimates of the sensitivity of each technique to strong electroweak symmetry breaking are included.

  20. Recent results in electroweak physics at the Tevatron

    SciTech Connect

    Giulia Manca

    2004-02-13

    The Run II physics program of CDF and D0 has just begun with the first 72 pb{sup -1} of analysis quality data collected at the center-of-mass energy of 1.96 TeV. The Electroweak measurements are among the first and most important benchmarks for the best understanding of the detectors and testing the Standard Model. We present measurements of the W and Z inclusive cross sections and decays asymmetries, recent results in di-boson physics and searches for new physics which make use of distinct electroweak signatures.

  1. Minimal electroweak model for monopole annihilation

    SciTech Connect

    Farris, T.H. ); Kephart, T.W.; Weiler, T.J. ); Yuan, T.C. )

    1992-02-03

    We construct the minimal (most economical in fields) extension of the standard model implementing the Langacker-Pi mechanism for reducing the grand unified theory (GUT) monopole cosmic density to an allowed level. The model contains just a single charged scalar field in addition to the standard Higgs doublet, and is easily embeddable in any GUT. We identify the region of parameter space where monopoles annihilate in the higher temperature early Universe. A particularly alluring possibility is that the demise of monopoles at the electroweak scale is in fact the origin of the Universe's net baryon number.

  2. Strongly Coupled Models with a Higgs-like Boson

    NASA Astrophysics Data System (ADS)

    Pich, Antonio; Rosell, Ignasi; José Sanz-Cillero, Juan

    2013-11-01

    Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. We wish to thank the organizers of LHCP 2013 for the pleasant conference. This work has been supported in part by the Spanish Government and the European Commission [FPA2010-17747, FPA2011- 23778, AIC-D-2011-0818, SEV-2012-0249 (Severo Ochoa Program), CSD2007-00042 (Consolider Project CPAN)], the Generalitat Valenciana [PrometeoII/2013/007] and the Comunidad de Madrid [HEPHACOS S2009/ESP-1473].

  3. Heavy Higgs boson with a light sneutrino next-to-lightest supersymmetric particle in the MSSM with enhanced SU(2) D-terms.

    SciTech Connect

    Medina, A. D.; Shah, N. R.; Wagner, C. E. M.; High Energy Physics; Univ. of California at Davis; Univ. of Chicago

    2009-01-01

    The minimal supersymmetric extension of the standard model provides a solution to the hierarchy problem and leads to the presence of a light Higgs. A Higgs boson with mass above the present experimental bound may only be obtained for relatively heavy third generation squarks, requiring a precise, somewhat unnatural balance between different contributions to the effective Higgs mass parameter. It was recently noticed that somewhat heavier Higgs bosons, which are naturally beyond the CERN LEP bound, may be obtained by enhanced weak SU(2) D-terms. Such contributions appear in models with an enhanced electroweak gauge symmetry, provided the supersymmetry breaking masses associated with the scalars responsible for the breakdown of the enhanced gauge symmetry group to the standard model one are larger than the enhanced symmetry breaking scale. In this article we emphasize that the enhanced SU(2) D-terms will not only raise the Higgs boson mass but also affect the spectrum of the nonstandard Higgs bosons, sleptons, and squarks, which therefore provide a natural contribution to the T parameter, compensating for the negative one coming from the heavy Higgs boson. The sleptons and nonstandard Higgs bosons of these models, in particular, may act in a way similar to the so-called inert Higgs doublet. The phenomenological properties of these models are emphasized, and possible cosmological implications as well as collider signatures are described.

  4. Towards a scale free electroweak baryogenesis

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kazuya; Kitahara, Teppei; Takimoto, Masahiro

    2015-03-01

    We propose a new electroweak baryogenesis scenario in high-scale supersymmetric (SUSY) models. We consider a singlet extension of the minimal SUSY standard model introducing additional vectorlike multiplets. We show that the strongly first-order phase transition can occur at a high temperature comparable to the soft SUSY breaking scale. In addition, the proper amount of the baryon asymmetry of the Universe can be generated via the lepton number violating process in the vectorlike multiplet sector. The typical scale of our scenario, the soft SUSY breaking scale, can be any value. Thus our new electroweak baryogenesis scenario can be realized at arbitrary scales, and we call this scenario scale free electroweak baryogenesis. This soft SUSY breaking scale is determined by other requirements. If the soft SUSY breaking scale is O (10 ) TeV , our scenario is compatible with the observed mass of the Higgs boson and the constraints by electric dipole moment measurements and flavor experiments. Furthermore, the singlino can be a good candidate for dark matter.

  5. Electroweak standard model with very special relativity

    NASA Astrophysics Data System (ADS)

    Alfaro, Jorge; González, Pablo; Ávila, Ricardo

    2015-05-01

    The very special relativity electroweak Standard Model (VSR EW SM) is a theory with SU (2 )L×U (1 )R symmetry, with the same number of leptons and gauge fields as in the usual Weinberg-Salam model. No new particles are introduced. The model is renormalizable and unitarity is preserved. However, photons obtain mass and the massive bosons obtain different masses for different polarizations. Besides, neutrino masses are generated. A VSR-invariant term will produce neutrino oscillations and new processes are allowed. In particular, we compute the rate of the decays μ →e +γ . All these processes, which are forbidden in the electroweak Standard Model, put stringent bounds on the parameters of our model and measure the violation of Lorentz invariance. We investigate the canonical quantization of this nonlocal model. Second quantization is carried out, and we obtain a well-defined particle content. Additionally, we do a counting of the degrees of freedom associated with the gauge bosons involved in this work, after spontaneous symmetry breaking has been realized. Violations of Lorentz invariance have been predicted by several theories of quantum gravity [J. Alfaro, H. Morales-Tecotl, and L. F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000); Phys. Rev. D 65, 103509 (2002)]. It is a remarkable possibility that the low-energy effects of Lorentz violation induced by quantum gravity could be contained in the nonlocal terms of the VSR EW SM.

  6. Quartic gauge boson couplings

    NASA Astrophysics Data System (ADS)

    He, Hong-Jian

    1998-08-01

    We review the recent progress in studying the anomalous electroweak quartic gauge boson couplings (QGBCs) at the LHC and the next generation high energy e±e- linear colliders (LCs). The main focus is put onto the strong electroweak symmetry breaking scenario in which the non-decoupling guarantees sizable new physics effects for the QGBCs. After commenting upon the current low energy indirect bounds and summarizing the theoretical patterns of QGBCs predicted by the typical resonance/non-resonance models, we review our systematic model-independent analysis on bounding them via WW-fusion and WWZ/ZZZ-production. The interplay of the two production mechanisms and the important role of the beam-polarization at the LCs are emphasized. The same physics may be similarly and better studied at a multi-TeV muon collider with high luminosity.

  7. Electroweak physics at CDF

    SciTech Connect

    Nodulman, L.; CDF Collaboration

    1996-06-01

    The CDF collaboration is engaged in a broad program of electroweak measurements. The production of WW, WZ, ZZ, W{sub {gamma}}, Z{sub {gamma}} and the high mass Drell Yan charge asymmetry will be discussed, along with a status report on extracting a new W mass from the most recent 90 pb{sup {minus}1} data sample.

  8. The electroweak phase transition in the Inert Doublet Model

    SciTech Connect

    Blinov, Nikita; Profumo, Stefano; Stefaniak, Tim

    2015-07-21

    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  9. Eigenvalue-based determinants for scalar products and form factors in Richardson-Gaudin integrable models coupled to a bosonic mode

    NASA Astrophysics Data System (ADS)

    Claeys, Pieter W.; De Baerdemacker, Stijn; Van Raemdonck, Mario; Van Neck, Dimitri

    2015-10-01

    Starting from integrable su(2) (quasi-)spin Richardson-Gaudin (RG) XXZ models we derive several properties of integrable spin models coupled to a bosonic mode. We focus on the Dicke-Jaynes-Cummings-Gaudin models and the two-channel (p + ip)-wave pairing Hamiltonian. The pseudo-deformation of the underlying su(2) algebra is here introduced as a way to obtain these models in the contraction limit of different RG models. This allows for the construction of the full set of conserved charges, the Bethe ansatz state, and the resulting RG equations. For these models an alternative and simpler set of quadratic equations can be found in terms of the eigenvalues of the conserved charges. Furthermore, the recently proposed eigenvalue-based determinant expressions for the overlaps and form factors of local operators are extended to these models, linking the results previously presented for the Dicke-Jaynes-Cummings-Gaudin models with the general results for RG XXZ models.

  10. Di-boson production at the Tevatron

    SciTech Connect

    De Lentdecker, Gilles; /Rochester U.

    2005-05-01

    The authors present some precision measurements on electroweak physics performed at the Tevatron collider at Fermilab. Namely they report on the boson-pair production cross sections and on triple gauge boson couplings using proton anti-proton collisions collected by the CDF and D0 experiments at the center-of-mass energy of 1.96 TeV. The data correspond to an integrated luminosity of up to 324 pb{sup -1}.

  11. Higgs boson hunting

    SciTech Connect

    Dawson, S.; Haber, H.E.; Rindani, S.D.

    1989-05-01

    This is the summary report of the Higgs Boson Working Group. We discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K /yields/ /pi/H, /eta//prime/ /yields/ /eta/H,/Upsilon/ /yields/ H/gamma/ and e/sup +/e/sup /minus// /yields/ ZH are examined with particular attention paid to theoretical uncertainties in the calculations. We also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields. 33 refs., 6 figs., 1 tab.

  12. Electroweak baryogenesis and the expansion rate of the Universe

    NASA Astrophysics Data System (ADS)

    Joyce, Michael

    1997-02-01

    The standard requirement for the production of baryons at the electroweak phase transition, that the phase transition be first order and the sphaleron bound be satisfied, is predicated on the assumption of a radiation-dominated universe at that epoch. One simple alternative, domination by the energy in a kinetic mode of a scalar field which scales as 1/a6, gives a significantly weakened sphaleron bound for the preservation of a baryon asymmetry produced at a first-order phase transition, and allows the possibility that the observed baryon asymmetry be produced when the phase transition is second order or crossover. Such a phase of ``kination'' at the electroweak scale can occur in various ways as a scalar field evolves after inflation in an exponential potential.

  13. Search for the standard model higgs boson in its associated production with a W vector boson in pp collisions at √s= 1.96 TeV

    SciTech Connect

    Hegab, Hatim H.

    2013-01-01

    In this dissertation, results from a search for the Standard Model (SM) Higgs boson is shown. The SM is the theoretical framework which describes particles of matter and force carrier gauge bosons. To solve the mass problem in the SM, the Higgs mechanism was introduced in 1963. The Higgs mechanism causes an electroweak symmetry breaking and a new massive scalar boson was postulated. This particle is the Higgs boson. A search for the Higgs boson has been ongoing at the Tevatron where protons and antiprotons were allowed to collide at a center-of-mass energy of 1.96 TeV. For a low mass Higgs, that is a Higgs with a mass lower than 135 GeV, the dominant decay mode is Higgs to a pair of b-quarks (H →b $\\bar{b}$ ). This work concentrated on a Higgs whose mass is in the range of 100 150 GeV, with a W vector boson produced with the Higgs boson. The final state chosen is the one which contains a lepton a neutrino and a pair of b-quarks. This study used data provided by the DZERO experiment. Results presented here are the outcome of analyzing 5.3 fb-1 of data from RunII period. The analysis used different techniques to increase the sensitivity of the study. Data were subdivided based on lepton flavor, number of jets in sample, jets identified as b-jets and dates of collected data. A multivariate analysis technique based on boosted decision trees were used to separate signal from background processes, physical and instrumental. A good agreement between data and simulated events was observed.

  14. Precision Electroweak Measurements on the Z Presonance

    SciTech Connect

    Aleph,Delphi,L3,Opal,SLD , Collaborations

    2005-09-08

    The authors report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. the data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarized beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarized asymmetries. The mass and width of the Z boson, m{sub Z} and {Lambda}{sub Z}, and its couplings to fermions, for example the {rho} parameter and the effective electroweak mixing angle for leptons, are precisely measured: m{sub Z} = 91.1875 {+-} 0.0021 GeV; {Lambda}{sub Z} = 2.4952 {+-} 0.0023 GeV; {rho}{sub {ell}} = 1.0050 {+-} 0.0010; sin{sup 2} {theta}{sub eff}{sup lept} = 0.23153 {+-} 0.00016. The number of light neutrino species is determined to be 2.9840 {+-} 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model. At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its Standard Model expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m{sub t} = 173{sub -10}{sup +13} GeV, and the mass of the W boson, m{sub W} = 80.363 {+-} 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the Standard Model. Using in addition the direct measurements of m{sub t} and m{sub W}, the mass of the as yet unobserved Standard Model Higgs boson is predicted with a

  15. Mass of the electroweak monopole

    NASA Astrophysics Data System (ADS)

    Kimm, Kyoungtae; Yoon, J. H.; Oh, S. H.; Cho, Y. M.

    2016-03-01

    We present three independent methods to estimate the mass of the electroweak monopole. Our result strongly implies the existence of a genuine electroweak monopole of mass around 4-10 TeV, which could be detected by MoEDAL at present Large Hadron Collider (LHC). We emphasize that the discovery of the electroweak monopole should be the final test of the Standard Model.

  16. On the trail of the Higgs boson

    DOE PAGESBeta

    Peskin, Michael E.

    2015-09-11

    I review theoretical issues associated with the Higgs boson and the mystery of spontaneous breaking of the electroweak gauge symmetry. In addition, this essay is intended as an introduction to the special issue of Annalen der Physik, “Particle Physics after the Higgs”.

  17. Boson-boson effective nonrelativistic potential for higher-derivative electromagnetic theories in D dimensions

    SciTech Connect

    Accioly, Antonio; Dias, Marco

    2004-11-15

    The problem of computing the effective nonrelativistic potential U{sub D} for the interaction of charged-scalar bosons, within the context of D-dimensional electromagnetism with a cutoff, is reduced to quadratures. It is shown that U{sub 3} cannot bind a pair of identical charged-scalar bosons; nevertheless, numerical calculations indicate that boson-boson bound states do exist in the framework of three-dimensional higher-derivative electromagnetism augmented by a topological Chern-Simons term.

  18. Symmetry inheritance of scalar fields

    NASA Astrophysics Data System (ADS)

    Smolić, Ivica

    2015-07-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair.

  19. Electroweak symmetry breaking

    SciTech Connect

    Chanowitz, M.S.

    1990-09-01

    The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.

  20. Electroweak symmetry breaking: Higgs/whatever

    SciTech Connect

    Chanowitz, M.S.

    1989-10-16

    In the first of these two lectures the Higgs mechanism is reviewed in its most general form, which does not necessarily require the existence of Higgs bosons. The general consequences of the hypothesis that electroweak symmetry breaking is due to the Higgs mechanism are deduced just from gauge invariance and unitarity. In the second lecture the general properties are illustrated with three specific models: the Weinberg-Salam model, its minimal supersymmetric extension, and technicolor. The second lecture concludes with a discussion of the experiment signals for strong WW scattering, whose presence or absence will allow us to determine whether the symmetry breaking sector lies above or below 1 TeV. 57 refs.

  1. Higgs Boson Mass, Neutrino Oscillations and Inflation

    SciTech Connect

    Shafi, Qaisar

    2008-11-23

    Finding the Standard Model scalar (Higgs) boson is arguably the single most important mission of the LHC. I review predictions for the Higgs boson mass based on stability and perturbativity arguments, taking into account neutrino oscillations. Primordial inflation based on the Coleman-Weinberg potential is briefly discussed.

  2. The search for the pair production of second-generation scalar leptoquarks and measurements of the differential cross sections of the W boson produced in association with jets with the CMS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Baumgartel, Darin C.

    generation, and this thesis describes searches for leptoquarks produced in pairs and decaying to final states containing either two muons and two jets, or one muon, one muon-neutrino, and two jets. Searches are conducted with collision data at center-of-mass energies of both 7 TeV and 8 TeV. No compelling evidence for the existence of leptoquarks is found, and upper limits on the leptoquark mass and cross section are placed at the 95% confidence level. These limits are the most stringent to date, and are several times larger than limits placed previously at hadron collider experiments. While the pair production of massive leptoquark bosons yields final states which have strong kinematic differences from the Standard Model processes, the ability to exploit these differences is limited by the ability to accurately model the backgrounds. The most notable of these backgrounds is the production of a W boson in association with one or more jets. Since the W+jets process has a very large cross section and a final state containing missing energy, its contribution to the total Standard Model background is both nominally large and more difficult to discriminate against than backgrounds with only visible final state objects. Furthermore, estimates of this background are not easily improved by comparisons with data in control regions, and simulations of the background are often limited to leading-order predictions. To improve the understanding and modeling of this background for future endeavors, this thesis also presents measurements of the W+jets process differentially as a function of several variables, including the jet multiplicity, the individual jet transverse momenta and pseudorapidities, the angular separation between the jets and the muon, and the scalar sum of the transverse momenta of all jets. The agreement of these measurements with respect to predictions from event leading-order generators and next-to-leading-order calculations is assessed.

  3. Two gauge boson physics at future colliders

    SciTech Connect

    Cahn, R.N.

    1988-05-13

    Electroweak unification suggests that there should be WW and ZZ physics analogous to {gamma}{gamma} physics. Indeed, WW and ZZ collisions will provide an opportunity to search for the Higgs boson at future high energy colliders. Cross sections in the picobarn range are predicted for Higgs boson production at the proposed 40-TeV SSC. While other states may be produced by WW and ZZ collisions, it is the Higgs boson that looms as the most attractive objective. 31 refs., 5 figs.

  4. Dominant mixed QCD-electroweak O (αs α) corrections to Drell-Yan processes in the resonance region

    NASA Astrophysics Data System (ADS)

    Dittmaier, Stefan; Huss, Alexander; Schwinn, Christian

    2016-03-01

    A precise theoretical description of W- and Z-boson production in the resonance region is essential for the correct interpretation of high-precision measurements of the W-boson mass and the effective weak mixing angle. Currently, the largest unknown fixed-order contribution is given by the mixed QCD-electroweak corrections of O (αs α) . We argue, using the framework of the pole expansion for the NNLO QCD-electroweak corrections established in a previous paper, that the numerically dominant corrections arise from the combination of large QCD corrections to the production with the large electroweak corrections to the decay of the W / Z boson. We calculate these so-called factorizable corrections of "initial-final" type and estimate the impact on the W-boson mass extraction. We compare our results to simpler approximate combinations of electroweak and QCD corrections in terms of naive products of NLO QCD and electroweak correction factors and using leading-logarithmic approximations for QED final-state radiation as provided by the structure-function approach or QED parton-shower programs. We also compute corrections of "final-final" type, which are given by finite counterterms to the leptonic vector-boson decays and are found to be numerically negligible.

  5. Higgs boson spectra in supersymmetric left-right models

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; Patra, Ayon

    2016-03-01

    We present a comprehensive analysis of the Higgs boson spectra in several versions of the supersymmetric left-right model based on the gauge symmetry S U (3 )c×S U (2 )L×S U (2 )R×U (1 )B-L. A variety of symmetry breaking sectors are studied, with a focus on the constraints placed on model parameters by the lightest neutral C P even Higgs boson mass Mh. The breaking of S U (2 )R symmetry is achieved by Higgs fields transforming either as triplets or doublets, and the electroweak symmetry breaking is triggered by either bi-doublets or doublets. The Higgs potential is analyzed with or without a gauge singlet Higgs field present. Seesaw models of Type I and Type II, inverse seesaw models, universal seesaw models and an E6 inspired alternate left-right model are included in our analysis. Several of these models lead to the tree-level relation Mh≤√{2 }mW (rather than Mh≤mZ that arises in the MSSM), realized when the S U (2 )R symmetry breaking scale is of order TeV. With such an enhanced upper limit, it becomes possible to accommodate a Higgs boson of mass 126 GeV with relatively light stops that mix negligibly. In models with Higgs triplets, a doubly charged scalar remains light below a TeV with its mass arising entirely from radiative corrections. We carry out the complete one-loop calculation for its mass induced by the Majorana Yukawa couplings and show the consistency of the framework. We argue that these models prefer a low S U (2 )R breaking scale. Other theoretical and phenomenological implications of these models are briefly discussed.

  6. Dark light Higgs bosons.

    SciTech Connect

    Draper, P.; Liu, T.; Wagner, C. E. M.; Wang, L.-T.; Zhang, H.

    2011-03-24

    We study a limit of the nearly Peccei-Quinn-symmetric next-to-minimal supersymmetric standard model possessing novel Higgs and dark matter (DM) properties. In this scenario, there naturally coexist three light singletlike particles: a scalar, a pseudoscalar, and a singlinolike DM candidate, all with masses of order 0.1-10 GeV. The decay of a standard model-like Higgs boson to pairs of the light scalars or pseudoscalars is generically suppressed, avoiding constraints from collider searches for these channels. For a certain parameter window annihilation into the light pseudoscalar and exchange of the light scalar with nucleons allow the singlino to achieve the correct relic density and a large direct-detection cross section consistent with the DM direct-detection experiments, CoGeNT and DAMA/LIBRA, preferred region simultaneously. This parameter space is consistent with experimental constraints from LEP, the Tevatron, ?, and flavor physics.

  7. Electroweak Baryogenesis in R-symmetric Supersymmetry

    SciTech Connect

    Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin

    2013-03-01

    We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.

  8. LHC Higgs signatures from extended electroweak gauge symmetry

    NASA Astrophysics Data System (ADS)

    Abe, Tomohiro; Chen, Ning; He, Hong-Jian

    2013-01-01

    We study LHC Higgs signatures from the extended electroweak gauge symmetry SU(2) ⊗ SU(2) ⊗ U(1). Under this gauge structure, we present an effective UV completion of the 3-site moose model with ideal fermion delocalization, which contains two neutral Higgs states ( h, H) plus three new gauge bosons ( W ' , Z '). We study the unitarity, and reveal that the exact E 2 cancellation in the longitudinal V L V L scattering amplitudes is achieved by the joint role of exchanging both spin-1 new gauge bosons W ' /Z ' and spin-0 Higgs bosons h/H. We identify the lighter Higgs state h with mass 125 GeV, and derive the unitarity bound on the mass of heavier Higgs boson H. The parameter space of this model is highly predictive. We study the production and decay signals of this 125 GeV Higgs boson h at the LHC. We demonstrate that the h Higgs boson can naturally have enhanced signals in the diphoton channel gg → h → γγ, while the event rates in the reactions gg → h → W W ∗ and gg → h → ZZ ∗ are generally suppressed relative to the SM expectation. Searching the h Higgs boson via the associated production and the vector boson fusions are also discussed for our model. We further analyze the LHC signals of the heavier Higgs boson H as a new physics discriminator from the SM. For wide mass-ranges of H, we derive constraints from the existing LHC searches, and study the discovery potential of H at the LHC (8 TeV) and LHC (14 TeV).

  9. Precision Studies of Hadronic and Electro-Weak Interactions for Collider Physics. Final Report

    SciTech Connect

    Yost, Scott A

    2014-04-02

    This project was directed toward developing precision computational tools for proton collisions at the Large Hadron Collider, focusing primarily on electroweak boson production and electroweak radiative corrections. The programs developed under this project carried the name HERWIRI, for High Energy Radiation With Infra-Red Improvements, and are the first steps in an ongoing program to develop a set of hadronic event generators based on combined QCD and QED exponentiation. HERWIRI1 applied these improvements to the hadronic shower, while HERWIRI2 will apply the electroweak corrections from the program KKMC developed for electron-positron scattering to a hadronic event generator, including exponentiated initial and final state radiation together with first-order electroweak corrections to the hard process. Some progress was also made on developing differential reduction techniques for hypergeometric functions, for application to the computation of Feynman diagrams.

  10. Strong and Electroweak Matter 2004

    NASA Astrophysics Data System (ADS)

    Eskola, Kari J.; Kainulainen, Kimmo; Kajantie, Keijo; Rummukainen, Kari

    results confront models / M. D'Elia and M. P. Lombardo -- Singlet free energies of a static quark-antiquark pair / K. Petrov -- Contributions to transport theory from multi-particle interactions and production processes / M. E. Carrington -- Transport coefficients and the 2PI effective action in the large N limit / G. Aarts and J. M. Martinez Resco -- Thermal features far from equilibrium: prethermalization / S. Borsányi -- QCD phase diagram at small Baryon densities from imaginary [symbol]: status report / O. Philipsen and Ph. de Forcrand -- Two loop renormalisation of the magnetic coupling in hot QCD and spatial Wilson loop / P. Giovannangeli -- Thermodynamics of deconfined QCD at small and large chemical potential / A. Ipp -- Evading the infrared problem of thermal QCD / Y. Schroder -- Chiral mesons in hot matter / A. Gómez Nicola, F. J. Llanes-Estrada and J. R. Peláez -- Thermal production of axinos in the early universe / A. Brandenburg and F. D. Steffen -- The 2-PI-1/N approximation applied to tachyonic preheating / A. Tranberg, A. Arrizabalaga and J. Smit -- Nonequilibrium dynamics in scalar hybrid models / J. Baacke and A. Heinen -- Photon mass in inflation and nearly minimal magnetogenesis / T. Prokopec -- Transport equations for chiral fermions to order [symbol] and electroweak Baryogenesis / S. Weinstock, M. G. Schmidt and T. Prokopec -- The gapless 2SC phase / M. Huang and I. A. Shovkovy -- Gapless CFL and its competition with mixed phases / M. Alford, C. Kouvaris and K. Rajagopal -- Transport coefficients in color superconducting quark matter / C. Manuel -- Renormalization and resummation in finite temperature field theories / A. Jakovác and Zs. Szép -- Renormalization and gauge symmetry for 2PI effective actions / U. Reinosa -- Out-of-equilibrium massless Schwinger model / R. F. Alvarez-Estrada -- Selfconsistent calculations of hadrons at finite temperature / C. Beckmann -- Fermion production in classical fields / D. D. Dietrich -- Numerical study of

  11. Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breaking

    NASA Astrophysics Data System (ADS)

    Ohanian, Hans C.

    2016-03-01

    Instead of the scalar "dilaton" field that is usually adopted to construct conformally invariant Lagrangians for gravitation, we here propose a hybrid construction, involving both a complex dilaton scalar and a Weyl gauge-vector, in accord with Weyl's original concept of a non-Riemannian conformal geometry with a transport law for length and time intervals, for which this gauge vector is required. Such a hybrid construction permits us to avoid the wrong sign of the dilaton kinetic term (the ghost problem) that afflicts the usual construction. The introduction of a Weyl gauge-vector and its interaction with the dilaton also has the collateral benefit of providing an explicit mechanism for spontaneous breaking of the conformal symmetry, whereby the dilaton and the Weyl gauge-vector acquire masses somewhat smaller than {m}_{P} by the Coleman-Weinberg mechanism. Conformal symmetry breaking is assumed to precede inflation, which occurs later by a separate GUT or electroweak symmetry breaking, as in inflationary models based on the Higgs boson.

  12. CP violation and electroweak baryogenesis in the Standard Model

    NASA Astrophysics Data System (ADS)

    Brauner, Tomáš

    2014-04-01

    One of the major unresolved problems in current physics is understanding the origin of the observed asymmetry between matter and antimatter in the Universe. It has become a common lore to claim that the Standard Model of particle physics cannot produce sufficient asymmetry to explain the observation. Our results suggest that this conclusion can be alleviated in the so-called cold electroweak baryogenesis scenario. On the Standard Model side, we continue the program initiated by Smit eight years ago; one derives the effective CP-violating action for the Standard Model bosons and uses the resulting effective theory in numerical simulations. We address a disagreement between two previous computations performed effectively at zero temperature, and demonstrate that it is very important to include temperature effects properly. Our conclusion is that the cold electroweak baryogenesis scenario within the Standard Model is tightly constrained, yet producing enough baryon asymmetry using just known physics still seems possible.

  13. Electroweak baryogenesis, electric dipole moments, and Higgs diphoton decays

    NASA Astrophysics Data System (ADS)

    Chao, Wei; Ramsey-Musolf, Michael J.

    2014-10-01

    We study the viability of electroweak baryogenesis in a two Higgs doublet model scenario augmented by vector-like, electroweakly interacting fermions. Considering a limited, but illustrative region of the model parameter space, we obtain the observed cosmic baryon asymmetry while satisfying present constraints from the non-observation of the permanent electric dipole moment (EDM) of the electron and the combined ATLAS and CMS result for the Higgs boson diphoton decay rate. The observation of a non-zero electron EDM in a next generation experiment and/or the observation of an excess (over the Standard Model) of Higgs to diphoton events with the 14 TeV LHC run or a future e + e - collider would be consistent with generation of the observed baryon asymmetry in this scenario.

  14. Precision Electroweak Measurements and Constraints on the Standard Model

    SciTech Connect

    Not Available

    2011-11-11

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2007 are new combinations of results on the W-boson mass and width and the mass of the top quark.

  15. Precision Electroweak Measurements and Constraints on the Standard Model

    SciTech Connect

    The , ALEPH, CDF, D0, ...

    2009-12-11

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2008 are new combinations of results on the W-boson mass and the mass of the top quark.

  16. Precision Electroweak Measurements and Constraints on the Standard Model

    SciTech Connect

    None, None

    2009-11-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results measured at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2008 are new combinations of results on the W-boson mass and the mass of the top quark.

  17. Precision electroweak measurements and constraints on the Standard Model

    SciTech Connect

    Not Available

    2010-12-01

    This note presents constraints on Standard Model parameters using published and preliminary precision electroweak results obtained at the electron-positron colliders LEP and SLC. The results are compared with precise electroweak measurements from other experiments, notably CDF and D0 at the Tevatron. Constraints on the input parameters of the Standard Model are derived from the combined set of results obtained in high-Q{sup 2} interactions, and used to predict results in low-Q{sup 2} experiments, such as atomic parity violation, Moeller scattering, and neutrino-nucleon scattering. The main changes with respect to the experimental results presented in 2009 are new combinations of results on the width of the W boson and the mass of the top quark.

  18. Hidden sector dark matters and elusive Higgs boson(s) at the LHC

    SciTech Connect

    Ko, P.

    2012-07-27

    We consider two types of hidden sector dark matters (DM's), with and without QCD-like new strong interaction with confinement properties, and their interplays with the Standard Model (SM) Higgs boson. Assuming the hidden sector has only fermions (and gauge bosons in case of strongly interacting hidden sector), we have to introduce a real singlet scalar boson S as a messenger between the SM and the hidden sector dark matters. This singlet scalar will mix with the SM Higgs boson h, and we expect there are two Higgs-like scalar bosons H{sub 1} and H{sub 2}. Imposing all the relevant constraints from collider search bounds on Higgs boson, DM scattering cross section on proton and thermal relic density, we find that one of the two Higgs-like scalar bosons can easily escape the detections at the LHC. Recent results on the Higgs-like new boson with mass around with 125 GeV from the LHC will constrain this class of models, which is left for future study.

  19. A new boson with a mass of 125 GeV observed with the CMS experiment at the Large Hadron Collider.

    PubMed

    2012-12-21

    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force-the W(+), W(-), and Z(0) bosons-as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 × 10(6). The new particle is a boson with spin not equal to 1 and has a mass of about 125 [corrected] giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle. PMID:23258887

  20. Constraints on inert dark matter from the metastability of the electroweak vacuum

    NASA Astrophysics Data System (ADS)

    Khan, Najimuddin; Rakshit, Subhendu

    2015-09-01

    The inert scalar doublet model of dark matter can be valid up to the Planck scale. We briefly review the bounds on the model in such a scenario and identify parameter spaces that lead to absolute stability and metastability of the electroweak vacuum.

  1. Electroweak interactions at the SSC

    SciTech Connect

    Cahn, R.N.

    1985-08-01

    Production of the gauge bosons, W/sup +/, W/sup -/, and Z/sup 0/ in various combinations at the Superconducting Super Collider is considered. Possibilities for producing Higgs bosons and detecting them are then evaluated. 18 refs. (LEW)

  2. Gravitational waves from the electroweak phase transition

    SciTech Connect

    Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D. E-mail: megevand@mdp.edu.ar

    2012-10-01

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10{sup −4} Hz, and give intensities as high as h{sup 2}Ω{sub GW} ∼ 10{sup −8}.

  3. Gravitational waves from the electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D.

    2012-10-01

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ~ 10-4 Hz, and give intensities as high as h2ΩGW ~ 10-8.

  4. Electroweak breaking and neutrino mass: ‘invisible’ Higgs decays at the LHC (type II seesaw)

    NASA Astrophysics Data System (ADS)

    Bonilla, Cesar; Romão, Jorge C.; Valle, José W. F.

    2016-03-01

    Neutrino mass generation through the Higgs mechanism not only suggests the need to reconsider the physics of electroweak symmetry breaking from a new perspective, but also provides a new theoretically consistent and experimentally viable paradigm. We illustrate this by describing the main features of the electroweak symmetry breaking sector of the simplest type-II seesaw model with spontaneous breaking of lepton number. After reviewing the relevant ‘theoretical’ and astrophysical restrictions on the Higgs sector, we perform an analysis of the sensitivities of Higgs Boson searches at the ongoing ATLAS and CMS experiments at the LHC, including not only the new contributions to the decay channels present in the standard model (SM) but also genuinely non-SM Higgs Boson decays, such as ‘invisible’ Higgs Boson decays to majorons. We find sensitivities that are likely to be reached at the upcoming run of the experiments.

  5. Jets and Vector Bosons in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    de la Cruz, Begoña

    2013-11-01

    This paper reviews experimental results on jets and electroweak boson (photon,Wand Z) production in heavy-ion collisions, from the CMS and ATLAS detectors, using data collected during 2011 PbPb run and pp data collected at an equivalent energy. By comparing the two collision systems, the energy loss of the partons propagating through the medium produced in PbPb collisions can be studied. Its characterization is done using dijet events and isolated photon-jet pairs. Since the electroweak gauge bosons do not participate in the strong interaction, and are thus unmodified by the nuclear medium, they serve as clean probes of the initial state in the collision.

  6. Multistate boson stars

    SciTech Connect

    Bernal, A.; Barranco, J.; Alic, D.; Palenzuela, C.

    2010-02-15

    Motivated by the increasing interest in models which consider scalar fields as viable dark matter candidates, we have constructed a generalization of relativistic boson stars (BS) composed of two coexisting states of the scalar field, the ground state and the first excited state. We have studied the dynamical evolution of these multistate boson stars (MSBS) under radial perturbations, using numerical techniques. We show that stable MSBS can be constructed, when the number of particles in the first excited state, N{sup (2)}, is smaller than the number of particles in the ground state, N{sup (1)}. On the other hand, when N{sup (2)}>N{sup (1)}, the configurations are initially unstable. However, they evolve and settle down into stable configurations. In the stabilization process, the initially ground state is excited and ends in a first excited state, whereas the initially first excited state ends in a ground state. During this process, both states emit scalar field radiation, decreasing their number of particles. This behavior shows that even though BS in the first excited state are intrinsically unstable under finite perturbations, the configuration resulting from the combination of this state with the ground state produces stable objects. Finally we show in a qualitative way, that stable MSBS could be realistic models of dark matter galactic halos, as they produce rotation curves that are flatter at large radii than the rotation curves produced by BS with only one state.

  7. Multilocal bosonization

    NASA Astrophysics Data System (ADS)

    Anguelova, Iana I.

    2015-12-01

    We present a bilocal isomorphism between the algebra generated by a single real twisted boson field and the algebra of the boson βγ ghost system. As a consequence of this twisted vertex algebra isomorphism, we show that each of these two algebras possesses both untwisted and twisted Heisenberg bosonic currents, as well as three separate families of Virasoro fields. We show that this bilocal isomorphism generalizes to an isomorphism between the algebra generated by the twisted boson field with 2n points of localization and the algebra of the 2n symplectic bosons.

  8. One-Loop β Functions for Yukawa Couplings in the Electroweak-Scale Right-Handed Neutrino Model

    NASA Astrophysics Data System (ADS)

    Nhu Le, Nguyen; Quang Hung, Pham

    2014-09-01

    Fermions in the model of electroweak-scale right-handed neutrinos (EWRH) with masses of the order of 300 GeV or more could result in dynamical electroweak symmetry breaking by forming condensates through the exchange of a fundamental Higgs scalar doublet or triplet. These condensates are dynamically studied within the framework of the Schwinger- Dyson equation. With the electroweak symmetry broken by condensates, the fully worked-out model of EWRH in which there are two doublets and two triplets, one of which is composite and the others being the original fundamental scalar doublet and triplet could be suitable for recent LHC discovery of the 125 GeV scalar particle.

  9. Electroweak vacuum stability and the seesaw mechanism revisited

    NASA Astrophysics Data System (ADS)

    Ng, J. N.; de la Puente, Alejandro

    2016-03-01

    We study the electroweak vacuum stability in Type I seesaw models for three generations of neutrinos in scenarios where the right-handed neutrinos have explicit bare mass terms in the Lagrangian and where these are dynamically generated through the mechanism of spontaneous symmetry breaking. To best highlight the difference of the two cases we concentrate on the absolute stability of the scalar potential. We observe that for the first scenario, the scale at which the scalar potential becomes unstable is lower from that within the standard model. In addition the Yukawa couplings {Y}_ν are constrained such that {Tr}{[{Y}^{dagger }_ν {Y}_{ν }}] ≲ 10^{-3}. In the second scenario the electroweak stability can be improved in a large region of parameter space. However, we found that the scalar used to break the lepton number symmetry cannot be too light and have a large coupling to right-handed neutrinos in order for the seesaw mechanism to be a valid mechanism for neutrino mass generation. In this case we have {Tr}[{Y}^dagger _{ν } {Y}_ν ]≲ 0.01.

  10. Electroweak and b-physics at the Tevatron collider

    SciTech Connect

    Hara, K.

    1994-04-01

    The CDF and D0 experiments have collected integrated luminosities of 21 pb{sup {minus}1} and 16 pb{sup {minus}1}, respectively, in the 1992--1993 run (Run Ia) at the Fermilab Tevatron. Preliminary results on electroweak physics are reported from both experiments: the W mass, the leptonic branching ratios {Tau}(W {yields} {ell}{nu}), the total W width, gauge boson couplings, W decay asymmetry and W{prime}/Z{prime} search. Preliminary new results on b physics are presented: B{sup o} {minus} {bar B}{sup o} mixing from D0, and masses and lifetimes of B{minus}mesons from CDF.

  11. Bose-Einstein condensates from scalar field dark matter

    SciTech Connect

    Urena-Lopez, L. Arturo

    2010-12-07

    We review the properties of astrophysical and cosmological relevance that may arise from the bosonic nature of scalar field dark matter models. The key property is the formation of Bose-Einstein condensates, but we also consider the presence of non-empty excited states that may be relevant for the description of scalar field galaxy halos and the properties of rotation curves.

  12. Wormholes and Goldstone bosons

    SciTech Connect

    Lee, K.

    1988-07-18

    The quantum theory of a complex scalar field coupled to gravity is considered. A formalism for the semiclassical approach in Euclidean time is developed and used to study wormhole physics. The conserved global charge plays an essential role. Wormhole physics turns on only after the symmetry is spontaneously broken. An effective self-interaction for Goldstone bosons due to wormholes and child universes is shown to be a cosine potential, whose vacuum energy will be reduced by the cosmic expansion. Some implications and questions are discussed.

  13. Higgs-like boson at 750 GeV and genesis of baryons

    NASA Astrophysics Data System (ADS)

    Davoudiasl, Hooman; Giardino, Pier Paolo; Zhang, Cen

    2016-07-01

    We propose that the diphoton excess at 750 GeV reported by ATLAS and CMS is due to the decay of an exo-Higgs scalar η associated with the breaking of a new S U (2 )e symmetry, dubbed exo-spin. New fermions, exo-quarks and exo-leptons, get TeV-scale masses through Yukawa couplings with η and generate its couplings to gluons and photons at one loop. The matter content of our model yields a B -L anomaly under S U (2 )e, whose breaking we assume entails a first-order phase transition. A nontrivial B -L asymmetry may therefore be generated in the early Universe, potentially providing a baryogenesis mechanism through the Standard Model (SM) sphaleron processes. The spontaneous breaking of S U (2 )e can, in principle, directly lead to electroweak symmetry breaking, thereby accounting for the proximity of the mass scales of the SM Higgs and the exo-Higgs. Our model can be distinguished from those comprising a singlet scalar and vector fermions by the discovery of TeV scale exo-vector bosons, corresponding to the broken S U (2 )e generators, at the LHC.

  14. Is the Higgs boson composed of neutrinos?

    DOE PAGESBeta

    Krog, Jens; Hill, Christopher T.

    2015-11-09

    We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

  15. Is the Higgs boson composed of neutrinos?

    SciTech Connect

    Krog, Jens; Hill, Christopher T.

    2015-11-09

    We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

  16. Electroweak results from the Tevatron

    SciTech Connect

    Demarteau, M.

    1995-10-01

    Results from the CDF and D{O} experiments are presented on properties of the W{plus_minus} and Z{sup 0} gauge bosons using final states containing electrons and muons based on large integrated luminosities. In particular, measurements of the W{plus_minus} and Z{sup 0} production cross sections, the W-charge asymmetry and the CDF measurement of the W-mass are summarized. Gauge boson self interactions axe measured by studying di-gauge boson production and limits on anomalous gauge boson couplings axe discussed.

  17. Electroweak symmetry breaking without the μ2 term

    NASA Astrophysics Data System (ADS)

    Goertz, Florian

    2016-07-01

    We demonstrate that from a low-energy perspective a viable breaking of the electroweak symmetry, as present in nature, can be achieved without the (negative sign) μ2 mass term in the Higgs potential, thereby avoiding completely the appearance of relevant operators, featuring coefficients with a positive mass dimension, in the theory. We show that such a setup is self-consistent and not ruled out by Higgs physics. In particular, we point out that it is the lightness of the Higgs boson that allows for the electroweak symmetry to be broken dynamically via operators of D ≥4 , consistent with the power expansion. Beyond that, we entertain how this scenario might even be preferred phenomenologically compared to the ordinary mechanism of electroweak symmetry breaking, as realized in the Standard Model, and argue that it can be fully tested at the LHC. In the Appendix, we classify UV completions that could lead to such a setup, considering also the option of generating all scales dynamically.

  18. Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in ℓ+ℓ- bbbar final states

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Caebergs, T.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Ali, A.; Aly, R.; Aly, S.; Assran, Y.; Ellithi Kamel, A.; Lotfy, A.; Mahmoud, M. A.; Masod, R.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Pekkanen, J.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Husemann, U.; Kassel, F.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Nishu, N.; Singh, J. B.; Walia, G.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Jain, Sh.; Khurana, R.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Gabusi, M.; Magnani, A.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Ramirez Sanchez, G.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Toriashvili, T.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Kovalskyi, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, S. J.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Sen, S.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Mcginn, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Vishnevskiy, D.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2015-09-01

    Results are reported on a search for decays of a pseudoscalar A boson into a Z boson and a light scalar h boson, where the Z boson decays into a pair of oppositely-charged electrons or muons, and the h boson decays into bbbar. The search is based on data from proton-proton collisions at a center-of-mass energy √{ s} = 8 TeV collected with the CMS detector, corresponding to an integrated luminosity of 19.7fb-1. The h boson is assumed to be the standard model-like Higgs boson with a mass of 125 GeV. With no evidence for signal, upper limits are obtained on the product of the production cross section and the branching fraction of the A boson in the Zh channel. Results are also interpreted in the context of two Higgs doublet models.

  19. Fluctuation driven electroweak phase transition

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1991-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  20. Two-step electroweak baryogenesis

    NASA Astrophysics Data System (ADS)

    Inoue, Satoru; Ovanesyan, Grigory; Ramsey-Musolf, Michael J.

    2016-01-01

    We analyze electroweak baryogenesis during a two-step electroweak symmetry-breaking transition, wherein the baryon asymmetry is generated during the first step and preserved during the second. Focusing on the dynamics of C P violation required for asymmetry generation, we discuss general considerations for successful two-step baryogenesis. Using a concrete model realization, we illustrate in detail the viability of this scenario and the implications for present and future electric dipole moment (EDM) searches. We find that C P violation associated with a partially excluded sector may yield the observed baryon asymmetry while evading present and future EDM constraints.

  1. Electroweak Theory: Proceedings of the Advanced School on Electroweak Theory

    NASA Astrophysics Data System (ADS)

    Espriu, D.; Pich, A.

    1998-04-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Quark Mixing and CP Violation * Heavy Quark Effective Theory * Introduction to Low-Energy Supersymmetry * An Introduction to Dynamical Electroweak Symmetry Breaking * Hadron Colliders, the Top Quark, and the Higgs Sector * Physics Potential of LEP2 and NLC * List of Participants

  2. Higgs in bosonic channels (CMS)

    NASA Astrophysics Data System (ADS)

    Gori, Valentina

    2015-05-01

    The main Higgs boson decays into bosonic channels will be considered, presenting and discussing results from the latest reprocessing of data collected by the CMS experiment at the LHC, using the full dataset recorded at centre-of-mass energies of 7 and 8 TeV. For this purpose, results from the final Run-I papers for the H → ZZ → 4ℓ, H → γγ and H → WW analyses are presented, focusing on the Higgs boson properties, like the mass, the signal strenght, the couplings to fermions and vector bosons, the spin and parity properties. Furthermore, the Higgs boson width measurement exploiting the on-shell versus the off-shell cross section (in the H → ZZ → 4ℓ and H → ZZ → 2ℓ2ν decay channels) will be shown. All the investigated properties result to be fully consistent with the SM predictions: the signal strength and the signal strength modifiers are consistent with unity in all the bosonic channels considered; the hypothesis of a scalar particle is strongly favored, against the pseudoscalar or the vector/pseudovector or the spin-2 boson hypotheses (all excluded at 99% CL or higher in the H → ZZ → 4ℓ channel). The Higgs boson mass measurement from the combination of H → ZZ → 4ℓ and H → γγ channels gives a value mH = 125.03+0.26-0.27 (stat.) +0.13-0.15 (syst.). An upper limit ΓH < 22 MeV can be put on the Higgs boson width thanks to the new indirect method.

  3. Boson shells harboring charged black holes

    SciTech Connect

    Kleihaus, Burkhard; Kunz, Jutta; Laemmerzahl, Claus; List, Meike

    2010-11-15

    We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these types of solutions and determine their domains of existence. We investigate the energy conditions and present mass formulae for the composite black hole-boson shell systems. We demonstrate that these types of solutions violate black hole uniqueness.

  4. Electroweak Corrections at the LHC with MCFM

    SciTech Connect

    Campbell, John M.; Wackeroth, Doreen; Zhou, Jia

    2015-07-10

    Electroweak (EW) corrections at the LHC can be enhanced at high energies due to soft/collinear radiation of W and Z bosons, being dominated by Sudakov-like corrections in the form of $\\alpha_W^l\\log^n(Q^2/M_W^2)$ $(n \\le 2l, \\alpha_W = \\alpha/(4\\pi\\sin\\theta_W^2))$ when the energy scale $Q$ enters the TeV regime. Thus, the inclusion of EW corrections in LHC predictions is important for the search of possible signals of new physics in tails of kinematic distributions. EW corrections should also be taken into account in virtue of their comparable size ($\\mathcal{O}(\\alpha)$) to that of higher order QCD corrections ($\\mathcal{O}(\\alpha_s^2)$). We calculated the next-to-leading-order (NLO) weak corrections to the neutral-current (NC) Drell-Yan process, top-quark pair production and di-jet producion, and implemented them in the Monte-Carlo program MCFM. This enables a combined study with the corresponding NLO QCD corrections. We provide both the full NLO weak corrections and their weak Sudakov approximation valid at high energies. The latter is often used for a fast evaluation of weak effects, and having the exact result available as well allows to quantify the validity of the Sudakov approximation.

  5. The Higgs as a pseudo-Goldstone boson

    NASA Astrophysics Data System (ADS)

    Georgi, Howard

    2007-11-01

    The old idea of the Higgs as a pseudo-Goldstone boson has been revived and re-energized as a possible solution to the little hierarchy puzzle in the Standard Model. Its most natural implementation may be in the context of models with supersymmetry not far above the electroweak breaking scale. To cite this article: H. Georgi, C. R. Physique 8 (2007).

  6. Moriond Electroweak 2006: Theory summary

    SciTech Connect

    Lykken, Joseph D.; /Fermilab

    2006-07-01

    A concise look at the big picture of particle physics, including the status of the Standard Model, neutrinos, supersymmetry, extra dimensions and cosmology. Based upon the theoretical summary presented at the XLIst Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, 11-18 March 2006.

  7. Spin and precision electroweak physics

    SciTech Connect

    Marciano, W.J.

    1993-12-31

    A perspective on fundamental parameters and precision tests of the Standard Model is given. Weak neutral current reactions are discussed with emphasis on those processes involving (polarized) electrons. The role of electroweak radiative corrections in determining the top quark mass and probing for ``new physics`` is described.

  8. A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    CMS Collabortion; Abbaneo, D.; Abbiendi, G.; Abbrescia, M.; Abdullin, S.; Abdulsalam, A.; Acharya, B. S.; Acosta, D.; Acosta, J. G.; Adair, A.; Adam, W.; Adam, N.; Adamczyk, D.; Adams, T.; Adams, M. R.; Adiguzel, A.; Adler, V.; Adolphi, R.; Adzic, P.; Afanasiev, S.; Agostino, L.; Agram, J.-L.; Aguilar-Benitez, M.; Aguilo, E.; Ahmad, M.; Ahmad, M. K. H.; Ahuja, S.; Akchurin, N.; Akgun, U.; Akgun, B.; Akin, I. V.; Alagoz, E.; Albajar, C.; Albayrak, E. A.; Albergo, S.; Albert, M.; Albrow, M.; Alcaraz Maestre, J.; Aldá Júnior, W. L.; Aldaya Martin, M.; Alemany-Fernandez, R.; Alexander, J.; Aliev, T.; Alimena, J.; Allfrey, P.; Almeida, N.; Alverson, G.; Alves, G. A.; Aly, A.; Amaglobeli, N.; Amapane, N.; Ambroglini, F.; Amsler, C.; Anagnostou, G.; Anastassov, A.; Andelin, D.; Anderson, J.; Anderson, M.; Andrea, J.; Andreev, Yu.; Andreev, V.; Andreev, V.; Andrews, W.; Anfreville, M.; Angelini, F.; Anghel, I. M.; Anisimov, A.; Anjos, T. S.; Ansari, M. H.; Antonelli, L.; Anttila, E.; Antunovic, Z.; Apanasevich, L.; Apollinari, G.; Appelt, E.; Apresyan, A.; Apyan, A.; Arce, P.; Arcidiacono, R.; Ardalan, F.; Arenton, M. W.; Arezzini, S.; Arfaei, H.; Argiro, S.; Arisaka, K.; Arndt, K.; Arneodo, M.; Arora, S.; Asavapibhop, B.; Asawatangtrakuldee, C.; Asghar, M. I.; Askew, A.; Aspell, P.; Assran, Y.; Ata, M.; Atac, M.; Attebury, G.; Attikis, A.; Auffray, E.; Autermann, C.; Auzinger, G.; Avdeeva, E.; Avery, P.; Avetisyan, A.; Avila, C.; Awad, A.; Ayan, A. S.; Azarkin, M.; Azhgirey, I.; Aziz, T.; Azzi, P.; Azzolini, V.; Azzurri, P.; Baarmand, M. M.; Babb, J.; Baccaro, S.; Bacchetta, N.; Bachtis, M.; Baden, A.; Badgett, W.; Badier, J.; Baechler, J.; Baffioni, S.; Bagaturia, I.; Bagliesi, G.; Bai, Y.; Bailleux, D.; Baillon, P.; Bainbridge, R.; Bakhshiansohi, H.; Bakirci, M. N.; Bakken, J. A.; Balazs, M.; Baldin, B.; Ball, A. H.; Ball, G.; Ballin, J.; Ban, Y.; Banerjee, S.; Banerjee, S.; Bäni, L.; Banicz, K.; Bansal, M.; Bansal, S.; Banzuzi, K.; Barashko, V.; Barbagli, G.; Barberis, E.; Barbone, L.; Barczyk, A.; Bard, R.; Barfuss, A. F.; Bargassa, P.; Barge, D.; Baringer, P.; Barker, A.; Barnes, V. E.; Barnett, B. A.; Barney, D.; Barone, L.; Barrass, T.; Bartalini, P.; Barth, C.; Bartoloni, A.; Basegmez, S.; Basso, L.; Basti, A.; Bateman, E.; Battilana, C.; Bauer, J.; Bauer, D.; Bauer, G.; Bauerdick, L. A. T.; Baulieu, G.; Baumbaugh, B.; Baumgartel, D.; Baur, U.; Bayshev, I.; Bazterra, V. E.; Bean, A.; Beauceron, S.; Beaudette, F.; Beaumont, W.; Beaupere, N.; Becheva, E.; Bedjidian, M.; Beernaert, K.; Behner, F.; Behr, J.; Behrenhoff, W.; Behrens, U.; Belforte, S.; Beliy, N.; Belknap, D.; Bell, A. J.; Bell, K. W.; Bellan, R.; Bellato, M.; Bellazzini, R.; Bellinger, J. N.; Belotelov, I.; Belyaev, A.; Belyaev, A.; Benaglia, A.; Bencze, G.; Bendavid, J.; Benedetti, D.; Benelli, G.; Benettoni, M.; Benhabib, L.; Beni, N.; Benitez, J. F.; Benussi, L.; Benvenuti, A. C.; Beranek, S.; Beretvas, A.; Bergauer, T.; Berger, J.; Bergholz, M.; Beri, S. B.; Bernardes, C. A.; Bernardini, J.; Bernardino Rodrigues, N.; Bernet, C.; Berry, D.; Berry, E.; Berryhill, J.; Bertl, W.; Bertoldi, M.; Berzano, U.; Besancon, M.; Besson, A.; Betchart, B.; Betev, B.; Bethani, A.; Betts, R. R.; Beuselinck, R.; Bhandari, V.; Bhardwaj, A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharya, S.; Bhattacharya, S.; Bhatti, A.; Bheesette, S.; Bialas, W.; Bialkowska, H.; Biallass, P.; Bian, J. G.; Bianchi, G.; Bianchini, L.; Bianco, S.; Biasini, M.; Biasotto, M.; Biino, C.; Bilei, G. M.; Bilin, B.; Bilki, B.; Binkley, M.; Bisello, D.; Bitioukov, S.; Blau, B.; Blekman, F.; Blobel, V.; Bloch, D.; Bloch, P.; Bloom, K.; Bluj, M.; Blüm, P.; Blumenfeld, B.; Blyweert, S.; Boccali, T.; Bocci, A.; Bochenek, J.; Bockelman, B.; Bodek, A.; Bodin, D.; Boimska, B.; Bolla, G.; Bolognesi, S.; Bolton, T.; Bonacorsi, D.; Bonato, A.; Bondu, O.; Bonnett Del Alamo, M.; Bontenackels, M.; Boos, E.; Borcherding, F.; Bornheim, A.; Borras, K.; Borrello, L.; Bortignon, P.; Bortoletto, D.; Bose, T.; Bose, S.; Böser, C.; Bosi, F.; Bostock, F.; Botta, C.; Boudoul, G.; Bouhali, O.; Boulahouache, C.; Bourilkov, D.; Boutemeur, M.; Boutigny, D.; Boutle, S.; Bradley, D.; Braibant-Giacomelli, S.; Branca, A.; Branson, A.; Branson, J. G.; Brauer, R.; Braunschweig, W.; Breedon, R.; Breto, G.; Breuker, H.; Brew, C.; Brez, A.; Brigliadori, L.; Brigljevic, V.; Brinkerhoff, A.; Brito, L.; Broccolo, G.; Brochero Cifuentes, J. A.; Brochet, S.; Brom, J.-M.; Brona, G.; Brooke, J. J.; Broutin, C.; Brown, R. M.; Brownson, E.; Brun, H.; Bruno, G.; Buchmann, M. A.; Buchmuller, O.; Bucinskaite, I.; Budd, H.; Buege, V.; Bujak, A.; Bunichev, V.; Bunin, P.; Bunkowski, K.; Bunn, J.; Buontempo, S.; Burgmeier, A.; Burkett, K.; Busson, P.; Busza, W.; Butler, A. P. H.; Butler, P. H.; Butler, J. N.; Butt, J.; Butz, E.; Bylsma, B.; Cabrillo, I. J.; Caebergs, T.; Cai, J.; Cakir, A.; Calabria, C.; Calamba, A.; Calderon, A.; Calderon De La Barca Sanchez, M.; Cali, I. A.; Calligaris, L.; Callner, J.; Calpas, B.; Calvert, B.; Calvo, E.; Calzolari, F.; Camanzi, B.; Campagnari, C.; Campbell, A.; Campi, D.; Camporesi, T.; Candelise, V.; Cankocak, K.; Cano, E.; Capiluppi, P.; Cappello, G.; Carbone, L.; Carboni, A.; Cardaci, M.; Carlin, R.; Carlsmith, D.; Carrera Jarrin, E.; Carrillo Montoya, C. A.; Carrillo Moreno, S.; Carroll, R.; Cartiglia, N.; Carvalho, W.; Casal, B.; Casarsa, M.; Case, M.; Casimiro Linares, E.; Castaldi, R.; Castello, R.; Castilla-Valdez, H.; Castro, E.; Castro, A.; Caudron, J.; Cavallari, F.; Cavallo, F. R.; Cavallo, N.; Cavanaugh, R.; Ceard, L.; Cepeda, M.; Cerati, G. B.; Cerci, S.; Cerizza, G.; Cerminara, G.; Cerrada, M.; Cerri, C.; Cerutti, M.; Chabert, E. C.; Chadwick, M.; Chakaberia, I.; Chamizo Llatas, M.; Chamont, D.; Chan, M.; Chan, K. M.; Chang, S.; Chang, Y. H.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chanon, N.; Chao, Y.; Charaf, O.; Charkiewicz, A.; Charlot, C.; Chasco, M.; Chasserat, J.; Chatrchyan, S.; Chatterjee, A.; Chatterji, S.; Chauhan, S.; Checchia, P.; Chekhovsky, V.; Chen, G. M.; Chen, H. S.; Chen, Z. Y.; Chen, Z.; Chen, K. H.; Chen, W. T.; Chen, K. F.; Chen, Y.; Chen, M.; Chen, J.; Chendvankar, S.; Cheng, T.; Cherepanov, V.; Chertok, M.; Chetluru, V.; Cheung, H. W. K.; Chhibra, S. S.; Chierici, R.; Chiladze, B.; Chiochia, V.; Chiorboli, M.; Chlebana, F.; Choi, S.; Choi, M.; Choi, Y.; Choi, Y. K.; Chou, J. P.; Choudhary, B. C.; Choudhury, S.; Choudhury, R. K.; Chowdhury, S.; Christiansen, T.; Chuang, S. H.; Chung, J.; Chung, M. H.; Chung, Y. S.; Chwalek, T.; Ciampa, A.; Ciesielski, R.; Cihangir, S.; Cimmino, A.; Cinquilli, M.; Cittolin, S.; Ciulli, V.; Civinini, C.; Claes, D. R.; Clare, R.; Clarida, W.; Clement, E.; Clerbaux, B.; Cline, D.; Coarasa Perez, J. A.; Cockerill, D. J. A.; Codispoti, G.; Colafranceschi, S.; Colaleo, A.; Cole, J. E.; Colino, N.; Collard, C.; Colling, D.; Combaret, C.; Conetti, S.; Connolly, J. F.; Contardo, D.; Conte, E.; Contreras-Campana, C.; Contreras-Campana, E.; Conway, J.; Conway, R.; Cooper, S. I.; Coppage, D.; Cornelis, T.; Correa Martins Junior, M.; Cossutti, F.; Costa, S.; Costa, M.; Costantini, S.; Costanza, F.; Coughlan, J. A.; Cousins, R.; Covarelli, R.; Cox, P. T.; Cox, B.; Creanza, D.; Cremaldi, L. M.; Cripps, N.; Crotty, I.; Cuevas, J.; Cuffiani, M.; Cumalat, J. P.; Cuplov, V.; Curé, B.; Cushman, P.; Cussans, D.; Custódio, A.; Cutajar, M.; Cutts, D.; Cwiok, M.; Czellar, S.; Czyrkowski, H.; Da Costa, E. M.; Da Silva Di Calafiori, D. R.; Dabrowski, R.; Dabrowski, A.; Daci, N.; Daeuwel, D.; Dafinei, I.; Dagenhart, W.; D'Agnolo, R. T.; Daguin, J.; Dahmes, B.; Dahms, T.; Dalchenko, M.; D'Alessandro, R.; D'Alfonso, M.; Dallavalle, G. M.; Dambach, S.; Damgov, J.; Dammann, D.; D'Angelo, P.; Danielson, T.; Das, S.; Daskalakis, G.; Dasu, S.; Daubie, E.; Dauncey, P.; Davatz, G.; David, A.; Davies, G.; de Barbaro, P.; De Benedetti, A.; De Boer, W.; De Cosa, A.; De Favereau De Jeneret, J.; De Filippis, N.; De Gruttola, M.; De Guio, F.; De Jesus Damiao, D.; De La Cruz, B.; De La Cruz-Burelo, E.; De Lentdecker, G.; De Mattia, M.; De Oliveira Martins, C.; De Palma, M.; De Robertis, G.; De Roeck, A.; de Trocóniz, J. F.; De Visscher, S.; De Wolf, E. A.; Debbins, P.; Deisher, A.; Deiters, K.; Dejardin, M.; Del Re, D.; Delaere, C.; Delannoy, A. G.; Delgado Peris, A.; Deliomeroglu, M.; Della Negra, M.; Della Ricca, G.; Dell'Orso, R.; Demaria, N.; Demin, P.; Demina, R.; Demiragli, Z.; Demiyanov, A.; Demortier, L.; Denegri, D.; Denis, G.; Deniz, M.; D'Enterria, D.; Denton, L. G.; Depasse, P.; Dermenev, A.; Dero, V.; Derylo, G.; Descroix, A.; Deshpande, P. V.; Devroede, O.; Dewulf, J. P.; Dharmaratna, W. G. D.; Dhingra, N.; D'Hondt, J.; Di Giovanni, G. P.; Di Guida, S.; Di Marco, E.; Di Matteo, L.; Diamond, B.; Dias, F. A.; Diemoz, M.; Dierlamm, A.; Dietz, C.; Dietz-Laursonn, E.; Diez Pardos, C.; Dimitrov, L.; Dimitrov, A.; Dinardo, M. E.; Dini, P.; Dirkes, G.; Dissertori, G.; Dittmann, J.; Dittmar, M.; Djambazov, L.; Djordjevic, M.; Dobrzynski, L.; Dobson, M.; Dobur, D.; Doesburg, R.; Dogangun, O.; Dolen, J.; Dolinsky, S.; Dominguez, A.; Domínguez Vázquez, D.; Dominik, W.; Donegà, M.; Donvito, G.; Dorigo, T.; Dorney, B.; Doroba, K.; Dosselli, U.; Dozen, C.; Draeger, J.; Dragicevic, M.; Dragoiu, C.; Drell, B. R.; Dremin, I.; Drouhin, F.; Drozdetskiy, A.; Druzhkin, D.; du Pree, T.; Duarte, J.; Duarte Campderros, J.; Dubinin, M.; Duchardt, D.; Dudero, P. R.; Dudko, L.; Dugad, S.; Duggan, D.; Dumanoglu, I.; Dumitrescu, C.; Dünser, M.; Dupont-Sagorin, N.; Duric, S.; Duris, J.; Durkin, L. S.; Duru, F.; Dutta, S.; Dutta, D.; Dutta, V.; Dykstra, D.; Eads, M.; Eartly, D. P.; Eckerlin, G.; Ecklund, K. M.; Eckstein, D.; Edelhoff, M.; Eerola, P.; Egeland, R.; Eggel, C.; Eggert, N.; Ekmedzic, M.; El Mamouni, H.; Elgammal, S.; Elias, J. E.; Elliott-Peisert, A.; Ellison, J.; Ellithi Kamel, A.; Elmer, P.; Elvira, V. D.; Emeliantchik, I.; Enderle, H.; Engh, D.; Eno, S. C.; Eppard, M.; Epshteyn, V.; Erbacher, R.; Erdmann, M.; Erdmann, W.; Erdogan, Y.; Erfle, J.; Erhan, S.; Erö, J.; Erofeeva, M.; Ershov, Y.; Ershov, A.; Eshaq, Y.; Eskut, E.; Etesami, S. M.; Eugster, J.; Eulisse, G.; Eusebi, R.; Evangelou, I.; Evans, D.; Evans, D.; Evdokimov, O.; Everaerts, P.; Everett, A.; Evstyukhin, S.; Fabbri, F.; Fabbri, F.; Fabbricatore, P.; Fabbro, B.; Faber, G.; Fabjan, C.; Fabozzi, F.; Faccioli, P.; Fagan, D.; Fahim, A.; Fahrer, M.; Fanelli, C.; Fanfani, A.; Fanò, L.; Fantasia, C.; Fanzago, F.; Farina, F. M.; Farinon, S.; Farrell, C.; Fasanella, D.; Faure, J. L.; Favaro, C.; Favart, D.; Fay, J.; Fedi, G.; Fedorov, A.; Fehling, D.; Feichtinger, D.; Feindt, M.; Felcini, M.; Feld, L.; Felzmann, U.; Fenyvesi, A.; Ferapontov, A.; Ferbel, T.; Ferencek, D.; Ferguson, W.; Ferguson, T.; Fernandez, M.; Fernandez Bedoya, C.; Fernandez Menendez, J.; Fernandez Perez Tomei, T. R.; Fernández Ramos, J. P.; Ferrando, A.; Ferreira Parracho, P. G.; Ferri, F.; Ferro, C.; Feyzi, F.; Field, R. D.; Finger, M.; Finger, M.; Fiore, L.; Fiorendi, S.; Fiori, F.; Fischer, R.; Fisher, M.; Fisk, I.; Flacher, H.; Flanagan, W.; Flix, J.; Florez, C.; Flossdorf, A.; Flower, P. S.; Flowers, K.; Flucke, G.; Flügge, G.; Foà, L.; Focardi, E.; Folgueras, S.; Fonseca De Souza, S.; Fontaine, J.-C.; Ford, W. T.; Forthomme, L.; Foudas, C.; Foulkes, S.; Fouz, M. C.; Francis, B.; Franzoni, G.; Frazier, R.; Freeman, J.; French, M. J.; Freudenreich, K.; Frey, M.; Friedl, M.; Friis, E.; Frisch, B.; Frosali, S.; Frueboes, T.; Frühwirth, R.; Fu, Y.; Fulcher, J.; Funk, W.; Furgeri, A.; Furic, I. K.; Futyan, D.; Gabathuler, K.; Gabella, W.; Gabusi, M.; Gaddi, A.; Gaines, I.; Galanti, M.; Gallinaro, M.; Gallo, E.; Galvez, P.; Gamsizkan, H.; Ganguli, S. N.; Ganguly, S.; Ganjour, S.; Gao, Z.; Gao, Y.; Garabedian, A.; Garcia, G.; Garcia-Abia, P.; Garcia-Bellido, A.; Garcia-Solis, E. J.; Gardner, M.; Gartner, J.; Gartung, P.; Gary, J. W.; Gascon, S.; Gasparini, F.; Gasparini, U.; Gastal, M.; Gataullin, M.; Gaultney, V.; Gauthier, L.; Gavrilenko, M.; Gavrilov, V.; Gay, A. P. R.; Gaz, A.; Gebauer, I.; Gebbert, U.; Geenen, H.; Geerebaert, Y.; Geffert, P.; Geiser, A.; Geisler, M.; Gelé, D.; Genchev, V.; Gennai, S.; Genta, C.; Gentit, F. X.; Georgiou, G.; Geralis, T.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Gerwig, H.; Gessler, A.; Geurts, F. J. M.; Ghete, V. M.; Ghezzi, A.; Ghodgaonkar, M.; Giacchetti, L.; Giacomelli, P.; Giammanco, A.; Giassi, A.; Gibbons, L. K.; Giffels, M.; Gigi, D.; Gilbert, A.; Gill, K.; Gilmore, J.; Ginther, G.; Giordano, D.; Giordano, F.; Giraud, N.; Girgis, S.; Girone, M.; Giubilato, P.; Giunta, M.; Giurgiu, G.; Giusti, S.; Givernaud, A.; Glege, F.; Gleyzer, S. V.; Glushkov, I.; Gninenko, S.; Go, A.; Gobbi, B.; Gobbo, B.; Godinovic, N.; Godshalk, A.; Goerlach, U.; Goettlicher, P.; Goetzmann, C.; Goh, J.; Gokbulut, G.; Gokieli, R.; Goldenzweig, P.; Goldstein, J.; Golf, F.; Gollapinni, S.; Golovtsov, V.; Golubev, N.; Golunov, A.; Golutvin, I.; Gomber, B.; Gomez, J. P.; Gomez, G.; Gomez, J. A.; Gomez Ceballos, G.; Gomez Moreno, B.; Gomez-Reino Garrido, R.; Goncharov, M.; Gonella, F.; Gonzalez Caballero, I.; Gonzalez Lopez, O.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Gonzi, S.; Goodell, J.; Goorens, R.; Gorbounov, N.; Gorbunov, I.; Gorbunov, D.; Gorn, L.; Görner, M.; Gorski, T.; Górski, M.; Goscilo, L.; Gotra, Y.; Gottschalk, E.; Goudard, R.; Goulianos, K.; Gouskos, L.; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Goy Lopez, S.; Gozzelino, A.; Grab, C.; Grachov, O.; Gramenitski, I.; Grandi, C.; Granier de Cassagnac, R.; Gras, P.; Grassi, T.; Grassi, M.; Gray, R.; Gray, L.; Graziano, A.; Grebenyuk, A.; Greco, M.; Green, D.; Greene, S.; Greenhalgh, R. J. S.; Grégoire, G.; Gregores, E. M.; Gribushin, A.; Grim, G.; Grimes, M.; Grishin, V.; Gritsan, A. V.; Grogg, K. S.; Gronberg, J.; Gross, L.; Grothe, M.; Grundler, U.; Grunewald, M.; Gruschke, J.; Grynyov, B.; Guchait, M.; Gude, A.; Guida, R.; Guiducci, L.; Guler, A. M.; Gülmez, E.; Gulmini, M.; Guneratne Bryer, A.; Gunion, J.; Gunnellini, P.; Guo, S.; Guo, Y.; Guo, Y.; Guo, Z. J.; Gupta, R.; Gupta, P.; Guragain, S.; Gurpinar, E.; Gurrola, A.; Gurtu, A.; Gutay, L.; Güth, A.; Guthoff, M.; Gutleber, J.; Gutsche, O.; Gyun, D.; Haas, J.; Habib, S.; Hackstein, C.; Hadjiiska, R.; Hadley, N. J.; Hagopian, S.; Hagopian, V.; Haguenauer, M.; Hahn, G.; Hahn, A.; Hahn, K. A.; Haj Ahmad, W.; Hajdu, C.; Haley, J.; Halkiadakis, E.; Hall, G.; Hall-Wilton, R.; Halsall, R. N. J.; Halyo, V.; Ham, S. W.; Hamel de Monchenault, G.; Hammad, G. H.; Hammarstrom, R.; Hammer, J.; Han, D.; Han, J.; Hanlon, J.; Hansen, M.; Hanson, G.; Harder, K.; Harel, A.; Härkönen, J.; Haroutunian, R.; Harper, S.; Harr, R.; Harris, P.; Harris, R. M.; Hartl, C.; Hartmann, F.; Harvey, J.; Hashemi, M.; Hatakeyama, K.; Hatherell, Z.; Hauk, J.; Hauler, F.; Haupt, J.; Hauser, J.; Hauth, T.; Hays, J.; Hazen, E.; He, K. L.; Heath, G. P.; Heath, H. F.; Hebbeker, T.; Hebda, P.; Heering, A. H.; Hegeman, J.; Hegner, B.; Heidemann, C.; Heier, S.; Heikkinen, A.; Heindl, S. M.; Heinrich, M.; Heintz, U.; Heiss, A.; Heister, A.; Hektor, A.; Held, H.; Hellwig, G.; Heltsley, B.; Henderson, C.; Hennion, P.; Heracleous, N.; Heredia-de La Cruz, I.; Hermanns, T.; Hernandez, J. M.; Herndon, M.; Hervé, A.; Hewamanage, S.; Heyburn, B.; Hidas, P.; Hidas, D.; Hildreth, M.; Hilgers, G.; Hill, J. A.; Hill, C.; Hindrichs, O.; Hintz, W.; Hinzmann, A.; Hirosky, R.; Hirschauer, J.; Hits, D.; Hobson, P. R.; Hoch, M.; Hoehle, F.; Hoepfner, K.; Hof, C.; Hofer, H.; Hoffmann, K. H.; Hofman, D. J.; Hohlmann, M.; Höing, R. S.; Holbrook, B.; Hollar, J.; Hollingsworth, M.; Hollis, R.; Holme, O.; Holmes, D.; Holzman, B.; Holzner, A.; Honc, S.; Hong, B.; Honma, A.; Hooberman, B.; Hooper, R.; Hoorani, H. R.; Horisberger, R.; Hörmann, N.; Horvath, D.; Horvath, I.; Hos, I.; Hou, W.-S.; Howell, J.; Hreus, T.; Hrubec, J.; Hsiung, Y.; Hu, G.; Hu, Z.; Huang, C. h.; Huang, X. T.; Hufnagel, D.; Hughes, R.; Hugon, J.; Hunt, A.; Husemann, U.; Huss, D.; Iaselli, G.; Iashvili, I.; Iaydjiev, P.; Ignatenko, M.; Iiyama, Y.; Iles, G.; Ille, B.; Ilyin, V.; Imhof, M.; Incandela, J.; Ingram, Q.; Ingram, F. D.; Innocente, V.; Inyakin, A.; Iope, R. L.; Iordanova, A.; Iorio, A. O. M.; Isildak, B.; Ivanov, Y.; Ivanov, A.; Ivova Rikova, M.; Jabeen, S.; Jackson, J.; Jafari, A.; Jain, Sa.; Jain, Sh.; Jain, S.; Jang, D. W.; Janot, P.; Janssen, X.; Janulis, M.; Jarry, P.; Jarvis, M.; Jarvis, C.; Jeitler, M.; Jeng, G. Y.; Jenkins, M.; Jeong, C.; Jessop, C.; Jiang, C. H.; Jindal, P.; Jindariani, S.; Jo, M.; Jo, Y.; Johns, W.; Johnson, D.; Johnson, M.; Johnson, K. F.; Jones, J.; Jones, C. D.; Jones, M.; Jorda, C.; Josa, M. I.; Joshi, U.; Juillot, P.; Jun, S. Y.; Jung, H.; Jung, C.; Junghans, S.; Juodagalvis, A.; Juska, E.; Jussen, R.; Justus, C.; Kaadze, K.; Kachanov, V.; Kadastik, M.; Kadija, K.; Kaestli, H. C.; Kaftanov, V.; Kailas, S.; Kalagin, V.; Kalakhety, H.; Kalavase, P.; Kalinin, A.; Kalinowski, A.; Kalmani, S. D.; Kalogeropoulos, A.; Kamenev, A.; Kaminskiy, A.; Kamon, T.; Kang, J.; Kang, M.; Kang, S.; Kangal, E. E.; Kanishchev, K.; Kannike, K.; Kao, K. Y.; Kao, S. C.; Karaman, T.; Karancsi, J.; Karapinar, G.; Karapostoli, G.; Karavakis, E.; Karchin, P. E.; Kargoll, B.; Karimäki, V.; Karjalainen, A.; Karjavin, V.; Karmgard, D. J.; Karneyeu, A.; Karpinski, W.; Kaschube, K.; Kasemann, M.; Kasprowicz, G.; Katajisto, H. M.; Kataria, S. K.; Katkov, I.; Katsas, P.; Kaur, M.; Kaussen, G.; Kavka, C.; Kaya, M.; Kaya, O.; Kayis Topaksu, A.; Kazana, M.; Kcira, D.; Kellams, N.; Keller, J.; Kelley, R.; Kellogg, R. G.; Kennedy, B. W.; Kenny, R. P., Iii; Kenzie, M.; Kerzel, U.; Kesisoglou, S.; Khachatryan, V.; Khakzad, M.; Khalatyan, S.; Khalid, S.; Khalil, S.; Khalil, S.; Khan, W. A.; Khan, A.; Kharchilava, A.; Khotilovich, V.; Khukhunaishvili, A.; Khurana, R.; Khurshid, T.; Kieffer, E.; Kiesenhofer, W.; Kilminster, B.; Kim, T. Y.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kim, K. S.; Kim, J. Y.; Kim, Zero J.; Kim, H.; Kim, T. J.; Kim, H.; Kim, J. H.; Kim, M. S.; Kim, V.; Kim, B.; Kim, Y.; Kinnunen, R.; Kirakosyan, M.; Kircher, F.; Kirn, M.; Kirsanov, M.; Kirschenmann, H.; Kiselevich, I.; Klabbers, P.; Klanner, R.; Klapoetke, K.; Klein, B.; Klein, K.; Kleinwort, C.; Klima, B.; Klimkovich, T.; Klingebiel, D.; Kloukinas, K.; Kluge, H.; Klukas, J.; Klute, M.; Klyukhin, V.; Knoblauch, D.; Knünz, V.; Knutsson, A.; Ko, W.; Koay, S. A.; Kodolova, O.; Kohli, J. M.; Kokkas, P.; Kolb, J.; Kolberg, T.; Kolosov, V.; Komaragiri, J. R.; Konecki, M.; Kong, D. J.; König, S.; Konigsberg, J.; Konoplyanikov, V.; Konoplyannikov, A.; Konstantinov, D.; Kopecky, A.; Korablev, A.; Korenkov, V.; Korjenevski, S.; Korotkikh, V.; Korpela, A.; Kortelainen, M. J.; Korytov, A.; Korzhik, M.; Kossov, M.; Kotamäki, M.; Kotlinski, D.; Kotov, K.; Kottachchi Kankanamge Don, C.; Kousouris, K.; Kovac, M.; Kovalskyi, D.; Kovitanggoon, K.; Koybasi, O.; Kozhuharov, V.; Kozlov, G.; Kozlov, Y.; Kraan, A.; Kräber, M.; Krajczar, K.; Krämer, M.; Krammer, M.; Krasnikov, N.; Krätschmer, I.; Kravchenko, I.; Kreczko, L.; Kreis, B.; Kress, T.; Kress, M.; Kreuzer, P.; Krishnaswamy, M. R.; Kroeger, R.; Krofcheck, D.; Krokhotin, A.; Krolikowski, J.; Kropivnitskaya, A.; Krpic, D.; Krücker, D.; Krutelyov, V.; Krychkine, V.; Kryukov, A.; Kubic, J.; Kubik, A.; Kubota, Y.; Kudla, I. M.; Kuessel, Y.; Kuhr, T.; Kukartsev, G.; Kumar, Arun; Kumar, Ashok; Kumar, V.; Kumar, A.; Kunde, G. J.; Kunori, S.; Kuo, C. M.; Kurca, T.; Kurenkov, A.; Kurt, P.; Kuznetsov, V.; Kuznetsova, E.; Kvatadze, R.; Kwan, S.; Kwon, E.; Kyberd, P.; Kypreos, T.; Kyre, S.; Kyriakis, A.; Laasanen, A. T.; Lacaprara, S.; Lacesso, W.; Lackey, J.; Lacroix, F.; Lagana, C.; Laird, E.; Lakkireddi, V. R.; Lamichhane, P.; Lampén, T.; Lanaro, A.; Lander, R.; Landsberg, G.; Lanev, A.; Lange, W.; Lange, J.; Lange, D.; Langenegger, U.; Lannon, K.; Lariccia, P.; Larson, K.; Lassila-Perini, K.; Lath, A.; Latronico, L.; Lawson, P.; Layter, J. G.; Lazaridis, C.; Lazic, D.; Lazo-Flores, J.; Lazzizzera, I.; Le Bihan, A.-C.; Leaver, J.; Lebeau, M.; Lebolo, L. M.; Lebourgeois, M.; Lecomte, P.; Lecoq, P.; Ledovskoy, A.; Lee, M. W.; Lee, K. S.; Lee, B.; Lee, J.; Lee, S.; Lee, Y.-J.; Lee, J.; Lee, S. J.; Lee, S. W.; Leggat, D.; Legrand, I.; Lehti, S.; Lei, Y. J.; Lelas, D.; Lellouch, J.; Lemaire, M. C.; Lemaitre, V.; Lenzi, P.; Leonard, J.; Léonard, A.; Leonardo, N.; Leonidopoulos, C.; Leonidov, A.; Leslie, D.; Lethuillier, M.; Letts, J.; Levchenko, P.; Levchuk, L.; Levin, A.; Levine, A.; Lewendel, B.; Li, W. G.; Li, W.; Li, S. W.; Li, W.; Liamsuwan, T.; Liang, D.; Liang, S.; Liao, J.; Liau, J. j.; Libeiro, T.; Lietti, S. M.; Ligabue, F.; Liko, D.; Lin, W.; Lin, S. W.; Lin, F. C.; Lin, C.; Linacre, J.; Linari, S.; Lincoln, D.; Lindén, T.; Ling, T. Y.; Lingemann, J.; Linn, S.; Lintern, A. L.; Lipton, R.; Lista, L.; Litomin, A.; Litov, L.; Litvine, V.; Litvintsev, D.; Liu, H. T.; Liu, S.; Liu, M. H.; Liu, Z. K.; Liu, H.; Liu, H.; Liu, Y. F.; Liu, C.; Liu, J. H.; Lloret Iglesias, L.; Lobelle Pardo, P.; Locci, E.; Loddo, F.; Lodge, A. B.; Lohmann, W.; Lokhtin, I.; Lomidze, D.; Lomtadze, T.; Long, O. R.; Longo, E.; Loos, R.; Lopes Pegna, D.; Lopez, A.; Lopez Perez, J. A.; Lopez Virto, A.; Lopez-Fernandez, R.; Loreti, M.; Los, S.; Loukas, D.; Lourenço, C.; Loveless, R.; Low, J. F.; Lowette, S.; Lu, Y. J.; Lu, R.-S.; Lu, Y.; Lübelsmeyer, K.; Lucaroni, A.; Luckey, P. D.; Luetic, J.; Luiggi Lopez, E.; Lujan, P.; Luk, M.; Lukyanenko, S.; Lumb, N.; Lundstedt, C.; Lungu, G.; Luo, W.; Lusin, S.; Lusito, L.; Lustermann, W.; Luthra, A.; Lutz, B.; Luukka, P.; Luyckx, S.; Lychkovskaya, N.; Lykken, J.; Lynch, S.; Lyons, L.; Ma, Y.; Ma, T.; Macneill, I.; Macpherson, A.; Madorsky, A.; Mäenpää, T.; Maes, M.; Maeshima, K.; Magaña Villalba, R.; Magass, C.; Magazzu, G.; Maggi, M.; Maggi, G.; Magini, N.; Magnan, A.-M.; Magrans de Abril, M.; Maguire, C.; Mahmoud, M. A.; Mahrous, A.; Maier, W.; Maity, M.; Majerotto, W.; Majumder, D.; Makankin, A.; Makarenko, V.; Mäki, T.; Makouski, M.; Maksimovic, P.; Malakhov, A.; Malberti, M.; Malbouisson, H.; Malcles, J.; Malek, M.; Malgeri, L.; Malhotra, S.; Malik, S.; Malik, S.; Malvezzi, S.; Mandjavidze, I.; Mangano, B.; Mankel, R.; Manna, N.; Mannelli, M.; Manolakos, I.; Mans, J.; Manthos, N.; Mantovani, G.; Manzoni, R. A.; Mao, Y.; Marage, P. E.; Marangelli, B.; Maravin, Y.; Marcellini, S.; Marchica, C.; Marchioro, A.; Marco, J.; Marco, R.; Marfin, I.; Margoni, M.; Marienfeld, M.; Marinelli, N.; Marinho, F.; Marini, A. C.; Marinov, A.; Marionneau, M.; Mariotti, C.; Markina, A.; Markou, A.; Markou, C.; Markowitz, P.; Marlow, D.; Maron, G.; Marone, M.; Maroussov, V.; Marques Pinho Noite, J.; Marraffino, J. M.; Marrouche, J.; Martelli, A.; Martin, W.; Martin, T.; Martinez, G.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Martínez-Ortega, J.; Martini, L.; Martins, T.; Martschei, D.; Maruyama, S.; Maselli, S.; Masetti, L.; Masetti, G.; Mason, D.; Massa, M.; Massai, M. M.; Massironi, A.; Matchev, K.; Mathez, H.; Mathias, B.; Matorras, F.; Matos Figueiredo, D.; Mattson, M.; Matveev, V.; Matveev, M.; Mavromanolakis, G.; Mavrommatis, C.; Maxa, Z.; Mazumdar, K.; Mazzoni, E.; Mazzucato, M.; McBride, P.; Mccartin, J.; McCauley, T.; McClatchey, R.; McCliment, E.; Mccoll, N.; Medvedeva, T.; Mehta, M. Z.; Mehta, P.; Meier, B.; Meier, F.; Meijers, F.; Mekterovic, D.; Melnitchenko, I.; Melo, A.; Melzer-Pellmann, I.-A.; Menasce, D.; Menchikov, A.; Mendez, H.; Meneghelli, M.; Meneguzzo, A. T.; Meng, X.; Menichelli, M.; Meola, S.; Mercadante, P. G.; Mercier, D.; Meridiani, P.; Merino, G.; Merkel, P.; Merlo, J.-P.; Mermerkaya, H.; Merola, M.; Merschmeyer, M.; Mersi, S.; Merz, J.; Meschi, E.; Meschini, M.; Mesropian, C.; Messineo, A.; Mestvirishvili, A.; Mesyats, G.; Metson, S.; Meyer, A.; Meyer, A. B.; Miceli, T.; Micheli, F.; Migliore, E.; Mignerey, A. C.; Mikulec, I.; Milenovic, P.; Militaru, O.; Millan Mejias, B.; Miller, D. G.; Miller, M. J.; Miller, D. H.; Milleret, G.; Milosevic, J.; Milstène, C.; Miné, P.; Miner, D. C.; Mirabito, L.; Mirman, N.; Mironov, C.; Mishra, K.; Missevitch, O.; Mitselmakher, G.; Mitsyn, V. V.; Miyamoto, J.; Mnich, J.; Moccia, S.; Moeller, A.; Moggi, A.; Mohammadi, A.; Mohammadi Najafabadi, M.; Mohanty, A. K.; Mohanty, G. B.; Mohapatra, A.; Mohr, N.; Moisenz, P.; Mol, X.; Molnar, J.; Mommsen, R. K.; Monaco, V.; Mondal, N. K.; Moneta, L.; Montalvo, R.; Montanari, A.; Montanino, D.; Montecassiano, F.; Moon, D. H.; Mooney, M.; Moortgat, F.; Morelos Pineda, A.; Mörmann, D.; Moromisato, J.; Moroni, L.; Morovic, S.; Morse, D. M.; Mossolov, V.; Mott, A.; Mousa, J.; Mozer, M. U.; Mrak-Tadel, A.; Mrenna, S.; Mucibello, L.; Mueller, S.; Mughal, A.; Muhl, C.; Mulders, M.; Müller, Th.; Mundim, L.; Muniz, L.; Munoz Sanchez, F. J.; Müntel, M.; Mura, B.; Murray, P.; Murray, S. J.; Murray, M.; Murzin, V.; Musella, P.; Musenich, R.; Musich, M.; Musienko, Y.; Mussgiller, A.; Muzaffar, S.; My, S.; Nachtman, J.; Nae, D.; Nägeli, C.; Nahn, S.; Naimuddin, M.; Nam, S. K.; Nandi, R.; Nappi, A.; Narain, M.; Naranjo, I. N.; Narasimham, V. S.; Nash, J.; Nash, D.; Natali, S.; Nauenberg, U.; Naujikas, R.; Naumann-Emme, S.; Navarria, F. L.; Nawrocki, K.; Nayak, A.; Nef, P.; Negri, P.; Nessi-Tedaldi, F.; Neu, C.; Neuberger, D.; Neuland, M. B.; Neumeister, N.; Newbold, D. M.; Newman, H. B.; Newman-Holmes, C.; Newsom, C. R.; Nguyen, M.; Nguyen, D.; Nguyen, H.; Nguyen, C. N.; Nicolaou, C.; Nicolas Kaufman, G.; Niegel, M.; Nikitenko, A.; Nikolic, M.; Nirunpong, K.; Nishu, N.; Nogima, H.; Noonan, D.; Norbeck, E.; Noto, F.; Nourbakhsh, S.; Novaes, S. F.; Novgorodova, O.; Nowack, A.; Nowak, F.; Noy, M.; Ntomari, E.; Nürnberg, A.; Nuttens, C.; Nuzzo, S.; Oberst, O.; Obertino, M. M.; Obraztsov, S.; O'Brien, C.; Ocalan, K.; Ocampo Rios, A. A.; Ochando, C.; Ochesanu, S.; Odeh, M.; Odell, N.; O'Dell, V.; Odorici, F.; Oehler, A.; Ofierzynski, R. A.; Oguri, V.; Oh, Y. D.; Ojalvo, I.; Oklinski, W.; Olaiya, E.; Olbrechts, A.; Oleynik, D.; Oliveros, S.; Olschewski, M.; Olsen, J.; Olson, J.; Olzem, J.; Onel, Y.; Onengut, G.; Onnela, A.; Orbaker, D.; Oreshkin, V.; Organtini, G.; Orimoto, T.; Orlov, A.; Orsini, L.; Ortega Gomez, T.; Osborne, J. A.; Osborne, I.; Osipenkov, I.; Osorio Oliveros, A. F.; Ostapchuk, A.; Otiougova, P.; Ott, J.; Otwinowski, S.; Oulianov, A.; Ozdemir, K.; Ozkorucuklu, S.; Ozok, F.; Ozpineci, A.; Ozturk, S.; Pacifico, N.; Padhi, S.; Padley, B. P.; Padula, Sandra S.; Paganini, P.; Pagano, D.; Paganoni, M.; Pakhotin, Y.; Paktinat Mehdiabadi, S.; Palencia Cortezon, E.; Palichik, V.; Palinkas, J.; Palla, F.; Palmer, C.; Palmonari, F.; Panagiotou, A.; Pandolfi, F.; Pandoulas, D.; Pansanel, J.; Pansart, J. P.; Pant, L. M.; Panwalkar, S.; Panyam, N.; Paoletti, S.; Paolucci, P.; Papacz, P.; Papadopoulos, I.; Papageorgiou, A.; Pape, L.; Paramatti, R.; Paramesvaran, S.; Parashar, N.; Parenti, A.; Parida, B.; Park, H.; Park, S. K.; Park, C.; Park, I. C.; Park, S.; Park, M.; Park, M.; Parrini, G.; Pashenkov, A.; Passaseo, M.; Passeri, D.; Pastika, N.; Pastrone, N.; Patel, R.; Patil, M. R.; Patois, Y.; Patras, V.; Patterson, J. R.; Paulini, M.; Paus, C.; Pauss, F.; Pavlov, B.; Pavlunin, V.; Pazzini, J.; Pearson, M. R.; Pearson, T.; Pedrini, D.; Pedro, K.; Pegoraro, M.; Peiffer, T.; Pela, J.; Pellett, D.; Pelliccioni, M.; Peltola, T.; Penzo, A.; Perchalla, L.; Perelygin, V.; Perera, L.; Perez, E.; Perfilov, M.; Perieanu, A.; Perloff, A.; Pernicka, M.; Peroni, C.; Perrey, H.; Perries, S.; Perrotta, A.; Perrozzi, L.; Peruzzi, M.; Pesaresi, M.; Petagna, P.; Peterman, A.; Petkov, P.; Petrakou, E.; Petridis, K.; Petrilli, A.; Petrosyan, A.; Petrov, V.; Petrucci, A.; Petrucciani, G.; Petrukhin, A.; Petrushanko, S.; Petyt, D.; Pfeiffer, D.; Pfeiffer, A.; Philipps, B.; Phillips, D.; Piasecki, C.; Piccolo, D.; Piedra Gomez, J.; Pieri, M.; Pierini, M.; Pierro, G. A.; Pieta, H.; Pietsch, N.; Pimiä, M.; Pin, A.; Pioppi, M.; Piotrzkowski, K.; Piparo, D.; Piperov, S.; Piroué, P.; Pitzl, D.; Pivarski, J.; Pivovarov, G.; Placidi, P.; Plager, C.; Planer, M.; Plestina, R.; Pol, M. E.; Polatoz, A.; Polese, G.; Polic, D.; Poll, A.; Pollack, B.; Pompili, A.; Pooth, O.; Popescu, S.; Popov, V.; Popov, A.; Pordes, R.; Poschlad, A.; Postema, H.; Postoev, V. E.; Potenza, R.; Potenza, A.; Pozdnyakov, A.; Pozniak, K.; Pozzobon, N.; Prado Da Silva, W. L.; Primavera, F.; Prokofyev, O.; Proskuryakov, A.; Prosper, H.; Ptochos, F.; Puerta Pelayo, J.; Pugliese, G.; Puigh, D.; Puljak, I.; Pullia, A.; Punz, T.; Qazi, S.; Qian, S. J.; Quan, X.; Quast, G.; Quertenmont, L.; Quintario Olmeda, A.; Rabbertz, K.; Racz, A.; Radburn-Smith, B. C.; Radi, A.; Radicci, V.; Raffaelli, F.; Ragazzi, S.; Ragghianti, G.; Raghavan, R.; Rahatlou, S.; Rahbaran, B.; Rahmat, R.; Raics, P.; Raidal, M.; Rakness, G.; Ralich, R.; Ralph, D.; Ramirez Vargas, J. E.; Rand, D.; Rander, J.; Ranieri, A.; Ranieri, R.; Ranjan, K.; Rappoccio, S.; Rapsevicius, V.; Raspereza, A.; Rathjens, D.; Ratnikov, F.; Ratnikova, N.; Ratti, S. P.; Raupach, F.; Raval, A.; Ravot, S.; Raymond, D. M.; Razis, P. A.; Rebane, L.; Rebassoo, F.; Redaelli, N.; Redjimi, R.; Redondo, I.; Reece, W.; Reeder, D.; Reid, I. D.; Reidy, J.; Reis, T.; Reithler, H.; Rekovic, V.; Remington, R.; Renker, D.; Renz, M.; Reucroft, S.; Reyes-Santos, M. A.; Reymond, J. M.; Ribeiro, P. Q.; Ribeiro Cipriano, P. M.; Ribnik, J.; Riccardi, C.; Ricci, D.; Ricci-Tam, F.; Richman, J.; Riedl, C.; Riley, D.; Rinkevicius, A.; Rizzi, A.; Ro, S. R.; Roberts, J.; Robles, J.; Robmann, P.; Röcker, S.; Rodenburg, M.; Rodozov, M.; Rodrigo, T.; Rodrigues Antunes, J.; Rodriguez, J. L.; Rodríguez-Marrero, A. Y.; Roe, J.; Roederer, F.; Rogan, C.; Rogerson, S.; Roh, Y.; Rohe, T.; Rohlf, J.; Rohringer, C.; Rohringer, H.; Roinishvili, V.; Roland, B.; Roland, C.; Roland, G.; Rolandi, G.; Romaniuk, R.; Romano, F.; Romanowska-Rybinska, K.; Romanteau, T.; Romeo, F.; Romero, L.; Romero, A.; Ron, E.; Ronchese, P.; Ronga, F. J.; Ronzhin, A.; Rose, A.; Rose, K.; Rosemann, C.; Röser, U.; Rosin, M.; Rosowsky, A.; Ross, I.; Rossato, K.; Rossi, A. M.; Rossin, R.; Rossini, M.; Rossman, P.; Rott, C.; Rougny, R.; Roumenin, C.; Rovelli, C.; Rovelli, T.; Rovere, M.; Rowe, J.; Roy, A.; Rozsa, S. G.; Rubakov, V.; Ruchti, R.; Rudolph, M.; Rugovac, S.; Ruiz-Jimeno, A.; Rumerio, P.; Rurua, L.; Rusack, R.; Rusakov, S. V.; Rush, C. J.; Ruspa, M.; Russ, J.; Rutherford, B.; Ryabov, A.; Ryan, M. J.; Ryckbosch, D.; Ryd, A.; Ryjov, V.; Ryu, G.; Ryu, S.; Ryutin, R.; Sabellek, A.; Sabes, D.; Sacchi, R.; Safarzadeh, B.; Safonov, A.; Safronov, G.; Saha, A.; Saini, L. K.; Saizu, M. A.; Saka, H.; Sakharov, A.; Sakhelashvili, T.; Sakulin, H.; Sakuma, T.; Sakumoto, W.; Sala, L.; Sala, S.; Salazar Ibarguen, H. A.; Salerno, R.; Salfeld-Nebgen, J.; Salur, S.; Salvati, E.; Sammet, J.; Samyn, D.; Sanabria, J. C.; Sanchez, A. K.; Sánchez-Hernández, A.; Sander, C.; Sanders, S.; Sanders, D. A.; Sanguinetti, G.; Sani, M.; Santanastasio, F.; Santaolalla, J.; Santocchia, A.; Santoro, A.; Saoulidou, N.; Saout, C.; Sarkar, S.; Sartirana, A.; Sarycheva, L.; Sauerland, P.; Savin, A.; Savina, M.; Savrin, V.; Sawley, M.-C.; Scarborough, T.; Schael, S.; Schäfer, C.; Schettler, H.; Scheurer, A.; Schieferdecker, D.; Schieferdecker, P.; Schilling, F.-P.; Schinzel, D.; Schizzi, A.; Schlein, P.; Schleper, P.; Schlieckau, E.; Schmanau, M.; Schmidt, R.; Schmidt, A.; Schmidt, I.; Schmitt, M.; Schmitz, D.; Schmitz, S. A.; Schnetzer, S.; Schoerner-Sadenius, T.; Schöfbeck, R.; Schott, G.; Schröder, M.; Schul, N.; Schultz von Dratzig, A.; Schum, T.; Schwerdtfeger, W.; Schwick, C.; Sciaba, A.; Scodellaro, L.; Scurlock, B.; Searle, M.; Seez, C.; Segala, M.; Segneri, G.; Segoni, I.; Sehgal, V.; Seidel, M.; Seitz, C.; Seixas, J.; Sekmen, S.; Selvaggi, M.; Selvaggi, G.; Semenov, R.; Semenov, S.; Sen, N.; Sen, S.; Sengupta, S.; Senkin, S.; Seo, H.; Serban, A. T.; Serin, M.; Servoli, L.; Sever, R.; Sexton-Kennedy, E.; Sfiligoi, I.; Sgandurra, L.; Sguazzoni, G.; Shah, M. A.; Shamdasani, J.; Shanidze, R.; Sharan, M.; Sharma, A.; Sharma, V.; Sharma, A.; Sharma, V.; Sharma, S.; Sharma, M.; Sharp, P.; Shaw, T. M.; Sheldon, P.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Shevchenko, S.; Shi, X.; Shin, K.; Shipkowski, S. P.; Shipsey, I.; Shirinyants, V.; Shiu, J. G.; Shivpuri, R. K.; Shmatov, S.; Shoaib, M.; Shrestha, S.; Shreyber, I.; Shukla, P.; Shulha, S.; Shumeiko, N.; Sibille, J.; Siedling, R.; Siegrist, P.; Sigamani, M.; Sikler, F.; Silkworth, C.; Sill, A.; Silva, J.; Silva, P.; Silvers, D.; Silverwood, H.; Silvestre, C.; Silvestris, L.; Sim, K. S.; Simon, M.; Simon, S.; Simonetto, F.; Simonis, H. J.; Singh, J. B.; Singh, A. P.; Singh, G.; Singovsky, A.; Sinthuprasith, T.; Sirois, Y.; Siroli, G. P.; Sirunyan, A. M.; Skachkova, A.; Skatchkov, N.; Skhirtladze, N.; Skiba, A.; Skuja, A.; Slattery, P.; Slaunwhite, J.; Smetannikov, V.; Smiljkovic, N.; Smirnov, V.; Smirnov, I.; Smith, V. J.; Smith, B. J.; Smith, J.; Smith, J. G.; Smith, R. P.; Smith, K.; Smith, W. H.; Smolin, D.; Smoron, A.; Snigirev, A.; Snihur, R.; Snoek, H.; Snook, B.; Snow, G. R.; Snowball, M.; Soares, M. S.; Sobol, A.; Sobron Sanudo, M.; Soffi, L.; Sogut, K.; Soha, A.; Sola, V.; Solano, A.; Solin, A.; Solovey, A.; Somalwar, S.; Son, D.; Son, D. C.; Song, S.; Sonmez, N.; Sonnenschein, L.; Soomro, K.; Sordini, V.; Soroka, D.; Sorokin, P.; Souza, M. H. G.; Sowa, M.; Spagnolo, P.; Spalding, W. J.; Spandre, G.; Spanier, S.; Sparrow, A.; Speer, T.; Sperka, D.; Sphicas, P.; Spiegel, L.; Spiezia, A.; Spiga, D.; Spinoso, V.; Spiridonov, A.; Spiropulu, M.; Sprenger, D.; Sproston, M.; Squillacioti, P.; Squires, M.; Srimanobhas, N.; Stadie, H.; Stahl, A.; Staiano, A.; Starodumov, A.; Stasko, J.; Staykova, Z.; Steenberg, C.; Stefanovitch, R.; Steggemann, J.; Stein, M.; Steinbrück, G.; Stenson, K.; Stepanov, N.; Stephans, G. S. F.; Stephenson, R.; Stickland, D.; Stieger, B.; Stober, F. M.; Stöckli, F.; Stolin, V.; Stone, R.; Stoye, M.; Stoykova, S.; Stoynev, S.; Strauss, J.; Stringer, R.; Strobbe, N.; Stroiney, S.; Strom, D.; Strumia, A.; Stuart, D.; Sturdy, J.; Suarez, I.; Suarez Gonzalez, J.; Sudano, E.; Sudhakar, K.; Suh, J. S.; Sulak, L.; Sulimov, V.; Sultanov, G.; Summers, D.; Sumorok, K.; Sumowidagdo, S.; Sun, G.; Sun, H. S.; Sun, W.; Sunar Cerci, D.; Sung, K.; Surat, U. E.; Suter, H.; Svintradze, I.; Svyatkovskiy, A.; Swain, J.; Swanson, D.; Swanson, J.; Swartz, M.; Symonds, P.; Szillasi, Z.; Szleper, M.; Sznajder, A.; Szoncsó, F.; Tabarelli de Fatis, T.; Tadel, M.; Takahashi, M.; Talamo, I. G.; Tali, B.; Talov, V.; Tambe, N.; Tan, P.; Tanenbaum, W.; Tao, J.; Tapper, A.; Taroni, S.; Tatarinov, A.; Taurok, A.; Tauscher, L.; Tavernier, S.; Taylor, B. G.; Taylor, L.; Tcholakov, V.; Teller, O.; Temple, J.; Tenchini, R.; Teng, H.; Tentindo, S.; Teo, W. D.; Teodorescu, L.; Terentyev, N.; Teyssier, D.; Thea, A.; Theel, A.; Theofilatos, K.; Thiebaux, C.; Thom, J.; Thomas, L.; Thomas, M.; Thomas, S.; Thompson, J.; Thompson, R.; Thomsen, J.; Thümmel, W. H.; Thyssen, F.; Tikhonenko, E.; Tiko, A.; Timciuc, V.; Timlin, C.; Tinti, G.; Tiradani, A.; Tiras, E.; Titov, M.; Tkaczyk, S.; Tlisov, D.; To, W.; Toback, D.; Tomalin, I. R.; Tomaszewska, J.; Tonelli, G.; Tonjes, M. B.; Tonwar, S. C.; Toole, T.; Topakli, H.; Topkar, A.; Torassa, E.; Torbet, M. J.; Toropin, A.; Torre, P.; Tosi, S.; Tosi, M.; Tourneur, S.; Tourtchanovitch, L.; Traczyk, P.; Tran, N. V.; Travaglini, R.; Trayanov, R.; Treille, D.; Triantis, F. A.; Tricomi, A.; Tripathi, M.; Trocino, D.; Trocsanyi, Z. L.; Troendle, D.; Troitsky, S.; Tropea, P.; Tropiano, A.; Troshin, S.; Troska, J.; Trüb, P.; Trunov, A.; Tsamalaidze, Z.; Tsang, K. V.; Tschudi, Y.; Tsesmelis, E.; Tsirou, A.; Tu, Y.; Tucker, J.; Tully, C.; Tumanov, A.; Tumasyan, A.; Tuo, S.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Tupputi, S.; Turkewitz, J.; Turner, M.; Turner, P.; Tuura, L.; Tuuva, T.; Tuve, C.; Twedt, E.; Tytgat, M.; Tyurin, N.; Tzeng, Y. M.; Udriot, S.; Ueno, K.; Ujvari, B.; Ulmer, K. A.; Ulrich, R.; Unalan, Z.; Ungaro, D.; Uplegger, L.; Urscheler, C.; Uvarov, L.; Uzunian, A.; Uzunova, D.; Vaandering, E. W.; Valdata, M.; Valls, N.; Valuev, V.; Van Doninck, W.; Van Haevermaet, H.; Van Hove, P.; Van Lancker, L.; van Lingen, F.; Van Mechelen, P.; Van Mulders, P.; Van Onsem, G. P.; Van Remortel, N.; Van Spilbeeck, A.; Vander Donckt, M.; Vander Velde, C.; Vanelderen, L.; Vanhala, T. P.; Vanini, S.; Vankov, I.; Vanlaer, P.; Vardanyan, I.; Varela, J.; Varela Rodriguez, F.; Varelas, N.; Vartak, A.; Vasey, F.; Vasil'ev, S.; Vasquez Sierra, R.; Vaughan, J.; Vavilov, S.; Vazquez Acosta, M.; Vazquez Valencia, F.; Veelken, C.; Veeraraghavan, V.; Veillet, L.; Velasco, M.; Velicanu, D.; Velikzhanin, Y.; Velkovska, J.; Venditti, R.; Ventura, S.; Venturi, A.; Verdier, P.; Verdini, P. G.; Veres, G. I.; Vergili, L. N.; Vergili, M.; Verma, P.; Verrecchia, P.; Verwilligen, P.; Verzetti, M.; Veszpremi, V.; Vesztergombi, G.; Veverka, J.; Vichoudis, P.; Vidal, R.; Vidal Marono, M.; Viertel, G.; Vila, I.; Vilar Cortabitarte, R.; Vilela Pereira, A.; Villasenor-Cendejas, L. M.; Villella, I.; Vinogradov, A.; Virdee, T.; Viret, S.; Vischia, P.; Vishnevskiy, D.; Vitulo, P.; Vizan Garcia, J. M.; Vlasov, E.; Vlimant, J. R.; Vodopiyanov, I.; Vogel, H.; Voicu, B. R.; Volkov, A.; Volobouev, I.; Volodko, A.; Volpe, R.; Volyanskyy, D.; Von Goeler, E.; von Gunten, H. P.; Vorobiev, I.; Vorobyev, A.; Vorobyev, An.; Voutilainen, M.; Vuosalo, C.; Vutova, M.; Wagner, S. R.; Wagner-Kuhr, J.; Wakefield, S.; Wallny, R.; Walsh, S.; Walsh, R.; Waltenberger, W.; Walzel, G.; Wan, X.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Wang, D.; Wang, C. C.; Wang, M.; Wardle, N.; Wasserbaech, S.; Wayand, S.; Wayne, M.; Weber, H.; Weber, M.; Weber, M.; Weber, H. A.; Weber, M.; Wehrli, L.; Wei, J. T.; Weiler, T.; Weinberg, M.; Wendland, L.; Weng, J.; Weng, Y.; Wenger, E. A.; Wenman, D.; Werner, J. S.; Wertelaers, P.; West, C.; Wetzel, J.; Whitbeck, A.; White, D.; Whitmore, J.; Whyntie, T.; Wickens, J.; Wickramage, N.; Widl, E.; Wigmans, R.; Wildish, T.; Wilken, R.; Wilkinson, R.; Williams, J. C.; Williams, T.; Williams, J. H.; Williams, G.; Willmott, C.; Wimpenny, S.; Winer, B. L.; Wingham, M.; Winn, D.; Winstrom, L.; Wissing, C.; Wittich, P.; Wittmer, B.; Wlochal, M.; Wöhri, H. K.; Wolf, R.; Wolf, M.; Womersley, W. J.; Won, S.; Wood, J. S.; Wood, D.; Wood, J.; Woodard, A.; Worm, S. D.; Wright, D.; Wrochna, G.; Wu, J. H.; Wu, S.; Wu, W.; Wulz, C.-E.; Würthwein, F.; Wyslouch, B.; Xiao, H.; Xie, S.; Xie, Z.; Xu, M.; Yagil, A.; Yang, M.; Yang, X.; Yang, Y.; Yang, F.; Yang, M.; Yang, Z. C.; Yarba, J.; Yazgan, E.; Ye, Y. L.; Yeh, P.; Yelton, J.; Yepes, P.; Yetkin, T.; Yi, K.; Yilmaz, Y.; Yohay, R.; Yoo, J.; Yoo, H. D.; Yoon, A. S.; York, A.; Youngman, C.; Yu, I.; Yu, S. S.; Yumiceva, F.; Yun, J. C.; Zabel, J.; Zabi, A.; Zablocki, J.; Zabolotny, W.; Zaganidis, N.; Zahariev, R.; Zakaria, M.; Zalan, P.; Zalewski, P.; Zanetti, M.; Zang, J.; Zang, S. L.; Zarubin, A.; Zatserklyaniy, A.; Zaytsev, V.; Zeinali, M.; Zeise, M.; Zelepoukine, S.; Zenz, S. C.; Zeuner, W. D.; Zeyrek, M.; Zhang, X.; Zhang, Z.; Zhang, Z.; Zhang, L.; Zhang, L.; Zhang, J.; Zhao, W. R.; Zheng, Y.; Zheng, Y.; Zhiltsov, V.; Zhokin, A.; Zhu, Z.; Zhu, B.; Zhu, K.; Zhu, R. Y.; Zhukov, V.; Zhukova, V.; Ziebarth, E. B.; Zielinski, M.; Zilizi, G.; Zimmerman, T.; Zito, G.; Zoeller, M. H.; Zorba, O.; Zotto, P.; Zou, W.; Zumerle, G.; Zupan, M.; Zuranski, A.; Zuyeuski, R.; Zvada, M.; Zych, P.

    2012-12-01

    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force—the W+, W-, and Z0 bosons—as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 × 106. The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle.

  9. Low-energy signals of strongly-coupled electroweak symmetry-breaking scenarios

    NASA Astrophysics Data System (ADS)

    Pich, Antonio; Rosell, Ignasi; Santos, Joaquín; Sanz-Cillero, Juan José

    2016-03-01

    The nonobservation of new particles at the LHC suggests the existence of a mass gap above the electroweak scale. This situation is adequately described through a general electroweak effective theory with the established fields and Standard Model symmetries. Its couplings contain all information about the unknown short-distance dynamics which is accessible at low energies. We consider a generic strongly coupled scenario of electroweak symmetry breaking, with heavy states above the gap, and analyze the imprints that its lightest bosonic excitations leave on the effective Lagrangian couplings. Different quantum numbers of the heavy states imply different patterns of low-energy couplings, with characteristic correlations which could be identified in future data samples. The predictions can be sharpened with mild assumptions about the ultraviolet behaviour of the underlying fundamental theory.

  10. NLO Vector Boson Production With Light Jets

    SciTech Connect

    Bern, Z.; Diana, G.; Dixon, L.J.; Febres Cordero, F.; Forde, D.; Gleisberg, T.; Hoeche, S.; Ita, H.; Kosower, D.A.; Maitre, D.; Ozeren, K.

    2012-02-15

    In this contribution we present recent progress in the computation of next-to-leading order (NLO) QCD corrections for the production of an electroweak vector boson in association with jets at hadron colliders. We focus on results obtained using the virtual matrix element library BlackHat in conjunction with SHERPA, focusing on results relevant to understanding the background to top production. The production of a vector boson in association with several jets at the Large Hadron Collider (LHC) is an important background for other Standard Model processes as well as new physics signals. In particular, the production of a W boson in association with many jets is an important background for processes involving one or more top quarks. Precise predictions for the backgrounds are crucial to measurement of top-quark processes. Vector boson production in association with multiple jets is also a very important background for many SUSY searches, as it mimics the signatures of many typical decay chains. Here we will discuss how polarization information can be used as an additional handle to differentiate top pair production from 'prompt' W-boson production. More generally, ratios of observables, for example for events containing a W boson versus those containing a Z boson, are expected to be better-behaved as many uncertainties cancel in such ratios. Precise calculation of ratios, along with measurement of one of the two processes in the ratio, can be used in data-driven techniques for estimating backgrounds.