Science.gov

Sample records for element profile measurements

  1. Siderophile Element Profile Measurements in Iron Meteorites Using Laser Ablation ICP-MS

    NASA Technical Reports Server (NTRS)

    Watson, H. C.; Watson, E. B.; McDonough, W. F.

    2005-01-01

    Understanding the behaviour of siderophile elements during cooling of iron meteorites can lead to insight into the general thermal histories of the meteorites as well as their respective parent bodies. Traditionally trace element analyses in meteorites have been done using techniques that only measure the average concentration in each phase. With these methods, all of the spatial information with respect to the distribution of an element within one phase is lost. Measuring concentration profiles of trace elements in meteorites is now possible, with the advent of high-resolution analytical techniques such as laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) with spatial resolution <20 microns. [e.g. 1,2] and secondary ion mass spectrometry [3]. These profiles can give more insight into both the partitioning and diffusive behavior of siderophile elements in metal systems relevant to iron meteorites, as well as parent body cooling rates.

  2. Nondestructive elemental depth-profiling analysis by muonic X-ray measurement.

    PubMed

    Ninomiya, Kazuhiko; Kubo, Michael K; Nagatomo, Takashi; Higemoto, Wataru; Ito, Takashi U; Kawamura, Naritoshi; Strasser, Patrick; Shimomura, Koichiro; Miyake, Yasuhiro; Suzuki, Takao; Kobayashi, Yoshio; Sakamoto, Shinichi; Shinohara, Atsushi; Saito, Tsutomu

    2015-05-01

    Elemental analysis of materials is fundamentally important to science and technology. Many elemental analysis methods have been developed, but three-dimensional nondestructive elemental analysis of bulk materials has remained elusive. Recently, our project team, dreamX (damageless and regioselective elemental analysis with muonic X-rays), developed a nondestructive depth-profiling elemental analysis method after a decade of research. This new method utilizes a new type of probe; a negative muon particle and high-energy muonic X-rays emitted after the muon stops in a material. We performed elemental depth profiling on an old Japanese gold coin (Tempo-Koban) using a low-momentum negative muon beam and successfully determined that the Au concentration in the coin gradually decreased with depth over a micrometer length scale. We believe that this method will be a promising tool for the elemental analysis of valuable samples, such as archeological artifacts. PMID:25901421

  3. Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil.

    PubMed

    Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher

    2014-02-18

    Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from

  4. Profiles in Measurement.

    ERIC Educational Resources Information Center

    Ludlow, Larry H.; Wright, Benjamin Drake; Linacre, John Michael; Webster, Linda; Andrich, David

    1998-01-01

    Four of the articles in this section profile major figures in measurement: (1) Sir Francis Galton (Larry Ludlow); (2) Georg Rasch (Benjamin Wright); (3) Benjamin Wright (John Michael Linacre); and (4) David Andrich (Linda Webster). The fifth article, by David Andrich, presents insights gained into the Rasch model. (SLD)

  5. Profil'-1 measuring complex

    SciTech Connect

    Andrianov, V.R.; Petrov, A.P.

    1985-04-01

    This paper describes the Profil'-1 hydroacoustic measuring complex. The complex provides documentary information on the bottom profile of reservoirs, the configuration and geometric dimensions of underwater trenches, the spatial position of pipes in uncovered or washedout trenches, the thickness of a layer covering underwater pipes, etc. The complex can also be used to solve other industrial problems such as hydraulic exploration and searching for sunken objects. The Profil'-1 complex is designed for use on board small craft under field conditions with periodic transportation from storage bases to the operating location and back. The complex uses an echo-pulse method for determining the distance and coordinates of objects with the aid of an ultrasonic transceiver in an aqueous medium. Structurally, the complex consists of four main units: a BA-1 vertical sounding antenna unit; a BAS-1 antenna scanning unit; a BFOS-1 signal shaping and processing unit, and a BR-1 recording unit. Use of the complex in pipeline construction and the oil and gas industry will provide a considerable economic gain by reducing the number of diver inspections of underwater pipelines.

  6. Simultaneous depth-profiling of electrical and elemental properties of ion-implanted arsenic in silicon by combining secondary-ion mass spectrometry with resistivity measurements

    NASA Astrophysics Data System (ADS)

    Bennett, N. S.; Wong, C. S.; McNally, P. J.

    2016-07-01

    A method is proposed to extract the electrical data for surface doping profiles of semiconductors in unison with the chemical profile acquired by secondary-ion mass spectrometry (SIMS)—a method we call SIMSAR (secondary-ion mass spectrometry and resistivity). The SIMSAR approach utilizes the inherent sputtering process of SIMS, combined with sequential four-point van der Pauw resistivity measurements, to surmise the active doping profile as a function of depth. The technique is demonstrated for the case of ion-implanted arsenic doping profiles in silicon. Complications of the method are identified, explained, and corrections for these are given. While several techniques already exist for chemical dopant profiling and numerous for electrical profiling, since there is no technique which can measure both electrical and chemical profiles in parallel, SIMSAR has significant promise as an extension of the conventional dynamic SIMS technique, particularly for applications in the semiconductor industry.

  7. A Compton profile representation for some second period elements

    NASA Astrophysics Data System (ADS)

    Harding, Geoffrey; Olesinski, Stephan

    2011-09-01

    Compton profiles for the elements C, N and O, which are important both in medical science and security screening, are represented here as weighted sums of three Gaussians. Simple scaling relationships describe the dependence on atomic number ( Z) of the amplitudes and standard deviations of the component Gaussians, which are identified with the Compton profiles of the 1s, 2s and 2p orbitals. This representation of the Compton profile agrees with tabulated values for C, N and O to a rms deviation of the order of 1% of the mean profile amplitude over the momentum range 0≤ q≤4, where q is expressed in units of the hydrogen ground state momentum. This representation allows a "mean atomic number" for mixtures and compounds dominated by second period elements to be assigned on the basis of experimental measurements of the Doppler broadening of back-scattered X-ray K characteristic lines. Processed spectra of water and ethanol from a Compton spectrometer equipped with a room-temperature semiconductor detector are compared with the Compton profiles synthesized as suggested here, and a satisfactory agreement between the measured and theoretical mean atomic numbers and the profile shapes is found.

  8. An external drag measuring element

    NASA Astrophysics Data System (ADS)

    Ringel, Mordechai; Levin, Daniel; Seginer, Arnan

    The accurate measurement of the axial-force component acting on small wind-tunnel models has traditionally made use of integral string balances, which eliminated many accuracy problems, such as friction and hysteresis, but also introduced interactions between the various force and moment sensing elements due to nonlinear elastic phenomena. The reduction of these interactions usually calls for complicated designs, expensive manufacturing, hard-to-handle calibration processes, and cumbersome data reduction programs. An approach is presented that is based on an external axial-force-measuring element and avoids the ill-conditioned design problems of integral balances. Other difficulties that are encountered, such as friction, misalignment, and relative motion between metric elements are considered, and their solution is examined. Calibration and test results show that the new approach duplicates and surpasses the results of much more complicated and expensive integral balances.

  9. Automatic measurement of blade profile

    NASA Astrophysics Data System (ADS)

    Dong, Benhan; Liu, Lang; Liu, Wei; Gao, Penfei

    2002-05-01

    In this paper a newly developed 3D surface shape measuring system together with its application to the metrology of surface form of blade. The experiment shows that 3D500 measuring system is a useful tool for surface evaluation with character of full-field, on-line, real-time measurement that are important to the quality control inspection of the profile of turbine blade.

  10. Accurate optical CD profiler based on specialized finite element method

    NASA Astrophysics Data System (ADS)

    Carrero, Jesus; Perçin, Gökhan

    2012-03-01

    As the semiconductor industry is moving to very low-k1 patterning solutions, the metrology problems facing process engineers are becoming much more complex. Choosing the right optical critical dimension (OCD) metrology technique is essential for bridging the metrology gap and achieving the required manufacturing volume throughput. The critical dimension scanning electron microscope (CD-SEM) measurement is usually distorted by the high aspect ratio of the photoresist and hard mask layers. CD-SEM measurements cease to correlate with complex three-dimensional profiles, such as the cases for double patterning and FinFETs, thus necessitating sophisticated, accurate and fast computational methods to bridge the gap. In this work, a suite of computational methods that complement advanced OCD equipment, and enabling them to operate at higher accuracies, are developed. In this article, a novel method for accurately modeling OCD profiles is presented. A finite element formulation in primal form is used to discretize the equations. The implementation uses specialized finite element spaces to solve Maxwell equations in two dimensions.

  11. Elemental profiles in Emory mouse lens

    SciTech Connect

    Bagchi, M.; Emanuel, K. )

    1991-01-01

    Energy dispersive x-ray microprobe analysis was used to determine the distribution of chloride, potassium, phosphorus and sulfur in the epithelial cells of the lenses obtained from 3 to 7 month old Emory mice and 7 month old cataract resistant strain of Emory mice. Rapidly frozen lenses were fractured in the frozen state and lyophilized. The anterior epithelial cells were analyzed from equator to equator. The results show that the epithelial cells of the 7 month old Emory mouse lens have considerably higher amounts of chloride, sulfur, potassium and phosphorus. Presence of increased amount of potassium in the epithelial cells is intriguing. The data obtained from these experiments show that the changes in the elemental levels of epithelial cells are similar to observed alteration found in the lens fiber mass of 7 month old Emory mouse.

  12. Elevation Measurement Profile of Mars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The elevation measurements were collected by the Mars Orbiter Laser Altimeter (MOLA) aboard Global Surveyor during the spring and summer of 1998, as the spacecraft orbited Mars in an interim elliptical orbit. MOLA sends laser pulses toward the planet and measures the precise amount of time before the reflected signals are received back at the instrument. From this data, scientists can infer surface and cloud heights.

    During its mapping of the north polar cap, the MOLA instrument also made the first direct measurement of cloud heights on the red planet. Reflections from the atmosphere were obtained at altitudes from just above the surface to more than nine miles (approximately 15 kilometers) on about 80 percent of the laser profiles. Most clouds were observed at high latitudes, at the boundary of the ice cap and surrounding terrain.

    Clouds observed over the polar cap are likely composed of carbon dioxide that condenses out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamic structure probably caused by winds interacting with surface topography, much as occurs on Earth when winds collide with mountains to produce turbulence.

    The principal investigator for MOLA is Dr. David E. Smith of Goddard. The MOLA instrument was designed and built by the Laser Remote Sensing Branch of Laboratory for Terrestrial Physics at Goddard. The Mars Global Surveyor Mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for the NASA Office of Space Science.

  13. Acoustic and Perceptual Measurements of Prosody Production on the Profiling Elements of Prosodic Systems in Children by Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Diehl, Joshua John; Paul, Rhea

    2013-01-01

    Prosody production atypicalities are a feature of autism spectrum disorders (ASDs), but behavioral measures of performance have failed to provide detail on the properties of these deficits. We used acoustic measures of prosody to compare children with ASDs to age-matched groups with learning disabilities and typically developing peers. Overall,…

  14. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  15. Transmission profiles from SCIAMACHY solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Zalach, Jacob; Von Savigny, Christian

    Vertical atmospheric transmission profiles contain information about its composition and make it possible to reconstruct the vertical distribution of its components. The measurement of stratospheric aerosol extinction profiles and its size distribution is the goal of the ROMIC-ROSA project for which transmission profiles are the most important precondition. One established method to obtain such profiles are satellite born occultation measurements. For this project SCIAMACHY (EnviSat) solar occultation measurements are analysed. The data set covers a time period of ten years within a wavelength interval between 240 and 2380 nm. Due to different spatial resolution of the measured solar profiles a direct application of existing analysis tools and algorithms is not possible. First they have to be adjusted to the present data. This contribution explains the present data processing and shows the resulting transmission profiles.

  16. Biological trace element measurements using synchrotron radiation

    SciTech Connect

    Giauque, R.D.; Jaklevic, J.M.; Thompson, A.C.

    1985-07-01

    The feasibility of performing x-ray fluorescence trace element determinations at concentrations substantially below the ppM level for biological materials is demonstrated. Conditions for achieving optimum sensitivity were ascertained. Results achieved for five standard reference materials were, in most cases, in excellent agreement with listed values. Minimum detectable limits of 20 ppM were measured for most elements.

  17. Trends in ozone profile measurements

    NASA Technical Reports Server (NTRS)

    Johnston, H.; Aikin, A.; Barnes, R.; Chandra, S.; Cunnold, D.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mccormick, M. P.; Mcmaster, L.

    1989-01-01

    From an examination of the agreements and differences between different satellite instruments, it is difficult to believe that existing satellite instruments determine upper stratospheric ozone much better than 4 pct.; by extension, it probably would require at least a 4 pct. change to be reliably detected as a change. The best estimates of the vertical profiles of ozone change in the upper stratosphere between 1979 and 1986 are judged to be those given by the two SAGE satellite instruments. SAGE-2 minus SAGE-1 gives a much lower ozone reduction than that given by the archived Solar Backscatter UV data. The average SAGE profiles of ozone changes between 20 and 50 degs north and between 20 and 50 degs south are given. The SAGE-1 and SAGE-2 comparison gives an ozone reduction of about 4 pct. at 25 km over temperate latitudes. Five ground based Umkehr stations between 36 and 52 degs north, corrected for the effects of volcanic aerosols, report an ozone reduction between 1979 and 1987 at Umkehr layer 8 of 9 + or - 5 pct. The central estimate of upper stratospheric ozone reduction given by SAGE at 40 km is less than the central value estimated by the Umkehr method at layer 8.

  18. Measurement of Elements in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Anderson, J. G.

    1985-01-01

    Balloon-borne winch system; stratospheric free radicals; stratospheric sounding; copper vapor lasers; ozone measurement; NO2 analysis; chlorine chemistry; trace elements; and ClO observations are discussed.

  19. Measurement of gradient index profile using deflectometry

    NASA Astrophysics Data System (ADS)

    Sekh, Md. Asraful; Biswas, Nisha Sood; Sarkar, Samir; Basuray, Amitabha

    2013-10-01

    The present paper reports a simple technique for measurement of one dimensional graded index (GRIN) profile using deflectometry. In this method the linear fringe pattern generated by a lateral shear interferometer using a Wollaston prism is made incident on the GRIN sample and the profile is measured from the deflection of the fringes. The method is simple and also gives a visual display of the GRIN profiles. Computation of the profile from the deflection of fringes is also simple. Measured data is compared with the theoretical ones obtained from the solution of the diffusion equation. Results are reported for negative refractive index profiles made by exchanging Na+ for Li+ ions in Na2O-Li2O-Al2O3-ZrO2-SiO2 glasses.

  20. Trace Elements in Ovaries: Measurement and Physiology.

    PubMed

    Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J

    2016-04-01

    Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary. PMID:26864198

  1. Compliant transducer measures artery profile

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Culler, V. H.; Crawford, D. W.; Spears, J. R.

    1981-01-01

    Instrument consisting of compliant fingers with attached semiconductor pickups measures inside contours of narrow vessels. Instrument, originally designed to monitor human arteries, is drawn through vessel to allow finges to follow contours. Lead wires transmit electrical signals to external processing equipment.

  2. Elemental profiles and signatures of fugitive dusts from Chinese deserts.

    PubMed

    Zhang, Rong; Cao, Junji; Tang, Yanrong; Arimoto, Richard; Shen, Zhenxing; Wu, Feng; Han, Yongming; Wang, Gehui; Zhang, Jiaquan; Li, Guohui

    2014-02-15

    Elemental profiles were determined for size-separated fugitive dust particles produced from Chinese desert and gobi soils. Seventeen surface soil samples from six Chinese deserts were collected, composited, resuspended, and sampled through TSP, PM10, and PM2.5 inlets onto Teflon® filters, which were analyzed for twenty-six elements. Two major dust sources could be distinguished based on differences in crustal and enriched elements-the northwestern (NW) region (Taklimakan Desert, Xinjiang Gobi, and Anxinan Gobi) and northern (N) region (Ulan Buh Desert, Central Inner Mongolia Desert, and Erenhot Gobi). The N sources showed lower concentrations of mineral elements (Fe, K, Na, Ti, Mn, Cr, and Rb in PM10, and Fe, K, Ti, Mn, Co, and V in PM2.5) and higher levels of contaminants (S, Zn, Mo, Cu, Cr, Pb, Cd, and As) than the NW ones, especially in PM2.5. Enrichment factors for Cu, Cr, Zn, Pb, As, Mo, and Cd calculated relative to the upper continental crust showed enrichments of one to two orders-of-magnitude, and they were much higher for N sources than NW ones, implying stronger anthropogenic impacts in north China. Aerosol elemental concentrations during dust events at Horqin, Beijing, and Xi'an matched the mass percentages of mineral elements from their presumptive sources better than the alternative ones, validating the differences between the NW and N sources. Additionally, Na/S, Mg/S, Fe/Al, K/Al, Si/Fe, and Na/Al ratios were suggested to differentiate the two dust source regions. The elemental ratios of Ca/Al, K/Al, Fe/Al, and Ti/Fe in the source regions matched those in aerosols collected downwind, and they can be considered as possible source indicators. PMID:24361747

  3. Efficient finite element method for grating profile reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Ruming; Sun, Jiguang

    2015-12-01

    This paper concerns the reconstruction of grating profiles from scattering data. The inverse problem is formulated as an optimization problem with a regularization term. We devise an efficient finite element method (FEM) and employ a quasi-Newton method to solve it. For the direct problems, the FEM stiff and mass matrices are assembled once at the beginning of the numerical procedure. Then only minor changes are made to the mass matrix at each iteration, which significantly saves the computation cost. Numerical examples show that the method is effective and robust.

  4. The Determination of Relative Elemental Growth Rate Profiles from Segmental Growth Rates (A Methodological Evaluation).

    PubMed Central

    Peters, W. S.; Bernstein, N.

    1997-01-01

    Relative elemental growth rate (REGR) profiles describe spatial patterns of growth intensity; they are indispensable for causal growth analyses. Published methods of REGR profile determination from marking experiments fall in two classes: the profile is either described by a series of segmental growth rates, or calculated as the slope of a function describing the displacement velocities of points along the organ. The latter technique is usually considered superior for theoretical reasons, but to our knowledge, no comparative methodological study of the two approaches is currently available. We formulated a model REGR profile that resembles those reported from primary roots. We established the displacement velocity profile and derived growth trajectories, which enabled us to perform hypothetical marking experiments on the model with varying spacing of marks and durations of measurement. REGR profiles were determined from these data by alternative methods, and results were compared to the original profile. We find that with our model plotting of segmental relative growth rates versus segment position provides exact REGR profile estimations, if the initial segment length is less than 10% of the length of the whole growing zone, and if less than 20% of the growing zone is displaced past its boundary during the measurement. Based on our analysis, we discuss systematic errors that occur in marking experiments. PMID:12223680

  5. Alpha Virginis: line-profile variations and orbital elements

    NASA Astrophysics Data System (ADS)

    Harrington, David; Koenigsberger, Gloria; Olguín, Enrique; Ilyin, Ilya; Berdyugina, Svetlana V.; Lara, Bruno; Moreno, Edmundo

    2016-05-01

    Context. Alpha Virginis (Spica) is a B-type binary system whose proximity and brightness allow detailed investigations of the internal structure and evolution of stars undergoing time-variable tidal interactions. Previous studies have led to the conclusion that the internal structure of Spica's primary star may be more centrally condensed than predicted by theoretical models of single stars, raising the possibility that the interactions could lead to effects that are currently neglected in structure and evolution calculations. The key parameters in confirming this result are the values of the orbital eccentricity e, the apsidal period U, and the primary star's radius, R1. Aims: The aim of this paper is to analyze the impact that Spica's line profile variability has on the derivation of its orbital elements and to explore the use of the variability for constraining R1. Methods: We use high signal-to-noise and high spectral resolution observations obtained in 2000, 2008, and 2013 to derive the orbital elements from fits to the radial velocity curves. We produce synthetic line profiles using an ab initio tidal interaction model. Results: The general variations in the line profiles can be understood in terms of the tidal flows, whose large-scale structure is relatively fixed in the rotating binary system reference frame. Fits to the radial velocity curves yield e = 0.108 ± 0.014. However, the analogous RV curves from theoretical line profiles indicate that the distortion in the lines causes the fitted value of e to depend on the argument of periastron; i.e., on the epoch of observation. As a result, the actual value of e may be as high as 0.125. We find that U = 117.9 ± 1.8, which is in agreement with previous determinations. Using the value R1 = 6.8 R⊙ derived by Palate et al. (2013) the value of the observational internal structure constant k2,obs is consistent with theory. We confirm the presence of variability in the line profiles of the secondary star. RV

  6. Trace element depth profiles in presolar silicon carbide grains

    NASA Astrophysics Data System (ADS)

    King, Ashley J.; Henkel, Torsten; Rost, Detlef; Lyon, Ian C.

    2012-10-01

    We have analyzed eleven presolar SiC grains from the Murchison meteorite using time-of-flight secondary ion mass spectrometry. The Si isotopic compositions of the grains indicate that they are probably of an AGB star origin. The average abundances of Mg, Fe, Ca, Al, Ti, and V are strongly influenced by their condensation behavior into SiC in circumstellar environments. Depth profiles of Li, B, Mg, Al, K, Ca, Ti, V, Cr, and Fe in the SiC grains show that trace elements are not always homogenously distributed. In approximately half of the SiC grains studied here, the trace element distributions can be explained by condensation processes around the grains' parent stars. These grains appear to have experienced only minimal processing before their arrival in the presolar molecular cloud, possibly due to short residence times in the interstellar medium. The remaining SiC grains contained elevated abundances of several elements within their outer 200 nm, which is attributed to the implantation of energetic ions accelerated by shockwaves in the interstellar medium. These grains may have spent a longer period of time in this region, hence increasing the probability of them passing through a shockfront. Distinct groups of presolar SiC grains whose residence times in the interstellar medium differ are consistent with previous findings based on noble gas studies, although some grains may also have been shielded from secondary alteration by protective outer mantles.

  7. Spectrograph Measures Contamination Of Optical Elements

    NASA Technical Reports Server (NTRS)

    Flint, Bruce K.; Fancy, Robert D.; Jarratt, Robert V., Jr.

    1989-01-01

    Scanning-monochromator spectrograph designed to measure contamination on surfaces of optical elements as function of time. Repeatedly exposes samples to environment, then measures their transmittances or reflectances over range of wavelengths. Intended for use at vacuum-ultraviolet wavelengths to evaluate effects of outgassing, heating, and cooling on optical instruments. Principle of operation also applicable to spectral monitoring of time-dependent contamination at other wavelengths and in laboratory, industrial, or other settings.

  8. Complete Subsurface Elemental Composition Measurements With PING

    NASA Technical Reports Server (NTRS)

    Parsons, A. M.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars as well as any other solid planetary body. PING can thus be a highly effective tool for both detailed local geochemistry science investigations and precision measurements of Mars subsurface reSOurces in preparation for future human exploration. As such, PING is thus fully capable of meeting a majority of both ncar and far term elements in Challenge #1 presented for this conference. Measuring the ncar subsurface composition of Mars will enable many of the MEPAG science goals and will be key to filling an important Strategic Knowledge Gap with regard to In situ Resources Utilization (ISRU) needs for human exploration. [1, 2] PING will thus fill an important niche in the Mars Exploration Program.

  9. AMS method for depth profiling of trace elements concentration in materials - Construction and applications

    NASA Astrophysics Data System (ADS)

    Stan-Sion, C.; Enachescu, M.

    2015-10-01

    The need to investigate the behavior of solid state materials on the impact/retention/repulsion/contamination/impregnation with special trace elements or radioactive elements has driven us to develop a modified Accelerator Mass Spectrometry (AMS) analyzing method that is able to perform the measurement of the concentration depth profile of an element in a host material. This upgraded method that we call AMS-depth profiling method (AMS-DP) measures continuously the concentration of a trace element in a given sample material as a function of the depth from the surface (e.g., tritium in carbon, deuterium in tungsten, etc.). However, in order to perform depth profiling, common AMS facilities have to undergo several changes: a new replaceable sample target-holder has to be constructed to accept small plates of solid material as samples; their position has to be adjusted in the focus point of the sputter beam; crater rim effects of the produced hole in the sample have to be avoided or removed from the registered events in the detector; suitable reference samples have to be prepared and used for calibration. All procedures are presented in the paper together with several applications.

  10. Eddy current measurement of tube element spacing

    DOEpatents

    Latham, Wayne Meredith; Hancock, Jimmy Wade; Grut, Jayne Marie

    1998-01-01

    A method of electromagnetically measuring the distance between adjacent tube elements in a heat exchanger. A cylindrical, high magnetic permeability ferrite slug is placed in the tube adjacent the spacing to be measured. A bobbin or annular coil type probe operated in the absolute mode is inserted into a second tube adjacent the spacing to be measured. From prior calibrations on the response of the eddy current coil, the signals from the coil, when sensing the presence of the ferrite slug, are used to determine the spacing between the tubes.

  11. Advanced interferometric profile measurements through refractive media

    SciTech Connect

    Koev, Stephan T.; Ghodssi, Reza

    2008-09-15

    Optical profilers are valuable tools for the characterization of microelectromechanical systems (MEMSs). They use phase sifting interferometry (PSI) or vertical scanning interferometry to measure the topography of microscale structures with nanometer resolution. However, for many emerging MEMS applications, the sample needs to be imaged while placed in a liquid or in a package with a glass window. The increased refractive index of the transparent medium degrades the interference image contrast and prevents any measurement of the sample. We report on the modification of a Veeco NT1100 optical profiler to enable PSI measurements through refractive media. This approach can be applied to any other optical profiler with PSI capability. The modification consists in replacing the original illumination source with a custom-built narrow linewidth source, which increases the coherence length of the light and the contrast of the interference image. We present measurements taken with the modified configuration on samples covered with 3 mm water or 500 {mu}m glass, and we compare them to measurements of uncovered samples. We show that the measurement precision is only slightly reduced by the water and glass, and that it is still sufficiently high for typical MEMS applications. The described method can be readily used for measuring through other types and thicknesses of refractive materials.

  12. Apparatus for laser beam profile measurements

    DOEpatents

    Barnes, N.P.; Gettemy, D.J.

    1985-01-30

    Apparatus for measuring the spatial intensity profile of the output beam from a continuous-wave laser oscillator. The rapid and repetitive passing of a small aperture through the otherwise totally blocked output beam of the laser under investigation provides an easily interpretable, real-time measure of the intensity characteristics thereof when detected by a single detector and the signal generated thereby displayed on an oscilloscope synthronized to the motion of the aperture.

  13. Developing of in-suit long trance profiler for testing slope error of aspherical optical elements

    NASA Astrophysics Data System (ADS)

    Zhou, Changxin; Li, Hengshun; Chen, Chukang; Zhou, Chengzhi

    2005-12-01

    Profile error of super smooth surface of optical elements at x-ray/EUV in synchrotron radiation (SR) light beam line is described as slope error of them generally. The Long Trace Profiler (LPT) is used for testing surface slope error of SR optical elements in world generally. It is requisite to use In-suit LTP measuring surface thermal distortion of SR optical elements with high heat under high bright SR source. Authors design an In-suit LTP by means of co-path interferometer with pencil light beam. The instrument not only can be used for testing slope error of mirrors in Lab. also in situation test the distortion of mirror with high heat load at synchrotron light beam line. The device can be used to test various absolute surface figures of optical elements such as aspherieal, spherical and plane. It is needless standard reference surface. It is named by LTP-III. This paper describes its basic operating principle, optical system, mechanical constructions, DC serve motor control system, array detector, data acquisition system and computer system for controlling and data analysis of LTP-III. The Instrument has advantages of high accuracy, low cost, multifunction and wide application. Length of surface measured of optical element accuracy is 0.04 arcsec.

  14. Optical dissector for longitudinal beam profile measurement

    NASA Astrophysics Data System (ADS)

    Zinin, E. I.; Meshkov, O. I.

    2015-10-01

    Experimental study of beam profile dynamics at circular accelerator was carried out due to creation of the sources of synchrotron radiation and colliders, at which the beam consists of several tens or hundreds of bunches distributed over the separatrices. Dynamics of a longitudinal profile of separate bunches was studied by means of streak cameras, however, they are not applied for regular, permanent diagnostics unlike beam position monitors or CCD cameras Streak cameras are very good for study of single processes, not for routine accelerator performance. BINP SB RAS has developed the optical analyzer on the basis of LI-602 dissector which was used for studying the beam dynamics at VEPP-2, VEPP-3, VEPP-4, electron-positron colliders and other electron circular accelerators: Siberia-2, ESRF, etc The dissector provides permanent measurements of the longitudinal beam profile. Nevertheless, the ultimate temporal resolution of the device is about 20 picoseconds Now it is not enough for application at modern accelerators. In this paper we describe the first experimental results obtained with the dissector of the next generation. The measured technical resolution of this device is about 2 picoseconds, but we believe that this value can be improved.

  15. Noncontact vibration measurements using magnetoresistive sensing elements

    NASA Astrophysics Data System (ADS)

    Tomassini, R.; Rossi, G.

    2016-06-01

    Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.

  16. Comparative Finite Element Method Analysis of Spiroid Worm Gear Drives Having Arched Profile and Having Linear Profile in Axial Section

    NASA Astrophysics Data System (ADS)

    Bodzás, Sándor; Dudás, Illés

    2014-12-01

    With the knowledge of the advantageous characteristics of the cylindrical worm gear drives having arched profile in axial section and the conical worm gear drives having linear profile in axial section, a new geometric type conical worm gear drive has been designed and then manufactured, that is the conical worm gear drive having arched profile in axial section. Beside similar charging and marginal conditions in case of the same geometric spiroid worm gear drives having arched profile and having linear profile in axial section we have done comparative finite element method analysis for awarding of the strains, deformations and stresses of this gear drives.

  17. BOREAS RSS-17 Dielectric Constant Profile Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); McDonald, Kyle C.; Zimmerman, Reiner; Way, JoBea

    2000-01-01

    The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  18. Longitudinal bunch profile measurements with striplines

    SciTech Connect

    Kramer, S.L.

    1992-01-01

    Striplines beam position monitors are normally considered low frequency devices with at best an octave bandwidth. Some attempts to make them very high frequency and broadband have led to long and complicated tapered construction. However, conventional uniform coupling striplines can provide very high frequency and broadband response, if the downstream induced signal is gated out electronically. In this case, the leading edge beam signal can provide bunch length and even current profile information for bunch lengths shorter than the length of the stripline. Recent improvement in transient digitizers have made these measurements possible for accelerator operations. Measurements of bunch lengths down to 50 psec are results are presented. Improvements to striplines and measurement systems are discussed, that could lead to bunch length resolutions {approx} 10 psec.

  19. Longitudinal bunch profile measurements with striplines

    SciTech Connect

    Kramer, S.L.

    1992-05-01

    Striplines beam position monitors are normally considered low frequency devices with at best an octave bandwidth. Some attempts to make them very high frequency and broadband have led to long and complicated tapered construction. However, conventional uniform coupling striplines can provide very high frequency and broadband response, if the downstream induced signal is gated out electronically. In this case, the leading edge beam signal can provide bunch length and even current profile information for bunch lengths shorter than the length of the stripline. Recent improvement in transient digitizers have made these measurements possible for accelerator operations. Measurements of bunch lengths down to 50 psec are results are presented. Improvements to striplines and measurement systems are discussed, that could lead to bunch length resolutions {approx} 10 psec.

  20. Prediction of transposable element derived enhancers using chromatin modification profiles.

    PubMed

    Huda, Ahsan; Tyagi, Eishita; Mariño-Ramírez, Leonardo; Bowen, Nathan J; Jjingo, Daudi; Jordan, I King

    2011-01-01

    Experimentally characterized enhancer regions have previously been shown to display specific patterns of enrichment for several different histone modifications. We modelled these enhancer chromatin profiles in the human genome and used them to guide the search for novel enhancers derived from transposable element (TE) sequences. To do this, a computational approach was taken to analyze the genome-wide histone modification landscape characterized by the ENCODE project in two human hematopoietic cell types, GM12878 and K562. We predicted the locations of 2,107 and 1,448 TE-derived enhancers in the GM12878 and K562 cell lines respectively. A vast majority of these putative enhancers are unique to each cell line; only 3.5% of the TE-derived enhancers are shared between the two. We evaluated the functional effect of TE-derived enhancers by associating them with the cell-type specific expression of nearby genes, and found that the number of TE-derived enhancers is strongly positively correlated with the expression of nearby genes in each cell line. Furthermore, genes that are differentially expressed between the two cell lines also possess a divergent number of TE-derived enhancers in their vicinity. As such, genes that are up-regulated in the GM12878 cell line and down-regulated in K562 have significantly more TE-derived enhancers in their vicinity in the GM12878 cell line and vice versa. These data indicate that human TE-derived sequences are likely to be involved in regulating cell-type specific gene expression on a broad scale and suggest that the enhancer activity of TE-derived sequences is mediated by epigenetic regulatory mechanisms. PMID:22087331

  1. Brief communication "Snow profile associated measurements (SPAM) - a new instrument for quick snow profile measurements"

    NASA Astrophysics Data System (ADS)

    Lahtinen, P.

    2011-06-01

    A new instrument concept (SPAM) for snow profile associated measurements is presented. The potential of the concept is demonstrated by presenting preliminary results obtained with the prototype instrument. With this concept it is possible to retrieve rapid snow profiles of e.g. light extinction, reflectance, temperature and snow layer structure with high vertical resolution. As a side-product, also snow depth is retrieved.

  2. An Analysis of the Automated Meteorological Profiling System Low Resolution Flight Element

    NASA Technical Reports Server (NTRS)

    Leahy, Frank B.; Overbey, B. Glenn

    2003-01-01

    A study was conducted to determine the quality of thermodynamic and wind data measured by or derived from the Low Resolution Flight Element (LRFE) of the Automated Meteorological Profiling System (AMPS). The AMPS LRFE replaced the Meteorological Sounding System (MSS), which was used to provide vertical profiles of thermodynamic and low-resolution wind data in support of spacecraft launch operations at the Cape Canaveral Air Force Station (CCAFS) and NASA Kennedy Space Center (KSC), Florida. Air temperature, relative humidity, and height, which are directly measured by the LRFE, are used to derive air pressure and density. Test flights were conducted where an LRFE sonde and an MSS sonde were attached to the same balloon and the two profiles were compared. MSS data was used as the standard reference data. The objective of the thermodynamic testing was to determine a) if the LRFE met Space Shuttle Program (SSP) accuracy requirements outlined in the Space Shuttle Launch and Landing Program Requirements Document (PRD) and/or, b) if the LRFE met or exceeded MSS data quality. AMPS uses the Global Positioning System (GPS) to determine wind speed and direction. In order to provide a basis for comparison, either an AMPS High Resolution Flight Element (HRFE) or a radar tracked Jimsphere was released simultaneously with each AMPS LRFE at CCAFS. The goal of these tests was to determine if the LRFE wind data met the requirement for low-resolution wind data defined in the Shuttle PRD. Based on the available data, the LRFE is shown to produce more consistent thermodynamic measurements than the MSS. The LRFE is also shown to meet the Shuttle PRD requirements for low resolution wind data.

  3. Measurement of inner and/or outer profiles of pipes using ring beam devices

    NASA Astrophysics Data System (ADS)

    Wakayama, T.; Yoshizawa, T.

    2009-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and industry. Here we propose a measurement method for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without any contact probe. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In the hitherto-tried experimental works, the availability of this instrument has been highly evaluated and usability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disklike light beam sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument. Both the ring beam device and a miniaturized CCD camera are fabricated in a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose an improved method for measuring the external profile in addition to the internal profile. In our arrangement, one pair of concaved conical mirrors is used for the external profile measurement. In combination with the inner profile measurement technique, simultaneous measurement of the inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of newly proposed principle. Now we are aiming to realize simultaneous measurement of the internal

  4. Source Attribution of Cyanides Using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics.

    PubMed

    Mirjankar, Nikhil S; Fraga, Carlos G; Carman, April J; Moran, James J

    2016-02-01

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs), such as cyanides, are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. Herein, stocks of KCN and NaCN were analyzed for trace anions by high performance ion chromatography (HPIC), carbon stable isotope ratio (δ(13)C) by isotope ratio mass spectrometry (IRMS), and trace elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). The collected analytical data were evaluated using hierarchical cluster analysis (HCA), Fisher-ratio (F-ratio), interval partial least-squares (iPLS), genetic algorithm-based partial least-squares (GAPLS), partial least-squares discriminant analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminant analysis (SVMDA). HCA of anion impurity profiles from multiple cyanide stocks from six reported countries of origin resulted in cyanide samples clustering into three groups, independent of the associated alkali metal (K or Na). The three groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries each having one known solid cyanide factory: Czech Republic, Germany, and United States. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). Classification errors for two validation studies using anion impurity profiles collected over five years on different instruments were as low as zero for KNN and SVMDA, demonstrating the excellent reliability associated with using anion impurities for matching a cyanide sample to its factory using our current cyanide stocks. Variable selection methods reduced errors for those classification methods having errors greater than zero; iPLS-forward selection and F-ratio typically provided the lowest errors. Finally, using anion profiles to classify cyanides to a specific stock

  5. Connectivity Measures in EEG Microstructural Sleep Elements

    PubMed Central

    Sakellariou, Dimitris; Koupparis, Andreas M.; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K.

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element connectivity” methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the

  6. A Comparison of the Automated Meteorological Profiling System High Resolution Flight Element to the Kennedy Space Center 50 MHz Doppler Wind Profiler

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank

    2000-01-01

    Wind profile measurement and the simulation of aerodynamic loads on a launch vehicle play an important role in determining launch capability and post launch assessment of the vehicle's performance. To date, all United States range certified wind profile measurement systems have been based on balloon tracking. Since the 1960's, the standard used by the National Aeronautics and Space Administration and the Air Force at the Cape Canaveral Air Station (CCAS) for detailed wind profile measurements has been the radar tracked, aerodynamically stabilized Jimsphere balloon system. Currently, the Air Force is nearing certification and operational implementation of the Automated Meteorological Profiling System (AMPS) at CCAS and Vandenburg Air Force Base (VAFB). AMPS uses the Global Positioning System for tracking the Jimsphere balloon. It is anticipated that the AMPS/Jimsphere, named the High Resolution Flight Element (HRFE), will have equivalent, or better resolution than the radar tracked Jimsphere, especially when the balloon is far downrange, at a low elevation angle. By the 1980's, the development of Doppler Wind Profilers (DWP) had become sufficiently advanced to justify an experimental measurement program at Kennedy Space Center (KSC). In 1989 a 50 MHz DWP was installed at KSC. In principal, the 50 MHz DWP has the capability to track the evolution of wind profile dynamics within 5 minutes of a launch. Because of fundamental differences in the measurement technique, there is a significant time and space differential between 50 MHz DWP and HRFE wind profiles. This paper describes a study to quantify these differences from a sample of 50 MHz DWP/HRFE pairs obtained during the AMPS certification test program.

  7. Measuring Sparticles with the Matrix Element

    SciTech Connect

    Alwall, Johan; Freitas, Ayres; Mattelaer, Olivier; /INFN, Rome3 /Rome III U. /Louvain U.

    2012-04-10

    We apply the Matrix Element Method (MEM) to mass determination of squark pair production with direct decay to quarks and LSP at the LHC, showing that simultaneous mass determination of squarks and LSP is possible. We furthermore propose methods for inclusion of QCD radiation effects in the MEM. The goal of the LHC at CERN, scheduled to start this year, is to discover new physics through deviations from the Standard Model (SM) predictions. After discovery of deviations from the SM, the next step will be classification of the new physics. An important first goal in this process will be establishing a mass spectrum of the new particles. One of the most challenging scenarios is pair-production of new particles which decay to invisible massive particles, giving missing energy signals. Many methods have been proposed for mass determination in such scenarios (for a recent list of references, see e.g. [1]). In this proceeding, we report the first steps in applying the Matrix Element Method (MEM) in the context of supersymmetric scenarios giving missing energy signals. After a quick review of the MEM, we will focus on squark pair production, a process where other mass determination techniques have difficulties to simultaneously determine the LSP and squark masses. Finally, we will introduce methods to extend the range of validity of the MEM, by taking into account initial state radiation (ISR) in the method.

  8. Elemental profile in amniotic fluid of some Nigerian pregnant women.

    PubMed

    Yahaya, M I; Ogunfowokan, A O; Orji, E O

    2011-06-01

    In this study concentration level of calcium, cadmium, copper, iron, magnesium, manganese, nickel, lead and zinc were determined in the amniotic fluid of pregnant women, aged 15 - 45 years enrolled at the Obafemi Awolowo University Teaching Hospitals Complex Ile - Ife. This was with a view to predict the body burden of the metals in the pregnant women and assess the health implications of the toxic elements to the pregnant women and their fetuses. Fifty samples of the amniotic fluid were collected from the pregnant women. The efficiency of extraction of trace metals using conventional wet acid digestion method (CDM) and microwave induced acid digestion method (MWD) was determined by recovery experiments. Levels of trace metals were determined using Atomic Absorption Spectrophotometry. The high percentage recoveries obtained from MWD made it a more efficient method than the CDM and hence its adoption for sample digestion. Statistical analysis of data using descriptive and inferential statistics revealed that age; education and profession have effects on the levels of the trace metals. The mean levels of most of the toxic metals obtained in this study were lower than the recommended limits of trace metals in women whole blood. PMID:22066293

  9. Isotopic and elemental profiling of ammonium nitrate in forensic explosives investigations.

    PubMed

    Brust, Hanneke; Koeberg, Mattijs; van der Heijden, Antoine; Wiarda, Wim; Mügler, Ines; Schrader, Marianne; Vivo-Truyols, Gabriel; Schoenmakers, Peter; van Asten, Arian

    2015-03-01

    Ammonium nitrate (AN) is frequently encountered in explosives in forensic casework. It is widely available as fertilizer and easy to implement in explosive devices, for example by mixing it with a fuel. Forensic profiling methods to determine whether material found on a crime scene and material retrieved from a suspect arise from the same source are becoming increasingly important. In this work, we have explored the possibility of using isotopic and elemental profiling to discriminate between different batches of AN. Variations within a production batch, between different batches from the same manufacturer, and between batches from different manufacturers were studied using a total of 103 samples from 19 different fertilizer manufacturers. Isotope-ratio mass spectrometry (IRMS) was used to analyze AN samples for their (15)N and (18)O isotopic composition. The trace-elemental composition of these samples was studied using inductively coupled plasma-mass spectrometry (ICP-MS). All samples were analyzed for the occurrence of 66 elements. 32 of these elements were useful for the differentiation of AN samples. These include magnesium (Mg), calcium (Ca), iron (Fe) and strontium (Sr). Samples with a similar elemental profile may be differentiated based on their isotopic composition. Linear discriminant analysis (LDA) was used to calculate likelihood ratios and demonstrated the power of combining elemental and isotopic profiling for discrimination between different sources of AN. PMID:25602642

  10. Measuring discharge with ADCPs: Inferences from synthetic velocity profiles

    USGS Publications Warehouse

    Rehmann, C.R.; Mueller, D.S.; Oberg, K.A.

    2009-01-01

    Synthetic velocity profiles are used to determine guidelines for sampling discharge with acoustic Doppler current profilers (ADCPs). The analysis allows the effects of instrument characteristics, sampling parameters, and properties of the flow to be studied systematically. For mid-section measurements, the averaging time required for a single profile measurement always exceeded the 40 s usually recommended for velocity measurements, and it increased with increasing sample interval and increasing time scale of the large eddies. Similarly, simulations of transect measurements show that discharge error decreases as the number of large eddies sampled increases. The simulations allow sampling criteria that account for the physics of the flow to be developed. ?? 2009 ASCE.

  11. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy.

    PubMed

    Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun

    2015-06-01

    Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties. PMID:25973714

  12. Precision measurement of transition matrix elements via light shift cancellation.

    PubMed

    Herold, C D; Vaidya, V D; Li, X; Rolston, S L; Porto, J V; Safronova, M S

    2012-12-14

    We present a method for accurate determination of atomic transition matrix elements at the 10(-3) level. Measurements of the ac Stark (light) shift around "magic-zero" wavelengths, where the light shift vanishes, provide precise constraints on the matrix elements. We make the first measurement of the 5s - 6p matrix elements in rubidium by measuring the light shift around the 421 and 423 nm zeros through diffraction of a condensate off a sequence of standing wave pulses. In conjunction with existing theoretical and experimental data, we find 0.3235(9)ea(0) and 0.5230(8)ea(0) for the 5s - 6p(1/2) and 5s - 6p(3/2) elements, respectively, an order of magnitude more accurate than the best theoretical values. This technique can provide needed, accurate matrix elements for many atoms, including those used in atomic clocks, tests of fundamental symmetries, and quantum information. PMID:23368314

  13. Measurement of the complex transmittance of large optical elements with Ptychographical Iterative Engine.

    PubMed

    Wang, Hai-Yan; Liu, Cheng; Veetil, Suhas P; Pan, Xing-Chen; Zhu, Jian-Qiang

    2014-01-27

    Wavefront control is a significant parameter in inertial confinement fusion (ICF). The complex transmittance of large optical elements which are often used in ICF is obtained by computing the phase difference of the illuminating and transmitting fields using Ptychographical Iterative Engine (PIE). This can accurately and effectively measure the transmittance of large optical elements with irregular surface profiles, which are otherwise not measurable using commonly used interferometric techniques due to a lack of standard reference plate. Experiments are done with a Continue Phase Plate (CPP) to illustrate the feasibility of this method. PMID:24515226

  14. Depth Profiles of Mg, Si, and Zn Implants in GaN by Trace Element Accelerator Mass Spectrometry

    SciTech Connect

    Ravi Prasad, G.V.; Pelicon, P.; Mitchell, L.J.; McDaniel, F.D.

    2003-08-26

    GaN is one of the most promising electronic materials for applications requiring high-power, high frequencies, or high-temperatures as well as opto-electronics in the blue to ultraviolet spectral region. We have recently measured depth profiles of Mg, Si, and Zn implants in GaN substrates by the TEAMS particle counting method for both matrix and trace elements, using a gas ionization chamber. Trace Element Accelerator Mass Spectrometry (TEAMS) is a combination of Secondary Ion Mass Spectrometry (SIMS) and Accelerator Mass Spectrometry (AMS) to measure trace elements at ppb levels. Negative ions from a SIMS like source are injected into a tandem accelerator. Molecular interferences inherent with the SIMS method are eliminated in the TEAMS method. Negative ion currents are extremely low with GaN as neither gallium nor nitrogen readily forms negative ions making the depth profile measurements more difficult. The energies of the measured ions are in the range of 4-8 MeV. A careful selection of mass/charge ratios of the detected ions combined with energy-loss behavior of the ions in the ionization chamber eliminated molecular interferences.

  15. Tropospheric Wind Profile Measurements with a Direct Detection Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Chen, Huailin; Mathur, Savyasachee

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. In this paper we describe a recently developed prototype wind lidar system using a direct detection Doppler technique for measuring wind profiles from the surface through the troposphere. This system uses a pulsed ND:YAG laser operating at 1064 nm as the transmitter. The laser pulse is directed to the atmosphere using a 40 cm diameter scan mirror. The portion of the laser energy backscattered from aerosols and molecules is collected by a 40 cm diameter telescope and coupled via fiber optics into the Doppler receiver. Single photon counting APD's are used to detect the atmospheric backscattered signal. The principle element of the receiver is a dual bandpass tunable Fabry Perot etalon which analyzes the Doppler shift of the incoming laser signal using the double edge technique. The double edge technique uses two high resolution optical filters having bandpasses offset relative to one another such that the 'edge' of the first filter's transmission function crosses that of the second at the half power point. The outgoing laser frequency is located approximately at the crossover point. Due to the opposite going slopes of the edges, a Doppler shift in the atmospheric backscattered laser frequency produces a positive change in signal for one filter and a negative change in the second filter. Taking the ratio of the two edge channel signals yields a result which is directly proportional to the

  16. Preschool Children's Performance on Profiling Elements of Prosody in Speech-Communication (PEPS-C)

    ERIC Educational Resources Information Center

    Gibbon, Fiona E.; Smyth, Heather

    2013-01-01

    Profiling Elements of Prosody in Speech-Communication (PEPS-C) has not been used widely to assess prosodic abilities of preschool children. This study was therefore aimed at investigating typically developing 4-year-olds' performance on PEPS-C. PEPS-C was presented to 30 typically developing 4-year-olds recruited in southern Ireland. Children were…

  17. Subsurface In Situ Elemental Composition Measurements with PING

    NASA Technical Reports Server (NTRS)

    Parsons, Ann; McClanahan, Timothy; Bodnarik, Julia; Evans, Larry; Nowicki, Suzanne; Schweitzer, Jeffrey; Starr, Richard

    2013-01-01

    This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.

  18. Measurement of stratospheric HOCl - Concentration profiles, including diurnal variation

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Johnson, D. G.; Traub, W. A.

    1989-01-01

    Determinations have been made of concentration profiles of HOCl in the earth's stratosphere, including the diurnal variation. Measurements of the rotational Q2 branch at 99.5/cm and of five RR(J3) transitions between 143 and 159/cm were made using far-infrared thermal emission spectroscopy. The spectra were obtained during a balloon flight of the FIRS 2 far-infrared Fourier-transform spectrometer and telescope from Palestine, Texas on May 12-13, 1988. From these measurements, altitude profiles of HOCl from 23 to 42 km are obtained. Daytime and nighttime average profiles of HOCl, as well as measurements on a 30-min time scale through the sunset transition at a single (35 km) altitude are presented. The measured profiles are lower than the current predictions from several modeling groups by a factor of approximately 0.6.

  19. A non-integral, axial-force measuring element

    NASA Astrophysics Data System (ADS)

    Ringel, M.; Levin, D.; Seginer, A.

    1989-10-01

    A new approach to the measurement of the axial force is presented. A nonintegral axial-force measuring element, housed within the wind-tunnel model, avoids the interactions that are caused by nonlinear elastic phenomena characteristic of integral balances. The new design overcomes other problems, such as friction, misalignment and relative motion between metric elements, that plagued previous attempts at separate measurement of the axial force. Calibration and test results prove the ability of the new approach to duplicate and even surpass the results of much more complicated and expensive integral balances. The advantages of the new design make it the best known solution for particular measurement problems.

  20. The effect of the disk magnetic element profile on the saturation field and noise of a magneto-modulation magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Vetoshko, P. M.; Zvezdin, A. K.; Skidanov, V. A.; Syvorotka, I. I.; Syvorotka, I. M.; Belotelov, V. I.

    2015-05-01

    Using the finite element method, it was shown by simulations that the approximation of a semielliptic thickness profile of magnetic disk by a stepped profile reduces the saturation field. Reducing the saturation field improves the sensitivity of magneto-modulation sensors, which is confirmed by experiments in the measurements of noise using magnetic field sensors that have a core with a stepped profile. The obtained level of magnetic sensor noise with a four-stage-core profile (1.5 × 10-9 Oe/Hz1/2) is more than an order of magnitude lower than in the known modern counterparts.

  1. The Retrieval of Ozone Profiles from Limb Scatter Measurements: Theory

    NASA Technical Reports Server (NTRS)

    Flittner, D. E.; Herman, B. M.; Bhartia, P. K.; McPeters, R. D.; Hilsenrath, E.

    1999-01-01

    An algorithm is presented for retrieving vertical profiles of O3 concentration using measurements of UV and visible light scattered from the limb of the atmosphere. The UV measurements provide information about the O3 profile in the upper and middle stratosphere, while only visible wavelengths are capable of probing the lower stratospheric O3 profile. Sensitivity to the underlying scene reflectance is greatly reduced by normalizing measurements at a tangent height high in the atmosphere (approximately 55 km), and relating measurements taken at lower altitudes to this normalization point. To decrease the effect of scattering by thin aerosols/clouds that may be present in the field of view, these normalized measurements are then combined by pairing wavelengths with strong and weak O3 absorption. We conclude that limb scatter can be used to measure O3 between 15 km and 50 km with 2-3 km vertical resolution and better than 10% accuracy.

  2. Modulatory role of vanadium on trace element profile in diethylnitrosamine-induced rat hepatocarcinogenesis

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Selvaraj, S.; Sudarshan, M.; Dutta, R. K.; Ghugre, S. S.; Chintalapudi, S. N.

    2000-09-01

    Particle-induced X-ray emission (PIXE) analysis was employed in the present study to investigate the chemopreventive potential of vanadium in influencing trace elemental profile and antioxidant status in chemical carcinogenesis. The elements with Z=15-40 were studied. Data reveal remarkable alterations in elemental composition in the hepatic tissue of diethylnitrosamine (DENA)-induced Sprague-Dawley male rats (intraperitoneal (ip) dose: 200 mg/kg body weight) after four weeks of induction. Several elements like Mn, Cu, Zn, Rb showed large depletion while other elements like Fe, Ca, K, Br showed large enhancement in comparison to that of the normal control animals. These elements compete for binding sites in the cell, change its enzymatic activity and exert direct or indirect action on the carcinogenic process. Supplementary vanadium (0.5 ppm ad libitum in drinking water) has shown effective modulation by alteration in the concentration of trace elements in the tumorigenic tissue ( P<0.001-0.005). Data reflect a definite correlation between elemental composition, antioxidant status in the initiation phase of carcinogenesis and the period of exposure to vanadium. The possibility of selecting vanadium as a therapeutic agent for chemoprevention is discussed in the light of its influence in maintaining trace elemental homeostasis, a parameter of importance in cancer prevention research.

  3. Profile measurement of aspheric surfaces using scanning deflectometry and rotating autocollimator with wide measuring range

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kyohei; Takamura, Tomohiko; Xiao, Muzheng; Takahashi, Satoru; Takamasu, Kiyoshi

    2014-06-01

    High-accuracy aspherical mirrors and lenses with large dimensions are widely used in large telescopes and other industry fields. However, the measurement methods for large aspherical optical surfaces are not well established. Scanning deflectometry is used for measuring optical signals near flat surfaces with uncertainties on subnanometer scales. A critical issue regarding scanning deflectometry is that high-accuracy autocollimators (AC) have narrow angular measuring ranges and are not suitable for measuring surfaces with large slopes and angular changes. The goal of our study is to measure the profile of large aspherical optical surfaces with an accuracy of approximately 10 nm. We have proposed a new method to measure optical surfaces with large aspherical dimensions and large angular changes by using a scanning deflectometry method. A rotating AC was used to increase the allowable measuring range. Error analysis showed that the rotating AC reduces the accuracy of the measurements. In this study, we developed a new AC with complementary metal-oxide semiconductor (CMOS) as a light-receiving element (CMOS-type AC). The CMOS-type AC can measure wider ranges of angular changes, with a maximum range of 21 500 µrad (4500 arcsec) and a stability (standard deviation) of 0.1 µrad (0.02 arcsec). We conducted an experiment to verify the effectivity of the wide measuring range AC by the measurement of a spherical mirror with a curvature radius of 500 mm. Furthermore, we conducted an experiment to measure an aspherical optical surface (an off-axis parabolic mirror) and found an angular change of 0.07 rad (4 arcdegrees). The repeatability (average standard deviation) for ten measurements of the off-axis parabolic mirror was less than 4 nm.

  4. Element Distribution in Silicon Refining: Thermodynamic Model and Industrial Measurements

    NASA Astrophysics Data System (ADS)

    Næss, Mari K.; Kero, Ida; Tranell, Gabriella; Tang, Kai; Tveit, Halvard

    2014-11-01

    To establish an overview of impurity elemental distribution among silicon, slag, and gas/fume in the refining process of metallurgical grade silicon (MG-Si), an industrial measurement campaign was performed at the Elkem Salten MG-Si plant in Norway. Samples of in- and outgoing mass streams, i.e., tapped Si, flux and cooling materials, refined Si, slag, and fume, were analyzed by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), with respect to 62 elements. The elemental distributions were calculated and the experimental data compared with equilibrium estimations based on commercial and proprietary, published databases and carried out using the ChemSheet software. The results are discussed in terms of boiling temperatures, vapor pressures, redox potentials, and activities of the elements. These model calculations indicate a need for expanded databases with more and reliable thermodynamic data for trace elements in general and fume constituents in particular.

  5. New radiosonde techniques to measure radiation profiles through the atmosphere

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Levrat, Gilbert

    2013-04-01

    Solar and thermal radiation fluxes are usually measured at Earth's surface and at the top of the atmosphere. Here we show radiosonde techniques that allow measuring radiation flux profiles and the radiation budget from the Earth's surface to above 30 km in the stratosphere. During two-hour flights solar shortwave and thermal longwave irradiance, downward and upward, is measured with four individual sensors at one-second resolution, along with standard PTU radiosonde profiles. Daytime and nighttime shortwave and longwave radiation measurements, and 24 hours surface measurements, allow determining radiation budget- and total net radiation profiles through the atmosphere. We use a double balloon technique to prevent pendulum motion during the ascent and to keep the sonde as horizontal as possible. New techniques using auto controlled airplanes are now investigated to retrieve the sonde after release at a certain altitude and to land it if possible at the launch station.

  6. Local Heat Flux Measurements with Single and Small Multi-element Coaxial Element-Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support NASA's Vision for Space Exploration mission, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines with regeneratively cooled chamber walls, as well as in small thrust chambers with few elements in the injector. In this program, single and three-element injectors were hot-fire tested with liquid oxygen and gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges, Injector configurations were tested with both shear coaxial elements and swirl coaxial elements. Both a straight and a scarfed single element swirl injector were tested. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three coaxial shear and swirl elements. Detailed geometry and test results the for shear coax elements has already been published. Detailed test result for the remaining 6 swirl coax element for the will be published in a future JANNAF presentation to provide well-defined data sets for development and model validation.

  7. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, David M.

    1982-01-01

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space). Using either of these two methods of determining burnup, one can reduce the required measurement time significantly (by more than an order of magnitude) over existing methods, yet retain equal or only slightly reduced accuracy.

  8. Overall elemental dry deposition velocities measured around Lake Michigan

    NASA Astrophysics Data System (ADS)

    Yi, Seung-Muk; Shahin, Usama; Sivadechathep, Jakkris; Sofuoglu, Sait C.; Holsen, Thomas M.

    Overall dry deposition velocities of several elements were determined by dividing measured fluxes by measured airborne concentrations in different particle size ranges. The dry deposition measurements were made with a smooth surrogate surface on an automated dry deposition sampler (Eagle II) and the ambient particle concentrations were measured with a dichotomous sampler. These long-term measurements were made in Chicago, IL, South Haven, MI, and Sleeping Bear Dunes, MI, from December 1993 through October 1995 as part of the Lake Michigan Mass Balance Study. In general, the dry deposition fluxes of elements were highly correlated with coarse particle concentrations, slightly less well correlated with total particle concentrations, and least well correlated with fine particle concentrations. The calculated overall dry deposition velocities obtained using coarse particle concentrations varied from approximately 12 cm s -1 for Mg in Chicago to 0.2 cm s -1 for some primarily anthropogenic metals at the more remote sites. The velocities calculated using total particle concentrations were slightly lower. The crustal elements (Mg, Al, and Mn) had higher deposition velocities than anthropogenic elements (V, Cr, Cu, Zn, Mo, Ba and Pb). For crustal elements, overall dry deposition velocities were higher in Chicago than at the other sites.

  9. Study on profile measurement of extruding tire tread by laser

    NASA Astrophysics Data System (ADS)

    Wang, LiangCai; Zhang, Wanping; Zhu, Weihu

    1996-10-01

    This paper presents a new 2D measuring system-profile measurement of extruding tire tread by laser. It includes the thickness measurement of extruding tire tread by laser and the width measurement of extruding tire tread using Moire Fringe. The system has been applied to process line of extruding tire tread. Two measuring results have been obtained. One is a standard profile picture of extruding tire tread including seven measuring values. Another one is a series of thickness and width values. When the scanning speed < 100mm/sec and total width < 800mm. The measuring errors of width < +/- 0.5mm. While the thickness range is < 40mm. The measuring errors of thickness < +/- 0.1mm.

  10. A new method for comparing and matching snow profiles, application for profiles measured by penetrometers

    NASA Astrophysics Data System (ADS)

    Hagenmuller, Pascal; Pilloix, Thibault

    2016-05-01

    Hardness has long been recognized as a good predictor of snow mechanical properties and therefore as an indicator of snowpack stability at the measured point. Portable digital penetrometers enable the amassing of a large number of snow stratigraphic hardness profiles. Numerous probings can be performed to assess the snowpack spatial variability and to compensate for measurement errors. On a decameter scale, continuous internal layers are typically present in the snowpack. The variability in stratigraphic features observed in the measurement set mainly originates from the measured variations in internal layer thickness due to either a real heterogeneity in the snowpack or to errors in depth measurement. For the purpose of real time analysis of snowpack stability, a great amount of data collected by digital penetrometers must be quickly synthesized into a characterization representative of the test site. This paper presents a method with which to match and combine several hardness profiles by automatically adjusting their layer thicknesses. The objectives are to synthesize the information collected by several profiles into one representative profile of the measurement set, disentangle information about hardness and depth variabilities, and quantitatively compare hardness profiles measured by different penetrometers. The method was tested by using co-located hardness profiles measured with three different penetrometers --- the snow micropenetrometer (SMP), the Avatech SP1 and the ramsonde --- during the winter 2014-2015 at two sites in the French Alps. When applied to the SMP profiles of both sites, the method reveals a low spatial variability of hardness properties, which is usually masked by depth variations. The developed algorithm is further used to evaluate the new portable penetrometer SP1. The hardness measured with this instrument is shown to be in good agreement with the SMP measurements, but errors in the recovered depth are notable, with a standard

  11. Development of an inner profile measurement instrument using a ring beam device

    NASA Astrophysics Data System (ADS)

    Yoshizawa, T.; Wakayama, T.

    2010-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and other industrial applications. Here we describe recent development of our measurement principle for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without using any contact type stylus. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In our hitherto trial experimental works, the availability of this instrument has been evaluated in many cases and availability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disk-like light sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument at this point. Both the ring beam device and a miniaturized CCD camera are fabricated into a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose potentially possible method for measurement of external profile at the same time with internal profile. If one pair of concave mirrors are used in our arrangement, external profile is captured. In combination with inner profile measurement technique, simultaneous measurement of inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of here proposed

  12. Void alignment and density profile applied to measuring cosmological parameters

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang

    2015-12-01

    We study the orientation and density profiles of the cosmological voids with Sloan Digital Sky Survey (SDSS; Ahn et al.) 10 data. Using voids to test Alcock-Paczynski effect has been proposed and tested in both simulations and actual SDSS data. Previous observations imply that there exist an empirical stretching factor which plays an important role in the voids' orientation. Simulations indicate that this empirical stretching factor is caused by the void galaxies' peculiar velocities. Recently Hamaus et al. found that voids' density profiles are universal and their average velocities satisfy linear theory very well. In this paper, we first confirm that the stretching effect exists using independent analysis. We then apply the universal density profile to measure the cosmological parameters. We find that the void density profile can be a tool to measure the cosmological parameters.

  13. Compact Instrument for Measuring Profile of a Light Beam

    NASA Technical Reports Server (NTRS)

    Papanyan, Valeri

    2004-01-01

    The beamviewer is an optical device designed to be attached to a charge-coupled-device (CCD) image detector for measuring the spatial distribution of intensity of a beam of light (the beam profile ) at a designated plane intersecting the beam. The beamviewer-and-CCD combination is particularly well suited for measuring the radiant- power profile (for a steady beam) or the radiant-energy profile (for a pulsed beam) impinging on the input face or emerging from the output face of a bundle of optical fibers. The beamviewer and-CCD combination could also be used as a general laboratory instrument for profiling light beams, including beams emerging through small holes and laser beams in free space.

  14. Edge profile measurements using Thomson scattering on the KSTAR tokamak

    SciTech Connect

    Lee, J. H. Ko, W. H.; Oh, S.; Lee, W. R.; Kim, K. P.; Lee, K. D.; Jeon, Y. M.; Yoon, S. W.; Cho, K. W.; Narihara, K.; Yamada, I.; Yasuhara, R.; Hatae, T.; Yatsuka, E.; Ono, T.; Hong, J. H.

    2014-11-15

    In the KSTAR Tokamak, a “Tangential Thomson Scattering” (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10–15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.

  15. Edge profile measurements using Thomson scattering on the KSTAR tokamak.

    PubMed

    Lee, J H; Oh, S; Lee, W R; Ko, W H; Kim, K P; Lee, K D; Jeon, Y M; Yoon, S W; Cho, K W; Narihara, K; Yamada, I; Yasuhara, R; Hatae, T; Yatsuka, E; Ono, T; Hong, J H

    2014-11-01

    In the KSTAR Tokamak, a "Tangential Thomson Scattering" (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10-15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper. PMID:25430170

  16. A very high sensitivity RF pulse profile measurement system.

    SciTech Connect

    Christodoulou, Christos George; Lai, Jesse B.

    2009-06-01

    A technique for characterizing the pulse profile of a radio-frequency (RF) amplifier over a very wide power range under fast-pulsing conditions is presented. A pulse-modulated transmitter is used to drive a device under test (DUT) with a phase-coded signal that allows for an increased measurement range beyond standard techniques. A measurement receiver that samples points on the output pulse power profile and performs the necessary signal processing and coherent pulse integration, improving the detectability of low-power signals, is described. The measurement technique is applied to two sample amplifiers under fast-pulsing conditions with a pulsewidth of 250 ns at 3-GHz carrier frequency. A full measurement range of greater than 160 dB is achieved, extending the current state of the art in pulse-profiling techniques.

  17. Acoustic temperature profile measurement technique for large combustion chambers

    SciTech Connect

    Venkateshan, S. P.; Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1989-05-01

    Measurement of times of flight of sound waves can be used to determinetemperatures in a gas. This paper describes a system, based on this principle,that is capable of giving the temperature profile in a nonisothermal gasvolume, for example, prevalent in a large furnace. The apparatus is simple,rugged, accurate, and capable of being automated for process controlapplications. It is basically an acoustic waveguide where the outsidetemperature profile is tranferred to a chosen gas contained inside theguide.

  18. Acoustic temperature profile measurement technique for large combustion chambers

    NASA Technical Reports Server (NTRS)

    Venkateshan, S. P.; Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1989-01-01

    Measurement of times of flight of sound waves can be used to determine temperatures in a gas. This paper describes a system, based on this principle, that is capable of giving the temperature profile in a nonisothermal gas volume, for example, prevalent in a large furnace. The apparatus is simple, rugged, accurate, and capable of being automated for process control applications. It is basically an acoustic waveguide where the outside temperature profile is transferred to a chosen gas contained inside the guide.

  19. Measured atomic ground-state polarizabilities of 35 metallic elements

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Indergaard, John; Zhang, Baiqian; Larkin, Ilia; Moro, Ramiro; de Heer, Walt A.

    2015-01-01

    Advanced pulsed cryogenic molecular-beam electric deflection methods involving position-sensitive mass spectrometry and 7.87-eV ionizing radiation were used to measure the polarizabilities of more than half of the metallic elements in the Periodic Table. Concurrent Stern-Gerlach deflection measurements verified the ground-state condition of the measured atoms. Comparison with state-of-the-art calculations exposes significant systematic and isolated discrepancies throughout the Periodic Table.

  20. Vertical NO2 Profile measurements in Hong Kong using DOAS

    NASA Astrophysics Data System (ADS)

    Wenig, Mark; Bräu, Melanie; Zhu, Ying; Lipkowitsch, Ivo; Röttger, Clemens; Fat Lam, Yun

    2016-04-01

    In this presentation we describe our first measurements of vertical NO2 distributions in a street canyon in Hong Kong using different DOAS techniques. One approach is to use mobile cavity-enhanced DOAS (CE-DOAS) measurements on different floors of a high rise building to assemble a profile. In addition to this we use a ToTaL-DOAS (Topographic Target Light Scattering DOAS) approach to measure vertical and horizontal distributions of NO2 SCDs of the Hong Kong skyline including the building we used for the CE-DOAS measurements. As a third option to generate profile information, we use data from the Hong Kong Environmental Protection department (EPD) measurement stations. Each measurement location is at a different height and we used a concentration map we assembled using mobile CE-DOAS measurements which again had been corrected for diurnal variations using a continuously measuring LP-DOAS for horizontal extrapolation. We compare parameterized profiles from those three different methods and discuss how profile information can be used to make urban air quality monitoring more comparable.

  1. Absolute beam emittance measurements at RHIC using ionization profile monitors

    SciTech Connect

    Minty, M.; Connolly, R; Liu, C.; Summers, T.; Tepikian, S.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  2. Measurement of the first ionization potential of lawrencium, element 103

    NASA Astrophysics Data System (ADS)

    Sato, T. K.; Asai, M.; Borschevsky, A.; Stora, T.; Sato, N.; Kaneya, Y.; Tsukada, K.; Düllmann, Ch. E.; Eberhardt, K.; Eliav, E.; Ichikawa, S.; Kaldor, U.; Kratz, J. V.; Miyashita, S.; Nagame, Y.; Ooe, K.; Osa, A.; Renisch, D.; Runke, J.; Schädel, M.; Thörle-Pospiech, P.; Toyoshima, A.; Trautmann, N.

    2015-04-01

    The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row--including the actinides--even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time. Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is electronvolts. The IP1 of Lr was measured with 256Lr (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale.

  3. Measurement of the first ionization potential of lawrencium, element 103.

    PubMed

    Sato, T K; Asai, M; Borschevsky, A; Stora, T; Sato, N; Kaneya, Y; Tsukada, K; Düllmann, Ch E; Eberhardt, K; Eliav, E; Ichikawa, S; Kaldor, U; Kratz, J V; Miyashita, S; Nagame, Y; Ooe, K; Osa, A; Renisch, D; Runke, J; Schädel, M; Thörle-Pospiech, P; Toyoshima, A; Trautmann, N

    2015-04-01

    The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row--including the actinides--even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time. Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is 4.96(+0.08)(-0.07) electronvolts. The IP1 of Lr was measured with (256)Lr (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale. PMID:25855457

  4. Multi-element silicon detector for x-ray flux measurements

    SciTech Connect

    Thompson, A.C.; Goulding, F.S.; Sommer, H.A.; Walton, J.T.; Hughes, E.B.; Rolfe, J.; Zeman, H.D.

    1981-10-01

    A 30-element Si(Li) detector has been fabricated to measure the one-dimensional flux profile of 33 KeV x-rays from a synchrotron radiation beam. The device, which is fabricated from a single 39 mm x 15 mm silicon wafer, is a linear array of 0.9 mm x 7 mm elements with a 1 mm center-to-center spacing. It is 5 mm thick and when operated at room temperature has an average leakage current of 10 nA/element. The x-ray flux in each element is determined by measuring the current with a high quality operational amplifier followed by a current digitizer. This detector is being used to study the use of synchrotron radiation for non-invasive imaging of coronary arteries. The experiment uses the difference in the transmitted flux of a monochromatized x-ray beam above and below the iodine K-edge. Measurements have been made on plastic phantoms and on excised animal hearts with iodinated arteries. The images obtained indicate that a 256-element device with similar properties, but with 0.6 mm element spacing, will make a very effective detector for high-speed medical imaging.

  5. Measurement of neutral beam profiles at DIII-D

    SciTech Connect

    Chiu, H.

    1998-06-01

    The neutral beam systems of DIII-D, a National Fusion Facility at General Atomics, are used both for heating the plasma, and as tools for plasma diagnostics. The spatial distribution (profile) and energy of the beam is used in the absolute calibration of both the Charge Exchange Recombination (CER) and Motional Stark Effect (MSE) diagnostics. In the past, the beam spatial profile used in these calibrations was derived from beam divergence calculations and IR camera observations on the tokamak centerpost target tiles. Two experimental methods are now available to better determine the beam profile. In one method, the Doppler shifted D{sub {alpha}} light from the energetic neutrals are measured, and the full-width at half-maximum (FWHM) of the beam can be inferred from the measured divergence of the D{sub {alpha}} light intensity. The other method for determining the beam profile uses the temperature gradients measured by the thermocouples mounted on the calorimeter. A new iterative fitting routine for the measured thermocouple data has been developed to fit theoretical models on the dispersion of the beam. The results of both methods are compared, and used to provide a new experimental verification of the beam profile.

  6. Profile Measurement of Worn Acetabular Cup by Holographic Contouring

    NASA Astrophysics Data System (ADS)

    Kakunai, Satoshi; Sakamoto, Tohoru; Sakurai, Daisuke; Aota, Yuuki; Shelton, Julia

    Wear in a polyethylene acetabular cup is dependent on the history of the cup, namely on the sterilization treatment, initial mounting situation, the patient's lifestyle and length of time in vivo. Understanding wear patterns is essential in order to prevent inflammation and prosthesis failure. This study describes the profile measurement of a worn acetabular cup by holographic contouring, which can provide non-contact measurement over the entire visual field. Experiments were performed to verify the method, and measurements of cups worn in vivo were carried out. Cup profile was investigated using holograms obtained in three directions and changes in cup profile were evaluated using fringe patterns in which the interval range was adjusted from tens of microns to several millimeters.

  7. AC Circuit Measurements with a Differential Hall Element Magnetometer

    NASA Astrophysics Data System (ADS)

    Calkins, Matthew W.; Nicks, B. Scott; Quintero, Pedro A.; Meisel, Mark W.

    2013-03-01

    As the biomedical field grows, there is an increasing need to quickly and efficiently characterize more samples at room temperature. An automated magnetometer was commissioned to do these room temperature magnetic characterizations. This magnetometer, which is inspired by a Differential Hall Element Magnetometer,[2] uses two commercially available Hall elements wired in series. One Hall element measures the external magnetic field of a 9 T superconducting magnet and the other measures the same external field plus the field due to the magnetization of the sample that sits on top of the Hall element. The difference between these two Hall elements is taken while a linear stepper motor sweeps through the external magnetic field. The linear motor and data acquisition are controlled by a LabVIEW program. Recently, the system was outfitted for AC circuit measurements and these data will be compared to DC circuit data. In addition, the lowest signal to noise ratio will be found in order to deduce the smallest amount of sample needed to register an accurate coercive field. Supported by the NSF via NHMFL REU (DMR-0654118), a single investigator grant (DMR-1202033 to MWM) and by the UF Undergraduate Scholars Program.

  8. The assignment of velocity profiles in finite element simulations of pulsatile flow in arteries.

    PubMed

    Redaelli, A; Boschetti, F; Inzoli, F

    1997-05-01

    In this paper we present a new method for the assignment of pulsatile velocity profiles as input boundary conditions in finite element models of arteries. The method is based on the implementation of the analytical solution for developed pulsatile flow in a rigid straight tube. The analytical solution provides the fluid dynamics of the region upstream from the fluid domain to be investigated by means of the finite element approach. In standard fluid dynamics finite element applications, the inlet developed velocity profiles are achieved assuming velocity boundary conditions to be easily implementable-such as flat or parabolic velocity profiles-applied to a straight tube of appropriate length. The tube is attached to the inflow section of the original fluid domain so that the flow can develop fully. The comparison between the analytical solution and the traditional numerical approach indicates that the analytical solution has some advantages over the numerical one. Moreover, the results suggest that subroutine employment allows a consistent reduction in solving time especially for complex fluid dynamic model, and significantly decreases the storage and memory requirements for computations. PMID:9215485

  9. Trace element profiles in murine Lewis lung carcinoma by radioisotope-induced X-ray fluorescence.

    PubMed Central

    Frank, A. S.; Schauble, M. K.; Preiss, I. L.

    1986-01-01

    Trace element profiles of various body tissues and tumor were established during growth of the Lewis lung tumor (LLT) with the use of radioisotope-induced X-ray fluorescence (RIXRF) analysis. The LLT, a highly malignant experimental murine tumor, resembles its human counterpart, has a well-defined life cycle, and kills its host in 30 days. When compared with normal controls, Zn, Br, and Rb levels in lung, liver, and skeletal muscle and Zn and Sr levels in bone from tumor-bearing mice exhibited large fluctuations at critical points in the tumor life cycle. In addition, the 24-day primary tumor trace element profile resembled that of its tissue of origin, normal lung, and was quite different from other normal tissues studied. These findings indicate that trace element profiles may help in the diagnosis, staging, and monitoring of disease. RIXRF is an excellent technique for this purpose because it is sensitive and relatively nondestructive of samples and has multielement capabilities. Images Figure 1 p423-a PMID:3953767

  10. Acceleration of matrix element computations for precision measurements

    SciTech Connect

    Brandt, Oleg; Gutierrez, Gaston; Wang, M. H.L.S.; Ye, Zhenyu

    2014-11-25

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. We then utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.

  11. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  12. Some measurements for determining strangeness matrix elements in the nucleon

    SciTech Connect

    Henley, E.M.; Pollock, S.J.; Ying, S. ); Frederico, T. , Sao Jose dos Campos, SP . Inst. de Estudos Avancados); Krein, . Inst. de Fisica Teorica); Williams, A.G. )

    1991-01-01

    Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.

  13. Some measurements for determining strangeness matrix elements in the nucleon

    SciTech Connect

    Henley, E.M.; Pollock, S.J.; Ying, S.; Frederico, T.; Krein,; Williams, A.G.

    1991-12-31

    Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.

  14. Incorporating Perceived Importance of Service Elements into Client Satisfaction Measures

    ERIC Educational Resources Information Center

    Hsieh, Chang-Ming

    2012-01-01

    Objective: The purpose of this study was to assess the need for incorporating perceived importance of service elements into client satisfaction measures. Method: A secondary analysis of client satisfaction data from 112 clients of an elderly case management setting was conducted. Results: This study found that the relationship between global…

  15. Numerical simulation of thermal boundary layer profile measurement

    NASA Astrophysics Data System (ADS)

    Kulkarni, K. S.; Han, S.; Goldstein, R. J.

    2011-08-01

    Heat transfer rates from a surface can be determined from the slope of the temperature profile measured with a thermocouple wire traversing within a boundary layer. However, accuracy of such measurement can suffer due to flow distortion and conduction through the thermocouple wire. The present numerical study consists of two parts—a 2D simulation of flow distortion due to a cylinder in cross flow near a solid wall and a 3D simulation defined as a fin problem to calculate the thermal profile measurement error due to conduction through the thermocouple wires. Results show that the measured temperature is lower than the true temperature resulting in a 5% under-prediction of local heat transfer coefficient. A parametric study shows that low thermal conductivity thermocouple (E type) with a small wire diameter (76 micron) is desirable to reduce the measurement error in local Nusselt number.

  16. Trace element profiles of the sea anemone Anemonia viridis living nearby a natural CO2 vent

    PubMed Central

    Borell, Esther M.; Fine, Maoz; Shaked, Yeala

    2014-01-01

    Ocean acidification (OA) is not an isolated threat, but acts in concert with other impacts on ecosystems and species. Coastal marine invertebrates will have to face the synergistic interactions of OA with other global and local stressors. One local factor, common in coastal environments, is trace element contamination. CO2 vent sites are extensively studied in the context of OA and are often considered analogous to the oceans in the next few decades. The CO2 vent found at Levante Bay (Vulcano, NE Sicily, Italy) also releases high concentrations of trace elements to its surrounding seawater, and is therefore a unique site to examine the effects of long-term exposure of nearby organisms to high pCO2 and trace element enrichment in situ. The sea anemone Anemonia viridis is prevalent next to the Vulcano vent and does not show signs of trace element poisoning/stress. The aim of our study was to compare A. viridis trace element profiles and compartmentalization between high pCO2 and control environments. Rather than examining whole anemone tissue, we analyzed two different body compartments—the pedal disc and the tentacles, and also examined the distribution of trace elements in the tentacles between the animal and the symbiotic algae. We found dramatic changes in trace element tissue concentrations between the high pCO2/high trace element and control sites, with strong accumulation of iron, lead, copper and cobalt, but decreased concentrations of cadmium, zinc and arsenic proximate to the vent. The pedal disc contained substantially more trace elements than the anemone’s tentacles, suggesting the pedal disc may serve as a detoxification/storage site for excess trace elements. Within the tentacles, the various trace elements displayed different partitioning patterns between animal tissue and algal symbionts. At both sites iron was found primarily in the algae, whereas cadmium, zinc and arsenic were primarily found in the animal tissue. Our data suggests that A

  17. Measuring Elemental Abundances in Impulsive Heating Events with EIS

    NASA Astrophysics Data System (ADS)

    Warren, Harry; Doschek, George A.; Young, Peter

    2015-04-01

    It is well established that elemental abundances vary in the solar atmosphere and that this variation is organized by first ionization potential (FIP). Previous studies have indicated that in the solar corona low FIP elements, such as Fe, Si, and Mg, are enriched relative to high FIP elements, such as H, He, C, N, and O. In this paper we report on measurements of plasma composition made during transient heating events observed at transition region temperatures with the Extreme Ultraviolet Imaging Spectrometer (EIS) on Hinode. During these events the intensities of O IV, V, and VI emission lines are enhanced relative to emission lines from Mg V, VI, and VII and indicate a composition close to that of the photosphere. Differential emission measure calculations show a broad distribution of temperatures in these events. Long-lived coronal structures, in contrast, show an enrichment of low FIP elements and relatively narrow temperature distributions. We conjecture that plasma composition is an important signature of the coronal heating process, with impulsive heating leading to the evaporation of unfractionated material from the lower layers of the solar atmosphere and higher frequency heating leading to the accumulation of low-FIP elements in the corona.

  18. Investigation on the Trace Elemental Profile of Sewage Workers in Kolkata, an Indian Megacity

    PubMed Central

    Basu, Rajlaxmi; Ram, Sidharth Sankar; Biswas, Arunnangshu; Ray, Siddhartha Sankar; Mukhopadhyay, Aniruddha; Chakraborty, Anindita; Mathummal, Sudarshan; Chakrabarti, Sila

    2015-01-01

    Background Environmental pollution has become a global health risk. Exposure to pollutants at the work place, i.e. occupational exposure, is one of the areas that need immediate attention. The civic drainage workers are exposed to pollutants present in the wastewater they handle and most of them are toxic heavy metals. Exposure to such pollutants may be a health hazard, since it can lead to the imbalance in nutrient elements status. Design and Methods In the present study, profiling of trace elements in the blood of drainage worker population from an Indian megacity, Kolkata, was carried out by energy dispersive x-ray fluorescence (EDXRF) and compared with the control group population of the same area. Results The elements detected by EDXRF spectrometry include P, S, Cl, K, Fe, Cu, Zn, Se, Br, and Rb. By using ANOVA with 5% significance level, we observed significant alterations in the trace elements status, iron over loading, selenium deficiency, and in Cu-Zn ratio. Gender specific variations within the same population were also observed. Conclusions The results indicate that the drainage workers have altered elemental profile in comparison to that of control population. Significance for public health Environmental pollution is a global health risk and awareness among sewage workers is growing very slowly in many developing countries. Due to this fact, workers are often exposed to different pollutants which are responsible for several health complications. Imbalances in the presence of trace elements in blood are a symptom of different health status and could also indicate new health perspectives for the future. In the present scenario, this paper is essential since this kind of analysis has not been done yet, especially regarding the health status of sewage workers. We hope this initial study will be a starting point for future investigations. PMID:26425493

  19. Modeling dune response using measured and equilibrium bathymetric profiles

    USGS Publications Warehouse

    Fauver, Laura A.; Thompson, David M.; Sallenger, Asbury H.

    2007-01-01

    Coastal engineers typically use numerical models such as SBEACH to predict coastal change due to extreme storms. SBEACH model inputs include pre-storm profiles, wave heights and periods, and water levels. This study focuses on the sensitivity of SBEACH to the details of pre-storm bathymetry. The SBEACH model is tested with two initial conditions for bathymetry, including (1) measured bathymetry from lidar, and (2) calculated equilibrium profiles. Results show that longshore variability in the predicted erosion signal is greater over measured bathymetric profiles, due to longshore variations in initial surf zone bathymetry. Additionally, patterns in predicted erosion can be partially explained by the configuration of the inner surf zone from the shoreline to the trough, with surf zone slope accounting for 67% of the variability in predicted erosion volumes.

  20. Direct mass measurements of the heaviest elements with Penning traps

    NASA Astrophysics Data System (ADS)

    Block, M.

    2015-12-01

    Penning-trap mass spectrometry (PTMS) is a mature technique to provide atomic masses with highest precision. Applied to radionuclides it enables us to investigate their nuclear structure via binding energies and derived quantities such as nucleon separation energies. Recent progress in slowing down radioactive ion beams in buffer gas cells in combination with advanced ion-manipulation techniques has opened the door to access even the elements above fermium by PTMS. Such elements are produced in complete fusion-evaporation reactions of heavy ions with lead, bismuth, and actinide targets at very low rates. Pioneering high-precision mass measurements of nobelium and lawrencium isotopes have been performed with SHIPTRAP at the GSI Darmstadt, Germany. These have illustrated that direct mass measurements provide reliable anchor points to pin down decay chains and that they allow mapping nuclear shell effects, the reason for the very existence of the heaviest elements. Thus, accurate masses contribute to our understanding of these exotic nuclei with extreme proton numbers. In this article experimental challenges in mass measurements of the heaviest elements with Penning traps are discussed. Some illustrative examples of the nuclear structure features displayed based on the presently known masses are given.

  1. Regularised finite element model updating using measured incomplete modal data

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Peng; Maung, Than Soe

    2014-10-01

    This paper presents an effective approach for directly updating finite element model from measured incomplete vibration modal data with regularised algorithms. The proposed method is based on the relationship between the perturbation of structural parameters such as stiffness change and the modal data measurements of the tested structure such as measured mode shape readings. In order to adjust structural parameters at detailed locations, structural updating parameters will be selected at critical point level to reflect the modelling errors at the connections of structural elements. These updating parameters are then evaluated by an iterative or a direct solution procedure, which gives optimised solutions in the least squares sense without requiring an optimisation technique. In order to reduce the influence of modal measurement uncertainty, the Tikhonov regularisation method incorporating the L-curve criterion is employed to produce reliable solutions for the chosen updating parameters. Numerical simulation investigations and experimental studies for the laboratory tested space steel frame structure are undertaken to verify the accuracy and effectiveness of the proposed methods for adjusting the stiffness at the joints of structural members. The results demonstrate that the proposed methods provide reliable estimates of finite element model updating using the measured incomplete modal data.

  2. A Comparison of Modeled Pollutant Profiles With MOZAIC Aircraft Measurements

    EPA Science Inventory

    In this study, we use measurements performed under the MOZAIC program to evaluate vertical profiles of meteorological parameters, CO, and ozone that were simulated for the year 2006 with several versions of the WRF/CMAQ modeling system. Model updates, including WRF nudging strate...

  3. Methods to obtain the waveform profile from slope measurements

    NASA Astrophysics Data System (ADS)

    Moreno, Alfonso; Espínola, Manuel; Martínez, José; Campos, Juan

    2013-04-01

    There are many optical metrological techniques to determine the profile of a surface or a wave-front. A group of them are based on the measurements of the profile slopes, like deflectometry or wave-front sensors. In both sensors, the profile is then obtained by integrating the gradient information provided by the measurements. The used integration method influences the quality of the obtained results. In this work we compare the performance of different bi-dimensional integration methods to obtain the profile from the slopes, and we propose some new methods. The first kind of methods is based on a path integral, in which the profile in a given point (x,y) is obtained by a 1D integral from (0,0) to (x,0) followed by a 1D integral from (x,0) to (x,y). The second kind of methods is based on finite differences, where the profile in a point is related with the profile in the neighbor points and the slopes of those points. On these methods different interpolations can be used. Finally, the third kind of methods is based on Fourier domain integration. Several simulation results are obtained to study the influence of several parameters: spatial frequency of the signal, local slope errors, random noise, and edge effects. Fourier domain methods could be considered as the gold standard, they suffer from edge effects because the signals are not periodic. Moreover they can only be applied when regular Cartesian sampling is used. Path integral methods create artifacts along the integration paths, when local errors are present. Finite difference methods are more versatile, and their accuracy depends on the used interpolation methods.

  4. Long range constant force profiling for measurement of engineering surfaces

    NASA Astrophysics Data System (ADS)

    Howard, L. P.; Smith, S. T.

    1992-10-01

    A new instrument bridging the gap between atomic force microscopes (AFMs) and stylus profiling instruments is described. The constant force profiler is capable of subnanometer resolution over a 15-μm vertical range with a horizontal traverse length of 50 mm. This long traverse length, coupled with the possibilities of utilizing standard radius, diamond measurement styli, make the force profiler more compatible with existing profiling instrument standards. The forces between the specimen and a diamond stylus tipped cantilever spring are sensed as displacements using a capacitance bridge. This displacement signal is then fed through a proportional plus integral controller to a high stability piezoelectric actuator to maintain a constant tip-to-sample force of approximately 100 nN. Much of the sensor head and traverse mechanism is made of Zerodur glass-ceramic to provide the thermal stability needed for long travel measurements. Profiles of a 30-nm silica step height standard and an 8.5-μm step etched on Zerodur are presented.

  5. Significant improvements in long trace profiler measurement performance

    SciTech Connect

    Takacs, P.Z.; Bresloff, C.J.

    1996-07-01

    A Modifications made to the Long Trace Profiler (LTP II) system at the Advanced Photon Source at Argonne National Laboratory have significantly improved the accuracy and repeatability of the instrument The use of a Dove prism in the reference beam path corrects for phasing problems between mechanical efforts and thermally-induced system errors. A single reference correction now completely removes both error signals from the measured surface profile. The addition of a precision air conditioner keeps the temperature in the metrology enclosure constant to within {+-}0.1{degrees}C over a 24 hour period and has significantly improved the stability and repeatability of the system. We illustrate the performance improvements with several sets of measurements. The improved environmental control has reduced thermal drift error to about 0.75 microradian RMS over a 7.5 hour time period. Measurements made in the forward scan direction and the reverse scan direction differ by only about 0.5 microradian RMS over a 500mm, trace length. We are now able to put 1-sigma error bar of 0.3 microradian on an average of 10 slope profile measurements over a 500mm long trace length, and we are now able to put a 0.2 microradian error bar on an average of 10 measurements over a 200mm trace length. The corresponding 1-sigma height error bar for this measurement is 1.1 run.

  6. Significant improvements in Long Trace Profiler measurement performance

    SciTech Connect

    Takacs, P.Z.; Bresloff, C.J.

    1996-12-31

    Modifications made to the Long Trace Profiler (LTP II) system at the Advanced Photon Source at Argonne National Laboratory have significantly improved the accuracy and repeatability of the instrument. The use of a Dove prism in the reference beam path corrects for phasing problems between mechanical errors and thermally-induced system errors. A single reference correction now completely removes both error signals from the measured surface profile. The addition of a precision air conditioner keeps the temperature in the metrology enclosure constant to within {+-} 0.1 C over a 24 hour period and has significantly improved the stability and repeatability of the system. The authors illustrate the performance improvements with several sets of measurements. The improved environmental control has reduced thermal drift error to about 0.75 microradian RMS over a 7.5 hour time period. Measurements made in the forward scan direction and the reverse scan direction differ by only about 0.5 microradian RMS over a 500 mm trace length. They are now able to put 1-sigma error bar of 0.3 microradian on an average of 10 slope profile measurements over a 500 mm long trace length, and they are now able to put a 0.2 microradian error bar on an average of 10 measurements over a 200 mm trace length. The corresponding 1-sigma height error bar for this measurement is 1.1 nm.

  7. Measurements of electron density profiles using an angular filter refractometer

    SciTech Connect

    Haberberger, D. Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H.

    2014-05-15

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10{sup 21} cm{sup −3} with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres.

  8. Tooth element levels indicating exposure profiles in diabetic and hypertensive subjects from Mysore, India.

    PubMed

    Nagaraj, G; Sukumar, A; Nandlal, B; Vellaichamy, S; Thanasekaran, K; Ramanathan, A L

    2009-12-01

    Element contents of teeth elucidate exposure nature, but less is known about association of tooth element concentrations of diabetics and hypertensives with exposure profile. Present study aims to estimate copper, chromium, iron, zinc, nickel, and lead concentrations in the permanent teeth of control, diabetic, and hypertensive subjects from Mysore. The results show that lead levels of teeth (Pb-T) are higher in the hypertensives and diabetics, whereas copper levels of teeth (Cu-T) are lower in the hypertensives and users of stainless steel utensils than that of controls and users of mixed utensils. The elevated Cu-T levels found in the users of mixed utensils that being made of several metals are ascribed to leaching effect of sour and spicy food of Indian cuisine. The element levels were influenced by diet (Zn-T), place of living, sex and income (Pb-T) of the subjects, but not by age, drinking water from different sources, and certain habits viz., smoking, alcohol consumption, chewing betel, and nut. Thus, it is evident that high Pb-T and low Cu-T levels may be related with diabetes and hypertension and high Pb-T and Cu-T levels, respectively, in the urbanites, and the users of mixed utensils may show different exposure profiles from environment and utensils. PMID:19352596

  9. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  10. An improved sensing element for skin-friction balance measurements. [supersonic drag measuring instrument

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1980-01-01

    A nulling, parallel-linkage sensing element has been developed for a skin-friction balance in order to minimize the introduction of extraneous forces. Advantages of the present element over the conventional single-pivot sensing element include its insensitivity to element misalignment and off-center normal forces. Wind tunnel tests of the effects of gap size and element misalignment on parallel-linkage balance measurements indicate the greater sensitivity of the device to misalignment at small gap sizes and large lip sizes, as well as its relative insensitivity to off-center normal forces. It is concluded that a parallel-linkage device with a small lip is virtually insensitive to gap size and element misalignment, representing an improvement in skin-friction-measuring characteristics.

  11. Direct measurements of the ionization profile in krypton helicon plasmas

    SciTech Connect

    Magee, R. M.; Galante, M. E.; McCarren, D. W.; Scime, E. E.; Gulbrandsen, N.

    2012-12-15

    Helicons are efficient plasma sources, capable of producing plasma densities of 10{sup 19} m{sup -3} with only 100 s W of input rf power. There are often steep density gradients in both the neutral density and plasma density, resulting in a fully ionized core a few cm wide surrounded by a weakly ionized plasma. The ionization profile is usually not well known because the neutral density is typically inferred from indirect spectroscopic measurements or from edge pressure gauge measurements. We have developed a two photon absorption laser induced fluorescence (TALIF) diagnostic capable of directly measuring the neutral density profile. We use TALIF in conjunction with a Langmuir probe to measure the ionization fraction profile as a function of driving frequency, magnetic field, and input power. It is found that when the frequency of the driving wave is greater than a critical frequency, f{sub c} Almost-Equal-To 3f{sub lh}, where f{sub lh} is the lower hybrid frequency at the antenna, the ionization fraction is small (0.1%) and the plasma density low (10{sup 17} m{sup -3}). As the axial magnetic field is increased, or, equivalently, the driving frequency decreased, a transition is observed. The plasma density increases by a factor of 10 or more, the plasma density profile becomes strongly peaked, the neutral density profile becomes strongly hollow, and the ionization fraction in the core approaches 100%. Neutral depletion in the core can be caused by a number of mechanisms. We find that in these experiments the depletion is due primarily to plasma pressure and neutral pumping.

  12. Lidar method of measurement of atmospheric extinction and ozone profiles

    NASA Technical Reports Server (NTRS)

    Cooney, J. A.

    1986-01-01

    A description of a method of measurement of atmospheric extinction and of ozone profiles by use of the backscatter signal from a monostatic lidar is given. The central feature of the procedure involves a measurement of the ratio of the Raman backscatter returns of both the oxygen and nitrogen atmospheric content. Because the ratio of the number density of both species is known to high accuracy, the measurement itself becomes a measure of the ratio of two transmissions to altitude along with a ratio of the two system constants. The calibration measurement for determining the value of the ratio of the two system constants or electro-optical conversion constants is accomplished by a lidar measurement of identical atmospheric targets while at the same time interchanging the two optical filters in the two optical channels of the receiver. More details of the procedure are discussed. Factoring this calibrated value into the measured O2/N2 profile ratio provides a measured value of the ratio of the two transmissions. Or equivalently, it provides a measurement of the difference of the two extinction coefficients at the O2 and N2 Raman wavelengths as a function of the height.

  13. Vertical profiles of ion production measured in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Nicoll, Keri; Aplin, Karen

    2014-05-01

    The electrical resistance of a unit area column of atmosphere is strongly influenced by the generation of cluster ions within the column, for example from natural radioactivity and galactic cosmic rays. This "columnar resistance" determines the vertical current flow in the global circuit. An underexploited measurement platform is the conventional weather balloon (radiosonde), thousands of which are launched daily by meteorological services. Using specially-designed and inexpensive ionization sensing technology, we present profiles of ion production in the troposphere. These show characteristic features of ionization profiles, such as variations due to changes in geomagnetic latitude and the Pfoetzer maximum between 15 and 25km. The use of meteorological radiosondes for such measurements of particle fluxes at a wide range of altitude and latitudes offers a cost-effective method of long term measurements of these quantities.

  14. Electrosurgical vessel sealing tissue temperature: experimental measurement and finite element modeling.

    PubMed

    Chen, Roland K; Chastagner, Matthew W; Dodde, Robert E; Shih, Albert J

    2013-02-01

    The temporal and spatial tissue temperature profile in electrosurgical vessel sealing was experimentally measured and modeled using finite element modeling (FEM). Vessel sealing procedures are often performed near the neurovascular bundle and may cause collateral neural thermal damage. Therefore, the heat generated during electrosurgical vessel sealing is of concern among surgeons. Tissue temperature in an in vivo porcine femoral artery sealed using a bipolar electrosurgical device was studied. Three FEM techniques were incorporated to model the tissue evaporation, water loss, and fusion by manipulating the specific heat, electrical conductivity, and electrical contact resistance, respectively. These three techniques enable the FEM to accurately predict the vessel sealing tissue temperature profile. The averaged discrepancy between the experimentally measured temperature and the FEM predicted temperature at three thermistor locations is less than 7%. The maximum error is 23.9%. Effects of the three FEM techniques are also quantified. PMID:23192471

  15. Measured Atomic Ground State Polarizabilities of 35 Metallic Elements

    NASA Astrophysics Data System (ADS)

    Indergaard, John; Ma, Lei; Zhang, Baiqian; Larkin, Ilia; Moro, Ramiro; de Heer, Walter

    2015-03-01

    Advanced pulsed cryogenic molecular beam electric deflection methods utilizing a position-sensitive mass spectrometer and 7.87 eV ionizing radiation were used to measure the polarizabilities of more than half of the metallic elements in the periodic table for the first time. These measurements increase the total number of experimentally obtained atomic polarizabilities from 23 to 57. Concurrent Stern-Gerlach deflection measurements verified the ground state condition of the measured atoms. Generating higher temperature beams allowed for the comparison of relative populations of the ground and excited states in order to extract the true temperature of the atomic beam, which followed the nominal temperature closely over a wide temperature range. Comparison of newly measured polarizabilities with state-of-the-art calculations exposes significant systematic and isolated discrepancies throughout the periodic table. Cluster Lab at Georgia Tech.

  16. Stress profile of infant rib in the setting of child abuse: A finite element parametric study.

    PubMed

    Tsai, Andy; Coats, Brittany; Kleinman, Paul K

    2012-07-26

    The primary goal of this study is to advance our current understanding of infant rib injuries in the setting of child abuse. To this end, we employed finite element model simulations to determine the sensitivity of an infant rib's stress response to varying material properties and under varying degrees of anterior-posterior chest compression. Using high-resolution chest CT images obtained from a 6-day-old infant, we constructed a simplified geometric model consisting of bone and cartilage structures. To simulate the lateral gripping of an infant in child abuse, an anterior-posterior chest compression load was applied to cause increased stresses along the costovertebral articulation, a classic site for inflicted rib fractures. A sensitivity analysis was conducted to quantify the effects of varying Young's modulus and Poisson's ratio of the bones and cartilages. In addition, we varied the amount of anterior-posterior chest displacement to assess the sensitivity of this parameter to the rib's stress profile. We found that varying Young's modulus of the bone and cartilage not only changed the magnitude but also the shape profile of the rib's stress response. In contrast, varying the degree of chest compression only changed the magnitude of the stress response and not the shape profile. We also discovered that by varying Poisson's ratio of the bone and cartilage, no appreciable change was seen in the magnitude or the shape profile of the rib's stress response. Finite element modeling shows promise as a tool to elucidate the mechanisms of rib fractures in abused infants. PMID:22727522

  17. Developing on-machine 3D profile measurement for deterministic fabrication of aspheric mirrors.

    PubMed

    Dong, Zhichao; Cheng, Haobo; Ye, Xu; Tam, Hon-Yuen

    2014-08-01

    Three-dimensional profile measurement is perceived as an indispensable process for deterministic fabrication of aspheric mirrors. In this work, we develop on-machine 3D profile measurement on a subaperture polishing machine, namely, JR-1800. The influences of mechanical errors, misalignments, output stability, temperature variation, and natural vibration are investigated in detail by calibration, mechanical alignment, and finite-element analysis. Two quantitative methods are presented for aligning the turntable, length gauge, and workpiece into together. An error compensation model is also developed for further eliminating misalignments. For feasibility validation, two prototypical workpieces are measured by JR-1800 and an interferometer. The results indicate that JR-1800 has an RMS repeatability of ~λ/30 (λ=632.8  nm). The data provided by the two systems are highly coincident. Direct subtractions of the results from the two systems indicate that the RMS deviations for both segments are less than 0.07 μm. PMID:25090332

  18. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    SciTech Connect

    Gilpatrick, John D.; Gruchalla, Michael E.; Martinez, Derwin; Pillai, Chandra; Rodriguez Esparza, Sergio; Sedillo, James Daniel; Smith, Brian G.

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H{sup +} LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  19. Development of a new generation of optical slope measuring profiler

    SciTech Connect

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen

    2010-07-09

    We overview the results of a broad US collaboration, including all DOE synchrotron labs (ALS, APS, BNL, NSLS-II, LLNL, LCLS), major industrial vendors of x-ray optics (InSync, Inc., SSG Precision Optronics-Tinsley, Inc., Optimax Systems, Inc.), and with active participation of HBZ-BESSY-II optics group, on development of a new generation slope measuring profiler -- the optical slope measuring system (OSMS). The desired surface slope measurement accuracy of the instrument is<50 nrad (absolute) that is adequate to the current and foreseeable future needs for metrology of x-ray optics for the next generation of light sources.

  20. Measurements of Reynolds stress profiles in unstratified tidal flow

    USGS Publications Warehouse

    Stacey, M.T.; Monismith, Stephen G.; Burau, J.R.

    1999-01-01

    In this paper we present a method for measuring profiles of turbulence quantities using a broadband acoustic doppler current profiler (ADCP). The method follows previous work on the continental shelf and extends the analysis to develop estimates of the errors associated with the estimation methods. ADCP data was collected in an unstratified channel and the results of the analysis are compared to theory. This comparison shows that the method provides an estimate of the Reynolds stresses, which is unbiased by Doppler noise, and an estimate of the turbulent kinetic energy (TKE) which is biased by an amount proportional to the Doppler noise. The noise in each of these quantities as well as the bias in the TKE match well with the theoretical values produced by the error analysis. The quantification of profiles of Reynolds stresses simultaneous with the measurement of mean velocity profiles allows for extensive analysis of the turbulence of the flow. In this paper, we examine the relation between the turbulence and the mean flow through the calculation of u*, the friction velocity, and Cd, the coefficient of drag. Finally, we calculate quantities of particular interest in turbulence modeling and analysis, the characteristic lengthscales, including a lengthscale which represents the stream-wise scale of the eddies which dominate the Reynolds stresses. Copyright 1999 by the American Geophysical Union.

  1. Uncertainties in aspheric profile measurements with the geometry measuring machine at NIST.

    SciTech Connect

    Griesmann, U.; Machkour-Deshayes, N.; Soons, J.; Kim, B. C.; Wang, Q.; Stoup, J. R.; Assoufid, L.; Experimental Facilities Division; NIST

    2005-01-01

    The Geometry Measuring Machine (GEMM) of the National Institute of Standards and Technology (NIST) is a profilometer for free-form surfaces. A profile is reconstructed from the local curvature of a test part surface, measured at several locations along a line. For profile measurements of free-form surfaces, methods based on local part curvature sensing have strong appeal. Unlike full-aperture interferometry they do not require customized null optics. The uncertainty of a reconstructed profile is critically dependent upon the uncertainty of the curvature measurement and, to a lesser extent, on curvature sensor positioning accuracy. For an instrument of the GEMM type, we evaluate the measurement uncertainties for a curvature sensor based on a small aperture interferometer and then estimate the uncertainty that can be achieved in the reconstructed profile. In addition, profile measurements of a free-form mirror using GEMM are compared with measurements using a long-trace profiler, a coordinate measuring machine, and subaperture-stitching interferometry.

  2. Application of scatterometry to measure organic material profile

    NASA Astrophysics Data System (ADS)

    Koo, Sunyoung; Ban, Keundo; Lim, Chang-moon; Bok, Cheolkyu; Moon, Seung-Chan; Kim, Jinwoong

    2006-03-01

    Scanning Electron Microscope (SEM) has been typical methods for measuring CD of nanopatterns until ArF process was introduced. However in case of ArF process, this method has serious drawback such as shrinkage of organic material by the irradiation of high-energy electron beam. The optical scatterometry system is considered to be promising method for measuring CD due to no damage on organic materials. Sub-80nm node gate was selected because of its measurement stability. CD, profile and thickness are compared with those measured by CD-SEM, cress-section SEM. The correlation degree is shown as GOF, R2, and Profile. Based on merit of speed, easiness and accurate measurement, optical CD method has been applied to CD uniformity. CD uniformity measured by OCD was very similar to that measured by SEM on gate pattern. Based on this result, OCD was applied for the improvement of CD uniformity combined with ASML's does-mapper in technology. We investigated the variation of thickness of organic BARC over topology of various size line and space patterned poly-Si by OCD.

  3. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    SciTech Connect

    Gilpatrick, John D.; Batygin, Yuri K.; Gonzales, Fermin; Gruchalla, Michael E.; Kutac, Vincent G.; Martinez, Derwin; Sedillo, James Daniel; Pillai, Chandra; Rodriguez Esparza, Sergio; Smith, Brian G.

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  4. Measuring velocity and temperature profile sectional pipeline behind confuser

    NASA Astrophysics Data System (ADS)

    Siažik, Ján; Malcho, Milan; Lenhard, Richard; Novomestský, Marcel

    2016-06-01

    The article deals with the measuring of temperature and velocity profile in area behind confuser in real made scale model of bypass. For proper operation of the equipment it is necessary to know the actual flow in the pipe. Bypasses have wide application and can be also associated with devices for heat recovery, heat exchangers different designs in which may be used in certain circumstances. In the present case, the heat that would otherwise has not been used is used for heating of insulators, and heating the air in the spray-dryer. The measuring principle was verify how the above-mentioned temperature and velocity profile decomposition above confuser on real made scale model.

  5. Trace element measurement in Saliva by NAA and PIXE techniques

    SciTech Connect

    Hamidian, M.R.; Vahid Golpayegani, M.; Shojai, S. )

    1993-01-01

    The activity of salivary glands and the chemical and physical properties of saliva, especially in some illnesses in which the activity of salivary glands and the chemical and physical properties alter, sometimes have severe effects on sedimentation and tooth decay. Long-standing investigations have shown the relationship between salivary gland activity and saliva composition in dental carries. Many modern techniques have been employed to measure important elements in saliva. The major elements in saliva include sodium, potassium, calcium, magnesium, chlorine, phosphorus, iodine, and fluorine. It should be pointed out that the amount of minerals changes when the diet changes. The major constituent of saliva is water with a density of 1.007 g/cm[sup 3] in which 0.6% is solid, 0.3% organic material and 0.3% inorganic material. In addition to other effects, the acidity (pH) of saliva has a strong effect on tooth sedimentation. Type of work, degree of stress, and mental condition affect salivary gland activity. When the acidity of salivary fluid in the mouth and consequently over the teeth drops, sedimentation increases. In this paper, the results of trace element measurement in saliva are presented.

  6. Prediction of flow profiles in arteries from local measurements.

    NASA Technical Reports Server (NTRS)

    Ling, S. C.; Atabek, H. B.

    1971-01-01

    This paper develops an approximate numerical method for calculating flow profiles in arteries. The theory takes into account the nonlinear terms of the Navier-Stokes equations as well as the large deformations of the arterial wall. The method, assuming axially symmetric flow, determines velocity distribution and wall shear at a given location from the locally measured values of the pressure, pressure gradient, and pressure-radius relation. The computed results agree well with the corresponding experimental data.

  7. Neutron emission profiles and energy spectra measurements at JET

    SciTech Connect

    Giacomelli, L.; Conroy, S.; Belli, F.; Riva, M.; Gorini, G.; Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Syme, B.; Collaboration: JET EFDA Contributors

    2014-08-21

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  8. NO2 lidar profile measurements for satellite interpretation and validation

    NASA Astrophysics Data System (ADS)

    Volten, H.; Brinksma, E. J.; Berkhout, A. J. C.; Hains, J.; Bergwerff, J. B.; van der Hoff, G. R.; Apituley, A.; Dirksen, R. J.; Calabretta-Jongen, S.; Swart, D. P. J.

    2009-12-01

    Satellite instruments are efficient detectors of air pollutants such as NO2. However, the interpretation of satellite retrievals is not a trivial matter. We describe a novel instrument, the RIVM NO2 mobile lidar, to measure tropospheric NO2 profiles for the interpretation and validation of satellite data. During the DANDELIONS campaign in 2006 we obtained an extensive collection of lidar NO2 profiles, coinciding with OMI and SCIAMACHY overpasses. On clear days and early mornings a comparison between lidar and in situ measurements showed excellent agreement. At other times the in situ monitors with molybdenum converters suffered from NOy interference. The lidar NO2 profiles indicated a well-mixed boundary layer, with high NO2 concentrations in the boundary layer and concentrations above not differing significantly from zero. The boundary layer concentrations spanned a wide range, which likely depends on the wind directions and on the intensity of local (rush hour) traffic which varies with the day of the week. Large diurnal differences were mainly driven by the height of the boundary layer, although direct photolysis or photochemical processes also contribute. Small-scale temporal and spatial variations in the NO2 concentrations of the order of 20-50% were measured, probably indicative of small-scale eddies. A preliminary comparison between satellite and lidar data shows that the satellite data tend to overestimate the amount of NO2 in the troposphere compared to the lidar data.

  9. Neutron emission profiles and energy spectra measurements at JET

    NASA Astrophysics Data System (ADS)

    Giacomelli, L.; Conroy, S.; Belli, F.; Gorini, G.; Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Riva, M.; Syme, B.; JET EFDA Contributors

    2014-08-01

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  10. Local Heat Flux Measurements with Single Element Coaxial Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.

  11. Method for measuring recovery of catalytic elements from fuel cells

    DOEpatents

    Shore, Lawrence; Matlin, Ramail

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  12. Doppler lidar measurement of profiles of turbulence and momentum flux

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Cupp, Richard E.; Healy, Kathleen R.

    1989-01-01

    A short-pulse CO2 Doppler lidar with 150-m range resolution measured vertical profiles of turbulence and momentum flux. Example measurements are reported of a daytime mixed layer with strong mechanical mixing caused by a wind speed of 15 m/sec, which exceeded the speed above the capping inversion. The lidar adapted an azimuth scanning technique previously demonstrated by radar. Scans alternating between two elevation angles allow determination of mean U-squared, V-squared, and W-squared. Expressions were derived to estimate the uncertainty in the turbulence parameters. A new processing method, partial Fourier decomposition, has less uncertainty than the filtering used earlier.

  13. Phase error compensation methods for high-accuracy profile measurement

    NASA Astrophysics Data System (ADS)

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Zhang, Zonghua; Jiang, Hao; Yin, Yongkai; Huang, Shujun

    2016-04-01

    In a phase-shifting algorithm-based fringe projection profilometry, the nonlinear intensity response, called the gamma effect, of the projector-camera setup is a major source of error in phase retrieval. This paper proposes two novel, accurate approaches to realize both active and passive phase error compensation based on a universal phase error model which is suitable for a arbitrary phase-shifting step. The experimental results on phase error compensation and profile measurement of standard components verified the validity and accuracy of the two proposed approaches which are robust when faced with changeable measurement conditions.

  14. Measurement of CT scanner dose profiles in a filmless department.

    PubMed

    Thomson, F J

    2005-09-01

    The measurement of the FWHM of the slice thickness radiation dose profile of a CT scanner using a prototype low sensitivity CR imaging plate has been investigated, as an alternative to the traditional method using envelope-packed industrial film. Using a standard Agfa clinical CR system to acquire the image, the FWHM of the dose profile can be accurately measured using readily available Public Domain software. An Agfa 18 x 24 cm CR cassette gives a pixel pitch of 113.5 microm, but with interpolation, the measurement accuracy can be less than 1 pixel. For a nominal 10 mm collimation, 15 successive measurements of the FWHM using CR gave an average width of 10.00 mm with a standard deviation of 0.02 mm. This may be compared with 4 successive measurements using film and a dual exposure technique to define the optical density at half peak height, yielding an average width of 9.98 mm with a SD of 0.03 mm. This prototype NDT plate is not a commercial product, but a radiotherapy plate with a similar sensitivity is available commercially and should give similar results. PMID:16250473

  15. A Comparison of Stellar Elemental Abundance Techniques and Measurements

    NASA Astrophysics Data System (ADS)

    Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.; Desch, Steven J.; Anbar, Ariel D.; Adibekyan, Vardan; Blanco-Cuaresma, Sergi; Carlberg, Joleen K.; Delgado Mena, Elisa; Liu, Fan; Nordlander, Thomas; Sousa, Sergio G.; Korn, Andreas; Gruyters, Pieter; Heiter, Ulrike; Jofré, Paula; Santos, Nuno C.; Soubiran, Caroline

    2016-09-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited a number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.

  16. Water Vapor Profiling From CoSSIR Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Chang, L. A.; Monosmith, B.; Zhang, Z.

    2007-01-01

    Previous millimeter-wave radiometry for water vapor profiling, by either airborne or satellite sensors, has been limited to frequencies less than or equal to 183 GHz. The retrievals are generally limited to an altitude range of 0-10 km. The additional measurements at the frequencies of 380.2 plus or minus 0.8, 380.2 plus or minus 1.8, 380.2 plus or minus 3.3, and 380.2 plus or minus 6.2 GHz provided by the new airborne Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) can extend this profiling capability up to an altitude of about 15 km. Furthermore, the retrievals can be performed over both land and water surfaces in the tropics without much difficulty. These properties are demonstrated by recent CoSSIR measurements on board the NASA WB-57 aircraft during CR-AVE in January 2006. Retrievals of water vapor mixing ratio were performed at eight altitude levels of 1, 3, 5, 7, 9, 11, 13, and 15 km from CoSSIR data sets acquired at observational angles of 0 and 53.4 degrees, and the results were compared with other available measurements from the same aircraft and near-concurrent satellites. A comparison of the variations of mixing ratios retrieved from CoSSIR and those derived from the Meteorological Measurement System (MMS) in the aircraft vicinity, along the path of the transit flight on January 14, 2006, appears to show some connection, although the measurements were referring to different altitudes. A very good agreement was found between the collocated values of total precipitable water derived from the CoSSIR-retrieved water vapor profiles and those estimated from TMI (TRMM Microwave Imager)

  17. 360-deg profile noncontact measurement using a neural network

    NASA Astrophysics Data System (ADS)

    Chang, Ming; Tai, Wen-Chih

    1995-12-01

    A new approach to automatic 3D shape measurement is presented and verified by experiments. This approach, based on neural network theory, can automatically and accurately obtain the profile of diffuse 3D objects by using a projected laser stripe. When the laser stripe is projected on an object, the line image of the laser light is grasped by a CCD camera. Using neural network theory, a relationship between the laser stripe image in the CCD camera and the related absolute position in space can be established. Thus the spatial coordinates of a measured line image in a CCD camera can be obtained according to the output value of the neural network. By processing a series of laser line images from the discrete angular positions of an object, a complete 3D profile can be reconstructed. Theoretical analysis and experimental systems are presented. Experimental results show that this approach can determine the 360-deg profile of an object with an accuracy of 0.4 mm.

  18. Measuring distortion of skeletal elements in Lodox Statscan-generated images.

    PubMed

    Stull, Kyra E; L'abbé, Ericka N; Steiner, Stef

    2013-09-01

    Due to a scarcity of available skeletal material, anthropologists and other practitioners face difficulties with either the creation or validation of techniques used to estimate a biological profile in subadults. To address this problem, radiographic images of living individuals are often used in lieu of dry skeletal elements. However, radiographic images suffer from distortion. Some problems with metric analyses when using radiographic images may be addressed with the Lodox Statscan, an X-ray machine that claims to produce minimal distortion along the scan-axis due to a linear slot-scanning design. The purpose of this research was to measure the distortion of skeletal elements in radiographic images generated from a Lodox Statscan. Skeletal elements subject to multiple imaging variables that affect distortion were radiographed, measured, and then compared to the dry bone measurements through multiple approaches. An 85% percent agreement within a ±1 mm range and a 97% agreement within a ±2 mm range was obtained. Percent difference results demonstrate that slot-axis measurements incurred more distortion than scan-axis measurements (11.8% and 2.7%, respectively). Inclusion of foam results in 4.5% more error than when foam is not included in the image. Angled scan-axis measurements also incurred more distortion than either nonangled slot- and scan-axis measurements. A Bland-Altmanplot reveals an overall agreement between the radiographic and dry bonemeasurements, with most measurements falling within the upper and lower limits. Similar measurement error is found in Statscan radiographic and dry bone measurements; therefore, the Statscan offers a radiographic venue to collect metric data. PMID:23362110

  19. A technique for measuring hypersonic flow velocity profiles

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1973-01-01

    A technique for measuring hypersonic flow velocity profiles is described. This technique utilizes an arc-discharge-electron-beam system to produce a luminous disturbance in the flow. The time of flight of this disturbance was measured. Experimental tests were conducted in the Langley pilot model expansion tube. The measured velocities were of the order of 6000 m/sec over a free-stream density range from 0.000196 to 0.00186 kg/cu m. The fractional error in the velocity measurements was less than 5 percent. Long arc discharge columns (0.356 m) were generated under hypersonic flow conditions in the expansion-tube modified to operate as an expansion tunnel.

  20. Ultra-narrow linewidth measurement based on Voigt profile fitting.

    PubMed

    Chen, Mo; Meng, Zhou; Wang, Jianfei; Chen, Wei

    2015-03-01

    We study the method of Voigt profile fitting for ultra-narrow linewidth measurement. It filters out the effect of the spectrum broadening due to the 1/f frequency noise and extracts out the Lorentzian lineshape from the measured spectrum. The resolution is thus greatly promoted than the direct measurement from the self-heterodyne technique. We apply this method to an ultra-narrow-linewidth (~40 Hz by heterodyne beat technique) Brillouin/erbium fiber laser. The linewidth estimated from Voigt fitting method is indicated to be more accurate. In contrast, the linewidths estimated direct from the 3-dB and the 20-dB heterodyne-spectrum width are far over the true linewidth of the BEFL. The Voigt fitting method provides an efficient tool for ultra-narrow-linewidth measurement. And compared with heterodyne beat technique, it is applicable for all types of lasers. PMID:25836899

  1. High time resolution ion temperature profile measurements on PBX

    SciTech Connect

    Gammel, G.; Kaita, R.; Fonck, R.; Jaehnig, K.; Powell, E.

    1986-05-01

    Ion temperature profiles with a time resolution of 2 to 5 ms have been measured on PBX by charge-exchange-recombination spectroscopy (CXRS) and a neutral-particle charge-exchange analyzer (NPA). The sightlines of both diagnostics crossed the trajectory of a near-perpendicular heating beam, which enhanced the local neutral density (proportional to signal strength) and provided spatial resolution. The time resolution of these two independent techniques is sufficient to see sawtooth oscillations and other MHD activity. Effects of these phenomena on the toroidal rotation velocity profile, v/sub phi/(r), are clearly observed by CXRS. For example, a sharp drop in the central v/sub phi/ occurs at the sawtooth crash, followed by a linear rise during the quiescent phase. The NPA results are compared with those from CXRS.

  2. Ozone Profile Retrievals from GOME-2 UV/Visible Measurements

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Nowlan, C. R.

    2014-12-01

    It has been shown that adding visible measurements in the Chappuis band to ultraviolet (UV) measurements in the Hartley/Huggins bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA Eearth Venture Instrument TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels (~290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit; the primary purpose of including the second channel is to improve lower tropospheric ozone retrieval for air quality monitoring. However, this retrieval enhancement has yet to be solidly demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interference from surface reflectance. We present retrievals from GOME-2 (Global Ozone Monitoring and Experiment-2) UV and visible measurements using the SAO optimal estimation based ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible into the ozone profile algorithm based on existing surface reflectance spectra and MODIS (Moderate-resolution Imaging Spectroradiometer) BRDF (Bidirectional Reflectance Distribution Function) climatology. We evaluate the retrieval performance of UV/visible retrieval over the UV retrieval in terms of retrieved lower tropospheric ozone and increase in degree of free for signal (DFS) over the globe in different seasons, and we validate both retrievals against ozonesonde measurements.

  3. A top quark mass measurement using a matrix element method

    SciTech Connect

    Linacre, Jacob Thomas

    2009-01-01

    A measurement of the mass of the top quark is presented, using top-antitop pair (t$\\bar{t}$) candidate events for the lepton+jets decay channel. The measurement makes use of Tevatron p$\\bar{p}$ collision data at centre-of-mass energy √s = 1.96 TeV, collected at the CDF detector. The top quark mass is measured by employing an unbinned maximum likelihood method where the event probability density functions are calculated using signal (t$\\bar{t}$) and background (W+jets) matrix elements, as well as a set of parameterised jet-to-parton mapping functions. The likelihood function is maximised with respect to the top quark mass, the fraction of signal events, and a correction to the jet energy scale (JES) of the calorimeter jets. The simultaneous measurement of the JES correction (ΔJES) provides an in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using 578 lepton+jets candidate events corresponding to 3.2 fb -1 of integrated luminosity, the top quark mass is measured to be mt = 172.4± 1.4 (stat+ΔJES) ±1.3 (syst) GeV=c2, one of the most precise single measurements to date.

  4. A problem-specific inverse method for two-dimensional doping profile determination from capacitance-voltage measurements

    NASA Astrophysics Data System (ADS)

    Ouwerling, G. J. L.

    1991-02-01

    The nondestructive and experimentally straightforward capacitance-voltage method for doping profile determination has always been impaired by certain weakness. The abrupt depletion approximation introduces error for steep profiles; the required differentiation of the measurement data causes a considerable noise sensitivity. More fundamentally, the method is restricted to one spatial dimension, perpendicular to the wafer surface. To overcome these limitations, in this paper the use of a numerical inverse method for the interpretation of the measurement data is presented. The method inspired by the use of similar methods for material profiling problems in biophysics and geophysics. It is specific for doping profiling problems and involves the iterative solution of a linear least squares system of equations. In this system, the known vector is formed by the measured capacitance values, and the unknown vector by the discretization of the doping profile on a grid in the measurement device. The matrix elements are found by the solution of Poisson's equation for each measurement bias case. To resolve possible ill-posedness, the system is solved by singular value decomposition of the least squares matrix. The validity of the method is verified and its error sensitivity studied by applying it to the reconstruction of both one- and two-dimensional doping profiles from synthetic measurement data. A test structure suitable for two-dimensional doping profiling, the Trimos device, is proposed and investigated by numerical experiments.

  5. Elemental profiling of Cabernet Sauvignon grapes as a function of geospatial variability in a Napa Valley vineyard

    NASA Astrophysics Data System (ADS)

    Carvalho, Angela; Hopfer, Helene; Nelson, Jenny; Ebeler, Sue; Jenkins, Christopher; Plant, Richard; Smart, David

    2015-04-01

    A primary tenant of the concept of geoscience and wine is that elemental composition of soils may be reflected in the elemental profile of fruit and discerned in the organoleptic assessment of wine. The extremely varied soil composition at the vineyard level in the Napa Valley region of California provides an ideal setting to study elemental pattern correlations between grape berries and soil samples. In the Napa Valley Cabernet Sauvignon is a wine grape variety of substantial economic value. Elemental profiling of Cabernet Sauvignon grapes in function of origin will provide a better understanding of the relationship between elemental accumulation in berries and soil element composition. The aim of this study was to explore the geospatial variability of elemental patterns in Cabernet Sauvignon grapes with respect to the soil elemental profiles at thirty-six geo-referenced vines in a 4 ha vineyard. Sixty-eight elements were determined via inductively coupled-plasma mass spectrometry (ICP-MS); this allowed for elemental profiling of both soil and berries at each sampling site. It was found that for the soil samples twenty-two elements contributed to a significant difference between sampling points, and thirty for the berries. Application of principal components analysis (PCA) showed that soil and berry elemental composition varied as a function of location in the vineyard. For the soil PCA, rare earth metals such as Dy, Ho, Ce, Er, Yb and Tm were driving separation towards the southern section of the vineyard while K, Ga, V, Al, Mg and P were correlated with the northern section. In the berry samples the Lanthanides, Gd, Pr, Yb, Dy, Er and Ho, also showed a higher influence in driving separation towards the southern section while Sr, Mo, Ba, Mg, P, K, Cd, Cu, B, Rb and Ti characterized the elemental profile of the northern part of the block. These findings showed that the rare earth metals, in particular Yb, Dy, Er and Ho, were the most distinguishing elemental

  6. Surface photovoltage measurements and finite element modeling of SAW devices.

    SciTech Connect

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  7. Toxic element profiles in selected medicinal plants growing on serpentines in Bulgaria.

    PubMed

    Pavlova, Dolja; Karadjova, Irina

    2013-12-01

    Populations of medicinal plants growing on serpentines and their respective soils were analyzed for Fe, Ni, Mn, Cr, Co, Cd, Cu, Zn, and Pb using inductively coupled plasma atomic emission spectrometry. Aqua regia extraction and 0.43 M acetic acid extraction were used for the quantification of pseudototal and bioavailable fractions, respectively, of elements in soil and nitric acid digestion for determination of total element content in plants. Screening was performed to (1) document levels of toxic metals in herbs extensively used in preparation of products and standardized extracts, (2) compare accumulation abilities of ferns and seed plants, and (3) estimate correlations between metal content in plants and their soils. The toxic element content of plants varied from site to site on a large scale. The concentrations of Fe and Ni were elevated while those of Cu, Zn, and Pb were close to average values usually found in plants. The highest concentrations for almost all elements were measured in both Teucrium species. Specific differences in metal accumulation between ferns and seed plants were not recorded. The investigated species are not hyperaccumulators but can accumulate toxic elements, in some cases exceeding permissible levels proposed by the World Health Organization and European Pharmacopoeia. The harvesting of medicinal plants from serpentines could be hazardous to humans. PMID:24170367

  8. Acceleration of matrix element computations for precision measurements

    DOE PAGESBeta

    Brandt, Oleg; Gutierrez, Gaston; Wang, M. H.L.S.; Ye, Zhenyu

    2014-11-25

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix elementmore » technique. We then utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.« less

  9. Development of a new generation of optical slope measuring profiler

    SciTech Connect

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen; Siewert, Frank; Zeschke, Thomas

    2010-09-16

    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  10. Development of a New Generation of Optical Slope Measuring Profiler

    SciTech Connect

    Yashchuk, V.V.; Takacs, P.; McKinney, W.R.; Assoufid, L.; Siewert, F.; Zeschke, T.

    2011-10-26

    A collaboration including all DOE synchrotron laboratories and industrial vendors of X-ray optics, and with active participation of the HBZ-BESSY-II optics group, has been established to work together on a new slope measuring profiler - the Optical Slope Measuring System (OSMS). The slope measurement accuracy of the instrument is expected to be <50 nrad for the current and future metrology of X-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable, and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  11. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  12. Neuropsychological profile in adult schizophrenia measured with the CMINDS.

    PubMed

    van Erp, Theo G M; Preda, Adrian; Turner, Jessica A; Callahan, Shawn; Calhoun, Vince D; Bustillo, Juan R; Lim, Kelvin O; Mueller, Bryon; Brown, Gregory G; Vaidya, Jatin G; McEwen, Sarah; Belger, Aysenil; Voyvodic, James; Mathalon, Daniel H; Nguyen, Dana; Ford, Judith M; Potkin, Steven G

    2015-12-30

    Schizophrenia neurocognitive domain profiles are predominantly based on paper-and-pencil batteries. This study presents the first schizophrenia domain profile based on the Computerized Multiphasic Interactive Neurocognitive System (CMINDS(®)). Neurocognitive domain z-scores were computed from computerized neuropsychological tests, similar to those in the Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB), administered to 175 patients with schizophrenia and 169 demographically similar healthy volunteers. The schizophrenia domain profile order by effect size was Speed of Processing (d=-1.14), Attention/Vigilance (d=-1.04), Working Memory (d=-1.03), Verbal Learning (d=-1.02), Visual Learning (d=-0.91), and Reasoning/Problem Solving (d=-0.67). There were no significant group by sex interactions, but overall women, compared to men, showed advantages on Attention/Vigilance, Verbal Learning, and Visual Learning compared to Reasoning/Problem Solving on which men showed an advantage over women. The CMINDS can readily be employed in the assessment of cognitive deficits in neuropsychiatric disorders; particularly in large-scale studies that may benefit most from electronic data capture. PMID:26586142

  13. Measurement of the lunar neutron density profile. [Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1974-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g/sq cm depth between the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment using particle tracks produced by the B10(n, alpha)Li7 reaction. Both the absolute magnitude and depth profile of the neutron density are in good agreement with past theoretical calculations. The effect of cadmium absorption on the neutron density and in the relative Sm149 to Gd157 capture rates obtained experimentally implies that the true lunar Gd157 capture rate is about one half of that calculated theoretically.

  14. Enrichment Factor and profiles of elemental composition of PM 2.5 in the city of Guadalajara, Mexico.

    PubMed

    Hernández-Mena, Leonel; Murillo-Tovar, Mario; Ramírez-Muñíz, Martín; Colunga-Urbina, Edith; de la Garza-Rodríguez, Iliana; Saldarriaga-Noreña, Hugo

    2011-11-01

    In this study, the Enrichment Factors and elemental composition profiles of the PM2.5 were used to suggest the emission sources. The selected sites were Miravalle and Centro, and in both cases there were high values lead, Cadmium, Cobalt, Chromium, Cupper, Molybdenum, Nickel, Antimony, Selenium and Zinc for EF (>5), suggesting an anthropogenic origin. The remaining elements (Iron, Magnesium, Manganese, Strontium and Titanium) had Enrichment Factors <5, attributable to a geological origin, probably due to the suspension of particles from motor vehicles or wind. Comparing the elemental composition profiles of the two sites allowed establishing similarities with some reference profiles (SPECIATE database Version 4.2-EPA) from sources such as Paved Road Dust (PRD) and Industrial Soil (IS) and profiles of combustion sources such as Diesel Exhaust (DE). Through the estimation the Enrichment Factors and of the elemental composition profiles of two different sites in the city, it was possible to suggest not only the general type of emission source (geological or anthropogenic), but also more specific sources based on elemental composition of PM2.5. PMID:21837390

  15. Interlaboratory comparison of autoradiographic DNA profiling measurements: precision and concordance.

    PubMed

    Duewer, D L; Lalonde, S A; Aubin, R A; Fourney, R M; Reeder, D J

    1998-05-01

    Knowledge of the expected uncertainty in restriction fragment length polymorphism (RFLP) measurements is required for confident exchange of such data among different laboratories. The total measurement uncertainty among all Technical Working Group for DNA Analysis Methods laboratories has previously been characterized and found to be acceptably small. Casework cell line control measurements provided by six Royal Canadian Mounted Police (RCMP) and 30 U.S. commercial, local, state, and Federal forensic laboratories enable quantitative determination of the within-laboratory precision and among-laboratory concordance components of measurement uncertainty typical of both sets of laboratories. Measurement precision is the same in the two countries for DNA fragments of size 1000 base pairs (bp) to 10,000 bp. However, the measurement concordance among the RCMP laboratories is clearly superior to that within the U.S. forensic community. This result is attributable to the use of a single analytical protocol in all RCMP laboratories. Concordance among U.S. laboratories cannot be improved through simple mathematical adjustments. Community-wide efforts focused on improved concordance may be the most efficient mechanism for further reduction of among-laboratory RFLP measurement uncertainty, should the resources required to fully evaluate potential cross-jurisdictional matches become burdensome as the number of RFLP profiles on record increases. PMID:9608684

  16. Water diffusion profile measurements in epoxy using neutron radiography

    NASA Astrophysics Data System (ADS)

    Lindsay, John T.; Matsubayashi, Masahito; Nurul Islam, Md.

    1994-12-01

    The diffusion characteristics of water in polymer materials have been studied for a few decades. Several methods have been developed to provide water diffusion characteristics as a function of time, temperature, pressure, or thickness of polymer. Unfortunately, most of these methods give the amount of water absorbed as a function of weight versus time at given environmental conditions. Concentration profiles of the water diffusion through the polymer have been unobtainable by these established methods. Neutron radiography is a method of non-destructive testing that has grown rapidly over the past ten years and is capable of giving these concentration profiles. Epoxy is one of the most commonly used polymers for which water diffusion information is important. In the automotive industry, epoxy is used both as a sealant and a bonder to prevent water from getting inside structures and causing corrosion. To prevent this corrosion, it is important to know the diffusion behavior of water in the epoxy adhesive.p ]This paper will demonstrate the use of high resolution neutron radiography as a viable method for the determination of the diffusion profile of water in commercially available epoxies. Aluminum coupons were constructed and joined together using four different epoxies. These coupons were then submerged in water. Neutron radiographs were made of the coupons as a function of total time submerged and water temperature. The weights of the coupons were also obtained as a function of submerged time for comparison with other methods. Four different epoxies were tested. Profiles of the water concentration are easily observed and measured.

  17. Quantitative depth profiling of light elements by means of the ERD E × B technique

    NASA Astrophysics Data System (ADS)

    Schiettekatte, F.; Chevarier, A.; Chevarier, N.; Plantier, A.; Ross, G. G.

    1996-09-01

    ERDA [J. L'Écuyer et al., J. Appl. Phys. 47 (1976) 381] is a technique of great interest for quantitative depth profiling of light elements in matter. The use of crossed electric and magnetic fields ( E × B filter) [G.G. Ross et al. J. Nucl. Mater. 128/129 (1992) 484; G.G. Ross and L. Leblanc, Nucl. Instr. and Meth. B 62 (1992) 484] in place of the traditional absorber, enhances the resolution by eliminating the straggling induced normally by the absorber and removes the uncertainty on the absorber thickness. The E × B filter allows the simultaneous detection of different particles such as H, D and He. This work presents the first ERD E × B depth profiling by means of a heavy ion beam. Compared with the usual ERD E × B with 350 keV He, the 2.54 MeV 15N beam enhances scattering cross section by a factor of 3, has equivalent depth resolution (1-3 nm at surface) and gives a depth probe twice deeper. However, 15N ions sometimes induce high desorption compared to He. H, D and He were implanted in Be and Si at energies from 800 eV to 10 keV. The experimental depth distributions are compared with those obtained by TRIM95 [J.F. Ziegler and J.P. Biersack, The Stopping and Range of Ions in Solids (Pergamon, New York, 1995)] and by other experimental techniques. Reproducibility is very good between the different results obtained experimentally. Profile modification induced by the ion beam is also shown.

  18. Measurement of ion profiles in TFTR neutral beamlines

    SciTech Connect

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-02-01

    A technique is described whereby the ion dumps inside the TFTR Neutral Beam Test Stand were used to measure thermal profiles of the full-, half-, and third-energy ions. 136 thermocouples were installed on the full-energy ion dump, allowing full beam contours. Additional linear arrays across the widths of the half- and third-energy ion dumps provided a measure of the shape, in the direction parallel to the grid rails, of the half- and third-energy ions, and, hence, of the molecular ions extracted from the source. As a result of these measurements it was found that the magnet was more weakly focusing, by a factor of two, than expected, explaining past overheating of the full-energy ion dump. Hollow profiles on the half- and third-energy ion dumps were observed, suggesting that extraction of D{sub 2}+ and D{sub 3}+ are primarily from the edge of the ion source. If extraction of half-energy ions is from the edge of the accelerator, a divergence parallel to the grid rails of 0.6{degrees}{plus minus}0.1{degrees} results. It is postulated that a nonuniform gas profile near the accelerator is the cause of the hollow partial-energy ion profiles; the pressure being depressed over the accelerator by particles passing through this highly transparent structure. Primary electrons reaching the accelerator produce nonuniform densities of D{sub 2}+ through the ionization of this across the full-energy dump was examined as a means of reducing the power density. By unbalancing the current in the two coils of the magnet, on a shot by shot basis, by up to 2:1 ratio, it was possible to move the centerline of the full-energy ion beam sideways by {approximately}12.5 cm. The adoption of such a technique, with a ramp of the coil imbalance from 2:1 to 1:2 over a beam pulse, could reduce the power density by a factor of {ge}1.5.

  19. Measurement of ion profiles in TFTR neutral beamlines

    SciTech Connect

    Kamperschroer, J.H.; Grisham, L.R.; Kugel, H.W.; O`Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1992-02-01

    A technique is described whereby the ion dumps inside the TFTR Neutral Beam Test Stand were used to measure thermal profiles of the full-, half-, and third-energy ions. 136 thermocouples were installed on the full-energy ion dump, allowing full beam contours. Additional linear arrays across the widths of the half- and third-energy ion dumps provided a measure of the shape, in the direction parallel to the grid rails, of the half- and third-energy ions, and, hence, of the molecular ions extracted from the source. As a result of these measurements it was found that the magnet was more weakly focusing, by a factor of two, than expected, explaining past overheating of the full-energy ion dump. Hollow profiles on the half- and third-energy ion dumps were observed, suggesting that extraction of D{sub 2}+ and D{sub 3}+ are primarily from the edge of the ion source. If extraction of half-energy ions is from the edge of the accelerator, a divergence parallel to the grid rails of 0.6{degrees}{plus_minus}0.1{degrees} results. It is postulated that a nonuniform gas profile near the accelerator is the cause of the hollow partial-energy ion profiles; the pressure being depressed over the accelerator by particles passing through this highly transparent structure. Primary electrons reaching the accelerator produce nonuniform densities of D{sub 2}+ through the ionization of this across the full-energy dump was examined as a means of reducing the power density. By unbalancing the current in the two coils of the magnet, on a shot by shot basis, by up to 2:1 ratio, it was possible to move the centerline of the full-energy ion beam sideways by {approximately}12.5 cm. The adoption of such a technique, with a ramp of the coil imbalance from 2:1 to 1:2 over a beam pulse, could reduce the power density by a factor of {ge}1.5.

  20. Generation and Measurement of Relativistic Electron Bunches Characterized by a Linearly Ramped Current Profile

    SciTech Connect

    England, R. J.; Rosenzweig, J. B.; Travish, G.

    2008-05-30

    We report the first successful attempt to generate ultrashort (1-10 ps) relativistic electron bunches characterized by a ramped longitudinal current profile that rises linearly from head to tail and then falls sharply to zero. Bunches with this type of longitudinal shape may be applied to plasma-based accelerator schemes as an optimized drive beam, and to free-electron lasers as a means of reducing asymmetry in microbunching due to slippage. The scheme used to generate the ramped bunches employs an anisochronous dogleg beam line with nonlinear correction elements to compress a beam having an initial positive time-energy chirp. The beam current profile is measured using a deflecting mode cavity, and a pseudoreconstruction of the beam's longitudinal phase space distribution is obtained by using this diagnostic with a residual horizontal dispersion after the dogleg.

  1. Progress in measuring detonation wave profiles in PBX9501

    SciTech Connect

    Gustavsen, R.L.; Sheffield, S.A.; Alcon, R.R.

    1998-12-31

    The authors have measured detonation wave profiles in PBX9501 (95 wt% HMX and 5 wt% binders) using VISAR. Planar detonations were produced by impacting the explosive with projectiles launched in a 72 mm bore gas gun. Particle velocity wave profiles were measured at the explosive/window interface using two VISARs with different fringe constants. Windows with very thin vapor deposited aluminum mirrors were used for all experiments. PMMA windows provided an undermatch, and LiF (Lithium Fluoride) windows provided an overmatch to the explosive, reacted and unreacted. While the present experiments do not have adequate time resolution to adequately resolve the ZND spike condition, they do constrain it to lie between 38.7 and 53.4 Gpa or 2.4 and 3.3 km/s. Accurate knowledge of the CJ state places the reaction zone length at 35 {+-} 12 ns ({approx} 0.3 mm). The present experiments do not show any effect of the window on the reaction zone; both window materials result in the same reaction zone length.

  2. Ultrashort Pulse Reflectometry (USPR) Density Profile Measurements on GAMMA-10

    NASA Astrophysics Data System (ADS)

    Domier, C. W.; Roh Luhmann, Y., Jr.; Mase, A.; Kubota, S.

    1999-11-01

    Ultrashort pulse reflectometry (USPR) involves time-of-flight measurements of extremely broadband, high speed chirped signals ( ns sweep times). A multichannel USPR system has been installed on the central cell of the GAMMA-10 mirror machine located at the University of Tsukuba, Japan. Here, the output from a 65 ps FWHM impulse generator is stretched and amplified to form a 10 ns duration, 11-18 GHz chirp signal. A five channel X-mode USPR receiver, with frequency channels at 12, 13, 15, 16 and 17 GHz, measures the double-pass time delay of each reflected subpacket simultaneously with 25 ps time resolution. Density profile and fluctuation data collected on GAMMA-10 will be presented.

  3. Estimation of road profile variability from measured vehicle responses

    NASA Astrophysics Data System (ADS)

    Fauriat, W.; Mattrand, C.; Gayton, N.; Beakou, A.; Cembrzynski, T.

    2016-05-01

    When assessing the statistical variability of fatigue loads acting throughout the life of a vehicle, the question of the variability of road roughness naturally arises, as both quantities are strongly related. For car manufacturers, gathering information on the environment in which vehicles evolve is a long and costly but necessary process to adapt their products to durability requirements. In the present paper, a data processing algorithm is proposed in order to estimate the road profiles covered by a given vehicle, from the dynamic responses measured on this vehicle. The algorithm based on Kalman filtering theory aims at solving a so-called inverse problem, in a stochastic framework. It is validated using experimental data obtained from simulations and real measurements. The proposed method is subsequently applied to extract valuable statistical information on road roughness from an existing load characterisation campaign carried out by Renault within one of its markets.

  4. Measurement of multipath delay profile in land mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Arakaki, Yoshiya; Wakana, Hiromitsu; Suzuki, Ryutaro

    1993-01-01

    Mobile satellite communication channel has been evaluated mainly with fading statistics of signal. When bandwidth of transmitting signal becomes wider, frequency selectivity of fading becomes a significant factor of the channel. Channel characteristics, not only signal variation but multipath delay spread should be evaluated. A multipath measurement system is proposed and developed for mobile satellite applications. With this system and ETS-V satellite, multipath delay profiles are measured in various environments including Tokyo metropolis and Sapporo city at 1.5 GHz. Results show that the maximum excess delay is within 1 microsec and the maximum delay spread is 0.2 microsecs at elevation angles of 40 to 47 degrees. In wideband signal transmission of about 1 MHz and more, designers should consider the effect of selective fading due to the multipath of land mobile satellite channel.

  5. Beam profile measurements and simulations for ultrasonic transducers operating in air

    PubMed

    Benny; Hayward; Chapman

    2000-04-01

    This paper outlines a method that has been implemented to predict and measure the acoustic radiation generated by ultrasonic transducers operating into air in continuous wave mode. Commencing with both arbitrary surface displacement data and radiating aperture, the transmitted pressure beam profile is obtained and includes simulation of propagation channel attenuation and where necessary, the directional response of any ultrasonic receiver. The surface displacement data may be derived directly, from laser measurement of the vibrating surface, or indirectly, from finite element modeling of the transducer configuration. To validate the approach and to provide experimental measurement of transducer beam profiles, a vibration-free, draft-proof scanning system that has been installed within an environmentally controlled laboratory is described. A comparison of experimental and simulated results for piezoelectric composite, piezoelectric polymer, and electrostatic transducers is then presented to demonstrate some quite different airborne ultrasonic beam-profile characteristics. Good agreement between theory and experiment is obtained. The results are compared with those expected from a classical aperture diffraction approach and the reasons for any significant differences are explained. PMID:10790035

  6. Characterization of a traceable profiler instrument for areal roughness measurement

    NASA Astrophysics Data System (ADS)

    Thomsen-Schmidt, P.

    2011-09-01

    A two-dimensional profiler instrument was designed and realized at the PTB (Physikalisch-Technische Bundesanstalt). The main function of the instrument is to provide traceable results in the field of roughness measurement. It is equipped with a linear moving stylus which is guided by precision air bearings. The moving part of the stylus has weight around 1 g and is carried by a magnetic field. The contacting force of the tip onto the surface under test is controlled by a small voice coil actuator in a closed control loop. Vertical movements of the stylus are captured by two different, completely independent measurement systems, covering a range of 100 µm. The first one is an interferometer, which provides a traceable signal, and the second one is an inductive measurement system. The signal from the inductive measurement system is calibrated by the interferometer. The sample under test is carried within the x-y-plane by a linear guided table with low noise air bearings. These air bearings are preloaded by vacuum and a constant gap is achieved by gas pressure controllers. Both axes of the table are driven by linear voice coil actuators and their movement in the plane is measured by linear encoders. The sample carrier is equipped with two axes tilt compensation, by which the sample under test can be levelled automatically using the measurement system of the stylus. Real-time data acquisition, manual handling and automated procedures are managed by a programmable controller and proprietary software written in LabVIEW. After measurement, data from the system can be directly transferred into the smd- or sdf-format. Results of measurements on different samples to characterize the metrological behaviour of the instrument will be reported. To characterize the uncertainty of the instrument, a model is applied, which is in accordance with approved rules for contact stylus instruments.

  7. VisibleWind: wind profile measurements at low altitude

    NASA Astrophysics Data System (ADS)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  8. Brain tissue slice thickness monitored by ion-profile measurement.

    PubMed

    Lipinski, H G

    1992-04-01

    The thickness of a brain tissue slice preparation governs the amount of time required for substances to diffuse from the bathing solution to preparation. Slice thickness may increase during the experiment, e.g., in cases of hypoxia where osmotic pressure within the tissue changes, enabling water to enter the preparation. With increasing slice thickness diffusion paths from the bath to central layers of the preparation increase possibly resulting in an insufficient O2 supply to central layers. Therefore, the actual slice thickness should be monitored during the experiment especially in cases where osmolarity is changed or during hypoxia. This paper describes a simple method to monitor the actual slice thickness using ion profiles measured by ion selective micro-electrodes driven at a constant rate of approximately 10 microns/s (sample rate ca. 10/s). The method is based on steep changes in the concentration gradients at the upper and lower surfaces of the preparation induced by simple diffusion in the presence of concentration gradients between the non-tortuous bath and the tortuous tissue. The thickness of the preparation is derived from the location of the steep gradient changes as reflected by the registered profile. PMID:1405733

  9. On Machine Capacitance Dimensional and Surface Profile Measurement System

    NASA Technical Reports Server (NTRS)

    Resnick, Ralph

    1993-01-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  10. Source abundances of ultra heavy elements derived from UHCRE measurements.

    PubMed

    Domingo, C; Font, J; Baixeras, C; Fernandez, F

    1996-11-01

    A total of 205 tracks have been located, measured, and positively identified as originating from Ultra Heavy (Z > or = 65) cosmic ray ions with energies over 2 GeV/amu in the 10 UHCRE plastic track detector (mainly Lexan polycarbonate) stacks studied by our Group. About 40 values of reduced etch rate S have been obtained along each of these tracks. A method based on determining the gradient of S, together with calibration in accelerators, is used to determine the charge of each ion resulting in one of such tracks to obtain the charge spectrum of the recorded Ultra Heavy ions. The abundance ratio of ions with 87 < or = Z < or = 100 to those with 74 < or = Z < or = 86 as well as that of ions with 81 < or = Z < or = 86 to those with 74 < or = Z < or = 80 are calculated at 0.016 and 0.32, respectively, which agree with the values obtained from measurements in the HEAO-3 and Ariel-6 experiments. The abundance ratio of ions with 70 < or = Z < or = 73 to those with 74 < or = Z < or = 86 is also calculated, but its value (0.074) did not seem to be significant because of our detectors' low registration efficiency in the charge range 70 < or = Z < or = 73. A computer program developed by our Group, based on the Leaky Box cosmic ray propagation model, has been used to determine the source abundances of cosmic ray nuclei with Z > or = 65 inferred from the abundances measured in the UHCRE. It appeared that r-process synthesized elements were overabundant compared to the Solar System abundances, as predicted by other authors. PMID:11540515

  11. The Relationship Between Serum Lipid Profile and Selected Trace Elements for Adult Men in Mosul City

    PubMed Central

    Al-Sabaawy, Osama M.

    2012-01-01

    Objectives To evaluate the correlations of the serum concentrations of copper, zinc, and manganese with lipid profile parameters of adult men in Mosul City, Iraq. Methods The study included 51 apparently healthy adult men as a control group aged 34-62 years (group 1), and 31 hyperlipidemic patients aged 37-60 years (group 2). Trace elements copper, zinc and manganese were determined using atomic absorption spectrometry. Concentrations of total cholesterol, triglyceride and high density lipoprotein cholesterol were determined using enzymatic method. Indirect serum concentration of low-density lipoprotein cholesterol were calculated via the Friedewald formula. Data were evaluated as mean and standard deviation by analysis of variance (ANOVA) and t-test. Results The results indicated that there is a significant lower level of serum zinc in hyperlipidemic patients compared with the control group, while copper and manganese showed no significant differences between the two groups. A significant negative correlation was found between serum zinc and total cholesterol, low-density lipoprotein cholesterol, triglyceride and low/high-density lipoprotein cholesterol ratio; while a significant positive correlation was found between serum zinc and high density lipoprotein cholesterol. In addition, a significant positive correlation between copper and triglyceride existed in the patient group, while the control group showed no such correlation. Conclusion Hyperlipidemia may possibly be related to a decrease in the level of serum zinc in hyperlipidemic adult men. The data also supports the concept that zinc supplementation might be useful in improving metabolic complications in subjects with hyperlipidemia. PMID:23071882

  12. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study.

    PubMed

    Hansson, S; Werke, M

    2003-09-01

    Assuming that high stress peaks in the bone can trigger bone resorption a screw-shaped bone implant should be given such a design that the peak stresses arising in the bone, as a result of a certain load, are minimized. Using idealized assumptions the aim of the study was to analyse the effect of variations of the size and the profile of the thread of an axially loaded, screw-shaped, bone implant upon the magnitude of the stress peaks in cortical bone. The investigation was performed by means of axisymmetric finite element analysis. It was found that the shape of the thread profile has a profound effect upon the magnitude of the stresses in the bone and that very small threads of a favourable profile can be quite effective. PMID:12893033

  13. Randomly varying micro-optical elements for the generation of uniform intensity profiles in coherent laser sources

    NASA Astrophysics Data System (ADS)

    Weible, K. J.; Bich, A.; Roth, S.; Dumouchel, C.; Pernet, P.; Eisner, M.; Völkel, R.; Bitterli, R.; Scharf, T.; Noell, W.

    2008-08-01

    A wide range of lasers from the UV to the IR are selected based on their optical power and spectral characteristics to match the particular absorption behavior for the material to be processed. Periodic microlens arrays are often used as multi-aperture integrators to transform the Gaussian or non-uniform beam profile into a homogenized intensity profile either in 1-D or 2-D distribution. Each microlens element samples the input inhomogeneous beam and spreads it over a given angular distribution. Incoherent beams that are either temporally or spatially incoherent can produce very uniform intensity profiles. However, coherent beams will experience interference effects in the recombination of the beams generated by each individual microlens element. For many applications, for example pulsed laser sources, it is not possible to use a rotating or moving element, such as a rotating diffuser, to circumvent the interferences resulting from the beam coherence. Micro-optical elements comprised of a randomly varying component can be used to help smooth out the interference effects within the far-field intensity profile.

  14. Temperature Profile Measurements During Heat Treatment of BSCCO 2212 Coils

    SciTech Connect

    Tollestrup, Alvin; /Fermilab

    2011-04-14

    The temperature profile of two different BSCCO 2212 coils has been analyzed. The profiles are obtained from thermocouples imbedded in the windings during the heat treatment that activates the 2212. The melting and freezing of the 2212 is clearly observed. A model that describes the data and can be used to guide the processing of new coils has been developed. We have obtained the thermal history of two BSCCO coils, one from NHMFL (1) that had 10 layers of 1 mm diameter wire with 0.15 mm insulation and a second coil from OST that had 24 layers with similar insulation and conductor size. Both coils had thermocouples imbedded in the windings and excellent recordings of the temperature over the whole reaction cycle were available for analysis. There are several features that we will address in this note. Measurements have shown that the I{sub c} of the conductor is a sensitive function of its thermal history. This brings up the question of the absolute accuracy of the thermometry in the range around 882 C, the MP of 2212. The reference for the treatment profile is really related to this MP and to small deviations around it. Since the heat of fusion of 2212 is rather large, it generates a clear signal during the melting and cooling transition that automatically generates the relative temperature markers. The physics is the same as the way ice in water maintains an isothermal environment until it is all melted. A related question is the thermal response time of the coil package. The temperature cycles that are being used to optimize strand and small coils can have rapid changes easily implemented whereas a large coil may have such a large thermal time constant that the optimum cycle may not be attainable. A simple analytical model that works well for small solenoids has been developed and an ANSYS (5) program that works for larger coils with more complicated geometry has been set up but will not be discussed in this note.

  15. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Smith, Earnest C. (Inventor); Oliver, Charles E. (Inventor); Redmon, John W., Sr. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1987-01-01

    A tool is shown having a cross beam assembly made of beams joined by a center box structure. The assembly is adapted to be mounted by brackets to the outer end of a cylindrical case. The center box structure has a vertical shaft rotatably mounted therein and extending beneath the assembly. Secured to the vertical shaft is a radius arm which is adapted to rotate with the shaft. On the longer end of the radius arm is a measuring tip which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm. An electric servomotor rotates the vertical shaft and an electronic resolver provides an electric signal representing the angle of rotation of the shaft. The electric signals are provided to a computer station which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  16. Cylindrical surface profile and diameter measuring tool and method

    NASA Technical Reports Server (NTRS)

    Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Oliver, Charles E. (Inventor); Smith, Earnest C. (Inventor); Redmon, John W. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)

    1989-01-01

    A tool is shown having a cross beam assembly (15) made of beams (18, 19, 20, 21) joined by a center box structure (23). The assembly (15) is adapted to be mounted by brackets (16) to the outer end of a cylindrical case (11). The center box structure (23) has a vertical shaft (25) rotatably mounted therein and extending beneath the assembly (15). Secured to the vertical shaft (25) is a radius arm (28) which is adapted to rotate with shaft (25). On the longer end of the radius arm (28) is a measuring tip (30) which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm (28). An electric servomotor (49) rotates the vertical shaft (25) and an electronic resolver (61) provides an electric signal representing the angle of rotation of the shaft (25). The electric signals are provided to a computer station (73) which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.

  17. Radiation profiles measured through clouds using a return glider radiosonde

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Kivi, Rigel

    2016-04-01

    With new and improved radiation sensors in a small glider aircraft vertical flights through clouds have been conducted. This new Return Glider Radiosonde (RG-R) is lifted up with double balloon technique to keep the radiation instruments as horizontal as possible during ascent. The RG-R is equipped with a routine radiosonde to transmit the data to a ground station and an autopilot to fly the glider radiosonde back to the launch site, where it lands autonomous with a parachute. The RG-R was successfully tested and deployed for tropospheric and stratospheric radiation measurements up to 30 hPa (24 km altitude) at the GRUAN sites Payerne (Switzerland) and Sodankylä (Finland). Radiation profiles and the radiation budget through the atmosphere during different daytimes and under cloud-free and cloudy situations will be shown in relation to temperature and humidity at the surface and in the atmosphere. The RG-R flight characteristics and new measurement possibilities will also be discussed.

  18. Line Profile Measurements of the Lunar Exospheric Sodium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Line, Michael R.; Roesler, Fred L.; Lupie, Olivia L.

    2012-01-01

    We report ongoing results of a program to measure the lunar sodium exospheric line profile from near the lunar limb out to two lunar radii (approx 3500 km). These observations are conducted from the National Solar Observatory McMath-Pierce telescope using a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,600 (1.7 km/s) to measure line widths and velocity shifts of the Na D2 (5889 950 A) emission line in equatorial and polar regions at different lunar phases. The typical field of view (FOV) is 3 arcmin (approx 360 km) with an occasional smaller 1 arcmin FOV used right at the limb edge. The first data were obtained from full Moon to 3 days following full Moon (waning phase) in March 2009 as part of a demonstration run aimed at establishing techniques for a thorough study of temperatures and velocity variations in the lunar sodium exosphere. These data indicate velocity displacements from different locations off the lunar limb range between 150 and 600 m/s from the lunar rest velocity with a precision of +/- 20 to +/- 50 m/s depending on brightness. The measured Doppler line widths for observations within 10.5 arcmin of the east and south lunar limbs for observations between 5 deg and 40 deg lunar phase imply temperatures ranging decreasing from 3250 +/- 260K to 1175 +/- 150K. Additional data is now being collected on a quarterly basis since March 2011 and preliminary results will be reported.

  19. Precision Measurements of Solar Energetic Particle Elemental Composition

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Data from the Cosmic Ray Subsystem (CRS) aboard the Voyager 1 and 2 spaceraft were used to determined, solar energetic particle abundances or upper limits for all elements with Z 30 from a combined set of 10 solar flares during the 1977 to 1982 time period. Statistically meaningful abundances were determined for several rare elements including P, C1, K, Ti and Mn, while the precision of the mean abundances for the more abundant elements was proved. When compared to solar photospheric spectroscopic abundances, these new SEP abundances more clearly exhibit the step-function dependence on first ionization potential previously reported.

  20. Precision measurements of solar energetic particle elemental composition

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Using data from the Cosmic Ray Subsystem (CRS) aboard the Voyager 1 and 2 spacecraft, solar energetic particle abundances or upper limits for all elements with 3 = Z = 30 from a combined set of 10 solar flares during the 1977 to 1982 time period were determined. Statistically meaningful abundances have been determined for the first time for several rare elements including P, Cl, K, Ti and Mn, while the precision of the mean abundances for the more abundant elements has been improved by typically a factor of approximately 3 over previously reported values.

  1. Optimal tuning and calibration of bendable mirrors with slope measuring profilers

    SciTech Connect

    McKinney, Wayne; Kirschman, Jonathan; MacDowell, Alastair; Warwick, Tony; Yashchuk, Valeriy

    2009-06-22

    We describe a technique to optimally tune and calibrate bendable x-ray optics for sub-micron focusing. The focusing is divided between two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair. Each optic is shaped by applying unequal bending couples to each end of a flat mirror. The developed technique allowsoptimal tuning of these systems using surface slope data obtained with a slope measuring instrument, the long trace profiler (LTP). Due to the near linearity of the problem, the minimal set of data necessary for the tuning of each bender, consists of only three slope traces measured before and after a single adjustment of each bending couple. The data are analyzed with software realizing a method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired shape provides nearly final settings. Moreover, the characteristic functions of the benders found in the course of tuning, can be used for retuning to a new desired shape without removal from the beamline and re-measuring. We perform a ray trace, using profiler data for the finally tuned optics, predicting the performance to be expected during use of the optics on the beamline.

  2. Optimal sets of measurement data for profile reconstruction in scatterometry

    NASA Astrophysics Data System (ADS)

    Gross, H.; Rathsfeld, A.; Scholze, F.; Bär, M.; Dersch, U.

    2007-06-01

    We discuss numerical algorithms for the determination of periodic surface structures from light diffraction patterns. With decreasing feature sizes of lithography masks, increasing demands on metrology techniques arise. Scatterometry as a non-imaging indirect optical method is applied to simple periodic line structures in order to determine parameters like side-wall angles, heights, top and bottom widths and to evaluate the quality of the manufacturing process. The numerical simulation of diffraction is based on the finite element solution of the Helmholtz equation. The inverse problem seeks to reconstruct the grating geometry from measured diffraction patterns. Restricting the class of gratings and the set of measurements, this inverse problem can be reformulated as a non-linear operator equation in Euclidean spaces. The operator maps the grating parameters to special efficiencies of diffracted plane wave modes. We employ a Gauss-Newton type iterative method to solve this operator equation. The reconstruction properties and the convergence of the algorithm, however, is controlled by the local conditioning of the non-linear mapping. To improve reconstruction and convergence, we determine optimal sets of efficiencies optimizing the condition numbers of the corresponding Jacobians. Numerical examples are presented for "chrome on glass" masks under the wavelength 632.8 nm and for EUV masks.

  3. Discrimination among spawning concentrations of Lake Superior lake herring based on trace element profiles in sagittae

    USGS Publications Warehouse

    Bronte, Charles R.; Hesselberg, Robert J.; Shoesmith, John A.; Hoff, Michael H.

    1996-01-01

    Little is known about the stock structure of lake herring Coregonus artedi in Lake Superior, and recent increases in harvestable stock sizes has led to expanded exploitation in some areas. Research on marine teleosts has demonstrated that chemical differences in sagittal otoliths can be used for identification of fish stocks. We used plasma emission spectrophotometry to measure the concentrations of 10 trace elements in the sagittal otoliths from lake herring captured at eight spawning sites in Lake Superior and from Little Star Lake, an inland lake outside the Lake Superior basin. Discriminant function analysis indicated that elemental concentrations provided site-specific information but that considerable overlap existed among some locations, especially those in western Lake Superior. Correct classification rates varied from 12.0% to 86.1% and were generally higher for spawning locations from embayments in eastern Lake Superior and for the outgroup population from Little Star Lake. The results presented here demonstrate the potential usefulness of this technique for strictly freshwater species, especially those that live in highly oligotrophic waters such as Lake Superior.

  4. Vertical resolution of temperature profiles obtained from remote radiation measurements

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.

    1971-01-01

    The Backus-Gilbert theory, originally developed for analysis of inversion problems associated with the physics of the solid earth, was applied to the problem of the vertical sounding of the atmosphere by means of remote radiation measurements. An application was made to spectral intervals 2.8/cm wide in the 667/cm band CO2, and tradeoff curves are presented which quantitatively define the relationship between intrinsic vertical resolution and random error in temperature profile estimates. It is found that for a 1-2 K random error with state-of-the-art instrumentation, the intrinsic vertical resolution ranges from approximately 0.5 locale scale height (l.s.h.) in the lower troposphere to greater than 2 l.s.h. in the upper stratosphere with approximately 1 l.s.h. resolution in the vicinity of the tropopause. These values are somewhat smaller than the widths of the radioactive transfer kernels at similar levels. Increasing the number of spectral intervals from 7 to 16 is found to produce only a marginal improvement in vertical resolution.

  5. Vertical resolution of temperature profiles obtained from remote radiation measurements

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.

    1971-01-01

    The Backus-Gilbert theory is applied to the problem of the vertical sounding of the atmosphere by means of remote radiation measurements. An application is made to spectral intervals 2.8/cm wide in the 667/cm band of CO2, and tradeoff curves are presented which quantitatively define the relationship between intrinsic vertical resolution and random error in temperature profile estimates. It is found that for a 1-2K random error with state-of-the-art instrumentation, the intrinsic vertical resolution ranges from approximately 0.5 local scale height (l.s.h.) in the lower troposphere to 2 l.s.h. in the upper stratosphere with approximately 2 l.s.h. resolution in the vicinity of the tropopause. These values are somewhat smaller than the widths of the radiactive transfer kernels at similar levels. Increasing the number of spectral intervals from 7 to 16 is found to produce only a marginal improvement in vertical resolution.

  6. Measurement of temperature profiles in hot gases and flames

    NASA Technical Reports Server (NTRS)

    Simmons, R. S.; Yamada, H. Y.; Lindquist, G. H.; Arnold, C. B.

    1974-01-01

    Computer program was written for calculation of molecular radiative transfer from hot gases. Shape of temperature profile was approximated in terms of simple geometric forms so profile could be characterized in terms of few parameters. Parameters were adjusted in calculations using appropriate radiative-transfer expression until best fit was obtained with observed spectra.

  7. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, D.M.

    1980-03-27

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space).

  8. Hydrogen isotope and light element profiling in solid tritium targets used for neutron production

    NASA Astrophysics Data System (ADS)

    Earwaker, L. G.; England, J. B. A.; Goldie, D. J.

    1987-04-01

    Five targets consisting of titanium tritide layers on copper backings have been investigated using nuclear reaction analysis. As these targets are commonly used to produce monoenergetic neutrons via the T(p, n) 3 He and T(d, n) 4 He reactions, it is important to know of the presence of other elements which may produce neutrons at different energies. The thicknesses of the titanium tritide layers were measured by observing the T(p, n) 3 He threshold yield curve and also the energy spread of the neutrons using a 3He-filled gridded ion chamber. Elastic recoil analysis with a particle identifying system was used to measure the hydrogen, deuterium, tritium and 3He content, and elastic scattering was used to study the carbon and oxygen. Surprisingly high concentrations of both hydrogen and oxygen were found on all targets, including the three which had never been used. Also surprising was the 3He content which was approximately the same for targets of all ages and conditions of use. As expected, the carbon content increased strongly with use, originating no doubt, from vacuum pump oil. Up to 3% deuterium atoms were observed in unused targets with much higher contents being recorded in used targets.

  9. Automated surface profile measurement of diamond grid disk by phase-shifted shadow Moiré

    NASA Astrophysics Data System (ADS)

    Chen, Terry Yuan-Fang; Lin, Jie

    2014-06-01

    Diamond grid disk dresser is frequently employed to remove the accumulated debris lest the polishing surface glazes. The surface warpage of diamond grid disk must be small enough to assure the flatness of polished wafers during chemical mechanical planarization process. In this study, phase-shifted shadow moiré method was employed to measure the surface profile of diamond grid disk. To eliminate erroneous bright or black spots caused by the diamond grids, a new approach is proposed by automatically selecting a proper threshold value from the differentiated image resulting from the addition of four phase-shifted images. According to the largest size of erroneous spot, the size of a structuring element is determined for morphology filtering. Thereafter the phase can be calculated and unwrapped correctly. Test of the method on a diamond grid disk is demonstrated and discussed.

  10. Elements of Mathematics, Book 12: Introduction to Measure Theory.

    ERIC Educational Resources Information Center

    Exner, Robert; And Others

    One of 12 books developed for use with the core material (Book O) of the Elements of Mathematics Program, this text covers material well beyond the scope of the usual secondary mathematics sequences. These materials are designed for highly motivated students with strong verbal abilities; mathematical theories and ideas are developed through…

  11. Elements of Information Inquiry, Evolution of Models & Measured Reflection

    ERIC Educational Resources Information Center

    Callison, Daniel; Baker, Katie

    2014-01-01

    In 2003 Paula Montgomery, founding editor of School Library Media Activities Monthly and former branch chief of school media services for the Maryland State Department of Education, published a guide to teaching information inquiry. Her staff also illustrated the elements of information inquiry as a recursive cycle with interaction among the…

  12. Applying velocity profiling technology to flow measurement at the Orinda water treatment plant

    SciTech Connect

    Metcalf, M.A.; Kachur, S.; Lackenbauer, S.

    1998-07-01

    A new type of flow measurement technology, velocity profiling, was tested in the South Channel of the Orinda Water Treatment Plant. This new technology allowed installation in the difficult hydraulic conditions of the South Channel, without interrupting plant operation. The advanced technology of velocity profiling enables flow measurements to be obtained in sites normally unusable by more traditional methods of flow rate measurement.

  13. X-Ray fluorescence measurement of the zinc profile of a single hair

    SciTech Connect

    Toribara, T.Y.; Jackson, D.A.

    1982-04-01

    Many trace elements appear in hair in concentrations related to those in the blood, but the relationship for zinc is complicated by disorders that probably affect its state in the blood. A built-to-order x-ray fluorescence spectrometer was used to measure, nondestructively, the concentrations of 16 elements in a 1-mm interval of a single hair. A scan along a hair strand, together with the known growth rate, enables the zinc concentration in the hair to be correlated with the time the hair was formed. A comparison with the blood concentration at the same time may reveal possible bodily disorders that affect the availability of zinc to incorporation in the hair. The instrument has been carefully calibrated for zinc, and researchers studied the conditions under which there can be losses or gains in the hair after sampling. The sample chamber will accommodate 16 separate holders, and each sample may be automatically measured according to a program pre-selected for it. The average zinc content of hair samples from foreign countries, some ancient specimens, and an interesting profile of a strand from an Iraqi woman are shown.

  14. Characterization of photoresist and simulation of a developed resist profile for the fabrication of gray-scale diffractive optic elements

    NASA Astrophysics Data System (ADS)

    Park, Jong Rak; Sierchio, Justin; Zaverton, Melissa; Kim, Youngsik; Milster, Tom D.

    2012-02-01

    We have characterized a photoresist used for the fabrication of gray-scale diffractive optic elements in terms of Dill's and Mack's model parameters. The resist model parameters were employed for the simulations of developed resist profiles for sawtooth patterns executed by solving the Eikonal equation with the fast-marching method. The simulated results were shown to be in good agreement with empirical data.

  15. Shape factors for elements of the infiltration profile in surface irrigation:Generic approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced mathematical models of surface irrigation are based on the equations of motion applied to a series of cells comprising the surface stream and an infiltration profile. In the simulation, a mass balance must be preserved amongst the inflow, surface stream, infiltrated profile, and runoff vol...

  16. Combining microwave radiometer and wind profiler radar measurements to improve accuracy and resolution of atmospheric humidity profiling

    NASA Astrophysics Data System (ADS)

    Bianco, L.; Cimini, D.; Ware, R.; Marzano, F.

    2003-04-01

    An algorithm to compute high-resolution atmospheric humidity profiling by synergetic use of microwave radiometer and wind profiler radar is illustrated. Wind profiler radar data are input for the computation of the potential refractivity gradient profiles, and combined with radiometer estimates of temperature profiles, which are needed to fully retrieve humidity gradient profiles. The algorithm makes use of recent developments in Wind Profiler Radar (WPR) signal processing, computing the zeroth, first, and second moments of WPR Doppler spectra via a fuzzy logic method (Bianco and Wilczak, 2002), which provides quality control of radar data in the spectral domain. The zeroth, first, and second moments are employed to compute the structure parameter of potential refractivity (C_φ^2), the horizontal wind (V_h), and the structure parameter of vertical velocity (C_w^2) respectively (Stankov et al. 2002). In addition, the algorithm uses a formula proposed by White (White et al. 1999) for the computation of C_w^2, to account for the spatial and temporal filtering effects on the Doppler spectrum. C_φ^2, V_h, and C_w^2 are then combined together to retrieve the potential refractivity gradient profiles. On the radiometric side, a first attempt is made using low resolution temperature profile estimates obtained following the algorithm described by Han and Westwater (1995), which make use of ground-based sensors, including a dual channel microwave radiometer (MWR), and other surface meteorological instruments. Then, the advantages of using estimates of temperature and humidity profiles from a multichannel microwave radiometer profiler (MWRP) are evaluated. Finally, the combined algorithm performances in retrieving humidity profiles are tested with simultaneous radiosonde "in situ" measurements. The empirical sets of WPR and MWR data were provided by the Atmospheric Radiation Measurement (ARM) Program, and collected at the ARM Southern Great Plains (SGP) site (latitude: 36^o

  17. Combining Microwave Radiometer and Wind Profiler Radar Measurements to Improve Accuracy and Resolution of Atmospheric Humidity Profiling

    NASA Astrophysics Data System (ADS)

    Bianco, L.; Cimini, D.; Ware, R.; Marzano, F.

    2003-04-01

    An algorithm to compute high-resolution atmospheric humidity profiling by synergetic use of microwave radiometer and wind profiler radar is illustrated. Wind profiler radar data are input for the computation of the potential refractivity gradient profiles, and combined with radiometer estimates of temperature profiles, which are needed to fully retrieve humidity gradient profiles. The algorithm makes use of recent developments in Wind Profiler Radar (WPR) signal processing, computing the zeroth, first, and second moments of WPR Doppler spectra via a fuzzy logic method (Bianco and Wilczak, 2002), which provides quality control of radar data in the spectral domain. The zeroth, first, and second moments are employed to compute the structure parameter of potential refractivity (C_φ^2), the horizontal wind (V_h), and the structure parameter of vertical velocity (C_w^2) respectively (Stankov et al. 2002). In addition, the algorithm uses a formula proposed by White (White et al. 1999) for the computation of C_w^2, to account for the spatial and temporal filtering effects on the Doppler spectrum. C_φ^2, V_h, and C_φ^2 are then combined together to retrieve the potential refractivity gradient profiles. On the radiometric side, a first attempt is made using low resolution temperature profile estimates obtained following the algorithm described by Han and Westwater (1995), which make use of ground-based sensors, including a dual channel microwave radiometer (MWR), and other surface meteorological instruments. Then, the advantages of using estimates of temperature and humidity profiles from a multichannel microwave radiometer profiler (MWRP) are evaluated. Finally, the combined algorithm performances in retrieving humidity profiles are tested with simultaneous radiosonde "in situ" measurements. The empirical sets of WPR and MWR data were provided by the Atmospheric Radiation Measurement (ARM) Program, and collected at the ARM Southern Great Plains (SGP) site (latitude: 36^o

  18. Multiband reflectometry system for density profile measurement with high temporal resolution on JET tokamak

    SciTech Connect

    Sirinelli, A.; Alper, B.; Fessey, J.; Hogben, C.; Sandford, G.; Walsh, M. J.; Cupido, L.; Meneses, L. [Instituto de Plasmas e FuSao Nuclear, Instituto Superior Tecnico, Associacao EURATOM Collaboration: JET-EFDA Contributors

    2010-10-15

    A new system has been installed on the JET tokamak consisting of six independent fast-sweeping reflectometers covering four bands between 44 and 150 GHz and using orthogonal polarizations. It has been designed to measure density profiles from the plasma edge to the center, launching microwaves through 40 m of oversized corrugated waveguides. It has routinely produced density profiles with a maximum repetition rate of one profile every 15 {mu}s and up to 100 000 profiles per pulse.

  19. Novel approach for quantitatively estimating element retention and material balances in soil profiles of recharge basins used for wastewater reclamation.

    PubMed

    Eshel, Gil; Lin, Chunye; Banin, Amos

    2015-01-01

    We investigated changes in element content and distribution in soil profiles in a study designed to monitor the geochemical changes accruing in soil due to long-term secondary effluent recharge, and its impact on the sustainability of the Soil Aquifer Treatment (SAT) system. Since the initial elemental contents of the soils at the studied site were not available, we reconstructed them using scandium (Sc) as a conservative tracer. By using this approach, we were able to produce a mass-balance for 18 elements and evaluate the geochemical changes resulting from 19 years of effluent recharge. This approach also provides a better understanding of the role of soils as an adsorption filter for the heavy metals contained in the effluent. The soil mass balance suggests 19 years of effluent recharge cause for a significant enrichment in Cu, Cr, Ni, Zn, Mg, K, Na, S and P contents in the upper 4m of the soil profile. Combining the elements lode record during the 19 years suggest that Cr, Ni, and P inputs may not reach the groundwater (20 m deep), whereas the other elements may. Conversely, we found that 58, 60, and 30% of the initial content of Mn, Ca and Co respectively leached from the upper 2-m of the soil profile. These high percentages of Mn and Ca depletion from the basin soils may reduce the soil's ability to buffer decreases in redox potential pe and pH, respectively, which could initiate a reduction in the soil's holding capacity for heavy metals. PMID:25300016

  20. 3D-profile measurement of advanced semiconductor features by reference metrology

    NASA Astrophysics Data System (ADS)

    Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami; Lorusso, Gian F.; Horiguchi, Naoto

    2016-03-01

    A method of sub-nanometer uncertainty for the 3D-profile measurement using TEM (Transmission Electron Microscope) images is proposed to standardize 3D-profile measurement through reference metrology. The proposed method has been validated for profiles of Si lines, photoresist features and advanced-FinFET (Fin-shaped Field-Effect Transistor) features in our previous investigations. However, efficiency of 3D-profile measurement using TEM is limited by measurement time including processing of the sample. In this article, we demonstrate a novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB (Focused Ion Beam) slope cut and CD-SEM (Critical Dimension Secondary Electron Microscope) measuring. Using the method, a few micrometer wide on a wafer is coated and cut by 45 degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We apply FIB-to-CDSEM method to CMOS sensor device. 3D-profile and 3D-profile parameters such as top line width and side wall angles of CMOS sensor device are evaluated. The 3D-profile parameters also are measured by TEM images as reference metrology. We compare the 3D-profile parameters by TEM method and FIB-to-CDSEM method. The average values and correlations on the wafer are agreed well between TEM and FIB-to- CDSEM methods.

  1. Obtaining three-dimensional height profiles from a two-dimensional slope measuring instrument

    SciTech Connect

    Irick, S.C.; Kaza, R.K.; McKinney, W.R. )

    1995-02-01

    The long trace profiler (LTP) was developed in order to measure the mid- and long-period variations in optical components for beamlines of high-brightness synchrotron sources. The LTP is a slope measuring instrument, and the optic under test is typically measured along a single tangential line, giving a two-dimensional profile. If a three-dimensional height profile (surface map) is desired, it is necessary to combine the integrated slopes of several measurements. A series of LTP measurements and a data processing method used to combine standard LTP data into a three-dimensional height profile are described. The measurement of a synchrotron beamline mirror and its three-dimensional height profile are presented.

  2. Trace Element Abundance Measurements on Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Flynn, George

    1996-01-01

    The X-Ray Microprobe on beamline X-26A at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was used to determine the abundances of elements from Cr through Sr in individual interplanetary dust particles (IDPs) collected from the Earth's stratosphere and the Scanning Transmission X-ray Microscope (STXM) on beamline X-1A at the NSLS was used to determine the carbon abundances and spatial distributions in IDPs. In addition, modeling was performed in an attempt to associate particular types of IDPs with specific types of parent bodies, and thus to infer the chemistry, mineralogy, and structural properties of those parent bodies.

  3. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants.

    PubMed

    Zhan, Yu; Liu, Changsheng; Zhang, Fengpeng; Qiu, Zhaoguo

    2016-07-01

    The laser ultrasonic generation of Rayleigh surface wave and longitudinal wave in an elastic plate is studied by experiment and finite element method. In order to eliminate the measurement error and the time delay of the experimental system, the linear fitting method of experimental data is applied. The finite element analysis software ABAQUS is used to simulate the propagation of Rayleigh surface wave and longitudinal wave caused by laser excitation on a sheet metal sample surface. The equivalent load method is proposed and applied. The pulsed laser is equivalent to the surface load in time and space domain to meet the Gaussian profile. The relationship between the physical parameters of the laser and the load is established by the correction factor. The numerical solution is in good agreement with the experimental result. The simple and effective numerical and experimental methods for laser ultrasonic measurement of the elastic constants are demonstrated. PMID:27079489

  4. AERIAL MEASUREMENTS OF CONVECTION CELL ELEMENTS IN HEATED LAKES

    SciTech Connect

    Villa-Aleman, E; Saleem Salaymeh, S; Timothy Brown, T; Alfred Garrett, A; Malcolm Pendergast, M; Linda Nichols, L

    2007-12-19

    Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

  5. Aerial measurements of convection cell elements in heated lakes

    NASA Astrophysics Data System (ADS)

    Villa-Aleman, E.; Salaymeh, S. R.; Brown, T. B.; Garrett, A. J.; Nichols, L. S.; Pendergast, M. M.

    2008-03-01

    Power plant-heated lakes are characterized by a temperature gradient in the thermal plume originating at the discharge of the power plant and terminating at the water intake. The maximum water temperature discharged by the power plant into the lake depends on the power generated at the facility and environmental regulations on the temperature of the lake. Besides the observed thermal plume, cloud-like thermal cells (convection cell elements) are also observed on the water surface. The size, shape and temperature of the convection cell elements depends on several parameters such as the lake water temperature, wind speed, surfactants and the depth of the thermocline. The Savannah River National Laboratory (SRNL) and Clemson University are collaborating to determine the applicability of laboratory empirical correlations between surface heat flux and thermal convection intensity. Laboratory experiments at Clemson University have demonstrated a simple relationship between the surface heat flux and the standard deviation of temperature fluctuations. Similar results were observed in the aerial thermal imagery SRNL collected at different locations along the thermal plume and at different elevations. SRNL will present evidence that the results at Clemson University are applicable to cooling lakes.

  6. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data

    PubMed Central

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2015-01-01

    Background: Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. Objective: The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Methods: Quantitative structure–activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro–in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. Results: The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Conclusion: Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Citation: Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and

  7. Profiling measurements of metal ion distribution in thin polymer inclusion membranes by Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Guedioura, B.; Bendjaballah, N.; Alioui, N.

    2014-05-01

    Polymer inclusion membranes (PIMs) composed of a homogeneous mixture of cellulose triacetate matrix, 2-nitro-phenyl-octyl-ether as plasticizer and tri-octyl-phosphine-oxyde as carrier were synthesized by the spin coating method. Synthesized membranes were doped with molybdenum metal ions and then characterized by four experimental techniques: thermo gravimetric and differential analyses, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and Rutherford backscattering (RBS) spectrometry using a 3.2 MeV He+ ion beam. The RBS analysis has established both the elemental composition as well as the Mo+ metal profiling of the studied PIMs. The experimental irradiation conditions were optimized in order to determine the ion fluence thresholds resulting in measurable changes in elemental composition of membranes. Changes in physico-chemical properties of the irradiated PIMs vs He+ ion fluence were observed with the ATR-FTIR analysis. Also, the SEM analysis of PIMs surfaces has revealed a porous texture, while the thermal analysis of annealed PIMs at 105°C has showed no significant changes of mass (∼1%) of the studied samples.

  8. Iron Deprivation in Synechocystis: Inference of Pathways, Non-coding RNAs, and Regulatory Elements from Comprehensive Expression Profiling

    PubMed Central

    Hernández-Prieto, Miguel A.; Schön, Verena; Georg, Jens; Barreira, Luísa; Varela, João; Hess, Wolfgang R.; Futschik, Matthias E.

    2012-01-01

    Iron is an essential cofactor in many metabolic reactions. Mechanisms controlling iron homeostasis need to respond rapidly to changes in extracellular conditions, but they must also keep the concentration of intracellular iron under strict control to avoid the generation of damaging reactive oxygen species. Due to its role as a redox carrier in photosynthesis, the iron quota in cyanobacteria is about 10 times higher than in model enterobacteria. The molecular details of how such a high quota is regulated are obscure. Here we present experiments that shed light on the iron regulatory system in cyanobacteria. We measured time-resolved changes in gene expression after iron depletion in the cyanobacterium Synechocystis sp. PCC 6803 using a comprehensive microarray platform, monitoring both protein-coding and non-coding transcripts. In total, less than a fifth of all protein-coding genes were differentially expressed during the first 72 hr. Many of these proteins are associated with iron transport, photosynthesis, or ATP synthesis. Comparing our data with three previous studies, we identified a core set of 28 genes involved in iron stress response. Among them were genes important for assimilation of inorganic carbon, suggesting a link between the carbon and iron regulatory networks. Nine of the 28 genes have unknown functions and constitute key targets for further functional analysis. Statistical and clustering analyses identified 10 small RNAs, 62 antisense RNAs, four 5′UTRs, and seven intragenic elements as potential novel components of the iron regulatory network in Synechocystis. Hence, our genome-wide expression profiling indicates an unprecedented complexity in the iron regulatory network of cyanobacteria. PMID:23275872

  9. A voice coil motor based measuring force control system for tactile scanning profiler

    NASA Astrophysics Data System (ADS)

    Feng, Shengdong; Liu, Xiaojun; Chen, Liangzhou; Zhou, Liping; Lu, Wenlong

    2015-02-01

    In tactile scanning profiler, the measuring force would change in a wide range when it was used for profile measurement in a large range, which could possibly destroy the measured surface. To solve the problem, measuring force control system for tactile scanning profiler was needed. In the paper, a voice coil motor-based measuring force control system for tactile scanning profiler was designed. In the design, a low stiffness coefficient spring was used to provide contact force, while a voice coil motor (VCM) to balance the spring force so that the contact force could be kept for constant measuring force. A VCM was designed specially, and for active measuring force control, a precision current source circuit under the control of a DSP unit was designed to drive the VCM. The performance of voice coil motor based measuring force control system had been tested, and its good characteristics were verified.

  10. TLD measurements of gamma heating in heavy elements.

    NASA Technical Reports Server (NTRS)

    Reilly, H. J.; Robinson, R. A.; Peters, L. E., Jr.

    1971-01-01

    Measurements and calculations of gamma heating in polyethylene and lead containers were done and compared. The objective was to provide a workable method of getting good values for gamma heating in in-pile experiments containing materials of high atomic numbers. It was inferred that a combination of thermoluminescent dosimeter measurements, using Bragg-Gray theory, with photon transport calculations using the ANISN computer program, would meet this objective.

  11. Turbulence in planetary occultations. II - Effects on atmospheric profiles derived from Doppler measurements. III - Effects on atmospheric profiles derived from intensity measurements

    NASA Technical Reports Server (NTRS)

    Haugstad, B. S.

    1978-01-01

    The nature and magnitude of turbulence-induced errors in atmospheric profiles derived from Doppler measurements made during radio occultations are investigated. It is found that turbulence in planetary atmospheres induces both fluctuating and systematic errors in derived profiles, but the errors of both types are very small. Consideration of the occultation of Mariner 10 by Venus and of the Pioneer occultations by Jupiter shows that the rms fractional errors in the atmospheric profiles derived from these observations were less than 0.01 in both temperature and pressure, while the fractional systematic errors were typically of the order of 1 millionth. The extent to which atmospheric profiles derived from radio and optical intensity measurements are affected by turbulence is also examined. The results indicate that turbulence in planetary atmospheres has only a marginal effect on derived profiles in the weak-scattering limit and that the turbulence-induced errors in this case are always much larger than the corresponding errors in profiles derived from radio Doppler measurements.

  12. Overview on the profile measurement of turbine blade and its development

    NASA Astrophysics Data System (ADS)

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Yu, Yanguang

    2010-10-01

    Turbine machinery has an extraordinary wide range of applications in the aviation, aerospace, automotive, energy and many other industries. The turbine blade is one of the most important parts of turbine machinery, and the characteristic parameters, pressure ratio of the engine and rotating speed of the turbine are all related to the shape and size of blades. Therefore, the profile measurement of turbine blade is an essential issue in the blade machining processing, however, it is difficult and particular to establish the profile measurement of turbine blade because of its complicated shapes and space angles of the blades, and the specific stringent environmental requirements need a more appropriate measurement method to the Turbine Blade profile measurement. This paper reviews the recent research and development on the Turbine Blade profile measurement methods, which mainly describes several common and advanced measurement methods, such as the traditional coordinate measuring machines, some optical measurement methods with the characteristics of non-contact like optical theodolite, three-dimensional photography, laser interferometry, as well as the laser triangulation method studied more recently and so on. Firstly, the measuring principles, the key technical issues and the applications in the Turbine Blade profile measurement of the methods which are mentioned above are described respectively in detail, and the characteristics of those methods are analyzed in this paper. Furthermore, the scope of application and limitations of those measurement methods are summed up. Finally, some views on the current research focus and perspective trend of the Turbine Blade profile measurement technology are presented.

  13. Thermal strain along optical fiber in lightweight composite FOG : Brillouin-based distributed measurement and finite element analysis

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Sanada, Teruhisa; Takeda, Nobuo; Mitani, Shinji; Mizutani, Tadahito; Sasaki, Yoshinobu; Shinozaki, Keisuke

    2014-05-01

    Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain distribution along an optical fiber in a CFRP FOG using a Brillouin-based high-spatial resolution system. The key strain profile is clarified and the strain development is simulated using finite element analysis. Finally, several constituent materials for FOG are quantitatively compared from the aspect of the maximum thermal strain and the density, confirming the clear advantage of CFRP.

  14. Small size probe for inner profile measurement of pipes using optical fiber ring beam device

    NASA Astrophysics Data System (ADS)

    Wakayama, Toshitaka; Machi, Kizuku; Yoshizawa, Toru

    2012-11-01

    The requirements of inner profile measurement of pipes and holes become recently larger and larger, and applications of inner profile measurement have rapidly expanded to medical field as well as industrial fields such as mechanical, automobile and heavy industries. We have proposed measurement method by incorporating a ring beam device that produces a disk beam and have developed various probes for different inner profile measurement. To meet request for applying to smaller diameter pipes, we tried to improve the ring beam light source using a conical mirror, optical fiber collimator and a laser diode. At this moment a probe with the size of 5 mm in diameter has been realized.

  15. Quality and Trace Element Profile of Tunisian Olive Oils Obtained from Plants Irrigated with Treated Wastewater

    PubMed Central

    Benincasa, Cinzia; Gharsallaoui, Mariem; Perri, Enzo; Briccoli Bati, Caterina; Ayadi, Mohamed; Khlif, Moncen; Gabsi, Slimane

    2012-01-01

    In the present work the use of treated wastewater (TWW) to irrigate olive plants was monitored. This type of water is characterized by high salinity and retains a substantial amount of trace elements, organic and metallic compounds that can be transferred into the soil and into the plants and fruits. In order to evaluate the impact of TWW on the overall quality of the oils, the time of contact of the olives with the soil has been taken into account. Multi-element data were obtained using ICP-MS. Nineteen elements (Li, B, Na, Mg, Al, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ba and La) were submitted for statistical analysis. Using analysis of variance, linear discriminant analysis and principal component analysis it was possible to differentiate between oils produced from different batches of olives whose plants received different types of water. Also, the results showed that there was correlation between the elemental and mineral composition of the water used to irrigate the olive plots and the elemental and mineral composition of the oils. PMID:22654625

  16. Deconvolution-based correction of alkali beam emission spectroscopy density profile measurements

    SciTech Connect

    Pusztai, I.; Pokol, G.; Refy, D.; Por, G.; Dunai, D.; Anda, G.; Zoletnik, S.; Schweinzer, J.

    2009-08-15

    A deconvolution-based correction method of the beam emission spectroscopy (BES) density profile measurement is demonstrated by its application to simulated measurements of the COMPASS and TEXTOR tokamaks. If the line of sight is far from tangential to the flux surfaces, and the beam width is comparable to the scale length on which the light profile varies, the observation may cause an undesired smoothing of the light profile, resulting in a non-negligible underestimation of the calculated density profile. This effect can be reduced significantly by the emission reconstruction method, which gives an estimate of the emissivity along the beam axis from the measured light profile, taking the finite beam width and the properties of the measurement into account in terms of the transfer function of the observation. Characteristics and magnitude of the mentioned systematic error and its reduction by the introduced method are studied by means of the comprehensive alkali BES simulation code RENATE.

  17. Profiles.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)

  18. Reproducibility of trace element profiles in a specimen of the deep-water bamboo coral Keratoisis sp.

    NASA Astrophysics Data System (ADS)

    Sinclair, Daniel J.; Williams, B.; Allard, G.; Ghaleb, B.; Fallon, S.; Ross, S. W.; Risk, M.

    2011-09-01

    Bamboo corals (Order Gorgonacea, Family Isididae) are attractive prospects for deep-sea paleoceanographic reconstruction, capturing trace elements in their calcitic skeletons that may serve as environmental proxies with subdecadal resolution over multi-century timescales. We study the reproducibility and fidelity of trace-element profiles (Ba, Mg, Sr, Mn, U, Pb) in a 420-year-old specimen of the bamboo coral Keratoisis sp. from the SE USA. Using laser-ablation ICP-MS to obtain multiple replicate profiles, we use spectral techniques to distinguish noise and irreproducible variations from fully reproducible geochemical fluctuations that are candidates for environmental signals. By quantifying variability between profiles, we assess the fidelity with which the corals potentially record environmental information. Barium is the most reproducible element in the skeleton, with large fluctuations along different growth radii reproducing to within 4%. Both Mg and Sr have very uniform levels within the coral, but display low-amplitude irreproducible variations that might represent an internal biological process. In the case of Mg, which has been proposed as a paleotemperature proxy, this irreproducibility would represent an intrinsic uncertainty of ˜±0.1 to 0.4 °C. Both Mn and Pb contain some irreproducibility superimposed upon broad reproducible profiles that may be environmental signals. Some of the irreproducible Pb fluctuations correlate with cracks and dark bands in the sample suggesting detrital or surface contamination. Uranium displays large amplitude variations which are not reproducible along different radii. This suggests that uranium cannot be used for paleoenvironmental reconstruction, and may show signs of early diagenesis - a possibility that could complicate attempts to date young Keratoisis sp. samples by U-series geochemistry. The highly reproducible Ba signal allows precise alignment of profiles and thus we can show that growth rate along one radius can

  19. Measurement of modulation transfer function for four types of imaging elements used in fast cameras

    SciTech Connect

    Estrella, R.M.; Sammons, T.J. . Amador Valley Operations); Thomas, S.W. )

    1991-01-01

    We have measured the modulation transfer function (MTF) of fiber- optic bundles (reducers), minifiers (inverting, electrostatically focused imaging tube reducers), microchannel plate image intensifiers (MCPIs), and streak tubes as part of our ongoing device evaluation program aimed at precise characterization of various imaging elements used in fast cameras. This paper describes our measurement equipment and techniques and shows plots of MTF measurements for each of four types of fast-camera elements tested. 6 refs., 9 figs.

  20. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  1. Amplitude modulated heterodyne reflectometer for density profile and density fluctuation profile measurements at W7-AS

    SciTech Connect

    Hirsch, M.; Hartfuss, H.; Geist, T.; de la Luna, E.

    1996-05-01

    A broadband heterodyne reflectometer operating in the frequency range 75{endash}110 GHz in extraordinary mode polarization is used at the W7-AS stellarator for both fast density profile determination and density fluctuation studies. The probing signal is amplitude modulated at a frequency 133 MHz using the envelope phase for profile evaluation and the carrier phase to determine the fluctuation information simultaneously. Separate Gaussian beam optics for final signal launch and detection permits a beam waist of about 2 cm at the reflecting layer in the plasma. Amplitude modulated detection is accomplished in the intermediate frequency part by synchronous detection after recovery of the carrier by narrow-band filtering. Voltage controlled solid state oscillators followed by active frequency multiplication allow to scan the full frequency band within less than 1 ms. For typical W7-AS operation the accessible density range is 1{times}10{sup 19} to 6{times}10{sup 19} m{sup {minus}3} for on axis magnetic field of 2.5 T and 4.5{times}10{sup 19} to 10{times}10{sup 19} m{sup {minus}3} for 1.25 T, respectively. The probed radial positions range between 0.2{lt}{ital r}/{ital a}{lt}1.1 depending on plasma conditions ({ital a}{approx_equal}17 cm). {copyright} {ital 1996 American Institute of Physics.}

  2. Profiles of Material Properties in Induction-Hardened Steel Determined through Inversion of Resonant Acoustic Measurements

    SciTech Connect

    Johnson, W.L.; Kim, S.A.; Norton, S.J.

    2005-04-09

    Electromagnetic-acoustic measurements of resonant frequencies of induction-hardened steel shafts were used in an inverse calculation to determine parameters of the radial variations in the shear constant and density, including the effects of material variations and residual stress. Parameters determined for the profile of the shear constant were consistent with independent measurements on cut specimens and estimates of the acoustoelastic contribution. The profiles determined for material variations were close to those of the measured hardness.

  3. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats

    PubMed Central

    Han, Pingping; Lu, Shifeier; Zhou, Yinghong; Moromizato, Karine; Du, Zhibin; Friis, Thor; Xiao, Yin

    2016-01-01

    Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla. PMID:27338361

  4. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats.

    PubMed

    Han, Pingping; Lu, Shifeier; Zhou, Yinghong; Moromizato, Karine; Du, Zhibin; Friis, Thor; Xiao, Yin

    2016-01-01

    Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of (25)Mg, (28)Si, (39)K, (47)Ti, (56)Fe, (59)Co, (77)Se, (88)Sr, (137)Ba, and (208)Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of (28)Si, (77)Se, (208)Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla. PMID:27338361

  5. Attribute Ratings and Profiles of the Job Elements of the Position Analysis Questionnaire (PAQ).

    ERIC Educational Resources Information Center

    Marquardt, Lloyd D.; McCormick, Ernest J.

    The primary purpose of this study was to obtain estimates of the human attribute requirements of the job elements of the Position Analysis Questionnaire (PAQ). A secondary purpose was to explore the reliability of job-related ratings as a function of the number of raters. A taxonomy of 76 human attributes was used and ratings of the relevance of…

  6. Trace elements in a Pliocene-Pleistocene lignite profile from the Afsin-Elbistan field, eastern Turkey

    SciTech Connect

    Karayigit, A.I.; Gayer, R.A.

    2000-01-01

    The authors present the results of proximate and ultimate analyses, mineralogical determination, and trace element analysis of a lignite profile from the Afsin-Elbistan field (eastern Turkey). The lignite, which developed during the Pliocene-Pleistocene transition under freshwater lacustrine conditions, contains white gastropod (Planorbidae) shells composed of calcite and a little aragonite. Other identifiable mineral constituents, analyzed by X-ray powder diffraction, include quartz, pyrite, clay minerals, and rare feldspares. Petrographical studies demonstrate the immature nature of these lignites and very low degree of compaction during diagenesis. The mean concentrations of trace elements in the lignite, determined by inductively coupled plasma mass spectrometry (ICP-MS), show relative enrichment in Mo (avg. 20 ppm), W (avg. 15 ppm) and U (avg. 25 ppm) when compared to the global range for most coals, while the others (Ti, p, Sc, Be, Mn, Co, Cu, Zn, Ga, As, Rb, Sr, Zr, Nb, Cs, Ba, Y, Ta, Tl, Pb, Bi, Th, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu) fall within their global ranges. Many of the trace elements show a good correlation with the ash yield, implying an inorganic affinity. However, Mo and Sr show a negative correlation with the ash yield and are thought to be organically associated. A lack of correlation of U with either the ash yield or the coal sulfur content, together with its relative enrichment, suggests secondary mobility of this element.

  7. Single element and competitive sorption of copper, zinc and lead onto a Luvisol profile

    NASA Astrophysics Data System (ADS)

    Sipos, Péter

    2009-12-01

    The sorption parameters of Cu, Zn and Pb are related to the composition of the different genetic horizons of a Luvisol profile in batch sorption experiments. The affinities of metals towards the soil samples from different horizons followed the same sequence, e.g. Pb≥C>>Zn. By far the highest metal retention was found in the Ck horizon due to the alkaline conditions. It is followed by the A horizon with its high organic matter content, while the lowest sorption capacity was found in the B t horizon. In the horizons free of carbonate, primarily Pb and Cu were immobilized. The studied soil can be characterized by high amount of organic matter, clay accumulation horizon, as well as calcareous subsoil. This kind of profile development makes soils able to immobilize a significant metal pollution.

  8. Extractable trace elements in the soil profile after years of biosolids application

    SciTech Connect

    Barbarick, K.A.; Ippolito, J.A.; Westfall, D.G.

    1998-07-01

    The US Environmental Protection Agency (USEPA) and some state agencies regulate trace element additions to soil from land application of biosolids. The authors generally consider trace elements added in biosolids (sewage sludge) to accumulate in the soil surface without significant transport below the plow layer. They used 11 yr of field-study information from biosolids addition to dryland hard red winter wheat (Triticum aestivum L. Vona or TAM107) to determine the distribution of NH{sub 4}HCO{sub 3} diethylenetriaminepentaacetic acid (AB-DTPA)-extractable Cd, Cr, Cu, Mo, Ni, Pb, and Zn in 0 to 20 (plow layer), 20 to 60, 60 to 100, and 100 to 150 cm depth increments. This study is unique since it involves multiple biosolids application in a dryland summer fallow agroecosystem. The authors applied five or six applications of biosolids from the cities of Littleton and Englewood, CO, to Weld loam or Platner loam at four locations. This paper focuses on the 0 (control), the 56 or 67 kg of N ha{sup {minus}1} fertilizer rates, and the 6.7 and 26.8 dry Mg of biosolids ha{sup {minus}1} rates that they added every crop year. The authors observed significant (P < 0.10) accumulations of the trace elements in the plow layer of the biosolids-amended soils. Only Zn showed consistent increases in extractable levels below the plow layer at all four sites. The biosolids Zn concentration was larger than any other trace element resulting in larger loading of this element.

  9. Determining comparative elemental profile using handheld X-ray fluorescence in humans, elephants, dogs, and dolphins: Preliminary study for species identification.

    PubMed

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Klinhom, Sarisa; Kaewmong, Patcharaporn; Thitaram, Chatchote; Mahakkanukrauh, Pasuk

    2016-06-01

    Species identification is a crucial step in forensic anthropological studies. The aim of this study was to determine elemental profiles in bones from four mammal species, to be used for species discrimination. Human, elephant, dog, and dolphin bones were scanned by X-ray fluorescence (XRF); the differences in elemental profiles between species were determined using discriminant analysis. Dogs had the greatest number of elements (23), followed by humans (22) and elephants (20). Dolphins had the lowest number of elements (16). The accuracy rate of species identification in humans, elephants, dogs, and dolphins was 98.7%, 100%, 94.9%, and 92.3%, respectively. We conclude that element profiles of bones based on XRF analyses can serve as a tool for determining species. PMID:27093230

  10. Temporally and spatially integrated elemental analysis algorithm for low-pressure micro-LIBS measurements

    SciTech Connect

    Mungas, Greg

    2007-07-01

    Microscopic laser-induced breakdown spectroscopy (micro-LIBS) is a promising measurement technique for determining the relative elemental abundances of microscopic spots. Currently, the predominant source of measurement accuracy errors for micro-LIBS is shown to be based on a constant plasma temperature assumption. To reduce these measurement errors particularly in low-pressure applications (i.e.,extraterrestrial environments), a mathematical data analysis algorithm is presented that utilizes the many linear independent emission lines per element to estimate the time-integrated state of the plasma in the form of a plasma state matrix coupled with a vector of relative elemental abundances in the observed emission.

  11. Wake profile measurements of fixed and oscillating flaps

    NASA Technical Reports Server (NTRS)

    Owen, F. K.

    1984-01-01

    Although the potential of laser velocimetry for the non-intrusive measurement of complex shear flows has long been recognized, there have been few applications in other small, closely controlled laboratory situations. Measurements in large scale, high speed wind tunnels are still a complex task. To support a study of periodic flows produced by an oscillating edge flap in the Ames eleven foot wind tunnel, this study was done. The potential for laser velocimeter measurements in large scale production facilities are evaluated. The results with hot wire flow field measurements are compared.

  12. A lidar system for measuring atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  13. Temporal variability of the trade wind inversion: Measured with a boundary layer vertical profiler. Master's thesis

    SciTech Connect

    Grindinger, C.M.

    1992-05-01

    This study uses Hawaiian Rainband Project (HaRP) data, from the summer of 1991, to show a boundary layer wind profiler can be used to measure the trade wind inversion. An algorithm has been developed for the profiler that objectively measures the depth of the moist oceanic boundary layer. The Hilo inversion, measured by radiosonde, is highly correlated with the moist oceanic boundary layer measured by the profiler at Paradise Park. The inversion height on windward Hawaii is typically 2253 + or - 514 m. The inversion height varies not only on a daily basis, but on less than an hourly basis. It has a diurnal, as well as a three to four day cycle. There appears to be no consistent relationship between inversion height and precipitation. Currently, this profiler is capable of making high frequency (12 minute) measurements of the inversion base variation, as well as other features.

  14. PNNL/Euratom glass fiber-optic, spent-fuel profile measurement system

    SciTech Connect

    Bowyer, S.M.; Smart, J.E.; Hansen, R.R.

    1999-07-01

    Discussions between Euratom and Pacific Northwest National Laboratory (PNNL) revealed a need for a neutron detection system that could measure the neutron profile down the entire length of a CASTOR in one measurement. The CASTORS (dry storage casks for spent fuel and vitrified wastes) are {approximately}6 m high and 2 x 2 m square in cross section. Neutron profiles of the CASTORS are desirable for both content identification and verification. Profile measurements have traditionally been done with {sup 3}He-based detectors {approximately}1 m high that scan the length of a CASTOR as they are lifted by a crane. Geometric reproducibility errors plague this type of measurement; hence, the ability to simultaneously measure the neutron profile over the entire length of the CASTOR became highly desirable. Use of the PNNL-developed neutron-sensitive glass fibers in the construction of a 6-m-high detector was proposed, and design and construction of the detector began.

  15. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    SciTech Connect

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  16. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  17. Field tests of a down-hole TDR profiling water content measurement system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate soil profile water content monitoring at multiple depths has previously been possible only using the neutron probe (NP), but with great effort and at unsatisfactory intervals. Despite the existence of several capacitance systems for profile water content measurements, accuracy and spatial r...

  18. MEASURING VERTICAL PROFILES OF HYDRAULIC CONDUCTIVITY WITH IN SITU DIRECT-PUSH METHODS

    EPA Science Inventory

    U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
    Geopr...

  19. Calculation and Measurement of Coil Inductance Profile in Tubular Linear Reluctance Motor and its Validation by Three Dimensional FEM

    NASA Astrophysics Data System (ADS)

    Mosallanejad, Ali; Shoulaie, Abbas

    2011-07-01

    This paper reports a study of coil inductance profile in all positions of plunger in tubular linear reluctance motors (TLRMs) with open type magnetic circuits. In this paper, maximum inductance calculation methods in winding of tubular linear reluctance motors are described based on energy method. Furthermore, in order to calculate the maximum inductance, equivalent permeability is measured. Electromagnetic finite-element analysis for simulation and calculation of coil inductance in this motor is used. Simulation results of coil inductance calculation using 3-D FEM with coil current excitation is compared to theoretical and experimental results. The comparison yields a good agreement.

  20. Measurement of surface profile in vibrating environment with instantaneous phase shifting interferometry

    NASA Astrophysics Data System (ADS)

    Sivakumar, N. R.; Tan, B.; Venkatakrishnan, K.

    2006-01-01

    In-process measurement has been the requirement of the precision industries, but due to vibrations while manufacturing, in-process measurement has been difficult to achieve. There is little work on in-process measurement using phase shifting interferometry, as phase shifting is extremely sensitive to vibrations. In this work, the advantage of the developed non-mechanical and instantaneous phase shifting interferometry is felt while measuring surface profile of large flat surfaces under vibrating conditions which can be extended for in-process measurement of surface profile. A near common path optical configuration is achieved and the effect of the environment is reduced. Moreover, the measurement of phase is instantaneous which increases the versatility of this technique for measuring vibrating objects. Profile measurements were carried out on a smooth mirror surface excited with vibrations of different frequencies and the technique was found to be immune to vibrations of up to 1000 Hz.

  1. An array for measuring detailed soil temperature profiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperature dynamics can provide insights into soil variables which are much more difficult or impossible to measure. We designed an array to measure temperature at precise depth increments. Data was collected to determine if the construction materials influence surface and near-surface tempera...

  2. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions

    PubMed Central

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Błaszczak, Barbara; Klejnowski, Krzysztof; Rogula-Kopiec, Patrycja

    2016-01-01

    Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with aerodynamic diameters ≤2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz (Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January–March and October–December 2011–2012), the mean ambient concentration of PM2.5 in Racibórz was 48.7 ± 39.4 µg·m−3, which was much higher than at other suburban or rural sites in Europe. Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ± 11.5, 5.2 ± 2.5, and 34.0 ± 34.2 ng·m−3, respectively. In the warm season (April–September 2011–2012), the PM2.5 and PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy production based on coal and biomass combustion, traffic, and industry. PMID:27428988

  3. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions.

    PubMed

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Błaszczak, Barbara; Klejnowski, Krzysztof; Rogula-Kopiec, Patrycja

    2016-01-01

    Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with aerodynamic diameters ≤2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz (Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January-March and October-December 2011-2012), the mean ambient concentration of PM2.5 in Racibórz was 48.7 ± 39.4 µg·m(-3), which was much higher than at other suburban or rural sites in Europe. Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ± 11.5, 5.2 ± 2.5, and 34.0 ± 34.2 ng·m(-3), respectively. In the warm season (April-September 2011-2012), the PM2.5 and PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy production based on coal and biomass combustion, traffic, and industry. PMID:27428988

  4. Potential of Vinca rosea extracts in modulating trace element profile: a chemopreventive approach.

    PubMed

    Mohanta, Bidhan; Sudarshan, Mathummal; Boruah, Mandira; Chakraborty, Anindita

    2007-01-01

    Diethylnitrosamine (DEN) was used as cancer-inducing agent in the experimental animals. Vinca rosea extract was supplemented with the drinking water as a chemopreventive agent. After 4 wk of treatment, animals were sacrificed and livers were excised. Nuclei and mitochondria were separated by differential centrifugation. The proton-induced X-ray emission technique has been used as the analytical method. Elemental analysis were performed for whole liver, nuclei, and mitochondria.V. rosea plant parts were also analyzed for elemental contents. Treatment with DEN caused an increase of Ni, Zn, and Cr levels in the whole liver and nuclei. There is an increase in Fe concentration in the liver, although the level decreased in mitochondria. The concentrations of Br and Ca were unchanged in the liver as a whole, but there were substantial increases of Br in nuclei and mitochondria, whereas Ca levels depleted drastically in these two organelles. Vinca extracts were effective in reverting the changes in the elemental concentration in the hepatic tissue as a whole, but were not that effective at subcellular levels. PMID:17873399

  5. Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles

    PubMed Central

    Castanera, Raúl; López-Varas, Leticia; Borgognone, Alessandra; LaButti, Kurt; Lapidus, Alla; Schmutz, Jeremy; Grimwood, Jane; Pisabarro, Antonio G.; Grigoriev, Igor V.; Ramírez, Lucía

    2016-01-01

    Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation. PMID:27294409

  6. Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles.

    PubMed

    Castanera, Raúl; López-Varas, Leticia; Borgognone, Alessandra; LaButti, Kurt; Lapidus, Alla; Schmutz, Jeremy; Grimwood, Jane; Pérez, Gúmer; Pisabarro, Antonio G; Grigoriev, Igor V; Stajich, Jason E; Ramírez, Lucía

    2016-06-01

    Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation. PMID:27294409

  7. Single kernel ionomic profiles are highly heritable indicators of genetic and environmental influences on elemental accumulation in maize grain (Zea mays)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ionome, or elemental profile, of a maize kernel represents at least two distinct ideas. First, the collection of elements within the kernel are food, feed and feedstocks for people, animals and industrial processes. Second, the ionome of the kernel represents a developmental end point that can s...

  8. Measurement of sound velocity profiles in fluids for process monitoring

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Kühnicke, E.; Lenz, M.; Bock, M.

    2012-12-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  9. Interpretation of combined wind profiler and aircraft-measured tropospheric winds and clear air turbulence

    NASA Technical Reports Server (NTRS)

    Thomson, D. W.; Syrett, William J.; Fairall, C. W.

    1991-01-01

    In the first experiment, it was found that wind profilers are far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability-derived shear values appears possible. A good correlation between pilot reports of turbulence and wind shear was found. In the second experiment, hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radar operating beneath a jet stream. Richardson number and wind shear statistics were examined along with pilot reports of turbulence in the vicinity of the profiler.

  10. Measurement of the CKM Matrix Elements |Vcb| and |Vub| at the B-factories

    SciTech Connect

    Menges, Wolfgang

    2006-08-01

    Recent results on inclusive and exclusive semileptonic B decays from B-factories are presented. The impact of these measurements on the determination of the CKM matrix elements |V{sub ub}| and |V{sub cb}| is discussed.

  11. Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin

    2000-01-01

    The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.

  12. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  13. Automated acoustic intensity measurements and the effect of gear tooth profile on noise

    NASA Technical Reports Server (NTRS)

    Atherton, William J.; Pintz, Adam; Lewicki, David G.

    1987-01-01

    Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.

  14. Measurement of the gain in a disk amplification stage with neodymium phosphate glass active elements

    SciTech Connect

    Voronich, Ivan N; Galakhov, I V; Garanin, Sergey G; Eroshenko, V A; Zaretskii, Aleksei I; Zimalin, B G; Ignat'ev, Ivan V; Kirdyashkin, M Yu; Kirillov, G A; Osin, Vladimir A; Rukavishnikov, N N; Sukharev, Stanislav A; Sharov, Oleg A; Charukhchev, Aleksandr V

    2003-06-30

    The measuring technique is described and time-resolved measurements of the small-signal gain as a function of the pump energy in a disk amplification stage with neodymium phosphate glass active elements in the 'Luch' facility are presented. The distribution of the gain over the amplifier aperture in the horizontal plane is measured. (lasers)

  15. Fluorescent lifetime measurements of rare-earth elements in gallium arsenide. Master's thesis

    SciTech Connect

    Topp, D.J.

    1990-12-01

    Lifetime measurements of the excited states of three GaAs semiconductors doped with the rare earth elements Erbium (Er), Praseodymium (Pr), and Thulium (Tm) has been studied using a pulsed nitrogen laser and germanium detector. The measurements were made with an experimental set up with a system response time of 0.34 microseconds. A 330 milliwatt nitrogen laser with a wavelength of 3370 angstroms was used to excite transitions of the rare earth elements.

  16. Serum Trace Element Profiles, Prolactin, and Cortisol in Transient Ischemic Attack Patients.

    PubMed

    Klimenko, Lydmila L; Skalny, Anatoly V; Turna, Aliya A; Tinkov, Alexey A; Budanova, Maria N; Baskakov, Ivan S; Savostina, Marina S; Mazilina, Aksana N; Deev, Anatoly I; Nikonorov, Alexandr A

    2016-07-01

    The primary aim of the present study was to assess the association between trace element status, brain damage biomarkers, cortisol, and prolactin levels in transient ischemic attack (TIA) patients. Ten male and 10 female TIA patients were involved in this study. Age, gender, and BMI-matched volunteers served as the respective control group. Serum samples were examined for complement components C4 and C3a, vascular endothelial growth factor (VEGF), S100B, NR2 antibodies (NR2Ab), total antioxidant status (TAS), cortisol, and prolactin. Trace element concentration in serum samples was assessed using inductively coupled plasma mass spectrometry at NexION 300D. The obtained data indicate that both male and female TIA patients were characterized by the increased C4 and prolactin concentrations. At the same time, serum VEGF levels were elevated in only men, whereas TAS values were decreased in women with TIA. Serum cortisol concentrations were significantly increased only in female TIA patients. Men and women with TIA were characterized by a 32 and 44 % decrease in serum Fe content. A two- and threefold increase in serum V content was observed in TIA females and males, respectively. Women with TIA had 60 % higher values of serum B, whereas male patients were characterized by a sevonfold increase in boron content in comparison to the control values. TIA also resulted in decreased serum Cu content in women and elevation of I, Li, Mn, Se, Zn, As, Pb, Ni, and Sr levels in men. Correlation analysis revealed a significant association between trace elements concentration and the studied parameters. PMID:26667935

  17. Measurement of aerosol profiles using high-spectral-resolution Rayleigh-Mie lidar

    NASA Technical Reports Server (NTRS)

    Krueger, D. A.; Alvarez, R. J., II; Caldwell, L. M.; She, C. Y.

    1992-01-01

    High-spectral-resolution Rayleigh-Mie lidar measurements of vertical profiles (1 to 5 km) of atmospheric pressure and density, as well as aerosol profiles, including backscatter ratio and extinction ratio are reported. These require simultaneous measurement of temperature. Use of the technique does not require any assumptions about the aerosol but does require that the pressure at one altitude is known and that the gas law of the air is known (e.g., an ideal gas).

  18. Intercomparison between ozone profiles measured above Spitsbergen by lidar and sonde techniques

    NASA Technical Reports Server (NTRS)

    Fabian, Rolf; Vondergathen, Peter; Ehlers, J.; Krueger, Bernd C.; Neuber, Roland; Beyerle, Georg

    1994-01-01

    This paper compares coincident ozone profile measurements by electrochemical sondes and lidar performed at Ny-Alesund/Spitsbergen. A detailed height dependent statistical analysis of the differences between these complementary methods was performed for the overlapping altitude region (13-35 km). The data set comprises ozone profile measurements conducted between Jan. 1989 and Jan. 1991. Differences of up to 25 percent were found above 30 km altitude.

  19. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  20. Compensation method for the alignment angle error of a gear axis in profile deviation measurement

    NASA Astrophysics Data System (ADS)

    Fang, Suping; Liu, Yongsheng; Wang, Huiyi; Taguchi, Tetsuya; Takeda, Ryuhei

    2013-05-01

    In the precision measurement of involute helical gears, the alignment angle error of a gear axis, which was caused by the assembly error of a gear measuring machine, will affect the measurement accuracy of profile deviation. A model of the involute helical gear is established under the condition that the alignment angle error of the gear axis exists. Based on the measurement theory of profile deviation, without changing the initial measurement method and data process of the gear measuring machine, a compensation method is proposed for the alignment angle error of the gear axis that is included in profile deviation measurement results. Using this method, the alignment angle error of the gear axis can be compensated for precisely. Some experiments that compare the residual alignment angle error of a gear axis after compensation for the initial alignment angle error were performed to verify the accuracy and feasibility of this method. Experimental results show that the residual alignment angle error of a gear axis included in the profile deviation measurement results is decreased by more than 85% after compensation, and this compensation method significantly improves the measurement accuracy of the profile deviation of involute helical gear.

  1. Measurement of dynamic interaction between a vibrating fuel element and its support

    SciTech Connect

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  2. AZ State Profile. Arizona: Arizona's Instrument to Measure Standards (AIMS)

    ERIC Educational Resources Information Center

    Center on Education Policy, 2010

    2010-01-01

    This paper provides information about the Arizona's Instrument to Measure Standards (AIMS). The purpose of the test is to determine prospective high school graduates' mastery of the state curriculum and to meet a state mandate. [For the main report, "State High School Tests: Exit Exams and Other Assessments", see ED514155.

  3. Metastable atom probe for measuring electron beam density profiles

    NASA Technical Reports Server (NTRS)

    Lockhart, J. M.; Zorn, J. C.

    1972-01-01

    Metastable atom probe was developed for measuring current density in electron beam as function of two arbitrary coordinates, with spatial resolution better than 0.5 mm. Probe shows effects of space charge, magnetic fields, and other factors which influence electron current density, but operates with such low beam densities that introduced perturbation is very small.

  4. Evaluation of MLS mesospheric geopotential height profiles and improved altitude registration of the OMPS Limb Profiler measurements

    NASA Astrophysics Data System (ADS)

    Moy, L.; Bhartia, P. K.; Chen, Z.; DeLand, M. T.; Jaross, G. R.; Kelly, T. J.; Kramarova, N. A.; Loughman, R. P.; Taha, G.; Xu, P.

    2014-12-01

    We have developed a method of evaluating the mesospheric geopotential height (GPH) profiles provided by Aura MLS using Suomi OMPS Limb Profiler (LP) measurements at 350 nm. Our results indicate that the error in MLS GPH profiles increases with altitude. We compare our results with the errors calculated by the MLS team based on internal error analysis. Their error estimates have never been independently verified. This evaluation has, in turn, helped us to develop a more accurate altitude registration method of the OMPS LP measurements, with an estimated accuracy of +/- 100 m. Prior to launch of the Suomi NPP spacecraft in October 2011, there were concerns that flexing of its structure could cause large pitch angle errors at the OMPS instrument location, leading to altitude registration errors. While Suomi NPP contains an accurate star tracker, it is located near the VIIRS instrument on the opposite end of the spacecraft. Our results indicate that the variation in Suomi NPP pitch angle along the orbit at the location of the OMPS LP instrument is less than 20 arc-second (corresponding to 300 m in altitude registration at the limb). We also find that the variation of the pitch error along the orbit is highly repeatable from day to day, and has not varied significantly over the past 3 years since launch. Finally, our results confirm and improve upon previous estimates of ~2 arc-minute pitch error (2 km at the limb) in mounting the OMPS LP instrument on the NPP spacecraft.

  5. Preliminary Study to Test the Feasibility of Sex Identification of Human (Homo sapiens) Bones Based on Differences in Elemental Profiles Determined by Handheld X-ray Fluorescence.

    PubMed

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Brown, Janine L; Klinhom, Sarisa; Pitakarnnop, Tanita; Mahakkanukrauh, Pasuk

    2016-09-01

    Sex assignment of human remains is a crucial step in forensic anthropological studies. The aim of this study was to examine elemental differences between male and female bones using X-ray fluorescence (XRF) and determine if elemental profiling could be used for sex discrimination. Cranium, humerus, and os coxae of 60 skeletons (30 male, 30 female) from the Chiang Mai University Skeletal Collection were scanned by XRF and differences in elemental profiles between male and female bones determined using discriminant analysis. In the cranium, three elements (S, Ca, Pb) were significantly higher in males and five elements (Si, Mn, Fe, Zn, Ag) plus light elements (atomic number lower than 12) were higher in females. In humerus and os coxae, nine elements were significantly higher in male and one element was higher in female samples. The accuracy rate for sex estimation was 60, 63, and 61 % for cranium, humerus, and os coxae, respectively, and 67 % when data for all three bones were combined. We conclude that there are sex differences in bone elemental profiles; however, the accuracy of XRF analyses for discriminating between male and female samples was low compared to standard morphometric and molecular methods. XRF could be used on small samples that cannot be sexed by traditional morphological methods, but more work is needed to increase the power of this technique for gender assignment. PMID:26821354

  6. Estimation of volcanic ash emission profiles using ceilometer measurements and transport models

    NASA Astrophysics Data System (ADS)

    Chan, Ka Lok; Geiß, Alexander; Gasteiger, Josef; Wagner, Frank; Wiegner, Matthias

    2016-04-01

    In recent years, the number of active remote sensing systems grows rapidly, since several national weather services initiated ceilometer networks. These networks are excellent tools to monitor the dispersion of volcanic ash clouds and to validate chemical transport models. Moreover, it is expected that the can be used to refine model calculations to better predict situations that might be dangerous for aviation. As a ceilometer can be considered as a simple single-wavelength backscatter lidar, quantitative aerosol profile information, i.e., the aerosol backscatter coefficient (βp) profile, can be derived provided that the ceilometer is calibrated. Volcanic ash concentration profile can then be estimated by using prior optical properties of volcanic ash. These profiles are then used for the inverse calculation of the emission profile of the volcanic eruption, thus, improving one of the most critical parameters of the numerical simulation. In this study, the Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle dispersion model) is used to simulate the dispersion of volcanic ash. We simulate the distribution of ash for a given time/height grid, in order to compute the sensitivity functions for each measurements. As an example we use ceilometer measurements of the German weather service to reconstruct the temporal and spatial emission profile of Eyjafjallajökull eruption in April 2010. We have also examined the sensitivity of the retrieved emission profiles to different measurement parameters, e.g., geolocation of the measurement sites, total number of measurement sites, temporal and vertical resolution of the measurements, etc. The first results show that ceilometer measurements in principle are feasible for the inversion of volcanic ash emission profiles.

  7. Measuring depth profiles of residual stress with Raman spectroscopy

    SciTech Connect

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  8. Geostatistical validation and cross-validation of magnetometric measurements of soil pollution with Potentially Toxic Elements in problematic areas

    NASA Astrophysics Data System (ADS)

    Fabijańczyk, Piotr; Zawadzki, Jarosław

    2016-04-01

    Field magnetometry is fast method that was previously effectively used to assess the potential soil pollution. One of the most popular devices that are used to measure the soil magnetic susceptibility on the soil surface is a MS2D Bartington. Single reading using MS2D device of soil magnetic susceptibility is low time-consuming but often characterized by considerable errors related to the instrument or environmental and lithogenic factors. In this connection, measured values of soil magnetic susceptibility have to be usually validated using more precise, but also much more expensive, chemical measurements. The goal of this study was to analyze validation methods of magnetometric measurements using chemical analyses of a concentration of elements in soil. Additionally, validation of surface measurements of soil magnetic susceptibility was performed using selected parameters of a distribution of magnetic susceptibility in a soil profile. Validation was performed using selected geostatistical measures of cross-correlation. The geostatistical approach was compared with validation performed using the classic statistics. Measurements were performed at selected areas located in the Upper Silesian Industrial Area in Poland, and in the selected parts of Norway. In these areas soil magnetic susceptibility was measured on the soil surface using a MS2D Bartington device and in the soil profile using MS2C Bartington device. Additionally, soil samples were taken in order to perform chemical measurements. Acknowledgment The research leading to these results has received funding from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009-2014 in the frame of Project IMPACT - Contract No Pol-Nor/199338/45/2013.

  9. Characterizing Decades of Cloud Measurements from Combined ARM Profiling Radar and Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Johnson, K. L.; Jensen, M. P.; Baxter, S.; Toto, T.; Wang, M.; Kollias, P.; Clothiaux, E. E.

    2014-12-01

    The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has continuously operated profiling cloud radars and micropulse lidars at five fixed sites, for periods ranging from eight to nineteen years. The sites include the U.S. southern Great Plains, the Alaska North Slope and three Tropical Western Pacific locations. The radar and lidar observations, along with ceilometer and precipitation measurements, have been synthesized using ARM's Active Remote Sensing of Clouds (ARSCL) value-added product, which provides cloud boundaries and best-estimate radar reflectivities, mean Doppler velocities and spectral widths. The product's time resolution ranges from 10 seconds down to 4 seconds, with height resolution of 45 meters or better. Through its use in retrievals of cloud microphysics and dynamics, this high-resolution, long-term data set has the potential to make major contributions toward improved cloud representations in climate models and the understanding of cloud processes. However, it is essential that data set quality and accuracy be assessed and made available to data users in order to maximize utility and reliability. In this study, we apply a variety of approaches to characterize observation quality throughout the ARSCL data record at each site. We describe instrument availability and radar operating status and possible issues. We track radar sensitivity as a function of time through cirrus detection statistics as well as changes in radar signal saturation level over time. We also examine noise and insect clutter reflectivity levels as possible surrogates for radar calibration changes. Through these and other techniques, we assess the most and least reliable time periods for each instrumented site and provide valuable guidance to potential data users, for both case-study research and long-term climatological applications.

  10. SU-E-P-24: Simplified EDW Profile Measurements Using Two Commonly Available Detector Arrays

    SciTech Connect

    Reynolds, T; Arentsen, L; Watanabe, Y; Alaei, P

    2015-06-15

    Purpose: Enhanced dynamic wedge (EDW) profiles are needed as part of the commissioning of a treatment planning system. This work compares the acquisition of EDW profiles using a linear diode array (LDA) with two commonly used detector arrays available in the clinics, with the goal of identifying the simplest approach for these measurements. Methods: The measurements of EDW profiles were performed on a Varian TrueBeam linear accelerator for 6, 10, and 18 MV photon beams for all seven wedge angles at four depths. The measurements were done using the LDA 99 in Blue Phantom2 (IBA Dosimetry), and IC Profiler and MapCHECK2 (Sun Nuclear) in solid water phantoms. The water phantom was set up at 100 cm SSD, whereas the two other devices were set up at 75 cm due to the size limitations of the devices. The largest possible field size was used. The average and maximum percentage differences were examined within the central 90% of the field and in the penumbra. Results: Dose profiles measured with IC Profiler were in a good agreement with LDA 99 data. The average percentage difference within the field did not exceed 0.5% for all energies. MapCHECK2 measurements matched well with LDA 99 for 10 and 18 MV (within 0.3%) with discrepancies of up to 1.4% observed for the 6 MV beam. The maximum percentage differences for both devices in the penumbra exhibited larger variations than LDA 99 results due to differences in detector spacing and high dose gradient, as expected. Conclusion: Common linac QA devices such as IC Profiler or MapCHECK2 provide EDW beam profile data of reasonable accuracy as compared to measurements performed using a linear diode array in a water phantom, saving the expense and time involved in acquiring and setting up a LDA.

  11. High sensitivity, low profile neutron detector for safeguards measurements

    SciTech Connect

    Miley, H.S.; Abraham, J.R.; Thompson, R.C.; Sunberg, D.S.

    1993-12-01

    A neutron detector has been constructed and tested at Pacific Northwest Laboratory (PNL) for the purpose of making fast, high sensitivity measurements of neutron emitters in portal applications. The system is based upon glass fiber optic scintillators loaded with lithium-6 and operated to detect thermal neutrons. Due to their compact size. physical flexibility, freedom from microphonic pickup, and complete lack of environmental and safety concerns, these fibers are very suitable for some applications. The electronics needed for these fibers is somewhat more complex than for helium-3 proportional counters, but the entire electronics package (including the controlling computer) has been shrunk into a space of 20 {times} 25 {times} 2 cm. The prototype sensor is about 180 {times} 60 {times} 7 cm, but a final design now under construction measures 200 {times} 28 {times} 2.54 cm. The new, smaller detectors will be capable of ganging to achieve any needed sensitivity and will each weigh about 16 kg. The principles of operation of the fiber will be discussed as will the operational mode of the detector.

  12. metagene Profiles Analyses Reveal Regulatory Element's Factor-Specific Recruitment Patterns.

    PubMed

    Joly Beauparlant, Charles; Lamaze, Fabien C; Deschênes, Astrid; Samb, Rawane; Lemaçon, Audrey; Belleau, Pascal; Bilodeau, Steve; Droit, Arnaud

    2016-08-01

    ChIP-Sequencing (ChIP-Seq) provides a vast amount of information regarding the localization of proteins across the genome. The aggregation of ChIP-Seq enrichment signal in a metagene plot is an approach commonly used to summarize data complexity and to obtain a high level visual representation of the general occupancy pattern of a protein. Here we present the R package metagene, the graphical interface Imetagene and the companion package similaRpeak. Together, they provide a framework to integrate, summarize and compare the ChIP-Seq enrichment signal from complex experimental designs. Those packages identify and quantify similarities or dissimilarities in patterns between large numbers of ChIP-Seq profiles. We used metagene to investigate the differential occupancy of regulatory factors at noncoding regulatory regions (promoters and enhancers) in relation to transcriptional activity in GM12878 B-lymphocytes. The relationships between occupancy patterns and transcriptional activity suggest two different mechanisms of action for transcriptional control: i) a "gradient effect" where the regulatory factor occupancy levels follow transcription and ii) a "threshold effect" where the regulatory factor occupancy levels max out prior to reaching maximal transcription. metagene, Imetagene and similaRpeak are implemented in R under the Artistic license 2.0 and are available on Bioconductor. PMID:27538250

  13. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates.

    PubMed

    Long, Hannah K; Sims, David; Heger, Andreas; Blackledge, Neil P; Kutter, Claudia; Wright, Megan L; Grützner, Frank; Odom, Duncan T; Patient, Roger; Ponting, Chris P; Klose, Robert J

    2013-01-01

    Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive effects of DNA methylation on chromatin. In cold-blooded vertebrates, computational CGI predictions often reside away from gene promoters, suggesting a major divergence in gene promoter architecture across vertebrates. By experimentally identifying non-methylated DNA in the genomes of seven diverse vertebrates, we instead reveal that non-methylated islands (NMIs) of DNA are a central feature of vertebrate gene promoters. Furthermore, NMIs are present at orthologous genes across vast evolutionary distances, revealing a surprising level of conservation in this epigenetic feature. By profiling NMIs in different tissues and developmental stages we uncover a unifying set of features that are central to the function of NMIs in vertebrates. Together these findings demonstrate an ancient logic for NMI usage at gene promoters and reveal an unprecedented level of epigenetic conservation across vertebrate evolution. DOI:http://dx.doi.org/10.7554/eLife.00348.001. PMID:23467541

  14. Measurement of bow tie profiles in CT scanners using a real-time dosimeter

    SciTech Connect

    Whiting, Bruce R.; Evans, Joshua D.; Williamson, Jeffrey F.; Dohatcu, Andreea C.; Politte, David G.

    2014-10-15

    Purpose: Several areas of computed tomography (CT) research require knowledge about the intensity profile of the x-ray fan beam that is introduced by a bow tie filter. This information is considered proprietary by CT manufacturers, so noninvasive measurement methods are required. One method using real-time dosimeters has been proposed in the literature. A commercially available dosimeter was used to apply that method, and analysis techniques were developed to extract fan beam profiles from measurements. Methods: A real-time ion chamber was placed near the periphery of an empty CT gantry and the dose rate versus time waveform was recorded as the x-ray source rotated about the isocenter. In contrast to previously proposed analysis methods that assumed a pointlike detector, the finite-size ion chamber received varying amounts of coverage by the collimated x-ray beam during rotation, precluding a simple relationship between the source intensity as a function of fan beam angle and measured intensity. A two-parameter model for measurement intensity was developed that included both effective collimation width and source-to-detector distance, which then was iteratively solved to minimize the error between duplicate measurements at corresponding fan beam angles, allowing determination of the fan beam profile from measured dose-rate waveforms. Measurements were performed on five different scanner systems while varying parameters such as collimation, kVp, and bow tie filters. On one system, direct measurements of the bow tie profile were collected for comparison with the real-time dosimeter technique. Results: The data analysis method for a finite-size detector was found to produce a fan beam profile estimate with a relative error between duplicate measurement intensities of <5%. It was robust over a wide range of collimation widths (e.g., 1–40 mm), producing fan beam profiles that agreed with a relative error of 1%–5%. Comparison with a direct measurement technique on

  15. Coarse-fine vertical scanning based optical profiler for structured surface measurement with large step height

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Liu, Xiaojun; Lei, Zili; Li, Qian; Yang, Xiao; Chen, Liangzhou; Lu, Wenlong

    2015-02-01

    White light interference (WLI) optical profiler had been used widely for structured surface measurement. To achieve high measuring accuracy, piezoelectric ceramic (PZT) was usually used as the vertical scanning unit, which was normally less than 100um and only for small range structured surface measurement. With the development of advanced manufacturing technology, precision structured surfaces with large step height were appearing. To satisfy the measurement requirements of this kind of precision structured surfaces, WLI optical profiler with large range had to be developed. In this paper, an optical profiler was proposed, in which a coarse-fine vertical scanning system was adopted to expand its measurement range to 10mm while its resolution still at nanometer level.

  16. Measurement of peeling mode edge current profile dynamics.

    PubMed

    Bongard, M W; Fonck, R J; Hegna, C C; Redd, A J; Schlossberg, D J

    2011-07-15

    Peeling modes, an instability mechanism underlying deleterious edge localized mode (ELM) activity in fusion-grade plasmas, are observed at the edge of limited plasmas in a low aspect ratio tokamak under conditions of high edge current density (J(edge) ∼ 0.1  MA/m2) and low magnetic field (B ∼ 0.1  T). They generate edge-localized, electromagnetic activity with low toroidal mode numbers n≤3 and amplitudes that scale strongly with measured J(edge)/B instability drive, consistent with theory. ELM-like field-aligned, current-carrying filaments form from an initial current-hole J(edge) perturbation that detach and propagate outward. PMID:21838369

  17. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    SciTech Connect

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Ferreira, R.; Freitas, P.

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  18. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    NASA Astrophysics Data System (ADS)

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.; Ferreira, R.; Freitas, P.

    2015-06-01

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  19. Direct measurement of the spectral reflectance of OP-SDL gain elements under optical pumping.

    PubMed

    Borgentun, Carl; Bengtsson, Jörgen; Larsson, Anders

    2011-08-29

    We report on a direct measurement method for acquiring highly precise reflectance spectra of gain elements for semiconductor disk lasers under optical pumping. The gain element acts as an active mirror, and the active mirror reflectance (AMR) was measured with a weak and tunable probe beam coincident on the gain element with a high-power pump beam. In particular, we measured the spectral AMR of a gain element designed to have a broad and flat AMR spectrum by being anti-resonant at the center wavelength and employing a parametrically optimized anti-reflection structure. We were able to confirm that this sophisticated gain element performs according to design, with an almost constant AMR of ∼103% over a wavelength range of nearly 35 nm, very well matching the simulated behavior. Such gain characteristics are useful for optically pumped semiconductor disk lasers (OP-SDLs) designed for broadband tuning and short-pulse generation through mode-locking. The measurement technique was also applied to a conventional resonant periodic gain element designed for fixed wavelength OP-SDL operation; its AMR spectrum is markedly different with a narrow peak, again in good agreement with the simulations. PMID:21935050

  20. Air pollution emission profiles of toxic and trace elements from energy related sources: status and needs.

    PubMed

    Lioy, P J

    1983-01-01

    The preceding was by no means a comprehensive analysis on the present state of knowledge on trace elements in combustion sources, or the differences that would be expected. However, it does point to avenues and directions of some of the future research. Also, the needs 1) to resolve source in areas of great emissions complexity, or 2) to assign sources of specific hazardous materials. Current efforts are focussed on understanding the impact of particular sources of pollutants at a receptor site. This information will provide the means for assessment of any potential hazard of a source to the general community and the size and mass distribution of these materials at a receptor. Considering the types and volume of data necessary to catalog source types and eventually assess community impacts, the development of a national resource with far more sensitive and accurate multielement analysis of air pollutants is warranted. Interaction of air quality and nuclear analytical research groups in collaborative research projects should be fostered and commitments made to develop pools of large and small users. PMID:6686299

  1. Metagenomic Profiling of Antibiotic Resistance Genes and Mobile Genetic Elements in a Tannery Wastewater Treatment Plant

    PubMed Central

    Wang, Zhu; Zhang, Xu-Xiang; Huang, Kailong; Miao, Yu; Shi, Peng; Liu, Bo; Long, Chao; Li, Aimin

    2013-01-01

    Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP). Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet) were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns. PMID:24098424

  2. Constraints on Galactic Cosmic-Ray Origins from Elemental and Isotopic Composition Measurements

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Christian, E. R.; Cummings, A. C.; deNolfo, G. A.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A,; Stone, E. C.; vonRosevinge, T. T.; Wiedenbeck, M. E.

    2013-01-01

    The most recent measurements by the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE) satellite of ultra-heavy cosmic ray isotopic and elemental abundances will be presented. A range of isotope and element ratios, most importantly Ne-22/Ne-20, Fe-58/Fe-56, and Ga-31/Ge -32 show that the composition is consistent with source material that is a mix of approx 80% ISM (with Solar System abundances) and 20% outflow/ejecta from massive stars. In addition, our data show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to an approx 80%/20% mix rather than pure ISM, that the refractory and volatile elements have similar slopes, and that refractory elements are preferentially accelerated by a factor of approx 4. We conclude that these data are consistent with an OB association origin of GCRs.

  3. Technical Note: Measurement of bow tie profiles in CT scanners using radiochromic film

    SciTech Connect

    Whiting, Bruce R.; Dohatcu, Andreea C.; Evans, Joshua D.; Williamson, Jeffrey F.; Politte, David G.

    2015-06-15

    Purpose: To provide a noninvasive technique to measure the intensity profile of the fan beam in a computed tomography (CT) scanner that is cost effective and easily implemented without the need to access proprietary scanner information or service modes. Methods: The fabrication of an inexpensive aperture is described, which is used to expose radiochromic film in a rotating CT gantry. A series of exposures is made, each of which is digitized on a personal computer document scanner, and the resulting data set is analyzed to produce a self-consistent calibration of relative radiation exposure. The bow tie profiles were analyzed to determine the precision of the process and were compared to two other measurement techniques, direct measurements from CT gantry detectors and a dynamic dosimeter. Results: The radiochromic film method presented here can measure radiation exposures with a precision of ∼6% root-mean-square relative error. The intensity profiles have a maximum 25% root-mean-square relative error compared with existing techniques. Conclusions: The proposed radiochromic film method for measuring bow tie profiles is an inexpensive (∼$100 USD + film costs), noninvasive method to measure the fan beam intensity profile in CT scanners.

  4. Technical Note: Measurement of bow tie profiles in CT scanners using radiochromic film

    PubMed Central

    Whiting, Bruce R.; Dohatcu, Andreea C.; Evans, Joshua D.; Politte, David G.; Williamson, Jeffrey F.

    2015-01-01

    Purpose: To provide a noninvasive technique to measure the intensity profile of the fan beam in a computed tomography (CT) scanner that is cost effective and easily implemented without the need to access proprietary scanner information or service modes. Methods: The fabrication of an inexpensive aperture is described, which is used to expose radiochromic film in a rotating CT gantry. A series of exposures is made, each of which is digitized on a personal computer document scanner, and the resulting data set is analyzed to produce a self-consistent calibration of relative radiation exposure. The bow tie profiles were analyzed to determine the precision of the process and were compared to two other measurement techniques, direct measurements from CT gantry detectors and a dynamic dosimeter. Results: The radiochromic film method presented here can measure radiation exposures with a precision of ∼6% root-mean-square relative error. The intensity profiles have a maximum 25% root-mean-square relative error compared with existing techniques. Conclusions: The proposed radiochromic film method for measuring bow tie profiles is an inexpensive (∼$100 USD + film costs), noninvasive method to measure the fan beam intensity profile in CT scanners. PMID:26127044

  5. Measuring Biomarkers for an Innovative Personal Food Profile.

    PubMed

    Speciani, Attilio Francesco; Piuri, Gabriele

    2015-01-01

    Measuring the level of inflammation with an innovative approach (with blood analyses to evaluate the action of cytokines such as B-cell activating factor [BAFF], platelet activating factor [PAF], interleukin-6 [IL-6], sirtuin) allows you to better understand the body's language. The body recognizes foods and food antigens through a mapping performed by means of immunoglobulin G (IgG). Recent studies have shown that high levels of IgG in a nutrient express the personal excess of that food in the daily nutrition. Food is the most important source of hidden inflammation but is also the main tool for regaining wellness. Europeans have reactions to milk, yeast, and gluten, whereas the Japanese have reactions to rice and soybeans. Scientific knowledge of inflammatory mediators allows the discovery of new drugs, new supplements, and new plant compounds (Resveratrol, Maqui, oil of Perilla) that are able to reduce inflammation and support well-being. The interaction between the environment, nutrition, and knowledge of inflammation is an evolution and at the same time a revolution to gain and maintain health. PMID:26400432

  6. Can one measure nuclear matrix elements of neutrinoless double {beta} decay?

    SciTech Connect

    Rodin, Vadim; Faessler, Amand

    2009-10-15

    By making use of the isospin conservation by strong interaction, the Fermi 0{nu}{beta}{beta} nuclear matrix element M{sub F}{sup 0{nu}} is transformed to acquire the form of an energy-weighted double Fermi transition matrix element. This useful representation allows reconstruction of the total M{sub F}{sup 0{nu}} provided a small isospin-breaking Fermi matrix element between the isobaric analog state in the intermediate nucleus and the ground state of the daughter nucleus could be measured, e.g., by charge-exchange reactions. Such a measurement could set a scale for the 0{nu}{beta}{beta} nuclear matrix elements and help to discriminate between the different nuclear structure models in which calculated M{sub F}{sup 0{nu}} may differ by as much as a factor of 5 (that translates to about 20% difference in the total M{sup 0{nu}})

  7. Electronic BAR Gauge: a customized optical rail profile measurement system for rail-grinding applications

    NASA Astrophysics Data System (ADS)

    Bachinsky, Gordon S.

    1995-06-01

    The dynamic interaction that occurs at the rail/wheel interface of any rail system is significantly influenced by rail and wheel profiles. In an effort to enhance this interaction, railways and transit systems often employ rail grinding as a means to maintain a defined rail profile. The cost to perform this procedure can be very high, sometimes exceeding $DLR25,000 per day for the use of a large grinding machine (with up to 128 grinding motors-each motor being 20 hp or more). Because of this, it is imperative that the work be done efficiently and accurately. In recent years there has been substantial research into the optimization of rail profiles. The National Research Council (NRC) of Canada is one research facility that has generated a unique, precise set of specified profiles for use in heavy-haul railway operations. To implement these profiles in a consistent manner, during rail grinding operations, requires some type of measurement system that provides feedback to the field staff. Up until recently, this has been accomplished with a manual BAR gauge that is fitted with a set of accurate profile templates. The BAR gauge, which initially was fitted with four specified templates, is now equipped with ten such templates. To obtain the full potential of benefits from these profiles requires more precise grinding than that which has been achieved in the past. The other problem with the current manual profile measurement (BAR) method is that it is somewhat slow and cumbersome and the differences between profiles is quite small (i.e. 0.020 inch or less). In order to enhance their rail grinding management support, ARM pursued an automated system that would optically measure rail profiles very fast and accurately from a hy-rail vehicle and compare them with the NRC profiles. Another important feature that was desired in this system was the ability to measure the relative position of one profile with respect to the other (i.e. left versus right rail). Such a system

  8. Elemental Analyses of Hanford Surface Neutron Moisture Measurement Calibration Standard Samples

    SciTech Connect

    Watson, W.T., Westinghouse Hanford

    1996-07-31

    Elemental analyses have been performed on twenty samples taken from the moisture standards prepared to use in performing experimental calibrations of the surface neutron moisture measurement system. These standards consisted of mixtures of sand, hydrated alumina, and boron carbide. Elemental analyses were performed primarily to discover the quantities of any strong thermal neutron absorbers that may have been present in the mixture in unknown trace quantities.

  9. A new measurement of the Her X-1 X-ray pulse profile

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Boldt, E. A.; Rothschild, R. E.; Serlemitsos, P. J.

    1974-01-01

    A triple peaked 1.24 sec. pulse profile in a 1-minute rocket borne exposure to Her X-1 was measured, in contrast to the doublepeaked profiles expected from models which maximize the X ray emission at the magnetic equator of an accreting neutron star. The profile exhibits statistically significant energy dependence, with the emission approximately greater than 12 keV having narrower peaks which lag (by approximately 5% of the pulse period) the corresponding peaks at lower energies. Approximately one third of the total emission from the source is nonpulsed.

  10. Rapid measurement of charged particle beam profiles using a current flux grating

    SciTech Connect

    Paul, Samit; Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2015-02-15

    The principle and physics issues of charged particle beam diagnostics using a current flux grating are presented. Unidirectional array of conducting channels with interstitial insulating layers of spacing d is placed in the beam path to capture flux of charge and electronically reproduce an exact beam current profile with density variation. The role of secondary electrons due to the impinging particle beam (both electron and ion) on the probe is addressed and a correction factor is introduced. A 2-dimensional profile of the electron beam is obtained by rotating the probe about the beam axis. Finally, a comparison of measured beam profile with a Gaussian is presented.

  11. Using elemental profiles and stable isotopes to trace the origin of green coffee beans on the global market.

    PubMed

    Santato, Alessandro; Bertoldi, Daniela; Perini, Matteo; Camin, Federica; Larcher, Roberto

    2012-09-01

    A broad elemental profile incorporating 54 elements (Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, Re, Ir, Pt, Au, Hg, Tl, Pb, Bi and U) in combination with δ(2) H, δ(13) C, δ(15) N and δ(18) O was used to characterise the composition of 62 green arabica (Coffea arabica) and robusta (Coffea canephora) coffee beans grown in South and Central America, Africa and Asia, the four most internationally renowned areas of production. The δ(2) H, Mg, Fe, Co and Ni content made it possible to correctly assign 95% of green coffee beans to the appropriate variety. Canonical discriminant analysis, performed using δ(13) C, δ(15) N, δ(18) O, Li, Mg, P, K, Mn, Co, Cu, Se, Y, Mo, Cd, La and Ce correctly traced the origin of 98% of coffee beans. PMID:22972781

  12. An approach to measuring RBC haemolysis and profiling RBC mechanical fragility.

    PubMed

    Alfano, Kenneth M; Tarasev, Michael; Meines, Steven; Parunak, Gene

    2016-05-01

    Red blood cells (RBC) can be damaged by medical products, from storage or from disease. Haemolysis (cell rupture and haemoglobin release) is often a key indicator, with mechanical fragility (MF) offering the potential to assess sub-haemolytic damage as well. This article reports on a unique approach to measuring haemolysis, without the need for centrifugation or other sample separation. It also reports on employing that in measuring blood fragility (susceptibility to haemolysis) under shear stress, utilising an electromagnet to cause a bead to oscillate within a cartridge that contains the sample. Cycling between stressing and optical measurement of induced haemolysis at progressively increasing durations of stress provides a fragility profile. Sub-system-level testing shows high accuracy for the haemolysis measurements and fair consistency for MF profiling. Improving accuracy and precision of profiling is a current focus and a fully integrated and automated version of this system is under development. PMID:27004768

  13. Radiation profiles through the atmosphere measured by an auto controlled glider aircraft

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2014-05-01

    In 2011 radiation measurements through the atmosphere were made with a balloon borne short- and longwave net radiometer. These measurements were very promising and therefore new and improved sensors from Kipp&Zonen were used to equip a glider aircraft together with the standard Swiss radiosonde from Meteolabor AG. The glider serves as returning platform for the expensive and well calibrated radiation sensors. Double balloon technique is used to prevent pendulum motion during the ascent and to keep the radiation instruments as horizontal as possible. The built-in autopilot allows to return the gliderradiosonde to the launch site or to land it on predefined open space, which makes recovery much easier. The new return gliderradiosonde technique as well as new measurement possibilities will be shown. First measurements show radiation profiles through the atmosphere during different cloud conditions. Radiation profiles during different daytimes show the temporal resolution of vertical radiation profiles trough the atmosphere.

  14. Vertical profile and aerosol size distribution measurements in Iceland (LOAC)

    NASA Astrophysics Data System (ADS)

    Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Renard, Jean-Baptiste; Vignelles, Damien; Verdier, Nicolas

    2014-05-01

    Cold climate and high latitudes regions contain important dust sources where dust is frequently emitted, foremost from glacially-derived sediments of riverbeds or ice-proximal areas (Arnalds, 2010; Bullard, 2013). Iceland is probably the most active dust source in the arctic/sub-arctic region (Dagsson-Waldhauserova, 2013). The frequency of days with suspended dust exceeds 34 dust days annually. Icelandic dust is of volcanic origin; it is very dark in colour and contains sharp-tipped shards with bubbles. Such properties allow even large particles to be easily transported long distances. Thus, there is a need to better understand the spatial and temporal variability of these dusts. Two launch campaigns of the Light Optical Aerosols Counter (LOAC) were conducted in Iceland with meteorological balloons. LOAC use a new optical design that allows to retrieve the size concentrations in 19 size classes between 0.2 and 100 microm, and to provide an estimate of the main nature of aerosols. Vertical stratification and aerosol composition of the subarctic atmosphere was studied in detail. The July 2011 launch represented clean non-dusty season with low winds while the November 2013 launch was conducted during the high winds after dusty period. For the winter flight (performed from Reykjavik), the nature of aerosols strongly changed with altitude. In particular, a thin layer of volcanic dust was observed at an altitude of 1 km. Further LOAC measurements are needed to understand the implication of Icelandic dust to the Arctic warming and climate change. A new campaign of LAOC launches is planned for May 2014. Reference: Arnalds, O., 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences 23, 3-21. Bullard, J.E., 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms 38, 71-89. Dagsson-Waldhauserova, P., Arnalds O., Olafsson H. 2013. Long-term frequency and characteristics of dust storm events in

  15. Tropospheric profile of NO2 over the Po Valley measured with scan DOAS spectrometer

    NASA Astrophysics Data System (ADS)

    Masieri, S.; Bortoli, D.; Petritoli, A.; Kostadinov, I.; Premuda, M.; Ravegnani, F.; Carnevale, C.; Pisoni, E.; Volta, M.; Giovanelli, G.

    2009-09-01

    A simple method to determine the vertical distribution of a pollutant gas, namely NO2, by means of the spectral measurements obtained with a scan-DOAS spectrometer, is presented. The developed technique can be summarized as follows: i) a series of quasi simultaneous measurements in the zenith and in others directions allowing for the determination of the Slant Column Density of NO2 for different elevation angles; ii) an active DOAS measurement for the determination of the NO2 concentration at the ground; iii) a set of Radiative Transfer Model (RTM) calculation of the scattering distance from the spectrometer, for a set of visibility values; iv) a recursive procedure of profile calculation starting from the first measurement and subtracting the value of NO2 Slant Column Density (SCD) retrieved from the measurement taken at the previous angle of sight. Measurements are carried out during summer 2007 in S. Pietro Capofiume (Bologna-Italy). The vertical distribution for NO2 obtained with the above described method has been compared with the profiles calculated with the GAMES (Gas Aerosol Modelling Evaluation System) model. The results of this comparison show some differences between the modelled and the measured profiles, probably due to box approximations in RTM calculation for measured profiles and to the large pixel grid (about 10x10 km2), for model evaluation.

  16. Dysarthria Impact Profile: Development of a Scale to Measure Psychosocial Effects

    ERIC Educational Resources Information Center

    Walshe, Margaret; Peach, Richard K.; Miller, Nick

    2009-01-01

    Background: The psychosocial impact of acquired dysarthria on the speaker is well recognized. To date, speech-and-language therapists have no instrument available to measure this construct. This has implications for outcome measurement and for planning intervention. This paper describes the Dysarthria Impact Profile (DIP), an instrument that has…

  17. Measuring the Quality of Inclusive Practices: Findings from the Inclusive Classroom Profile Pilot

    ERIC Educational Resources Information Center

    Soukakou, Elena P.; Winton, Pam J.; West, Tracey A.; Sideris, John H.; Rucker, Lia M.

    2014-01-01

    The purpose of this study was to test the reliability and validity of the Inclusive Classroom Profile (ICP), an observation measure designed to assess the quality of classroom practices in inclusive preschool programs. The measure was field tested in 51 inclusive classrooms. Results confirmed and extended previous research findings, providing…

  18. Importance of vertical geochemical processes in controlling the oceanic profiles of dissolved rare earth elements in the northeastern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Nozaki, Yoshiyuki; Alibo, Dia Sotto

    2003-01-01

    Vertical profiles of dissolved rare earth elements (REEs) were obtained in the Bay of Bengal and the Andaman Sea. The REE concentrations at various depths in the Bay of Bengal are the highest in the Indian Ocean. This is attributable ultimately to the large outflow of the Ganges-Brahmaputra and Irrawaddy rivers, but the dissolved REE flux to surface waters alone cannot explain the large and near-constant REE enrichment throughout the entire water column. The underlying fan sediments serve as not a source but a sink for dissolved REE(III)s. Absence of excess 228Ra in the deep waters suggests that lateral input of dissolved REEs from slope sediments is also small in these regions. Partial (<0.3%) dissolution of detrital particles, which are carried by the rivers and lateral surface currents and subsequently settle through the water column, appears to be a predominant source for the dissolved REEs. Vertical profiles showing an almost linear increase with depth are common features for the light and middle REEs everywhere, but their concentration levels are variable from basin to basin and from element to element. This suggests that their oceanic distributions respond quickly to the variation of particle flux and its REE composition through reversible exchange equilibrium with suspended and sinking particles much like the case for Th. The relative importance of the vertical geochemical processes of reversible scavenging over the horizontal basin-scale ocean circulation with passive regeneration like nutrients decreases systematically from the light to the heavy REEs. Using a model, the mean oceanic residence times of REEs in the Bay of Bengal are estimated to range from 37 years for Ce to 140-1510 years for the strictly trivalent REEs. In the deep water of the Andaman Sea, isolated from the Bay of Bengal by the Andaman-Nicobar Ridge (maximum sill depth of ˜1800 m), the REE concentrations are almost uniform presumably due to rapid vertical mixing. The REE

  19. Measurement of the electrical resistivity profile in the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Anderson, Jay K.

    A two dimensional, toroidal equilibrium reconstruction code has been developed for the reversed field pinch. The parallel current density profile has been measured by incorporating several diagnostics into the code. A new fitting technique of derivatives of magnetic signals has been developed to determine the inductive electric field profile. During periods of low MHD activity, Ohm's law obeys its simplest form and the ratio of measured E and J profiles determines the plasma electrical resistivity profile. Presented is an upper bound of Zeff through spectroscopic measurements of bremsstrahlung and several pollutants in the near infrared wavelength region. This enables a comparison of the measured resistivity with Spitzer and neoclassical models. The computed resistivity profile is consistent with the Spitzer model and there is no need to invoke an anomaly factor when describing the resistivity in the reversed field pinch. The second primary result is that a bremsstrahlung measurement in MST is not feasible over the majority of MST operating conditions. An overwhelming emission continuum due to neutral particles and wall recycling complicates extraction of the relatively dim bremsstrahlung contribution. The standard definition of Zeff = SsnsZ 2sne is not sufficient to describe collisionality in the edge of MST due to the effects of non-fully stripped impurity ions.

  20. Image processing techniques for measuring non-uniform film thickness profiles

    SciTech Connect

    Nitta, S.V.; Liu, An-Hong; Plawsky, J.L.; Wayner, P.C. Jr.

    1996-12-31

    The long term objective of this research program is to determine the fluid flow and drying characteristics of thin liquid/solid films using image processing techniques such as Image Analyzing Interferometry (IAI) and Image Scanning Ellipsometry (ISE). The primary purpose of this paper is to present experimental data on the effectiveness of IAI and ISE to measure nonuniform film thickness profiles. Steady-state, non-isothermal profiles of evaporating films were measured using IAI. Transient thickness profiles of a draining film were measured using ISE. The two techniques are then compared and contrasted. The ISE can be used to measure transient as well as steady-state profiles of films with thickness ranging from 1 nm to > 20 {mu}m, whereas IAI can be used to directly measure Steady-state and transient profiles of only films thicker than about 100 nm. An evaluation of the reflected intensity can be used to extend the use of the IAI below 100 nm.

  1. Improved analysis of zero offset profiling borehole ground penetrating radar measurements for hydrologic monitoring

    NASA Astrophysics Data System (ADS)

    Rucker, D. F.; Ferre, T. P. A.

    2003-04-01

    Zero Offset Profiling (ZOP) Borehole Ground Penetrating Radar (BGPR) offers the possibility of monitoring the water content to great depths with high spatial and temporal resolution. This could greatly enhance our ability to monitor transient hydrologic processes, such as the advance of a wetting front or the accumulation or removal of light nonaqueous phase liquids. However, the presence of critical refractions from subsurface layers of contrasting volumetric water contents can limit the utility of ZOP BGPR. We present a method to infer the volumetric water content of near surface sediments based on the slope of a ZOP BGPR travel time profile. In addition, we present a method whereby critical refractions can be accounted for, leading to reconstruction of the true velocity profile from measured ZOP travel time profiles. This method relies on rapid, efficient genetic algorithms to identify the velocity profile that corresponds with the measured first arrival travel time profile. Finally, we show that this velocity reconstruction approach can allow for the analysis of hydraulic properties from ZOP BGPR measurements made during the advance of a wetting front and can improve the ability of ZOP BGPR to identify thin horizons associated with textural changes or the presence of nonaqueous phase liquids in the subsurface.

  2. Measured and predicted temperature profiles along MEMS bridges at pressures from 0.05 to 625 torr.

    SciTech Connect

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2010-10-01

    We will present experimental and computational investigations of the thermal performance of microelectromechanical systems (MEMS) as a function of the surrounding gas pressure. Lowering the pressure in MEMS packages reduces gas damping, providing increased sensitivity for certain MEMS sensors; however, such packaging also dramatically affects their thermal performance since energy transfer to the environment is substantially reduced. High-spatial-resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 microns wide, 2.25 microns thick, 12 microns above the substrate, and either 200 or 400 microns long in nitrogen atmospheres with pressures ranging from 0.05 to 625 Torr. Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared to the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The experimental and simulation results indicate that at pressures below 0.5 Torr the gas-phase heat transfer is negligible compared to heat conduction through the thermal actuator legs. As the pressure increases above 0.5 Torr, the gas-phase heat transfer becomes more significant. At ambient pressures, gas-phase heat transfer drastically impacts the thermal performance. The measured and simulated temperature profiles are in qualitative agreement in the present study. Quantitative agreement between experimental and simulated temperature profiles requires accurate knowledge of temperature-dependent thermophysical properties, the device geometry, and the thermal accommodation coefficient.

  3. Plasma Cavity Ringdown Spectrometer for Elemental and Isotopic Measurements: Past, Present, and Future

    SciTech Connect

    Wang, Chuji; Winstead, Christopher B.; Duan, Yixiang; Scherrer, Susan T.; Koirala, Sudip P.; Jang, Ping-Rey; Miller, George P.; Mazzotti, Fabio J.

    2004-03-31

    Recent studies using Plasma Cavity Ringdown Spectroscopy (plasma-CRDS) show much promise of this newly developed technique for ultra-sensitive elemental/isotopic measurements. Plasma-CRDS, since its introduction in 1997, has experienced three major stages: (i) the early stage demonstration of the technical feasibility, (ii) the recent advancement on its technical improvements and extensive applications for elemental/isotopic measurements as well as plasma diagnostics and (iii) the most recent progress on the improvement of the instrument configurations based on a diode laser-compact microwave plasma-CRDS. Research and development in many aspects of this technique is vigorously under processing in our laboratories. This paper reports a brief review on the plasma-CRDS technique, its applications and the most recent advancement. Discussions on future developments toward a new generation of plasma- CRDS-based spectrometers for ultra-sensitive elemental/isotopic measurements are also presented.

  4. X-mode heterodyne reflectometer for edge density profile measurements on Tore Supra

    NASA Astrophysics Data System (ADS)

    Clairet, F.; Sabot, R.; Bottereau, Ch.; Chareau, J. M.; Paume, M.; Heuraux, S.; Colin, M.; Hacquin, S.; Leclert, G.

    2001-01-01

    A new broadband reflectometer operating in the frequency range 50-75 GHz in extraordinary mode polarization has been developed and tested on Tore Supra to measure edge density profiles. Using solid state source and active frequency multipliers, it performs routine measurements in 20 μs. Modulation of the source frequency is the clue to heterodyne detection in order to ensure a high dynamic sensitivity without any phase locking system. The reflectometer can achieve a repetition rate of 5 μs between sweeps, so the dynamic behavior of fast plasma events can be followed. The profile is reconstructed fully automatically from raw data and initialization is given by detection of the first cutoff. The profiles are part of the public database of Tore Supra. High reliability of the measurements for various plasma conditions makes this diagnostic an ideal tool to study the plasma-surface interaction physics and rf antenna coupling processes.

  5. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  6. Line Profile Measurements of Atomic Oxygen at 1300 A with a VUV Raman Shifter

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Exberger, Richard J.; Meyer, Scott A.; Gilmore, John O.

    1994-01-01

    We are currently developing an atomic oxygen diagnostic to study the degree of oxygen dissociation in ground-based facilities. The absorption of the (sub 3)P - (sup 3)S(sup 0) resonance triplet in the vacuum ultraviolet is a direct measure of the ground state number density of atomic oxygen. Although the integrated line strength is well known for these transitions, the line profile is not. We report the results of a series of experiments in which the line profile is measured in shock-heated oxygen. An ArF excimer laser and a hydrogen Raman shifter generate tunable VUV radiation at the resonance wavelength. The test gas is dissociated oxygen, generated in the Electric Arc Shock Tube (EAST) Facility at NASA-Ames Research Center. By measuring the absorption of known concentrations of atomic oxygen, we are able to study the absorption line profile. The results will serve as a calibration to apply this diagnostic in other flowfields.

  7. Surface profile measurement in white-light scanning interferometry using a three-chip color CCD

    SciTech Connect

    Ma Suodong; Quan Chenggen; Zhu Rihong; Tay, Cho Jui; Chen Lei

    2011-05-20

    White-light scanning interferometry (WLSI) is a useful technique to measure surface profile when a test object contains discontinuous structures or microstructures. A black and white CCD camera is usually utilized to capture interferograms, and a series of corresponding algorithms is used to achieve the profile measurement. However, the color information in the interferograms is lost. A novel profile measurement method that uses phase information in different color channels (red-green-blue) of an interferogram obtained using a three-chip color CCD in WLSI is proposed. The phase values are extracted by a windowed Fourier transform algorithm. Simulation and experimental results are presented to demonstrate the validity of the proposed method.

  8. Fiber Optic Picosecond Laser Pulse Transmission Line for Hydrogen Ion Beam Profile Measurement

    SciTech Connect

    Liu, Yun; Huang, Chunning; Aleksandrov, Alexander V

    2013-01-01

    We present a fiber optic laser pulse transmission line for non-intrusive longitudinal profile measurement of the hydrogen ion (H-) beam at the front-end of the Spallation Neutron Source (SNS) accelerator. The 80.5 MHz, 2.5 ps, multi-killowatt optical pulses are delivered to the accelerator beam line through a large mode area polarization maintaining optical fiber to ensure a high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter and pulse width broadening over a 100-ft fiber line are experimentally investigated. A successful measurement of the H- beam microbunch (~130 ps) profile is obtained. Our experiment is the first demonstration of particle beam profile diagnostics using fiber optic laser pulse transmission line.

  9. Improved density profile measurements in the C-2U advanced beam-driven FRC plasmas

    NASA Astrophysics Data System (ADS)

    Beall, Michael; Deng, B. H.; Schroeder, Jon; Settles, Greg; Kinley, John; Gota, Hiroshi; Thompson, Matt; the TAE Team

    2015-11-01

    The goal of Tri Alpha Energy's C-2U experiment is to demonstrate FRC sustainment via neutral beam injection. Accurate equilibrium profiles are essential for determining optimum operating regimes and studying physics phenomena. Electron density profiles in C-2 were measured by a CO2/HeNe laser interferometer. All C-2 chords were located below the machine axis causing difficulties due to spatial under-sampling in case of vertical plasma motion. As part of C-2U, additional chords were added above the axis and a complimentary 4-chord far-infrared (FIR) interferometer was developed. The FIR system is based on 2 HCOOH lasers optically pumped by a CO2 laser. This upgrade allowed for higher density resolution and broad spectral bandwidth. Results of improved density profile measurement will be presented, including fast ion effects. Plasma wobble is also characterized via density centroid measurements.

  10. Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing

    SciTech Connect

    Pfister, Thorsten; Buettner, Lars; Shirai, Katsuaki; Czarske, Juergen

    2005-05-01

    Investigating shear flows is important in technical applications as well as in fundamental research. Velocity measurements with high spatial resolution are necessary. Laser Doppler anemometry allows nonintrusive precise measurements, but the spatial resolution is limited by the size of the measurement volume to {approx}50 {mu}m. A new laser Doppler profile sensor is proposed, enabling determination of the velocity profile inside the measurement volume. Two fringe systems with contrary fringe spacing gradients are generated to determine the position as well as the velocity of passing tracer particles. Physically discriminating between the two measuring channels is done by a frequency-division-multiplexing technique with acousto-optic modulators. A frequency-doubled Nd:YAG laser and a fiber-optic measuring head were employed, resulting in a portable and flexible sensor. In the center of the measurement volume of {approx}1-mm length, a spatial resolution of {approx}5 {mu}m was obtained. Spatially resolved measurements of the Blasius velocity profile are presented. Small velocities as low as 3 cm/s are measured. The sensor is applied in a wind tunnel to determine the wall shear stress of a boundary layer flow. All measurement results show good agreement with the theoretical prediction.

  11. The measurement of elemental abundances above 10 sup 15 eV at a lunar base

    SciTech Connect

    Swordy, S.P. )

    1990-03-15

    At {approx}10{sup 15} eV the slope of the energy spectrum of cosmic rays becomes significantly steeper than at lower energies. The measurement of relative elemental abundances at these energies is expected to provide a means to resolve the origin of this feature and greatly contribute to the understanding of the sources of cosmic rays. We describe a moon based detector for making well resolved elemental measurements at these energies using hadronic calorimetry. This detector is particularly well suited for a site on the lunar surface because there is no overlying layer of atmosphere and the large mass required can be provided by the lunar regolith.

  12. The use of ultrasonic property measurements as the basis for finite element analysis of composite materials

    NASA Astrophysics Data System (ADS)

    Madaras, E. I.; Kline, R. A.; Cruse, G.; Striz, A. G.

    1991-07-01

    In this work, the use of ultrasonic property measurements as the basis for finite element analysis of full scale composite components is presented. The approach utilizes multiple velocity measurements at oblique angles of incidence and quantitative analysis of radiographic images for the local determination of each of the nine orthotropic moduli in a woven carbon-carbon composite. These values were then used as input into a finite element code (NASTRAN) to analyze the response of the material to load: here, diametric compression. The predicted response was then compared with strain gage results at several locations to validate the approach.

  13. The use of ultrasonic property measurements as the basis for finite element analysis of composite materials

    NASA Technical Reports Server (NTRS)

    Madaras, E. I.; Kline, R. A.; Cruse, G.; Striz, A. G.

    1991-01-01

    In this work, the use of ultrasonic property measurements as the basis for finite element analysis of full scale composite components is presented. The approach utilizes multiple velocity measurements at oblique angles of incidence and quantitative analysis of radiographic images for the local determination of each of the nine orthotropic moduli in a woven carbon-carbon composite. These values were then used as input into a finite element code (NASTRAN) to analyze the response of the material to load: here, diametric compression. The predicted response was then compared with strain gage results at several locations to validate the approach.

  14. A method for modulation transfer function determination from blood vessel profiles measured in computed tomography

    NASA Astrophysics Data System (ADS)

    Nakaya, Y.; Kawata, Y.; Niki, N.; Ohmatsu, H.; Moriyama, N.

    2012-03-01

    The recent CT systems yield high spatial resolution in all directions of volumetric images in clinical routine. The quantitative characterization of the performance of CT systems is important for comparing the effects of different scan and reconstruction parameters, for comparing between different CT systems, and for evaluating the accuracy of size and density measurements of fine details in CT images. This paper presents a method to determine the modulation transfer function (MTF) in the scan plane obtained by CT system from profiles of human anatomical structures such as blood vessel measured by clinical measurement conditions without magnified reconstruction. MTF estimations are performed for cylindrical tube phantoms with three different diameters (1 mm, 2 mm, and 3 mm) injected by solution of contrast material and human blood vessels measured by the clinical measurement conditions. We demonstrate the potential usefulness of the method for estimating the MTF from blood vessel profiles measured in CT systems.

  15. Measuring Gap Fraction, Element Clumping Index and LAI in Sierra Forest Stands Using a Full-Waveform Ground-Based Lidar

    NASA Technical Reports Server (NTRS)

    Zhao, Feng; Strahler, Alan H.; Crystal L. Schaaf; Yao, Tian; Yang, Xiaoyuan; Wang, Zhuosen; Schull, Mitchell A.; Roman, Miguel O.; Woodcock, Curtis E.; Olofsson, Pontus; Ni-Meister, Wenge; Jupp, David L. B.; Lovell, Jenny L.; Culvenor, Darius S.; Newnham, Glenn J.

    2012-01-01

    The Echidna Validation Instrument (EVI), a ground-based, near-infrared (1064 nm) scanning lidar, provides gap fraction measurements, element clumping index measurements, effective leaf area index (LAIe) and leaf area index (LAI) measurements that are statistically similar to those from hemispherical photos. In this research, a new method integrating the range dimension is presented for retrieving element clumping index using a unique series of images of gap probability (Pgap) with range from EVI. From these images, we identified connected gap components and found the approximate physical, rather than angular, size of connected gap component. We conducted trials at 30 plots within six conifer stands of varying height and stocking densities in the Sierra National Forest, CA, in August 2008. The element clumping index measurements retrieved from EVI Pgap image series for the hinge angle region are highly consistent (R2=0.866) with those of hemispherical photos. Furthermore, the information contained in connected gap component size profiles does account for the difference between our method and gap-size distribution theory based method, suggesting a new perspective to measure element clumping index with EVI Pgap image series and also a potential advantage of three dimensional Lidar data for element clumping index retrieval. Therefore further exploration is required for better characterization of clumped condition from EVI Pgap image series.

  16. Radial density profile measurement by using the multichannel microwave interferometer in GAMMA 10

    SciTech Connect

    Yoshikawa, M.; Matsumoto, T.; Shima, Y.; Negishi, S.; Miyata, Y.; Mizuguchi, M.; Imai, N.; Yoneda, Y.; Hojo, H.; Itakura, A.; Imai, T.

    2008-10-15

    Plasma density radial profile measurements are an important study for fusion plasma researches. We reconstructed a multichannel microwave interferometer for radial plasma electron density and density fluctuation measurements with both changing the transmission horn position and using the Teflon lens by only using this system in a single plasma shot. By using this system, we can successfully measure the radial density and density fluctuation spectra in a single plasma shot.

  17. Profile measurements in the plasma edge of mega amp spherical tokamak using a ball pen probe.

    PubMed

    Walkden, N R; Adamek, J; Allan, S; Dudson, B D; Elmore, S; Fishpool, G; Harrison, J; Kirk, A; Komm, M

    2015-02-01

    The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature, and radial electric field on the Mega Amp Spherical Tokamak. The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP potential and the floating potential, the electron temperature can be measured, which is compared with the Thomson scattering (TS) diagnostic. Excellent agreement between the two diagnostics is obtained when secondary electron emission is accounted for in the floating potential. From the BPP profile, an estimate of the radial electric field is extracted which is shown to be of the order ∼1 kV/m and increases with plasma current. Corrections to the BPP measurement, constrained by the TS comparison, introduce uncertainty into the ER measurements. The uncertainty is most significant in the electric field well inside the separatrix. The electric field is used to estimate toroidal and poloidal rotation velocities from E × B motion. This paper further demonstrates the ability of the ball pen probe to make valuable and important measurements in the boundary plasma of a tokamak. PMID:25725845

  18. Profile measurements in the plasma edge of mega amp spherical tokamak using a ball pen probe

    SciTech Connect

    Walkden, N. R.; Adamek, J.; Komm, M.; Allan, S.; Elmore, S.; Fishpool, G.; Harrison, J.; Kirk, A.; Dudson, B. D.

    2015-02-15

    The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature, and radial electric field on the Mega Amp Spherical Tokamak. The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP potential and the floating potential, the electron temperature can be measured, which is compared with the Thomson scattering (TS) diagnostic. Excellent agreement between the two diagnostics is obtained when secondary electron emission is accounted for in the floating potential. From the BPP profile, an estimate of the radial electric field is extracted which is shown to be of the order ∼1 kV/m and increases with plasma current. Corrections to the BPP measurement, constrained by the TS comparison, introduce uncertainty into the E{sub R} measurements. The uncertainty is most significant in the electric field well inside the separatrix. The electric field is used to estimate toroidal and poloidal rotation velocities from E × B motion. This paper further demonstrates the ability of the ball pen probe to make valuable and important measurements in the boundary plasma of a tokamak.

  19. Profile measurements in the plasma edge of mega amp spherical tokamak using a ball pen probe

    NASA Astrophysics Data System (ADS)

    Walkden, N. R.; Adamek, J.; Allan, S.; Dudson, B. D.; Elmore, S.; Fishpool, G.; Harrison, J.; Kirk, A.; Komm, M.

    2015-02-01

    The ball pen probe (BPP) technique is used successfully to make profile measurements of plasma potential, electron temperature, and radial electric field on the Mega Amp Spherical Tokamak. The potential profile measured by the BPP is shown to significantly differ from the floating potential both in polarity and profile shape. By combining the BPP potential and the floating potential, the electron temperature can be measured, which is compared with the Thomson scattering (TS) diagnostic. Excellent agreement between the two diagnostics is obtained when secondary electron emission is accounted for in the floating potential. From the BPP profile, an estimate of the radial electric field is extracted which is shown to be of the order ˜1 kV/m and increases with plasma current. Corrections to the BPP measurement, constrained by the TS comparison, introduce uncertainty into the ER measurements. The uncertainty is most significant in the electric field well inside the separatrix. The electric field is used to estimate toroidal and poloidal rotation velocities from E × B motion. This paper further demonstrates the ability of the ball pen probe to make valuable and important measurements in the boundary plasma of a tokamak.

  20. Drift reduction in a scanning electrostatic force microscope for surface profile measurement

    NASA Astrophysics Data System (ADS)

    Jia, Zhigang; Ito, So; Goto, Shigeaki; Hosobuchi, Keiichiro; Shimizu, Yuki; Gao, Wei

    2014-09-01

    The influence of drifts on the measurement results of an electrostatic force microscope (EFM) based on a dual-height method for surface profile measurement is analyzed. Two types of drifts and their influence on the EFM measurement are discussed by computer simulation. It is figured out that the mechanical drift has a larger impact compared to the resonance frequency drift for the specific EFM with the conventional round-trip scan mode. It is also verified that the profile reconstruction algorithm of the dual-height method for separating the electric property distribution and the surface profile of the surface has an effect of magnifying the drift error in the result of surface profile measurement, which is a much more significant measurement of uncertainty sources for the developed EFM compared with an ordinary scanning probe microscope (SPM). A new vertical reciprocating scan (VRS) mode is then employed to reduce the influences of the drifts. The feasibility of the VRS mode is demonstrated by computer simulation and measurement experiments with a diffraction grating.

  1. Design, Development, and Applications of Image Scanning Ellipsometry for the Measurement of Thin Film Thickness Profiles.

    NASA Astrophysics Data System (ADS)

    Liu, An-Hong

    A novel technique, Image Scanning Ellipsometry, to measure the two dimensional thickness profile of a non -uniform, thin film, from several nm up to several mum, in the transient state as well as in the steady state was developed and tested in this thesis. Image Scanning Ellipsometry (ISE) is a full-field imaging technique which can study every point on the surface at the same time with high spatial resolution and thickness sensitivity; i.e., it can measure and map a liquid or solid film thickness profile in two dimensions. The long-term objective of the development of ISE is to determine the stability and heat transfer characteristics of evaporating thin films. The main purpose of this thesis was to develop the basic concept of ISE and demonstrate its use by measuring the thickness profiles of non-uniform solid films in a steady state as well as the profile of draining liquid films of wetting and partially wetting fluids in a transient state. In this thesis, ISE has been proven to be as accurate as a null ellipsometer by measuring a known solid wedge profile of ThF_4 on a Si substrate. In addition, the ability of ISE to measure liquid draining films such as FC-5311, FC-77, and FC-70 in a transient state was demonstrated. Moreover, ISE was also used to measure a partially wetting, draining film of dodecane, and to record the details of film rupture. The approximate solutions of a modeling equation for the thickness profile during draining was compared to the experimental profile. The agreement between theory and experiment is quite good. The theoretical profiles agree with the experimental profiles in both the thicker hydrodynamic region and in the thin film region which is under 100 nm. However, because the current limited magnification of the ISE hinders the exact location of a null point and the allocation of the exact position of the dark fringes is limited by the ability to accurately digitize and analyze the images, discrepancies between the modeling and the

  2. Elemental depth profiling in Cu(In, Ga)Se 2 solar cells using micro-PIXE on a bevelled section

    NASA Astrophysics Data System (ADS)

    Spemann, D.; Otte, K.; Lorenz, M.; Butz, T.

    2005-04-01

    Cu(In, Ga)Se2 (CIGS) solar cells deposited on polyimide foils by the Solarion company in a web-coater based process using sputter and evaporation techniques were investigated in the ion beam laboratory LIPSION of the University of Leipzig by means of Rutherford Backscattering Spectrometry (RBS) and Particle Induced X-ray Emission (PIXE) using a 2.25 MeV proton microbeam. From these measurements the composition of the absorber as well as the lateral homogeneity and the film thicknesses of the individual layers of the solar cell could be determined under some reasonable assumptions. Quantitative depth profiling of the individual elements was performed by micro-PIXE measurements on a bevelled section of a CIGS solar cell prepared by ion beam etching. It revealed small concentration-depth-gradients for Cu, In, Ga and Se within the CIGS absorber layer. Furthermore, a remarkable amount of Cd from the overlying CdS buffer layer was found to be present in the absorber layer. Secondary Neutral Mass Spectrometry (SNMS) measurements were applied on the same samples for comparison.

  3. Microstructure-determined pulsar dispersion measures and the problem of profile alignment

    SciTech Connect

    Hankins, T.H.; Izvekova, V.A.; Malofeev, V.M.; Shitov, I.P.; Rankin, J.M. National Radio Astronomy Observatory, Socorro AN SSSR, Fizicheskii Institut, Moscow Vermont, University, Burlington )

    1991-05-01

    Time-aligned profile measurements for two pulsars, combining data from the Arecibo, Puerto Rico, and Pushchino, USSR, observatories over a seven-octave frequency interval between 25 and 5000 MHZ are analyzed along with several new microstructure dispersion values. DMA(A) values of 2.9701 + or {minus} 0.0003, and 4.8470 + or {minus} 0.0003 pc/cu cm for PSR 0950+08 and 1113 + 16, respectively are obtained, with small departures from alignment that appear traceable to changes in a profile shape with frequency. These subtle changes in the profile form are noticeable only by virtue of the high time resolution and broad frequency coverage. It is noted that small low-frequency delays result when the sets of profiles are aligned optimally according to the best available microstructure dispersion values. 19 refs.

  4. Simply Scan—Optical Methods for Elemental Carbon Measurement in Diesel Exhaust Particulate

    PubMed Central

    Forder, James A.

    2014-01-01

    This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. PMID:24939982

  5. Simply scan--optical methods for elemental carbon measurement in diesel exhaust particulate.

    PubMed

    Forder, James A

    2014-08-01

    This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. PMID:24939982

  6. Measurement of dynamic gas disengagement profile by using an analog output level gauge

    NASA Astrophysics Data System (ADS)

    Mikkilineni, S.; Koelle, M.; Xu, H.

    The dynamic gas disengagement profile was measured in a 0.14 m diameter and 3.66 m high plexiglas column by using an analog output gauge, which was connected to a data acquisition system. This analog output gauge is a high accuracy continuous measurement level gauge. It is made up of a wave guide, a float, a motion or stress sensing device and a probe housing. The fluid level at any gas velocity is obtained by using the data acquisition system. The dynamic gas disengagement profile produced one slope in the bubble flow and two slopes in the churn turbulent flow representing unimodal and bimodal distributions of bubbles.

  7. Interfacial water dielectric-permittivity-profile measurements using atomic force microscopy.

    PubMed

    Teschke, O; Ceotto, G; de Souza, E F

    2001-07-01

    The arrangement of water molecules at charged aqueous interfaces is an important question in biology, electrochemistry, and geochemistry. Theoretical studies suggest that the molecules become arranged in several layers adjacent to a solid interface. Using atomic force microscopy we have measured the water dielectric-permittivity profile perpendicular to mica surfaces. The measured variable permittivity profile starting at epsilon approximately 4 at the interface and increasing to epsilon=80 about 10 nm from the surface suggests a reorientation of water molecule dipoles in the presence of the mica interfacial charge. PMID:11461268

  8. Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and Vertical Profile

    NASA Astrophysics Data System (ADS)

    Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric

    2015-04-01

    Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. Vertical profiles of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as vertical profiles of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the vertical profile in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using

  9. THE SuperTIGER Instrument: Measurement of Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Brandt, T. J.; Daniels, W. M.; DowKonnt, P. F.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Israel, M. H.; Klemic, J.; Labrador, A. W.; Link, J. T.; Mewaldt, R. A.; Mitchell, J. W.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F.; Sakai, K.; San Sebastian, F.; Sasaki, M.; Simburger, G. E.; Stone, E. C.; Waddington, C. J.; Ward, J. E.; Wiedenbeck, M. E.

    2014-01-01

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from Ne-10 to Zr-40 with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z < or = 60 and measures the energy spectra of the more abundant elements for Z < or = 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million cu m balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 x 10(exp 6) cosmic-ray nuclei with Z > or = 10, including approx.1300 with Z > 29 and approx.60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  10. The SUPERTIGER Instrument: Measurement of Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Brandt, T. J.; Daniels, W. M.; Dowkontt, P. F.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Israel, M. H.; Klemic, J.; Labrador, A. W.; Link, J. T.; Mewaldt, R. A.; Mitchell, J. W.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F.; Sakai, K.; San Sebastian, F.; Sasaki, M.; Simburger, G. E.; Stone, E. C.; Waddington, C. J.; Ward, J. E.; Wiedenbeck, M. E.

    2014-06-01

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from 10Ne to 40Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z <= 60 and measures the energy spectra of the more abundant elements for Z <= 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m3 balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 106 cosmic-ray nuclei with Z >= 10, including ~1300 with Z > 29 and ~60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  11. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    SciTech Connect

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Dowkontt, P. F.; Israel, M. H.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F.; Brandt, T. J.; Daniels, W. M.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K.; and others

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  12. Measurement of diffraction gratings with a long trace profiler with applications for synchrotron beamline gratings

    SciTech Connect

    Irick, S.C.; McKinney, W.R.

    1997-06-01

    The Long Trace Profiler (LTP) is used primarily for measuring the figure of long synchrotron beamline mirrors. The LTP has also been used for measuring the figure of the substrate of beamline gratings. We propose a method for measuring the effective figure that comes from the gratings groove pattern on the substrate of long beamline gratings. Analysis of gratings groove patterns can be useful in determining cause of poor imaging of the diffracted light, but requires investigation of small changes of the groove frequency over the entire clear aperture of the grating. A diffraction grating that is small enough to be measured by a general purpose six inch aperture interferometer is measured by both this interferometer and the LTP, so that results for two different instruments may be compared. The height profile of the substrate light (m = 0) measurement is subtracted from the height profile of the diffracted light (m = 1) measurement, and the result is the effect of only the diffraction f rom the grooves along the entire surface. This procedure is also used for a diffraction grating that is too long to be measured by the general purpose interferometer, but is easily measured by the LTP.

  13. Measurement of diffraction gratings with a long trace profiler with application for synchrotron beamline gratings

    SciTech Connect

    Irick, S. C.; McKinney, W. R.

    1997-07-01

    The Long Trace Profiler (LTP) is used primarily for measuring the figure of long synchrotron beamline mirrors. The LTP has also been used for measuring the figure of the substrate of beamline gratings. We propose a method for measuring the effective figure that comes from the grating groove pattern on the substrate of long beamline gratings. Analysis of grating groove patterns can be useful in determining cause of poor imaging of the diffracted light, but requires investigation of small changes of the groove frequency over the entire clear aperture of the grating. A diffraction grating that is small enough to be measured by a general purpose six inch aperture interferometer is measured by both this interferometer and the LTP, so that results for two different instruments may be compared. The height profile of the substrate light (m=0) measurement is subtracted from the height profile of the diffracted light (m=1) measurement, and the result is the effect of only the diffraction from the grooves along the entire surface. This procedure is also used for a diffraction grating that is too long to be measured by the general purpose interferometer, but is easily measured by the LTP.

  14. Measurement of diffraction gratings with a long trace profiler with application for synchrotron beamline gratings

    SciTech Connect

    Irick, S.C.; McKinney, W.R.

    1997-07-01

    The Long Trace Profiler (LTP) is used primarily for measuring the figure of long synchrotron beamline mirrors. The LTP has also been used for measuring the figure of the substrate of beamline gratings. We propose a method for measuring the effective figure that comes from the grating groove pattern on the substrate of long beamline gratings. Analysis of grating groove patterns can be useful in determining cause of poor imaging of the diffracted light, but requires investigation of small changes of the groove frequency over the entire clear aperture of the grating. A diffraction grating that is small enough to be measured by a general purpose six inch aperture interferometer is measured by both this interferometer and the LTP, so that results for two different instruments may be compared. The height profile of the substrate light (m=0) measurement is subtracted from the height profile of the diffracted light (m=1) measurement, and the result is the effect of only the diffraction from the grooves along the entire surface. This procedure is also used for a diffraction grating that is too long to be measured by the general purpose interferometer, but is easily measured by the LTP. {copyright} {ital 1997 American Institute of Physics.}

  15. ACCURATE: Greenhouse Gas Profiles Retrieval from Combined IR-Laser and Microwave Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Proschek, Veronika; Kirchengast, Gottfried; Schweitzer, Susanne; Fritzer, Johannes

    2010-05-01

    The new climate satellite concept ACCURATE (Atmospheric Climate and Chemistry in the UTLS Region And climate Trends Explorer) enables simultaneous measurement of profiles of greenhouse gases, isotopes, wind and thermodynamic variables from Low Earth Orbit (LEO) satellites. The measurement principle applied is a combination of the novel LEO-LEO infrared laser occultation (LIO) technique and the already better studied LEO-LEO microwave occultation (LMO) technique. Resulting occultation events are evenly distributed around the world, have high vertical resolution and accuracy and are stable over long time periods. The LIO uses near-monochromatic signals in the short-wave infrared range (~2-2.5 μm for ACCURATE). These signals are absorbed by various trace species in the Earth's atmosphere. Profiles of the concentration of the absorbing species can be derived from signal transmission measurements. Accurately known temperature, pressure and humidity profiles derived from simultaneously measured LMO signals are essential pre-information for the retrieval of the trace species profiles. These LMO signals lie in the microwave band region from 17-23 GHz and, optionally, 178-195 GHz. The current ACCURATE mission design is arranged for the measurement of six greenhouse gases (GHG) (H2O, CO2, CH4, N2O, O3, CO) and four isotopes (13CO2, C18OO, HDO, H218O), with focus on the upper troposphere/lower stratosphere region (UTLS, 5-35 km). Wind speed in line-of-sight can be derived from a line-symmetric transmission difference which is caused by wind-induced Doppler shift. By-products are information on cloud layering, aerosol extinction, and scintillation strength. We introduce the methodology to retrieve GHG profiles from quasi-realistic forward-simulated intensities of LIO signals and thermodynamic profiles retrieved in a preceding step from LMO signals. Key of the retrieval methodology is the differencing of two LIO transmission signals, one being GHG sensitive on a target

  16. Reduction of the density profile of a field-reversed configuration plasma from detailed interferometric measurements

    NASA Astrophysics Data System (ADS)

    Okada, S.; Kiso, Y.; Goto, S.; Ishimura, T.

    1989-06-01

    In order to obtain a detailed density profile of a field-reversed configuration (FRC) plasma, fast-response multichannel heterodyne quadrature interferometers are constructed. Using these interferometers and assuming a rigid-body radial shift motion of the plasma, a spatially fine-grained line integrated density (∫ n dl) profile at its axial midplane is measured. A radial density profile n(r) is reduced from spline fitting of ∫ n dl. The n(r) is found to be nearly an even function of u(=r2/R2-1, R is the magnetic axis radius) as expected. The n(r) is also obtained by the fitting of a line integral of a model n(r) consisting of a modified rigid rotor (RR) profile which can describe the density steepening near the separatrix of the FRC plasma. When the plasma is fat (xs =separatrix radius/coil inner radius=0.63), the density profile is very near to the RR profile itself given by sech2 (Ku), where K is a constant. When the plasma is slender (xs =0.43), the modification is somewhat pronounced. In both cases n(r) at r=R is flatter but near to the RR profile, and the scale length of the density gradient at the separatrix is about twice the ion gyroradius. Detailed error analyses of the fitting parameters are done to show the range of allowed profiles. Although the fitting is accomplished very well (root-mean-square excursion of the fitted ∫ n dl from the measured one is from 1.9% to 2.5%), much variation of n(r) is still possible.

  17. Global Elemental Maps of the Moon Using Gamma Rays Measured by the Kaguya (SELENE) Mission

    NASA Astrophysics Data System (ADS)

    Reedy, Robert C.; Hasebe, N.; Yamashita, N.; Karouji, Y.; Kobayashi, S.; Hareyama, M.; Hayatsu, K.; Okudaira, O.; Kobayashi, M.; d'Uston, C.; Maurice, S.; Gasnault, O.; Forni, O.; Diez, B.; Kim, K.

    2009-09-01

    The Kaguya spacecraft was in a circular polar lunar orbit from 17 October 2007 until 10 June 2009 as part of JAXA's SELENE lunar exploration program. Among the 13 instruments, an advanced gamma-ray spectrometer (GRS) studied the distributions of many elements. The gamma rays were from the decay of the naturally-radioactive elements K, Th, and U and from cosmic-ray interactions with H, O, Mg, Al, Si, Ca, Ti, Fe, and other elements. They are emitted from the top few tens of centimeters of the lunar surface. The main detector of the GRS was high-purity germanium, which was surrounded by bismuth germanate and plastic scintillators to reduce backgrounds. Gamma-ray spectra were sent to the Earth every 17 seconds (1 degree of the lunar surface) with energies from 0-12 MeV. These spectra were adjusted to a standard gain and then summed over many lunar regions. Background spectra were also determined. Over 200 gamma rays have been observed, with most being backgrounds but many being from the lunar surface, an order more gamma rays than from any previous lunar GRS missions. Elemental results have been determined for K, Th, and U. Results for K and Th are consistent with those from the GRS on Apollo and Lunar Prospector. The first lunar global maps for U have been determined. These 3 elements show strong correlations among themselves, which implies that the Moon is homogeneous in these elements over the entire Moon. Their elemental ratios agree well with those measured in lunar samples and meteorites. Preliminary maps for Fe are consistent with earlier maps. Other elements, including O, Mg, Si, Ca, and Ti, are being mapped, and their distributions vary over the lunar surface and appear consistent with previous lunar elemental results. This work was supported by JAXA, NASA, and CNRS, France.

  18. Ozonesonde profiles from the West Pacific Warm Pool: measurements and validation

    NASA Astrophysics Data System (ADS)

    Newton, R.; Vaughan, G.; Ricketts, H. M. A.; Pan, L. L.; Weinheimer, A. J.; Chemel, C.

    2016-01-01

    We present a series of ozonesonde profiles measured from Manus Island, Papua New Guinea, during February 2014, with new insights on the calibration of ozonesondes for measurements in the tropical troposphere. The experiment formed a part of a wider airborne campaign involving three aircraft based in Guam, to characterise the atmospheric composition above the tropical West Pacific in unprecedented detail. Thirty-nine ozonesondes were launched between 2 and 25 February of which 34 gave good ozone profiles. Particular attention was paid to evaluating the background current of the ozonesondes, as this can amount to half the measured signal in the tropical tropopause layer (TTL). An unexpected contamination event affected the measurements and required a departure from standard operating procedures for the ozonesondes. The most significant departure was not exposing the sondes to ozone during preparation, which meant that the background current remained stable before launch. Comparison with aircraft measurements allows validation of the measured ozone profiles and confirms that for well-characterized sondes (background current ˜ 50 nA) a constant background current could be assumed throughout the profile, equal to the minimum value measured during preparation just before launch. From this set of 34 ozonesondes, the minimum reproducible ozone concentration measured in the TTL was 12-13 ppbv; no examples of ozone concentrations < 5 ppbv, as reported by other recent papers, were measured. The lowest ozone concentrations coincided with outflow from extensive deep convection to the east of Manus, consistent with uplift of ozone-poor air from the boundary layer. However, these minima were lower than the ozone concentration measured through most of the boundary layer, and were matched only by measurements at the surface in Manus.

  19. Prospects for measuring neutron-star masses and radii with X-ray pulse profile modeling

    SciTech Connect

    Psaltis, Dimitrios; Özel, Feryal; Chakrabarty, Deepto E-mail: fozel@email.arizona.edu

    2014-06-01

    Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. However, we also show that for moderately spinning (300-800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides additional constraints that allow a unique determination of the neutron-star properties. Using the fractional amplitudes of the fundamental and the second harmonic of the pulse profile in addition to the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise ratio necessary to achieve a specified measurement precision for neutron star radius. We find that accumulating 10{sup 6} counts in a pulse profile is sufficient to achieve a ≲ 5% uncertainty in the neutron star radius, which is the level of accuracy required to determine the equation of state of neutron-star matter. Finally, we formally derive the background limits that can be tolerated in the measurements of the various pulsation amplitudes as a function of the system parameters.

  20. Plasma Density Profile Measurement of Accelerated SCT Using Laser Deflection Diagnostics

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel; Hwang, David; Horton, Robert; Evans, Russ; Howard, Steven

    2002-11-01

    Laser interferometers, while providing accurate line-averaged density measurements, require highly complex apparatus, precision alignment, and high coherence length lasers. A simpler method of obtaining plasma line-averaged density profiles is through the detection of deflection of a laser beam from the changes in the local index of refraction as a result of the density profile. By combining plasma density gradient measurements made at multiple locations and different chords, a plasma density profile can be reconstructed. This method of density profile measurement places far less requirements on the laser quality and alignment procedure. We are investigating the use of arrays of short coherence length diode lasers and point detectors to obtain line-averaged plasma density profiles on the CTIX device. Various density reconstruction methods will be presented. The final goal of this diagnostic is to develop abilities for diagnosing plasma shock fronts created during the deceleration phase of the SCT injector. Work Supported by DOE grant DE-FG03-99ER54558

  1. Soft x-ray magneto-optic Kerr rotation and element-specific hysteresis measurement

    SciTech Connect

    Kortright, J.B.; Rice, M.

    1996-03-01

    Soft x-ray magneto-optic Kerr rotation has been measured using a continuously tunable multilayer linear polarizer in the beam reflected form samples in applied magnetic fields. Like magnetic circular dichroism, Kerr rotation in the soft x-ray can be element - specific and much larger than in the visible spectral range when the photon energy is tuned near atomic core resonances. Thus sensitive element-specific hysteresis measurements are possible with this technique. Examples showing large Kerr rotation from an Fe film and element-specific hysteresis loops of the Fe and Cr in an Fe/Cr multilayer demonstrate these new capabilities. Some consequences of the strong anomalous dispersion near the FeL{sub 2,3} edges to the Kerr rotation are discussed.

  2. Temperature, velocity and Species Profile Measurements for Reburning in a Pulverized, Entrained Flow, Coal Combustor

    SciTech Connect

    Tree, D.R.

    1997-10-01

    Measurements of effluent NO{sub x}, CO, and O{sub 2} have been obtained for various reburning locations in the controlled profile reactor. the location of the reburning zone and tertiary air zone have been varied to find an optimal location for detailed reburning profile measurements. No{sub x} reduction of greater than 70% has been seen with natural gas injection in and just below the primary combustion zone. Strategic injection of the natural gas for reburning reduces the total No{sub x} reduction capability of reburning. Modeling efforts continue in trying to match the modeling solution to the detailed baseline data taken in previous measurement. The use of more accurate measured boundary conditions did not appear to improve the model predictions greatly but the use of more detailed turbulence models was found to improve the predictions, the predictions are still far from matching the combustion measurements.

  3. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    SciTech Connect

    Meng, Congsen; Janssen, Maurice H. M.

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  4. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging.

    PubMed

    Meng, Congsen; Janssen, Maurice H M

    2015-02-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude. PMID:25725826

  5. Calibrating system errors of large scale three-dimensional profile measurement instruments by subaperture stitching method.

    PubMed

    Dong, Zhichao; Cheng, Haobo; Feng, Yunpeng; Su, Jingshi; Wu, Hengyu; Tam, Hon-Yuen

    2015-07-01

    This study presents a subaperture stitching method to calibrate system errors of several ∼2  m large scale 3D profile measurement instruments (PMIs). The calibration process was carried out by measuring a Φ460  mm standard flat sample multiple times at different sites of the PMI with a length gauge; then the subaperture data were stitched together using a sequential or simultaneous stitching algorithm that minimizes the inconsistency (i.e., difference) of the discrete data in the overlapped areas. The system error can be used to compensate the measurement results of not only large flats, but also spheres and aspheres. The feasibility of the calibration was validated by measuring a Φ1070  mm aspheric mirror, which can raise the measurement accuracy of PMIs and provide more reliable 3D surface profiles for guiding grinding, lapping, and even initial polishing processes. PMID:26193139

  6. Assessing the Suitability of Historical PM(2.5) Element Measurements for Trend Analysis.

    PubMed

    Hyslop, Nicole P; Trzepla, Krystyna; White, Warren H

    2015-08-01

    The IMPROVE (Interagency Monitoring of Protected Visual Environments) network has characterized fine particulate matter composition at locations throughout the United States since 1988. A main objective of the network is to evaluate long-term trends in aerosol concentrations. Measurements inevitably advance over time, but changes in measurement technique have the potential to confound the interpretation of long-term trends. Problems of interpretation typically arise from changing biases, and changes in bias can be difficult to identify without comparison data that are consistent throughout the measurement series, which rarely exist. We created a consistent measurement series for exactly this purpose by reanalyzing the 15-year archives (1995-2009) of aerosol samples from three sites - Great Smoky Mountains National Park, Mount Rainier National Park, and Point Reyes National Seashore-as single batches using consistent analytical methods. In most cases, trend estimates based on the original and reanalysis measurements are statistically different for elements that were not measured above the detection limit consistently over the years (e.g., Na, Cl, Si, Ti, V, Mn). The original trends are more reliable for elements consistently measured above the detection limit. All but one of the 23 site-element series with detection rates >80% had statistically indistinguishable original and reanalysis trends (overlapping 95% confidence intervals). PMID:26125610

  7. Dose rate and beam profile measurement of proton beam using a flat panel detector

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Min

    2015-10-01

    A 20-MeV or 100-MeV proton beam is provided to users for their proton beam irradiation experiments at KOrea Multi-Purpose Accelerator Complex. Radiochromic film (Gafchromic / HDV2) has been used to measure the dose rate and the profile of an incident proton beam during irradiation experiments. However, such measurements using radiochromic film have some inconveniences because an additional scanning process of is required to quantify the film's image. Therefore, we tried to measure the dose rate and beam profile by using a flat panel detector (FPD), which was developed for X-ray radiography as a substitute for radiochromic film because the FPD can measure the beam profile and the dose rate directly through a digitized image with a high spatial resolution. In this work, we investigated the feasibility of using a FPD as a substitute for radiochromic film. The preliminary results for the beam profile and the dose rate measured by using the flat panel detector are reported in the paper.

  8. Linear chirped slope profile for spatial calibration in slope measuring deflectometry.

    PubMed

    Siewert, F; Zeschke, T; Arnold, T; Paetzelt, H; Yashchuk, V V

    2016-05-01

    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument's spatial resolution, or more generally by the instrument's modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface with a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed. PMID:27250379

  9. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: Documenting the uptake of elemental toxicants

    USGS Publications Warehouse

    Seltzer, M.D.; Berry, K.H.

    2005-01-01

    The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.

  10. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: documenting the uptake of elemental toxicants.

    PubMed

    Seltzer, Michaeld; Berry, Kristinh

    2005-03-01

    The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality. PMID:15740773

  11. Comparative Analysis of Regulatory Elements between Escherichia coli and Klebsiella pneumoniae by Genome-Wide Transcription Start Site Profiling

    PubMed Central

    Qiu, Yu; Nagarajan, Harish; Seo, Joo-Hyun; Cho, Byung-Kwan; Tsai, Shih-Feng; Palsson, Bernhard Ø.

    2012-01-01

    Genome-wide transcription start site (TSS) profiles of the enterobacteria Escherichia coli and Klebsiella pneumoniae were experimentally determined through modified 5′ RACE followed by deep sequencing of intact primary mRNA. This identified 3,746 and 3,143 TSSs for E. coli and K. pneumoniae, respectively. Experimentally determined TSSs were then used to define promoter regions and 5′ UTRs upstream of coding genes. Comparative analysis of these regulatory elements revealed the use of multiple TSSs, identical sequence motifs of promoter and Shine-Dalgarno sequence, reflecting conserved gene expression apparatuses between the two species. In both species, over 70% of primary transcripts were expressed from operons having orthologous genes during exponential growth. However, expressed orthologous genes in E. coli and K. pneumoniae showed a strikingly different organization of upstream regulatory regions with only 20% identical promoters with TSSs in both species. Over 40% of promoters had TSSs identified in only one species, despite conserved promoter sequences existing in the other species. 662 conserved promoters having TSSs in both species resulted in the same number of comparable 5′ UTR pairs, and that regulatory element was found to be the most variant region in sequence among promoter, 5′ UTR, and ORF. In K. pneumoniae, 48 sRNAs were predicted and 36 of them were expressed during exponential growth. Among them, 34 orthologous sRNAs between two species were analyzed in depth, and the analysis showed that many sRNAs of K. pneumoniae, including pleiotropic sRNAs such as rprA, arcZ, and sgrS, may work in the same way as in E. coli. These results reveal a new dimension of comparative genomics such that a comparison of two genomes needs to be comprehensive over all levels of genome organization. PMID:22912590

  12. Measurement of Turbulence with Acoustic Doppler Current Profilers - Sources of Error and Laboratory Results

    USGS Publications Warehouse

    Nystrom, E.A.; Oberg, K.A.; Rehmann, C.R.

    2002-01-01

    Acoustic Doppler current profilers (ADCPs) provide a promising method for measuring surface-water turbulence because they can provide data from a large spatial range in a relatively short time with relative ease. Some potential sources of errors in turbulence measurements made with ADCPs include inaccuracy of Doppler-shift measurements, poor temporal and spatial measurement resolution, and inaccuracy of multi-dimensional velocities resolved from one-dimensional velocities measured at separate locations. Results from laboratory measurements of mean velocity and turbulence statistics made with two pulse-coherent ADCPs in 0.87 meters of water are used to illustrate several of inherent sources of error in ADCP turbulence measurements. Results show that processing algorithms and beam configurations have important effects on turbulence measurements. ADCPs can provide reasonable estimates of many turbulence parameters; however, the accuracy of turbulence measurements made with commercially available ADCPs is often poor in comparison to standard measurement techniques.

  13. Mineral content of grasses and grasslands of the Himalayan region: 1. Trace element distribution in soil profiles and their concentrations in surface soils

    SciTech Connect

    Singh, B.R.; Mishra, V.K.; Tripathi, B.R.

    1987-03-01

    Researchers analyzed soil samples, collected from naturally occurring grasslands of the Himalayan region, to investigate trace element distribution in soil profiles and their concentrations in surface soils, as well as to examine frequency and geographical distribution of low and high levels of trace elements. Both chemical and radiochemical analytical techniques were employed to determine the trace elements. This study was part of a research project on the evaluation of mineral content of natural grasslands and grasses and the relationship between the mineral contents in grasses and grasslands. Little or no variation in the content of total Zn, Mn, Cu, Cd, Ni, Pb, Co, and I from surface to subsurface horizons in the soil profiles was observed. However, the concentrations of extractable Zn, Mn, Cu, and B in the surface horizons were higher than in the subsurface horizons. The variations among the profiles were primarily related to the geological material from which the soils derived. Means and ranges of trace elements are given for particular locations and for the whole sample area. Concentrations of most of the trace elements varied greatly among sites at the same location and among locations. There were highly significant correlations between the contents of trace elements, especially total Zn and Mn, and extractable Zn, Fe, Ni, Co, B, and I, and the soil chemical properties, elevation, rainfall, and temperature. Rainfall and temperature showed negative correlations for almost all the trace elements. A number of the trace elements were interrelated in their geochemical origin. On the basis of the critical levels suggested for trace element deficiencies, proportions of the samples that may be considered deficient were about 28% for Zn, 50% for Mn, 20-30% for Cu, 4% for Fe, 56-87% for B, 77% for Mo, and 5-10% for Co.

  14. Non-contact high precision measurement of surface form tolerances and central thickness for optical elements

    NASA Astrophysics Data System (ADS)

    Lou, Ying

    2010-10-01

    The traditional contact measuring methods could not satisfy the current optical elements measuring requirements. Noncontact high precision measuring theory, principle and instrument of the surface form tolerances and central thickness for optical elements were studied in the paper. In comparison with other types of interferometers, such as Twyman-Green and Mach-Zehnder, a Fizeau interferometer has the advantages of having fewer optical components, greater accuracy, and is easier to use. Some relations among the 3/A(B/C), POWER/PV and N/ΔN were studied. The PV with POWER removed can be the reference number of ΔN. The chromatic longitudinal aberration of a special optical probe can be used for non-contanct central thickness measurement.

  15. Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements

    SciTech Connect

    Pitner, A.L.

    1998-09-11

    Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading.

  16. The Formal Elements Art Therapy Scale: A Measurement System for Global Variables in Art

    ERIC Educational Resources Information Center

    Gantt, Linda M.

    2009-01-01

    The Formal Elements Art Therapy Scale (FEATS) is a measurement system for applying numbers to global variables in two-dimensional art (drawing and painting). While it was originally developed for use with the single-picture assessment ("Draw a person picking an apple from a tree" [PPAT]), researchers can also apply many of the 14 scales of the…

  17. DEMONSTRATION AND QUALITY ASSURANCE PROJECT PLAN: XRF TECHNOLOGIES OF MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT

    EPA Science Inventory

    A demonstration of field portable/mobile technologies for measuring trace elements in soil and sediments was conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. The demonstration took place from January 24 to 28, 200...

  18. Element synthesis calculations for stellar explosions: robust uncertainties, sensitivities, and radioactive ion beam measurements

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Hix, W. Raphael; Parete-Koon, Suzanne; Dessieux, Luc; Ma, Zhanwen; Starrfield, Sumner; Bardayan, Daniel W.; Guidry, Michael W.; Smith, Donald L.; Blackmon, Jeffery C.; Mezzacappa, Anthony

    2004-12-01

    We utilize multiple-zone, post-processing element synthesis calculations to determine the impact of recent ORNL radioactive ion beam measurements on predictions of novae and X-ray burst simulations. We also assess the correlations between all relevant reaction rates and all synthesized isotopes, and translate nuclear reaction rate uncertainties into abundance prediction uncertainties, via a unique Monte Carlo technique.

  19. Experimental system for measuring the full scattering profile of circular phantoms

    PubMed Central

    Feder, Idit; Duadi, Hamootal; Fixler, Dror

    2015-01-01

    Optical methods for monitoring physiological tissue state are important and useful because they are non-invasive and sensitive. Experimental measurements of the full scattering profile of circular phantoms are presented. We report, for the first time, an experimental observation of a typical reflected light intensity behavior for a circular structure characterized by the isobaric point. We previously suggested a new theoretically method for measuring the full scattering profile, which is the angular distribution of light intensity, of cylindrical tissues. In this work we present that the experimental result match the simulation results. We show the isobaric point at 105° for a cylindrical phantom with a 7mm diameter, while for a 16mm diameter phantom the isobaric point is at 125°. Furthermore, the experimental work present a new crossover point of the full scattering profiles of subjects with different diameters of the cylindrical tissues. PMID:26309752

  20. Modeling of measured target pressure profiles in three hypervelocity impact experiments

    SciTech Connect

    Gerassimenko, M

    2000-10-11

    A 24 g aluminum sphere was shot at a sparse array of cylinders with nominal initial projectile velocity of 4 and 5 km/s. Pressure profiles were measured with cased carbon resistor gages at two locations in a projectile impacted water filled cylinder and two of its neighbors on three shots. The pressure maxima were in the 1-13 kbars range. The experiments are modeled with the ALE3D code and several techniques are used to concentrate zoning at places of interest. There is excellent agreement between the measured and calculated pressure profiles for two shots and good agreement for the third. Comparison of the calculated pressure profiles with those from more refined calculations for two shots suggest that we are near convergence with respect to zone size.

  1. Saturation Profiles from Lab-scale Permittivity Measurements and 2-Phase Flow Models.

    NASA Astrophysics Data System (ADS)

    Gorriti, A. G.

    2005-05-01

    Laboratory fluid-flow experiments through soils are important to study the different fluid-flow processes that occur in the subsurface of the Earth. Most of them, measure the flow conditions at the entry and exit points of the sample, while, the saturation profile in the sample, and its change with time, is unknown. Until now, only very expensive and time-consuming techniques, such as CT or MRI scans, could provide information about the flow in the sample. Now, for the first time, we have developed a technique to measure the saturation profile of soil samples that is cheap and easy. With this technique, we obtain the saturation profiles from the inversion of permittivity measurements. The experimental set-up consists of a coaxial transmission line with a large sample holder (3 cm of diameter and 10 cm long) that allows for fluid-flow through the sample. The complex electric permittivity is reconstructed, per frequency, from the electromagnetic reflection and transmission responses of the line. Relative changes in the permittivity in the order of 1% can be detected over a wide frequency band up to 3 GHz, while the lowest usable frequency depends on the permittivity of the material filling the sample holder. The accurate measurements of permittivity performed with the described tool assume that the measured quantity is an effective property. The assumption then is that the sample is homogeneous. Under non-flowing conditions this can be a reasonable assumption, but during a flow experiment it cannot. This is clear from the fact that the reconstruction of the permittivity of these samples is not successful. The model of the sample must be modified to include the resulting heterogeneity. This is done by assuming a multilayered sample, each layer considered to be homogeneous with a constant permittivity and a known frequency dependence. Minimizing a cost function involving the measured reflection and transmission coefficients and the modelled response of the multilayered

  2. Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

    SciTech Connect

    Block, M.; Ackermann, D.; Herfurth, F.; Hofmann, S.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Duellmann, Ch. E.; Eibach, M.; Eliseev, S.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Hessberger, F. P.; Ramirez, E. Minaya; Nesterenko, D.; and others

    2013-03-19

    Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

  3. Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation.

    PubMed

    D'Ariano, G M; Lo Presti, P

    2001-05-01

    Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam. PMID:11328133

  4. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    NASA Astrophysics Data System (ADS)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind

  5. Comparison of GOME-2/Metop-A ozone profiles with GOMOS, OSIRIS and MLS measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Tuinder, O. N. E.; Tukiainen, S.; Sofieva, V.; Tamminen, J.

    2015-07-01

    This paper presents a comparison of vertical ozone profiles retrieved by the Ozone ProfilE Retrieval Algorithm (OPERA) from the Global Ozone Monitoring Experiment 2 (GOME-2) measurements on board Metop-A with high-vertical-resolution ozone profiles by Global Ozone Monitoring by Occultation of Stars (GOMOS), Optical Spectrograph and Infrared Imager System (OSIRIS) and Microwave Limb Sounder (MLS). The comparison, with global coverage, focuses on the stratosphere and the lower mesosphere and covers the period from March 2008 until the end of 2011. The comparison shows an agreement of the GOME-2 ozone profiles with those of GOMOS, OSIRIS and MLS within ±15 % in the altitude range from 15 km up to ~ 35-40 km depending on latitude. The GOME-2 ozone profiles from non-degradation corrected radiances have a tendency to a systematic negative bias with respect to the reference data above ~ 30 km. The GOME-2 bias with respect to the high-vertical resolution instruments depends on season, with the strongest dependence observed at high latitudes.

  6. Measurements of radial profiles of ion cyclotron resonance heating on the Tandem Mirror Experiment-Upgrade

    SciTech Connect

    Falabella, S.

    1988-05-11

    A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 10/sup 12/cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs.

  7. Measure profile surrogates: A method to validate the performance of epileptic seizure prediction algorithms

    NASA Astrophysics Data System (ADS)

    Kreuz, Thomas; Andrzejak, Ralph G.; Mormann, Florian; Kraskov, Alexander; Stögbauer, Harald; Elger, Christian E.; Lehnertz, Klaus; Grassberger, Peter

    2004-06-01

    In a growing number of publications it is claimed that epileptic seizures can be predicted by analyzing the electroencephalogram (EEG) with different characterizing measures. However, many of these studies suffer from a severe lack of statistical validation. Only rarely are results passed to a statistical test and verified against some null hypothesis H0 in order to quantify their significance. In this paper we propose a method to statistically validate the performance of measures used to predict epileptic seizures. From measure profiles rendered by applying a moving-window technique to the electroencephalogram we first generate an ensemble of surrogates by a constrained randomization using simulated annealing. Subsequently the seizure prediction algorithm is applied to the original measure profile and to the surrogates. If detectable changes before seizure onset exist, highest performance values should be obtained for the original measure profiles and the null hypothesis. “The measure is not suited for seizure prediction” can be rejected. We demonstrate our method by applying two measures of synchronization to a quasicontinuous EEG recording and by evaluating their predictive performance using a straightforward seizure prediction statistics. We would like to stress that the proposed method is rather universal and can be applied to many other prediction and detection problems.

  8. DETERMINATION OF ELEMENTAL COMPOSITIONS FROM MASS PEAK PROFILES OF THE MOLECULAR ION (M) AND THE M + 1 AND M + 2 IONS

    EPA Science Inventory

    The relative abundances of M + 1 and M + 2 ions help to identify the elemental composition of the molecular ion (M). But scan speed, snesitiity, and resolution limitations of mass spectrometers have impeded determination of these abundances. Mass peak profiling from selected ion ...

  9. Measured elemental transfer factors for boreal hunter/gatherer scenarios: fish, game and berries.

    PubMed

    Sheppard, S C; Long, J M; Sanipelli, B

    2010-11-01

    The environmental assessment of long-term nuclear waste management requires data to estimate food chain transfers for radionuclides in various environmental settings. For key elements such as iodine (I) and chlorine (Cl), there is a paucity of transfer factor data, particularly outside of agricultural food chains. This study dealt with transfers of I, Cl and 28 other elements to foods that would be typical of boreal hunter/gatherer lifestyles, as well as being common foods for modern recreational and subsistence hunters. Food/substrate concentration ratios (CRs) and related transfer factors for eight species of widely distributed fish, whitetail deer (Odocoileus virginianus), Canada geese (Branta canadensis) and wild blueberries (Vaccinium myrtilloides) were measured and compared to the literature. Limited data were obtained for caribou (Rangifer tarandus), elk (Cervus elaphus) and moose (Alces americanus). Freshwater sediment Kd values and CRs for a ubiquitous freshwater macrophyte were also obtained. The CRs for I in fish were 29Lkg(-1) in edible muscle (fillets) of large-bodied species and 85Lkg(-1) for whole, small-bodied fish. The logCRs for fish and macrophytes were correlated across elements. For several elements, the Kds for sediments in deep water were approximately 4-fold higher than for littoral samples. The elemental transfers to wild animals for some elements were notably different than the literature indicates for domestic animals. It is argued that the transfer data obtained using indigenous elements from real environmental settings, as opposed to contaminant elements in experimental or impacted environments, are especially relevant to assessment of long-term impacts. PMID:20619514

  10. Profile measurements and OMI NO2 retrievals: New results from validation campaigns

    NASA Astrophysics Data System (ADS)

    Bucsela, E. J.; Celarier, E. A.; Gleason, J. F.; Cohen, R. C.; Bertram, T. H.; Brinksma, E.; Veefkind, P.; Swart, D.; Berkhout, S.; Martin, R. V.

    2005-12-01

    The retrieval of atmospheric NO2 from Ozone Monitoring Instrument (OMI) measurements requires a variety of a priori information. In particular, accurate knowledge of the vertical distribution of relative NO2 concentrations in the troposphere is needed to compute air mass factors (AMFs) for converting observed slant column densitites to tropospheric vertical column densities. Until recently, few measurements of tropospheric NO2 vertical profiles existed, and the profiles used in the retrieval algorithm were estimated from models. New data are now available from aircraft campaigns, such as the Intercontinental Chemical Transport Experiment (INTEX-A) in 2004 and the Polar AURA Validation Experiment(PAVE) in January-February 2005. Ground-based instruments during the Dutch Aerosol and Nitrogen Dioxide Experiments for Validation of OMI and SCHIAMACHY (DANDELIONS) have provided tropospheric NO2 measurements at Cabauw, The Netherlands, during OMI overpasses in May-June 2005. Together, these new measurements can help validate total NO2 column amounts from OMI and improve the a priori profiles for the OMI NO2 algorithm. We discuss the results from the validation campaigns in light of the most recent OMI data and examine the effects of improved profile information on AMF estimates.

  11. Plasma Profile Measurements for Laser Fusion Research with the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2015-11-01

    The grid image refractometer of the Nike laser facility (Nike-GIR) has demonstrated the capability of simultaneously measuring electron density (ne) and temperature (Te) profiles of coronal plasma. For laser plasma instability (LPI) research, the first Nike-GIR experiment successfully measured the plasma profiles in density regions up to ne ~ 4 ×1021 cm-3 (22% of the critical density for 248 nm light of Nike) using an ultraviolet probe laser (λp = 263 nm). The probe laser has been recently replaced with a shorter wavelength laser (λp = 213 nm, a 5th harmonic of the Nd:YAG laser) to diagnose a higher density region. The Nike-GIR system is being further extended to measure plasma profiles in the on-going experiment using 135°-separated Nike beam arrays for the cross-beam energy transfer (CBET) studies. We present an overview of the extended Nike-GIR arrangements and a new numerical algorithm to extract self-consistant plasma profiles with the measured quantities. Work supported by DoE/NNSA.

  12. Measurement of Z/sub eff/ profiles from bremsstrahlung emission in the near infrared

    SciTech Connect

    Roehr, H.; Steuer, K.H.; the ASDEX Team

    1988-08-01

    Local measurements of plasma radiation in the near infrared using the detection system of the ASDEX Thomson scattering device are reported. Comparison with hydrogen bremsstrahlung yields Z/sub eff/ profiles. Good agreement with values from other diagnostics is obtained. Z/sub eff/ behavior in a variety of ASDEX discharges is discussed.

  13. Measuring Quality in Inclusive Preschool Classrooms: Development and Validation of the Inclusive Classroom Profile (ICP)

    ERIC Educational Resources Information Center

    Soukakou, Elena P.

    2012-01-01

    The purpose of this study was to develop and validate an observation measure designed to assess classroom quality in inclusive preschool programs, the Inclusive Classroom Profile (ICP). Developing the rating scale entailed systematic fieldwork in inclusive settings and review of the literature on preschool inclusion. Results from the validation…

  14. Return glider radiosonde to measure temperature, humidity and radiation profiles through the atmosphere

    NASA Astrophysics Data System (ADS)

    Kraeuchi, Andreas; Philipona, Rolf

    2015-04-01

    Very promising radiation profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a mechanism that allows to release the radiosonde at a preset altitude, and an autopilot allowing to fly the radiosonde back to the launch site and to land it savely with a parachute at a preset location. The return glider radiosonde technique as well as new measurement possibilities will be shown. First measurements show temperature, humidity and radiation profiles through the atmosphere up to 30 hPa (24 km) during different atmospheric conditions. Radiation profiles during different daytimes show possibilities with respect to temporal resolution of vertical radiation profiles trough the atmosphere.

  15. Spatial profiles of methane at the Swiss Plateau: A confrontation between measurements and emission inventories.

    NASA Astrophysics Data System (ADS)

    Bamberger, Ines; Eugster, Werner; Buchmann, Nina

    2013-04-01

    Methane and carbon dioxide are the two most prominent greenhouse gases in the atmosphere and a detailed knowledge about their sources is essential for climate predictions (Solomon et al., 2007). The knowledge about greenhouse gas fluxes is usually merged, albeit including considerable uncertainties, to emission inventories. To increase the quality of the inventories a comparison with measurements is necessary. We evaluate the values given by a Swiss emission inventory with regard to atmospheric measurements of methane in Switzerland. Spatial profiles of carbon dioxide and methane were investigated at the Swiss Plateau during two consecutive warm and sunny summer days in July 2012. For the mobile methane and carbon dioxide measurements a LGR methane analyser and a LI-COR closed-path infrared gas analyser (IRGA) were mounted on a car together with an AIRMAR WeatherStation to track geodetic-coordinates and meteorological parameters. First results of the measurements including aerial profiles of the greenhouse gases and bin-averaged elevation profiles of methane and temperature will be presented and a highly-resolved methane emission inventory will be evaluated in comparison with the spatial profiles of atmospheric methane at the Swiss Plateau. References: Solomon, S., Qin D., et al. (Eds.) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 996 S. pp., Cambridge University Press, Cambridge.

  16. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    SciTech Connect

    Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel J

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.

  17. Detonation Wave Profiles in Plastic Bonded Explosives Measured using 1550 nm Heterodyne Velocimetry

    NASA Astrophysics Data System (ADS)

    Gustavsen, Rick

    2009-06-01

    We have measured detonation wave profiles in several triaminotrinitrobenzene (TATB) and cyclotetramethylene tetranitramine (HMX or octogen) based plastic bonded explosives using 1550 nm Heterodyne Velocimetry. (Heterodyne Velocimetry is also called Photon Doppler Velocimetry or PDV.) Planar detonations were produced by impacting the explosive with projectiles launched in a gas gun. Particle velocity wave profiles were measured at the mirror/interface of the explosive and either a LiF or PMMA window. Mirrors consisted of either a thin vapor deposited aluminum layer, or a 6 micron thick aluminum foil. Focusing and collimating light collection probes were used. Time-Frequency-Analysis of the fringe data was carried out using both Wavelet and Short-Time-Fourier-Transform (STFT) methods. With clean fringe data, good profiles can be obtained with a 1 ns full width half maximum (FWHM) analysis window (STFT) or about 3 to 4 oscillations in the wavelet. Some profiles, however, have a noisy character which is correlated with intensity fluctuations in the raw fringe data. Wave profiles show a ZND reaction zone structure with a single reaction in the HMX based explosives and both fast and slow reactions in the TATB based explosives.

  18. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    SciTech Connect

    Fischer, W.; Bazilevsky, A.

    2011-08-18

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. {bar P}), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g.

    ).

  19. Synergy benefit in temperature, humiditiy and cloud property profiling by integrating ground based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ebell, K.; Orlandi, E.; Hünerbein, A.; Crewell, S.; Löhnert, U.

    2012-12-01

    Accurate, highly vertically resolved temperature, humidity and cloud property profiles are needed for many applications. They are essential for climate monitoring, a better process understanding and the subsequent improvement of parameterizations in numerical weather prediction and climate models. In order to provide such profiles with a high temporal resolution, multiple wavelength active and passive remote sensing techniques available at ground based observatories, e.g. the Atmospheric Radiation Measruement (ARM) Program and Cloudnet facilities, need to be exploited. In particular, the Integrated Profiling Technique (IPT, Löhnert et al., 2008) has been successfully applied to simultaneously derive profiles of temperature, humidity and liquid water by a Bayesian based retrieval using a combination of ground based microwave radiometer, cloud radar and a priori information. Within the project ICOS (Integrating Cloud Observations from Ground and Space - a Way to Combine Time and Space Information), we develop a flexible IPT, which allows for the combination of a variety of ground based measurements from cloud radar, microwave radiometer (MWR) and IR spectrometer as well as satellite based information from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of METEOSAT. As ground based observations are mainly sensitive to the lower parts of the troposphere, the satellite measurements provide complementary information and are thus expected to improve the estimates of the thermodynamic and cloud property profiles, i. e. hydrometeor content and effective radius, considerably. In addition to the SEVIRI IR measurements, which are provided with a high repetition time, information from polar orbiting satellites could be included. In paticular, the potential of the Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Sounding Unit (MHS) in the retrieval is investigated. In order to understand the improvement by integrating the measurements of the above

  20. Trace elements measurement by PIXE in the appraisal of the ancient potteries

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Q.; Cheng, H. S.; Xia, H. N.; Jiang, J. C.; Gao, M. H.; Yang, F. J.

    2002-05-01

    Fifty pieces of pottery samples were collected from two domains with different types of ancient Sino-civilization. The concentrations of trace elements Cr, Ni, Cu, Zn, Pb, Rb, Sr, Y and Zr were measured by proton-induced X-ray emission technique. Multivariate statistical processing of the results allows us to locate the provenance of the ancient potteries. The experimental results also show that the relative trace element contents Ni-Rb-Zr are useful for distinguishing these two types of Chinese ancient potteries.

  1. Establishment of a room temperature molten salt capability to measure fundamental thermodynamic properties of actinide elements

    SciTech Connect

    Smith, W.H.; Costa, D.A.

    1998-12-31

    This is the final report of a six-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this work was to establish a capability for the measurement of fundamental thermodynamic properties of actinide elements in room temperature molten salts. This capability will be used to study in detail the actinide chloro- and oxo-coordination chemistries that dominate in the chloride-based molten salt media. Uranium will be the first actinide element under investigation.

  2. Improved Ozone Profile Retrievals Using Multispectral Measurements from NASA 'A Train' Satellites

    NASA Astrophysics Data System (ADS)

    Fu, D.; Worden, J.; Livesey, N. J.; Irion, F. W.; Schwartz, M. J.; Bowman, K. W.; Pawson, S.; Wargan, K.

    2013-12-01

    Ozone, a radiatively and chemically important trace gas, plays various roles in different altitude ranges in the atmosphere. In the stratosphere, it absorbs the solar UV radiation from the Sun and protects us from sunburn and skin cancers. In the upper troposphere, ozone acts as greenhouse gas. Ozone in the middle troposphere reacts with many anthropogenic pollutants and cleans up the atmosphere. Near surface ozone is harmful to human health and plant life. Accurate monitoring of ozone vertical distributions is crucial for a better understanding of air quality and climate change. The Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder (MLS) are both in orbit on the Earth Observing System Aura satellite and are providing ozone concentration profile measurements. MLS observes limb signals from 118 GHz to 2.5 THz, and measures upper tropospheric and stratospheric ozone concentration (among many other species) with a vertical resolution of about 3 km. OMI is a nadir-viewing pushbroom ultraviolet-visible (UV-VIS) imaging spectrograph that measures backscattered radiances covering the 270-500 nm wavelength range. AIRS is a grating spectrometer, on EOS Aqua satellite, that measures the thermal infrared (TIR) radiances emitted by Earth's surface and by gases and particles in the spectral range 650 - 2665 cm-1. We present an approach to combine simultaneously measured UV and TIR radiances together with the retrieved MLS ozone fields, to improve the ozone sounding. This approach has the potential to provide a decadal record of ozone profiles with an improved spatial coverage and vertical resolution from space missions. For evaluating the quality of retrieved profiles, we selected a set of AIRS and OMI measurements, whose ground pixels were collocated with ozonesonde launch sites. The results from combination of these measurements are presented and discussed. The improvements on vertical resolution of tropospheric ozone profiles from the MLS/AIRS/OMI joint

  3. Possibilities of LA-ICP-MS technique for the spatial elemental analysis of the recent fish scales: Line scan vs. depth profiling

    NASA Astrophysics Data System (ADS)

    Holá, Markéta; Kalvoda, Jiří; Nováková, Hana; Škoda, Radek; Kanický, Viktor

    2011-01-01

    LA-ICP-MS and solution based ICP-MS in combination with electron microprobe are presented as a method for the determination of the elemental spatial distribution in fish scales which represent an example of a heterogeneous layered bone structure. Two different LA-ICP-MS techniques were tested on recent common carp ( Cyprinus carpio) scales: A line scan through the whole fish scale perpendicular to the growth rings. The ablation crater of 55 μm width and 50 μm depth allowed analysis of the elemental distribution in the external layer. Suitable ablation conditions providing a deeper ablation crater gave average values from the external HAP layer and the collagen basal plate. Depth profiling using spot analysis was tested in fish scales for the first time. Spot analysis allows information to be obtained about the depth profile of the elements at the selected position on the sample. The combination of all mentioned laser ablation techniques provides complete information about the elemental distribution in the fish scale samples. The results were compared with the solution based ICP-MS and EMP analyses. The fact that the results of depth profiling are in a good agreement both with EMP and PIXE results and, with the assumed ways of incorporation of the studied elements in the HAP structure, suggests a very good potential for this method.

  4. Does the Effectiveness of Control Measures Depend on the Influenza Pandemic Profile?

    PubMed Central

    Kernéis, Solen; Grais, Rebecca F.; Boëlle, Pierre-Yves; Flahault, Antoine; Vergu, Elisabeta

    2008-01-01

    Background Although strategies to contain influenza pandemics are well studied, the characterization and the implications of different geographical and temporal diffusion patterns of the pandemic have been given less attention. Methodology/Main Findings Using a well-documented metapopulation model incorporating air travel between 52 major world cities, we identified potential influenza pandemic diffusion profiles and examined how the impact of interventions might be affected by this heterogeneity. Clustering methods applied to a set of pandemic simulations, characterized by seven parameters related to the conditions of emergence that were varied following Latin hypercube sampling, were used to identify six pandemic profiles exhibiting different characteristics notably in terms of global burden (from 415 to >160 million of cases) and duration (from 26 to 360 days). A multivariate sensitivity analysis showed that the transmission rate and proportion of susceptibles have a strong impact on the pandemic diffusion. The correlation between interventions and pandemic outcomes were analyzed for two specific profiles: a fast, massive pandemic and a slow building, long-lasting one. In both cases, the date of introduction for five control measures (masks, isolation, prophylactic or therapeutic use of antivirals, vaccination) correlated strongly with pandemic outcomes. Conversely, the coverage and efficacy of these interventions only moderately correlated with pandemic outcomes in the case of a massive pandemic. Pre-pandemic vaccination influenced pandemic outcomes in both profiles, while travel restriction was the only measure without any measurable effect in either. Conclusions Our study highlights: (i) the great heterogeneity in possible profiles of a future influenza pandemic; (ii) the value of being well prepared in every country since a pandemic may have heavy consequences wherever and whenever it starts; (iii) the need to quickly implement control measures and even to

  5. Accuracy analysis of the space shuttle solid rocket motor profile measuring device

    NASA Technical Reports Server (NTRS)

    Estler, W. Tyler

    1989-01-01

    The Profile Measuring Device (PMD) was developed at the George C. Marshall Space Flight Center following the loss of the Space Shuttle Challenger. It is a rotating gauge used to measure the absolute diameters of mating features of redesigned Solid Rocket Motor field joints. Diameter tolerance of these features are typically + or - 0.005 inches and it is required that the PMD absolute measurement uncertainty be within this tolerance. In this analysis, the absolute accuracy of these measurements were found to be + or - 0.00375 inches, worst case, with a potential accuracy of + or - 0.0021 inches achievable by improved temperature control.

  6. Beam profile measurement and evaluation of far field high energy laser

    NASA Astrophysics Data System (ADS)

    Yang, Pengling; Feng, Guobin; Wang, Zhenbao; Wang, Ping; Wu, Yong; Zhang, Jianmin; Cheng, Shaowu; Feng, Gang; Wang, Fei; Shao, Bibo

    2015-05-01

    The far field beam profile is of significant importance to the analysis of the atmospheric propagation effect and evaluation of the beam control capability, tracking and aiming precision of laser system. In the paper, technology of laser beam measurement such as mid-infrared laser detection at wide temperature range, power density attenuation, photoelectric and calorimetric compound method for laser measurement, synchronous detecting of multi-channel pulsed signal are introduced. A series of instrumented target with detector array are developed for laser beam power density distribution measurement at far field. The power in the bucket, strehl ratio, centroid and jitter of beam can be calculated from the measured results.

  7. The substance use risk profile scale: a scale measuring traits linked to reinforcement-specific substance use profiles.

    SciTech Connect

    Woicik, P.A.; Stewart, S.H.; Pihl, R.O.; Conrod, P.J.

    2009-12-01

    The Substance Use Risk Profile Scale (SURPS) is based on a model of personality risk for substance abuse in which four personality dimensions (hopelessness, anxiety sensitivity, impulsivity, and sensation seeking) are hypothesized to differentially relate to specific patterns of substance use. The current series of studies is a preliminary exploration of the psychometric properties of the SURPS in two populations (undergraduate and high school students). In study 1, an analysis of the internal structure of two versions of the SURPS shows that the abbreviated version best reflects the 4-factor structure. Concurrent, discriminant, and incremental validity of the SURPS is supported by convergent/divergent relationships between the SURPS subscales and other theoretically relevant personality and drug use criterion measures. In Study 2, the factorial structure of the SURPS is confirmed and evidence is provided for its test-retest reliability and validity with respect to measuring personality vulnerability to reinforcement-specific substance use patterns. In Study 3, the SURPS was administered in a more youthful population to test its sensitivity in identifying younger problematic drinkers. The results from the current series of studies demonstrate support for the reliability and construct validity of the SURPS, and suggest that four personality dimensions may be linked to substance-related behavior through different reinforcement processes. This brief assessment tool may have important implications for clinicians and future research.

  8. The use of radiochromic films to measure and analyze the beam profile of charged particle accelerators.

    PubMed

    Avila-Rodriguez, M A; Wilson, J S; McQuarrie, S A

    2009-11-01

    The use of radiochromic films as a simple and inexpensive tool to accurately measure and analyze the beam profile of charged particle accelerators is described. In this study, metallic foils of different materials and thicknesses were irradiated with 17.8MeV protons and autoradiographic images of the beam strike were acquired by exposing pieces of RCF in direct contact with the irradiated foils. The films were digitalized using a conventional scanner and images were analyzed using DoseLab. Beam intensity distributions, isodose curves and linear beam profiles of the digitalized images were acquired. PMID:19054679

  9. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  10. The Kardashian index: a measure of discrepant social media profile for scientists.

    PubMed

    Hall, Neil

    2014-01-01

    In the era of social media there are now many different ways that a scientist can build their public profile; the publication of high-quality scientific papers being just one. While social media is a valuable tool for outreach and the sharing of ideas, there is a danger that this form of communication is gaining too high a value and that we are losing sight of key metrics of scientific value, such as citation indices. To help quantify this, I propose the 'Kardashian Index', a measure of discrepancy between a scientist's social media profile and publication record based on the direct comparison of numbers of citations and Twitter followers. PMID:25315513

  11. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect

    Jensen, M.; Troyan, D.

    2006-01-09

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the first quarter of Fiscal Year 2006 to complete a continuous time series of the vertical profile of water vapor for selected 30-day periods from each of the fixed ARM sites. In order to accomplish this metric, a new technique devised to incorporate radiosonde data, microwave radiometer data and analysis information from numerical weather forecast models has been developed. The product of this analysis, referred to as the merged sounding value-added product, includes vertical profiles of atmospheric water vapor concentration and several other important thermodynamic state variables at 1-minute time intervals and 266 vertical levels.

  12. Angular calibration of surface slope measuring profilers with a bendable mirror

    NASA Astrophysics Data System (ADS)

    Artemiev, Nikolay A.; Smith, Brian V.; Domning, Edward E.; Chow, Ken P.; Lacey, Ian; Yashchuk, Valeriy V.

    2014-09-01

    Performance of state-of-the-art surface slope measuring profilers, such as the Advanced Light Source's (ALS) long trace profiler (LTP-II) and developmental LTP (DLTP) is limited by the instrument's systematic error. The systematic error is specific for a particular measurement arrangement and, in general, depends on both the measured surface slope value and the position along a surface under test. Here we present an original method to characterize or measure the instrument's systematic error using a bendable X-ray mirror as a test surface. The idea of the method consists of extracting the systematic error from multiple measurements performed at different mirror bendings. An optimal measurement strategy for the optic, under different settings of the benders, and the method of accurate fitting of the measured slope variations with characteristic functions are discussed. We describe the procedure of separation of the systematic error of an actual profiler from surface slope variation inherent to the optic. The obtained systematic error, expressed as a function of the angle of measurement, is useful as a calibration of the instrument arranged to measure an optic with a close curvature and length. We show that accounting for the systematic error enables the optimal setting of bendable optics to the desired ideal shape with accuracy limited only by the experimental noise. Application of the method in the everyday metrology practice increases the accuracy of the measurements and allows measurements of highly curved optics with accuracy similar to those achieved with flat optics. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  13. Garnet/high-silica rhyolite trace element partition coefficients measured by ion microprobe

    USGS Publications Warehouse

    Sisson, T.W.; Bacon, C.R.

    1992-01-01

    Garnet/liquid trace element partition coefficients have been measured in situ by ion microprobe in a rhyolite from Monache Mountain, California. Partition coefficients are reported for La, Ce, Nd, Sm, Dy, Er, Yb, Sc, Ti, V, Cr, Sr, Y, and Zr. The in situ analyses avoid the problem of contamination of the garnet phase by trace element-rich accessory minerals encountered in traditional bulk phenocryst/matrix partitioning studies. The partitioning pattern for the rare earth elements (REEs, excluding Eu) is smooth and rises steeply from the light to the heavy REEs with no sharp kinks or changes in slope, unlike patterns for garnet /silicic liquid REE partitioning determined by bulk methods. This difference suggests that the previous determinations by bulk methods are in error, having suffered from contamination of the phenocryst separates. ?? 1992.

  14. Analytic characterization of measurement uncertainty and initial orbit determination on orbital element representations

    NASA Astrophysics Data System (ADS)

    Weisman, R. M.; Majji, M.; Alfriend, K. T.

    2014-02-01

    This paper presents an approach to characterize the uncertainty associated with the state vector obtained from the Herrick-Gibbs orbit determination approach using transformation of variables. The approach is applied to estimate the state vector and its probability density function for objects in low Earth orbit using sparse observations. The state vector and associated uncertainty estimates are computed in Cartesian coordinates and Keplerian elements. The approach is then extended to accommodate the J_2 perturbation where the state vector is written in terms of mean orbital elements. The results obtained from the analytical approach presented in this paper are validated using Monte Carlo simulations and compared with the often utilized similarity transformation for Kepler, mean, and nonsingular elements. The measurement uncertainty characterization obtained is used to initialize conventional nonlinear filters as well as operate a Bayesian approach for orbit determination and object tracking.

  15. Determination of the conversion gain and the accuracy of its measurement for detector elements and arrays

    NASA Astrophysics Data System (ADS)

    Beecken, B. P.; Fossum, E. R.

    1996-07-01

    Standard statistical theory is used to calculate how the accuracy of a conversion-gain measurement depends on the number of samples. During the development of a theoretical basis for this calculation, a model is developed that predicts how the noise levels from different elements of an ideal detector array are distributed. The model can also be used to determine what dependence the accuracy of measured noise has on the size of the sample. These features have been confirmed by experiment, thus enhancing the credibility of the method for calculating the uncertainty of a measured conversion gain. detector-array uniformity, charge coupled device, active pixel sensor.

  16. Measurement of proton production cross sections of (sup 10)Be and (sup 26)Al from elements found in lunar rocks

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K.; Englert, P. A. J.; Caffee, M.; Jull, A. J. T.; Donahue, D. J.; McHargue, L.; Castaneda, C.; Vincent, J.; Reedy, R. C.

    1996-01-01

    Cosmic rays penetrate the lunar surface and interact with the lunar rocks to produce both radionuclides and stable nuclides. Production depth profiles for long-lived radionuclides produce in lunar rocks are measured using Accelerator Mass Spectrometry (AMS). For a particular radionuclide these production depth profiles can be interpreted to give an estimate for the solar proton flux over a time period characterized by the half life of the radionuclide under study. This analysis is possible if and only if all the cross sections for the interactions of all cosmic ray particles with all elements found in lunar rocks are well known. In practice, the most important cross sections needed are the proton production cross sections, because 98% of solar cosmic rays and (similar to)87% of galactic cosmic rays are protons. The cross sections for the production of long-lived radionuclides were very difficult to measure before the development of AMS and only in recent years has significant progress been made in determining these essential cross sections. Oxygen and silicon are major constituents of lunar rocks. We have reported already C-14 production cross sections from O and Si for proton energies 25-500 MeV, and O(p,x)(sup 10)Be from 58 160 MeV[6]. Here we present new measurements for the cross sections O(p,x)Be-10,O(p,x)Be-7, Si(p,x)Be-7,Si(p,x)Al-26, and Si(p,x)Na-22 from approximately 30 - 500 MeV.

  17. Computations of Disturbance Amplification Behind Isolated Roughness Elements and Comparison with Measurements

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Li, Fei; Bynum, Michael; Kegerise, Michael; King, Rudolph

    2015-01-01

    Computations are performed to study laminar-turbulent transition due to isolated roughness elements in boundary layers at Mach 3.5 and 5.95, with an emphasis on flow configurations for which experimental measurements from low disturbance wind tunnels are available. The Mach 3.5 case corresponds to a roughness element with right-triangle planform with hypotenuse that is inclined at 45 degrees with respect to the oncoming stream, presenting an obstacle with spanwise asymmetry. The Mach 5.95 case corresponds to a circular roughness element along the nozzle wall of the Purdue BAMQT wind tunnel facility. In both cases, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The linear amplification characteristics of the wake flow are examined towards the eventual goal of developing linear growth correlations for the onset of transition.

  18. Method for measuring radial impurity emission profiles using correlations of line integrated signals

    SciTech Connect

    Kuldkepp, M.; Brunsell, P.R.; Drake, J.; Menmuir, S.; Rachlew, E.

    2006-04-15

    A method of determining radial impurity emission profiles is outlined. The method uses correlations between line integrated signals and is based on the assumption of cylindrically symmetric fluctuations. Measurements at the reversed field pinch EXTRAP T2R show that emission from impurities expected to be close to the edge is clearly different in raw as well as analyzed data to impurities expected to be more central. Best fitting of experimental data to simulated correlation coefficients yields emission profiles that are remarkably close to emission profiles determined using more conventional techniques. The radial extension of the fluctuations is small enough for the method to be used and bandpass filtered signals indicate that fluctuations below 10 kHz are cylindrically symmetric. The novel method is not sensitive to vessel window attenuation or wall reflections and can therefore complement the standard methods in the impurity emission reconstruction procedure.

  19. Differential absorption lidar technique for measurement of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1983-01-01

    A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal-path pressure measurements is given, with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to two orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated-vertical-path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1-0.3 percent accuracy for ground and Shuttle-based pressure-profile and surface-pressure experiments.

  20. Measurements of velocity shear and ion viscosity profile in a magnetohydrodynamic plasma jet

    NASA Astrophysics Data System (ADS)

    Dorf, L. A.; Intrator, T.; Sun, X.; Hendryx, J.; Wurden, G. A.; Furno, I.; Lapenta, G.

    2010-10-01

    Time-dependent, two-dimensional profiles of the axial flow velocity, density, electron temperature, and magnetic field components are measured at two axial locations in a screw pinch plasma column of the reconnection scaling experiment. The results show that the ion momentum flux for a given column radius is dissipated by the ion-ion Coulomb scattering viscosity due to a significant radial shear of the axial velocity. By comparing the terms of the magnetohydrodynamic momentum balance equation, radial profile of ion viscosity is determined. Chord-integrated ion temperature measurements performed at several radial locations using Doppler broadening spectroscopy show ion temperature of about 1 eV. Measured ion viscosity agrees within a factor of 2 with the classical Braginskii expectations.

  1. MEASUREMENT OF A VOICE RANGE PROFILE WITH A SEMI-OCCLUDED VOCAL TRACT

    PubMed Central

    Titze, Ingo R.; Hunter, Eric J.

    2013-01-01

    Semi-occlusion of the vocal tract with a thin straw provides some advantages for assessing the physiological ranges of intensity and fundamental frequency in a voice. Signals can be obtained without concern about room noise, mouth-to-microphone distance, or vocal injury caused by excessive loudness produced by a patient or client. We show that differences between loud and soft phonation into the straw are clearly measureable and reflect the soft-loud differences measured from airborne sound radiating from an open mouth. Using this technique to acquire a traditional voice range profile, the range of fundamental frequency is not limited and risk for injury seems to be less than for traditional methods. In the lower portion of the fundamental frequency range, the steady pressures measured at the mouth constitute a range profile for subglottal (lung) pressure. PMID:21244326

  2. Comparison of ozone profiles obtained with NIES DIAL and SAGE II measurements

    NASA Technical Reports Server (NTRS)

    Nakane, Hideaki; Sasano, Yasuhiro; Hayashida-Amano, Sachiko; Sugimoto, Nobuo; Matsui, Ichiro; Minato, Atsushi; Mccormick, M. P.

    1993-01-01

    Ozone profiles obtained with the Differential Absorption Lidar (DIAL) system at the National Institute for Environmental Studies (NIES) (Tsukuba, Japan) were compared with data provided by the satellite sensor SAGE II. The SAGE II data were selected based on criteria of spatial and temporal differences between the DIAL and the SAGE II measurements: five degrees in latitude and 15 degrees in longitude, within a latitudinal band from 31 deg to 41 deg N, and within one, three and five days after or before the DIAL measurements. Results show very good agreement for the individual and the zonal-mean profiles. The average mean difference between the DIAL and the SAGE II measurements over the altitudes 15-50 km was about 10 percent.

  3. Measurements of velocity shear and ion viscosity profile in a magnetohydrodynamic plasma jet

    SciTech Connect

    Dorf, L. A.; Intrator, T.; Sun, X.; Hendryx, J.; Wurden, G. A.; Furno, I; Lapenta, G.

    2010-10-15

    Time-dependent, two-dimensional profiles of the axial flow velocity, density, electron temperature, and magnetic field components are measured at two axial locations in a screw pinch plasma column of the reconnection scaling experiment. The results show that the ion momentum flux for a given column radius is dissipated by the ion-ion Coulomb scattering viscosity due to a significant radial shear of the axial velocity. By comparing the terms of the magnetohydrodynamic momentum balance equation, radial profile of ion viscosity is determined. Chord-integrated ion temperature measurements performed at several radial locations using Doppler broadening spectroscopy show ion temperature of about 1 eV. Measured ion viscosity agrees within a factor of 2 with the classical Braginskii expectations.

  4. Watershed Scale Shear Stress From Tethersonde Wind Profile Measurements Under Near Neutral and Unstable Atmospheric Stability

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Katul, G. G.

    1995-04-01

    Mean wind speed profiles were measured in the atmospheric surface layer, using a tethersonde system, above the Ojai Valley Watershed in southern California. The valley is mainly planted with mature avocado and orange trees. The surface shear stress and latent and sensible heat fluxes were measured above the trees which are up to 9 m in height. Near-neutral wind speed profile measurements allowed the determination of the watershed surface roughness (z0 = 1.4 m) and the momentum displacement height (d0 = 7.0 m). The wind speed measurements obtained under unstable atmospheric stability were analyzed using Monin-Obukhov similarity theory. New stability correction functions proposed based on theory and experiments of Kader-Yaglom as well as the now classic Businger-Dyer type functions were tested. The watershed shear stress values calculated using the surface layer wind speed profiles with the new Monin-Obukhov stability functions were found to be improved in comparison with the values obtained with the Businger-Dyer functions under strongly unstable stability conditions. The Monin-Obukhov model with the Businger-Dyer stability correction function underpredicted the momentum flux by 25% under strongly unstable stability conditions, while the new Kader-Yaglom formulation compared well on average (R2 = 0.77) with the surface eddy correlation measurements for all atmospheric stability conditions. The unstable 100-m drag coefficient was found to be u*2/V1002 = 0.0182.

  5. Improvements in the accuracy and the repeatability of long trace profiler measurements

    SciTech Connect

    Takacs, P.Z.; Church, E.L.; Bresloff, C.J.; Assoufid, L.

    1999-09-01

    Modifications of the long trace profiler at the Advanced Photon Source at Argonne National Laboratory have significantly improved its accuracy and repeatability for measuring the figure of large flat and long-radius mirrors. Use of a Dove prism in the reference beam path corrects phasing problems between mechanical errors and thermally induced system errors. A single reference correction now completely removes both of these error signals from the measured surface profile. The addition of a precision air conditioner keeps the temperature in the metrology enclosure constant to within {plus_minus}0.1&hthinsp;{degree}C over a 24-h period and has significantly improved the stability and the repeatability of the measurements. Long-radius surface curvatures can now be measured absolutely with a high degree of confidence. These improved capabilities are illustrated with a series of measurements of a 500-mm-long mirror with a 5-km radius of curvature. The standard deviation in the average of ten slope profile scans is 0.3 {mu}rad, and the corresponding standard deviation in the height error is 4.6 nm. {copyright} 1999 Optical Society of America

  6. Improvements in the accuracy and the repeatability of long trace profiler measurements.

    PubMed

    Takacs, P Z; Church, E L; Bresloff, C J; Assoufid, L

    1999-09-01

    Modifications of the long trace profiler at the Advanced Photon Source at Argonne National Laboratory have significantly improved its accuracy and repeatability for measuring the figure of large flat and long-radius mirrors. Use of a Dove prism in the reference beam path corrects phasing problems between mechanical errors and thermally induced system errors. A single reference correction now completely removes both of these error signals from the measured surface profile. The addition of a precision air conditioner keeps the temperature in the metrology enclosure constant to within +/-0.1 degrees C over a 24-h period and has significantly improved the stability and the repeatability of the measurements. Long-radius surface curvatures can now be measured absolutely with a high degree of confidence. These improved capabilities are illustrated with a series of measurements of a 500-mm-long mirror with a 5-km radius of curvature. The standard deviation in the average of ten slope profile scans is 0.3 microrad, and the corresponding standard deviation in the height error is 4.6 nm. PMID:18324056

  7. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  8. Infrasound-array-element frequency response: in-situ measurement and modeling

    NASA Astrophysics Data System (ADS)

    Gabrielson, T.

    2011-12-01

    Most array elements at the infrasound stations of the International Monitoring System use some variant of a multiple-inlet pipe system for wind-noise suppression. These pipe systems have a significant impact on the overall frequency response of the element. The spatial distribution of acoustic inlets introduces a response dependence that is a function of frequency and of vertical and horizontal arrival angle; the system of inlets, pipes, and summing junctions further shapes that response as the signal is ducted to the transducer. In-situ measurements, using a co-located reference microphone, can determine the overall frequency response and diagnose problems with the system. As of July 2011, the in-situ frequency responses for 25 individual elements at 6 operational stations (I10, I53, I55, I56, I57, and I99) have been measured. In support of these measurements, a fully thermo-viscous model for the acoustics of these multiple-inlet pipe systems has been developed. In addition to measurements at operational stations, comparative analyses have been done on experimental systems: a multiple-inlet radial-pipe system with varying inlet hole size; a one-quarter scale model of a 70-meter rosette system; and vertical directionality of a small rosette system using aircraft flyovers. [Funded by the US Army Space and Missile Defense Command

  9. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    SciTech Connect

    Kortright, J.B.; Rice, M.

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- and right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.

  10. Topological detector: measuring continuous dosimetric quantities with few-element detector array

    NASA Astrophysics Data System (ADS)

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-01

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  11. Topological detector: measuring continuous dosimetric quantities with few-element detector array.

    PubMed

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-21

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions. PMID:27452789

  12. An interlaboratory comparison study on the measurement of elements in PM10

    NASA Astrophysics Data System (ADS)

    Yatkin, Sinan; Belis, Claudio A.; Gerboles, Michel; Calzolai, Giulia; Lucarelli, Franco; Cavalli, Fabrizia; Trzepla, Krystyna

    2016-01-01

    An inter-laboratory comparison study was conducted to measure elemental loadings on PM10 samples, collected in Ispra, a regional background/rural site in Italy, using three different XRF (X-ray Fluorescence) methods, namely Epsilon 5 by linear calibration, Quant'X by the standardless analysis, and PIXE (Particle Induced X-ray Emission) with linear calibration. A subset of samples was also analyzed by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). Several metrics including method detection limits (MDLs), precision, bias from a NIST standard reference material (SRM 2783) quoted values, relative absolute difference, orthogonal regression and the ratio of the absolute difference between the methods to claimed uncertainty were used to compare the laboratories. The MDLs were found to be comparable for many elements. Precision estimates were less than 10% for the majority of the elements. Absolute biases from SRM 2783 remained less than 20% for the majority of certified elements. The regression results of PM10 samples showed that the three XRF laboratories measured very similar mass loadings for S, K, Ti, Mn, Fe, Cu, Br, Sr and Pb with slopes within 20% of unity. The ICP-MS results confirmed the agreement and discrepancies between XRF laboratories for Al, K, Ca, Ti, V, Cu, Sr and Pb. The ICP-MS results are inconsistent with the XRF laboratories for Fe and Zn. The absolute differences between the XRF laboratories generally remained within their claimed uncertainties, showing a pattern generally consistent with the orthogonal regression results.

  13. Flow prediction over a transport multi-element high-lift system and comparison with flight measurements

    NASA Technical Reports Server (NTRS)

    Vijgen, P. M. H. W.; Hardin, J. D.; Yip, L. P.

    1992-01-01

    Accurate prediction of surface-pressure distributions, merging boundary-layers, and separated-flow regions over multi-element high-lift airfoils is required to design advanced high-lift systems for efficient subsonic transport aircraft. The availability of detailed measurements of pressure distributions and both averaged and time-dependent boundary-layer flow parameters at flight Reynolds numbers is critical to evaluate computational methods and to model the turbulence structure for closure of the flow equations. Several detailed wind-tunnel measurements at subscale Reynolds numbers were conducted to obtain detailed flow information including the Reynolds-stress component. As part of a subsonic-transport high-lift research program, flight experiments are conducted using the NASA-Langley B737-100 research aircraft to obtain detailed flow characteristics for support of computational and wind-tunnel efforts. Planned flight measurements include pressure distributions at several spanwise locations, boundary-layer transition and separation locations, surface skin friction, as well as boundary-layer profiles and Reynolds stresses in adverse pressure-gradient flow.

  14. Thyroid hormone-regulated gene expression in juvenile mouse liver: identification of thyroid response elements using microarray profiling and in silico analyses

    PubMed Central

    2011-01-01

    Background Disruption of thyroid hormone signalling can alter growth, development and energy metabolism. Thyroid hormones exert their effects through interactions with thyroid receptors that directly bind thyroid response elements and can alter transcriptional activity of target genes. The effects of short-term thyroid hormone perturbation on hepatic mRNA transcription in juvenile mice were evaluated, with the goal of identifying genes containing active thyroid response elements. Thyroid hormone disruption was induced from postnatal day 12 to 15 by adding goitrogens to dams' drinking water (hypothyroid). A subgroup of thyroid hormone-disrupted pups received intraperitoneal injections of replacement thyroid hormones four hours prior to sacrifice (replacement). An additional group received only thyroid hormones four hours prior to sacrifice (hyperthyroid). Hepatic mRNA was extracted and hybridized to Agilent mouse microarrays. Results Transcriptional profiling enabled the identification of 28 genes that appeared to be under direct thyroid hormone-regulation. The regulatory regions of the genome adjacent to these genes were examined for half-site sequences that resemble known thyroid response elements. A bioinformatics search identified 33 thyroid response elements in the promoter regions of 13 different genes thought to be directly regulated by thyroid hormones. Thyroid response elements found in the promoter regions of Tor1a, 2310003H01Rik, Hect3d and Slc25a45 were further validated by confirming that the thyroid receptor is associated with these sequences in vivo and that it can bind directly to these sequences in vitro. Three different arrangements of thyroid response elements were identified. Some of these thyroid response elements were located far up-stream (> 7 kb) of the transcription start site of the regulated gene. Conclusions Transcriptional profiling of thyroid hormone disrupted animals coupled with a novel bioinformatics search revealed new thyroid

  15. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: A finite element study

    PubMed Central

    Pour, Hooman Mohammad; Kanapathipillai, Sangarapillai; Zarrabi, Khosrow; Manns, Fabrice; Ho, Arthur

    2015-01-01

    Background A nonlinear isotropic finite element (FE) model of a 29 year old human crystalline lens was constructed to study the effects of various geometrical parameters on lens accommodation. Methods The model simulates dis-accommodation by stretching of the lens and predicts the change in the lens capsule, cortex and nucleus surface profiles at select states of stretching/accommodation. Multiple regression analysis (MRA) is used to develop a stretch-dependent mathematical model relating the lens sagittal height to the radial position of the lens surface as a function of dis-accommodative stretch. A load analysis is performed to compare the FE results to empirical results from lens stretcher studies. Using the predicted geometrical changes, the optical response of the whole eye during accommodation was analysed by ray-tracing. Results Aspects of lens shape change relative to stretch were evaluated including change in diameter (d), central thickness (T) and accommodation (A). Maximum accommodation achieved was 10.29 D. From the MRA, the stretch-dependent mathematical model of the lens shape related lens curvatures as a function of lens ciliary stretch well (maximum mean-square residual error 2.5×10−3 µm, p<0.001). The results are compared with those from in vitro studies. Conclusions The FE and ray-tracing predictions are consistent with EVAS studies in terms of load and power change versus change in thickness. The mathematical stretch-dependent model of accommodation presented may have utility in investigating lens behaviour at states other than the relaxed or fully-accommodated states. PMID:25727940

  16. Detection of universality of dark matter profile from Subaru weak lensing measurements of 50 massive clusters

    NASA Astrophysics Data System (ADS)

    Niikura, Hiroko; Takada, Masahiro; Okabe, Nobuhiro; Martino, Rossella; Takahashi, Ryuichi

    2015-12-01

    We develop a novel method of measuring the lensing distortion profiles of clusters by stacking the "scaled" amplitudes of background galaxy ellipticities as a function of the "scaled" centric radius according to the Navarro-Frenk-White (NFW) prediction of each cluster, based on the assumption that the different clusters in a sample follow the universal NFW profile. First we demonstrate the feasibility of this method using both the analytical NFW model and simulated halos in a suite of high-resolution N-body simulations. We then apply, as a proof of concept, this method to the Subaru weak lensing data and the XMM/Chandra X-ray observables for a sample of 50 massive clusters in the redshift range 0.15 ≤ z ≤ 0.3, where their halo masses differ from each other by up to a factor of 10. To estimate the NFW parameters of each cluster, we use the halo mass proxy relation of X-ray observables, based on either the hydrostatic equilibrium or the gas mass, and then infer the halo concentration from the model scaling relation of halo concentration with halo mass. We evaluate the performance of the NFW scaling analysis by measuring the scatters of 50 cluster lensing profiles relative to the NFW predictions over a range of radii, 0.14 ≤ R/[h-1 Mpc] ≤ 2.8. We found 4-6 σ-level evidence of the universal NFW profile in 50 clusters, for both the X-ray halo mass proxy relations, although the gas mass appears to be a better proxy of the underlying true mass. By comparing the measurements with the simulations of cluster lensing profiles taking into account the statistical errors of intrinsic galaxy shapes in the Subaru data, we argue that additional halo mass errors or intrinsic scatters of σ(M500c)/M500c ˜ 0.2-0.3 could reconcile the difference between measurements and simulations. This method allows us to some extent to preserve characteristics of individual clusters in the statistical weak lensing analysis, thereby yielding a new means of exploiting the underlying genuine

  17. Deflectometry for measuring inhomogeneous refractive index fields in two-dimensional gradient-index elements.

    PubMed

    Lin, Di; Teichman, Jeremy; Leger, James R

    2015-05-01

    We present a numerical method for calculating inhomogeneous refractive index fields in rectangular gradient-index (GRIN) elements from measured boundary positions and slopes of a collection of rays that transit the medium. The inverse problem is reduced to a set of linear algebraic equations after approximating ray trajectories from the measured boundary values and is solved using a pseudo-inverse algorithm for sparse linear equations. The ray trajectories are subsequently corrected using an iterative ray trace procedure to ensure consistency in the solution. We demonstrate our method in simulation by reconstructing a hypothetical rectangular GRIN element on a  15×15 discrete grid using 800 interrogating rays, in which RMS refractive index errors less than 0.5% of the index range (n(max)-n(min)) are achieved. Furthermore, we identify three primary sources of error and assess the importance of data redundancy and system conditioning in the reconstruction process. PMID:26366925

  18. Development of internal magnetic probe for current density profile measurement in Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, J. W.; Jung, B. K.; Chung, K. J.; Hwang, Y. S.

    2014-11-01

    An internal magnetic probe using Hall sensors to measure a current density profile directly with perturbation of less than 10% to the plasma current is successfully operated for the first time in Versatile Experiment Spherical Torus (VEST). An appropriate Hall sensor is chosen to produce sufficient signals for VEST magnetic field while maintaining the small size of 10 mm in outer diameter. Temperature around the Hall sensor in a typical VEST plasma is regulated by blown air of 2 bars. First measurement of 60 kA VEST ohmic discharge shows a reasonable agreement with the total plasma current measured by Rogowski coil in VEST.

  19. Improved Ozone Profile Retrievals Using Multispectral Measurements from S-NPP and NASA "A Train" Satellites

    NASA Astrophysics Data System (ADS)

    Fu, D.; Bowman, K. W.; Worden, J.; Livesey, N. J.; Kulawik, S. S.; Flynn, L. E.; Han, Y.; Liu, X.; Pawson, S.; Wargan, K.; Huang, M.; Luo, M.; Neu, J. L.; Irion, F. W.; Herman, R. L.; Schwartz, M. J.

    2014-12-01

    Our prototype studies showed that a new ozone column and profile products can be obtained by combining multi-spectral radiances from the Suomi National Polar-orbiting Partnership (NPP) Ozone Mapping Profiler Suite (OMPS) and the Cross-track Infrared Sounder (CrIS). The product offers a unique combination of vertical resolution (enabled by the multi-spectral approach), and wide-swath horizontal coverage
and resolution. This product continues the EOS ozone records from the Aura platform that is based on the combination of the ozone profile product from Aura Ozone Monitoring Instrument (OMI) and the Aura Tropospheric Emission Spectrometer (TES). The unprecedented horizontal and vertical resolution and coverage of this product will enable new much-needed studies such as stratospheric chemistry and ozone loss, tropospheric and stratospheric ozone exchange, ozone climate forcing as well as long range transport of air pollution. The proposed joint CrIS/OMPS-TC/OMPS-NP global ozone record will have spatial sampling equivalent to OMPS Nadir Profiler measurements and similar to that of TES global survey record. The retrievals of using OMPS/CrIS radiances, TES/OMI and MLS/AIRS/OMI retrievals are presented. The comparisons among the multi-spectral retrievals, Aura operation ozone products, and in-situ measurements are shown.

  20. Toroidal Field Profile Measurements of SSPX Spheromaks Using the Transient Internal Probe

    NASA Astrophysics Data System (ADS)

    Holcomb, Christopher; Jarboe, Thomas; Mattick, A. T.; Hill, David; McLean, Harry; Wood, Reg; Hyundae, Kim

    2001-10-01

    The Sustained Spheromak Physics Experiment has been producing temperatures in excess of 100 eV which often have a peaked pressure profile. This occurs while the coaxial gun continues to feed current at the edge to hold the field roughly constant or in a slow, controlled decay. The Transient Internal Probe (TIP) diagnostic is now installed on SSPX and is being used to make field profile measurements during this hot driven phase. The diagnostic consists of a cylindrical verdet glass that is launched through SSPX at over 1.5 km/s. While in transit, it is illuminated from the front by an argon laser. After passing through the probe the light is retro-reflected to an ellipsometer where it is analyzed for polarization rotation due to the magnetic field at the probe. As of this writing, we are testing the diagnostic with plasma to adjust alignment, signal levels, and system timing; internal field profile measurements are expected later this summer, with the data being incorporated into MHD reconstruction of the current profile to help determine the beta and stability of the spheromak plasma. ^a University of Washington, Seattle WA, 98195 This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  1. A multisection passive sampler for measuring sediment porewater profile of dichlorodiphenyltrichloroethane and its metabolites.

    PubMed

    Liu, Hui-Hui; Bao, Lian-Jun; Feng, Wei-Hao; Xu, Shi-Ping; Wu, Feng-Chang; Zeng, Eddy Y

    2013-08-01

    In situ measurements of hydrophobic organic chemicals in sediment porewater, a central component in assessing the bioavailability and mobility of chemicals in sediment, have been scarce. Here, we introduce a multisection passive sampler with low-density polyethylene (LDPE) as the sorbent phase, which is appropriate for measuring vertical concentration profiles of chemicals in sediment porewater. This sampler is composed of a series of identical sampling cells insulated with seclusion rings. In each section, sorption of chemicals into LDPE is diffusion-controlled through the water layer separated from the sediment by a glass fiber filtration membrane and a porous stainless steel shield. Pilot laboratory testing indicated that the sampler can roughly determine the porewater concentrations of 1,1-dichloro-2,2-bis-(chlorophenyl)ethane (p,p'-DDD) and 1,1-dichloro-2,2-bis-(chlorophenyl)ethylene (p,p'-DDE), comparable to those yielded through centrifugation/liquid-liquid extraction, a conventional technique for sampling sediment porewater. Field deployment of the sampler was performed in an urbanized coastal region to measure the depth profiles of dichlorodiphenyltrichloroethane and its metabolites in sediment porewater. Sampling rate-calibrated and performance reference compound-calibrated concentrations were calculated, which were consistent with those obtained by the centrifugation/liquid-liquid extraction method. These results verified the utility of the sampler for measuring depth profiles of sediment porewater chemicals. PMID:23808846

  2. Altitude profile of aerosols on Mars from measurements of its thermal radiation on limb

    NASA Technical Reports Server (NTRS)

    Moroz, V. I.; Titov, D. V.; Gektin, Yu. M.; Naraeva, M. K.; Selivanov, A. S.

    1993-01-01

    Measurements of the thermal (range 7 - 13 micrometers) radiation of Mars with the high space resolution (approximately 2 km) were made by the TERMOSKAN experiment of the Phobos mission. Some of the results were published earlier but only the surface radiation was analyzed in detail. However some part of these measurements was made near the limb of the planet. The atmosphere gives an important input here in the planetary thermal radiation. Beyond the limb the atmosphere is the only source. The task of this work is to estimate some characteristics of the atmosphere using brightness profiles of the thermal radiation near the limb. An appropriate model of the temperature profile T(h) is necessary for such an analysis. A set of T(h) models (nominal, maximal and minimal) was defined using various sources including MARSGRAM, Viking-1 lander data, its theoretical considerations and boundary layer models. On the next step the possible input of the atmospheric gaseous emissions (wing of CO2 15 micrometer band) was estimated. It was found that even for the maximal T(h) this input is no more than a few percents of the measured radiation beyond the limb. Consequently the aerosols are responsible for almost all measured emission. The analysis of the observed profile showed that these aerosols have two components: (1) exponential with the scale height about 10 km and (2) some layered structure (two layers with maxima about 23 and 33 km consisted probably of ice).

  3. Radial Temperature Profile Measurements in a Microwave Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Green, K. M.; Borras, M. C.; Flores, G. J., III; Woskov, P. P.; Hadidi, K.; Thomas, P.

    1998-11-01

    Radial profile measurements of the electronic excitation and rotational temperature are obtained for a Microwave Plasma Continuous Emissions Monitor (MP-CEM). The MP-CEM, employed in monitoring trace metals in furnace exhausts using atomic emission spectroscopy, operates at atmospheric pressure with air as the working gas. An iron solution is introduced into the plasma, and the intensity of the atomic emission spectrum of the Fe I excited levels is measured. The relative intensities of these lines give the electronic excitation temperature. Rotational temperatures are obtained through molecular emission spectroscopy in nitrogen plasmas. To collect the profile measurements, an optical detection system equipped with a collimator lens scans the plasma. By applying Abel inversion techniques to the integrated signals from the scanned plasma chords, the radial temperature profile is determined. For a plasma maintained at 1.5 kW by a 2.45 GHz microwave source with an axial flow of 10 scfh and a swirl flow of 20 scfh, a core electronic excitation temperature in air of 5300 K ± 600 K is measured, and a rotational temperature in nitrogen of 5100 K ± 300 K has been determined.

  4. Vertical Tracer Concentration Profiles Measured During the Joint Urban 2003 Dispersion Study

    SciTech Connect

    Flaherty, Julia E.; Lamb, Brian K.; Allwine, K Jerry; Allwine, Eugene J.

    2007-12-01

    An atmospheric tracer dispersion study known as Joint Urban 2003 was conducted in Oklahoma City, Oklahoma during the summer of 2003. As part of this field program, vertical concentration profiles were measured at approximately 1 km from downtown tracer gas release locations. These profiles indicated that the urban landscape was very effective in mixing the plume vertically. The height of the plume centerline (as determined by the maximum concentration over the depth of the measurements) for any specific 30 min period varied over the 65 m measurement range. Most of the variations in tracer concentration observed in the profile time series were related to changes in wind direction as opposed to changes in turbulence. As a simple analysis tool for emergency response, maximum normalized concentration curves were developed with 5-minute averaged measurements. These curves give the maximum concentration (normalized by the release rate) that would be observed as a function of downwind distance in an urban area. The 5-min data resulted in greater concentrations than predicted with a simple Gaussian plume model. However, the curve compared well with results from a computational fluid dynamics simulation. This dispersion dataset is a valuable asset not only for refining air quality models, but also for developing new tools for emergency response personnel in the event of a toxic release.

  5. Multi-scale roughness measurement of cementitious materials using different optical profilers and window resizing analysis

    NASA Astrophysics Data System (ADS)

    Montgomery, Paul C.; Salzenstein, Fabien; Gianto, Gianto; Apedo, Komla L.; Serres, Nicolas; Fond, Christophe; Feugeas, Françoise

    2015-05-01

    In the development of new eco-cements for ecologically friendly construction, the porosity, surface structure and chemical nature of the material can influence the bioreceptivity of the surface and the aptitude or not of environmental micro-organisms to form biofilms. Such films are the source of biocontamination that can lead to a degradation in the structural properties over time. Accurate measurement of surface roughness and topography are important to help in the understanding of this interaction. Optical profilers are well adapted to the quantifying of large surface roughness typical of cementitious materials, being more rapid and better able to cope with high roughness compared with stylus and near field probe techniques. But any given surface profiler typically has specific range limits in terms of axial and lateral resolution and field of view, resulting in different roughness values according to the type of optical profiler used. In the present work, unpolished and polished cement paste samples have been measured with two different systems, one using interference microscopy and the other, chromatic confocal sensing. Comparison of the results from both techniques using the method of window re-sizing, more commonly used in tribology, has been used for calculating the average roughness parameters at different scales. The initial results obtained show a successful overlap of the results for the unpolished samples and a slight separation for the polished samples. The validation of the measurements is demonstrated together with a revealing of differences in the measurements on different types of surfaces due to variations in instrument performance.

  6. An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements

    NASA Astrophysics Data System (ADS)

    Kang, D.

    2015-12-01

    In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.

  7. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor pilot Plant

    SciTech Connect

    Troy G. Garn; Dave H. Meikrantz; Mitchell R. Greenhalgh; Jack D. Law

    2008-09-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational tests were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50° C were tested. Ambient temperature testing shows that a

  8. Experimental measurements of zircon/melt trace-element partition coefficients

    NASA Astrophysics Data System (ADS)

    Luo, Yan; Ayers, John C.

    2009-06-01

    Zircon was grown from trace-element doped hydrous peralkaline rhyolite melts with buffered oxygen fugacities in cold-seal experiments at 0.1 and 0.2 GPa and 800 °C and piston-cylinder experiments at 1.5 GPa and 900-1300 °C. Zircon and glass were present in all run products, and small monazite crystals were present in eight of the 12 experiments. Average diameters of zircon crystals ranged from 5 to 20 μm at 800 °C to 30-50 μm at 1300 °C. Zircon crystals have thin rims, and adjacent glass has a narrow (˜1 μm thick) compositional boundary layer. Concentrations obtained through in-situ analysis of cores of run product zircon crystals and melt pools were used to calculate trace-element partition coefficients Dzircon/melt for P, Sc, Ti, V, Y, La, Ce, Pr, Nd, Eu, Gd, Ho, Yb, Lu, Hf, Th, and U. In most cases Lu was the most ( D 12-105) and La the least (0.06-0.95) compatible elements. D values from this study fall within the range of previously measured values for Rare Earth Elements (REE). However, D values measured experimentally show less fractionation than those recently measured using natural phenocryst/matrix pairs. For example, DLu/ DLa measured experimentally in this study range between 27 and 206 compared to a value of 706,522 for a natural zircon/dacite pair [Sano, Y., Terada, K., and Fukuoka, T. 2002 High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem. Geol.184, 217-230]. Although D values from this study show good agreement with the lattice strain model, D values from natural phenocryst/matrix pairs combined with measured zircon compositions better reproduce host-rock (magma) compositions of igneous rocks. They also yield more reasonable estimates of magma compositions when combined with compositions of ''out-of-context" zircons. For example, compositions of the Hadean detrital zircons from Jack Hills, Australia yield LREE-enriched magmas when combined with D values

  9. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  10. Airborne and ground based lidar measurements of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  11. Improved measurement accuracy in a Long Trace Profiler: Compensation for laser pointing instability

    SciTech Connect

    Irick, S.C.

    1993-08-02

    Laser pointing instability adds to the error of slope measurements taken with the Long Trace Profiler (LTP). As with carriage pitch error, this laser pointing error must be accounted for and subtracted from the surface under test (SUT) slope measurement. In the past, a separate reference beam (REF) allowed characterization of the component of slope error from carriage pitch. However, the component of slope error from laser pointing manifests itself differently in the SUT measured slope. An analysis of angle error propagation is given, and the effect of these errors on measured slope is determined. Then a method is proposed for identifying these errors and subtracting them from the measured SUT slope function. Separate measurements of carriage pitch and laser pointing instability isolate these effects, so that the effectiveness of the error identification algorithm may be demonstrated.

  12. Time-resolved measurements of aerosol elemental concentrations in indoor working environments

    NASA Astrophysics Data System (ADS)

    Žitnik, M.; Kastelic, A.; Rupnik, Z.; Pelicon, P.; Vaupetič, P.; Bučar, K.; Novak, S.; Samardžija, Z.; Matsuyama, S.; Catella, G.; Ishii, K.

    2010-12-01

    We have measured the elemental concentrations in aerosols with a 2-h time resolution in two different types of working environment: a chemistry laboratory dealing with the processing of advanced nanoparticulate materials and a medium-sized machine workshop. Non-stop 10-day and 12-day samplings were performed at each location in order to determine the concentration trends during the non-working/working and weekday/weekend periods. Supplementary measurements of PM10 aerosols with a 2-day sample collection time were performed with a standard Gent PM10 sampler to compare the elemental concentrations with the time-averaged concentrations detected by the 2D step-sampler. The concentrations were determined a posteriori by analyzing the x-ray spectra of aerosol samples emitted after 3-MeV proton bombardment. The PM10 samples collected in the chemistry laboratory were additionally inspected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) to determine the chemical compositions of the individual particles. In the workshop, a total PM10 mass sampling was performed simultaneously with a minute resolution to compare the signal with typical outdoor PM10 concentration levels. A factor analysis of the time-resolved dataset points to six and eight factors in the chemistry laboratory and the machine workshop, respectively. These factors describe most of the data variance, and their composition in terms of different elements can be related to specific indoor activities and conditions. We were able to demonstrate that the elemental concentration sampling with hourly resolution is an excellent tool for studying the indoor air pollution. While sampling the total PM10 mass concentration with a minute resolution may lack the potential to identify the emission sources in a "noisy" environment, the time averaging on a day time scale is too coarse to cope with the working dynamics, even if elemental sensitivity is an option.

  13. CT radiation profile width measurement using CR imaging plate raw data.

    PubMed

    Bjarnason, Thorarin Albert; Yang, Chang-Ying Joseph

    2015-01-01

    This technical note demonstrates computed tomography (CT) radiation profile measurement using computed radiography (CR) imaging plate raw data showing it is possible to perform the CT collimation width measurement using a single scan without saturating the imaging plate. Previously described methods require careful adjustments to the CR reader settings in order to avoid signal clipping in the CR processed image. CT radiation profile measurements were taken as part of routine quality control on 14 CT scanners from four vendors. CR cassettes were placed on the CT scanner bed, raised to isocenter, and leveled. Axial scans were taken at all available collimations, advancing the cassette for each scan. The CR plates were processed and raw CR data were analyzed using MATLAB scripts to measure collimation widths. The raw data approach was compared with previously established methodology. The quality control analysis scripts are released as open source using creative commons licensing. A log-linear relationship was found between raw pixel value and air kerma, and raw data collimation width measurements were in agreement with CR-processed, bit-reduced data, using previously described methodology. The raw data approach, with intrinsically wider dynamic range, allows improved measurement flexibility and precision. As a result, we demonstrate a methodology for CT collimation width measurements using a single CT scan and without the need for CR scanning parameter adjustments which is more convenient for routine quality control work. PMID:26699559

  14. Profile analysis of ventricle specimen based on a new phase measuring method

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Su, Xianyu; Chen, Wenjing; Xiang, Liqun; Zhang, Qichan; Liu, Yuankun

    2009-08-01

    The size and shape of ventricle are very important to analyze and diagnose pathology of human heart. So it is very necessary to measure the profile of ventricle. It is very difficult to measure the ventricle by vivisectional method for its unique function of heart, so the ventricle specimen is adopted to be measured. Three-dimensional (3D) automatic measurement methods are widely used in many fields. In Biology and Medicine society, it can be applicable for surgery, orthopedics, viscera disease analysis and diagnosis etc. Here a new method to measure the 3D surface of ventricle specimen is proposed. Although the traditional 3D measuing method with equal or stated phase-shifting step length possess excellent accuracy, they are much dependent on the consistency of these phase-shifting step lengths. In fact, this condition is very difficult to guarantee. which may lead to the incorrect wrapped phase and incorrect phase unwrapping in some regions, even the reconstructed object may be misshapen or anamorphic. In the proposed method, a novel improved three undecided step lengths phase-shifting algorithm with three unequal phase-shifting steps has been presented detailed and is applied to measure the profile of ventricle sucssesfully. Experiments show that the improved algorithm can not only effectively improve the measuring accuracy, but also branch out its application.

  15. Calculated and measured depth dose profiles in a phantom exposed to neutron radiation fields

    SciTech Connect

    Scherpelz, R.I.; Tanner, J.E.; Sigalla, L.A.; Hadlock, D.E.

    1989-05-01

    An accurate evaluation of doses caused by external sources of neutron radiation depends on knowledge of the transport of radiation inside the human body. Health physicists use two primary methods for studying this radiation transport: computer calculations and measurements. Both computer calculations and measurements were performed under well controlled, nearly identical conditions to determine the extent of their agreement. A comparison of the dose profiles predicted by both measurements and calculations was thus possible. The measurements were performed in a cylindrical phantom made of tissue equivalent plastic. The phantom size, 61 cm high and 30 cm in diameter, was chosen to approximate the human torso and to match the dimensions of cylindrical phantoms used by previous calculations. Holes were drilled down through the phantom to accommodate small tissue equivalent proportional counters (TEPCs) at various depths in the phantom. These counters were used to measure the neutron dose inside the phantom when it was exposed to various sources of neutrons. The holes in the phantom could also accommodate miniature Geiger-Mueller detectors to measure the gamma component of the dose. Neutron and gamma dose profiles were measured for two different sources of neutrons: an unmoderated /sup 252/Cf source and a 733-keV neutron beam generated by a Van de Graaff accelerator. 14 refs., 13 figs., 11 tabs.

  16. Arbitrarily complete Bell-state measurement using only linear optical elements

    SciTech Connect

    Grice, W. P.

    2011-10-15

    A complete Bell-state measurement is not possible using only linear-optic elements, and most schemes achieve a success rate of no more than 50%, distinguishing, for example, two of the four Bell states but returning degenerate results for the other two. It is shown here that the introduction of a pair of ancillary entangled photons improves the success rate to 75%. More generally, the addition of 2{sup N}-2 ancillary photons yields a linear-optic Bell-state measurement with a success rate of 1-1/2{sup N}.

  17. Measurement of the beam longitudinal profile in a storage ring bynon-linear laser mixing

    SciTech Connect

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-05-03

    We report on the development of a new technique for the measurement of the longitudinal beam profile in storage rings. This technique, which has been successfully demonstrated at the Advanced Light Source, mixes the synchrotron radiation with the light from a mode-locked solid state laser oscillator in a non-linear crystal. The up-converted radiation is then detected with a photomultiplier and processed to extract, store, and display the required information. The available choices of laser repetition frequency, pulse width, and phase modulation give a wide range of options for matching the bunch configuration of a particular storage ring. Besides the dynamic measurement of the longitudinal profile of each bunch, the instrument can monitor the evolution of the bunch tails, the presence of untrapped particles and their diffusion into nominally empty RF buckets (''ghostbunches'').

  18. Development of a differential column image motion light detection and ranging for measuring turbulence profiles.

    PubMed

    Jing, Xu; Hou, Zaihong; Wu, Yi; Qin, Lai'an; He, Feng; Tan, Fengfu

    2013-09-01

    We have developed a differential column image motion (DCIM) lidar for measuring real-time vertical profiles of Fried's transverse coherence length (r0) and testing it against a differential image motion (DIM) lidar and a DIM monitor by observing stars throughout a range of turbulent conditions. With the DCIM lidar system parameters elaborately designed and the detector installed with an angle corresponding to the receiving telescope axis, the focal position of the laser guide star from a range of altitudes that coincide with the CCD's receiving area, r0 of different altitudes can be obtained simultaneously. The experiment results support the DCIM lidar and confirm that a high temporal and spatial resolution r0 profile can be measured with this method. PMID:23988980

  19. Real-time MSE measurements for current profile control on KSTAR.

    PubMed

    De Bock, M F M; Aussems, D; Huijgen, R; Scheffer, M; Chung, J

    2012-10-01

    To step up from current day fusion experiments to power producing fusion reactors, it is necessary to control long pulse, burning plasmas. Stability and confinement properties of tokamak fusion reactors are determined by the current or q profile. In order to control the q profile, it is necessary to measure it in real-time. A real-time motional Stark effect diagnostic is being developed at Korean Superconducting Tokamak for Advanced Research for this purpose. This paper focuses on 3 topics important for real-time measurements: minimize the use of ad hoc parameters, minimize external influences and a robust and fast analysis algorithm. Specifically, we have looked into extracting the retardance of the photo-elastic modulators from the signal itself, minimizing the influence of overlapping beam spectra by optimizing the optical filter design and a multi-channel, multiharmonic phase locking algorithm. PMID:23126864

  20. PNNL/Euratom glass fiber optic, spent fuel neutron profile measurement system

    SciTech Connect

    SM Bowyer; JE Smart

    2000-03-03

    The glass fiber optic spent fuel neutron profile measurement system is designed to measure the neutron profile of a Castor with high reproducibility and to distinguish spent fuel Castor contents from vitrified waste Castor contents. The basic principle of the detector is that the glass fibers detect thermal neutrons. The glass is loaded with lithium enriched in Li-6, which has a high thermal neutron cross-section. A neutron is captured by the Li-6 and a He-4 and H-3 are created. Because the glass also contains Cerium in a 3{sup +} ionization state, the excitation caused by the movement of the He-4 and H-3 results in the emission of light from the cerium atoms. This light then travels to the ends of the fiber where it is detected by photon sensitive devices (e.g., photo-multiplier tubes).

  1. Recent improvements of the broadband FMCW reflectometry system for density profile measurements on ASDEX Upgrade

    SciTech Connect

    Silva, A.; Manso, M.; Varela, P.; Cupido, L.; Meneses, L.

    2006-10-15

    The broadband FMCW reflectometry system on ASDEX Upgrade has had significant improvements extending its measuring capabilities both on high and low density plasmas: (i) the upgrade of the W band to probe electron densities up to 12.4x10{sup 19} m{sup -3} with O mode (ii) Q and V frequency bands operating in X mode to probe the edge plasma and to provide information for O-mode profile initialization, and (iii) a new dynamic frequency calibration method to take into account all existing delays in the hyperabrupt varactor-tuned oscillator (HTO) tuning port and driver electronics. These improvements are particularly important to measure accurately the edge pedestal region of high density ITER relevant discharges. Density profiles obtained in high density discharges are presented and compared with results from both Li-beam and Thomson scattering diagnostics.

  2. Experimental measurements of selenium x-ray laser spectral line profiles

    SciTech Connect

    Koch, J.A.; MacGowan, B.J.; Da Silva, L.B.; Matthews, D.L.; London, R.A.; Lee, R.W.; Mrowka, S.; Underwood, J.H.; Batson, P.J.

    1993-03-01

    The authors discuss their recent measurements of the spectral width of the 206.38 {Angstrom} x-ray laser transition in Ne-like Se. These measurements used a high-resolution grating spectrometer and were performed over a wide range of laser amplifier lengths. The data have enabled them to extrapolate the intrinsic line width and to observe the effects of gain-narrowing and saturation on the line profile. They find an intrinsic width which is 1.4 times the Doppler width, they observe gain-narrowing in intermediate length amplifiers, and they observe no re-broadening in long, saturated amplifiers. These results suggest that collisional line-broadening has a significant effect on the line profile and saturation behavior of this laser.

  3. Real-time MSE measurements for current profile control on KSTAR

    SciTech Connect

    De Bock, M. F. M.; Aussems, D.; Huijgen, R.; Scheffer, M.; Chung, J.

    2012-10-15

    To step up from current day fusion experiments to power producing fusion reactors, it is necessary to control long pulse, burning plasmas. Stability and confinement properties of tokamak fusion reactors are determined by the current or q profile. In order to control the q profile, it is necessary to measure it in real-time. A real-time motional Stark effect diagnostic is being developed at Korean Superconducting Tokamak for Advanced Research for this purpose. This paper focuses on 3 topics important for real-time measurements: minimize the use of ad hoc parameters, minimize external influences and a robust and fast analysis algorithm. Specifically, we have looked into extracting the retardance of the photo-elastic modulators from the signal itself, minimizing the influence of overlapping beam spectra by optimizing the optical filter design and a multi-channel, multiharmonic phase locking algorithm.

  4. Method of measuring a profile of the density of charged particles in a particle beam

    DOEpatents

    Hyman, L.G.; Jankowski, D.J.

    1975-10-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam.

  5. 3-D surface profile measurements of large x-ray synchrotron radiation mirrors using stitching interferometry.

    SciTech Connect

    Assoufid, L.; Bray, M.; Qian, J.; Shu, D.

    2002-09-12

    Stitching interferometry, using small-aperture, high-resolution, phase-measuring interferometry, has been proposed for quite some time now as a metrology technique to obtain 3-dimensional profiles of surfaces of oversized optical components and substrates. The aim of this work is to apply this method to the specific case of long grazing-incidence x-ray mirrors, such as those used in beamlines at synchrotron radiation facilities around the world. Both fabrication and characterization of these mirrors would greatly benefit from this technique because it offers the potential for providing measurements with accuracy and resolution better than those obtained using existing noncontact laser profilers, such as the long trace profiler (LTP). Measurement data can be used as feedback for computer-controlled fabrication processes to correct for possible topography errors. The data can also be used for simulating and predicting mirror performance under realistic conditions. A semiautomated stitching system was built and tested at the X-ray Optics Metrology Laboratory of the Advanced Photon Source at Argonne National Laboratory. The initial objective was to achieve a measurement sensitivity on the order of 1 {micro}rad rms. Preliminary tests on a 1 m-long x-ray mirror showed system repeatability of less than 0.6 {micro}rad rms. This value is comparable to that of a conventional LTP. The measurement accuracy was mostly affected by environmental perturbations and system calibration effects. With a fully automated and improved system (to be built in the near future), we expect to achieve measurement sensitivity on the order of 0.0 {micro}rad rms or better. In this paper, after a brief review of basic principles and general technical difficulties and challenges of the stitching technique, a detailed description of the measurement setup is given and preliminary results obtained with it are analyzed and discussed.

  6. In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers.

    PubMed

    Cochems, P; Kirk, A; Zimmermann, S

    2014-12-01

    Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design. PMID:25554310

  7. Heat transfer measurements with film cooling on a turbine blade profile in cascade

    NASA Astrophysics Data System (ADS)

    Horton, F. G.; Schultz, D. L.; Forest, A. E.

    1985-03-01

    Heat transfer measurements with film cooling have been made on a gas turbine rotor profile in a cascade at engine representative operating conditions. The blade temperature was varied independently to investigate the scaling of heat transfer coefficient, and a superposition model was found to correlate the data. Contrasting results are presented for films on the two surfaces, along with predictions from a two-dimensional boundary layer method.

  8. Hornblende-melt trace-element partitioning measured by ion microprobe

    USGS Publications Warehouse

    Sisson, T.W.

    1994-01-01

    Trace-element abundances were measured in situ by ion microprobe in five samples of hornblende and melt ranging from basaltic andesite to high-silica rhyolite. Except for one sample, for which quench overgrowth or disequilibrium is suspected, the abundance ratios show systematic inter-element and inter-sample variations, and probably approach true partition coefficients. Apparent partition coefficients are reported for La, Ce, Nd, Sm, Dy, Er, Yb, Sc, Ti, V, Cr, Sr, Y and Zr. Rare-earth elements (REE) and Y form smooth convex-upward partitioning patterns that rise to higher D-values and become increasingly convex in more evolved samples. Apparent partition coefficients for REE, Y, Ti, V and Cr can be parameterized as functions of the distribution of Ca between hornblende and melt, giving expressions to predict hornblende-melt trace-element partitioning values. These expressions are used to show that heavy REE-enriched hornblende/whole-rock REE abundance patterns in granitoids may result from partial re-equilibration of hornblende and late-stage residual liquids rather than from anomalous partitioning values. ?? 1994.

  9. 3D micro profile measurement with the method of spatial frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yongxiang

    2015-10-01

    3D micro profiles are often needed for measurement in many fields, e.g., binary optics, electronic industry, mechanical manufacturing, aeronautic and space industry, etc. In the case where height difference between two neighboring points of a test profile is equal to or greater than λ / 4, microscopic interferometry based on laser source will no longer be applicable because of the uncertainty in phase unwrapping. As white light possesses the characteristic of interference length approximate to zero, applying it for micro profilometry can avoid the trouble and can yield accurate results. Using self-developed Mirau-type scanning interference microscope, a step-like sample was tested twice, with 128 scanning interferograms recorded for each test. To process each set of the interferograms, the method of spatial frequency domain analysis was adopted. That is, for each point, by use of Furrier transform, white-light interference intensities were decomposed in spatial frequency domain, thus obtaining phase values corresponding to different wavenumbers; by using least square fitting on phases and wave numbers, a group-velocity OPD was gained for the very point; and finally in terms of the relation between relative height and the group-velocity OPD, the profile of the test sample was obtained. Two tests yielded same profile result for the sample, and step heights obtained were 50.88 nm and 50.94 nm, respectively. Meantime, the sample was also measured with a Zygo Newview 7200 topography instrument, with same profile result obtained and step height differing by 0.9 nm. In addition, data processing results indicate that chromatic dispersion equal to and higher than 2nd order is negligible when applying spatial frequency domain analysis method.

  10. Feasibility of lateral dose profile measurements in a small field using TLDs

    NASA Astrophysics Data System (ADS)

    Zhang, Bailin; Zhu, Jinhan; Li, Yinghui; Chen, Shaowen; Chen, Lixin; Liu, Xiaowei

    2015-02-01

    The purpose of this work was to study the feasibility of lateral dose profile measurements in a small field using thermoluminescent dosimeters (TLDs) and to evaluate the impact of the field size on the absorbed dose ratio factor fmd of LiF and Al2O3 TLDs. The Monte Carlo package BEAM/EGSNRC was used to simulate the lateral dose profile in solid water phantoms (RW3 slab phantom) with various field sizes beyond the build-up region for 6 MV x-rays, and a LiF : Mg, Cu, P (GR-200) dosimeter with dimensions of 0.1  ×  0.1  ×  0.1 cm3 was used to measure the lateral dose profile under the same conditions as the Monte Carlo simulations. To enable comparisons between dosimeters, Gafchromic® EBT3 films were used. The results indicate that (1) the measured results are in agreement with the simulated results within the uncertainty of the simulation; (2) the values of fmd for Al2O3 and LiF in a 1  ×  1 cm2 field are 2.8% and 1.6% less, respectively, than those in a 10  ×  10 cm2 field; and (3) within the 80% profile region, the dose differences between TLDs and solid water are less than 1%. In the 80-10% profile region, the TLD results are in agreement with the absorbed doses in the solid water within 1 mm. It is generally acceptable to ignore the impact of field size on the absorbed dose ratio factor fmd when the field sizes are larger than 1  ×  1 cm2 for LiF and 2  ×  2 cm2 for Al2O3. For 6 MV x-rays, the small GR-200 chip can be used to measure the relative lateral dose profiles of small fields.

  11. Feasibility of lateral dose profile measurements in a small field using TLDs.

    PubMed

    Zhang, Bailin; Zhu, Jinhan; Li, Yinghui; Chen, Shaowen; Chen, Lixin; Liu, Xiaowei

    2015-02-01

    The purpose of this work was to study the feasibility of lateral dose profile measurements in a small field using thermoluminescent dosimeters (TLDs) and to evaluate the impact of the field size on the absorbed dose ratio factor fmd of LiF and Al2O3 TLDs. The Monte Carlo package BEAM/EGSNRC was used to simulate the lateral dose profile in solid water phantoms (RW3 slab phantom) with various field sizes beyond the build-up region for 6 MV x-rays, and a LiF : Mg, Cu, P (GR-200) dosimeter with dimensions of 0.1  ×  0.1  ×  0.1 cm(3) was used to measure the lateral dose profile under the same conditions as the Monte Carlo simulations. To enable comparisons between dosimeters, Gafchromic EBT3 films were used. The results indicate that (1) the measured results are in agreement with the simulated results within the uncertainty of the simulation; (2) the values of fmd for Al2O3 and LiF in a 1  ×  1 cm(2) field are 2.8% and 1.6% less, respectively, than those in a 10  ×  10 cm(2) field; and (3) within the 80% profile region, the dose differences between TLDs and solid water are less than 1%. In the 80-10% profile region, the TLD results are in agreement with the absorbed doses in the solid water within 1 mm. It is generally acceptable to ignore the impact of field size on the absorbed dose ratio factor fmd when the field sizes are larger than 1  ×  1 cm(2) for LiF and 2  ×  2 cm(2) for Al2O3. For 6 MV x-rays, the small GR-200 chip can be used to measure the relative lateral dose profiles of small fields. PMID:25586905

  12. Dryline on 22 May 2002 During IHOP: Convective Scale Measurements at the Profiling Site

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Flamant, Cyrille; Miller, David; Evans, Keith; Fabry, Federic; DiGirolamo, Paolo; Whiteman, David; Geerts, Bart; Weckwerth, Tammy; Brown, William

    2004-01-01

    A unique set of measurements of wind, water vapor mixing ratio and boundary layer height variability was observed during the first MOP dryline mission of 22 May 2002. Water vapor mixing ratio from the Scanning Raman Lidar (SRL), high-resolution profiles of aerosol backscatter from the HARLIE and wind profiles from the GLOW are combined with the vertical velocity derived from the NCAR/ISS/MAPR and the high-resolution FMCW radar to reveal the convective variability of the cumulus cloud-topped boundary layer. A combined analysis of the in-situ and remote sensing data from aircraft, radiosonde, lidars, and radars reveals moisture variability within boundary layer updraft and downdraft regions as well as characterizes the boundary layer height variability in the dry and moist sides of the dryline. The profiler site measurements will be tied to aircraft data to reveal the relative intensity and location of these updrafts to the dry line. This study provides unprecedented high temporal and spatial resolution measurements of wind, moisture and backscatter within a dryline and the associated convective boundary layer.

  13. A method for retrieving vertical ozone profiles from limb scattered measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Chen, Shengbo; Yang, Chunyan; Jin, Lihua

    2011-10-01

    A two-step method is employed in this study to retrieve vertical ozone profiles using scattered measurements from the limb of the atmosphere. The combination of the Differential Optical Absorption Spectroscopy (DOAS) and the Multiplicative Algebraic Reconstruction Technique (MART) is proposed. First, the limb radiance, measured over a range of tangent heights, is processed using the DOAS technique to recover the effective column densities of atmospheric ozone. Second, these effective column densities along the lines of sight (LOSs) are inverted using the MART coupled with a forward model SCIATRAN (radiative transfer model for SCIAMACHY) to derive the ozone profiles. This method is applied to Optical Spectrograph and Infra Red Imager System (OSIRIS) radiance, using the wavelength windows 571-617 nm. Vertical ozone profiles between 10 and 48 km are derived with a vertical resolution of 1 km. The results illustrate a good agreement with the cloud-free coincident SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) ozone measurements, with deviations less than ±10% (±5% for altitudes from 17 to 47 km). Furthermore, sensitivities of retrieved ozone to aerosol, cloud parameters and NO2 concentration are also investigated.

  14. Optimal design of reflectometer density profile measurements using a radar systems approach (invited)

    SciTech Connect

    Doyle, E.J.; Kim, K.W.; Peebles, W.A.; Rhodes, T.L.

    1997-01-01

    Reflectometry is an attractive and versatile diagnostic technique that can address a wide range of measurement needs on fusion devices. However, progress in the area of profile measurement has been hampered by the lack of a well-understood basis for the optimum design and implementation of such systems. Such a design basis is provided by the realization that reflectometer systems utilized for density profile measurements are in fact specialized forms of radar systems. In this article five criteria are introduced by which reflectometer systems can be systematically designed for optimal performance: range resolution, spatial sampling, turbulence immunity, bandwidth optimization, and the need for adaptive data processing. Many of these criteria are familiar from radar systems analysis, and are applicable to reflectometry after allowance is made for differences stemming from the nature of the plasma target. These criteria are utilized to critically evaluate current reflectometer density profile techniques and indicate improvements that can impact current and next step devices, such as ITER.{copyright} {ital 1997 American Institute of Physics.}

  15. Characterization of magnetic field profiles at RFX-mod by Faraday rotation measurements

    NASA Astrophysics Data System (ADS)

    Auriemma, Fulvio; Brombin, Matteo; Canton, Alessandra; Giudicotti, Leonardo; Innocente, Paolo; Zilli, Enrico

    2009-11-01

    A multichannel far-infrared (FIR, λ=118.8 μm) polarimeter has been recently upgraded and re-installed on RFX-mod to measure the Faraday rotation angle along five vertical chords. Polarimetric data, associated with electron density profile, allow the reconstruction of the poloidal magnetic field profile. In this work the setup of the diagnostic is presented and the first Faraday rotation measurements are analyzed. The measurements have been performed at plasma current above 1.2 MA and electron density between 2 and 6x10^19 m-3. The actual S/N ratio is slightly lower than the expected one, due to electromagnetic coupling of the detectors with the saddle coils close to the polarimeter position. Due to this limit, only average information in the flat-top phase of the discharge could be so far obtained. The experimental data have been compared with the result of the μ&p equilibrium model [1], showing a good agreement between experiment and model, whereas the main differences are in the external region of the plasma. A different parameterization of the μ=μ0 J.B/B^2 profile has been proposed to enhance the agreement between model and experiment. [0pt] [1] Ortolani and Snack, World Scientific (1993) Singapore

  16. Building the Frequency Profile of the Core Promoter Element Patterns in the Three ChromHMM Promoter States at 200bp Intervals: A Statistical Perspective

    PubMed Central

    Lent, Heather; Lee, Kyung-Eun

    2015-01-01

    Recently, the Encyclopedia of DNA Elements (ENCODE) Analysis Working Group converted data from ChIP-seq analyses from the Broad Histone track into 15 corresponding chromatic maps that label sequences with different kinds of histone modifications in promoter regions. Here, we publish a frequency profile of the three ChromHMM promoter states, at 200-bp intervals, with particular reference to the existence of sequence patterns of promoter elements, GC-richness, and transcription starting sites. Through detailed and diligent analysis of promoter regions, researchers will be able to uncover new and significant information about transcription initiation and gene function. PMID:26865847

  17. Spectroscopic Measurement of L X-rays Emitted by Transuranium Elements by Using TES Microcalorimeter

    NASA Astrophysics Data System (ADS)

    Maeda, M.; Maehata, K.; Iyomoto, N.; Ishibashi, K.; Takasaki, K.; Nakamura, K.; Aoki, K.; Mitsuda, K.; Tanaka, K.

    2014-09-01

    Energy spectra of L X-rays emitted by Np and uranium isotopes progenies of Am and plutonium isotopes were measured by a transition edge sensor (TES) microcalorimeter for demonstration of peak separation with high energy resolution. L X-ray photons emitted by transuranium (TRU) elements can to be utilized for a nondestructive TRU monitor. Major L X-ray peaks are clearly distinguished in the energy spectrum of L X-rays obtained by the simultaneous measurement for radiation sources of Am and plutonium isotopes. The value of full width at half maximum energy resolution is 60.21 eV for a peak corresponding to Np L X -rays of 17.751 keV in Am source measurement. Comparable energy resolutions were obtained in other experiments. This measurement demonstrated separation of Am and plutonium isotopes by L X-ray spectroscopy using TES microcalorimeter.

  18. K-edge x-ray fluorescence analysis for actinide and heavy elements solution concentration measurements

    SciTech Connect

    Camp, D.C.

    1984-07-01

    Advantages of using Co-57 as an exciter for K XRFA include: a compact design that requires no x-ray tubes; the exciter-detector assembly locates remote from support electronics; on-line, at-line, or off-line configurations for monitor/measurements; systems that can be run by semi-skilled technicians, once programmed; and operated via remote terminals with results sent to control rooms; heavy element concentrations that are measurable thru industrial pipes; independent of minor changes in solution matrix or source half life with concentration results reported in near-real-time; a dynamic range of measurable concentrations that is greater than 10/sup 4/; measurement times that are reasonable even at 1 gram/liter; and for nuclear safeguards, it provides the <0.5% accuracy required by DOE for the accountability of U, Pu, or both, once the system is calibrated.

  19. A single-element interferometer for measuring refractive index of transparent liquids

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Feng, Guoying; Song, Zheyi; Zhou, Shouhuan

    2014-12-01

    A simple and stable method based on a single-element interferometer for accurately measuring refractive index of transparent liquids was demonstrated. The refractive index is measured by rotating a rectangular optical glass cell which contains sample liquid and air simultaneously, and by calculating interference fringe shift number which is detected from an interferogram. This method was successfully used to measure the refractive indices of various transparent liquids including distilled water, ethanol and NaCl-water and ethanol-water solutions at various concentrations. The temperature- dependent refractive index of distilled water was also measured. Furthermore, our method is simple to implement, vibration insensitive, and of high accuracy up to 10-4.

  20. The S-193 radar altimeter experiment. [onboard Skylab for earth surface profile measurement

    NASA Technical Reports Server (NTRS)

    Mcgoogan, J. T.; Miller, L. S.; Brown, G. S.; Hayne, G. S.

    1974-01-01

    The Skylab S-193 altimeter experiment utilizes a 10- and 100-ns pulse length, 13.9-GHz earth-pointed radar system to obtain earth-surface backscatter measurements from the Skylab spacecraft. Objectives of the experiment are to obtain precision measurements of surface profile for uses in geodesy, oceanography, and earth physics, and to measure radar-signal characteristics from an earth-orbit geometry to provide design information for future radar remote-sensors. The technical approach is that of measuring the power impulse response of the scattering surface. The hardware is designed to operate in five modes: waveform or impulse-response measurement and altitude determination; radar cross-section experiment; signal correlation experiment; 10-nsec pulse-compression evaluation; and nadir-seeker experiment.

  1. 75 FR 58387 - Notice of Issuance of Exposure Draft of a Concepts Statement on Measurement of the Elements of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ACCOUNTING STANDARDS ADVISORY BOARD Notice of Issuance of Exposure Draft of a Concepts Statement on Measurement of the Elements... Exposure Draft of a Concepts Statement on Measurement of the Elements of Accrual-Basis Financial...

  2. Martian electron density profiles retrieved from Mars Express dual-frequency radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Zhang, S. J.; Cui, J.; Guo, P.; Li, J. L.; Ping, J. S.; Jian, N. C.; Zhang, K. F.

    2015-05-01

    The S- and X-band dual-frequency Doppler radio occultation observations obtained by the Mars Express Radio Science (MaRS) experiments are reduced in this study. A total of 414 Martian electron density profiles are retrieved covering the period from DOY 93 2004 to DOY 304 2012. These observations are well distributed over both longitude and latitude, with Sun-Mars distance varying from 1.38 AU to 1.67 AU, the solar zenith angle (SZA) ranging from 52 ° to 122 ° . Due to the improved vertical resolution for the MaRS experiments, the vertical structures of the retrieved profiles appear to be more complicated than those revealed by early radio occultation experiments. Dayside electron density profiles have primary peaks (M2) typically around 130 km and secondary peaks (M1) around 110 km. Nightside electron density profiles are highly variable, many of which do not have double layer structures. Both the dayside and nightside electron density profiles reveal some atypical features such as topside layering above M2 and bottom-side layering below M1. The former likely represent the plasma fluctuations in response to the solar wind (SW) interactions with the Martian ionosphere, whereas the latter is thought to be induced by the meteoric influx. We fit the peak electron density of profiles up to terminator with a simple power relation (Nm =N0 Chk (χ) ) , with the best-fit subsolar peak electron density being N0 = (1.499 ± 0.002) ×105cm-3 , and the best-fit power index being k = 0.513 ± 0.001 . The measured total electron content (TEC) is obtained by integrating the observed electron density profile vertically from 50 km to 400 km, which is then compared with the ideal TEC computed from the one-layer Chapman model. We find that the one-layer Chapman model can generally underestimate the measured TEC up to ∼ 0.1 TECU (1TECU = 1.0 ×1016m-2) for 55 °

  3. SI2N overview paper: ozone profile measurements: techniques, uncertainties and availability

    NASA Astrophysics Data System (ADS)

    Hassler, B.; Petropavlovskikh, I.; Staehelin, J.; August, T.; Bhartia, P. K.; Clerbaux, C.; Degenstein, D.; De Mazière, M.; Dinelli, B. M.; Dudhia, A.; Dufour, G.; Frith, S. M.; Froidevaux, L.; Godin-Beekmann, S.; Granville, J.; Harris, N. R. P.; Hoppel, K.; Hubert, D.; Kasai, Y.; Kurylo, M. J.; Kyrölä, E.; Lambert, J.-C.; Levelt, P. F.; McElroy, C. T.; McPeters, R. D.; Munro, R.; Nakajima, H.; Parrish, A.; Raspollini, P.; Remsberg, E. E.; Rosenlof, K. H.; Rozanov, A.; Sano, T.; Sasano, Y.; Shiotani, M.; Smit, H. G. J.; Stiller, G.; Tamminen, J.; Tarasick, D. W.; Urban, J.; van der A, R. J.; Veefkind, J. P.; Vigouroux, C.; von Clarmann, T.; von Savigny, C.; Walker, K. A.; Weber, M.; Wild, J.; Zawodny, J.

    2013-11-01

    Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground- and satellite-based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information is for each data set is also given.

  4. Spatially resolved measurements of electron cyclotron resonance ion source beam profile characteristics

    SciTech Connect

    Panitzsch, Lauri; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-03-15

    Simulations predict that the concentric rings and the triangular structures in the profiles of strongly focused ion beams that are found in different experiments should be dominated by ion species with the same or at least similar m/q-ratio. To verify these theoretical predictions we have tuned our ECR ion source to deliver a beam consisting of multiple ion species whose particular m/q-depending focusing ranges from weakly focused to overfocused. We then recorded spatially resolved charge-state distributions of the beam profile at characteristic positions in the plane perpendicular to the beam line. The results validate theoretical predictions and are summarized in this paper. To achieve the required beam profile characteristics we moved the extraction along the beam line to achieve stronger focusing than by only changing the extraction voltage. To fit the regions of interest of the beam profile into the transmission area of the sector magnet, we steered the beam by moving the extraction in the plane perpendicular to the beam axis. The results of both investigations, beam focusing and beam steering by using a 3D-movable extraction, are also reported in this paper. A brief overview of the new beam monitor extensively used during these measurements, the Faraday cup array, is also given.

  5. Stratospheric CH4 and CO2 profiles derived from SCIAMACHY solar occultation measurements

    NASA Astrophysics Data System (ADS)

    Noël, S.; Bramstedt, K.; Hilker, M.; Liebing, P.; Plieninger, J.; Reuter, M.; Rozanov, A.; Bovensmann, H.; Burrows, J. P.

    2015-11-01

    Stratospheric profiles of methane (CH4) and carbon dioxide (CO2) have been derived from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The retrieval is performed using a method called "Onion Peeling DOAS" (ONPD) which combines an onion peeling approach with a weighting function DOAS (Differential Optical Absorption Spectroscopy) fit. By use of updated pointing information and optimisation of the data selection and of the retrieval approach the altitude range for reasonable CH4 could be extended to about 17 to 45 km. Furthermore, the quality of the derived CO2 has been assessed such that now the first stratospheric profiles of CO2 from SCIAMACHY are available. Comparisons with independent data sets yield an estimated accuracy of the new SCIAMACHY stratospheric profiles of about 5-10 % for CH4 and 2-3 % for CO2. The accuracy of the products is currently mainly restricted by the appearance of unexpected vertical oscillations in the derived profiles which need further investigation. Using the improved ONPD retrieval, CH4 and CO2 stratospheric data sets covering the whole SCIAMACHY time series (August 2002-April 2012) and the latitudinal range between about 50 and 70° N have been derived. Based on these time series, CH4 and CO2 trends have been estimated, which are in reasonable agreement with total column trends for these gases. This shows that the new SCIAMACHY data sets can provide valuable information about the stratosphere.

  6. Spitzer or neoclassical resistivity: A comparison between measured and model poloidal field profiles on PBX-M

    SciTech Connect

    Kaye, S.M.; Levinton, F.M.; Hatcher, R.; Kaita, R.; Kessel, C.; LeBlanc, B.; McCune, D.C.; Paul, S. )

    1992-03-01

    Direct measurements of the radial profile of the magnetic field line pitch on PBX-M (Phys. Fluids B {bold 2}, 1271 (1990)), coupled with model predictions of these profiles allow a critical comparison with the Spitzer and neoclassical models of plasma parallel resistivity. The measurements of the magnetic field line pitch are made by motional Stark effect polarimetry, while the model profiles are determined by solving the poloidal field diffusion equation in the TRANSP transport code using measured plasma profiles and assuming either Spitzer or neoclassical resistivity. The measured field pitch profiles were available for only seven cases, and the model profiles were distinguishable from each other in only three of those cases due to finite resistive diffusion times. The data in two of these three were best matched by the Spitzer model, especially in the inner-half of the plasma. Portions of the measured pitch profiles for these two cases and the full profiles for other cases, however, departed significantly from both the Spitzer and neoclassical models, indicating a plasma resistivity profile different from either model.

  7. Effects of Prednisolone, L-Asparaginase, Gemfibrozil, and Combinations of These Elements on Mice Lipid Profile, Liver, and Pancreas.

    PubMed

    Kose, Dogan; Tarakci, Nuriye; Celik, Zeliha Esin; Vatansev, Husamettin; Cimbek, Emine Ayca; Ugras, Serdar; Sen, Yasar; Caliskan, Umran; Koksal, Yavuz

    2016-01-01

    The aim of this study is to determine the effects of L-asparaginase (L-ASP), corticosteroids (CSs), and antilipidemics, separately and in combination, on the lipid profiles and the liver and pancreas histology in mice. This study included 8 groups of 7 mice each. Before any drug administration, serum samples were taken from all of the mice. Then, normal saline was applied to the control group, and a medication or combination of medications was applied to the other groups. Levels of triglycerides, cholesterol (COL), and high-density lipoprotein (HDL) and low-density lipoprotein (LDL) were determined, and the livers and pancreases were evaluated histologically at the end of the study. Triglycerides increased significantly in the CS-only and the L-ASP-only groups, COL increased significantly in the CS-only group, and HDL increased significantly in the CS-only and the antilipidemic-only groups. LDL was significantly lower in the CS-only and the L-ASP-only groups. CSs and L-ASP were significantly effective in liver necrosis, L-ASP was significantly effective in liver balloon degeneration, and CS were significantly effective in pancreas vacuolization. Triglyceride measurement is recommended before/during CS and/or L-ASP treatment. Starting with an antilipidemic agent can be considered to avoid possible complications in patients with significantly high rates. Indicators of a possible liver or pancreas injury should also be considered. PMID:26599986

  8. The 2004 Ultrasonic Benchmark Problem - SDH Response Under Oblique Incidence: Measurements and Patch Element Model Calculations

    SciTech Connect

    Krishnamurthy, C. V.; Shankar, M.; Vardhan, J. Vishnu; Balasubramaniam, Krishnan

    2006-03-06

    The 2004 ultrasonic benchmark problem requires models to predict, given a reference pulse waveform, the pulse echo response of cylindrical voids of various radii located in an elastic solid for various incidence angles of a transducer immersed in water. We present the results of calculations based on the patch element model, recently developed at CNDE, to determine the response of an SDH in aluminum for specific oblique incidence angles. Patch element model calculations for a scan across the SDH, involving a range of oblique incidence angles, are also presented. Measured pulse-echo scans involving the SDH response under oblique incidence conditions are reported. In addition, through transmission measurements involving a pinducer as a receiver and an immersion planar probe as a transmitter under oblique incidence conditions are also reported in a defect-free Aluminum block. These pinducer-based measurements on a defect-free block are utilised to characterize the fields at the chosen depth. Comparisons are made between predictions and measurements for the pulse-echo response of a SDH.

  9. Top quark mass measurement from dilepton events at CDF II with the matrix-element method

    SciTech Connect

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2006-05-01

    We describe a measurement of the top quark mass using events with two charged leptons collected by the CDF II detector from p{bar p} collisions with {radical}s = 1.96 TeV at the Fermilab Tevatron. The likelihood in top mass is calculated for each event by convoluting the leading order matrix element describing q{bar q} {yields} t{bar t} {yields} b{ell}{nu}{sub {ell}}{bar b}{ell}{prime} {nu}{sub {ell}}, with detector resolution functions. The presence of background events in the data sample is modeled using similar calculations involving the matrix elements for major background processes. In a data sample with integrated luminosity of 340 pb{sup -1}, we observe 33 candidate events and measure M{sub top} = 165.2 {+-} 6.1(stat.) {+-} 3.4(syst.) GeV/c{sup 2}. This measurement represents the first application of this method to events with two charged leptons and is the most precise single measurement of the top quark mass in this channel.

  10. An approach to achieve lateral superresolution for small probe confocal measurement system and its element

    NASA Astrophysics Data System (ADS)

    Zhao, Weiqian; Li, Qi; Qiu, Lirong; Tan, Jiubin; Wang, Qi

    2005-11-01

    A shaped annular beam superresolution approach is proposed to improve a lateral resolution of a small probe laser confocal measurement system (LCMS). The approach proposed enables lateral superresolution measurement of LCMS to be achieved by using a binary optical diffractive element to shape a He-Ne Gaussian laser beam into an annular beam with an inner diameter of 0.87 mm and an outer diameter of 1.8 mm required for superresolution measurement, and shift the beam spatial frequency from low to high. And a binary optical element (BOE) with 16 phase levels is designed and fabricated to shape a Gaussian laser beam into an annular beam. Preliminary experimental results indicate that an intensity distribution of a shaped annular beam is in agreement with simulation results, the diffractive efficiency is 87.2%; LCMS lateral and axial resolutions of 0.2 [mu]m and 3 nm are achieved, respectively, and its measurement range is expanded nearly to double, when BOE is used in LCMS and , NA=0.85.

  11. Experimental measurement of energy density in a vibrating plate and comparison with energy finite element analysis

    NASA Astrophysics Data System (ADS)

    Navazi, H. M.; Nokhbatolfoghahaei, A.; Ghobad, Y.; Haddadpour, H.

    2016-08-01

    In this paper, a new method and formulation is presented for experimental measurement of energy density of high frequency vibrations of a plate. By use of the new proposed method and eight accelerometers, both kinetic and potential energy densities are measured. Also, a computer program is developed based on energy finite element method to evaluate the proposed method. For several points, the results of the developed experimental formulation are compared with those of the energy finite element analysis results. It is observed that, there is a good agreement between experimental results and analyses. Finally, another test setup with reduced accelerometer spacing was prepared and based on the comparison between kinetic and potential results, it is concluded that, the kinetic and potential counterparts of the energy density are equal in high frequency bands. Based on this conclusion, the measurement procedure was upgraded to an efficient and very simple one for high frequency ranges. According to the new test procedure, another experimental measurement was performed and the results had a good agreement with the EFEA results.

  12. Priority Choice Experimental Two-Qubit Tomography: Measuring One by One All Elements of Density Matrices

    PubMed Central

    Bartkiewicz, Karol; Černoch, Antonín; Lemr, Karel; Miranowicz, Adam

    2016-01-01

    In standard optical tomographic methods, the off-diagonal elements of a density matrix ρ are measured indirectly. Thus, the reconstruction of ρ, even if it is based on linear inversion, typically magnifies small errors in the experimental data. Recently, an optimal tomography solution measuring all the elements of ρ one-by-one without error magnification has been theoretically proposed. We implemented this method for two-qubit polarization states. For comparison, we also experimentally implemented other well-known tomographic protocols, either based solely on local measurements (of, e.g., the Pauli operators and James-Kwiat-Munro-White projectors) or with mutually unbiased bases requiring both local and global measurements. We reconstructed seventeen separable, partially and maximally entangled two-qubit polarization states. Our experiments show that our method has the highest stability against errors in comparison to other quantum tomographies. In particular, we demonstrate that each optimally-reconstructed state is embedded in an uncertainty circle of the smallest radius, both in terms of trace distance and disturbance. We explain how to experimentally estimate uncertainty radii for all the implemented tomographies and show that, for each reconstructed state, the relevant uncertainty circles intersect indicating the approximate location of the corresponding physical density matrix. PMID:26792194

  13. Measurement of the condensation nuclei profile to 31 km in the Arctic in January 1989 and comparisons with Antarctic measurements

    SciTech Connect

    Hofmann, D.J. )

    1990-03-01

    The first measurement of the condensation nuclei (CN) profile in the Arctic during winter was made to 31 km on 30 January 1989 from Kiruna Sweden (68{degree}N). Enhanced levels of CN were observed in the colder regions above 18 km suggesting homogeneous or ion nucleation of CN as observed previously in Antarctica. A CN layer reaching a concentration of about 40 cm{sup {minus}3} was observed between 22.5 and 26 km. Comparison with data obtained in Antarctica in 1987 and 1988 indicate that this layer is similar to those observed at the same altitude in Antarctica under similar solar illumination conditions. The latter are believed to be of photochemical origin as suggested by measurements before and after stratospheric sunrise. This CN layer may thus serve as a measure of the amount of time an air parcel has spent in sunlight, an important parameter during the early stages of spring ozone depletion.

  14. A novel method for measuring K-shell photoelectric parameters of high-Z elements

    NASA Astrophysics Data System (ADS)

    Nayak, S. V.; Badiger, N. M.

    2006-06-01

    The K-shell jump ratio, jump factor and the ratio of total to K-shell photoelectric cross section at K edge have been determined for Hf, Ta, Au and Pb by adopting a novel method. In this method, continuous external bremsstrahlung (EB) photons are produced in a thin nickel elemental converter by beta particles from a 90Sr-90Y weak beta source. The spectrum of EB photons transmitted through the elemental targets of Hf, Ta, Au and Pb is recorded with an HPGe detector coupled to an 8K multichannel analyser. The transmitted spectrum shows a sharp decrease in intensity at the K-shell binding energy of the target atom. The region of sharp decrease is fitted to a sigmoidal function and the K-shell jump ratio, jump factor and the ratio of total to the K-shell photoelectric cross section at K edge are determined. The measured values are compared with the theoretical values.

  15. Direct drag and hot-wire measurements on thin-element riblet arrays

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Lazos, B. S.

    1987-01-01

    An experimental study of stream wise, near-wall, thin-element riblet arrays under a turbulent boundary layer has been conducted in low-speed air. Hot-wire data show that a single, isolated thin-element riblet causes formation of counter-rotating vortex-pairs with a spanwise wavelength of 130 viscous lengths. Abrupt shifts in turbulence intensity magnitude and peak location are observed for streamwise riblet arrays as spanwise riblet spacing is varied. Direct drag measurements show net drag reduction (up to 8.5 percent) over a wide range of riblet spacings along with behavior at discrete non-dimensional spacings indicative of vortex activity. Overall, the data suggest that more than one drag reduction mechanism may be involved.

  16. Comparison of Finite Element Predictions to Measurements from the Sandia Microslip Experiment

    SciTech Connect

    LOBITZ,DONALD W.; GREGORY,DANNY LYNN; SMALLWOOD,DAVID O.

    2000-11-09

    When embarking on an experimental program for purposes of discovery and understanding, it is only prudent to use appropriate analysis tools to aid in the discovery process. Due to the limited scope of experimental measurement analytical results can significantly complement the data after a reasonable validation process has occurred. In this manner the analytical results can help to explain certain measurements, suggest other measurements to take and point to possible modifications to the experimental apparatus. For these reasons it was decided to create a detailed nonlinear finite element model of the Sandia Microslip Experiment. This experiment was designed to investigate energy dissipation due to microslip in bolted joints and to identify the critical parameters involved. In an attempt to limit the microslip to a single interface a complicated system of rollers and cables was devised to clamp the two slipping members together with a prescribed normal load without using a bolt. An oscillatory tangential load is supplied via a shaker. The finite element model includes the clamping device in addition to the sequence of steps taken in setting up the experiment. The interface is modeled using Coulomb friction requiring a modest validation procedure for estimating the coefficient of friction. Analysis results have indicated misalignment problems in the experimental procedure, identified transducer locations for more accurate measurements, predicted complex interface motions including the potential for galling, identified regions where microslip occurs and during which parts of the loading cycle it occurs, all this in addition to the energy dissipated per cycle. A number of these predictions have been experimentally corroborated in varying degrees and are presented in the paper along with the details of the finite element model.

  17. In vivo XRF measurements of heavy elements: Summary of a workshop

    SciTech Connect

    Wielopolski, L.; Ryon, R.W.

    1995-12-31

    This is a brief summary of the first workshop of {open_quotes}In Vivo XRF Measurements of Heavy Elements,{close_quotes} at the Denver Conference on Applications of X-Ray Analysis. In vivo x-ray fluorescence has been applied to medical applications since the 1960`s, with much of the pioneering work being done in Sweden (1). First measurements were of iodine in the thyroid. Elements from iron ID uranium have now been measured, at natural and elevated levels. Elevated levels occur either unintentionally through occupational or environmental exposure, or intentionally through medical administration. Examples of measurements are cadmium in kidney and liver, platinum in kidneys and tumors, mercury in the wrists and skulls of dentists, lead in various near-surface bones, copper in the eye and iron in skin. Nearly all measurements make use of either silicon or germanium detectors; radioisotopes and less frequently x-ray tubes are used for excitation. One question that those who work in an analytical chemistry laboratory often ask concerns radiation doses. Concern for x-ray safety ordinarily precludes putting living subjects into the x-ray beam. It turns out that radiation exposure due to in vivo x-ray fluorescence is quite low. The effective dose values for measurement of tibia lead concentration using a {sup 109}Cd source (30 minute exposure) ranges from 0.036 uSv for adults to 1.1 uSv for infants (less than one tenth of a single dental x-ray) (2). Lower effective doses were reported when an x-ray machine was Used to measure L x-rays (3). These values are far below proposed limits of negligibility (10 USv) and average annual U.S. natural background radiation (3000 uSv). 17 refs.

  18. Lunar surface heat flow mapping from radioactive elements measured by Lunar Prospector

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Li, Xiongyao; Li, Qingxia; Lang, Liang; Zheng, Yongchun

    2014-06-01

    An accurate estimate of global surface heat flow is important because it provides strong constraints on interior thermal model and understanding of the thermal state and geologic evolution of the Moon. In this paper, a distribution map of lunar surface heat flow is derived from calibrated Lunar Prospector gamma-ray spectrometer data (K, U and Th abundances). It shows that surface heat flow varies regionally from about 10.6 mW/m2 to 66.1 mW/m2, which is in the same order of magnitude as previous results. In the calculation, lunar surface heat flow includes the heat flow from the non-uniform distribution of radioactive elements K, U and Th and that from secular cooling of the Moon. The calculation of heat flow from radioactive elements is based on the assumption that the radioactive decay of K, U and Th on the Moon is the same as that on the Earth. The heat flow from secular cooling of the Moon is assumed to be equal to the global average radioactive heat flow. Firstly we construct a relationship between radioactive elements K, U and Th and lunar surface heat flow. The key parameter of the characteristic length scale in the relationship is determined by measured surface heat flow and Th abundances at Apollo 15 and 17 landing sites. Then the distribution of lunar surface heat flow is derived by combining other parameters such as lunar crustal thickness measured by Clementine and lunar crustal density. In addition, correlation analysis of the three radioactive elements is carried out due to the higher resolution of Th abundance and for ease of calculation.

  19. A Stellar Occultation Sensor Using Absorption and Refraction of Starlight for Atmospheric Profile Measurements

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Yee, J.; Murphy, G.; Swartz, W.; Demajistre, R.; Vervack, R.; Morrison, D.

    2008-12-01

    The Self-Calibrating H2O and O3 Nighttime Environmental Remote Sensor (SCHOONERS) is a compact, integrated UV-IR imaging spectrograph and imager for spaceborne stellar occultation measurements, developed under the NASA Instrument Incubator Program and based on the measurement technique and retrieval demonstrated by the MSX/UVISI instrument. The imaging spectrograph, covering a spectral range between 300 and 900 nm, measures the varying absorption of starlight as a star sets through the Earth's atmosphere to determine vertical profiles of atmospheric constituents. The relative star position measured by the co-aligned imager not only provides position feedback to the active-tracking loop but also measures the star refraction angle for determining the atmospheric density and temperature profiles. The instrument has a 25-cm-diameter aperture and employs a two-axis gimbaled telescope to provide acquisition and tracking of the star. It also uses a two-axis high-precision vernier mirror to correct for spacecraft jitter and maintain the star within the field-of-view. SCHOONERS' hardware and accompanying software have been demonstrated in end-to-end laboratory tests. SCHOONERS' built-in image tracking and motion compensation mechanism, coupled with its small size and limited spacecraft resource requirements, makes it suitable for deployment on existing and future spacecraft platforms as an instrument-of-opportunity. In this paper, stellar occultation sensing technique, experiment requirements, and SCHOONERS design and expected performance will be presented.

  20. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Brooks, I. M.; Brooks, B. J.; Moat, B. I.; Prytherch, J.; Persson, P. O. G.; Tjernström, M.

    2015-09-01

    Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This holds particularly within the planetary boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of winds with a random error below 0.2 m s-1, comparable to the measurement error of standard radiosondes. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.

  1. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Brooks, I. M.; Brooks, B. J.; Moat, B. I.; Prytherch, J.; Persson, P. O. G.; Tjernström, M.

    2015-11-01

    Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne Doppler measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic atmospheric boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This held true particularly within the atmospheric boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of vertical winds with a random error below 0.2 m s-1. The comparison of lidar-measured wind and radio soundings gives a mean bias of 0.3 m s-1 (2°) and a mean standard deviation of 1.1 m s-1 (12°) for wind speed (wind direction). The agreement for wind direction degrades with height. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.

  2. Maximum key-profile correlation (MKC) as a measure of tonal structure in music.

    PubMed

    Takeuchi, A H

    1994-09-01

    Tonal structure is musical organization on the basis of pitch, in which pitches vary in importance and rate of occurrence according to their relationship to a tonal center. Experiment 1 evaluated the maximum key-profile correlation (MKC), a product of Krumhansl and Schmuckler's key-finding algorithm (Krumhansl, 1990), as a measure of tonal structure. The MKC is the maximum correlation coefficient between the pitch class distribution in a musical sample and key profiles, which indicate the stability of pitches with respect to particular tonal centers. The MKC values of melodies correlated strongly with listeners' ratings of tonal structure. To measure the influence of the temporal order of pitches on perceived tonal structure, three measures (fifth span, semitone span, and pitch contour) taken from previous studies of melody perception were also correlated with tonal structure ratings. None of the temporal measures correlated as strongly or as consistently with tonal structure ratings as did the MKC, and nor did combining them with the MKC improve prediction of tonal structure ratings. In Experiment 2, the MKC did not correlate with recognition memory of melodies. However, melodies with very low MKC values were recognized less accurately than melodies with very high MKC values. Although it does not incorporate temporal, rhythmic, or harmonic factors that may influence perceived tonal structure, the MKC can be interpreted as a measure of tonal structure, at least for brief melodies. PMID:7971133

  3. Discharge measurements using a broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Simpson, Michael R.

    2002-01-01

    The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.

  4. The Effect of Clouds on Water Vapor Profiling from the Millimeter-Wave Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Spinhirne, J. D.; Racette, P.; Chang, L. A.; Hart, W.

    1997-01-01

    Simultaneous measurements with the millimeter-wave imaging radiometer (MIR), cloud lidar system (CLS), and the MODIS airborne simulator (MAS) were made aboard the NASA ER-2 aircraft over the western Pacific Ocean on 17-18 January 1993. These measurements were used to study the effects of clouds on water vapor profile retrievals based on millimeter-wave radiometer measurements. The CLS backscatter measurements (at 0.532 and 1.064 am) provided information on the heights and a detailed structure of cloud layers; the types of clouds could be positively identified. All 12 MAS channels (0.6-13 Am) essentially respond to all types of clouds, while the six MIR channels (89-220 GHz) show little sensitivity to cirrus clouds. The radiances from the 12-/Am and 0.875-gm channels of the MAS and the 89-GHz channel of the MIR were used to gauge the performance of the retrieval of water vapor profiles from the MIR observations under cloudy conditions. It was found that, for cirrus and absorptive (liquid) clouds, better than 80% of the retrieval was convergent when one of the three criteria was satisfied; that is, the radiance at 0.875 Am is less than 100 W/cm.sr, or the brightness at 12 Am is greater than 260 K, or brightness at 89 GHz is less than 270 K (equivalent to cloud liquid water of less than 0.04 g/cm). The range of these radiances for convergent retrieval increases markedly when the condition for convergent retrieval was somewhat relaxed. The algorithm of water vapor profiling from the MIR measurements could not perform adequately over the areas of storm-related clouds that scatter radiation at millimeter wavelengths.

  5. A system for measuring bottom profile, waves and currents in the high-energy nearshore environment

    USGS Publications Warehouse

    Sallenger, A.H., Jr.; Howard, P.C.; Fletcher, C. H., III; Howd, P.A.

    1983-01-01

    A new data-acquisition system capable of measuring waves, currents and the nearshore profile in breaking waves as high as 5 m has been developed and successfully field-tested. Components of the mechanical system are a sled carrying a vertical mast, a double-drum winch placed landward of the beach, and a line that runs from one drum of the winch around three blocks, which are the corners of a right triangle, to the other drum of the winch. The sled is attached to the shore-normal side of the triangular line arrangement and is pulled offshore by one drum of the winch and onshore by the other. The profile is measured as the sled is towed along the shore-normal transect using an infrared rangefinder mounted landward of the winch and optical prisms mounted on top of the sled's mast. A pressure sensor and two-axis electromagnetic current meter are mounted on the frame of the sled. These data are encoded on the sled and telemetered to a receiving/recording station onshore. Preliminary results suggest that near-bottom offshore-flowing currents during periods of high-energy swell are important in forcing changes to the configuration of the nearshore profile. ?? 1983.

  6. Simulation and measurement of AES depth profiles; a case study of the C/Ta/C/Si system

    NASA Astrophysics Data System (ADS)

    Zommer, Ludomir; Jablonski, Alexander; Kotis, László; Safran, Gyorgy; Menyhárd, Miklós

    2010-04-01

    A multilayer sample (C (23.3 nm)/Ta (26.5 nm)/C (22.7 nm)/Si substrate) was submitted to AES depth profiling by Ar + ions of energy 1 keV and angles of incidence of 72°, 78°, and 82°. The shapes of the as-measured depth profiles were strongly different emphasizing that the ion-bombardment conditions strongly affects the shapes of measured depth profiles. We simulated the depth profile measured at an angle of incidence of 72° by calculating the backscattering factor, applying attenuation lengths available in the literature, and simulating the ion-bombardment-induced specimen alteration with a TRIDYN simulation and a trial and error method. The good agreement between the calculated and measured depth profiles justified the method applied.

  7. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    NASA Astrophysics Data System (ADS)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the

  8. The Valuable Role of Measuring Serum Lipid Profile in Cancer Progression

    PubMed Central

    Ghahremanfard, Farahnaz; Mirmohammadkhani, Majid; Shahnazari, Banafsheh; Gholami, Golnaz; Mehdizadeh, Jamileh

    2015-01-01

    Objective Serum lipid levels are not only associated with etiology, but also with prognosis in cancer. To investigate this issue further, we aimed to evaluate the serum levels of lipids in association with the most important prognostic indicators in cancer patients at the start of chemotherapy. Methods In a retrospective cross-sectional study, using existing medical records obtained from 2009–2014, the data of all incident cancer cases in Iranian patients referred to the Semnan oncology clinic for chemotherapy were analyzed. Data on demographics, cancer type, prognostic indicators (e.g. lymph node involvement, metastasis, and stage of disease), as well as the patient’s lipid profile were collected. We used multiple logistic regression models to show the relationship between prognosis indicators and lipid profile adjusting for age, gender, and type of cancer. Results The data of 205 patients was gathered. We found a significant difference in the lipid profile between different types of cancers (breast, colon, gastric, and ovarian). With the exception of high-density lipoprotein levels in women, which were higher than in men, the means of other lipid profiles were similar between the genders. There was a significant association between higher levels of low-density lipoprotein (LDL >110mg/dL) in the serum and metastasis (adjusted odds ratio=2.4, 95% CI 1.2–3.5). No significant association was reported between lipid profile and lymph nodes involvement and stage of the disease. Conclusion Our study suggested a benefit of measuring serum levels of lipids for predicting cancer progression. Increased LDL levels can be considered a predictive factor for increasing the risk of metastasis. PMID:26421116

  9. Determination of size distribution of elliptical microvessels from size distribution measurement of their section profiles.

    PubMed

    Krasnoperov, R A; Gerasimov, A N

    2003-01-01

    In transmission electron microscopy, microvessels (MVs) are studied as profiles on ultrathin sections. To determine MV sizes from measurements made on MV profiles, an assumption must be made about MV shape, a circular cylinder being used to approximate the latter on limited lengths. However, this model is irrelevant in case MVs have some flatness. The elliptical cylinder model is preferable, although relationships between the cylinder profile (two-dimensional; 2D) and its true (three-dimensional; 3D) sizes are not yet known. We have obtained the 2D/3D functions that express the relationships between such profile sizes as the minor radius (Y), major radius (X), axial ratio (X/Y), area (S), and perimeter (P) on the one hand, and the corresponding MV sizes (Y(0), X(0), X(0)/Y(0), S(0), and P(0)) on the other. The 2D/3D functions make it possible to derive elliptical MV sizes from section profile size distributions, probability density functions (PDFs) for the latter being determined. We have applied the 2D/3D functions in studying axial ratios of thyroid hemocapillaries. A factual X/Y frequency histogram has been constructed and fitted by theoretical X/Y PDFs plotted for different sets of capillary sizes. The thyroid capillaries have been revealed to be clustered, 72.7% of them having X(0)/Y(0) approximately 1.6, 17.6%, X(0)/Y(0) approximately 1.0, and 9.7%, X(0)/Y(0) approximately 3.2. The proposed technique is instrumental in precise modeling of microcirculatory network geometry. PMID:12524478

  10. Measured Radiation Patterns of the Boeing 91-Element ICAPA Antenna With Comparison to Calculations

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Burke, Thomas (Technical Monitor)

    2003-01-01

    This report presents measured antenna patterns of the Boeing 91-Element Integrated Circuit Active Phased Array (ICAPA) Antenna at 19.85 GHz. These patterns were taken in support of various communication experiments that were performed using the antenna as a testbed. The goal here is to establish a foundation of the performance of the antenna for the experiments. An independent variable used in the communication experiments was the scan angle of the antenna. Therefore, the results presented here are patterns as a function of scan angle, at the stated frequency. Only a limited number of scan angles could be measured. Therefore, a computer program was written to simulate the pattern performance of the antenna at any scan angle. This program can be used to facilitate further study of the antenna. The computed patterns from this program are compared to the measured patterns as a means of validating the model.

  11. Construct Validity of the Relationship Profile Test: Links with measures of psychopathology and adult attachment

    PubMed Central

    Haggerty, Greg; Bornstein, Robert F.; Khalid, Mohammad; Sharma, Vishal; Riaz, Usman; Blanchard, Mark; Siefert, Caleb J; Sinclair, Samuel J.

    2015-01-01

    This study assessed the construct validity of the Relationship Profile Test (RPT; Bornstein & Languirand, 2003) with a substance abuse sample. One hundred-eight substance abuse patients completed the RPT, Experiences in Close Relationships Scale (ECR-SF; Wei, Russell, Mallinckrodt, & Vogel, 2007), Personality Assessment Inventory (PAI; Morey, 1991), and Symptom Checklist-90-Revised (SCL-90-R: Derogatis 1983). Results suggest that the RPT has good construct validity when compared against theoretically related broadband measures of personality, psychopathology and adult attachment. Overall, health hependency was negatively related to measures of psychopathology and insecure attachment, and overdependence was positively related to measures of psychopathology and attachment anxiety. Many of the predictions regarding RPT detachment and the criterion measures were not supported. Implications of these findings are discussed. PMID:26620463

  12. Interferometry based technique for intensity profile measurements of far IR beams.

    PubMed

    Soloviev, Alexander A; Khazanov, Efim A; Kozhevatov, Ilya E; Palashov, Oleg V

    2007-06-20

    We present a novel, to the best of our knowledge, method for measuring the intensity profile of far-IR beams. The method is based on the measurements of nonstationary variation in optical thickness of a fused-silica plate heated by the studied radiation. The optical thickness is observed by means of a reflecting interferometer. Purpose-made experimental setup allows one to measure beams with an aperture of up to 60 mm with a spatial resolution of 1 mm. The accessibility of the utilized technologies and the possibility to easily increase the aperture are the major advantages of this approach. The probable area of application for the method is measurements of beams produced by powerful industrial far-IR lasers. PMID:17538679

  13. Poster — Thur Eve — 02: Measurement of CT radiation profile width using Fuji CR imaging plate raw data

    SciTech Connect

    Bjarnason, T A; Yang, C J

    2014-08-15

    Measuring the CT collimation width and assessing the shape of the overall profile is a relatively straightforward quality control (QC) measure that impacts both image quality and patient dose, and is often required at acceptance and routine testing. Most CT facilities have access to computed radiography (CR) systems, so performing CT collimation profile assessments using CR plates requires no additional equipment. Previous studies have shown how to effectively use CR plates to measure the radiation profile width. However, a major limitation of the previous work is that the full dynamic range of CR detector plates are not used, since the CR processing technology reduces the dynamic range of the DICOM output to 2{sup 10}, requiring the sensitivity and latitude settings of CR reader to be adjusted to prevent clipping of the CT profile data. Such adjustments to CR readers unnecessarily complicate the QC procedure. These clipping artefacts hinder the ability to accurately assess CT collimation width because the full-width at half maximum value of the penumbras are not properly determined if the maximum dose of the profile is not available. Furthermore, any inconsistencies in the radiation profile shape are lost if the profile plateau is clipped off. In this work we developed an opensource Matlab script for straightforward CT profile width measurements using raw CR data that also allows assessment of the profile shape without clipping, and applied this approach during CT QC.

  14. Measurements of LHCD current profile and efficiency for simulation validation on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Mumgaard, Robert T.

    2014-10-01

    Lower hybrid current drive (LHCD) is an effective tool to significantly modify the magnetic equilibrium by driving off-axis, non-inductive current. On Alcator C-Mod, an upgraded Motional Stark Effect (MSE) diagnostic enables the current profile to be accurately reconstructed during plasmas with strong LHCD and a hard X-ray camera measures the fast electron Bremsstrahlung profile. LHCD is applied for >4 current relaxation times, producing fully-relaxed magnetic equilibria in plasmas with non-inductive current fraction up to unity at currents up to 1.0 MA. C-Mod has developed an extensive database of LHCD performance, spanning a wide range in plasma current, launched n||, LHCD power, Te and plasma density. This dataset provides a unique platform for validation of LHCD current drive simulations with the plasma shape, density, field and LH frequency range envisioned for ITER and future reactors. In these conditions the measured current drive efficiencies are similar to that assumed for ITER with values up to 0.4*1020A/Wm2 despite being in a weak single-pass absorption regime. The driven current is observed to be off-axis, broadening the current profile, raising q0 above 1, suppressing sawteeth, decreasing/reversing the magnetic shear and sometimes destabilizing MHD modes and/or triggering internal transport barriers. Measurements indicate increased efficiency at increased temperature and plasma current but with a complicated dependence on launched n||. The MSE-constrained reconstructions show a loss in current drive efficiency as the plasma density is increased above =1.0×1020 m-3 consistent with previous observations of a precipitous drop in hard x-ray emission. Additionally, the measured driven current profile moves radially outward as the density is increased. Ray tracing simulations using GENRAY-CQL3D qualitatively reproduce these trends showing the rays make many passes through the plasma at high density and predicting a narrower current and HXR profile

  15. Accuracy of acoustic ear canal impedances: finite element simulation of measurement methods using a coupling tube.

    PubMed

    Schmidt, Sebastian; Hudde, Herbert

    2009-06-01

    Acoustic impedances measured at the entrance of the ear canal provide information on both the ear canal geometry and the terminating impedance at the eardrum, in principle. However, practical experience reveals that measured results in the audio frequency range up to 20 kHz are frequently not very accurate. Measurement methods successfully tested in artificial tubes with varying area functions often fail when applied to real ear canals. The origin of these errors is investigated in this paper. To avoid mixing of systematical and other errors, no real measurements are performed. Instead finite element simulations focusing on the coupling between a connecting tube and the ear canal are regarded without simulating a particular measuring method in detail. It turns out that realistic coupling between the connecting tube and the ear canal causes characteristic shifts of the frequencies of measured pressure minima and maxima. The errors in minima mainly depend on the extent of the area discontinuity arising at the interface; the errors in maxima are determined by the alignment of the tube with respect to the ear canal. In summary, impedance measurements using coupling tubes appear questionable beyond 3 kHz. PMID:19507964

  16. The measure matters: Language dominance profiles across measures in Spanish–English bilingual children*

    PubMed Central

    BEDORE, LISA M.; PEÑA, ELIZABETH D.; SUMMERS, CONNIE L.; BOERGER, KARIN M.; RESENDIZ, MARIA D.; GREENE, KAI; BOHMAN, THOMAS M.; GILLAM, RONALD B.

    2013-01-01

    The purpose of this study was to determine if different language measures resulted in the same classifications of language dominance and proficiency for a group of bilingual pre-kindergarteners and kindergarteners. Data were analyzed for 1029 Spanish–English bilingual pre-kindergarteners who spanned the full range of bilingual language proficiency. Parent questionnaires were used to quantify age of first exposure and current language use. Scores from a short test of semantic and morphosyntactic development in Spanish and English were used to quantify children’s performance. Some children who were in the functionally monolingual range based on interview data demonstrated minimal knowledge of their other languages when tested. Current use accounted for more of the variance in language dominance than did age of first exposure. Results indicate that at different levels of language exposure children differed in their performance on semantic and morphosyntax tasks. These patterns suggest that it may be difficult to compare the results of studies that employ different measures of language dominance and proficiency. Current use is likely to be a useful metric of bilingual development that can be used to build a comprehensive picture of child bilingualism. PMID:23565049

  17. Radioactivity of a Rock Profile from Rio do Rasto Formation Measured by High Resolution Gamma Spectrometry

    NASA Astrophysics Data System (ADS)

    Bastos, Rodrigo O.; Appoloni, Carlos R.; Pinese, José P. P.

    2011-08-01

    Natural occurring radionuclides are present in different concentrations in sedimentary rocks. Generally, their distribution correlates reasonably with their geo-physicochemical behavior during sediment deposition and rock consolidation. This fact permits to study some geological characteristics of the rocks by analyzing the radionuclide distribution in the rocks, as it might reflect the origin of the sediments, the depositional environment, and more recent events such as weathering and erosion. In this work, rocks from an exposed profile of the Rio do Rasto Formation were collected and analyzed in laboratory by high resolution gamma spectrometry for 226Ra, 232Th and 40K determination. It was employed a standard gamma ray spectrometry electronic chain, with a 66% relative efficiency HPGe detector. The efficiency calibration, as well as its validation, was accomplished with eight International Atomic Energy Agency certified samples. The outcrop exposes layers of sandstone and siltstone and, secondarily, claystone, with varying colors (gray, red and green). The rocks were collected along this profile, each of them was dried in the open air during 48 hours, grounded, sieved through 4 mm mesh and sealed in cylindrical recipients. The 226Ra, 232Th and 40K activity concentrations are presented, their distribution and the possible relations among activities are analyzed. The general pattern of radionuclides distribution respects well the hypotheses on geo-physicochemical behavior of radioactive elements.

  18. DIAL Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John; Newchurch, Michael J.; Johnson, Steve

    2007-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by NASA and the University of Alabama at Huntsville (UAH), measures free-tropospheric ozone profiles between 4-10 km. Located at 192 meters altitude in the Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) on the UAH campus in Huntsville, AL, USA, this tropospheric ozone lidar operates under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from better than 8% at 4km to 40%-60% at 10 kin with 750-m vertical resolution and 30-minute integration. With anticipated improvements to allow retrievals at both higher and lower altitudes, this ozone lidar, along with co-located aerosol and Doppler Wind Lidars, will provide a unique 18 dataset for investigations of PBL and free-tropospheric chemical and dynamic processes.

  19. Time-resolved wave profile measurements in copper to Megabar pressures

    SciTech Connect

    Chhabildas, L C; Asay, J R

    1981-01-01

    Many time-resolved techniques have been developed which have greatly aided in the understanding of dynamic material behavior such as the high pressure-dynamic strength of materials. In the paper, time-resolved measurements of copper (at shock-induced high pressures and temperatures) are used to illustrate the capability of using such techniques to investigate high pressure strength. Continuous shock loading and release wave profiles have been made in copper to 93 GPa using velocity interferometric techniques. Fine structure in the release wave profiles from the shocked state indicates an increase in shear strength of copper to 1.5 GPa at 93 GPa from its ambient value of 0.08 GPa.

  20. Dose profile measurements during respiratory-gated lung stereotactic radiotherapy: A phantom study

    NASA Astrophysics Data System (ADS)

    Jong, W. L.; Wong, J. H. D.; Ng, K. H.; Ung, N. M.

    2016-03-01

    During stereotactic body radiotherapy, high radiation dose (∼60 Gy) is delivered to the tumour in small fractionation regime. In this study, the dosimetric characteristics were studied using radiochromic film during respiratory-gated and non-gated lung stereotactic body radiotherapy (SBRT). Specifically, the effect of respiratory cycle and amplitude, as well as gating window on the dosimetry were studied. In this study, the dose profiles along the irradiated area were measured. The dose profiles for respiratory-gated radiation delivery with different respiratory or tumour motion amplitudes, gating windows and respiratory time per cycle were in agreement with static radiation delivery. The respiratory gating system was able to deliver the radiation dose accurately (±1.05 mm) in the longitudinal direction. Although the treatment time for respiratory-gated SBRT was prolonged, this approach can potentially reduce the margin for internal tumour volume without compromising the tumour coverage. In addition, the normal tissue sparing effect can be improved.