Science.gov

Sample records for elemental energy spectra

  1. Elemental composition and energy spectra of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1988-01-01

    A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.

  2. Estimation of vertical sea level muon energy spectra from the latest primary cosmic ray elemental spectra

    NASA Astrophysics Data System (ADS)

    Mitra, M.; Molla, N. H.; Bhattacharyya, D. P.

    The directly measured elemental spectra of primary cosmic rays obtained from Webber et al., Seo et al., Menn et al., Ryan et al. and experiments like JACEE, CRN, SOKOL, RICH on P, He, CNO, Ne-S and Fe have been considered to estimate the vertical sea level muon energy spectra. The primary elemental energy spectra of P, He, CNO, Ne-S and Fe available from the different experimental data duly fitted by power law are given by Np(E)dE = 1.2216E-2.68 dE [cm2 .s.sr.GeV/n]-1 NHe(E)dE = 0.0424E-2.59 dE [cm2 .s.sr.GeV/n]-1 NCNO(E)dE = 0.0026E-2.57 dE[cm2 .s.sr.GeV/n]-1 NNe-S(E)dE = 0.00066E-2.57 dE [cm2 .s.sr.GeV/n]-1 NF e(E)dE = 0.0056E-2.55 dE [cm2 .s.sr.GeV/n]-1 Using the conventional superposition model the all nucleon primary cosmic ray spectrum has been derived which is of the form N(E)dE = 1.42E-2.66 dE [cm2 .s.sr.GeV/n]-1 We have considered all these spectra separately as parents of the secondary mesons and finallty the sea level muon fluxes at 00 from each species have been derived. To evaluate the meson spectra which are the initial air shower interaction products initiated by the primary nucleon air collisions, the hadronic energy moments have been calculated from the CERN LEBCEHS data for pp collisions and FNAL data for πp collisions. Pion production by secondary pions have been taken into account and the final total muon spectrum has been derived from pp rightarrowπ± x, pp → K± x, πp → π± x channels. The Z-factors have been corrected for p-air collisions. We have adopted the constant values of σp-air and σπ-air crosssections which are 273 mb and 213 mb, respectively. The adopted inelastic cross-sections for pp and πp interactions are 35 mb and 22 mb, respectively. The Q-G plasma correction of Z-factors have also been incorporated in the final form. The solution to the standard differential equation for mesons is considered for muon flux estimation from Ngenerations of the parent mesons. By this formulation vertical muon spectra from each element

  3. CREAM: High Energy Frontier of Cosmic Ray Elemental Spectra

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for 161 days in six flights over Antarctica. High energy cosmic-ray data were collected over a wide energy range from 10 (10) to 10 (15) eV at an average altitude of 38.5 km with 3.9 g/cm (2) atmospheric overburden. Cosmic-ray elements from protons (Z = 1) to iron nuclei (Z = 26) are separated with excellent charge resolution. Building on success of the balloon flights, the payload is being reconfigured for exposure on the International Space Station (ISS). This ISS-CREAM instrument is configured with the CREAM calorimeter for energy measurements, and four finely segmented Silicon Charge Detector layers for precise charge measurements. In addition, the Top and Bottom Counting Detectors (TCD and BCD) and Boronated Scintillator Detector (BSD) have been newly developed. The TCD and BCD are scintillator based segmented detectors to separate electrons from nuclei using the shower profile differences, while BSD distinguishes electrons from nuclei by detecting thermal neutrons that are dominant in nuclei induced showers. An order of magnitude increase in data collecting power is possible by utilizing the ISS to reach the highest energies practical with direct measurements. The project status including results from on-going analysis of existing data and future plans will be discussed.

  4. Abundances of energy spectra of individual iron-secondary elements

    NASA Technical Reports Server (NTRS)

    Israel, M. H.; Klarmann, J.; Love, P. L.; Tueller, J.

    1980-01-01

    Relative abundances of individual Iron-secondary elements have been measured using a balloon-borne 6.6 m ster ionization/Cerenkov detector system. The unusually large geometry factor and single-charge resolution yield empirical atmospheric attenuation curves for individual elements which combine with high statistics at float altitude to yield individual element abundances, extrapolated to the top of the atmosphere, with high precision. Results are presented for top-of-the-atmosphere abundances (relative to iron) of individual elements in the Z range 13-30.

  5. Energy spectra of elemental groups of cosmic rays: Update on the KASCADE unfolding analysis

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Badea, A. F.; Bekk, K.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cossavella, F.; Daumiller, K.; de Souza, V.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schatz, G.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2009-03-01

    The KASCADE experiment measures extensive air showers induced by cosmic rays in the energy range around the so-called knee. The data of KASCADE have been used in a composition analysis showing the knee at 3-5 PeV to be caused by a steepening in the light-element spectra [T. Antoni et al., (KASCADE Coll.), Astropart. Phys. 24 (2005) 1-25]. Since the applied unfolding analysis depends crucially on simulations of air showers, different high-energy hadronic interaction models (QGSJet and SIBYLL) were used. The results have shown a strong dependence of the relative abundance of the individual mass groups on the underlying model. In this update of the analysis we apply the unfolding method with a different low energy interaction model (FLUKA instead of GHEISHA) in the simulations. While the resulting individual mass group spectra do not change significantly, the overall description of the measured data improves by using the FLUKA model. In addition data in a larger range of zenith angle are analysed. The new results are completely consistent, i.e. there is no hint to any severe problem in applying the unfolding analysis method to KASCADE data.

  6. Calibration of Energy-Specific TDDFT for Modeling K-edge XAS Spectra of Light Elements.

    PubMed

    Lestrange, Patrick J; Nguyen, Phu D; Li, Xiaosong

    2015-07-14

    X-ray absorption spectroscopy (XAS) has become a powerful technique in chemical physics, because of advances in synchrotron technology that have greatly improved its temporal and spectroscopic resolution. Our recent work on energy-specific time-dependent density functional theory (ES-TDDFT) allows for the direct calculation of excitation energies in any region of the absorption spectrum, from UV-vis to X-ray. However, the ability of different density functional theories to model X-ray absorption spectra (XAS) of light elements has not yet been verified for ES-TDDFT. This work is a calibration of the ability of existing DFT kernels and basis sets to reproduce experimental K-edge excitation energies. Results were compared against 30 different transitions from gas-phase experiments. We focus on six commonly used density functionals (BHandHLYP, B3LYP, PBE1PBE, BP86, HSE06, LC-ωPBE) and various triple-ζ basis sets. The effects of core and diffuse functions are also investigated. PMID:26575736

  7. Revised Energy Spectra for Primary Elements, H - Si, above 50 GeV from the ATIC-2 Science Flight

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunashingha, R. M.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kouznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wu, J.; Zatsepin, V. I.

    2007-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) long duration balloon experiment had a successful science flight accumulating 18 days of data (12/02 - 1/03) during a single circumnavigation in Antarctica. ATIC measures the energy spectra of elements from H to Fe in primary cosmic rays using a fully active Bismuth Germanate calorimeter preceded by a carbon target, with embedded scintillator hodoscopes, and a silicon matrix charge detector at the top. Preliminary results from ATIC have been reported in previous conferences. The revised results reported here are derived from a new analysis of the data with improved charge resolution, lower background and revised energy calibration. The raw energy deposit spectra are de-convolved into primary energy spectra and extrapolated to the top of the atmosphere. We compare these revised results to previous data and comment upon the astrophysical interpretation of the results.

  8. An Instrument to Measure Elemental Energy Spectra of Cosmic Ray Nuclei Up to 10(exp 16) eV

    NASA Technical Reports Server (NTRS)

    Adams, J.; Bashindzhagyan, G.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov,S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    A longstanding goal of cosmic ray research is to measure the elemental energy spectra of cosmic rays up to and through the "knee" (approx. equal to 3 x 10 (exp 15) eV. It is not currently feasible to achieve this goal with an ionization calorimeter because the mass required to be deployed in Earth orbit is very large (at least 50 tonnes). An alternative method will be presented. This is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer using silicon microstrip detector technology. The proposed technique can be used over a wide range of energies (10 (exp 11)- 10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a design for a new lightweight instrument with a large aperture (KLEM) will be described.

  9. Calculation of the energy loss in giant magnetic impedance elements using the complex magnetic permeability spectra

    NASA Astrophysics Data System (ADS)

    Rustemaj, Driton; Mukherjee, Debashis

    2013-01-01

    The giant magnetic impedance (GMI) effect in ferromagnetic materials has been investigated for sensing applications. The GMI properties were evaluated via numerical solution of the complex magnetic permeability of the material. MATLAB simulation was carried out to study the frequency dependence of magnetic permeability via obtaining solutions of the Landau-Lifshitz-Gilbert (LLG) and the Maxwell's equations. The results indicate that the complex magnetic permeability peaks at a frequency of 6 GHz, corresponding to the ferromagnetic resonant (FMR) frequency, where the energy loss is maximum. A variation of the Gilbert damping parameter (α) associated with the LLG equation inversely affects this peak value. The area under the curve of complex magnetic permeability, calculated through counting the number of pixels within the image, provides an estimate of the average energy loss density within the material and appears to be consistent with the variation of the peak intensity.

  10. Speciation of Energy Critical Elements in Marine Ferromanganese Crusts and Nodules by Principal Component Analysis and Least-squares fits to XAFS Spectra

    NASA Astrophysics Data System (ADS)

    Foster, A. L.; Klofas, J. M.; Hein, J. R.; Koschinsky, A.; Bargar, J.; Dunham, R. E.; Conrad, T. A.

    2011-12-01

    Marine ferromanganese crusts and nodules ("Fe-Mn crusts") are considered a potential mineral resource due to their accumulation of several economically-important elements at concentrations above mean crustal abundances. They are typically composed of intergrown Fe oxyhydroxide and Mn oxide; thicker (older) crusts can also contain carbonate fluorapatite. We used X-ray absorption fine-structure (XAFS) spectroscopy, a molecular-scale structure probe, to determine the speciation of several elements (Te, Bi, Mo, Zr, Pt) in Fe-Mn crusts. As a first step in analysis of this dataset, we have conducted principal component analysis (PCA) of Te K-edge and Mo K-edge, k3-weighted XAFS spectra. The sample set consisted of 12 homogenized, ground Fe-Mn crust samples from 8 locations in the global ocean. One sample was subjected to a chemical leach to selectively remove Mn oxides and the elements associated with it. The samples in the study set contain 50-205 mg/kg Te (average = 88) and 97-802 mg/kg Mo (average = 567). PCAs of background-subtracted, normalized Te K-edge and Mo K-edge XAFS spectra were performed on a data matrix of 12 rows x 122 columns (rows = samples; columns = Te or Mo fluorescence value at each energy step) and results were visualized without rotation. The number of significant components was assessed by the Malinowski indicator function and ability of the components to reconstruct the features (minus noise) of all sample spectra. Two components were significant by these criteria for both Te and Mo PCAs and described a total of 74 and 75% of the total variance, respectively. Reconstruction of potential model compounds by the principal components derived from PCAs on the sample set ("target transformation") provides a means of ranking models in terms of their utility for subsequent linear-combination, least-squares (LCLS) fits (the next step of data analysis). Synthetic end-member models of Te4+, Te6+, and Mo adsorbed to Fe(III) oxyhydroxide and Mn oxide were

  11. Energy spectra in bubbly turbulence

    NASA Astrophysics Data System (ADS)

    Luther, Stefan; van den Berg, Thomas H.; Rensen, Judith; Lohse, Detlef

    2004-11-01

    The energy spectrum of single phase turbulent flow - apart from intermittency corrections - has been known since Kolomogorov 1941, E(k) ∝ k-5/3. How do bubbles modify this spectrum? To answer this question, we inject micro bubbles (radius 100 μm) in fully turbulent flow (Re_λ=200) up to volume concentrations of 0.3 %. Energy spectra and velocity structure functions are measured with hot-film anemometry. Under our experimental conditions, we find an enhancement of energy on small scales confirming numerical predictions by Mazzitelli, Lohse, and Toschi [Phys. Fluids 15, L5 (2003)]. They propose a mechanism in which bubbles are clustering most likely in downflow regions. This clustering is a lift force effect suppressing large vortical structures, while enhancing energy input on small scales.

  12. Importance of Matrix Elements in the ARPES Spectra of BISCO

    SciTech Connect

    Bansil, A.; Lindroos, M.

    1999-12-13

    We have carried out extensive first-principles angle-resolved photointensity (ARPES) simulations in Bi2212 wherein the photoemission process is modeled realistically by taking into account the full crystal wave functions of the initial and final states in the presence of the surface. The spectral weight of the ARPES feature associated with the CuO{sub 2} plane bands is found to undergo large and systematic variations with k{sub (parallel} {sub sign)} as well as the energy and polarization of the incident photons. These theoretical predictions are in good accord with the corresponding measurements, indicating that the remarkable observed changes in the spectral weights in Bi2212 are essentially a matrix element effect and that the importance of matrix elements should be kept in mind in analyzing the ARPES spectra in the high T{sub c} 's. (c) 1999 The American Physical Society.

  13. Importance of Matrix Elements in the ARPES Spectra of BISCO

    NASA Astrophysics Data System (ADS)

    Bansil, A.; Lindroos, M.

    1999-12-01

    We have carried out extensive first-principles angle-resolved photointensity (ARPES) simulations in Bi2212 wherein the photoemission process is modeled realistically by taking into account the full crystal wave functions of the initial and final states in the presence of the surface. The spectral weight of the ARPES feature associated with the CuO2 plane bands is found to undergo large and systematic variations with k∥ as well as the energy and polarization of the incident photons. These theoretical predictions are in good accord with the corresponding measurements, indicating that the remarkable observed changes in the spectral weights in Bi2212 are essentially a matrix element effect and that the importance of matrix elements should be kept in mind in analyzing the ARPES spectra in the high Tc's.

  14. Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements

    NASA Technical Reports Server (NTRS)

    Nalesnik, W. J.; Devlin, T. J.; Merker, M.; Shen, B. S. P.

    1972-01-01

    The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator.

  15. DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Lutz, L.; Malinin, A.; Allison, P.; Beatty, J. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Mognet, S. I.; Jeon, J. A.; Minnick, S.

    2010-05-01

    The balloon-borne Cosmic Ray Energetics And Mass experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here, we report results from the first two flights of {approx}70 days, which indicate hardening of the elemental spectra above {approx}200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at {approx}10{sup 15} eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.

  16. Energy spectra of elements with 18 less than or equal to Z less than or equal to 28 between 10 and 300 GeV/amu

    NASA Technical Reports Server (NTRS)

    Jones, M. D.; Klarmann, J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Garrard, T. L.; Israel, M. H.

    1985-01-01

    The HEAO-3 Heavy Nuclei Experiment is composed of ionization chambers above and below a plastic Cherenkov counter. The energy dependence of the abundances of elements with atomic number, Z, between 18 and 28 were measured at very high energies where they are rare and thus need the large area x time of this experiment. The measurements of the Danish-French HEAO-3 experiment were extended to higher energies, using the relativistic rise of ionization signal as a measure of energy, and determine source abundances for Ar and Ca.

  17. Comprehensive Analyses of the Spectra of Iron-group Elements

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Sansonetti, Craig J; Pickering, Juliet C; Liggins, Florence

    2014-06-01

    For many decades, the Atomic Spectroscopy Group at NIST has measured atomic data of vital use to astronomy and other fields using high resolution spectrometers that are found in few other places in the world. These now include the 2-m Fourier transform (FT) spectrometer covering the region 285 nm to 5500 nm, the FT700 vacuum ultraviolet (VUV) FT spectrometer covering the region 143 nm to 900 nm, and a 10.7-m normal incidence spectrograph (NIVS) covering 30 nm to 500 nm. Recent work focused on the measurement and analysis of wavelengths and energy levels of iron-group elements to provide extensive data for the analysis of astrophysical spectra. Our comprehensive linelist for Fe II from 90 nm to 5500 nm contains over 13 600 lines with order of magnitude improvements in the wavelengths compared to previous work [Nave & Johansson, ApJSS 204, 1(2013)]. The spectra were observed in high-current continuous and pulsed hollow cathode (HCL) discharges using FT spectrometers and our NIVS spectrograph. A similar analysis of Cr II contains over 5300 lines and extends the knowledge of this spectrum to the previously unobserved region between 731 nm at 5500 nm [Sansonetti, Nave, Reader & Kerber, ApJSS 202, 15 (2012); Sansonetti & Nave, ApJSS (in prep.)]. Our analysis of the Co III spectrum contains 750 lines observed in Penning discharge lamps and an additional 900 lines compiled from previous work, including Ritz wavelengths, optimized energy levels, and calculated log(gf) values [Smillie, Pickering, Nave & Smith, ApJSS (in prep.)]. NIST and ICL are currently collaborating to complete the measurement and analysis of wavelengths, energy levels, and hyperfine structure parameters for all singly-ionized iron-group elements of astrophysical interest, covering the wavelength range 80 nm to 5500 nm. This project uses archival data from FT spectrometers at NIST, ICL and Kitt Peak National Observatory, with additional spectra of HCL and Penning discharge sources taken using our FT and

  18. High-Energy Anomaly in the Angle-Resolved Photoemission Spectra of Nd2-xCexCuO4: Evidence for a Matrix Element Effect

    NASA Astrophysics Data System (ADS)

    Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.

    2014-09-01

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  19. High-energy anomaly in the angle-resolved photoemission spectra of Nd(2-x)Ce(x)CuO₄: evidence for a matrix element effect.

    PubMed

    Rienks, E D L; Ärrälä, M; Lindroos, M; Roth, F; Tabis, W; Yu, G; Greven, M; Fink, J

    2014-09-26

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone. PMID:25302914

  20. Importance of Matrix Elements in the ARPES Spectra of BISCO

    NASA Astrophysics Data System (ADS)

    Bansil, A.; Lindroos, M.

    2000-03-01

    We have carried out extensive first-principles angle-resolved photointensity (ARPES) simulations in Bi2212 wherein the photoemission process is modelled realistically by taking into account the full crystal wavefunctions of the initial and final states in the presence of the surface.(A. Bansil and M. Lindroos, Phys. Rev. Letters (Dec 13, 1999)) The spectral weight of the ARPES feature associated with the CuO2 plane bands is found to undergo large and systematic variations with k_allel as well as the energy and polarization of the incident photons. These theoretical predictions are in good accord with the corresponding measurements, indicating that the remarkable observed changes in the spectral weights in Bi2212 are essentially a matrix element effect and that the importance of matrix elements should be kept in mind in analyzing the ARPES spectra in the high-Tc's. Another notable implication of this work is that the integral (over energy) of the ARPES intensity does not yield the momentum density of the electron gas. We will also discuss some of our simulations aimed at gaining insight into the connectivity of the Fermi surface in Bi2212 around the M-point, the effects of modulations, and related issues. Work supported in part by the U.S.D.O.E.

  1. Galactic cosmic ray composition and energy spectra

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1994-01-01

    Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.

  2. Determination of the Light Element Fraction in MSL APXS Spectra

    NASA Astrophysics Data System (ADS)

    Perrett, G. M.; Pradler, I.; Campbell, J. L.; Gellert, R.; Leshin, L. A.; Schmidt, M. E.; Team, M.

    2013-12-01

    Additional light invisible components (ALICs), measured using the alpha particle X-ray spectrometer (APXS), represent all light elements (e.g. CO3, OH, H2O) present in a sample below Na, excluding bound oxygen. The method for quantifying ALICs was originally developed for the Mars Exploration Rover (MER) APXS (Mallet et al, 2006; Campbell et al, 2008). This method has been applied to data collected by the Mars Science Laboratory (MSL) APXS up to sol 269 using a new terrestrial calibration. ALICs are investigated using the intensity ratio of Pu L-alpha Compton and Rayleigh scatter peaks (C/R). Peak areas of the scattered X-rays are determined by the GUAPX fitting program. This experimental C/R is compared to a Monte Carlo simulated C/R. The ratio of simulated and experimental C/R values is called the K-value. ALIC concentrations are calculated by comparing the K-value to the fraction of all invisibles present; the invisible fraction is produced from the spectrum fit by GUAPX. This method is applied to MSL spectra with long integration duration (greater than 3 hours) and with energy resolution less than 180 eV at 5.9 keV. These overnight spectra encompass a variety of geologic materials examined by the Curiosity Rover, including volcanic and sedimentary lithologies. Transfer of the K-value calibration produced in the lab to the flight APXS has been completed and temperature, geometry and spectrum duration effects have been thoroughly examined. A typical limit of detection of ALICs is around 5 wt% with uncertainties of approximately 5 wt%. Accurate elemental concentrations are required as input to the Monte Carlo program (Mallet et al, 2006; Lee, 2010). Elemental concentrations are obtained from the GUAPX code using the same long duration, good resolution spectra used for determining the experimental C/R ratios (Campbell et al. 2012). Special attention was given to the assessment of Rb, Sr, and Y as these element peaks overlap the scatter peaks. Mineral effects

  3. Energy spectra and composition of primary cosmic rays

    NASA Astrophysics Data System (ADS)

    Mueller, Dietrich; Swordy, Simon P.; Meyer, Peter; L'Heureux, Jacques; Grunsfeld, John M.

    1991-06-01

    New results are described on the energy spectra and relative abundances of primary cosmic ray nuclei from carbon to iron. The measurement was performed on the Spacelab-2 mission of the Space Shuttle Challenger in 1985, and extends to energies beyond 1 TeV per amu. The data indicate that the cosmic ray flux arriving near earth becomes enriched with heavier nuclei, most notably iron, as energy increases. Extrapolating to the source, with a simple leaky box model of galactic propagation with rigidity-dependent containment time, relative abundances of the elements are obtained that are quite similar to those reported at lower energy. In particular, the depletion of elements with high first ionization potential relative to the local galactic abundances, seems to persist in the cosmic ray source well up to TeV energies. A single power-law energy spectrum about E exp -2.1 provides a good description of the observed spectra of most elemental species.

  4. Energy spectra and LET spectra of protons behind shielding

    NASA Astrophysics Data System (ADS)

    Katz, Sari; Barak, Joseph

    2014-08-01

    With the advent of devices sensitive to SEU due to direct ionization by protons, it became important to know the flux and energies of protons behind aluminum shielding or within satellites. We present new analytically derived expressions for the energy distribution of incident protons, after passing the shielding, and of secondary protons emitted within the shielding. The results are compared with those of the MULASSIS code. In some cases, like a satellite in a GCR orbit, the contribution of the secondary protons to SEU might be the dominant one. Proton energy-distributions behind shielding are proportional, at low energy values, to inverse proton-LET in aluminum. Their calculated LET-spectra in silicon can be used for evaluating SEU-rate in space. The analytic expressions presented here can be useful in calculating the influence of shielding on other incident ions and secondary ions.

  5. ENERGY SPECTRA OF COSMIC-RAY NUCLEI AT HIGH ENERGIES

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Malinine, A.; Allison, P.; Beatty, J. J.; Brandt, T. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Barbier, L.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Jeon, J. A.; Minnick, S.

    2009-12-10

    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic-Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to approx10{sup 14} eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an E {sup -2.66} {sup +}- {sup 0.04} power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/n energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be 0.080 +- 0.025 (stat.)+-0.025 (sys.) at approx800 GeV/n, in good agreement with a recent result from the first CREAM flight.

  6. Energy spectra in microbubbly turbulence

    NASA Astrophysics Data System (ADS)

    van den Berg, Thomas H.; Luther, Stefan; Lohse, Detlef

    2006-03-01

    Microbubbles (R0=100μm) are injected in fully developed turbulence (Reλ=200) up to a volume concentration of 0.3%. An enhancement of the energy on small scales and a reduction on the large scales is observed, confirming theoretical prediction by I. Mazzitelli, D. Lohse, and F. Toschi [Phys. Fluids 15, L5 (2003)]. The result is a (nonuniversal) less steep slope than -5/3 in the power spectrum.

  7. Diffractive optical elements for the production of synthetic spectra

    SciTech Connect

    Sinclair, M.B.; Butler, M.A.; Ricco, A.J.

    1997-03-01

    We demonstrate that computer-generated diffractive optical elements can be used to synthesize the infrared spectra of real compounds. In particular, we describe a modified phase-retrieval algorithm that we have used to design diffractive elements of this type and we present experimental results for a diffractive optic which is capable of synthesizing the infrared spectrum of HF between 3600 cm{sup -1} and 4300 cm{sup -1}. The reflection-mode diffractive optic consists of 4096 lines, each 4.5 {mu}m wide, at 16 discrete depths relative to the substrate (from 0 to 1.2 {mu}m), and was fabricated on a silicon wafer using anisotropic reactive ion-beam etching in a four-mask-level process. We propose the use of such elements to replace reference cells in a new type of correlation spectroscopy that we call {open_quotes}holographic correlation spectroscopy.{close_quotes} Storage of a large number of diffractive elements, each producing a synthetic spectrum corresponding to a different target compound, in compact disk-like format, will allow a spectrometer of this type to rapidly determine the composition of unknown samples. Further, this approach can be used to perform correlation-based measurements of hazardous or transient species, for which conventional correlation spectroscopy is impractical.

  8. Energy spectra in elasto-inertial turbulence

    NASA Astrophysics Data System (ADS)

    Valente, P. C.; da Silva, C. B.; Pinho, F. T.

    2016-07-01

    Direct numerical simulations of statistically steady homogeneous isotropic turbulence in viscoelastic fluids described by the FENE-P model are presented. Emphasis is given to large polymer relaxation times compared to the eddy turnover time, which is a regime recently termed elasto-inertial turbulence. In this regime the polymers are ineffective in dissipating kinetic energy but they play a lead role in transferring kinetic energy to the small solvent scales which turns out to be concomitant with the depletion of the usual non-linear energy cascade. However, we show that the non-linear interactions are still highly active, but they lead to no net downscale energy transfer because the forward and reversed energy cascades are nearly balanced. Finally, we show that the tendency for a steeper elasto-inertial power-law spectra is reversed for large polymer relaxation times and the spectra tend towards the usual k-5/3 functional form.

  9. Configuration interaction in LTE spectra of heavy elements

    SciTech Connect

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.

    1992-11-01

    We present a method for including the effects of configuration interaction (CI) between relativistic subconfigurations of an electron configuration in the calculation of emission and absorption spectra of plasmas in local thermodynamic equilibrium (LTE). Analytical expressions for the correction to the intensities, owing to Cl, of an unresolved transition array (UTA) and of a supertransition array (STA) are obtained when the correction is small compared to the spin-orbit splitting, bypassing the need to diagonalize energy matrices. These expressions serve as working formulas in the STA model and, in addition, reveal a priori the conditions under which CI effects are significant. Examples of the effect are presented.

  10. The energy spectra of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Mcguire, R. E.; Von Rosenvinge, T. T.

    1984-01-01

    A survey of recent results on the shapes and relative slopes of the spectra of various solar energetic particle populations is presented, with emphasis on the more extensive results currently available for protons, alphas and electrons. From previous work, it is found that proton spectra 0.8 to more than 400 MeV and alpha spectra 1.4 to 80 MeV/nucleon are best characterized, on average, by a functional form involving a Bessel function in momentum/nucleon. However, proton and alpha spectral slopes using this form are not equal, and there is significant variation from event to event. From other studies, electrons 0.02 to 20 MeV are also found to have curved spectra, but seem to be better fit with a double power law in energy. The spectral properties in both cases correlate with other measures of solar particle acceleration; e.g. gamma-ray line production, hard X-ray burst spectra and microwave fluxes.

  11. Energy spectra and composition of primary cosmic rays

    SciTech Connect

    Mueller, D.; Swordy, S.P.; Meyer, P.; L'heureux, J.; Grunsfeld, J.M. )

    1991-06-01

    New results are described on the energy spectra and relative abundances of primary cosmic ray nuclei from carbon to iron. The measurement was performed on the Spacelab-2 mission of the Space Shuttle Challenger in 1985, and extends to energies beyond 1 TeV per amu. The data indicate that the cosmic ray flux arriving near earth becomes enriched with heavier nuclei, most notably iron, as energy increases. Extrapolating to the source, with a simple leaky box model of galactic propagation with rigidity-dependent containment time, relative abundances of the elements are obtained that are quite similar to those reported at lower energy. In particular, the depletion of elements with high first ionization potential relative to the local galactic abundances, seems to persist in the cosmic ray source well up to TeV energies. A single power-law energy spectrum about E exp {minus}2.1 provides a good description of the observed spectra of most elemental species. 33 refs.

  12. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  13. Energy spectra of high energy atmospheric neutrinos

    NASA Technical Reports Server (NTRS)

    Mitsui, K.; Minorikawa, Y.

    1985-01-01

    Focusing on high energy neutrinos ( or = 1 TeV), a new calculation of atmospheric neutrino intensities was carried out taking into account EMC effects observed in P-A collisions by accelerator, recent measurement of primary cosmic ray spectrum and results of cosmic ray muon spectrum and charge ratio. Other features of the present calculation are (1) taking into account kinematics of three body decays of kaons and charm particles in diffusion equations and (2) taking into account energy dependence of kaon production.

  14. The energy spectra of solar flare electrons

    NASA Technical Reports Server (NTRS)

    Evenson, P. A.; Hovestadt, D.; Meyer, P.; Moses, D.

    1985-01-01

    A survey of 50 electron energy spectra from .1 to 100 MeV originating from solar flares was made by the combination of data from two spectrometers onboard the International Sun Earth Explorer-3 spacecraft. The observed spectral shapes of flare events can be divided into two classes through the criteria of fit to an acceleration model. This standard two step acceleration model, which fits the spectral shape of the first class of flares, involves an impulsive step that accelerates particles up to 100 keV and a second step that further accelerates these particles up to 100 MeV by a single shock. This fit fails for the second class of flares that can be characterized as having excessively hard spectra above 1 MeV relative to the predictions of the model. Correlations with soft X-ray and meter radio observations imply that the acceleration of the high energy particles in the second class of flares is dominated by the impulsive phase of the flares.

  15. On Measuring Cosmic Ray Energy Spectra with the Rapidity Distributions

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    An important goal of cosmic ray research is to measure the elemental energy spectra of galactic cosmic rays up to 10(exp 16) eV. This goal cannot be achieved with an ionization calorimeter because the required instrument is too massive for space flight. An alternate method will be presented. This method is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer. The proposed technique can be used over a wide range of energies (10 (exp 11) -10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a conceptual design for a new instrument (KLEM) will be presented. Due to its light weight, this instrument can have a large aperture enabling the direct measurement of cosmic rays to 1016 eV.

  16. Elements of the theory of molecular spectra. [multiatomic molecules

    NASA Technical Reports Server (NTRS)

    Gribov, L. A.

    1979-01-01

    The basic aspects of the theory concerning the spectra of multiatomic molecules are presented. The classification of the forms of motions in a molecule, the methods for determining the corresponding Schroudinger levels, the spectral types and the selection rules are discussed in order to identify their presence and state in outer space.

  17. Surface energies of elemental crystals.

    PubMed

    Tran, Richard; Xu, Zihan; Radhakrishnan, Balachandran; Winston, Donald; Sun, Wenhao; Persson, Kristin A; Ong, Shyue Ping

    2016-01-01

    The surface energy is a fundamental property of the different facets of a crystal that is crucial to the understanding of various phenomena like surface segregation, roughening, catalytic activity, and the crystal's equilibrium shape. Such surface phenomena are especially important at the nanoscale, where the large surface area to volume ratios lead to properties that are significantly different from the bulk. In this work, we present the largest database of calculated surface energies for elemental crystals to date. This database contains the surface energies of more than 100 polymorphs of about 70 elements, up to a maximum Miller index of two and three for non-cubic and cubic crystals, respectively. Well-known reconstruction schemes are also accounted for. The database is systematically improvable and has been rigorously validated against previous experimental and computational data where available. We will describe the methodology used in constructing the database, and how it can be accessed for further studies and design of materials. PMID:27622853

  18. Emission spectra of selected SSME elements and materials

    NASA Astrophysics Data System (ADS)

    Tejwani, Gopal D.; Vandyke, David B.; Bircher, Felix E.; Gardner, Donald G.; Chenevert, Donald J.

    1992-12-01

    Stennis Space Center (SSC) is pursuing the advancement of experimental techniques and theoretical developments in the field of plume spectroscopy for application to rocket development testing programs and engine health monitoring. Exhaust plume spectral data for the Space Shuttle Main Engine (SSME) are routinely acquired. The usefulness of this data depends upon qualitative and quantitative interpretation of spectral features and their correlation with the engine performance. A knowledge of the emission spectral characteristics of effluent materials in the exhaust plume is essential. A study of SSME critical components and their materials identified 30 elements and 53 materials whose engine exhaust plume spectral might be required. The most important were evaluated using SSC's Diagnostic Testbed Facility Thruster (DTFT), a 1200-lbf, liquid oxygen/gaseous hydrogen rocket engine which very nearly replicates the temperature and pressure conditions of the SSME exhaust plume in the first Mach diamond. This report presents the spectral data for the 10 most important elements and 27 most important materials which are strongly to moderately emitting in the DTFT exhaust plume. The covered spectral range is 300 to 426 nm and the spectral resolution is 0.25 nm. Spectral line identification information is provided and line interference effects are considered.

  19. Emission spectra of selected SSME elements and materials

    NASA Technical Reports Server (NTRS)

    Tejwani, Gopal D.; Vandyke, David B.; Bircher, Felix E.; Gardner, Donald G.; Chenevert, Donald J.

    1992-01-01

    Stennis Space Center (SSC) is pursuing the advancement of experimental techniques and theoretical developments in the field of plume spectroscopy for application to rocket development testing programs and engine health monitoring. Exhaust plume spectral data for the Space Shuttle Main Engine (SSME) are routinely acquired. The usefulness of this data depends upon qualitative and quantitative interpretation of spectral features and their correlation with the engine performance. A knowledge of the emission spectral characteristics of effluent materials in the exhaust plume is essential. A study of SSME critical components and their materials identified 30 elements and 53 materials whose engine exhaust plume spectral might be required. The most important were evaluated using SSC's Diagnostic Testbed Facility Thruster (DTFT), a 1200-lbf, liquid oxygen/gaseous hydrogen rocket engine which very nearly replicates the temperature and pressure conditions of the SSME exhaust plume in the first Mach diamond. This report presents the spectral data for the 10 most important elements and 27 most important materials which are strongly to moderately emitting in the DTFT exhaust plume. The covered spectral range is 300 to 426 nm and the spectral resolution is 0.25 nm. Spectral line identification information is provided and line interference effects are considered.

  20. Study on Properties of Energy Spectra of the Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Chen, Xiang-Rong

    The energy-spectra of nonlinear vibration of molecular crystals such as acetanilide have been calculated by using discrete nonlinear Schrödinger equation appropriate to the systems, containing various interactions. The energy levels including higher excited states are basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide. We further give the features of distribution of the energy-spectra for the acetanilide. Using the energy spectra we also explained well experimental results obtained by Careri et al..

  1. Electron energy-loss spectra in molecular fluorine

    NASA Technical Reports Server (NTRS)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  2. Radial Distribution of Electron Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.

    1998-01-01

    The average track model describes the response of physical and biological systems using radial dose distribution as the key physical descriptor. We report on an extension of this model to describe the average distribution of electron spectra as a function of radial distance from an ion. We present calculations of these spectra for ions of identical linear energy transfer (LET), but dissimilar charge and velocity to evaluate the differences in electron spectra from these ions. To illustrate the usefulness of the radial electron spectra for describing effects that are not described by electron dose, we consider the evaluation of the indirect events in microdosimetric distributions for ions. We show that folding our average electron spectra model with experimentally determined frequency distributions for photons or electrons provides a good representation of radial event spectra from high-energy ions in 0.5-2 micrometer sites.

  3. Delayed Neutron Energy Spectra Following Fast Fission of Uranium

    NASA Astrophysics Data System (ADS)

    Villani, Marcel Franklin

    Delayed neutron energy spectra have been measured for six delay-time intervals following the fast fission of ^{238}U nuclei. The delay-time intervals span the range 0.17 to 10.2 seconds following initial fission while the measured spectra span neutron energies from 10 keV to 4 MeV. The experiment was performed utilizing the UMass/Lowell 5.5 MV Van de Graaff accelerator to produce fast neutrons for inducing fission in a ^{238} U lined fission chamber. The fission fragments were flushed via a helium jet stream to a well-shielded counting room where they were deposited onto a moving tape (magnetic audio tape) and transferred to a beta-neutron time-of-flight spectrometer. By adjusting the tape speed, composite delayed neutron time-of-flight spectra were measured for several different delay-time intervals. These measurements involved beta-neutron coincidences with ^6 Li-loaded glass scintillators for neutron energies from 10 keV to 450 keV and Bicron BC 501 liquid scintillators for the neutron energy range 200 keV-4 MeV. The measured composite delayed neutron energy spectra for ^{238}U are compared to the composite spectra for ^ {235}U and ^{239} Pu, and also to composite spectra derived for ^{238}U from the ENDF/B-VI database, which is based on summation calculations of individual precursor data supplemented by theoretical estimates. The composite spectra of ^{235}U and ^{239}Pu were obtained from previous measurements of delayed neutron spectra at this laboratory. The composite spectra are also decomposed into Keepin six-group spectra and compared with those for ^{239}Pu and ^{235}U. In addition, an equilibrium spectrum has been calculated from the measured composite spectra using several different analytical techniques and is also compared with the equilibrium spectrum of ^{238}U measured in an earlier study at this laboratory.

  4. Energy spectra of cosmic-ray nuclei from 50 to 2000 GeV per amu

    NASA Technical Reports Server (NTRS)

    Grunsfeld, John M.; L'Heureux, Jacques; Meyer, Peter; Muller, Dietrich; Swordy, Simon P.

    1988-01-01

    A direct measurement of the elemental composition of cosmic rays up to energies of several TeV/amu was performed during the Spacelab 2 flight of the Space Shuttle. Results on the spectral shape for the elements C, O, Ne, Mg, Si, and Fe, obtained from this experiment, are presented. It was found that the C and O energy spectra retain a power-law spectrum in energy with an exponent Gamma of about 2.65. The Fe spectrum is flatter (Gamma of about 2.55) up to a particle energy of about 10 to the 14th eV, indicating a steady increase in the relative abundance of iron in cosmic rays up to this energy. The energy spectra of Ne, Mg, and Si are steeper than anticipated. This behavior is unexpected within current models of cosmic-ray acceleration.

  5. Definition of energy-calibrated spectra for national reachback

    SciTech Connect

    Kunz, Christopher L.; Hertz, Kristin L.

    2014-01-01

    Accurate energy calibration is critical for the timeliness and accuracy of analysis results of spectra submitted to National Reachback, particularly for the detection of threat items. Many spectra submitted for analysis include either a calibration spectrum using 137Cs or no calibration spectrum at all. The single line provided by 137Cs is insufficient to adequately calibrate nonlinear spectra. A calibration source that provides several lines that are well-spaced, from the low energy cutoff to the full energy range of the detector, is needed for a satisfactory energy calibration. This paper defines the requirements of an energy calibration for the purposes of National Reachback, outlines a method to validate whether a given spectrum meets that definition, discusses general source considerations, and provides a specific operating procedure for calibrating the GR-135.

  6. A BAYESIAN APPROACH TO COMPARING COSMIC RAY ENERGY SPECTRA

    SciTech Connect

    BenZvi, S. Y.; Pfendner, C. G.; Westerhoff, S.; Connolly, B. M.

    2011-09-01

    A common problem in ultra-high energy cosmic ray physics is the comparison of energy spectra. The question is whether the spectra from two experiments or two regions of the sky agree within their statistical and systematic uncertainties. We develop a method to directly compare energy spectra for ultra-high energy cosmic rays from two different regions of the sky in the same experiment without reliance on agreement with a theoretical model of the energy spectra. The consistency between the two spectra is expressed in terms of a Bayes factor, defined here as the ratio of the likelihood of the two-parent source hypothesis to the likelihood of the one-parent source hypothesis. Unlike other methods, for example {chi}{sup 2} tests, the Bayes factor allows for the calculation of the posterior odds ratio and correctly accounts for non-Gaussian uncertainties. The latter is particularly important at the highest energies, where the number of events is very small.

  7. Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances.

    PubMed

    Bishop, Janice L; Englert, Peter A J; Patel, Shital; Tirsch, Daniela; Roy, Alex J; Koeberl, Christian; Böttger, Ute; Hanke, Franziska; Jaumann, Ralf

    2014-12-13

    Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars. PMID:25368345

  8. Energy Spectra in Weakly Compressible and Isothermal Turbulence

    NASA Astrophysics Data System (ADS)

    He, Guowei; Dong, Yufeng

    2014-11-01

    The universal scaling of energy spectra of velocity fluctuations is fundamentally important to understand turbulent flows. For incompressible turbulence, the universal scaling -5/3 of energy spectra is originally proposed by Kolmogorov, based on dimensional analysis. This empirical result is further derived from the Navier-Stokes equations, using the two-point closure approaches. However, for compressible turbulence, the dimensional analysis is difficult to be conducted due to nonlinear coupling of velocity, density and pressure. In this paper, we will use a two-point closure approach, EDQNM, to derive the universal scaling of energy spectra for compressible and isothermal turbulence. In the EDQNM equations, the eddy-damping rates are determined by the recently developed swept-wave model for space-time correlations (Phys. Rev. E 88, 021001(R) (2013)). The leading term in the eddy-damping rates leads to the -7/3 scaling for dilatational energy spectra, while the sub-leading one leads to the -3 scaling. The former implies that dilatational components are dominated by acoustic-wave time scales; the latter implies that dilatational components dominated by local straining time scales. Our DNS result appears to favor the -7/3 scaling. This study clarifies the possible scaling of compressible energy spectra in terms of space-time correlations.

  9. Model for Cumulative Solar Heavy Ion Energy and LET Spectra

    NASA Technical Reports Server (NTRS)

    Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard

    2007-01-01

    A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.

  10. Prompt Fission Neutron Energy Spectra Induced by Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Staples, Parrish Alan

    Prompt fission neutron energy spectra for ^{235}U and ^{239 }Pu have been measured for fission neutron energies greater than the energy of the incident neutrons inducing fission. The measurements were undertaken to investigate the shape dependence of the fission neutron spectra upon both the incident neutron energy and the mass of the nucleus undergoing fission. Measurements were made for both nuclides at the following incident neutron energies; 0.50 MeV, 1.50 MeV, 2.50 MeV and 3.50 MeV. The data are presented either as relative yields or as ratios of a measured spectrum to the ^{235}U spectrum at 0.50 MeV. Incident neutrons were produced by the ^7Li(p,n)^7Be reaction using a pulsed, bunched proton beam from the 5.5 MV Van de Graaff accelerator at the University of Massachusetts Lowell Pinanski Energy Center. The neutrons were detected by a thin liquid scintillator with good time resolution capabilities; time-of-flight techniques were used for neutron energy determination; in addition pulse-shape-discrimination was used to reduce gamma-ray background levels. The measurements are compared to calculations based on the Los Alamos Model of Madland and Nix to test its predictive capabilities. The data are fit by the Watt equation to determine the mean energy of the spectra, and to facilitate comparison of the results to previous measurements. The data are also compared directly to previous measurements.

  11. Calculating fusion neutron energy spectra from arbitrary reactant distributions

    NASA Astrophysics Data System (ADS)

    Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.

    2016-02-01

    The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.

  12. Modeling energy-loss spectra due to phonon excitation

    NASA Astrophysics Data System (ADS)

    Forbes, B. D.; Allen, L. J.

    2016-07-01

    We discuss a fundamental theory of how to calculate the phonon-loss sector of the energy-loss spectrum for electrons scattering from crystalline solids. A correlated model for the atomic motion is used for calculating the vibrational modes. Spectra are calculated for crystalline silicon illuminated by a plane wave and by an atomic-scale focused coherent probe, in which case the spectra depend on probe position. These spectra are also affected by the size of the spectrometer aperture. The correlated model is contrasted with the Einstein model in which atoms in the specimen are assumed to vibrate independently. We also discuss how both the correlated and Einstein models relate to a classical view of the energy-loss process.

  13. Neutron-Capture Gamma-Ray Data for Obtaining Elemental Abundances from Planetary Spectra

    NASA Technical Reports Server (NTRS)

    Frankle, S. C.; Reedy, R. C.

    2001-01-01

    Newly compiled and evaluated energies and intensities of gamma rays made by the capture of thermal neutrons by elements from H to Zn plus Ge, Sm, and Gd are reported for use in determining elemental composition by planetary gamma-ray spectroscopy. Additional information is contained in the original extended abstract.

  14. Simulation of coastal wave spectra energy from ENVISAT satellite data

    NASA Astrophysics Data System (ADS)

    Marghany, Maged

    2014-06-01

    In the last two decades, scientists have developed several powerful techniques to retrieve energy from natural sources such as a sun radiations, oceans and winds. This study is aimed at stimulating wave energy from large scale synthetic aperture radar (SAR) during different monsoon periods. In doing so, the nonlinear velocity bunching algorithm is used to retrieve the information of ocean wave spectra parameters such as significant wave height, directions, and energy on offshore, midshore, and onshore. Therefore, the maximum peak of the wave energy spectra density of 1.4 m2 s has occurred during northeast monsoon period. It is clear that the mid-shore and onshore has the highest peak of 0.8 and 1.37 m2 s, respectively as compared to offshore. In conclusions, a nonlinear algorithm of velocity bunching can be used to retrieve the significant wave height from synthetic aperture radar (SAR). In addition, SAR can be used to map the distribution of ocean wave spectra energy and determined the potential energy zone in Malaysia coastal waters.

  15. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072

  16. Cosmic-ray energy spectra between 10 and several hundred GeV per atomic mass unit for elements from Ar-18 to Ni-28 - Results from HEAO 3

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Jones, Michael D.; Kamionkowski, M. P.; Garrard, T. L.

    1988-01-01

    Results from the Heavy Nuclei experiment on HEAO 3 are used to determine the primary abundances of Ni and Fe. Ni and Fe are found to have nearly constant relative abundances over the interval of 10 to about 500 GeV per amu. Individual secondary elements derived principally from interactions of primary Fe nuclei are shown to display a power-law decrease in relative abundance up to about 150 GeV per amu. Ar/Fe and Ca/Fe ratios of 2.6 + or - 0.7 percent and 8.8 + or - 0.7 percent, respectively, are found, confirming a fractionation of source abundances in which elements with high values of the first ionization potential are depleted relative to those with low first ionization potential.

  17. Energy spectra and optical transitions in germanene quantum dots.

    PubMed

    Herath, Thakshila M; Apalkov, Vadym

    2016-04-27

    The band gap of buckled graphene-like materials, such as silicene and germanene, depends on external perpendicular electric field. Then a specially design profile of electric field can produce trapping potential for electrons. We study theoretically the energy spectrum and optical transitions for such designed quantum dots (QDs) in graphene-like materials. The energy spectra depend on the size of the QD and applied electric field in the region of the QD. The number of the states in the QD increases with increasing the size of the dot and the energies of the states have almost linear dependence on the applied electric field with the slope which increases with increasing the dot size. The optical properties of the QDs are characterized by two types of absorption spectra: interband (optical transitions between the states of the valence and conduction bands) and intraband (transitions between the states of conduction/valence band). The interband absorption spectra have triple-peak structure with peak separation around 10 meV, while intraband absorption spectra, which depend on the number of electrons in the dot, have double-peak structure. PMID:27008912

  18. Energy Spectra of H and He from the ATIC-2 Experiment

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) experiment measures the energy spectra of individual elements, from H to Fe, in the energy region from about 100 GeV to tens of TeV. The ATIC instrument was flown twice in long-duration balloon flights around the South Pole in 2000-2001 (ATIC-1) and 2002-2003 (ATIC-2). ATIC-2 gathered about 18 days of data at an altitude of 36 km. In this paper we discuss the separation of protons from helium and present preliminary energy spectrum of each component, including deconvolution of the measured energy deposit spectra. The results are compared to previous data and to different cosmic ray propagation models, including a diffusion model with weak re-acceleration.

  19. Investigating the atmospheric energy spectra using ECMWF analysis: Regional dependence

    NASA Astrophysics Data System (ADS)

    Mukherjee, P.; Zhang, M.

    2010-12-01

    The atmospheric turbulence energy spectrum has been a subject of active research for a long time. Beginning with Kolmogorov’s theory of three-dimensional turbulence, to Kraichnan’s two-dimensional turbulence and its extension to the quasi-geostrophic case by Charney, various theoretical models and hypothesis have tried to explain the energy spectrum slope. However, the success or failure of a theory can only be gauged by comparing its output with actual observational data. Nastrom and Gage were able to do just that by analyzing thousands of flight observation data and plotting the wave number spectra of wind and temperature in 1980’s. But, the flight data was confined only to the upper atmosphere and mostly mid-latitudes of northern hemisphere. We use the high-resolution ECMWF analysis data, as a part of Year of Tropical Convection (YOTC) to study the atmospheric energy spectra over a wide range of conditions. We compared and interpreted the differences of the atmospheric energy spectra in the tropics and mid-latitudes, in the winter (DJF) and summer (JJA), at the surface and in the upper troposphere. Our results conform to the previously observed -3 power law for mid-latitude data in the upper troposphere, but the slope of the energy spectrum from the surface wind data and for the tropics exhibited quite different shapes. The causes of these differences are discussed.

  20. 78 FR 35658 - Spectra Energy Corp., Application for a New or Amended Presidential Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Spectra... State. ACTION: Notice of Receipt of Spectra Energy Corp., Application for a New or Amended Presidential... Spectra Energy Corp (``Spectra Energy'') notice that it has acquired the entities that own...

  1. Size-spectra of trace elements in urban aerosol particles by instrumental neutron activation analysis

    SciTech Connect

    Ondov, J.M.; Divita, F. Jr.; Suarez, A.

    1994-12-31

    Knowledge of composition and size of atmospheric aerosol particles is needed to elucidate their sources, atmospheric transformation processes, contributions to visibility reduction, and respiratory and environmental deposition. In a previous communication, we described size spectra and hygroscopic growth of arsenic, selenium, antimony, and zinc in College Park, Maryland, an urban, nonindustrial area located near Washington, D.C., wherein, concentrations of these elements are influenced largely by sulfate-containing aerosol transported from the Ohio River valley region, more than 200 km west of the area, and local coal utility plants and incinerators located 20 to 50 km from the sampling site. At College Park, mass median aerodynamic diameters (mmad) versus relative humidity (RH) data for these elements fell along different curves for samples influenced by local and distant aerosols; i.e., the curve for distant sources lay below the curve for local sources, at larger mmads for the same RH. In this paper we discuss size spectra, distribution parameters, and hygroscopic growth of aerosol particles bearing trace elements in aerosol collected in Camden, New Jersey, a heavily industrial area in which major sources, including an antimony roaster and municipal incinerator, lie in close proximity (i.e., 5 to 15 km) to the site.

  2. New Measurements of Fission Neutron Spectra at Intermediate Energies

    NASA Astrophysics Data System (ADS)

    Ethvignot, Thierry; Granier, Thierry; Haight, Robert C.; O'Donnell, John M.; Devlin, Matthew; Nelson, Ronald O.; Drosg, Roswitha

    2002-04-01

    Interest in obtaining a more detailed understanding of prompt neutron emission in fission is now high. Information on neutron-induced fission of actinides for incident-neutron energies from a few MeV to higher energies, except for data at 14 MeV is sparse. Such measurements are now possible, and the data are needed for design studies of accelerator-driven systems. Moreover, these data provide valuable information to improve our understanding of fission at high excitation energy. As a matter of fact, a theoretical effort has been pursued recently to predict the properties of prompt neutron emission in fission. They are characterized by two basic quantities, the average number of prompt neutrons emitted per fission, which is well known up to 20 MeV, and the neutron energy spectrum, which is not nearly so well known. However, it was shown for a few cases that not only the average energy but also the shape of the Fission Neutron Spectra (FNS) depend on the incident neutron energy. It is particularly interesting to investigate the change in shape of the FNS around the first, second and third chance fission where the properties of the fissioning nucleus drastically change. At the WNR white source, the FNS were measured with the FIGARO set-up, with a ^238U fission chamber as the target. Both incoming and emitted neutron energies were determined with their time of flight. Preliminary results of recorded spectra will be presented at the meeting.

  3. Shape evolution and energy spectra of Pt isotopes

    NASA Astrophysics Data System (ADS)

    Kun, Yu; Zhou, Xianrong; Cui, Jiwei

    2016-02-01

    The shapes and low-energy spectra of 176-194Pt isotopes are discussed by a nonrelativistic Skyrme-Hartree-Fock (SHF) approach plus a density-dependent pairing in the BCS approximation. Two different Skyrme parameters SLy5 and SGII are used to perform constrained triaxial mean-field calculations of energy surface. The calculations beyond mean field are introduced by a projection of mean-field intrinsic wave functions onto good angular momentum. Theoretical calculations exhibit the evolution of shapes from triaxial in light Pt isotopes to γ soft for medium Pt isotopes, and finally oblate shapes in heavy isotopes. In particular, the calculated excitation spectra are in good agreement with available data and the trend of experimental B(E2) is reproduced. The mean-field calculations indicate a stable shape evolution with SLy5 and SGII interactions, respectively. In the present SHF approach, the lighter nuclei Pt isotopes present a slightly triaxial shapes.

  4. IR Spectra and Bond Energies Computed Using DFT

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles; Andrews, Lester; Arnold, James (Technical Monitor)

    2000-01-01

    The combination of density functional theory (DFT) frequencies and infrared (IR) intensities and experimental spectra is a very powerful tool in the identification of molecules and ions. The computed and measured isotopic ratios make the identification much more secure than frequencies and intensities alone. This will be illustrated using several examples, such as Mn(CO)n and Mn(CO)n-. The accuracy of DFT metal-ligand bond energies will also be discussed.

  5. Background fitting for electron energy-loss spectra

    SciTech Connect

    Bentley, J.; Lehman, G.L.; Sklad, P.S.

    1981-01-01

    Microanalysis using electron energy loss spectroscopy is now well established. In order to assess true edge profiles and obtain integrated intensities of the inner shell ionization edges of interest, it is first necessary to subtract the background. Usually a simple inverse power law is used, but for some spectra this form does not fit well. An alternative form which results in superior fits is described.

  6. Detection Improvement for Electron Energy Spectra for Surface Analysis Using a Field Emission Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Hirade, Masato; Arai, Toyoko; Tomitori, Masahiko

    2003-07-01

    For identification of the atomic species on a sample surface with high spatial resolution, we developed a field emission scanning tunneling microscopy (FE-STM) combined with an energy analyzer to perform surface electron spectroscopy: the primary electrons are field-emitted from the STM tip to excite sample surfaces. The energy spectra of backscattered electrons obtained using this combined instrument exhibited the elemental features, though the energy peaks and their signal height in the spectra were affected by the electric field between the tip and the sample. In the present study, we have examined and improved the electric shield of an STM tip holder. The metal parts of the holder at a high voltage, which face the gap left for electrons to pass through, were shielded to reduce the electric field. We have successfully demonstrated the effect of the field reduction for surface electron spectroscopy with the FE-STM.

  7. Fragmentation of water by ion impact: Kinetic energy release spectra

    SciTech Connect

    Rajput, Jyoti; Safvan, C. P.

    2011-11-15

    The fragmentation of isolated water molecules on collision with 450-keV Ar{sup 9+} has been studied using time-of-flight mass spectrometry employing multihit detection. The kinetic energy release spectrum for the dissociation of [H{sub 2}O]{sup 2+ White-Star} into (H{sup White-Star },H{sup +},O{sup +}) fragments has been measured where H{sup White-Star} is a neutral Rydberg hydrogen atom. Ab initio calculations are carried out for the lowest states of [H{sub 2}O]{sup q+} with q=2 and 3 to help interpret the kinetic energy release spectra.

  8. The Energy Spectra of Suprathermal Tails in Solar Wind Iron

    NASA Astrophysics Data System (ADS)

    Popecki, M. A.; Galvin, A.; Bochsler, P.; Klecker, B.; Kucharek, H.; Kistler, L.; Blush, L.; Moebius, E.

    2009-05-01

    High speed suprathermal tails with a fixed energy spectrum have been observed in solar wind H+ and He2+, as well as in He+ pickup ions (e.g. Gloeckler et al., 2007). The presence of the tails have implications for particle injection into the interplanetary shock acceleration process. The suprathermal tails of solar wind Fe have been investigated with the STEREO/PLASTIC mass spectrometer. The energy spectra will be presented for periods of slow and fast solar wind, and for the entire STEREO mission.

  9. K-Shell Diagram and Hypersatellite Spectra of 4D Transition Elements

    SciTech Connect

    Diamant, R.; Kao, C.; Huotari, S.; Hamalainen, K.; Sharon, R.; Honkimaki, V.; Buslaps, T.; Deutsch, M.

    2009-07-25

    The K-shell diagram (K{alpha}{sub 1,2} and K{beta}{sub 1,3}) and hypersatellite (HS) (K{sup h}{alpha}{sub 1,2}) spectra of Y, Zr, Mo, and Pd have been measured with high energy-resolution using photoexcitation by 90 keV synchrotron radiation. Comparison of the measured and ab initio calculated HS spectra demonstrates the importance of quantum electrodynamical (QED) effects for the HS spectra. Phenomenological fits of the measured spectra by Voigt functions yield accurate values for the shift of the HS from the diagram lines, the splitting of the HS lines, and their intensity ratio. Good agreement with theory was found for all quantities except for the intensity ratio, which is dominated by the intermediacy of the coupling of the angular momenta. The observed deviations imply that our current understanding of the variation of the coupling scheme from LS to jj across the periodic table may require some revision.

  10. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1992-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1-100 MeV region is reported. Most of the events studied are dominated by He and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. Spectra of H, He-3, O, and Fe have spectral indices that are consistent with a value of about 3.5 above about 2 MeV/amu. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. Alternative interpretations are that trapping in the acceleration region directly causes a peak in the resulting ion spectrum or that low-energy particles encounter significant additional scattering during transport from the flare.

  11. Energy spectra of ions from impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Richardson, I. G.; Wenzel, K.-P.

    1991-01-01

    A study of the energy spectra of ions from impulsive solar flares in the 0.1 to 100 MeV region is reported with data from the combined observations of experiments on the ISEE 3 and IMP 8 spacecraft. Most of the events studied are dominated by He, and these He spectra show a persistent steepening or break above about 10 MeV resulting in an increase in the power-law spectral indices from about 2 to about 3.5 or more. One event, dominated by protons, shows a clear maximum in the spectrum near 1 MeV. If the rollover in the spectrum below 1 MeV is interpreted as a consequence of matter traversal in the solar atmosphere, then the source of the acceleration would lie only about 800 km above the photosphere, well below the corona. An alternative interpretation is that trapping in the acceleration region directly causes a peak in the spectrum.

  12. On the use of Lineal Energy Measurements to Estimate Linear Energy Transfer Spectra

    NASA Technical Reports Server (NTRS)

    Adams, David A.; Howell, Leonard W., Jr.; Adam, James H., Jr.

    2007-01-01

    This paper examines the error resulting from using a lineal energy spectrum to represent a linear energy transfer spectrum for applications in the space radiation environment. Lineal energy and linear energy transfer spectra are compared in three diverse but typical space radiation environments. Different detector geometries are also studied to determine how they affect the error. LET spectra are typically used to compute dose equivalent for radiation hazard estimation and single event effect rates to estimate radiation effects on electronics. The errors in the estimations of dose equivalent and single event rates that result from substituting lineal energy spectra for linear energy spectra are examined. It is found that this substitution has little effect on dose equivalent estimates in interplanetary quiet-time environment regardless of detector shape. The substitution has more of an effect when the environment is dominated by solar energetic particles or trapped radiation, but even then the errors are minor especially if a spherical detector is used. For single event estimation, the effect of the substitution can be large if the threshold for the single event effect is near where the linear energy spectrum drops suddenly. It is judged that single event rate estimates made from lineal energy spectra are unreliable and the use of lineal energy spectra for single event rate estimation should be avoided.

  13. High-energy spectra of active nuclei. 1: The catalog

    NASA Technical Reports Server (NTRS)

    Malaguti, G.; Bassani, L.; Caroli, E.

    1994-01-01

    This paper presents a catalog of high-energy spectra (E is greater than or equal to 0.01 keV) of active galactic nuclei (AGNs). The catalog contains 209 objects (140 Seyfert galaxies, 65 quasars, and 4 objects otherwise classified), for a total of 1030 spectra. Most of the data have been collected from the literature over a period spanning more than 20 yr starting from the early 1970s up to the end of 1992. For a numbner of objects (17), EXOSAT/ME data have been extracted and analyzed, and the 27 spectra obtained have been added to the database. For each object we report individual observation spectral fit parameters using a power-law model corrected for cold gas absorption along the line of sight (photon index, 1 keV intensity and hydrogen column density), plus other relevant data. It is hoped that this database can become a useful tool for the study of the AGN phenomenon in its various aspects.

  14. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    SciTech Connect

    Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A.; Antonsson, E.; Neville, J. J.; Miron, C.

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  15. Experimental Studies of Prompt Fission Neutron Energy Spectra

    NASA Astrophysics Data System (ADS)

    Sardet, A.; Granier, T.; Laurent, B.; Oberstedt, A.

    Prompt fission neutron spectra were measured in the reactions 238U(n,f), 235U(n,f) and 237Np(n,f) at different incident neutron energies. The neutrons were detected using a coaxial doped p-terphenyl scintillation detector in coincidence with fission fragments and their time-of-flight was recorded. The properties of the neutron detector were determined and the results are presented in this work. A preliminary neutron detection efficiency was applied to data from the neutron-induced fission of 238U at En = 5.2 MeV, leading to encouraging results.

  16. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    NASA Astrophysics Data System (ADS)

    Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A.; Antonsson, E.; Neville, J. J.; Miron, C.

    2015-09-01

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters' surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  17. Multiple scattering calculations of relativistic electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Rehr, J. J.; Verbeeck, J.

    2010-04-01

    A generalization of the real-space Green’s-function approach is presented for ab initio calculations of relativistic electron energy loss spectra (EELS) which are particularly important in anisotropic materials. The approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS experiments. The approach is validated by a study of the graphite CK edge, for which we present an accurate magic angle measurement consistent with the predicted value.

  18. Determination of Endpoint Energy and Bremsstrahlung Spectra for High-Energy Radiation-Therapy Beams

    NASA Astrophysics Data System (ADS)

    Landry, Danny Joe

    Few attempts have been made to experimentally determine thick-target bremsstrahlung spectra of megavoltage therapy beams. For spectral studies using the Compton scattering technique, sodium iodine (NaI) detectors with relatively poor energy resolution have been used. Other experimental techniques for determining spectra are generally not suited for a clinical environment with the inherent time and space constraints. To gather more spectral information than previously obtained in the region near the endpoint energy, the use of a high-resolution intrinsic-germanium (Ge) detector was proposed. A response function matrix was determined from experimentally obtained pulse height distributions on the multichannel analyzer. The distributions were for nine various monoenergetic sources between 280 adn 1525 keV. The response function was used to convert the measured pulse height distributions to photon flux spectra using an iterative approximation technique with a computer. Photon flux spectra from the Sagittaire Linear Accelerator were obtained at average-electron endpoint energies of 15, 20, and 25 MeV. Two spectra were measured at the 25 MeV setting; one spectrum was measured along the central axis and one spectrum at 4(DEGREES) off axis. Photon spectra were also obtained for a Van de Graaff generator at the nominal endpoint energies of 2.2, 2.35, and 2.5 MeV. The results for both the linac and the Van de Graaff generator were compared with theoretical spectra and previously measured spectra where available. Also, photon spectra from a Theratron-80 (('60)Co) unit were determined for three field sizes and for a 10 x 10 cm. field with a lucite tray or a 45(DEGREES) wedge in the beam. The resulting spectra were compared to previously measured ('60)Co spectra.

  19. Use of thin ionization calorimeters for measurements of cosmic ray energy spectra

    NASA Technical Reports Server (NTRS)

    Jones, W. V.; Ormes, J. S.; Schmidt, W. K. H.

    1976-01-01

    The reliability of performing measurements of cosmic ray energy spectra with a thin ionization calorimeter was investigated. Monte Carlo simulations were used to determine whether energy response fluctuations would cause measured spectra to be different from the primary spectra. First, Gaussian distributions were assumed for the calorimeter energy resolutions. The second method employed a detailed Monte Carlo simulation of cascades from an isotropic flux of protons. The results show that as long as the energy resolution does not change significantly with energy, the spectral indices can be reliably determined even for sigma sub e/e = 50%. However, if the energy resolution is strongly energy dependent, the measured spectra do not reproduce the true spectra. Energy resolutions greatly improving with energy result in measured spectra that are too steep, while resolutions getting much worse with energy cause the measured spectra to be too flat.

  20. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a

  1. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no

  2. An inhomogeneous reference catalogue of identified intervening heavy element systems in spectra of QSOs

    NASA Technical Reports Server (NTRS)

    York, Donald G.; Yanny, Brian; Crotts, Arlin; Carilli, Chris; Garrison, Etoi

    1991-01-01

    Identifications of heavy element line systems, observed in spectra of quasi-stellar objects between 1965 and 1989 inclusive, are collected and tabulated with references. Each system is assigned a quality grade based on the apparent reliability of the data. The highest quality systems are used to characterize the absorbers as a sample. A decrease in C IV line strength with redshift (z), and the corresponding decrease in line density per unit z with z are confirmed. The weakest C IV systems, at high z, are accompanied by relatively stronger Si IV lines, compared to the relative line strengths at low z. The space density of systems with strong lines of first ions is nearly independent of z below z = 3, though it drops at z greater than 3. Preliminary tests for quasar lensing by intervening systems and for clustering of absorbers on large scales are presented.

  3. Neutron dose and energy spectra measurements at Savannah River Plant

    SciTech Connect

    Brackenbush, L.W.; Soldat, K.L.; Haggard, D.L.; Faust, L.G.; Tomeraasen, P.L.

    1987-08-01

    Because some workers have a high potential for significant neutron exposure, the Savannah River Plant (SRP) contracted with Pacific Northwest Laboratory (PNL) to verify the accuracy of neutron dosimetry at the plant. Energy spectrum and neutron dose measurements were made at the SRP calibrations laboratory and at several other locations. The energy spectra measurements were made using multisphere or Bonner sphere spectrometers,/sup 3/He spectrometers, and NE-213 liquid scintillator spectrometers. Neutron dose equivalent determinations were made using these instruments and others specifically designed to determine dose equivalent, such as the tissue equivalent proportional counter (TEPC). Survey instruments, such as the Eberline PNR-4, and the thermoluminescent dosimeter (TLD)-albedo and track etch dosimeters (TEDs) were also used. The TEPC, subjectively judged to provide the most accurate estimation of true dose equivalent, was used as the reference for comparison with other devices. 29 refs., 43 figs., 13 tabs.

  4. Supernova neutrino energy spectra and the MSW effect.

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Esposito, S.; Gualdi, C.; Miele, G.

    1997-03-01

    The distortions in the thermal energy spectra for neutrinos produced in a supernova when a resonant oscillation, MSW effect, occurs are determined. In order to show this effect for some relevant and representative examples of unified gauge models, the authors have chosen SO(10), and SU(5)SUSY, SO(10)SUSY with a particular scheme for fermion masses (DHR model). The analysis has been performed for two choices of neutrinos parameters, predicted by the above models, and capable to explain the solar neutrino problem. In both cases one observes a strong distortion in the electron neutrino energy spectrum. This effect, computed for a wide range of SO(10)SUSY models has produced the same results of the previous supersymmetric ones.

  5. Synthesis of Electron Energy Loss Spectra for the Quantification of Detection Limits

    NASA Astrophysics Data System (ADS)

    Menon, Nanda K.; Krivanek, Ondrej L.

    2002-06-01

    We describe a method for predicting detection limits of minority elements in electron energy loss spectroscopy (EELS), and its implementation as a software package that gives quantitative predictions for user-specified materials and experimental conditions. The method is based on modeling entire energy loss spectra, including shot noise as well as instrumental noise, and taking into account all the relevant experimental parameters. We describe the steps involved in modeling the entire spectrum, from the zero loss up to inner shell edges, and pay particular attention to the contributions to the pre-edge background. The predicted spectra are used to evaluate the signal-to-noise ratios (SNRs) for inner shell edges from user-specified minority elements. The software also predicts the minimum detectable mass (MDM) and minimum mass fraction (MMF). It can be used to ascertain whether an element present at a particular concentration should be detectable for given experimental conditions, and also to quickly and quantitatively explore ways of optimizing the experimental conditions for a particular EELS analytical task. We demonstrate the usefulness of the software by confirming the recent empirical observation of single atom detection using EELS of phosphorus in thin carbon films, and show the effect on the SNR of varying the acquisition parameters. The case of delta-doped semiconductors is also considered as an important example from materials science where low detection limits and high spatial resolution are essential, and the feasibility of such characterization using EELS is assessed.

  6. Analysis of X-ray Spectra of High-Z Elements obtained on Nike with high spectral and spatial resolution

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Yefim; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.

    2014-10-01

    The spectra of multi-charged ions of Hf, Ta, W, Pt, Au and Bi have been studied on Nike krypton-fluoride laser facility with the help of two kinds of X-ray spectrometers. First, survey instrument covering a spectral range from 0.5 to 19.5 angstroms which allows simultaneous observation of both M- and N- spectra of above mentioned elements with high spectral resolution. Second, an imaging spectrometer with interchangeable spherically bent Quartz crystals that added higher efficiency, higher spectral resolution and high spatial resolution to the qualities of the former one. Multiple spectral lines with X-ray energies as high as 4 keV that belong to the isoelectronic sequences of Fe, Co, Ni, Cu and Zn were identified with the help of NOMAD package developed by Dr. Yu. Ralchenko and colleagues. In our continuous effort to support DOE-NNSA's inertial fusion program, this campaign covered a wide range of plasma conditions that result in production of relatively energetic X-rays. Work supported by the US DOE/NNSA.

  7. High-Energy Neutron Spectra and Flux Measurements Below Ground

    NASA Astrophysics Data System (ADS)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-03-01

    High-energy neutrons are a ubiquitous and often poorly measured background. Below ground, these neutrons could potentially interfere with antineutrino based reactor monitoring experiments as well as other rare-event neutral particle detectors. We have designed and constructed a transportable fast neutron detection system for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The spectrometer uses a multiplicity technique in order to have a higher effective area than traditional transportable high-energy neutron spectrometers. Transportability ensures a common detector-related systematic bias for future measurements. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. A high-energy neutron may interact in the lead producing many secondary neutrons. The detector records the correlated secondary neutron multiplicity. Over many events, the response can be used to infer the incident neutron energy spectrum and flux. As a validation of the detector response, surface measurements have been performed; results confirm agreement with previous experiments. Below ground measurements have been performed at 3 depths (380, 600, and 1450 m.w.e.); results from these measurements will be presented.

  8. New capture Gamma-Ray library and Atlas of spectra for all elements

    SciTech Connect

    Firestone, R.B.; Revay, Zs.; Molnar, G.L.

    2003-01-01

    A new library comprising 30 thousand neutron capture gamma rays has been created by combining new measurements on natural elements from Budapest and literature data for all stable isotope targets. All energies and intensities are consistent in that they are based on the chlorine and nitrogen standards, respectively. Accurate neutron binding energies and thermal capture cross-sections could also be inferred for all cases where the level scheme is sufficiently complete. The new data can be used for nuclear structure investigations, reaction model calculations, and a number of applications, such as Prompt Gamma-ray Activation Analysis (PGAA).

  9. MAGNETIC HELICITY AND ENERGY SPECTRA OF A SOLAR ACTIVE REGION

    SciTech Connect

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2014-04-01

    We compute for the first time the magnetic helicity and energy spectra of the solar active region NOAA 11158 during 2011 February 11-15 at 20° southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of the magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ≈ 0.4 Mm{sup –1}, corresponding to a scale of 2π/k ≈ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k {sup –11/3} power law at large wavenumbers, which implies a k {sup –5/3} spectrum for the modulus of the current helicity. A k {sup –5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm{sup –1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artifacts at small scales.

  10. Progress towards an unassisted element identification from Laser Induced Breakdown Spectra with automatic ranking techniques inspired by text retrieval

    NASA Astrophysics Data System (ADS)

    Amato, G.; Cristoforetti, G.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.; Sorrentino, F.; Tognoni, E.

    2010-08-01

    In this communication, we will illustrate an algorithm for automatic element identification in LIBS spectra which takes inspiration from the vector space model applied to text retrieval techniques. The vector space model prescribes that text documents and text queries are represented as vectors of weighted terms (words). Document ranking, with respect to relevance to a query, is obtained by comparing the vectors representing the documents with the vector representing the query. In our case, we represent elements and samples as vectors of weighted peaks, obtained from their spectra. The likelihood of the presence of an element in a sample is computed by comparing the corresponding vectors of weighted peaks. The weight of a peak is proportional to its intensity and to the inverse of the number of peaks, in the database, in its wavelength neighboring. We suppose to have a database containing the peaks of all elements we want to recognize, where each peak is represented by a wavelength and it is associated with its expected relative intensity and the corresponding element. Detection of elements in a sample is obtained by ranking the elements according to the distance of the associated vectors from the vector representing the sample. The application of this approach to elements identification using LIBS spectra obtained from several kinds of metallic alloys will be also illustrated. The possible extension of this technique towards an algorithm for fully automated LIBS analysis will be discussed.

  11. Measurements of proton energy spectra using a radiochromic film stack

    NASA Astrophysics Data System (ADS)

    Filkins, T. M.; Steidle, Jessica; Ellison, D. M.; Steidle, Jeffrey; Freeman, C. G.; Padalino, S. J.; Fiksel, G.; Regan, S. P.; Sangster, T. C.

    2014-10-01

    The energy spectrum of protons accelerated from the rear-side of a thin foil illuminated with ultra-intense laser light from the OMEGA EP laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) was measured using a stack of radiochromic film (RCF). The film stack consisted of four layers of Gafchromic HD-V2 film and four layers of Gafchromic MD-V2-55 film. Aluminum foils of various thicknesses were placed between each piece of RCF in the stack. This arrangement allowed protons with energies of 30 MeV to reach the back layer of RCF in the stack. The stack was placed in the detector plane of a Thomson parabola ion energy (TPIE) spectrometer. Each piece of film in the stack was scanned using a commercially available flat-bed scanner (Epson 10000XL). The resulting optical density was converted into proton fluence using an absolute calibration of the RCF obtained at the SUNY Geneseo 1.7 MV Pelletron accelerator laboratory. In these calibration measurements, the sensitivity of the radiochromic film was measured using monoenergetic protons produced by the accelerator. Details of the analysis procedure and the resulting proton energy spectra will be presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  12. SPECT Compton-scattering correction by analysis of energy spectra.

    PubMed

    Koral, K F; Wang, X Q; Rogers, W L; Clinthorne, N H; Wang, X H

    1988-02-01

    The hypothesis that energy spectra at individual spatial locations in single photon emission computed tomographic projection images can be analyzed to separate the Compton-scattered component from the unscattered component is tested indirectly. An axially symmetric phantom consisting of a cylinder with a sphere is imaged with either the cylinder or the sphere containing 99mTc. An iterative peak-erosion algorithm and a fitting algorithm are given and employed to analyze the acquired spectra. Adequate separation into an unscattered component and a Compton-scattered component is judged on the basis of filtered-backprojection reconstruction of corrected projections. In the reconstructions, attenuation correction is based on the known geometry and the total attenuation cross section for water. An independent test of the accuracy of separation is not made. For both algorithms, reconstructed slices for the cold-sphere, hot-surround phantom have the correct shape as confirmed by simulation results that take into account the measured dependence of system resolution on depth. For the inverse phantom, a hot sphere in a cold surround, quantitative results with the fitting algorithm are accurate but with a particular number of iterations of the erosion algorithm are less good. (A greater number of iterations would improve the 26% error with the algorithm, however.) These preliminary results encourage us to believe that a method for correcting for Compton-scattering in a wide variety of objects can be found, thus helping to achieve quantitative SPECT. PMID:3258023

  13. The low energy spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Lamb, F. K.

    1982-01-01

    The implications of observed gamma-ray burst spectra for the physical conditions and geometries of the sources are examined. It is noted that an explanation of the continua in terms of optically thin thermal bremsstrahlung requires a relatively large area but a fairly shallow depth. On the other hand, a spectrum similar to that observed could be produced by rapid flickering of sources with less extreme geometries if each flicker emits a Comptonized thermal spectrum. Either field inhomogeneities or plasma motions are required to interpret the low energy features as cyclotron extinction. An alternative explanation is photoelectric absorption by heavy atoms; this requires a field strength high enough to make one-photon electron positron annihilation possible. Observational tests of these possibilities are proposed

  14. Flux tube spectra from approximate integrability at low energies

    SciTech Connect

    Dubovsky, S. Flauger, R.; Gorbenko, V.

    2015-03-15

    We provide a detailed introduction to a method we recently proposed for calculating the spectrum of excitations of effective strings such as QCD flux tubes. The method relies on the approximate integrability of the low-energy effective theory describing the flux tube excitations and is based on the thermodynamic Bethe ansatz. The approximate integrability is a consequence of the Lorentz symmetry of QCD. For excited states, the convergence of the thermodynamic Bethe ansatz technique is significantly better than that of the traditional perturbative approach. We apply the new technique to the lattice spectra for fundamental flux tubes in gluodynamics in D = 3 + 1 and D = 2 + 1, and to k-strings in gluodynamics in D = 2 + 1. We identify a massive pseudoscalar resonance on the worldsheet of the confining strings in SU(3) gluodynamics in D = 3 + 1, and massive scalar resonances on the worldsheet of k = 2.3 strings in SU(6) gluodynamics in D = 2 + 1.

  15. The Energy Spectra of Heavy Nuclei Measured by the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Panov, A. D.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazley, A. R.; Ganel, O.; Gunasingha, R. M.

    2004-01-01

    ATIC (Advanced Thin Ionization Calorimeter) is a balloon-borne experiment to measure the spectra and composition of primary cosmic rays in the region of total energy from 100 GeV to near 100 TeV for Z from 1 to 26. ATIC consists of a pixelated silicon matrix detector to measure charge plus a fully active BGO calorimeter, to measure energy, located below a carbon target interleaved with three layers of scintillator hodoscope. The ATIC instrument had a second (scientific) flight from McMurdo, Antarctica from 12/29/02 to 1/18/03, yielding 20 days of good data. The GEANT 3.21 Monte Carlo code with the QGSM event generator and the FLUKA code with the DPMJET-II event generator were used to convert energy deposition measurements to primary energy. We present the preliminary energy spectra for the abundant elements C, O, Ne, Mg, Si and Fe and compare them with the results of the first (test) flight of ATIC in 2000-01 and with results from the HEAO-3 and CRN experiments.

  16. Elemental Selenium for Electrochemical Energy Storage.

    PubMed

    Yang, Chun-Peng; Yin, Ya-Xia; Guo, Yu-Guo

    2015-01-15

    To meet the increasing demand for electrochemical energy storage with high energy density, elemental Se is proposed as a new attractive candidate with high volumetric capacity density similar to that of S. Se is chemically and electrochemically analogous to S to a large extent but is saliently featured owing to its semiconductivity, compatibility with carbonate-based electrolytes, and activity with a Na anode. Despite only short-term studies, many advanced Se-based electrode materials have been developed for rechargeable Li batteries, Na batteries, and Li ion batteries. In this Perspective, we review the advances in Se-based energy storage materials and the challenges of Li-Se battery in both carbonate-based and ether-based electrolytes. We also discuss the rational design strategies for future Se-based energy storage systems based on the strengths and weaknesses of Se. PMID:26263460

  17. New Fe ii energy levels from stellar spectra

    NASA Astrophysics Data System (ADS)

    Castelli, F.; Kurucz, R. L.

    2010-09-01

    Aims: The spectra of B-type and early A-type stars show numerous unidentified lines in the whole optical range, especially in the 5100-5400 Å interval. Because Fe ii transitions to high energy levels should be observed in this region, we used semiempirical predicted wavelengths and gf-values of Fe ii to identify unknown lines. Methods: Semiempirical line data for Fe ii computed by Kurucz are used to synthesize the spectrum of the slow-rotating, Fe-overabundant CP star HR 6000. Results: We determined a total of 109 new 4f levels for Fe ii with energies ranging from 122 324 cm-1 to 128 110 cm-1. They belong to the Fe ii subconfigurations 3d6(3P)4f (10 levels), 3d6(3H)4f (36 levels), 3d6(3F)4f (37 levels), and 3d6(3G)4f (26 levels). We also found 14 even levels from 4d (3 levels), 5d (7 levels), and 6d (4 levels) configurations. The new levels have allowed us to identify more than 50% of the previously unidentified lines of HR 6000 in the wavelength region 3800-8000 Å. Tables listing the new energy levels are given in the paper; tables listing the spectral lines with log gf ≥ -1.5 that are transitions to the 4f energy levels are given in the Online Material. These new levels produce 18 000 lines throughout the spectrum from the ultraviolet to the infrared. Tables 6-9 are also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/520/A57

  18. BATSE Observations of Gamma-Ray Burst Spectra. Part 3; Low-Energy Behavior of Time-Averaged Spectra

    NASA Technical Reports Server (NTRS)

    Preece, R. D.; Briggs, M. S.; Pendleton, G. N.; Paciesas, W. S.; Matteson, J. L.; Band, D. L.; Skelton, R. T.; Meegan, C. A.

    1996-01-01

    We analyze time-averaged spectra from 86 bright gamma-ray bursts from the first 5 years of the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory to determine whether the lowest energy data are consistent with a standard spectra form fit to the data at all energies. The BATSE Spectroscopy Detectors have the capability to observe photons as low as 5 keV. Using the gamma-ray burst locations obtained with the BATSE Large Area Detectors, the Spectroscopy Detectors' low-energy response can be modeled accurately. This, together with a postlaunch calibration of the lowest energy Spectroscopy Detector discriminator channel, which can lie in the range 5-20 keV, allows spectral deconvolution over a broad energy range, approx. 5 keV to 2 MeV. The additional coverage allows us to search for evidence of excess emission, or for a deficit, below 20 keV. While no burst has a significant (greater than or equal to 3 sigma) deficit relative to a standard spectra model, we find that 12 bursts have excess low-energy emission, ranging between 1.2 and 5.8 times the model flux, that exceeds 5 sigma in significance. This is evidence for an additional low-energy spectral component in at least some bursts, or for deviations from the power-law spectral form typically used to model gamma-ray bursts at energies below 100 keV.

  19. Neutron emission profiles and energy spectra measurements at JET

    SciTech Connect

    Giacomelli, L.; Conroy, S.; Belli, F.; Riva, M.; Gorini, G.; Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Syme, B.; Collaboration: JET EFDA Contributors

    2014-08-21

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  20. Neutron emission profiles and energy spectra measurements at JET

    NASA Astrophysics Data System (ADS)

    Giacomelli, L.; Conroy, S.; Belli, F.; Gorini, G.; Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Riva, M.; Syme, B.; JET EFDA Contributors

    2014-08-01

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  1. Breaking of modulated wave trains: energy and spectra evolution

    NASA Astrophysics Data System (ADS)

    De Vita, Francesco; Verzicco, Roberto; Iafrati, Alessandro

    2016-04-01

    process is completed. At least for the conditions considered in the present study, the whole breaking process lasts 10-12 wave periods. Results are presented in terms of energy amount dissipated by the whole breaking process and changes operated to the pre-breaking spectra. Some analyses concerning the maximum wave steepness and the energy content of the single wave components are also presented with the aim of deriving a criteria which might explain the conditions leading the breaking to stop.

  2. Origin of the Lβ2 satellites in the X-ray emission spectra of the middle-Z elements from 40Zr to 52Te

    NASA Astrophysics Data System (ADS)

    Kendurkar, Renuka; Shrivastava, B. D.

    2012-05-01

    In this communication, the origin of the Lβ2 satellites Lβ2I Lβ2 (b) Lβ2II and Lβ2(c) in the L emission spectra of the middle-Z elements from 40Zr to 52Te, has been explained on the basis of multiple ionization theory. As done in earlier reports, it has been assumed that the various transitions, which may give rise to these satellites, belong to the transition scheme L3Mx-MxN4,5 (where x = 1-5). The energies and the intensities of the 41 possible transitions corresponding to this transition scheme have been calculated theoretically. The energies have been calculated using the available Hartree-Fock-Slater data on K-LM and L-MN Auger transition energies. The intensities of the various transitions have been estimated by considering cross sections for Coster-Kronig transitions as well as for M-shell shake-off process. Theoretical Lβ2 satellite spectra have been computed. There are four intense peaks in the theoretical Lβ2 satellite spectra which have been identified as the four satellites Lβ2I, Lβ2 (b), Lβ2II and Lβ2(c). Consequently, the satellites have been assigned those intense transitions which have been found to give rise to the corresponding four peaks in the theoretical Lβ2 satellite spectra. The present work is an improvement over the earlier reports.

  3. General purpose computational tools for simulation and analysis of medium-energy backscattering spectra

    NASA Astrophysics Data System (ADS)

    Weller, Robert A.

    1999-06-01

    This paper describes a suite of computational tools for general-purpose ion-solid calculations, which has been implemented in the platform-independent computational environment Mathematica®. Although originally developed for medium energy work (beam energies < 300 keV), they are suitable for general, classical, non-relativistic calculations. Routines are available for stopping power, Rutherford and Lenz-Jensen (screened) cross sections, sputtering yields, small-angle multiple scattering, and back-scattering-spectrum simulation and analysis. Also included are a full range of supporting functions, as well as easily accessible atomic mass and other data on all the stable isotopes in the periodic table. The functions use common calling protocols, recognize elements and isotopes by symbolic names and, wherever possible, return symbolic results for symbolic inputs, thereby facilitating further computation. A new paradigm for the representation of backscattering spectra is introduced.

  4. Hierarchical energy spectra in quasi-steady turbulence

    NASA Astrophysics Data System (ADS)

    Horiuti, Kiyosi; Fujisawa, Takeharu

    2007-11-01

    The Kolmogorov -5/3 law, E0(k)=CK&2/3circ;k^- 3/5, forms a base state for the energy spectrum in the inertial subrange, which is applied only to a steady state. An expansion for the spectrum about this base state using the perturbation method (Yoshizawa 1998, Woodroff & Rubinstein 2006) yields a nonequilibrium spectrum as E(k)= E0(k)+CNɛ;&-2/3circ;k-7/3+C3(ɛ;&-1circ;-2ɛ^2&-2circ;/3)k-9/3+, where ɛ and ɛ denote the dissipation rate and its time derivative, respectively. This formula indicates that the spectrum contains the hierarchical scaling exponents, and the -7/3 and -9/3 scalings can be induced by the fluctuation of ɛ. Long term-temporal average yields E(k) E0(k), but the -7/3 component can be extracted by conditionally sampling on ɛ . We carried out this extraction using the DNS data for quasi- steady forced homogeneous isotropic turbulence and homogeneous sheared turbulence. It is shown that the -7/3 spectrum is indeed identified in both flows. The relationship between the each decomposed spectra and those induced by the three modes of vorticity configurations in the stretched spiral vortex model (Lundgren 1982, Horiuti & Fujisawa 2007) will be discussed.

  5. Properties of Energy Spectra of Molecular Crystals Investigated by Nonlinear Theory

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Zhang, Huai-Wu

    We calculate the quantum energy spectra of molecular crystals, such as acetanilide, by using discrete nonlinear Schrodinger equation, containing various interactions, appropriate to the systems. The energy spectra consist of many energy bands, in each energy band there are a lot of energy levels including some higher excited states. The result of energy spectrum is basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide and can also explain some experimental results obtained by Careri et al. Finally, we further discuss the influences of variously characteristic parameters on the energy spectra of the systems.

  6. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    NASA Technical Reports Server (NTRS)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; VonRosenvinge, T. T.

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 <= Z <= 28 in the energy range approx. 50-550 MeV / nucleon. Several recent improvements have been made to the earlier CRIS data analysis, and therefore updates of our previous observations for the 1997-1998 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  7. Fermi energy dependence of first- and second-order Raman spectra in graphene: Kohn anomaly and quantum interference effect

    NASA Astrophysics Data System (ADS)

    Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-08-01

    Intensities of the first- and the second-order Raman spectra are calculated as a function of the Fermi energy. We show that the Kohn anomaly effect, i.e., phonon frequency renormalization, in the first-order Raman spectra originates from the phonon renormalization by the interband electron-hole excitation, whereas in the second-order Raman spectra, a competition between the interband and intraband electron-hole excitations takes place. By this calculation, we confirm the presence of different dispersive behaviors of the Raman peak frequency as a function of the Fermi energy for the first- and the second-order Raman spectra, as observed in some previous experiments. Moreover, the calculated results of the Raman intensity sensitively depend on the Fermi energy for both the first- and the second-order Raman spectra, indicating the presence of the quantum interference effect. The electron-phonon matrix element plays an important role in the intensity increase (decrease) of the combination (overtone) phonon modes as a function of the Fermi energy.

  8. The energy spectra of solar energetic protons in the large energy range: their functional form and parameters.

    NASA Astrophysics Data System (ADS)

    Nymmik, Rikho; Pervaia, Taisia

    2016-07-01

    Experimental data on the fluxes of protons of solar energetic particles (SEP) are analyzed. It is known that above energies of 2-45 MeV (averaging 27-30 MeV), the proton spectra are a power-law function of the energy (at relativistic energies - from the momentum) of the particles. At lower energies, the spectra become harder, with the high-energy part of the spectra forming the "knee". This report is devoted to the determination of the parameters of the SEP spectra, having the form of a "double power-law shape", to ascertain the reliability of the parameters of the approximations of the experimental data.

  9. A satellite investigation of energy flux and inferred potential drop in auroral electron energy spectra

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Burch, J. L.

    1981-01-01

    The relationship between auroral electron energy flux and the inferred accelerating potential drop for accelerated Maxwellian distributions is investigated on the basis of Atmospheric Explorer D spectral measurements. An analytical approximation for the total downward energy flux carried by an isotropic Maxwellian electron population accelerated by a field-aligned electrostatic potential drop is derived which is valid for values of the electron energy/characteristic accelerated Maxwellian distribution energy which are less than the difference between the ratio of the magnetic field strengths at the altitude of observation and the altitude of potential drop, and unity. Data from the Low Energy Electron Experiment on board AE D obtained on both the dayside and the nightside during periods of significant inverted-V type electron precipitation shows that the 455 energy spectra considered, 160 of them, obtained between 60 and 85 deg invariant latitude, could be fit to accelerated Maxwellian distributions. The 160 Maxwellian spectra are then shown to be in agreement with the predictions of the accelerated Maxwellian model. Finally, analysis of individual spectra suggests that the altitude of the inferred potential drop is at a maximum near the center of the inverted-V structures.

  10. Numerical Study of the Generation of Linear Energy Transfer Spectra for Space Radiation Applications

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; Wilson, John W.; Hunter, Abigail

    2005-01-01

    In analyzing charged particle spectra in space due to galactic cosmic rays (GCR) and solar particle events (SPE), the conversion of particle energy spectra into linear energy transfer (LET) distributions is a convenient guide in assessing biologically significant components of these spectra. The mapping of LET to energy is triple valued and can be defined only on open energy subintervals where the derivative of LET with respect to energy is not zero. Presented here is a well-defined numerical procedure which allows for the generation of LET spectra on the open energy subintervals that are integrable in spite of their singular nature. The efficiency and accuracy of the numerical procedures is demonstrated by providing examples of computed differential and integral LET spectra and their equilibrium components for historically large SPEs and 1977 solar minimum GCR environments. Due to the biological significance of tissue, all simulations are done with tissue as the target material.

  11. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. I. THE SCULPTOR DWARF SPHEROIDAL GALAXY

    SciTech Connect

    Kirby, Evan N.; Guhathakurta, Puragra; Bolte, Michael; Geha, Marla C.

    2009-11-01

    We present measurements of Fe, Mg, Si, Ca, and Ti abundances for 388 radial velocity member stars in the Sculptor dwarf spheroidal galaxy (dSph), a satellite of the Milky Way (MW). This is the largest sample of individual alpha element (Mg, Si, Ca, and Ti) abundance measurements in any single dSph. The measurements are made from Keck/Deep Imaging Multi-Object Spectrometer medium-resolution spectra (6400-9000 A, R approx 6500). Based on comparisons to published high-resolution (R approx> 20,000) spectroscopic measurements, our measurements have uncertainties of sigma[Fe/H] = 0.14 and sigma[alpha/Fe] = 0.13. The Sculptor [Fe/H] distribution has a mean ([Fe/H]) = -1.58 and is asymmetric with a long, metal-poor tail, indicative of a history of extended star formation. Sculptor has a larger fraction of stars with [Fe/H] < -2 than the MW halo. We have discovered one star with [Fe/H] = -3.80 +- 0.28, which is the most metal-poor star known anywhere except the MW halo, but high-resolution spectroscopy is needed to measure this star's detailed abundances. As has been previously reported based on high-resolution spectroscopy, [alpha/Fe] in Sculptor falls as [Fe/H] increases. The metal-rich stars ([Fe/H] approx -1.5) have lower [alpha/Fe] than Galactic halo field stars of comparable metallicity. This indicates that star formation proceeded more gradually in Sculptor than in the Galactic halo. We also observe radial abundance gradients of -0.030 +- 0.003 dex arcmin{sup -1} in [Fe/H] and +0.013 +- 0.003 dex arcmin{sup -1} in [alpha/Fe] out to 11 arcmin (275 pc). Together, these measurements cast Sculptor and possibly other surviving dSphs as representative of the dwarf galaxies from which the metal-poor tail of the Galactic halo formed.

  12. Alterations in dose and lineal energy spectra under different shieldings in the Los Alamos high-energy neutron field

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Huff, H.; Wilkins, R.

    2000-01-01

    Nuclear interactions of space radiation with shielding materials result in alterations in dose and lineal energy spectra that depend on the specific elemental composition, density and thickness of the material. The shielding characteristics of materials have been studied using charged-particle beams and radiation transport models by examining the risk reduction using the conventional dose-equivalent approach. Secondary neutrons contribute a significant fraction of the total radiation exposure in space. An experiment to study the changes in dose and lineal energy spectra by shielding materials was carried out at the Los Alamos Nuclear Science Center neutron facility. In the energy range of about 2 to 200 MeV, this neutron spectrum is similar in shape within a factor of about 2 to the spectrum expected in the International Space Station habitable modules. It is shown that with a shielding thickness of about 5 g cm(-2), the conventional radiation risk increases, in some cases by as much as a factor of 2, but decreases with thicknesses of about of 20 g cm(-2). This suggests that care must be taken in evaluating the shielding effectiveness of a given material by including both the charged-particle and neutron components of space radiation.

  13. A Study of the Elements Copper through Uranium in Sirius A: Contributions from STIS and Ground-Based Spectra

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Ayres, T. R.; Castelli, F.; Gulliver, A. F.; Monier, R.; Wahlgren, G. M.

    2016-08-01

    We determine abundances or upper limits for all of the 55 stable elements from copper to uranium for the A1 Vm star Sirius. The purpose of the study is to assemble the most complete picture of elemental abundances with the hope of revealing the chemical history of the brightest star in the sky, apart from the Sun. We also explore the relationship of this hot metallic-line (Am) star to its cooler congeners, as well as the hotter, weakly- or non-magnetic Mercury-manganese (HgMn) stars. Our primary observational material consists of Hubble Space Telescope (HST) spectra taken with the Space Telescope Imaging Spectrograph in the ASTRAL project. We have also used archival material from the COPERNICUS satellite, and from the HST Goddard High-Resolution Spectrograph, as well as ground-based spectra from Furenlid, Westin, Kurucz, Wahlgren, and their coworkers, ESO spectra from the UVESPOP project, and NARVAL spectra retrieved from PolarBase. Our analysis has been primarily by spectral synthesis, and in this work we have had the great advantage of extensive atomic data unavailable to earlier workers. We find most abundances as well as upper limits range from 10 to 100 times above solar values. We see no indication of the huge abundance excesses of 1000 or more that occur among many chemically peculiar stars of the upper main sequence. The picture of Sirius as a hot Am star is reinforced.

  14. Track Structure Model for Radial Distributions of Electron Spectra and Event Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Katz, R.; Wilson, J. W.

    1998-01-01

    An analytic method is described for evaluating the average radial electron spectrum and the radial and total frequency-event spectrum for high-energy ions. For high-energy ions, indirect events make important contributions to frequency-event spectra. The method used for evaluating indirect events is to fold the radial electron spectrum with measured frequency-event spectrum for photons or electrons. The contribution from direct events is treated using a spatially restricted linear energy transfer (LET). We find that high-energy heavy ions have a significantly reduced frequency-averaged final energy (yF) compared to LET, while relativistic protons have a significantly increased yF and dose-averaged lineal energy (yD) for typical site sizes used in tissue equivalent proportional counters. Such differences represent important factors in evaluating event spectra with laboratory beams, in space- flight, or in atmospheric radiation studies and in validation of radiation transport codes. The inadequacy of LET as descriptor because of deviations in values of physical quantities, such as track width, secondary electron spectrum, and yD for ions of identical LET is also discussed.

  15. Studies of the fast ion energy spectra in TJ-II

    SciTech Connect

    Bustos, A.; Fontdecaba, J. M.; Arevalo, J.; Castejon, F.; Velasco, J. L.; Tereshchenko, M.

    2013-02-15

    The dynamics of the neutral beam injection fast ions in the TJ-II stellarator is studied in this paper from both the theoretical and experimental points of view. The code Integrator of Stochastic Differential Equations for Plasmas (ISDEP) is used to estimate the fast ion distribution function in 3D:1D in real space and 2D in velocity space, considering the 3D structure of TJ-II, the electrostatic potential, non turbulent collisional transport, and charge exchange losses. The results of ISDEP are compared with the experimental data from the compact neutral particle analyzer, which measures the outgoing neutral flux spectra in the energy range E Element-Of (1-45) keV.

  16. COMPARING THE ENERGY SPECTRA OF ULTRAHIGH ENERGY COSMIC RAYS MEASURED WITH EXTENSIVE AIR SHOWER ARRAYS

    SciTech Connect

    Ivanov, A. A.

    2010-03-20

    The energy spectra of ultrahigh energy cosmic rays (CRs) measured with giant extensive air shower (EAS) arrays exhibit discrepancies between the flux intensities and/or estimated CR energies exceeding experimental errors. The well-known intensity correction factor due to the dispersion of the measured quantity in the presence of a rapidly falling energy spectrum is insufficient to explain the divergence. Another source of systematic energy determination error is proposed concerning the charged particle density measured with the surface arrays, which arises due to simplifications (namely, the superposition approximation) in nucleus-nucleus interaction description applied to the shower modeling. Making use of the essential correction factors results in congruous CR energy spectra within experimental errors. Residual differences in the energy scales of giant arrays can be attributed to the actual overall accuracy of the EAS detection technique used. CR acceleration and propagation model simulations using the dip and ankle scenarios of the transition from galactic to extragalactic CR components are in agreement with the combined energy spectrum observed with EAS arrays.

  17. Trends in Ionization Energy of Transition-Metal Elements

    ERIC Educational Resources Information Center

    Matsumoto, Paul S.

    2005-01-01

    A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…

  18. Reconstruction of Elemental Distribution Images from Synchrotron Radiation X-Ray Fluorescence Spectra

    NASA Astrophysics Data System (ADS)

    Toque, Jay Arre; Ide-Ektessabi, Ari

    Synchrotron radiation X-ray fluorescence spectroscopy (SRXRF) is a powerful technique for studying trace elements in biological samples and other materials in general. Its features including capability to perform measurements in air and water, noncontact and nondestructive assay are superior to other elemental analysis techniques. In this study, a technique for reconstructing elemental distribution mapping of trace elements from spectral data was developed. The reconstruction was made possible by using the measured fluorescent signals to obtain local differences in elemental concentrations. The proposed technique features interpolation and background subtraction using matrix transformations of the spectral data to produce an enhanced distribution images. It is achieved by employing polychromatic or monochromatic color assignments proportional to the fluorescence intensities for displaying single-element or multiple-element distributions respectively. Some typical applications (i.e., macrophage and tissue surrounding an implant) were presented and the samples were imaged using the proposed method. The distribution images of the trace elements of the selected samples were used in conjunction with other analytical techniques to draw relevant observations, which cannot be achieved using conventional techniques such as metallic uptake and corresponding cellular response. The elemental distribution images produced from this study were found to have better quality compared to images produced using other analytical techniques (e.g., SIMS, PIXE, XPS, etc).

  19. The energy spectra of solar flare hydrogen, helium, oxygen, and iron - Evidence for stochastic acceleration

    NASA Technical Reports Server (NTRS)

    Mazur, J. E.; Mason, G. M.; Klecker, B.; Mcguire, R. E.

    1992-01-01

    The time-integrated differential energy spectra of H, He, O, and Fe measured in 10 large flare events observed at 1 AU over the energy range of 0.3-80 MeV/nucleon showed consistent patterns in their spectral shapes: particles with larger mean mass-to-charge ratios were generally less abundant at higher energies. A steady state model of stochastic particle acceleration with rigidity-dependent diffusion coefficients fit the spectra best; spectra representative of diffusive shock acceleration also described the spectra of some events with the same number of free parameters, but often fell off faster in energy above 30 MeV per nucleon than the observations. The two model predictions differed most at energies near 0.1 MeV per nucleon, below the lowest energies observed in this study. The stochastic model quantitatively described the observed spectral ordering with less efficient acceleration of species with larger mean mass-to-charge ratios.

  20. VIBA-Lab 3.0: Computer program for simulation and semi-quantitative analysis of PIXE and RBS spectra and 2D elemental maps

    NASA Astrophysics Data System (ADS)

    Orlić, Ivica; Mekterović, Darko; Mekterović, Igor; Ivošević, Tatjana

    2015-11-01

    VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster-Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By "running" a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.

  1. A study of the generation of linear energy transfer spectra for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.

    1992-01-01

    The conversion of particle-energy spectra into a linear energy transfer (LET) distribution is a guide in assessing biologically significant components. The mapping of LET to energy is triple valued and can be defined only on open subintervals. A well-defined numerical procedure is found to allow generation of LET spectra on the open subintervals that are integrable in spite of their singular nature.

  2. GALACTIC COSMIC-RAY ENERGY SPECTRA AND COMPOSITION DURING THE 2009-2010 SOLAR MINIMUM PERIOD

    SciTech Connect

    Lave, K. A.; Binns, W. R.; Israel, M. H.; Wiedenbeck, M. E.; Christian, E. R.; De Nolfo, G. A.; Von Rosenvinge, T. T.; Cummings, A. C.; Davis, A. J.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.

    2013-06-20

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 {<=} Z {<=} 28 in the energy range {approx}50-550 MeV nucleon{sup -1}. Several recent improvements have been made to the earlier CRIS data analysis, and therefore updates of our previous observations for the 1997-1998 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than {approx}7%, and the relative abundances changed by less than {approx}4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2{sigma}, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple ''leaky-box'' galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  3. Transport analysis of measured neutron leakage spectra from spheres as tests of evaluated high energy cross sections

    NASA Technical Reports Server (NTRS)

    Bogart, D. D.; Shook, D. F.; Fieno, D.

    1973-01-01

    Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.

  4. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    SciTech Connect

    Helton, L. Andrew; Vacca, William D.; Gehrz, Robert D.; Woodward, Charles E.; Shenoy, Dinesh P.; Wagner, R. Mark; Evans, Aneurin; Krautter, Joachim; Schwarz, Greg J.; Starrfield, Sumner

    2012-08-10

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  5. Measuring D(d,p)T fusion reactant energy spectra with Doppler shifted fusion products

    SciTech Connect

    Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Donovan, D. C.; Piefer, G. R.

    2010-06-15

    Deuterium fusion reactant energy spectra have been measured using a diagnostic that records the Doppler shift imparted to charged particle fusion products of the D(d,p)T reaction by the center-of-mass velocity of the deuterium reactants. This diagnostic, known as the fusion ion Doppler shift diagnostic (FIDO) measures fast deuterium energy spectra in the inertial electrostatic confinement (IEC) experiment at the University of Wisconsin-Madison {l_brace}Santarius et al. [Fusion Sci. Technol. 47, 1238 (2005)]{r_brace}, a device to confine high energy light ions in a spherically symmetric, electrostatic potential well. This article details the first measurements of the fusion reactant energy spectra in an IEC device as well as the design and principles of operation of the FIDO diagnostic. Scaling of reactant energy spectra with a variety of experimental parameters have been explored.

  6. Mean excitation energy for the stopping power of light elements

    NASA Astrophysics Data System (ADS)

    Smith, D. Y.; Inokuti, M.; Karstens, W.; Shiles, E.

    2006-09-01

    We have evaluated the mean excitation energy or I value for Coulomb excitations by swift charged particles passing through carbon, aluminum and silicon. A self-consistent Kramers-Kronig analysis was used to treat X-ray optical spectra now available from synchrotron light sources allowing us to carry out Bethe's original program of evaluating I from the observed dielectric response. We find that the K and L shell are the dominant contributors to I in these light elements and that the contribution of valence electrons is relatively small, primarily because of their low binding energy. The optical data indicate that Si and Al have nearly equal I values, in contrast to Bloch's Thomas-Fermi result, I ∝ Z. The optically based I values for C and Al are in excellent agreement with experiment. However, the dielectric-response I value for Si is 164 ± 2 eV, at variance with the commonly quoted value of 173 ± 3 eV derived from stopping-power measurements.

  7. The multiplicity and the spectra of secondaries correlated with the leading particle energy

    NASA Technical Reports Server (NTRS)

    Kruglov, N. A.; Proskuryakov, A. S.; Sarycheva, L. I.; Smirnova, L. N.

    1985-01-01

    The spectra of leading particles of different nature in pp-collisions at E sub 0 = 33 GeV are obtained. The multiplicities and the spectra of secondaries, mesons, gamma-quanta, lambda and lambda-hyperons and protons for different leading particle energy ranges are determined.

  8. The 20 element HgI2 energy dispersive x ray array detector system

    NASA Astrophysics Data System (ADS)

    Iwanczyk, J. A.; Dorri, N.; Wang, M.; Szczebiot, R. W.; Dabrowski, A. J.; Hedman, B.; Hodgson, K. O.; Patt, B. E.

    1991-11-01

    This paper describes recent progress in the development of HgI2 energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K(sub a)) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  9. Composition and energy spectra of cosmic ray nuclei above 500 GeV/nucleon from the JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fountain, W. F.; Holynski, R.; Derrickson, J. H.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Iwai, J.; Jones, W. V.

    1985-01-01

    The composition and energy spectra of charge groups (C - 0), (Ne - S), and (Z approximately 17) above 500 GeV/nucleon from the experiments of JACEE series balloonborne emulsion chambers are reported. Studies of cosmic ray elemental composition at higher energies provide information on propagation through interstellar space, acceleration mechanisms, and their sources. One of the present interests is the elemental composition at energies above 100 GeV/nucleon. Statistically sufficient data in this energy region can be decisive in judgment of propagation models from the ratios of SECONDARY/PRIMARY and source spectra (acceleration mechanism), as well as speculative contributions of different sources from the ratios of PRIMARY/PRIMARY. At much higher energies, i.e., around 10 to the 15th power eV, data from direct observation will give hints on the knee problem, as to whether they favor an escape effect possibly governed by magnetic rigidity above 10 to the 16th power eV.

  10. Composition and energy spectra of cosmic ray nuclei above 500 GeV/nucleon from the JACEE emulsion chambers

    NASA Astrophysics Data System (ADS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.

    1985-08-01

    The composition and energy spectra of charge groups (C - 0), (Ne - S), and (Z approximately 17) above 500 GeV/nucleon from the experiments of JACEE series balloonborne emulsion chambers are reported. Studies of cosmic ray elemental composition at higher energies provide information on propagation through interstellar space, acceleration mechanisms, and their sources. One of the present interests is the elemental composition at energies above 100 GeV/nucleon. Statistically sufficient data in this energy region can be decisive in judgment of propagation models from the ratios of SECONDARY/PRIMARY and source spectra (acceleration mechanism), as well as speculative contributions of different sources from the ratios of PRIMARY/PRIMARY. At much higher energies, i.e., around 10 to the 15th power eV, data from direct observation will give hints on the knee problem, as to whether they favor an escape effect possibly governed by magnetic rigidity above 10 to the 16th power eV.

  11. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. IV. ALPHA ELEMENT DISTRIBUTIONS IN MILKY WAY SATELLITE GALAXIES

    SciTech Connect

    Kirby, Evan N.; Cohen, Judith G.; Smith, Graeme H.; Guhathakurta, Puragra; Sohn, Sangmo Tony

    2011-02-01

    We derive the star formation histories of eight dwarf spheroidal (dSph) Milky Way satellite galaxies from their alpha element abundance patterns. Nearly 3000 stars from our previously published catalog comprise our data set. The average [{alpha}/Fe] ratios for all dSphs follow roughly the same path with increasing [Fe/H]. We do not observe the predicted knees in the [{alpha}/Fe] versus [Fe/H] diagram, corresponding to the metallicity at which Type Ia supernovae begin to explode. Instead, we find that Type Ia supernova ejecta contribute to the abundances of all but the most metal-poor ([Fe/H] < -2.5) stars. We have also developed a chemical evolution model that tracks the star formation rate, Types II and Ia supernova explosions, and supernova feedback. Without metal enhancement in the supernova blowout, massive amounts of gas loss define the history of all dSphs except Fornax, the most luminous in our sample. All six of the best-fit model parameters correlate with dSph luminosity but not with velocity dispersion, half-light radius, or Galactocentric distance.

  12. Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence

    NASA Astrophysics Data System (ADS)

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-06-01

    Kinetic energy and scalar spectra from the measurements in high Rayleigh number axially homogeneous buoyancy driven turbulent flow are presented. Kinetic energy and concentration (scalar) spectra are obtained from the experiments wherein density difference is created using brine and fresh water and temperature spectra are obtained from the experiments in which heat is used. Scaling of the frequency spectra of lateral and longitudinal velocity near the tube axis is closer to the Kolmogorov-Obukhov scaling, while the scalar spectra show some evidence of dual scaling, Bolgiano-Obukhov scaling followed by Obukhov-Corrsin scaling. These scalings are also observed in the corresponding second order spatial structure functions of velocity and concentration fluctuations.

  13. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. PMID:26802538

  14. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  15. On the Energy Spectra of Individual Terrestrial Gamma ray Flashes

    NASA Astrophysics Data System (ADS)

    Mailyan, B. G.; Briggs, M. S.; Cramer, E. S.; Connaughton, V.; Dwyer, J. R.; Fitzpatrick, G.

    2015-12-01

    The Fermi Gamma-ray Burst Monitor (GBM) receives enough photons from some TGFs that spectral fitting of individual TGFs is possible. Previous TGF spectral fits relied upon summing the data from many TGFs. However, this spectral analysis of individual GBM TGFs is difficult because the number of photons is only adequate and because the extreme intensity of TGFs requires the analysis to correct for spectral distortions caused by pulse pileup. For each TGF in the sample, we compare Monte Carlo simulated TGF spectra to the observed detector counts. For each comparison, the best fit intensity is found, including correcting the predicted spectrum for pulse pileup. Using likelihood, we determine which of the simulations are consistent with each TGF, thus constraining the properties (e.g., altitude, beam width, etc.) of the TGF.

  16. AMG by element agglomeration and constrained energy minimization interpolation

    SciTech Connect

    Kolev, T V; Vassilevski, P S

    2006-02-17

    This paper studies AMG (algebraic multigrid) methods that utilize energy minimization construction of the interpolation matrices locally, in the setting of element agglomeration AMG. The coarsening in element agglomeration AMG is done by agglomerating fine-grid elements, with coarse element matrices defined by a local Galerkin procedure applied to the matrix assembled from the individual fine-grid element matrices. This local Galerkin procedure involves only the coarse basis restricted to the agglomerated element. To construct the coarse basis, one exploits previously proposed constraint energy minimization procedures now applied to the local matrix. The constraints are that a given set of vectors should be interpolated exactly, not only globally, but also locally on every agglomerated element. The paper provides algorithmic details, as well as a convergence result based on a ''local-to-global'' energy bound of the resulting multiple-vector fitting AMG interpolation mappings. A particular implementation of the method is illustrated with a set of numerical experiments.

  17. Pyroxene Spectroscopy: Effects of Major Element Composition on Near, Mid and Far-Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Klima, R. L.; Pieters, C. M.; Dyar, M. D.

    2005-01-01

    Pyroxene is one of the most common minerals in both evolved and undifferentiated solid bodies of the solar system. Various compositions of pyroxene have been directly studied in meteorites and lunar samples and remotely observed by telescopic and orbital measurements of the moon, Mars, Mercury, and several classes of asteroids. Laboratory studies of pyroxene spectra have shown that absorption features diagnostic of pyroxene in both the near and mid infrared are composition dependent. The challenge for remote analyses has been to reduce the level of ambiguity to allow a quantitative assessment of mineral chemistry. This study focuses on the analysis of a comprehensive set of synthetic Ca-Fe-Mg pyroxenes from the visible through far-IR (0.3-50 m) to address the fundamental constraints of crystal structure on absorption.

  18. VizieR Online Data Catalog: Line Spectra of the Elements (Reader+ 1980-1981)

    NASA Astrophysics Data System (ADS)

    Reader, J.

    1996-10-01

    This catalog contains wavelength information for 99 different atomic species. The wavelengths for about 46,610 spectral lines of neutral through quadruply ionized atoms are tabulated. The information is presented in a general table of headers and references for each element and for each element a table of relative intensities, wavelengths ordered numerically, chemical elements, and stages of ionization indicated for each line in the wavelength range 40 to 40,000 Angstroms. Listed in the 99 data files are lines that appear in emission from the vacuum ultraviolet to the far infrared. For most atoms these lines are chosen from much larger lists so as to include the stronger observed lines in each spectral region. Below 2000 Angstroms the wavelengths are in vacuum; above 2000 Angstroms the wavelengths are in air. Wavelengths given to three decimal places are suitable for spectrograph calibration purpose such as Ne, Ar, Kr, Fe in the air region and C, N, O, Si, and Cu in the vacuum region. The intensity estimates are useful only as a rough indication of the appearance of a spectrum. The literature references as they appear the the the Handbook of Chemistry and Physics are given in a separate file. (3 data files).

  19. Quasar energy distributions. I - Soft X-ray spectra of quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; Elvis, Martin

    1987-01-01

    As the initial stage of a study of quasar energy distributions (QEDs), Einstein IPC spectra of 24 quasars are presented. These are combined with previously reported IPC spectra to form a sample of 33 quasars with well-determined soft X-ray slopes. A correlation analysis shows that radio loudness, rather than redshift or luminosity, is fundamentally related to the X-ray slope. This correlation is not followed by higher energy spectra of active galaxies. Two components are required to explain both sets of results. The best-fit column densities are systematically smaller than the Galactic values. The same effect is not present in a sample of BL Lac objects, implying that the effect is intrinsic to the quasars and is caused by a low-energy turnup in the quasar spectra.

  20. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    SciTech Connect

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  1. Energy Distributions and spectra of Orion B stars

    NASA Technical Reports Server (NTRS)

    Schild, R. E.; Chaffee, F.

    1972-01-01

    New MK spectral types and energy distributions are presented for B stars in Orion for which far ultraviolet flux excesses have recently been discovered. Significant differences between HD spectral energy distributions show the Orion late B stars to have smaller Balmer discontinuities than do field stars of the same spectral types. For the late B stars, these effects cause the 1500 A fluxes to be under-estimated by approximately 0.5 mag. No comparable systematic effects were found for the early B stars.

  2. Calculated photoelectron pitch angle and energy spectra. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Mantas, G. P.; Bowhill, S. A.

    1974-01-01

    Calculations of the steady-state photoelectron energy and angular distribution in the altitude region between 120 and 1000 km are presented. The distribution is found to be isotropic at all altitudes below 250 km, while above this altitude anisotropies in both pitch angle and energy are found. The isotropy found in the angular distribution below 250 km implies that photoelectron transport below 250 km is insignificant, while the angular anisotropy found above this altitude implies a net photoelectron current in the upward direction. The energy anisotropy above 500 km arises from the selective backscattering of the low energy photoelectron population of the upward flux component by Coulomb collisions with the ambient ions. The total photoelectron flux attains its maximum value between about 40 and 70 km above the altitude at which the photoelectron production rate is maximum. The displacement of the maximum of the equilibrium flux is attributed to an increasing (with altitude) photoelectron lifetime. Photoelectrons at altitudes above that where the flux is maximum are on the average more energetic than those below that altitude.

  3. La- binding energies by analysis of its photodetachment spectra

    NASA Astrophysics Data System (ADS)

    Pan, Lin; Beck, Donald R.

    2016-06-01

    This study reinterprets an earlier experimental photoelectron kinetic energy spectrum of the negative ion of lanthanum [A. M. Covington, D. Calabrese, J. S. Thompson, and T. J. Kvale, J. Phys. B 31, L855 (1998), 10.1088/0953-4075/31/20/002] by carrying out relativistic configuration interaction (RCI) photodetachment calculations. The results confirm the earlier RCI calculation for the electron affinity of lanthanum (0.545 eV) [S. M. O'Malley and D. R. Beck, Phys. Rev. A 79, 012511 (2009), 10.1103/PhysRevA.79.012511] and revise it to a slightly larger value of 0.550 eV, thus modifying the experimental interpretation of 0.47 ±0.02 eV. The calculation also yields the binding energies of the other thirteen bound states of La-. Good agreement has been found when these energies are compared to the results of a recent experimental study on La- [C. W. Walter, N. D. Gibson, D. J. Matyas, C. T. Crocker, K. A. Dungan, B. R. Matola, and J. Rohlén, Phys. Rev. Lett. 113, 063001 (2014), 10.1103/PhysRevLett.113.063001]. Finally, our analysis confirms the transition energy for the potential laser cooling transition of 3F2e→3D1o in La-.

  4. Elemental abundances in the local cosmic rays at high energies

    NASA Technical Reports Server (NTRS)

    Swordy, Simon P.; L'Heureux, Jacques; Meyer, Peter; Muller, Dietrich

    1993-01-01

    The heavy-nuclei energy spectra measured aboard the Space Shuttle and on HEAO 3 are presently discussed in the framework of a leaky-box model; the source energy spectrum required for a fit, at E exp -2.2 for all nuclear species, is slightly steeper than a previous estimate. These data are presented in terms of total energy/particle, in order to allow direct comparison with the observed all-particle spectrum of cosmic rays.

  5. Abundances, charge states, and energy spectra of helium and heavy ions during solar particle events

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Sciambi, R.; Fan, C. Y.; Hovestadt, D.

    1975-01-01

    Carbon and oxygen energy spectra observed during several solar events indicate a systematic deviation of these spectra from a simple power law: the spectra bend down below about 100 keV/nuc and the amount of this bending is highly correlated with the size of the flare, as measured by the 'event averaged' flux of 130-220 keV protons. The energy spectra of helium computed for the same time periods do not show a similar feature. A large variability of the alpha/CNO ratio is found from event to event (from 2 to about 20 at 40 keV/nuc), and in all cases examined the carbon and oxygen nuclei are nearly fully stripped. These results are interpreted as evidence for storage of energetic ions in hot coronal regions, followed by strong adiabatic deceleration.

  6. Determining neutrino absorption spectra at ultra-high energies

    SciTech Connect

    Scholten, O; Van Vliet, A R E-mail: A.R.van.Vliet@student.rug.nl

    2008-06-15

    A very efficient method for measuring the flux of ultra-high energy (UHE) neutrinos is through the detection of radio waves which are emitted by the particle shower in the lunar regolith. The highest acceptance is reached for radio waves in the frequency band of 100-200 MHz which can be measured with modern radio telescopes. In this work we investigate the sensitivity of this detection method to structures in the UHE neutrino spectrum caused by their absorption on the low energy relic anti-neutrino background through the Z boson resonance. The position of the absorption peak is sensitive to the neutrino mass and the redshift of the source. A new generation of low frequency digital radio telescopes will provide excellent detection capabilities for measuring these radio pulses, thus making our consideration here very timely.

  7. Delayed-Neutron Energy Spectra for Thermal Fission of URANIUM-235.

    NASA Astrophysics Data System (ADS)

    Tanczyn, Robert Steven

    An experiment to measure delayed-neutron energy spectra resulting from thermal fission of U-235 has been carried out at the University of Lowell. Delayed neutrons, emitted by the radioactive fission fragments having halflives varying from 0.2 to 56 seconds, are important in the operation and control of fission reactors. In separate experiments at the University of Lowell 1-MW Fission Reactor and 5.5-MV Van de Graaff Accelerator, thermal fission was induced in a U-235 lined hemispherical fission chamber. The resulting fission fragments were transferred by a helium-jet system to a low-background counting area where composite delayed-neutron energy spectra were measured as a function of time after fission. Neutron energies were determined by the time-of-flight technique using beta-neutron correlations for timing. Two types of scintillators were used for neutron detection: Li-6 glass sensitive to neutrons in the energy range 10 - 300 keV, and plastic Pilot U sensitive to neutrons in the range 100 keV - 2.0 MeV. Spectra over the neutron energy range 0.1 - 2.0 MeV were measured for eight different time intervals after fission, each time interval containing varying contributions from the Six-Groups of delayed neutrons. Two of the eight time intervals were chosen to contain significant contributions from the shortest lived Groups 5 and 6. This work presents a brief outline of pertinent background material followed by a detailed discussion of the experimental technique and data analysis leading to final energy spectra. Measured composite energy spectra along with average energies are presented. Comparisons to spectra constructed from the Studsvik compilation are also presented.

  8. Energy Spectra of Strongly Stratified and Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Mahalov, Alex; Nicolaenko, Basil; Zhou, Ye

    1998-01-01

    Turbulence under strong stratification and rotation is usually characterized as quasi-two dimensional turbulence. We develop a "quasi-two dimensional" energy spectrum which changes smoothly between the Kolmogorov -5/3 law (no stratification), the -2 scalings of Zhou for the case of strong rotation, as well as the -2 scalings for the case of strong rotation and stratification. For strongly stratified turbulence, the model may give the -2 scaling predicted by Herring; and the -5/3 scaling indicated by some mesoscale observations.

  9. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory.

    PubMed

    Tait, E W; Ratcliff, L E; Payne, M C; Haynes, P D; Hine, N D M

    2016-05-18

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. PMID:27094207

  10. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    NASA Astrophysics Data System (ADS)

    Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; Haynes, P. D.; Hine, N. D. M.

    2016-05-01

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.

  11. A versatile detector system to measure the change states, mass compositions and energy spectra of interplanetary and magnetosphere ions

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1977-01-01

    An instrument is described for measuring the mass and charge state composition as well as the energy spectra and angular distributions of 0.5 to 350 kev/charge ions in interplanetary space and in magnetospheres of planets such as Jupiter and earth. Electrostatic deflection combined with a time-of-flight and energy measurement allows three-parameter analysis of output signals from which the mass, charge states, and energy are determined. Post-acceleration by 30 kV extends the energy range of the detector system into the solar wind and magnetosphere plasma regime. Isotopes of H and He are easily resolved as are individual elements up to Ne and the dominant elements up to and including Fe. This instrument has an extremely large dynamic range in intensity and is sensitive to rare elements even in the presence of high intensity radiation, and is adapted for interplanetary, deep-space, and out-of-the-ecliptic missions, as well as for flights on spacecraft orbiting Jupiter and earth.

  12. Turbulent Energy Spectra and Cospectra of Momentum and Heat Fluxes in the Stable Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Li, Dan; Katul, Gabriel G.; Bou-Zeid, Elie

    2015-10-01

    The turbulent energy spectra and cospectra of momentum and sensible heat fluxes are examined theoretically and experimentally with increasing flux Richardson number () in the stable atmospheric surface layer. A cospectral budget model, previously used to explain the bulk relation between the turbulent Prandtl number () and the gradient Richardson number () as well as the relation between and , is employed to interpret field measurements over a lake and a glacier. The shapes of the vertical velocity and temperature spectra, needed for closing the cospectral budget model, are first examined with increasing . In addition, the wavenumber-dependent relaxation time scales for momentum and heat fluxes are inferred from the cospectral budgets and investigated. Using experimental data and proposed extensions to the cospectral budget model, the existence of a `' power-law scaling in the temperature spectra but its absence from the vertical velocity spectra is shown to reduce the magnitude of the maximum flux Richardson number (), which is commonly inferred from the Rf- Ri relation when becomes very large (idealized with ). Moreover, dissimilarity in relaxation time scales between momentum and heat fluxes, also affected by the existence of the `' power-law scaling in the temperature spectra, leads to under near-neutral conditions. It is further shown that the production rate of turbulent kinetic energy decreases more rapidly than that of turbulent potential energy as , which explains the observed disappearance of the inertial subrange in the vertical velocity spectra at a smaller as compared to its counterpart in the temperature spectra. These results further demonstrate novel linkages between the scale-wise turbulent kinetic energy and potential energy distributions and macroscopic relations such as stability correction functions to the mean flow and the - Ri relation.

  13. Differential neutron energy spectra measured on spacecraft low Earth orbit

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Dudkin, E. V.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.

    1995-01-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the (sup 6) Li(n.x)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.

  14. Relation between fine structure of energy spectra for pulsating aurora electrons and frequency spectra of whistler mode chorus waves

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Saito, S.; Seki, K.; Nishiyama, T.; Kataoka, R.; Asamura, K.; Katoh, Y.; Ebihara, Y.; Sakanoi, T.; Hirahara, M.; Oyama, S.; Kurita, S.; Santolik, O.

    2015-09-01

    We investigate the origin of the fine structure of the energy spectrum of precipitating electrons for the pulsating aurora (PsA) observed by the low-altitude Reimei satellite. The Reimei satellite achieved simultaneous observations of the optical images and precipitating electrons of the PsA from satellite altitude (~620 km) with resolution of 40 ms. The main modulation of precipitation, with a few seconds, and the internal modulations, with a few hertz, that are embedded inside the main modulations are identified above ~3 keV. Moreover, stable precipitations at ~1 keV are found for the PsA. A "precipitation gap" is discovered between two energy bands. We identify the origin of the fine structure of the energy spectrum for the precipitating electrons using the computer simulation on the wave-particle interaction between electrons and chorus waves. The lower band chorus (LBC) bursts cause the main modulation of energetic electrons, and the generation and collapse of the LBC bursts determines on-off switching of the PsA. A train of rising tone elements embedded in the LBC bursts drives the internal modulations. A close set of upper band chorus (UBC) waves causes the stable precipitations at ~1 keV. We show that a wave power gap around the half gyrofrequency at the equatorial plane in the magnetosphere between LBC and UBC reduces the loss rate of electrons at the intermediate energy range, forming a gap of precipitating electrons in the ionosphere.

  15. Mass measurement using energy spectra in three-body decays

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; Wardlow, Kyle

    2016-05-01

    In previous works we have demonstrated how the energy distribution of massless decay products in two body decays can be used to measure the mass of decaying particles. In this work we show how such results can be generalized to the case of multi-body decays. The key ideas that allow us to deal with multi-body final states are an extension of our previous results to the case of massive decay products and the factorization of the multi-body phase space. The mass measurement strategy that we propose is distinct from alternative methods because it does not require an accurate reconstruction of the entire event, as it does not involve, for instance, the missing transverse momentum, but rather requires measuring only the visible decay products of the decay of interest. To demonstrate the general strategy, we study a supersymmetric model wherein pair-produced gluinos each decay to a stable neutralino and a bottom quark-antiquark pair via an off -shell bottom squark. The combinatorial background stemming from the indistinguishable visible final states on both decay sides can be treated by an "event mixing" technique, the performance of which is discussed in detail. Taking into account dominant backgrounds, we are able to show that the mass of the gluino and, in favorable cases, that of the neutralino can be determined by this mass measurement strategy.

  16. Method for measuring dose-equivalent in a neutron flux with an unknown energy spectra and means for carrying out that method

    DOEpatents

    Distenfeld, Carl H.

    1978-01-01

    A method for measuring the dose-equivalent for exposure to an unknown and/or time varing neutron flux which comprises simultaneously exposing a plurality of neutron detecting elements of different types to a neutron flux and combining the measured responses of the various detecting elements by means of a function, whose value is an approximate measure of the dose-equivalent, which is substantially independent of the energy spectra of the flux. Also, a personnel neutron dosimeter, which is useful in carrying out the above method, comprising a plurality of various neutron detecting elements in a single housing suitable for personnel to wear while working in a radiation area.

  17. Na-O anticorrelation and HB. VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Bragaglia, A.; Gratton, R.; Lucatello, S.

    2009-10-01

    We present homogeneous abundance determinations for iron and some of the elements involved in the proton-capture reactions (O, Na, Mg, Al, and Si) for 202 red giants in 17 Galactic globular clusters (GCs) from the analysis of high-resolution UVES spectra obtained with the FLAMES facility at the ESO VLT2 telescope. Our programme clusters span almost the whole range of the metallicity distribution of GCs and were selected to sample the widest range of global parameters (horizontal-branch morphology, masses, concentration, etc.). In this paper we focus on the discussion of the Na-O and Mg-Al anticorrelations and related issues. Our study finds clear Na and O star-to-star abundance variations, exceeding those expected from the error in the analysis, in all clusters. Variations in Al are present in all but a few GCs. Finally, a spread in abundances of Mg and Si are also present in a few clusters. Mg is slightly less overabundant and Si slightly more overabundant in the most Al-rich stars. The correlation between Si and Al abundances is a signature of production of 28Si leaking from the Mg-Al cycle in a few clusters. The cross sections required for the proper reactions to take over in the cycle point to temperatures in excess of about 65 million K for the favoured site of production. We used a dilution model to infer the total range of Al abundances starting from the Na and Al abundances in the FLAMES-UVES spectra, and the Na abundance distributions found from analysis of the much larger set of stars for which FLAMES-GIRAFFE spectra were available. We found that the maximum amount of additional Al produced by first-generation polluters contributing to the composition of the second-generation stars in each cluster is closely correlated with the same combination of metallicity and cluster luminosity that reproduced the minimum O-abundances found from GIRAFFE spectra. We then suggest that the high temperatures required for the Mg-Al cycle are only reached in the most

  18. Partial intensity approach for quantitative analysis of reflection-electron-energy-loss spectra

    NASA Astrophysics Data System (ADS)

    Calliari, L.; Filippi, M.; A. Varfolomeev

    2011-08-01

    We have considered a formalism, known as partial intensity approach (PIA), previously developed to quantitatively analyze reflection electron energy loss (REEL) spectra [1,2]. The aim of the approach is, in particular, to recover the single scattering distribution of energy losses and to separate it into bulk and surface contributions, respectively referred to as the differential inverse inelastic mean free path (DIIMFP) and the differential surface excitation parameter (DSEP). As compared to [1] and [2], we have implemented a modified approach, and we have applied it to the specific geometry of the cylindrical mirror analyzer (CMA), used to acquire the REEL spectra shown here. Silicon, a material with well-defined surface and bulk plasmons, is taken as a case study to investigate the approach as a function of electron energy over the energy range typical of REELS, i.e. from 250 eV to 2 keV. Our goal is, on the one hand, to examine possible limits for the applicability of the approach and, on the other hand, to test a basic assumption of the PIA, namely that a unique DIIMFP and a unique DSEP account for REEL spectra, whatever the acquisition conditions (i.e. electron energy or angle of surface crossing) are. We find that a minimum energy exists below which the PIA cannot be applied and that the assumption of REEL spectra accounted for by unique DIIMFP and DSEP is indeed an approximation.

  19. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasma

    DOE PAGESBeta

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.

    2015-12-30

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power lawmore » $${\\gamma }^{-\\alpha }$$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.« less

  20. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasma

    SciTech Connect

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.

    2015-12-30

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power law ${\\gamma }^{-\\alpha }$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.

  1. Unfolding linac photon spectra and incident electron energies from experimental transmission data, with direct independent validation

    SciTech Connect

    Ali, E. S. M.; McEwen, M. R.; Rogers, D. W. O.

    2012-11-15

    Purpose: In a recent computational study, an improved physics-based approach was proposed for unfolding linac photon spectra and incident electron energies from transmission data. In this approach, energy differentiation is improved by simultaneously using transmission data for multiple attenuators and detectors, and the unfolding robustness is improved by using a four-parameter functional form to describe the photon spectrum. The purpose of the current study is to validate this approach experimentally, and to demonstrate its application on a typical clinical linac. Methods: The validation makes use of the recent transmission measurements performed on the Vickers research linac of National Research Council Canada. For this linac, the photon spectra were previously measured using a NaI detector, and the incident electron parameters are independently known. The transmission data are for eight beams in the range 10-30 MV using thick Be, Al and Pb bremsstrahlung targets. To demonstrate the approach on a typical clinical linac, new measurements are performed on an Elekta Precise linac for 6, 10 and 25 MV beams. The different experimental setups are modeled using EGSnrc, with the newly added photonuclear attenuation included. Results: For the validation on the research linac, the 95% confidence bounds of the unfolded spectra fall within the noise of the NaI data. The unfolded spectra agree with the EGSnrc spectra (calculated using independently known electron parameters) with RMS energy fluence deviations of 4.5%. The accuracy of unfolding the incident electron energy is shown to be {approx}3%. A transmission cutoff of only 10% is suitable for accurate unfolding, provided that the other components of the proposed approach are implemented. For the demonstration on a clinical linac, the unfolded incident electron energies and their 68% confidence bounds for the 6, 10 and 25 MV beams are 6.1 {+-} 0.1, 9.3 {+-} 0.1, and 19.3 {+-} 0.2 MeV, respectively. The unfolded spectra

  2. The Extent of Power-law Energy Spectra in Collisionless Relativistic Magnetic Reconnection in Pair Plasmas

    NASA Astrophysics Data System (ADS)

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.

    2016-01-01

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron-positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power law {γ }-α , with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. For large L and σ, the power-law index α approaches about 1.2.

  3. Source energy spectra from demodulation of solar particle data by interplanetary and coronal transport

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez-Madrigal, M.; Rivero, F.; Miroshnichenko, L. I.

    1985-01-01

    The data on source energy spectra of solar cosmic rays (SCR), i.e. the data on the spectrum form and on the absolute SCR are of interest for three reasons: (1) the SCR contain the energy comparable to the total energy of electromagnetic flare radiation (less than or equal to 10 to the 32nd power ergs); (2) the source spectrum form indicates a possible acceleration mechanism (or mechanism); and (3) the accelerated particles are efficiently involved in nuclear electromagnetic and plasma processes in the solar atmosphere. Therefore, the data on SCR source spectra are necessary for a theoretical description of the processes mentioned and for the formulation of the consistent flare model. Below it is attempted to sound solar particle sources by means of SCR energy spectrum obtained near the Sun, at the level of the roots of the interplanetary field lines in the upper solar corona. Data from approx. 60 solar proton events (SPE) between 1956-1981. These data were obtained mainly by the interplanetary demodulation of observed fluxes near the Earth. Further, a model of coronal azimuthal transport is used to demodulate those spectra, and to obtain the source energy spectra.

  4. Dependence of Delayed-Neutron Energy Spectra on the Energy of Neutrons which Induce Fission of Uranium -235

    NASA Astrophysics Data System (ADS)

    Sharfuddin, Quazi

    Delayed neutron energy spectra following both fast and thermal neutron induced fission of U-235 are measured by the time-of-flight technique using beta-neutron correlations. Fast neutrons are produced via the (p,n) reaction in Li-7 using the University of Lowell 5.5 MV Van de Graaff Accelerator, whereas thermal neutrons are produced by surrounding the fission chamber and target assembly with paraffin. Fission fragments stopped in the helium atmosphere of the fission chamber are transferred by a helium jet system to a low background counting room where the composite delayed neutron energy spectra are measured as a function of time after fission. The delayed neutron energy spectra following fast fission of U-235 are compared to those resulting from thermal fission of U-235. Two mathematical methods are developed to deduce the equilibrium delayed neutron spectrum from the composite delayed neutron spectra measured as a function of delay time after fission. These methods are then applied to obtain the equilibrium delayed neutron spectrum from thermal fission of U-235. Finally, the six-group delayed neutron spectra resulting from thermal fission of U-235 are deduced from the measured composite delayed neutron spectra as a function of delay time after fission using a matrix inversion method.

  5. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  6. Excitonic spectra and energy band structure of ZnAl2Se4 crystals

    NASA Astrophysics Data System (ADS)

    Syrbu, N. N.; Zalamai, V. V.; Tiron, A. V.; Tiginyanu, I. M.

    2015-11-01

    Absorption, reflection and wavelength modulated reflection spectra were investigated in ZnAl2Se4 crystals. The energy positions of ground and excited states for three excitonic series (A, B and C) were determined. The main parameters of excitons and more precise values of energy intervals V1(Γ7)-C1(Γ6), V2(Γ6)-C1(Γ6), and V3(Γ7)-C1(Γ6) were estimated. Values of splitting due to crystal field and spin-orbital interaction were calculated. Effective masses of electrons (mC1∗) and holes (mV1∗, mV2∗, mV3∗) were estimated. Reflection spectra contours in excitonic region were calculated using dispersion equations. Optical functions for E > Eg from measured reflection spectra were assigned on the base of Kramers-Kronig relations.

  7. Theoretical Study of FH2– Electron Photodetachment Spectra on New Ab Initio Potential Energy Surfaces.

    PubMed

    Yu, Dequan; Chen, Jun; Cong, Shulin; Sun, Zhigang

    2015-12-17

    The FH2– anion has a stable structure that resembles a configuration in the vicinity of the transition state for neutral reaction F + H2 → HF + H. Electron photodetachment spectra of the FH2– anion reveal the neutral reaction dynamics in the critical transition-state region. Accurate quantum dynamics simulations of the photodetachment spectra using highly accurate new ab initio potential energy surfaces for both anionic and neutral FH2 are performed and compared with all available experimental results. The results provide reliable interpretations for the experimental observations of FH2– photoelectron detachment and reveal a detailed picture of the molecular dynamics around the transition state of the F + H2 reaction. The latest high-resolution photoelectron detachment spectra [Kim et al. Science, 2015, 349, 510-513] confirm the high accuracy of our new potential energy surface for describing the resonance-enhanced reactivity of the neutral F + H2 reaction. PMID:26550683

  8. A measurement of the absolute energy spectra of galactic cosmic rays during the 1976-77 solar minimum

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Parnell, T. A.; Austin, R. W.; Selig, W. J.; Gregory, J. C.

    1992-01-01

    An instrument designed to measure elemental cosmic ray abundances from boron to nickel in the energy region 0.5-2.0 GeV/nucl was flown on a high altitude balloon from Sioux Falls, South Dakota, on 30 September through 1 October 1976 at an average atmospheric depth of about 5 g/sq cm. Differential energy spectra of B, C, N, O, Ne, Mg, Si and Fe, extrapolated to the top of the atmosphere, were measured. The float altitude exposure of 17 h ended near Alpena, Michigan. The flight trajectory maintained a north easterly heading out of Sioux Falls traversing the upper midwest region between 84 and 97 deg west longitude while remaining between 43.5 and 45 deg north latitude. The maximum vertical cut-off for this flight path was 1.77 GV or 0.35 GeV/nucl.

  9. Atomic site sensitivity of the energy loss magnetic chiral dichroic spectra of complex oxides

    SciTech Connect

    Calmels, L.; Rusz, J.

    2011-04-01

    The quantitative analysis of magnetic oxide core level spectra can become complicated when the magnetic atoms are located at several nonequivalent atomic sites in the crystal. This is, for instance, the case for Fe atoms in magnetite, which are located in tetrahedral and octahedral atomic sites; in this case, the x-ray magnetic circular dichroic (XMCD) spectra recorded at the L{sub 2,3} edge of Fe contain contributions from the different nonequivalent atomic sites, which unfortunately cannot be separated. Energy loss magnetic chiral dichroic (EMCD) spectra are the transmission electron microscope analogies of the XMCD spectra. One of the important differences between these two techniques of magnetic analysis is that EMCD uses a fast electron beam instead of polarized light. The fast electrons behave like Bloch states in the sample, and the fine structure of the EMCD spectra is strongly influenced by channeling and dynamical diffraction effects. These effects can be adjusted by changing the experimental configuration. We use theoretical calculations, which include dynamical diffraction effects and in which electronic transitions are treated in the atomic multiplet formalism, to show that the relative weight of the Fe atoms in different nonequivalent atomic sites can be changed by a proper choice of the position of the detector and of the magnetite sample orientation and thickness. We conclude that EMCD spectra could be used to isolate the magnetic contribution of atoms in each of the nonequivalent atomic sites, which would not be possible with XMCD techniques.

  10. Which Epeak? The Characteristic Energy of Gamma-ray Burst Spectra

    NASA Astrophysics Data System (ADS)

    Preece, Robert; Goldstein, Adam; Bhat, Narayana; Stanbro, Matthew; Hakkila, Jon; Blalock, Dylan

    2016-04-01

    A characteristic energy of individual gamma-ray burst (GRB) spectra can in most cases be determined from the peak energy of the energy density spectra (ν {{ F }}ν ), called “{E}{{peak}}.” Distributions of {E}{{peak}} have been compiled for time-resolved spectra from bright GRBs, as well as time-averaged spectra and peak flux spectra for nearly every burst observed by the Compton Gamma Ray Observatory Burst And Transient Source Experiment and the Fermi Gamma-ray Burst Monitor (GBM). Even when determined by an instrument with a broad energy band, such as GBM (8 keV to 40 MeV), the distributions themselves peak at around 240 keV in the observer’s frame, with a spread of roughly a decade in energy. {E}{{peak}} can have considerable evolution (sometimes greater than one decade) within any given burst, as amply demonstrated by single pulses in GRB 110721A and GRB 130427A. Meanwhile, several luminosity or energy relations have been proposed to correlate with either the time-integrated or peak flux {E}{{peak}}. Thus, when discussing correlations with {E}{{peak}}, the question arises, “Which {E}{{peak}}?” A single burst may be characterized by any of a number of values for {E}{{peak}} that are associated with it. Using a single-pulse simulation model with spectral evolution as a proxy for the type of spectral evolution observed in many bursts, we investigate how the time-averaged {E}{{peak}} emerges from the spectral evolution within a single pulse, how this average naturally correlates with the peak flux derived {E}{{peak}} in a burst, and how the distribution in {E}{{peak}} values from many bursts derives its surprisingly narrow width.

  11. Filter-fluorescer measurement of low-voltage simulator x-ray energy spectra

    SciTech Connect

    Baldwin, G.T.; Craven, R.E.

    1986-01-01

    X-ray energy spectra of the Maxwell Laboratories MBS and Physics International Pulserad 737 were measured using an eight-channel filter-fluorescer array. The PHOSCAT computer code was used to calculate channel response functions, and the UFO code to unfold spectrum.

  12. Energy loss and dynamical evolution of quark p{sub T} spectra

    SciTech Connect

    Roy, Pradip; Dutt-Mazumder, Abhee K.

    2006-04-15

    Average energy loss of light quarks has been calculated in a two stage equilibrium scenario where the quarks are executing Brownian motion in a gluonic heat bath. The evolution of the quark p{sub T} spectra is studied by solving Fokker-Planck equation in an expanding plasma. Results are finally compared with experimentally measured pion p{sub T} spectrum at RHIC.

  13. Similarity between turbulent kinetic energy and temperature spectra in the near-wall region

    NASA Technical Reports Server (NTRS)

    Antonia, R. A.; Kim, J.

    1991-01-01

    The similarity between turbulent kinetic energy and temperature spectra, previously confirmed using experimental data in various turbulent shear flows, is validated in the near-wall region using direct numerical simulation data in a fully developed turbulent channel flow. The dependence of this similarity on the molecular Prandtl number is also examined.

  14. Improved Experimental and Theoretical Energy Levels of Carbon I from Solar Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Chang, Edward S.; Geller, Murray

    1997-01-01

    We have improved the energy levels in neutral carbon using high resolution infrared solar spectra. The main source is the ATMOS spectrum measured by the Fourier transaform spectroscopy technique from 600 to 4800 cm-1, supplemented by the MARK IV balloon data, covering from 4700 to 5700 cm-1.

  15. Energy spectra of primary knock-on atoms under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Marian, J.; Sublet, J.-Ch.

    2015-12-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main "measure" of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared.

  16. Experimental observation of the ion energy spectra of Al, Co, and Cu laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Imanol Apiñaniz, Jon; Peralta Conde, Alvaro; Martínez Perez de Mendiola, Roberto

    2015-12-01

    It is well known that nanosecond laser produced plasmas (LPPs) produce high kinetic energy ions when they expand to vacuum. The acceleration process is nowadays accepted to be due to the formation of a sharp double layer (DL) in the plasma-vacuum boundary. With the purpose of studying this acceleration process, kinetic energy spectra of the plasma ions are measured for each charge state separately. Experimental results are obtained by irradiating planar targets of Cu, Co and Al at a laser wavelength of 532 nm and fluences up to 58.1 J cm-2. The obtained results show two new insights in the ion energy spectra. Firstly, they are non-maxwellian despite the widely accepted local thermal equilibrium in these type of plasmas. Secondly they show non-expected bicomponents distributions. The average energy of each species does not vary linearly with the charge state, suggesting complex acceleration processes.

  17. Composition and energy spectra of heavy nuclei of unknown origin detected on Skylab

    NASA Technical Reports Server (NTRS)

    Chan, J. H.; Price, P. B.

    1975-01-01

    At the orbit of Skylab, steeply falling energy spectra of nuclei with atomic numbers of at least 8 and energies between about 10 and 40 MeV/amu at intensities much higher than seen outside the magnetosphere were observed. The composition is consistent with that of the solar corona. It is suggested that heavy solar-wind ions enter the magnetosphere, are accelerated, and populate the inner radiation belt.

  18. Isospin dependence of fragment spectra in heavy/super-heavy colliding nuclei at intermediate energies

    NASA Astrophysics Data System (ADS)

    Chugh, Rajiv; Kumar, Rohit; Vinayak, Karan Singh

    2016-05-01

    Using isospin-dependent quantum molecular dynamics (IQMD) approach, we performed a theoretical investigation of the evolution of various kinds of fragments in heavy and superheavy-ion reactions in the intermediate/medium energy domain. We demonstrated direct impact of symmetry energy and Coulomb interactions on the evolution of fragments. Final fragment spectra (yields) obtained from the analysis of various heavy/super-heavy ion reactions at different reaction conditions show high sensitivity towards Coulomb interactions and less significant sensitivity to symmetry energy forms. No inconsistent pattern of fragment structure is obtained in case of super-heavy ion involved reactions for all the parameterizations of density dependence of symmetry energy.

  19. Photon interference effect in x-ray absorption spectra over a wide energy range

    NASA Astrophysics Data System (ADS)

    Nishino, Y.; Ishikawa, T.; Suzuki, M.; Kawamura, N.; Kappen, P.; Korecki, P.; Haack, N.; Materlik, G.

    2002-09-01

    We consider fundamental structures in x-ray absorption spectra over a wide energy range. We formulate the elastic scattering in addition to the photoelectric absorption in recently reported photon interference x-ray absorption fine structure (πXAFS). The simulations show excellent agreement with experimental x-ray absorption spectra for platinum and tungsten powders far above and below the L absorption edges. πXAFS can be as big as in the order of 10% of XAFS, and cannot be easily neglected in detailed analysis of XAFS and related phenomena.

  20. Linear energy transfer (LET) spectra of cosmic radiation in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Akopova, A. B.; Magradze, N. V.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Parnell, T. A.; Watts, J. W. Jr

    1990-01-01

    Integral linear energy transfer (LET) spectra of cosmic radiation (CR) particles were measured on five Cosmos series spacecraft in low Earth orbit (LEO). Particular emphasis is placed on results of the Cosmos 1887 biosatellite which carried a set of joint U.S.S.R.-U.S.A. radiation experiments involving passive detectors that included thermoluminescent detectors (TLDs), plastic nuclear track detectors (PNTDs), fission foils, nuclear photo-emulsions, etc. which were located both inside and outside the spacecraft. Measured LET spectra are compared with those theoretically calculated. Results show that there is some dependence of LET spectra on orbital parameters. The results are used to estimate the CR quality factor (QF) for the Cosmos 1887 mission.

  1. Linear Energy Transfer (LET) spectra of cosmic radiation in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.; Watts, J. W., Jr.; Akopova, A. B.; Magradze, N. V.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.

    1995-01-01

    Integral linear energy transfer (LET) spectra of cosmic radiation (CR) particles were measured on five Cosmos series spacecraft in low Earth orbit (LEO). Particular emphasis is placed on results of the Cosmos 1887 biosatellite which carried a set of joint U.S.S.R.-U.S.A. radiation experiments involving passive detectors that included thermoluminescent detectors (TLD's), plastic nuclear track detectors (PNTD's), fission foils, nuclear photo-emulsions, etc. which were located both inside and outside the spacecraft. Measured LET spectra are compared with those theoretically calculated. Results show that there is some dependence of LET spectra on orbital parameters. The results are used to estimate the CR quality factor (QF) for the COSMOS 1887 mission.

  2. Do deep-ocean kinetic energy spectra represent deterministic or stochastic signals?

    NASA Astrophysics Data System (ADS)

    van Haren, Hans

    2016-01-01

    In analogy with historic analyses of shallow-water tide-gauge records, in which tides and their higher harmonics are modified by sea level changes induced by atmospheric disturbances, it is shown that deep-sea currents can be interpreted as motions at predominantly inertial-tidal harmonic frequencies modified by slowly varying background conditions. In this interpretation, their kinetic energy spectra may not be smoothed into a quasi-stochastic continuum for (random-)statistic confidence. Instead, they are considered as quasi-deterministic line-spectra. Thus, the climatology of the internal wave field and its slowly varying background can be inferred from line spectra filling the cusps around nonlinear tidal-inertial harmonics, as suggested previously.

  3. Symmetry breaking gives rise to energy spectra of three states of matter.

    PubMed

    Bolmatov, Dima; Musaev, Edvard T; Trachenko, K

    2013-01-01

    A fundamental task of statistical physics is to start with a microscopic Hamiltonian, predict the system's statistical properties and compare them with observable data. A notable current fundamental challenge is to tell whether and how an interacting Hamiltonian predicts different energy spectra, including solid, liquid and gas phases. Here, we propose a new idea that enables a unified description of all three states of matter. We introduce a generic form of an interacting phonon Hamiltonian with ground state configurations minimising the potential. Symmetry breaking SO(3) to SO(2), from the group of rotations in reciprocal space to its subgroup, leads to emergence of energy gaps of shear excitations as a consequence of the Goldstone theorem, and readily results in the emergence of energy spectra of solid, liquid and gas phases. PMID:24077388

  4. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    SciTech Connect

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method.

  5. Geant4 Predictions of Energy Spectra in Typical Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Sabra, M. S.; Barghouty, A. F.

    2014-01-01

    Accurate knowledge of energy spectra inside spacecraft is important for protecting astronauts as well as sensitive electronics from the harmful effects of space radiation. Such knowledge allows one to confidently map the radiation environment inside the vehicle. The purpose of this talk is to present preliminary calculations for energy spectra inside a spherical shell shielding and behind a slab in typical space radiation environment using the 3D Monte-Carlo transport code Geant4. We have simulated proton and iron isotropic sources and beams impinging on Aluminum and Gallium arsenide (GaAs) targets at energies of 0.2, 0.6, 1, and 10 GeV/u. If time permits, other radiation sources and beams (_, C, O) and targets (C, Si, Ge, water) will be presented. The results are compared to ground-based measurements where available.

  6. Russian measurements of neutron energy spectra on the Mir orbital station.

    PubMed

    Lyagushin, V I; Dudkin, V E; Potapov, Y V; Sevastianov, V D

    2001-06-01

    Results of the experiments on neutron energy spectra measurements within broad energy range from 5 x 10(-7) to 2 x 10(2) MeV aboard the Mir orbital station and equivalent neutron dose estimation are presented. Four measurement techniques were used during the experiments. The shape of spectra and their absolute values are in good agreement. According to those experiments, an equivalent neutron dose depends upon effective shielding thickness and spacecraft mass. The neutron dose mentioned is comparable with that of ionizing radiation. Neutron flux levels measured aboard the Mir station have shown that a neutron spectrometer involving broad energy range will be used within the radiation monitoring systems in manned space flights. PMID:11855413

  7. Geant4 predictions of energy spectra in typical space radiation environment

    NASA Astrophysics Data System (ADS)

    Sabra, M. S.; Barghouty, A. F.

    2014-03-01

    Accurate knowledge of energy spectra inside spacecraft is important for protecting astronauts as well as sensitive electronics from the harmful effects of space radiation. Such knowledge allows one to confidently map the radiation environment inside the vehicle. The purpose of this talk is to present preliminary calculations for energy spectra inside a spherical shell shielding and behind a slab in typical space radiation environment using the 3D Monte-Carlo transport code Geant4. We have simulated proton and iron isotropic sources and beams impinging on Aluminum and Gallium arsenide (GaAs) targets at energies of 0.2, 0.6, 1, and 10 GeV/u. If time permits, other radiation sources and beams (α, C, O) and targets (C, Si, Ge, water) will be presented. The results are compared to ground-based measurements where available.

  8. Symmetry breaking gives rise to energy spectra of three states of matter

    PubMed Central

    Bolmatov, Dima; Musaev, Edvard T.; Trachenko, K.

    2013-01-01

    A fundamental task of statistical physics is to start with a microscopic Hamiltonian, predict the system's statistical properties and compare them with observable data. A notable current fundamental challenge is to tell whether and how an interacting Hamiltonian predicts different energy spectra, including solid, liquid and gas phases. Here, we propose a new idea that enables a unified description of all three states of matter. We introduce a generic form of an interacting phonon Hamiltonian with ground state configurations minimising the potential. Symmetry breaking SO(3) to SO(2), from the group of rotations in reciprocal space to its subgroup, leads to emergence of energy gaps of shear excitations as a consequence of the Goldstone theorem, and readily results in the emergence of energy spectra of solid, liquid and gas phases. PMID:24077388

  9. Evolution of Magnetic Helicity and Energy Spectra of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2016-03-01

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30-60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field.

  10. Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach.

    PubMed

    Fang, Tao; Jia, Junteng; Li, Shuhua

    2016-05-01

    The generalized energy-based fragmentation (GEBF) approach for molecular crystals with periodic boundary condition (PBC) (denoted as PBC-GEBF) is extended to allow vibrational spectra of molecular crystals to be easily computed at various theory levels. Within the PBC-GEBF approach, the vibrational frequencies of a molecular crystal can be directly evaluated from molecular quantum chemistry calculations on a series of nonperiodic molecular systems. With this approach, the vibrational spectra of molecular crystals can be calculated with much reduced computational costs at various theory levels, as compared to those required by the methods based on periodic electronic structure theory. By testing the performance of the PBC-GEBF method for two molecular crystals (CO2 and imidazole), we demonstrate that the PBC-GEBF approach can reproduce the results of the methods based on periodic electronic structure theory in predicting vibrational spectra of molecular crystals. We apply the PBC-GEBF method at second-order Møller-Plesset perturbation theory (PBC-GEBF-MP2 in short) to investigate the vibrational spectra of the urea and ammonia borane crystals. Our results show that the PBC-GEBF-MP2 method can provide quite accurate descriptions for the observed vibrational spectra of the two systems under study. PMID:27076120

  11. AUTOMATED ELEMENTAL COMPOSITION DETERMINATION AND CORRELATION OF PRECURSOR WITH PRODUCT IONS BASED ON ORTHOGONAL ACCELERATION, TIME-OF-FLIGHT MASS SPECTRA

    EPA Science Inventory

    For more than a decade in our laboratory, elemental compositions of ions in mass spectra havebeen routinely determined by measuring exact masses and relative isotopic abundances of ions in isotopicclusters using a GC coupled to a double focusing mass spectrometer.1 HPLC interfac...

  12. Post-collision-interaction distortion of low-energy photoelectron spectra associated with double Auger decay

    SciTech Connect

    Gerchikov, L.; Sheinerman, S.

    2011-08-15

    Atomic inner-shell photoionization followed by double Auger decay is investigated. The focus of our study is the effect of post-collision interaction (PCI) on the photoelectron energy distribution. A semi-classical approach is employed to describe the PCI distortion of the photoelectron line shapes associated with both direct and cascade double Auger decays. This approach is shown to be valid at low photoelectron energies, whereas for large incident photon energies it reduces to the eikonal approximation. The theory is applied to the case of Ar 2p photoionization spectra and good agreement with available experimental data is achieved.

  13. Energy spectra of the pneumatically positioned neutron sources at LLNL's Hazards control standards and calibration facility

    SciTech Connect

    Thorngate, J.H.

    1987-06-15

    The Hazards Control Department of Lawrence Livermore National Laboratory maintains a Standards and Calibration Laboratory that includes three neutron sources (two /sup 252/Cf and one /sup 238/PuBe that can be positioned pneumatically for irradiations. Ten moderators exist to modify the neutron energy spectra produced by these sources. The thicknesses and materials of these moderators are: 25-cm water; 5-, 10-, 15-, and 25-cm heavy water; 20-cm aluminum; and 2-, 5-, 10-, and 15-cm polyethylene. We used a multisphere spectrometer to measure the neutron spectra at 2 m from both the PuBe source and the smaller Cf source, with the sources bare, and in all of the moderators. These data were reduced in 25 energy groups ranging from 0.25 eV to 16 MeV. Except for the 15-m polyethylene moderator, we also made measurements using a liquid-scintillator fast-neutron spectrometer. These data were reduced in 0.1-MeV increments from 0.5 to 12.5 MeV. Spectra from the measurements and from independent calculations are presented in tabular and graphic form. Dosimetric values, calculated from both the measured and calculated spectra, are also presented.

  14. Kinetic energies to analyze the experimental auger electron spectra by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Endo, Kazunaka

    2016-02-01

    In the Auger electron spectra (AES) simulations, we define theoretical modified kinetic energies of AES in the density functional theory (DFT) calculations. The modified kinetic energies correspond to two final-state holes at the ground state and at the transition-state in DFT calculations, respectively. This method is applied to simulate Auger electron spectra (AES) of 2nd periodic atom (Li, Be, B, C, N, O, F)-involving substances (LiF, beryllium, boron, graphite, GaN, SiO2, PTFE) by deMon DFT calculations using the model molecules of the unit cell. Experimental KVV (valence band electrons can fill K-shell core holes or be emitted during KVV-type transitions) AES of the (Li, O) atoms in the substances agree considerably well with simulation of AES obtained with the maximum kinetic energies of the atoms, while, for AES of LiF, and PTFE substance, the experimental F KVV AES is almost in accordance with the spectra from the transitionstate kinetic energy calculations.

  15. NEW Fe I LEVEL ENERGIES AND LINE IDENTIFICATIONS FROM STELLAR SPECTRA

    SciTech Connect

    Peterson, Ruth C.; Kurucz, Robert L.

    2015-01-01

    The spectrum of the Fe I atom is critical to many areas of astrophysics and beyond. Measurements of the energies of its high-lying levels remain woefully incomplete, however, despite extensive laboratory and solar analysis. In this work, we use high-resolution archival absorption-line ultraviolet and optical spectra of stars whose warm temperatures favor moderate Fe I excitation. We derive the energy for a particular upper level in Kurucz's semiempirical calculations by adopting a trial value that yields the same wavelength for a given line predicted to be about as strong as that of a strong unidentified spectral line observed in the stellar spectra, then checking the new wavelengths of other strong predicted transitions that share the same upper level for coincidence with other strong observed unidentified lines. To date, this analysis has provided the upper energies of 66 Fe I levels. Many new energy levels are higher than those accessible to laboratory experiments; several exceed the Fe I ionization energy. These levels provide new identifications for over 2000 potentially detectable lines. Almost all of the new levels of odd parity include UV lines that were detected but unclassified in laboratory Fe I absorption spectra, providing an external check on the energy values. We motivate and present the procedure, provide the resulting new energy levels and their uncertainties, list all the potentially detectable UV and optical new Fe I line identifications and their gf values, point out new lines of astrophysical interest, and discuss the prospects for additional Fe I energy level determinations.

  16. Reconciling the light component and all-particle cosmic ray energy spectra at the knee

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Jia, Huan-Yu; Zhu, Feng-Rong

    2015-12-01

    The knee phenomenon of the cosmic ray spectrum, which plays an important role in studying the acceleration mechanism of cosmic rays, is still an unsolved mystery. We try to reconcile the knee spectra measured by ARGO-YBJ and Tibet-III. A simple broken power-law model fails to explain the experimental data. Therefore a modified broken power-law model with non-linear acceleration effects is adopted, which can describe the sharp knee structure. This model predicts that heavy elements dominate at the knee. Supported by NSFC (11175147)

  17. Energy-loss of He ions in carbon allotropes studied by elastic resonance in backscattering spectra

    NASA Astrophysics Data System (ADS)

    Tosaki, Mitsuo; Rauhala, Eero

    2015-10-01

    Backscattering spectra for 4He ions incident on carbon allotropes have been measured in the energy range from 4.30 to 4.95 MeV in steps of 50-100 keV at scattering angles of 106° and 170°. We used three carbon allotropes: graphite, diamond and amorphous carbon. For all these allotropes, we can observe the sharp (4He, 12C) elastic nuclear resonance at the He ion energy of 4.265 MeV in the backscattering spectra. By varying the incident He energy, we have systematically analyzed the profiles of the resonance peaks to study the energy-loss processes: stopping cross-sections and energy-loss straggling around the interesting region of the stopping maximum at about 500 keV. We focus on the resonance profiles and investigate an allotropic effect concerning the energy-loss. Furthermore, an energy bunching effect on the straggling is presented and the mechanism is discussed.

  18. Precision measurements of nuclear CR energy spectra and composition with the AMS-02 experiment

    NASA Astrophysics Data System (ADS)

    Fiandrini, E.

    2016-05-01

    The Alpha Magnetic Spectrometer 02 (AMS-02) is a large acceptance high-energy physics experiment operating since May 2011 on board the International Space Station. More than 60 billion events have been collected by the instrument in the first four years of operation. AMS-02 offers a unique opportunity to study the Cosmic Rays (CRs) since it measures the spectra of all the species simultaneously. We report on the precision measurements of primary and secondary nuclear spectra, in the GeV-TeV energy interval. These measurements allow for the first time a detailed study of the spectral index variation with rigidity providing a new insight on the origin and propagation of CR.

  19. Potential energy landscapes of elemental and heterogeneous chalcogen clusters

    SciTech Connect

    Mauro, John C.; Loucks, Roger J.; Balakrishnan, Jitendra; Varshneya, Arun K.

    2006-02-15

    We describe the potential energy landscapes of elemental S{sub 8}, Se{sub 8}, and Te{sub 8} clusters using disconnectivity graphs. Inherent structures include both ring and chain configurations, with rings especially dominant in Se{sub 8}. We also map the potential energy landscapes of heterogeneous Se{sub n}(S,Te){sub 8-n} clusters, which offer insights into the structure of heterogeneous chalcogen glasses.

  20. Precise description of nuclear spectra with Gogny energy density functional methods

    NASA Astrophysics Data System (ADS)

    Rodríguez, Tomás R.

    2016-07-01

    The evolution of self-consistent beyond-mean-field techniques (BMF) based on the Gogny interaction to better describe nuclear spectra is presented. In particular, different implementations of symmetry restorations and configuration mixing within the generator coordinate method are discussed. Finally, the results for excitation energies in the magnesium isotopic chain from N = 8 to N = 28 are provided as an example of the performance of those different many-body methods.

  1. Charge-state resolved energy spectra of swift 22Ne ions passing through thin carbon foils

    NASA Astrophysics Data System (ADS)

    Blazevic, A.; Bohlen, H. G.; von Oertzen, W.; Balashov, V. V.; Stysin, A. V.

    2006-04-01

    The method of coupled kinetic equations for a unified description of charge exchange and excitation of ions passing through matter is applied to calculate energy-loss spectra of swift 22Ne ions in carbon foils in the non-equilibrium regime. Good agreement is obtained for these calculations with the results of recent measurements, performed at the ISL-facility at the Hahn-Meitner Institute.

  2. The Effects of Low- and High-Energy Cutoffs on Solar Flare Microwave and Hard X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Oegerle, William (Technical Monitor)

    2002-01-01

    Microwave and hard x-ray spectra provide crucial information about energetic electrons and their environment in solar flares. These spectra are becoming better determined with the Owens Valley Solar Array (OVSA) and the recent launch of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The proposed Frequency Agile Solar Radiotelescope (FASR) promises even greater advances in radio observations of solar flares. Both microwave and hard x-ray spectra are sensitive to cutoffs in the electron distribution function. The determination of the high-energy cutoff from these spectra establishes the highest electron energies produced by the acceleration mechanism, while determination of the low-energy cutoff is crucial to establishing the total energy in accelerated electrons. This paper will show computations of the effects of both high- and low-energy cutoffs on microwave and hard x-ray spectra. The optically thick portion of a microwave spectrum is enhanced and smoothed by a low-energy cutoff, while a hard x-ray spectrum is flattened below the cutoff energy. A high-energy cutoff steepens the microwave spectrum and increases the wavelength at which the spectrum peaks, while the hard x-ray spectrum begins to steepen at photon energies roughly an order of magnitude below the electron cutoff energy. This work discusses how flare microwave and hard x-ray spectra can be analyzed together to determine these electron cutoff energies. This work is supported in part by the NASA Sun-Earth Connection Program.

  3. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Berezinsky, V.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate Xmax(E) and dispersion σ(Xmax) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ~ E-γ with γ~ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ~ 5Z× 1018 eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ~ E-2.7). In this sense, at the ankle EA≈ 5× 1018 eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  4. Shape of the absorption and fluorescence spectra of condensed phases and transition energies.

    PubMed

    Lagos, Miguel; Paredes, Rodrigo

    2014-11-13

    General integral expressions for the temperature-dependent profile of the spectral lines of photon absorption and emission by atomic or molecular species in a condensed environment are derived with no other hypothesis than: (a) The acoustic vibrational modes of the condensed host medium constitute the thermodynamic energy reservoir at a given constant temperature, and local electronic transitions modifying the equilibrium configuration of the surroundings are multiphonon events, regardless of the magnitude of the transition energy. (b) Electron-phonon coupling is linear in the variations of the bond length. The purpose is to develop a theoretical tool for the analysis of the spectra, allowing us to grasp highly accurate information from fitting the theoretical line shape function to experiment, including those spectra displaying wide features. The method is illustrated by applying it to two dyes, Lucifer Yellow CH and Coumarin 1, which display fluorescence maxima of 0.41 and 0.51 eV fwhm. Fitting the theoretical curves to the spectra indicates that the neat excitation energies are 2.58 eV ± 2.5% and 3.00 eV ± 2.0%, respectively. PMID:25321927

  5. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    SciTech Connect

    Aloisio, R.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate X{sub max}(E) and dispersion σ(X{sub max}) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ∼ E{sup -γ} with γ∼ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ∼ 5Z× 10{sup 18} eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ∼ E{sup -2.7}). In this sense, at the ankle E{sub A}≈ 5× 10{sup 18} eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  6. Ab initio calculations of the forbidden Bragg reflections energy spectra in wurtzites versus temperature.

    PubMed

    Oreshko, A P; Ovchinnikova, E N; Beutier, G; Collins, S P; Nisbet, G; Kolchinskaya, A M; Dmitrienko, V E

    2012-06-20

    Thermal-motion induced (TMI) scattering is caused by the influence of atomic displacements on electronic states in crystals and strongly depends on temperature. It corresponds to dipole-dipole resonant x-ray scattering, but is usually accompanied by dipole-quadrupole scattering. The phenomenological theory supposes the dipole-quadrupole term to be temperature independent (TI). As a result, the transformation of the energy spectra with temperature observed experimentally in ZnO and GaN corresponds to the interference between the TMI and TI terms. In the present paper the direct confirmation of this theoretical prediction is given. Ab initio molecular dynamics was used to simulate the sets of atomic sites at various temperatures followed by quantum mechanical calculation of resonant Bragg reflection energy spectra. The results of simulation are in excellent coincidence with experimental energy spectra of forbidden reflections and confirm the earlier phenomenological conjecture about the interference between the TI dipole-quadrupole and TMI dipole-dipole contributions to the resonant atomic factor. PMID:22627099

  7. Contribution of Recently Measured Nuclear Data to Reactor Antineutrino Energy Spectra Predictions

    SciTech Connect

    Estienne, M.; Bui, V.M.; Cucoanes, A.; Elnimr, M.; Giot, L.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Remoto, A.; Yermia, F.; Zakari-Issoufou, A.-A.

    2014-06-15

    The aim of this work is to study the impact of the inclusion of the recently measured β decay properties of the {sup 102,104,105,106,107}Tc, {sup 105}Mo, and {sup 101}Nb nuclei in the calculation of the antineutrino (anti-ν) energy spectra arising after the fissions of the four main fissile isotopes {sup 235,238}U, and {sup 239,241}Pu in PWRs. These β feeding probabilities, measured using the Total Absorption Technique (TAS) at the JYFL facility of Jyväskylä, have been found to play a major role in the γ component of the decay heat for {sup 239}Pu in the 4-3000 s range. Following the fission product summation method, the calculation was performed using the MCNP Utility Reactor Evolution code (MURE) coupled to the experimental spectra built from β decay properties of the fission products taken from evaluated databases. These latest TAS data are found to have a significant effect on the Pu isotope energy spectra and on the spectrum of {sup 238}U showing the importance of their measurement for a better assessment of the reactor anti-ν energy spectrum, as well as importance for fundamental neutrino physics experiments and neutrino applied physics.

  8. Contribution of Recently Measured Nuclear Data to Reactor Antineutrino Energy Spectra Predictions

    NASA Astrophysics Data System (ADS)

    Estienne, M.; Fallot, M.; Cormon, S.; Algora, A.; Bui, V. M.; Cucoanes, A.; Elnimr, M.; Giot, L.; Jordan, D.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Remoto, A.; Taín, J. L.; Yermia, F.; Zakari-Issoufou, A.-A.

    2014-06-01

    The aim of this work is to study the impact of the inclusion of the recently measured β decay properties of the 102,104,105,106,107Tc, 105Mo, and 101Nb nuclei in the calculation of the antineutrino (anti-ν) energy spectra arising after the fissions of the four main fissile isotopes 235,238U, and 239,241Pu in PWRs. These β feeding probabilities, measured using the Total Absorption Technique (TAS) at the JYFL facility of Jyväskylä, have been found to play a major role in the γ component of the decay heat for 239Pu in the 4-3000 s range. Following the fission product summation method, the calculation was performed using the MCNP Utility Reactor Evolution code (MURE) coupled to the experimental spectra built from β decay properties of the fission products taken from evaluated databases. These latest TAS data are found to have a significant effect on the Pu isotope energy spectra and on the spectrum of 238U showing the importance of their measurement for a better assessment of the reactor anti-ν energy spectrum, as well as importance for fundamental neutrino physics experiments and neutrino applied physics.

  9. The Energy Spectra of Proton and Helium Measured from the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Seo, E. S.; Adams, J. H.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2004-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon experiment is designed to investigate the composition and energy spectra of cosmic rays at the highest energies currently accessible from direct measurements, the region up to 100 TeV. The instrument consists of a silicon matrix for charge measurement, a graphite target (0.75 nuclear interaction length) to induce hadronic fragmentation, 3 scintillator strip hodoscopes for triggering and helping reconstruct trajectory, and a BGO calorimeter (18 radiation lengths) to measure the energy of incident particles. ATIC had two successful Long Duration Balloon (LDB) flights from McMurdo, Antarctica: from 12/28/00 to 01/13/01 and from 12/29/02 to 01/18/03. We present the energy spectra of proton and helium extracted from the ATIC flights, over the energy range from 100 GeV to 100 TeV, and compare them with the results from other experiments at both the lower and higher energy ends.

  10. AKARI observations of brown dwarfs. IV. Effect of elemental abundances on near-infrared spectra between 1.0 and 5.0 μm

    SciTech Connect

    Sorahana, S.; Yamamura, I.

    2014-09-20

    The detection of the CO{sub 2} absorption band at 4.2 μm in brown dwarf spectra by AKARI has made it possible to discuss CO{sub 2} molecular abundance in brown dwarf atmospheres. In our previous studies, we found an excess in the 4.2 μm CO{sub 2} absorption band of three brown dwarf spectra, and suggested that these deviations were caused by high C and O elemental abundances in their atmospheres. To validate this hypothesis, we have constructed a set of models of brown dwarf atmospheres with various elemental abundance patterns, and we investigate the variations of the molecular composition and the thermal structure, and how they affect the near-infrared spectra between 1.0 and 5.0 μm. The 4.2 μm CO{sub 2} absorption band in some late-L and T dwarfs taken by AKARI is stronger or weaker than predicted by corresponding models with solar abundance. By comparing the CO{sub 2} band in the model spectra to the observed near-infrared spectra, we confirm possible elemental abundance variations among brown dwarfs. We find that the band strength is especially sensitive to O abundance, but C is also needed to reproduce the entire near-infrared spectra. This result indicates that both the C and O abundances should increase and decrease simultaneously for brown dwarfs. We find that a weaker CO{sub 2} absorption band in a spectrum can also be explained by a model with lower 'C and O' abundances.

  11. Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra

    SciTech Connect

    Dey, Sanjib Fring, Andreas Mathanaranjan, Thilagarajah

    2014-07-15

    We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean–Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices. -- Highlights: •Different PT-symmetries lead to qualitatively different systems. •Construction of non-perturbative Dyson maps and isospectral Hermitian counterparts. •Numerical discussion of the eigenvalue spectra for one of the E(2)-systems. •Established link to systems studied in the context of optical lattices. •Setup for the E(3)-algebra is provided.

  12. 10 CFR Appendix D to Part 436 - Energy Program Conservation Elements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy Program Conservation Elements D Appendix D to Part.... 436, App. D Appendix D to Part 436—Energy Program Conservation Elements (a) In all successful energy conservation programs, certain key elements need to be present. The elements listed below must be...

  13. 10 CFR Appendix D to Part 436 - Energy Program Conservation Elements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy Program Conservation Elements D Appendix D to Part.... 436, App. D Appendix D to Part 436—Energy Program Conservation Elements (a) In all successful energy conservation programs, certain key elements need to be present. The elements listed below must be...

  14. 10 CFR Appendix D to Part 436 - Energy Program Conservation Elements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy Program Conservation Elements D Appendix D to Part.... 436, App. D Appendix D to Part 436—Energy Program Conservation Elements (a) In all successful energy conservation programs, certain key elements need to be present. The elements listed below must be...

  15. Decay heat and anti-neutrino energy spectra in fission fragments from total absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Krzysztof

    2015-10-01

    Decay studies of over forty 238U fission products have been studied using ORNL's Modular Total Absorption Spectrometer. The results are showing increased decay heat values, by 10% to 50%, and the energy spectra of anti-neutrinos shifted towards lower energies. The latter effect is resulting in a reduced number of anti-neutrinos interacting with matter, often by tens of percent per fission product. The results for several studied nuclei will be presented and their impact on decay heat pattern in power reactors and reactor anti-neutrino physics will be discussed.

  16. X-ray ionization yields and energy spectra in liquid argon

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Shekhtman, L.; Sokolov, A.

    2016-04-01

    The main purpose of this work is to provide reference data on X-ray ionization yields and energy spectra in liquid Ar to the studies in the field of Cryogenic Avalanche Detectors (CRADs) for rare-event and other experiments, based on liquid Ar detectors. We present the results of two related researches. First, the X-ray recombination coefficients in the energy range of 10-1000 keV and ionization yields at different electric fields, between 0.6 and 2.3 kV/cm, are determined in liquid Ar based on the results of a dedicated experiment. Second, the energy spectra of pulsed X-rays in liquid Ar in the energy range of 15-40 keV, obtained in given experiments including that with the two-phase CRAD, are interpreted and compared to those calculated using a computer program, to correctly determine the absorbed X-ray energy. The X-ray recombination coefficients and ionization yields have for the first time been presented for liquid Ar in systematic way.

  17. Sources of High-Energy Emission in the Green Pea Galaxies: New Constraints from Magellan Spectra

    NASA Astrophysics Data System (ADS)

    Carroll, Derek Alexander

    2016-01-01

    The recently discovered Green Pea galaxies display extreme starburst activity and may be some of the only possible Lyman continuum emitting galaxies at low redshift. Green Peas are characterized by their unusually high [O III]/[O II] ratios, similar to the ratios observed in high-redshift galaxies. In addition, the presence of the high-energy He II 4686 line shows that the Green Peas are highly ionized. However, the origin of the He II emission in the Green Peas, and many other starburst galaxies, is still an open question. We analyze IMACS and MagE spectra from the Magellan telescopes in order to evaluate the most probable cause of this He II emission. We also analyze other properties like dust content, temperature and density, and kinematic components. Our IMACS spectra show no Wolf-Rayet (WR) features. We set upper limits on the WR populations in our sample and conclude that Wolf-Rayet stars are not a likely candidate for the He II emission. With deeper MagE spectra we investigate energetic shocks as a possible source of the He II, and move one step closer to uncovering the origin of high-energy photons in these unique starbursts.

  18. New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products.

    PubMed

    Fallot, M; Cormon, S; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Taín, J L; Yermia, F; Zakari-Issoufou, A-A

    2012-11-16

    In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the (102;104;105;106;107)Tc, (105)Mo, and (101)Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes (235,238)U and (239,241)Pu. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of (239)Pu, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of (235)U, (239,241)Pu, and, in particular, (238)U for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra. PMID:23215477

  19. New Antineutrino Energy Spectra Predictions from the Summation of Beta Decay Branches of the Fission Products

    NASA Astrophysics Data System (ADS)

    Fallot, M.; Cormon, S.; Estienne, M.; Algora, A.; Bui, V. M.; Cucoanes, A.; Elnimr, M.; Giot, L.; Jordan, D.; Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Remoto, A.; Taín, J. L.; Yermia, F.; Zakari-Issoufou, A.-A.

    2012-11-01

    In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the Tc102;104;105;106;107, Mo105, and Nb101 nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes U235,238 and Pu239,241. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of Pu239, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of U235, Pu239,241, and, in particular, U238 for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra.

  20. Composition and energy spectra of heavy nuclei of unknown origin detected on Skylab

    NASA Technical Reports Server (NTRS)

    Chan, J. H.; Price, P. B.

    1975-01-01

    Lexan track detectors with large collecting power were exposed inside and outside Skylab during late 1973 and early 1974. Steeply falling energy spectra of nuclei with Z greater than or equal to 8 and energies between 10 and 40 MeV were observed at intensities much higher than those observed outside the magnetosphere. Four possible sources (solar flare particles; low-energy cosmic rays; the anomalous component of low-energy cosmic rays; particles trapped in the inner Van Allen belt) are examined using Skylab particle flux data outside the magnetosphere and other measurements. The composition is found to be most consistent with that of the solar corona. It is suggested that heavy solar wind ions enter the magnetosphere, are accelerated, and populate the inner radiation belt.

  1. A study of radiative Auger emission, satellites and hypersatellites in photon-induced K x-ray spectra of some elements in the range 20≤Z≤32

    NASA Astrophysics Data System (ADS)

    Verma, H. R.

    2000-09-01

    Photon-induced K x-ray spectra of Ca, Ti, Fe, Zn and Ge have been investigated. The measurements have been made using a crystal spectrometer combined with a thin scintillation detector. Excited by the collimated photon beam from an Rh-anode x-ray tube, the spectra of all these elements reveal the existence of radiative Auger emission (RAE) structure and the satellite and hypersatellite lines along with the diagram lines. The energies and intensities of the Kα2, Kα1, Kβ1,3 and Kβ5 diagram lines and the Kα satellites and hypersatellite transitions are presented. The intensity of the RAE structure corresponding to the Kβ1,3 x-ray transition and the energy of the RAE edge for each element is also reported. The measured results have been compared with the values from other sources such as electron/heavy-ion excitation and theoretical values. From the intensities of the satellite lines of these elements, the average L-vacancy fraction PL has been deduced in each case.

  2. Impurity effects on energy levels and far-infrared spectra of nanorings

    NASA Astrophysics Data System (ADS)

    Hui, Pan; Jia-Lin, Zhu

    2003-11-01

    The effects of a positively charged impurity on the energy levels and far-infrared spectra of one and two electrons in semiconductor nanorings under magnetic fields are studied. The effects of the nanoring size and the impurity position are also discussed. It is shown that the electron-electron interaction and electron-impurity one in nanorings are strongly dependent on the nanoring size and the impurity position. Based on the studies of the impurity and field effects, the impurity-induced Aharonov-Bohm oscillations of the far-infrared spectra are found. The results predict a possibility of observing phenomena related to electron-impurity interaction in a nanoring in the future.

  3. Energy Extraction from a Black Hole and Its Influence on X-Ray Spectra

    NASA Astrophysics Data System (ADS)

    Huang, Chang-Yin; Gong, Xiao-Long; Wang, Ding-Xiong

    2014-12-01

    Taking into account the energy and angular momentum transferred from a rotating black hole (BH) to the inner accretion disk by the magnetic connection (MC) process, we simulate the x-ray spectra from the disk-corona system with two different magnetic configurations using the Monte Carlo method. The results show that the MC process reduces the ratio of the power dissipated in the corona to the total and softens the spectrum. The influence of the MC process is stronger with a higher BH spin, a larger accretion rate, and a larger and more centralized magnetic flux threading the disk. The comparison of the model spectra with the observational data suggests that large-scale magnetic fields accumulating in the inner disk could be a candidate explanation for the hard-to-soft state evolutions in BH binaries.

  4. Spatially and momentum resolved energy electron loss spectra from an ultra-thin PrNiO{sub 3} layer

    SciTech Connect

    Kinyanjui, M. K. Kaiser, U.; Benner, G.; Pavia, G.; Boucher, F.; Habermeier, H.-U.; Keimer, B.

    2015-05-18

    We present an experimental approach which allows for the acquisition of spectra from ultra-thin films at high spatial, momentum, and energy resolutions. Spatially and momentum (q) resolved electron energy loss spectra have been obtained from a 12 nm ultra-thin PrNiO{sub 3} layer using a nano-beam electron diffraction based approach which enabled the acquisition of momentum resolved spectra from individual, differently oriented nano-domains and at different positions of the PrNiO{sub 3} thin layer. The spatial and wavelength dependence of the spectral excitations are obtained and characterized after the analysis of the experimental spectra using calculated dielectric and energy loss functions. The presented approach makes a contribution towards obtaining momentum-resolved spectra from nanostructures, thin film, heterostructures, surfaces, and interfaces.

  5. Calculations of the heights, periods, profile parameters, and energy spectra of wind waves

    NASA Technical Reports Server (NTRS)

    Korneva, L. A.

    1975-01-01

    Sea wave behavior calculations require the precalculation of wave elements as well as consideration of the spectral functions of ocean wave formation. The spectrum of the random wave process is largely determined by the distribution of energy in the actual wind waves observed on the surface of the sea as expressed in statistical and spectral characteristics of the sea swell.

  6. Energy Spectra of Ions Accelerated in Impulsive and Gradual Solar Events

    NASA Astrophysics Data System (ADS)

    Reames, D. V.; Barbier, L. M.; Von Rosenvinge; T. T.; Mason, G. M.; Mazur, J. E.; Dwyer; J. R.

    1997-07-01

    We report new high-sensitivity measurements of the energy spectra of ions from five impulsive solar flares and one gradual event observed during solar minimum by the Energetic Particles, Acceleration, Composition, and Transport (EPACT) experiment aboard the WIND spacecraft. All of the impulsive-flare events had intensities too low to be visible on previous spacecraft such as ISEE 3, which observed hundreds of impulsive-flare events. Often these events cluster in or behind a coronal mass ejection (CME) where magnetic field lines provide an excellent connection to a solar active region where flares are occurring. In most cases we can see velocity dispersion as the ions of 20 keV amu-1 to 10 MeV amu-1 streamed out from the impulsive flare at the Sun, arriving in inverse order of their velocity. Ions from a large, magnetically well-connected gradual event, associated with a CME-driven shock, also show velocity dispersion early in the event but show identical time profiles that last for several days late in the event. These time-invariant spectra of H, 4He, C, O, and Fe in this gradual event are well represented as power laws in energy from 20 keV amu-1 to ~100 MeV amu-1. In the impulsive-flare events, H, 3He, 4He, C, O, and Fe have more rounded spectra that flatten somewhat at low energies; yet the intensities continue to increase down to 20 keV amu-1. Most of the ion energy content appears to lie below 1 MeV in the impulsive events, where it would be invisible to γ-ray line observations.

  7. Comprehensive study of the surface peak in charge-integrated low-energy ion scattering spectra

    SciTech Connect

    Draxler, M.; Gruber, R.; Bauer, P.; Beikler, R.; Taglauer, E.; Schmid, K.; Ermolov, S. N.

    2003-08-01

    Low-energy ion scattering is very surface sensitive if scattered ions are analyzed. By time-of-flight (TOF) techniques, the neutral and the charge-integrated spectra (ions plus neutrals) are obtained, which yield information about deeper layers. It is well known that charge integrated spectra may exhibit a surface peak which is more pronounced for heavier projectiles, e.g., Ne ions. Aiming at a more profound physical understanding of this surface peak, we performed TOF experiments and computer simulations for H, He, and Ne projectiles scattered from a polycrystalline copper target. Measurements were done in the range of 1-9 keV for a scattering angle of 129 degree sign under UHV conditions. The simulations were performed using the MARLOWE code for the given experimental parameters and a polycrystalline target. In the experiments, a pronounced surface peak was observed at low energies, which fades away at higher energies. This peak is quantitatively reproduced by the simulation. Several atomic layers may contribute to the surface peak, depending on the energy. Analyzing the contributions of the individual outermost atomic layers, one finds that the binary collisions of the projectiles with atoms in the first and the second layer yield a narrow energy distribution, while the contribution from the deeper layers is dominated by multiple scattering and therefore exhibits a very broad energy spectrum. It is shown that the appearance of a more or less pronounced surface peak is due to the relative contributions of single scattering and multiple scattering and thus depends on the projectile energy and mass.

  8. Low energy x-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    SciTech Connect

    Iwanczyk, J.S.; Dabrowski, A.J.; Huth, G.C.; Bradley, J.G.; Conley, J.M.; Albee, A.L.

    1985-01-01

    A mercuric iodide energy dispersive x-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K/sub ..cap alpha../ at 5.9 keV and 195 eV (FWHM) for Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies. 16 refs., 5 figs.

  9. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  10. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Ham, Kyung-Sik; Han, Song-Hee; Yoo, Jonghyun; Jeong, Sungho

    2014-11-01

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results.

  11. Elemental processes of transport and energy conversion in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Angelopoulos, Vassilis

    In the last 5 years observations from several missions and ground based observatories have honed in on the most elemental aspects of flux transport and energy conversion. Dipolarization fronts and their counterpart in the distant magnetotail "anti-dipolarization" fronts, which together are refered to herein as "reconnection fronts", usher the recently reconnected flux tubes from the near-Earth X-points and in the process convert magnetic energy to particle energy and wave radiation. On the tailward side they are responsible for plasmoid formation and acceleration. On the earthward side they result in elemental substorm current wedges or wedglets, which were initially postulated from ground observations alone. Recent observations have revealed how the interaction of wedgelets and the inner magnetosphere takes place. Questions remain with regards to the physics of the energy transfer process from global magnetic energy to local heating and waves, and with regards to the initiation of the X-point activations in space. Observations indicate that the latter may be induced by polar cap or dayside activity, suggesting a direct link between dayside reconnection and nightside phenomena. The likely causal sequence of events and open questions in light of these recent observations, and the field's outlook in anticipation of upcoming coordinated observations from the international Heliophysics System Observatory will be discussed.

  12. A model of galactic cosmic rays for use in calculating linear energy transfer spectra

    NASA Technical Reports Server (NTRS)

    Chen, J.; Chenette, D.; Clark, R.; Garcia-Munoz, M.; Guzik, T. G.; Pyle, K. R.; Sang, Y.; Wefel, J. P.

    1994-01-01

    The Galactic Cosmic Rays (GCR) contain fully stripped nuclei, from Hydrogen to beyond the Iron group, accelerated to high energies and are a major component of the background radiation encountered by satellites and interplanetary spacecraft. This paper presents a GCR model which is based upon our current understanding of the astrophysics of GCR transport through interstellar and interplanetary space. The model can be used to predict the energy spectra for all stable and long-lived radioactive species from H to Ni over an energy range from 50 to 50,000 MeV/nucleon as a function of a single parameter, the solar modulation level phi. The details of this model are summarized, phi is derived for the period 1974 to present, and results from this model during the 1990/1991 Combined Release and Radiation Effects Satellite (CRRES) mission are presented.

  13. Infrared Spectra and Calculated Binding Energies of γ-BUTYROLACTONE Dimers and Trimers

    NASA Astrophysics Data System (ADS)

    Willis, Eric; Baumann, Chris

    2014-06-01

    Infrared spectra for matrix-isolated γ-butyrolactone and γ-butyrolactone-d_6 were obtained. The carbonyl stretching mode occurs at 1803 cm-1 for the monomer species, 1786 cm-1 for the dimer species, and 1774 cm-1 for the trimer species (1797, 1789 and 1770 cm-1 for the deuterated isotopomer.) Vibrational frequencies calculated using density functional theory are in agreement with the experimental values. Density functional theory was used to calculate the structures and binding energies of γ-butyrolactone dimers and trimers. Binding energies of 55-58 kJ mol-1 are predicted for the dimer structures. Optimized geometries for stacked and ring trimer structures have been calculated, with predicted binding energies of up to 68 kJ mol-1.

  14. Localization, time histories, and energy spectra of a new type of recurrent high-energy transient source

    NASA Technical Reports Server (NTRS)

    Atteia, J.-L.; Boer, M.; Hurley, K.; Niel, M.; Vedrenne, G.; Fenimore, E. E.; Klebesadel, R. W.; Laros, J. G.; Kuznetsov, A. V.; Kouveliotou, C.

    1987-01-01

    The detection of a recurrent high-energy transient source which is neither a classical X-ray nor a gamma-ray burster, but whose properties are intermediate between the two, is reported. The energy spectra of 12 recurrent events are found to be soft, characterized by kT's of 34-56 keV. The time histories are short with rise and fall times as fast as about 10 ms. The source location is a 0.12 sq deg region about 10 deg from the Galactic center.

  15. N to K Uranium PIXE spectra obtained at the high resolution high energy PIXE setup

    NASA Astrophysics Data System (ADS)

    Chaves, P. C.; Taborda, A.; Marques, J. P.; Reis, M. A.

    2014-01-01

    The CTN (previous ITN) high resolution high energy (HRHE) PIXE set-up facility was set in operation on July 2008 and upgrades were being implemented until late in 2011. The study of a pure UO2 sample and the mapping of geological sample are the first results where the whole range of possibilities has been exploited, namely the possibility of obtaining simultaneous spectra covering a very wide energy range of more than 100 keV. In this paper, the N-shell to K-shell spectra of Uranium is presented and discussed, as well as the details on the characteristics and capacities of the setup, including the automated X-Y positioning systems installed in the X-Y-Z sample support unit, which allows for the possibility of making macroscopic mappings of geological samples (Chaves et al. (2013) [1]). As for the N-shell lines in the X-ray Microcalorimeter Spectrometer (XMS) spectrum, due to the lack of data (Zschornack (2007) [2]), transition energies were determined using ab initio calculations assuming a closed shell U4+ electronic structure for Uranium prior to the ionisation by proton impact.

  16. NOTE: Near surface photon energy spectra outside a 6 MV field edge

    NASA Astrophysics Data System (ADS)

    Edwards, C. R.; Mountford, P. J.

    2004-09-01

    The purpose of this study was to investigate the difference between a 6 MV linear accelerator x-ray energy spectrum outside the field edge near a phantom surface, and the corresponding spectrum on the central axis. The Monte Carlo code MCNP-4A was used to calculate the spectra on the central axis and at 1, 2, 5 and 10 cm from the edge of a 4 × 4 cm2, 10 × 10 cm2 and 15 × 15 cm2 field. Compared to the spectrum on the central axis, the spectra outside the field edge showed two distinct regions: a broad peak below about 0.5 MeV, and a lower amplitude, less rapidly changing region at higher energies from 0.5 to 6 MeV. The lower energy peak was due to scattered photons, and the higher energy component was due mainly to primary photons transmitted through the jaws of the secondary collimator. The potential impact of these spectral differences on critical organ photon dosimetry was determined by calculating the ratio of the sensitivity of a Scanditronix EDD-5 diode and of a LiF:Mg:Ti thermoluminescent dosimeter (TLD) outside the field edge to their respective sensitivity at the calibration position on the central axis. The lower energy peak combined with the non-uniform energy sensitivity of each detector produced up to a two-thirds overestimate of x-ray dose outside the field by the diode, whereas the response ratio of the TLD was about unity. These results indicated that a similar evaluation was required for profile measurements of a dynamic wedged field and measurements in an intensity modulated beam with either type of detector.

  17. Near surface photon energy spectra outside a 6 MV field edge.

    PubMed

    Edwards, C R; Mountford, P J

    2004-09-21

    The purpose of this study was to investigate the difference between a 6 MV linear accelerator x-ray energy spectrum outside the field edge near a phantom surface, and the corresponding spectrum on the central axis. The Monte Carlo code MCNP-4A was used to calculate the spectra on the central axis and at 1, 2, 5 and 10 cm from the edge of a 4 x 4 cm2, 10 x 10 cm2 and 15 x 15 cm2 field. Compared to the spectrum on the central axis, the spectra outside the field edge showed two distinct regions: a broad peak below about 0.5 MeV, and a lower amplitude, less rapidly changing region at higher energies from 0.5 to 6 MeV. The lower energy peak was due to scattered photons, and the higher energy component was due mainly to primary photons transmitted through the jaws of the secondary collimator. The potential impact of these spectral differences on critical organ photon dosimetry was determined by calculating the ratio of the sensitivity of a Scanditronix EDD-5 diode and of a LiF:Mg:Ti thermoluminescent dosimeter (TLD) outside the field edge to their respective sensitivity at the calibration position on the central axis. The lower energy peak combined with the non-uniform energy sensitivity of each detector produced up to a two-thirds overestimate of x-ray dose outside the field by the diode, whereas the response ratio of the TLD was about unity. These results indicated that a similar evaluation was required for profile measurements of a dynamic wedged field and measurements in an intensity modulated beam with either type of detector. PMID:15509076

  18. Energy-weighted sum rules and the analysis of vibrational structure in molecular spectra

    NASA Astrophysics Data System (ADS)

    Smith, W. L.

    2015-10-01

    The energy-weighted sum SV = Σn (E‧n - E″m)|<ψ″m|ψ‧n>|2 = <ψ″m|ΔV|ψ″m> for the vibrational potential functions V‧, V″ associated with transitions between two electronic states of diatomic molecular species is investigated and specific formulae are given using Morse functions for V‧ and V″. It is found that these formulae are useful approximations which provide a convenient way to analyse the vibrational structure of real spectra to give estimates of molecular parameters such as the change in internuclear distance accompanying a transition.

  19. Plasma scale-length effects on electron energy spectra in high-irradiance laser plasmas

    NASA Astrophysics Data System (ADS)

    Culfa, O.; Tallents, G. J.; Rossall, A. K.; Wagenaars, E.; Ridgers, C. P.; Murphy, C. D.; Dance, R. J.; Gray, R. J.; McKenna, P.; Brown, C. D. R.; James, S. F.; Hoarty, D. J.; Booth, N.; Robinson, A. P. L.; Lancaster, K. L.; Pikuz, S. A.; Faenov, A. Ya.; Kampfer, T.; Schulze, K. S.; Uschmann, I.; Woolsey, N. C.

    2016-04-01

    An analysis of an electron spectrometer used to characterize fast electrons generated by ultraintense (1020W cm-2 ) laser interaction with a preformed plasma of scale length measured by shadowgraphy is presented. The effects of fringing magnetic fields on the electron spectral measurements and the accuracy of density scale-length measurements are evaluated. 2D EPOCH PIC code simulations are found to be in agreement with measurements of the electron energy spectra showing that laser filamentation in plasma preformed by a prepulse is important with longer plasma scale lengths (>8 μ m ).

  20. Excitation-induced energy shifts in the optical gain spectra of InN quantum dots

    NASA Astrophysics Data System (ADS)

    Lorke, M.; Seebeck, J.; Gartner, P.; Jahnke, F.; Schulz, S.

    2009-08-01

    A microscopic theory for the optical absorption and gain spectra of InN quantum-dot systems is used to study the combined influence of material properties and interaction-induced effects. Atomistic tight-binding calculations for the single-particle properties of the self-assembled quantum-dot and wetting-layer system are used in conjunction with a many-body description of Coulomb interaction and carrier phonon interaction. We analyze the carrier-density and temperature dependence of strong excitation-induced energy shifts of the dipole-allowed quantum-dot transitions.

  1. Theory of High-Energy Features in the Tunneling Spectra of Quantum-Hall Systems

    NASA Astrophysics Data System (ADS)

    MacDonald, A. H.

    2010-11-01

    We show that the low-temperature sash features in lowest Landau-level (LLL) tunneling spectra recently discovered by Dial and Ashoori are intimately related to the discrete Haldane-pseudopotential interaction energy scales that govern fractional quantum-Hall physics. Our analysis is based on expressions for the tunneling density of states which become exact at filling factors close to ν=0 and ν=1, where the sash structure is most prominent. We comment on other aspects of LLL correlation physics that can be revealed by accurate temperature-dependent tunneling data.

  2. Theory of high-energy features in the tunneling spectra of quantum-Hall systems.

    PubMed

    MacDonald, A H

    2010-11-12

    We show that the low-temperature sash features in lowest Landau-level (LLL) tunneling spectra recently discovered by Dial and Ashoori are intimately related to the discrete Haldane-pseudopotential interaction energy scales that govern fractional quantum-Hall physics. Our analysis is based on expressions for the tunneling density of states which become exact at filling factors close to ν=0 and ν=1, where the sash structure is most prominent. We comment on other aspects of LLL correlation physics that can be revealed by accurate temperature-dependent tunneling data. PMID:21231254

  3. 10 CFR Appendix D to Part 436 - Energy Program Conservation Elements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy Program Conservation Elements D Appendix D to Part 436 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Pt. 436, App. D Appendix D to Part 436—Energy Program Conservation Elements (a) In all successful...

  4. 10 CFR Appendix D to Part 436 - Energy Program Conservation Elements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy Program Conservation Elements D Appendix D to Part 436 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Pt. 436, App. D Appendix D to Part 436—Energy Program Conservation Elements (a) In all successful...

  5. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter.

    PubMed

    Chofor, Ndimofor; Harder, Dietrich; Willborn, Kay; Rühmann, Antje; Poppe, Björn

    2011-09-01

    The varying low-energy contribution to the photon spectra at points within and around radiotherapy photon fields is associated with variations in the responses of non-water equivalent dosimeters and in the water-to-material dose conversion factors for tissues such as the red bone marrow. In addition, the presence of low-energy photons in the photon spectrum enhances the RBE in general and in particular for the induction of second malignancies. The present study discusses the general rules valid for the low-energy spectral component of radiotherapeutic photon beams at points within and in the periphery of the treatment field, taking as an example the Siemens Primus linear accelerator at 6 MV and 15 MV. The photon spectra at these points and their typical variations due to the target system, attenuation, single and multiple Compton scattering, are described by the Monte Carlo method, using the code BEAMnrc/EGSnrc. A survey of the role of low energy photons in the spectra within and around radiotherapy fields is presented. In addition to the spectra, some data compression has proven useful to support the overview of the behaviour of the low-energy component. A characteristic indicator of the presence of low-energy photons is the dose fraction attributable to photons with energies not exceeding 200 keV, termed P(D)(200 keV). Its values are calculated for different depths and lateral positions within a water phantom. For a pencil beam of 6 or 15 MV primary photons in water, the radial distribution of P(D)(200 keV) is bellshaped, with a wide-ranging exponential tail of half value 6 to 7 cm. The P(D)(200 keV) value obtained on the central axis of a photon field shows an approximately proportional increase with field size. Out-of-field P(D)(200 keV) values are up to an order of magnitude higher than on the central axis for the same irradiation depth. The 2D pattern of P(D)(200 keV) for a radiotherapy field visualizes the regions, e.g. at the field margin, where changes of

  6. Transverse energy distribution, charged particle multiplicities and spectra in /sup 16/O-nucleus collisions

    SciTech Connect

    Sunier, J.W.

    1987-01-01

    The HELIOS (High Energy Lepton and Ion Spectrometer) experiment, installed at the CERN Super Proton Synchrotron, proposes to examine in details the physical properties of a state of high energy created in nuclei by ultra-relativistic nucleus-nucleus collisions. It is generally believed that, at high densities or temperatures, a phase transition to a plasma of quark and gluons will occur. The dynamic of the expansion of such a plasma and its subsequent condensation into a hadron gas should markedly affect the composition and momentum distribution of the emerging particles and photons. The HELIOS experimental setup therefore combines 4..pi.. calorimetric coverage with measurements of inclusive particle spectra, two particle correlations, low and high mass lepton pairs and photons. The emphasis is placed on transverse energy flow (E/sub T/) measurements with good energy resolution, and the ability to trigger the acquisition of data in a variety of E/sub T/ ranges, thereby selecting the impact parameter or the violence of the collisions. This short note presents HELIOS results, for the most part still preliminary, on /sup 16/O-nucleus collisions at the incident energies of 60 and 200 GeV per nucleon. The E/sub T/ distributions from Al, Ag and W targets are discussed and compared to the associated charged particle multiplicities from W. Charged particle and (converted) photon spectra measured with the external magnetic spectrometer are compared for /sup 16/O + W and p + W collisions at 200 GeV per nucleon. 5 refs., 7 figs.

  7. Detailed parametrization of neutrino and gamma-ray energy spectra from high energy proton-proton interactions

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.

    2016-02-01

    Gamma rays and neutrinos are produced as a result of proton-proton interactions that occur in different astrophysical contexts. The detection of these two types of messengers is of great importance for the study of different physical phenomena, related to nonthermal processes, taking place in different astrophysical scenarios. Therefore, the knowledge of the energy spectrum of these two types of particles, as a function of the incident proton energy, is essential for the interpretation of the observational data. In this paper, parametrizations of the energy spectra of gamma rays and neutrinos, originated in proton-proton collisions, are presented. The energy range of the incident protons considered extends from 102 to 108 GeV . The parametrizations are based on Monte Carlo simulations of proton-proton interactions performed with the hadronic interaction models QGSJET-II-04 and EPOS-LHC, which have recently been updated with the data taken by the Large Hadron Collider.

  8. Investigation on energy conversion technology using biochemical reaction elements, 2

    NASA Astrophysics Data System (ADS)

    1994-03-01

    For measures taken for resource/energy and environmental issues, a study is made on utilization of microbial biochemical reaction. As a reaction system using chemical energy, cited is production of petroleum substitution substances and food/feed by CO2 fixation using hydrogen energy and hydrogen bacteria. As to photo energy utilization, regarded as promising are CO2 fixation using photo energy and microalgae, and production of hydrogen and useful carbon compound using photosynthetic organisms. As living organism/electric energy interconversion, cited is the culture of chemoautotrophic bacteria which fix CO2 using electric energy. For enhancing its conversion efficiency, it is important to develop a technology of gene manipulation of the bacteria and a system to use functional biochemical elements adaptable to the electrode reaction. With regard to utilization of the microorganism metabolic function, the paper presents emission of soluble nitrogen in the hydrosphere into the atmosphere using denitrifying bacteria, removal of phosphorus, reduction in environmental pollution caused by heavy metal dilute solutions, and recovery as resources, etc.

  9. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1997-01-01

    UNH was assigned the responsibility to use their accelerator neutron measurements to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution. Direct accelerator-based measurements by UNH of the energy-dependent efficiencies for detecting neutrons with energies from 36 to 720 MeV in NaI were compared with Monte Carlo TASC calculations. The calculated TASC efficiencies are somewhat lower (by about 20%) than the accelerator results in the energy range 70-300 MeV. The measured energy-loss spectrum for 207 MeV neutron interactions in NaI were compared with the Monte Carlo response for 200 MeV neutrons in the TASC indicating good agreement. Based on this agreement, the simulation was considered to be sufficiently accurate to generate a neutron response library to be used by UNH in modifying the TASC fitting program to include a neutron component in the flare spectrum modeling. TASC energy-loss data on the 1991 June 11 flare was transferred to UNH. Also included appendix: Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991.

  10. Effects of the Electron Energy Distribution Function on Modeled X-ray Spectra

    SciTech Connect

    Shlyaptseva, A S; Hansen, S B

    2004-02-19

    This paper presents the results of a broad investigation into the effects of the electron energy distribution function on the predictions of non-LTE collisional-radiative atomic kinetics models. The effects of non-Maxwellian and suprathermal (''hot'') electron distributions on collisional rates (including three-body recombination) are studied. It is shown that most collisional rates are fairly insensitive to the functional form and characteristic energy of the electron distribution function as long as the characteristic energy is larger than the threshold energy for the collisional process. Collisional excitation and ionization rates, however, are highly sensitive to the fraction of hot electrons. This permits the development of robust spectroscopic diagnostics that can be used to characterize the electron density, bulk electron temperature, and hot electron fraction of plasmas with non-equilibrium electron distribution functions (EDFs). Hot electrons are shown to increase and spread out plasma charge state distributions, amplify the intensities of emission lines fed by direct collisional excitation and radiative cascades, and alter the structure of satellite features in both K- and L-shell spectra. The characteristic energy, functional form, and spatial properties of hot electron distributions in plasmas are open to characterization through their effects on high-energy continuum and line emission and on the polarization of spectral lines.

  11. Explanation of the local galactic cosmic ray energy spectra measured by Voyager 1. I. Protons

    SciTech Connect

    Schlickeiser, R.; Kempf, A.; Webber, W. R. E-mail: ank@tp4.rub.de

    2014-05-20

    Almost exactly 100 yr after the original discovery of cosmic rays, the V1 spacecraft has observed, for the first time, the local interstellar medium energy spectra of cosmic ray H, He, C/O nuclei at nonrelativistic kinetic energies, after leaving the heliosphere modulation region on 2012 August 25. We explain these observations by modeling the propagation of these particles in the local Galactic environment with an updated steady-state spatial diffusion model including all particle momentum losses with the local interstellar gas (Coulomb/ionization, pion production, adiabatic deceleration, and fragmentation interactions). Excellent agreement with the V1 cosmic ray H observations is obtained if the solar system resides within a spatially homogeneous layer of distributed cosmic ray sources injecting the same momentum power law ∝p {sup –s} with s = 2.24 ± 0.12. The best fit to the V1 H observations also provides an estimate of the characteristic break kinetic energy T{sub C} = 116 ± 27 MeV, representing the transition from ionization/Coulomb energy losses at low energies to pion production and adiabatic deceleration losses in a Galactic wind at high energies. As the determined value is substantially smaller than 217 MeV in the absence of adiabatic deceleration, our results prove the existence of a Galactic wind in the local Galactic environment.

  12. Explanation of the Local Galactic Cosmic Ray Energy Spectra Measured by Voyager 1. I. Protons

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Webber, W. R.; Kempf, A.

    2014-05-01

    Almost exactly 100 yr after the original discovery of cosmic rays, the V1 spacecraft has observed, for the first time, the local interstellar medium energy spectra of cosmic ray H, He, C/O nuclei at nonrelativistic kinetic energies, after leaving the heliosphere modulation region on 2012 August 25. We explain these observations by modeling the propagation of these particles in the local Galactic environment with an updated steady-state spatial diffusion model including all particle momentum losses with the local interstellar gas (Coulomb/ionization, pion production, adiabatic deceleration, and fragmentation interactions). Excellent agreement with the V1 cosmic ray H observations is obtained if the solar system resides within a spatially homogeneous layer of distributed cosmic ray sources injecting the same momentum power law vpropp -s with s = 2.24 ± 0.12. The best fit to the V1 H observations also provides an estimate of the characteristic break kinetic energy TC = 116 ± 27 MeV, representing the transition from ionization/Coulomb energy losses at low energies to pion production and adiabatic deceleration losses in a Galactic wind at high energies. As the determined value is substantially smaller than 217 MeV in the absence of adiabatic deceleration, our results prove the existence of a Galactic wind in the local Galactic environment.

  13. Energy spectra of single neutrons and charged particles emitted following the absorption of stopped negative pions in 4He

    NASA Astrophysics Data System (ADS)

    Cernigoi, C.; Gabrielli, I.; Grion, N.; Pauli, G.; Saitta, B.; Ricci, R. A.; Boccaccio, P.; Viesti, G.

    1981-02-01

    Energy spectra have been measured of single neutrons, protons and deuterons emitted following the capture at rest of negative pions in 4He. The neutron energy spectrum has been measured with an energy resolution of 4% at 90 MeV. The absolute number of stopped pions has been measured.

  14. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Optional elements of State Energy Program plans. 420.17... Procedures § 420.17 Optional elements of State Energy Program plans. (a) Other appropriate activities or... establishing State-level Energy Technology Commercialization Services Program as an optional element of...

  15. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Optional elements of State Energy Program plans. 420.17... Procedures § 420.17 Optional elements of State Energy Program plans. (a) Other appropriate activities or... establishing State-level Energy Technology Commercialization Services Program as an optional element of...

  16. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Optional elements of State Energy Program plans. 420.17... Procedures § 420.17 Optional elements of State Energy Program plans. (a) Other appropriate activities or... establishing State-level Energy Technology Commercialization Services Program as an optional element of...

  17. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    NASA Technical Reports Server (NTRS)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit, A.; Berdyugin, A.; Bernard, J. P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera, L.; Gehrels, N.

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  18. Single-atom electron energy loss spectroscopy of light elements

    PubMed Central

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds. PMID:26228378

  19. Energy Spectra of Higher Reynolds Number Turbulence by the DNS with up to 122883 Grid Points

    NASA Astrophysics Data System (ADS)

    Ishihara, Takashi; Kaneda, Yukio; Morishita, Koji; Yokokawa, Mitsuo; Uno, Atsuya

    2014-11-01

    Large-scale direct numerical simulations (DNS) of forced incompressible turbulence in a periodic box with up to 122883 grid points have been performed using K computer. The maximum Taylor-microscale Reynolds number Rλ, and the maximum Reynolds number Re based on the integral length scale are over 2000 and 105, respectively. Our previous DNS with Rλ up to 1100 showed that the energy spectrum has a slope steeper than - 5 / 3 (the Kolmogorov scaling law) by factor 0 . 1 at the wavenumber range (kη < 0 . 03). Here η is the Kolmogorov length scale. Our present DNS at higher resolutions show that the energy spectra with different Reynolds numbers (Rλ > 1000) are well normalized not by the integral length-scale but by the Kolmogorov length scale, at the wavenumber range of the steeper slope. This result indicates that the steeper slope is not inherent character in the inertial subrange, and is affected by viscosity.

  20. S1 excitation and zero kinetic energy spectra of partly deuterated 1:1 phenol-water complexes

    NASA Astrophysics Data System (ADS)

    Dopfer, Otto; Müller-Dethlefs, Klaus

    1994-11-01

    Two-photon, two-color resonant-enhanced multiphoton ionization (REMPI) spectra of the S1 state of isotopic 1:1 hydrogen-bonded phenol-water clusters have been recorded. Up to three deuterium atoms are introduced in the phenolic OH group and/or the water molecule. The intermolecular vibrational structure found is in reasonable agreement with previously reported one-color REMPI spectra, however, a partly different interpretation of the spectra is presented here. Zero kinetic energy photoelectron (ZEKE) spectra have been obtained via different intermediate S1 levels of the various isotopic complexes. The analysis of both the REMPI and the ZEKE spectra supports the new assignment of several vibrational bands observed in the REMPI spectra of the deuterated complexes where one or two hydrogen atoms are substituted by deuterium. For these deuterated complexes, the reassignment given here is based on the assumption that two different nonequivalent isomeric configurations are responsible for the structure observed in the REMPI spectra. This result is in clear contrast to the previously given interpretation where the spectra were analyzed in terms of only one isomer and the occurrence of Fermi resonances. Furthermore, accurate ionization energies are determined for all possible isomers of the various isotopic complexes and propensity rules for these values as a function of site-specific deuteration have been found. In addition, the analysis of the intermolecular vibrational structure of the complex cations confirmed the assignment of the intermolecular stretch vibration.

  1. Finite element modeling of electrically rectified piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Wu, P. H.; Shu, Y. C.

    2015-09-01

    Finite element models are developed for designing electrically rectified piezoelectric energy harvesters. They account for the consideration of common interface circuits such as the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits, as well as complicated structural configurations such as arrays of piezoelectric oscillators. The idea is to replace the energy harvesting circuit by the proposed equivalent load impedance together with the capacitance of negative value. As a result, the proposed framework is capable of being implemented into conventional finite element solvers for direct system-level design without resorting to circuit simulators. The validation based on COMSOL simulations carried out for various interface circuits by the comparison with the standard modal analysis model. The framework is then applied to the investigation on how harvested power is reduced due to fabrication deviations in geometric and material properties of oscillators in an array system. Remarkably, it is found that for a standard array system with strong electromechanical coupling, the drop in peak power turns out to be insignificant if the optimal load is carefully chosen. The second application is to design broadband energy harvesting by developing array systems with suitable interface circuits. The result shows that significant broadband is observed for the parallel (series) connection of oscillators endowed with the parallel-SSHI (series-SSHI) circuit technique.

  2. High energy cosmic ray physics with underground muons in MACRO. II. Primary spectra and composition

    SciTech Connect

    Bellotti, R.; Cafagna, F.; Calicchio, M.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Erriquez, O.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Guarnaccia, P.; Mazziotta, M.N.; Montaruli, T.; Raino, A.; Spinelli, P.; Cecchini, S.; Dekhissi, H.; Fantini, R.; Giacomelli, G.; Mandrioli, G.; Margiotta-Neri, A.; Patrizii, L.; Popa, V.; Serra-Lugaresi, P.; Spurio, M.; Togo, V.; Hong, J.T.; Kearns, E.; Okada, C.; Orth, C.; Stone, J.L.; Sulak, L.R.; Barish, B.C.; Goretti, M.; Katsavounidis, E.; Kyriazopoulou, S.; Michael, D.G.; Nolty, R.; Peck, C.W.; Scholberg, K.; Walter, C.W.; Lane, C.; Steinberg, R.; Battistoni, G.; Bilokon, H.; Bloise, C.; Carboni, M.; Chiarella, V.; Forti, C.; Iarocci, E.; Marini, A.; Patera, V.; Ronga, F.; Satta, L.; Sciubba, A.; Spinetti, M.; Valente, V.; Antolini, R.; Bosio, T.; Di Credico, A.; Grillo, A.; Gustavino, C.; Mikheyev, S.; Parlati, S.; Reynoldson, J.; Scapparone, E.; Bower, C.; Habig, A.; Hawthorne, A.; Heinz, R.; Miller, L.; Mufson, S.; Musser, J.; De Mitri, I.; Monacelli, P.; Bernardini, P.; Mancarella, G.; Martello, D.; Palamara, O.; Petrera, S.; Pistilli, P.; Ricciardi, M.; Surdo, A.; Baker, R.; and others

    1997-08-01

    Multimuon data from the MACRO experiment at Gran Sasso have been analyzed using a new method, which allows one to estimate the primary cosmic ray fluxes. The estimated all-particle spectrum is higher and flatter than the one obtained from direct measurements but is consistent with EAS array measurements. The spectral indexes of the fitted energy spectrum are 2.56{plus_minus}0.05 for E{lt}500 TeV and 2.9{plus_minus}0.3 for E{gt}5000 TeV with a gradual change at intermediate energies. The average mass number shows little dependence on the primary energy below 1000 TeV, with a value of 10.1{plus_minus}2.5 at 100 TeV. At higher energies the best fit average mass shows a mild increase with energy, even though no definite conclusion can be reached taking into account errors. The fitted spectra cover a range from {approximately} 50 TeV up to several thousand TeV. {copyright} {ital 1997} {ital The American Physical Society}

  3. Progress in Identifying Fe I Level Energies and Lines from Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth

    2015-08-01

    The spectrum of the Fe I atom is critical to many areas of astrophysics and beyond, the vital input necessary to characterize the spectral absorption and emission of the atomic and molecular systems that pervade stars, stellar nebulae, exploding supernovae, and the interstellar and intergalactic medium, from the local environment to the highest redshifts. Yet measurements of the energies of its high-lying levels remain seriously incomplete, despite extensive efforts incorporating both laboratory sources and the solar spectrum. Peterson & Kurucz (2015, ApJS, 216, 1) reported the first results from a new approach, one which uses the spectra of sharp-lined stars of near-solar temperature to identify level energies. By matching predicted to observed stellar line wavelengths and strengths transition by transition, the upper energies of 66 Fe I levels were established. Many new levels are at higher energies than can be determined in the laboratory, including several that lie above the Fe I ionization energy. However, many more unidentified levels remain, especially those levels whose strongest lines fall in wavelength regions where stellar data is marginal or missing. Here we update the progress in this effort, and outline where new data are most urgently required and why.

  4. Energy spectra of massive two-body decay products and mass measurement

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Franceschini, Roberto; Hong, Sungwoo; Kim, Doojin

    2016-04-01

    We have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a mass less product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay product is identical to the (fixed) value of the energy that this particle would have in the rest-frame of the decaying particle, which, in turn, is a simple function of the involved masses. In addition, we utilized the property that this energy distribution is symmetric around the location of peak when energy is plotted on a logarithmic scale. The general strategy was demonstrated in several specific cases, including both beyond the standard model particles, as well as for the top quark. In the present work, we generalize this method to the case of a massive decay product from a two-body decay; this procedure is far from trivial because (in general) both the above-mentioned properties are no longer valid. Nonetheless, we propose a suitably modified parametrization of the energy distribution that was used successfully for the massless case, which can deal with the massive case as well. We test this parametrization on concrete examples of energy spectra of Z bosons from the decay of a heavier supersymmetric partner of top quark (stop) into a Z boson and a lighter stop. After establishing the accuracy of this parametrization, we study a realistic application for the same process, but now including dominant backgrounds and using foreseeable statistics at LHC14, in order to determine the performance of this method for an actual mass measurement. The upshot of our present and previous work is that, in spite of energy being a Lorentz-variant quantity, its distribution emerges as a powerful tool for mass measurement at hadron colliders.

  5. Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers

    NASA Astrophysics Data System (ADS)

    Cornogolub, Alexandru; Cottinet, Pierre-Jean; Petit, Lionel

    2016-09-01

    Interest in energy harvesting applications has increased a lot during recent years. This is especially true for systems using electroactive materials like dielectric polymers or piezoelectric materials. Unfortunately, these materials despite multiple advantages, present some important drawbacks. For example, many dielectric polymers demonstrated high energy densities; they are cheap, easy to process and can be easily integrated in many different structures. But at the same time, dielectric polymer generators require an external energy supply which could greatly compromise their autonomy. Piezoelectric systems, on the other hand, are completely autonomous and can be easily miniaturized. However, most common piezoelectric materials present a high rigidity and are brittle by nature and therefore their integration could be difficult. This paper investigates the possibility of using hybrid systems combining piezoelectric elements and dielectric polymers for mechanical energy harvesting applications and it is focused mainly on the problem of electrical energy transfer. Our objective is to show that such systems can be interesting and that it is possible to benefit from the advantages of both materials. For this, different configurations were considered and the problem of their optimization was addressed. The experimental work enabled us to prove the concept and identify the main practical limitations.

  6. Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; COhen, C. M. S.; Labrador, A. W.; Leske, R. A.; Looper, M. D.; Haggerty, D. K.; Mason, G. M.; Mazur, J. E.; vonRosenvinge, T. T.

    2012-01-01

    We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPBX, and STEREO spacecraft and extend from approximately 0.1 to approximately 500-700 MeV. All of the proton spectra exhibit spectral breaks at energies ranging from approximately 2 to approximately 46 MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of -3.18 at greater than 40 MeV/nuc. In the energy range 45 to 80 MeV/nucleon about approximately 50% of GLE events have properties in common with impulsive He-3-rich SEP events, including enrichments in Ne/O, Fe/O, Ne-22/Ne-20, and elevated mean charge states of Fe. These He-3 rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of (Q(sub Fe) is approximately equal to +20 if the acceleration starts at approximately 1.24-1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.

  7. Elemental abundance analyses with DAO spectrograms. VII - The late normal B stars Pi Ceti, 134 Tauri, 21 Aquilae, and Nu Capricorni and the use of Reticon spectra

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.

    1991-01-01

    This paper presents elemental abundance analyses of sharp-lined normal late B stars. These stars exhibit mostly near-solar abundances, but each star also shows a few abundances which are a factor of 2 less than solar. The coadded photographic spectrograms are supplemented with Reticon data. A comparison of 261 equivalent widths on 2.4 A/mm spectra of sharp-lined B and A stars shows that the Reticon equivalent widths are about 95 percent of the coadded equivalent mean. The H-gamma profiles of the coadded and Reticon spectra for eight sharp-lined stars show generally good agreement. The generally high quality of the coadded data produced from 10 or more spectrograms is confirmed using the REDUCE graphics-oriented computed reduction code. For five stars, metal lines which fall in the gap between the U and V plates are analyzed using Reticon data.

  8. The elemental and isotopic composition of quiet time low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Smith, B.; Mcdonald, F. B.

    1983-01-01

    Isotopic abundances during several periods of solar quiet times are derived from multidimensional analysis of double dE/dX modes made with two 150 micron dE detectors and a 3000 micron stopping E detector. The spectra of the low-energy cosmic rays suggest that all the primary species of elements exhibit flux enhancements. The flux increases of 5-12 MeV/N for C, Mg, Si, and Fe are different from the anomalous components and may result from solar contamination of the quiet time data or from interplanetary acceleration processes. They may be anomalous components (ACR), although to a lesser extent than He, N, O, and Ne. The isotopic data indicate that the ACR component is predominantly N-14, O-16, and Ne-20. The isotopic compositions require that the ACRs have traversed a very limited amount of material, suggesting a local origin for them.

  9. Neutron Energy Spectra and Yields from the 7Li(p,n) Reaction for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Tessler, M.; Friedman, M.; Schmidt, S.; Shor, A.; Berkovits, D.; Cohen, D.; Feinberg, G.; Fiebiger, S.; Krása, A.; Paul, M.; Plag, R.; Plompen, A.; Reifarth, R.

    2016-01-01

    Neutrons produced by the 7Li(p, n)7Be reaction close to threshold are widely used to measure the cross section of s-process nucleosynthesis reactions. While experiments have been performed so far with Van de Graaff accelerators, the use of RF accelerators with higher intensities is planned to enable investigations on radioactive isotopes. In parallel, high-power Li targets for the production of high-intensity neutrons at stellar energies are developed at Goethe University (Frankfurt, Germany) and SARAF (Soreq NRC, Israel). However, such setups pose severe challenges for the measurement of the proton beam intensity or the neutron fluence. In order to develop appropriate methods, we studied in detail the neutron energy distribution and intensity produced by the thick-target 7Li(p,n)7Be reaction and compared them to state-of- the-art simulation codes. Measurements were performed with the bunched and chopped proton beam at the Van de Graaff facility of the Institute for Reference Materials and Measurements (IRMM) using the time-of-flight (TOF) technique with thin (1/8") and thick (1") detectors. The importance of detailed simulations of the detector structure and geometry for the conversion of TOF to a neutron energy is stressed. The measured neutron spectra are consistent with those previously reported and agree well with Monte Carlo simulations that include experimentally determined 7Li(p,n) cross sections, two-body kinematics and proton energy loss in the Li-target.

  10. Magnetic field effects on the energy deposition spectra of MV photon radiation.

    PubMed

    Kirkby, C; Stanescu, T; Fallone, B G

    2009-01-21

    Several groups worldwide have proposed various concepts for improving megavoltage (MV) radiotherapy that involve irradiating patients in the presence of a magnetic field-either for image guidance in the case of hybrid radiotherapy-MRI machines or for purposes of introducing tighter control over dose distributions. The presence of a magnetic field alters the trajectory of charged particles between interactions with the medium and thus has the potential to alter energy deposition patterns within a sub-cellular target volume. In this work, we use the MC radiation transport code PENELOPE with appropriate algorithms invoked to incorporate magnetic field deflections to investigate electron energy fluence in the presence of a uniform magnetic field and the energy deposition spectra within a 10 microm water sphere as a function of magnetic field strength. The simulations suggest only very minor changes to the electron fluence even for extremely strong magnetic fields. Further, calculations of the dose-averaged lineal energy indicate that a magnetic field strength of at least 70 T is required before beam quality will change by more than 2%. PMID:19088391

  11. Impact of low-energy photons on the characteristics of prompt fission γ -ray spectra

    NASA Astrophysics Data System (ADS)

    Oberstedt, A.; Billnert, R.; Hambsch, F.-J.; Oberstedt, S.

    2015-07-01

    In this paper we report on a new study of prompt γ -rays from the spontaneous fission of 252Cf . Photons were measured in coincidence with fission fragments by employing four different lanthanide halide scintillation detectors. Together with results from a previous work of ours, we determined characteristic parameters with high precision, such as the average γ -ray multiplicity ν¯γ=(8.29 ±0.13 ), the average energy per photon ɛγ=(0.80 ±0.02 ) MeV, and the total γ -ray energy release per fission Eγ ,tot=(6.65 ±0.10 ) MeV. The excellent agreement between the individual results obtained in all six measurements proves the good repeatability of the applied experimental technique. The impact of low-energy photons, i.e., below 500 keV, on prompt fission γ -ray spectra characteristics has been investigated as well by comparing our results with those taken with the DANCE detector system, which appears to suffer from absorption effects in the low-energy region. Correction factors for this effect were estimated, giving results comparable to ours as well as to historical ones. From this we demonstrate that the different techniques of determining the average γ -ray multiplicity, either from a properly measured and normalized spectrum or a measured multiplicity distribution, give equivalent and consistent results.

  12. CODA-DERIVED SOURCE SPECTRA, MOMENT MAGNITUDES, AND ENERGY-MOMENT SCALING IN THE WESTERN ALPS

    SciTech Connect

    Morasca, P; Mayeda, K; Malagnini, L; Walter, W

    2004-02-03

    A stable estimate of the earthquake source spectra in the western Alps is obtained using an empirical method based on coda envelope amplitude measurements described by Mayeda et al. (2003) for events ranging between M{sub W} {approx} 1.0 to {approx}5.0. We calibrated path corrections for consecutive narrow frequency bands ranging between 0.2 and 25.0-Hz using a simple 1-D model for 5 three-component stations of the Regional Seismic network of Northwestern Italy (RSNI). The 1-D assumption performs well, even though the region is characterized by a complex structural setting involving strong lateral variations in the Moho depth. For frequencies less than 1.0-Hz, we tied our dimensionless, distance-corrected coda amplitudes to an absolute scale in units of dyne-cm by using independent moment magnitudes from long-period waveform modeling for 3 moderate magnitude events in the region. For the higher frequencies, we used small events as empirical Green's functions, with corner frequencies above 25.0-Hz. For each station, the procedure yields frequency-dependent corrections that account for site effects, including those related to f{sub max}, as well as those related to S-to-coda transfer function effects. After the calibration was completed, the corrections were applied to the entire data-set composed of 957 events. Our findings using the coda-derived source spectra are summarized as follows: (1) We derived stable estimates of seismic moment, M{sub 0}, (and hence M{sub W}) as well as radiated S-wave energy, (E{sub S}), from waveforms recorded by as few as one station, for events that were too small to be waveform modeled (i.e., events less than M{sub W} {approx}3.5); (2) The source spectra were used to derive an equivalent local magnitude, M{sub L(coda)}, that is in excellent agreement with the network averaged values using direct S-waves; (3) Scaled energy, {tilde e} = E{sub R}/M{sub 0}, where E{sub R}, the radiated seismic energy, is comparable to results from other

  13. High energy X-ray spectra of cygnus XR-1 observed from OSO-8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1978-01-01

    X-ray spectra of Cygnus XR-1 were measured with the scintillation spectrometer on board the OSO-8 satellite during a period of one and one-half to three weeks in each of the years from 1975 to 1977. Observations were made when the source was both in a high state and in a low state. Typical spectra of the source between 15 and 250 keV are presented. The observed pivoting effect is consistent with two temperature accretion disk models of the X-ray emitting region. No significant break in the spectrum occurred at energies up to 150 keV. The high state as defined in the 3 to 6 keV bandwidth was found to be the higher luminosity state of the X-ray source. One transition from a low to a high state occurred during observations. The time of occurrence of this and other transitions is consistent with the hypothesis that all intensity transitions occur near periastron of the binary system, and that such transitions are caused by changes in the mass transfer rate between the primary and the accretion disk around the secondary.

  14. Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjin; Le, Anh-Thu; Morishita, Toru; Lin, C. D.

    2009-03-01

    A comprehensive quantitative rescattering (QRS) theory for describing the production of high-energy photoelectrons generated by intense laser pulses is presented. According to the QRS, the momentum distributions of these electrons can be expressed as the product of a returning electron wave packet with the elastic differential cross sections (DCS) between free electrons with the target ion. We show that the returning electron wave packets are determined mostly by the lasers only and can be obtained from the strong field approximation. The validity of the QRS model is carefully examined by checking against accurate results from the solution of the time-dependent Schrödinger equation for atomic targets within the single active electron approximation. We further show that experimental photoelectron spectra for a wide range of laser intensity and wavelength can be explained by the QRS theory, and that the DCS between electrons and target ions can be extracted from experimental photoelectron spectra. By generalizing the QRS theory to molecular targets, we discuss how few-cycle infrared lasers offer a promising tool for dynamic chemical imaging with temporal resolution of a few femtoseconds.

  15. Large-scale kinetic energy spectra from Eulerian analysis of EOLE wind data

    NASA Technical Reports Server (NTRS)

    Desbois, M.

    1975-01-01

    A data set of 56,000 winds determined from the horizontal displacements of EOLE balloons at the 200 mb level in the Southern Hemisphere during the period October 1971-February 1972 is utilized for the computation of planetary- and synoptic-scale kinetic energy space spectra. However, the random distribution of measurements in space and time presents some problems for the spectral analysis. Two different approaches are used, i.e., a harmonic analysis of daily wind values at equi-distant points obtained by space-time interpolation of the data, and a correlation method using the direct measurements. Both methods give similar results for small wavenumbers, but the second is more accurate for higher wavenumbers (k above or equal to 10). The spectra show a maximum at wavenumbers 5 and 6 due to baroclinic instability and then decrease for high wavenumbers up to wavenumber 35 (which is the limit of the analysis), according to the inverse power law k to the negative p, with p close to 3.

  16. Observations of solar flare photon energy spectra from 20 keV to 7 MeV

    NASA Technical Reports Server (NTRS)

    Yoshimori, M.; Watanabe, H.; Nitta, N.

    1985-01-01

    Solar flare photon energy spectra in the 20 keV to 7 MeV range are derived from the Apr. 1, Apr. 4, apr. 27 and May 13, 1981 flares. The flares were observed with a hard X-ray and a gamma-ray spectrometers on board the Hinotori satellite. The results show that the spectral shape varies from flare to flare and the spectra harden in energies above about 400 keV. Effects of nuclear line emission on the continuum and of higher energy electron bremsstrahlung are considered to explain the spectral hardening.

  17. Influence of inner-sphere processes on the paramagnetic shifts in the {sup 1}H NMR spectra of some mixed-ligand complexes of rare-earth elements

    SciTech Connect

    Khachatryan, A.S.; Vashchuk, A.V.; Panyushkin, V.T.

    1995-12-20

    Concentration dependences of the observed chemical shifts in the NMR spectra of 1:1:1 and 1:2:1 mixed-ligand complexes of rare-earth elements with acetylacetone and acrylic, methacrylic, maleic, and fumaric acids were analyzed. The complexes undergo inner-sphere structural transformations involving different modes of coordination of the unsaturated acid, which is capable of coordination to the central ion through both the carboxylic group and {pi} electrons of the double bond. The possibility of determining equilibrium constants and limiting chemical shifts of the isomeric forms of the complexes was demonstrated. 9 refs., 4 figs.

  18. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy

    SciTech Connect

    Kry, Stephen F.; Howell, Rebecca M.; Salehpour, Mohammad; Followill, David S.

    2009-04-15

    Neutrons are by-products of high-energy radiation therapy and a source of dose to normal tissues. Thus, the presence of neutrons increases a patient's risk of radiation-induced secondary cancer. Although neutrons have been thoroughly studied in air, little research has been focused on neutrons at depths in the patient where radiosensitive structures may exist, resulting in wide variations in neutron dose equivalents between studies. In this study, we characterized properties of neutrons produced during high-energy radiation therapy as a function of their depth in tissue and for different field sizes and different source-to-surface distances (SSD). We used a previously developed Monte Carlo model of an accelerator operated at 18 MV to calculate the neutron fluences, energy spectra, quality factors, and dose equivalents in air and in tissue at depths ranging from 0.1 to 25 cm. In conjunction with the sharply decreasing dose equivalent with increased depth in tissue, the authors found that the neutron energy spectrum changed drastically as a function of depth in tissue. The neutron fluence decreased gradually as the depth increased, while the average neutron energy decreased sharply with increasing depth until a depth of approximately 7.5 cm in tissue, after which it remained nearly constant. There was minimal variation in the quality factor as a function of depth. At a given depth in tissue, the neutron dose equivalent increased slightly with increasing field size and decreasing SSD; however, the percentage depth-dose equivalent curve remained constant outside the primary photon field. Because the neutron dose equivalent, fluence, and energy spectrum changed substantially with depth in tissue, we concluded that when the neutron dose equivalent is being determined at a depth within a patient, the spectrum and quality factor used should be appropriate for depth rather than for in-air conditions. Alternately, an appropriate percent depth-dose equivalent curve should be

  19. On the energy spectra of secondary ions emitted from silicon and graphite single crystals

    NASA Astrophysics Data System (ADS)

    Khvostov, V. V.; Khrustachev, I. K.; Minnebaev, K. F.; Zykova, E. Yu.; Ivanenko, I. P.; Yurasova, V. E.

    2014-03-01

    Secondary ion emission from silicon and graphite single crystals bombarded by argon ions with energies E 0 varied from 1 to 10 keV at various angles of incidence α has been studied. The evolution of the energy spectra of C+ and Si+ secondary ions has been traced in which the positions of maxima ( E max) shift toward higher secondary-ion energies E 1 with increasing polar emission angle θ (measured from the normal to the sample surface). The opposite trend has been observed for ions emitted from single crystals heated to several hundred degrees Centigrade; the E max values initially remain unchanged and then shift toward lower energies E 1 with increasing angle θ. It is established that the magnitude and position of a peak in the energy spectrum of secondary C+ ions is virtually independent of E 0, angle α, and the surface relief of the sample (in the E 0 and α intervals studied). Unusual oscillating energy distributions are discussed, which have been observed for secondary ions emitted from silicon (111) and layered graphite (0001) faces. Numerical simulations of secondary ion sputtering and charge exchange have been performed. A comparison of the measured and calculated data for graphite crystals has shown that C+ ions are formed as a result of charge exchange between secondary ions and bombarding Ar+ ions, which takes place both outside and inside the target. This substantially differs from the ion sputtering process in metals and must be taken into account when analyzing secondary ion emission mechanisms and in practical applications of secondary-ion mass spectrometry.

  20. Studies of the fast ion energy spectra in TJ-II

    NASA Astrophysics Data System (ADS)

    Bustos, A.; Fontdecaba, J. M.; Castejón, F.; Velasco, J. L.; Tereshchenko, M.; Arévalo, J.

    2013-02-01

    The dynamics of the neutral beam injection fast ions in the TJ-II stellarator is studied in this paper from both the theoretical and experimental points of view. The code Integrator of Stochastic Differential Equations for Plasmas (ISDEP) is used to estimate the fast ion distribution function in 3D:1D in real space and 2D in velocity space, considering the 3D structure of TJ-II, the electrostatic potential, non turbulent collisional transport, and charge exchange losses. The results of ISDEP are compared with the experimental data from the compact neutral particle analyzer, which measures the outgoing neutral flux spectra in the energy range E ∈(1-45) keV.

  1. Optical function spectra and bandgap energy of Cu{sub 2}SnSe{sub 3}

    SciTech Connect

    Choi, S. G. Kang, J.; Beall, C.; Wei, S.-H.; Christensen, S. T.; Repins, I. L.; Li, J.; Haneef, H.; Podraza, N. J.

    2015-01-26

    We present the optical function spectra of Cu{sub 2}SnSe{sub 3} determined from 0.30 to 6.45 eV by spectroscopic ellipsometry (SE) at room temperature. We analyze the SE data using the Tauc-Lorentz model and obtain the direct-bandgap energy of 0.49 ± 0.02 eV, which is much smaller than the previously known value of 0.84 eV for the monoclinic-phase Cu{sub 2}SnSe{sub 3}. We also perform density-functional theory calculations to obtain the complex dielectric function data, and the results show good agreement with the experimental spectrum. Finally, we discuss the electronic origin of the main optical structures.

  2. Solar Modulation of Low-Energy Antiproton and Proton Spectra Measured by BESS

    NASA Technical Reports Server (NTRS)

    Mitchell, John W.; Abe, Ko; Fuke, Hideyuki; Haino, Sadakazu; Hams, Thomas; Horikoshi, Atsushi; Kim, Ki-Chun; Lee, MooHyun; Makida, Yashuhiro; Matsuda, Shinya; Moiseev, Alexander; Nishimura, Jun; Nozaki, Mitsuaki

    2007-01-01

    The spectra of low-energy cosmic-ray protons and antiprotons have been measured by BESS in nine high-latitude balloon flights between 1993 and 2004. These measurements span a range of solar activity from the previous solar minimum through solar ma>:im%am and the onset of the present solar minimum, as well as a solar magnetic field reversal from positive to negative in 2000. Because protons and antiprotons differ only in charge sign, these simultaneous measurements provide a sensitive probe of charge dependent solar modulation. The antiproton to proton ratio measured by BESS is consistent with simple spherically symmetric models of solar modulation during the Sun's positive polarity phase, but favor charge-sign-dependent drift models during the negative phase. The BESS measurements will be presented and compared to various models of solar modulation.

  3. Optical absorption and energy-loss spectra of aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    García-Vidal, F. J.; Pitarke, J. M.

    2001-07-01

    Optical-absorption cross-sections and energy-loss spectra of aligned multishell carbon nanotubes are investigated, on the basis of photonic band-structure calculations. A local graphite-like dielectric tensor is assigned to every point of the tubules, and the effective transverse dielectric function of the composite is computed by solving Maxwell's equations in media with tensor-like dielectric functions. A Maxwell-Garnett-like approach appropriate to the case of infinitely long anisotropic tubules is also developed. Our full calculations indicate that the experimentally measured macroscopic dielectric function of carbon nanotube materials is the result of a strong electromagnetic coupling between the tubes. An analysis of the electric-field pattern associated with this coupling is presented, showing that in the close-packed regime the incident radiation excites a very localized tangential surface plasmon.

  4. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.

    2016-06-01

    We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k < 10 h Mpc-1, and we present theoretically motivated extensions to cover non-minimally coupled scalar fields, massive neutrinos and Vainshtein screened modified gravity models that result in few per cent accurate power spectra for k < 10 h Mpc-1. For chameleon screened models, we achieve only 10 per cent accuracy for the same range of scales. Finally, we use our halo model to investigate degeneracies between different extensions to the standard cosmological model, finding that the impact of baryonic feedback on the non-linear matter power spectrum can be considered independently of modified gravity or massive neutrino extensions. In contrast, considering the impact of modified gravity and massive neutrinos independently results in biased estimates of power at the level of 5 per cent at scales k > 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.

  5. Exciton-Like Behavior in Low-Energy Absorption Spectra of Simple Alloys

    NASA Astrophysics Data System (ADS)

    Bakshi, Mira Hemendraray

    The valence excitation (ns('2) (--->) nsnp) spectra of Mg, Zn, and Ca impurities at various concentrations in Li have been measured. Polarization modulation ellipsometry was used to determine the impurity-induced changes in real and imaginary parts of the dielectric function simultaneously, together with the differential reflectivity, in the energy range 1.5 - 4.5 eV. The most important result at sufficiently dilute alloy compositions, is that the system investigated display a distinct absorption peak above the Drude background. The height of this peak varies linearly with impurity content. The impurity-specific character of these spectral features points to exciton-like behavior at low-energy, arising from atomic-like excitations in which the electron and the hole linger together at the impurity site. Existing theories of alloy spectra do not explain these effects, because they do not include the Coulomb correlations between the interacting quasiparticles created in the optical event, or the way in which the interacting pair is confined to the impurity site by the mutual field. A remarkable added result of this research is that the exciton-like behavior can be followed with increasing impurity content, all the way to the pure Mg response, when it becomes the interband transition. This has led Kunz and Flynn to reformulate the theory of optical absorption including excited state interactions; and to apply the theory to the spectrum of pure Mg. The Coulomb interaction causes striking effects which are in generally good agreement with experiment. Zn-Li alloys behave differently. At an alloy composition for which Zn-Zn interactions become prevalent, the local, impurity-specific character of the spectrum disappears, leaving only a featureless Drude-like absorption. These results have provoked cluster calculations by Boisvert and Kunz, which predict the spectral shifts, and exhibit qualitatively similar persistence for Mg-Li, and broadening for Zn-Li.

  6. Neutron fluences and energy spectra in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Akopova, A. B.; Melkumyan, L. V.; Benton, E. V.; Frank, A. L.

    1992-01-01

    Joint Soviet-American measurements of the neutron component of space radiation (SR) were carried out during the flight of the Soviet biosatellite Cosmos-2044. Neutron flux densities and differential energy spectra were measured inside and on the external surface of the spacecraft. Three energy intervals were employed: thermal (En < or = 0.2 eV), resonance (0.2 eV < En < 1.0 MeV) and fast (En > or = 1.0 MeV) neutrons. The first two groups were measured with U.S. 6LiF detectors, while fast neutrons were recorded both by U.S. fission foils and Soviet nuclear emulsions. Estimations were made of the contributions to absorbed and equivalent doses from each neutron energy interval and a correlation was presented between fast neutron fluxes, measured outside the satellite, and the phase of solar activity (SA). Average dose equivalent rates of 0.018 and 0.14 mrem d-1 were measured for thermal and resonance neutrons, respectively, outside the spacecraft. The corresponding values for fast neutrons were 3.3 (U.S.) and 1.8 (U.S.S.R.) mrem d-1. Inside the spacecraft, a value of 3.5 mrem d-1 was found.

  7. Neutron influences and energy spectra in the Cosmos-2044 biosatellite orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.; Rshtuni, Sh. B.; Benton, E, V.; Frank, A. L.

    1995-01-01

    Joint Soviet-American measurements of the neutron component of space radiation (SR) were carried out during the flight of the Soviet biosatellite Cosmos-2044. Neutron flux densities and differential energy spectra were measured inside and on the external surface of the spacecraft. Three energy intervals were employed: thermal (E(sub n) less than or equal to 0.2 eV), resonance (0.2 eV less than E(sub n) less than 1.0 MeV) and fast (E(sub n) greater than or equal to 1.0 MeV) neutrons. The first two groups were measured with U.S. (6)LiF detectors, while fast neutrons were recorded both by U.S. fission foils and Soviet nuclear emulsions. Estimations were made of the contributions to absorbed and equivalent doses from each neutron energy interval and a correlation was presented between fast neutron fluxes, measured outside the satellite, and the phase of solar activity (SA). Average dose equivalent rates of 0.018 and 0.14 mrem d(exp -1) were measured for thermal and resonance neutrons, respectively, outside the spacecraft. The corresponding values for fast neutrons were 3.3 (U.S.) and 1.8 (U.S.S.R.) mrem d(exp -1). Inside the spacecraft, a value of 3.5 mrem d(exp -1) was found.

  8. Energy spectra and angular distributions of charged particles backscattered from solid targets

    NASA Astrophysics Data System (ADS)

    Ali, E. S. M.; Rogers, D. W. O.

    2008-03-01

    In this study, the EGSnrc (Electron Gamma Shower) Monte Carlo radiation transport code is used to simulate the energy spectra and the angular distributions of charged particles backscattered from solid targets. The study covers the energy range 10-70 keV, which is of interest to applied physics fields such as scanning electron microscopy, microprobe analysis and x-ray imaging. Simulation results are compared with experimental data from 11 different published experiments (1954-2002). Comparisons include electrons and positrons, low- and high-Z targets, normal and oblique incidence, different backscatter angles and backscatter planes, and backscatter from thin films. EGSnrc simulation results show excellent agreement with the majority of the published experimental data. Possible experimental and computational uncertainties explaining the few noted discrepancies are discussed. This study concludes that EGSnrc produces accurate backscatter data in the kilovoltage energy range. A documented EGSnrc user-code customized for backscatter calculations is available from the authors at http://www.physics.carleton.ca/clrp/backscatter.

  9. Energy spectra of energetic ions in the vicinity of comet P/Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; Cowley, S. W. H.; Moore, V.; Staines, K.; Hynds, R. J.

    1987-11-01

    The energy spectrum of water-group pick-up ions with energies >35 keV observed during the encounter of comet Giacobini-Zinner by the ICE spacecraft is examined using data from the EPAS experiment, combined with published data from the ULECA sensor. In the plasma frame the combined spectra consist mainly of a steeply-falling tail extending to energies of a few hundred keV, but there is also evidence for flattening at speeds somewhat below the local pick-up speed. The latter feature is most evident in the solar wind outside the mass-loaded region of slowed flow, where the local pick-up speed is sufficiently fast that it falls within the range of the combined EPAS and ULECA data. Above the local pick-up speed the ion distribution function is well approximated by a decreasing exponential of ion speed. The characteristic speed of this distribution increases as the comet is approached. It is demonstrated that EPAS data can give detailed information on this portion of the spectrum with 32 s time resolution.

  10. EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra

    NASA Technical Reports Server (NTRS)

    Chupp, Edward L.

    1998-01-01

    The accomplishments of the participation in the Compton Gamma Ray Observatory Guest investigator program is summarized in this report. The work involved the study of Energetic Gamma Ray Experiment Telescope (EGRET)/Total Absorption Shower Counter(TASC) flare data. The specific accomplishments were the use of the accelerator neutron measurements obtained at the University of New Hampshire to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution, and to determine a high energy neutron contribution to the emissions from the 1991 June 11, solar flare. The next step in the analysis of this event was doing fits to the TASC energy-loss spectra as a function of time. A significant hardening of the solar proton spectrum over time was found for the flare. Further data was obtained from the Yohkoh HXT time histories and images for the 1991 October 27 flare. The results to date demonstrate that the TASC spectral analysis contributes crucial information on the particle spectrum interacting at the Sun. The report includes a paper accepted for publication, a draft of a paper to be delivered at the 26th International Cosmic Ray Conference and an abstract of a paper to be presented at the Meeting of the American Physical Society.

  11. An experimental setup for measurement of neutron energy spectra in lithium with collimated 14.7 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Ofek, R.; Tsechanski, A.; Profio, A. E.; Shani, G.

    1989-06-01

    Neutron energy spectra in an 88 cm diameter, 88 cm long lithium tank were measured with the Ben Gurion University experimental setup. In this setup, the lithium tank is separated from the DT neutron generator by a 120 cm thick paraffin wall with a 6 cm diameter collimator through it, along the axis of the neutron generator and the lithium tank. This enables unidirectionality and monoenergeticity of the neutrons penetrating the lithium tank. A neutron energy spectrum is obtained by unfolding with the code FORIST of proton-recoil spectra measured by an NE213 liquid scintillator. The important features of the spectrometry system, comprised of the NE213 scintillator and the attached electronic system, are the high pulse shape discrimination capability of the NE213 scintillator, which enables the separation of neutron and gamma events, relatively high energy resolution, and the system linearity. Also the simultaneous measurement of the low gain and high gain proton-recoil spectra prevents a distortion of the unfolded neutron spectrum. The neutron energy spectra are absolutely normalized and internormalized to each other by an absolutely calibrated, second NE213 scintillator, placed close to the neutron generator. The measured neutron energy spectra inside the lithium tank were compared to some preliminary calculations of the spectra, carried out with the discrete-ordinates transport code DOT4.2. Both spectra are in poor agreement. These discrepancies are assigned mainly to the inadequancy of the transport calculations. Finally, the distribution of the tritium production in the lithium tank, with the same experimental configurations, was calculated with the code DOT4.2 as well. The results indicate that the collimated neutron beam configuration is inappropriate for the purpose of tritium breeding ratio measurements.

  12. Constructing multiscale gravitational energy spectra from molecular cloud surface density PDF - interplay between turbulence and gravity

    NASA Astrophysics Data System (ADS)

    Li, Guang-Xing; Burkert, Andreas

    2016-09-01

    Gravity is believed to be important on multiple physical scales in molecular clouds. However, quantitative constraints on gravity are still lacking. We derive an analytical formula which provides estimates on multiscale gravitational energy distribution using the observed surface density probability distribution function (PDF). Our analytical formalism also enables one to convert the observed column density PDF into an estimated volume density PDF, and to obtain average radial density profile ρ(r). For a region with N_col ˜ N^{-γ _N}, the gravitational energy spectra is E_p(k)˜ k^{-4(1 - 1/γ _N)}. We apply the formula to observations of molecular clouds, and find that a scaling index of -2 of the surface density PDF implies that ρ ˜ r-2 and Ep(k) ˜ k-2. The results are valid from the cloud scale (a few parsec) to around ˜ 0.1 pc. Because of the resemblance the scaling index of the gravitational energy spectrum and the that of the kinetic energy power spectrum of the Burgers turbulence (where E ˜ k-2), our result indicates that gravity can act effectively against turbulence over a multitude of physical scales. This is the critical scaling index which divides molecular clouds into two categories: clouds like Orion and Ophiuchus have shallower power laws, and the amount of gravitational energy is too large for turbulence to be effective inside the cloud. Because gravity dominates, we call this type of cloud g-type clouds. On the other hand, clouds like the California molecular cloud and the Pipe nebula have steeper power laws, and turbulence can overcome gravity if it can cascade effectively from the large scale. We call this type of cloud t-type clouds. The analytical formula can be used to determine if gravity is dominating cloud evolution when the column density PDF can be reliably determined.

  13. Energy-time entanglement, elements of reality, and local realism

    NASA Astrophysics Data System (ADS)

    Jogenfors, Jonathan; Larsson, Jan-Åke

    2014-10-01

    The Franson interferometer, proposed in 1989 (Franson 1989 Phys. Rev. Lett. 62 2205-08), beautifully shows the counter-intuitive nature of light. The quantum description predicts sinusoidal interference for specific outcomes of the experiment, and these predictions can be verified in experiment. In the spirit of Einstein, Podolsky, and Rosen it is possible to ask if the quantum-mechanical description (of this setup) can be considered complete. This question will be answered in detail in this paper, by delineating the quite complicated relation between energy-time entanglement experiments and Einstein-Podolsky-Rosen (EPR) elements of reality. The mentioned sinusoidal interference pattern is the same as that giving a violation in the usual Bell experiment. Even so, depending on the precise requirements made on the local realist model, this can imply (a) no violation, (b) smaller violation than usual, or (c) full violation of the appropriate statistical bound. Alternatives include (a) using only the measurement outcomes as EPR elements of reality, (b) using the emission time as EPR element of reality, (c) using path realism, or (d) using a modified setup. This paper discusses the nature of these alternatives and how to choose between them. The subtleties of this discussion needs to be taken into account when designing and setting up experiments intended to test local realism. Furthermore, these considerations are also important for quantum communication, for example in Bell-inequality-based quantum cryptography, especially when aiming for device independence. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.

  14. Modular multi-element high energy particle detector

    DOEpatents

    Coon, Darryl D.; Elliott, John P.

    1990-01-02

    Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins porjecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array.

  15. Modular multi-element high energy particle detector

    DOEpatents

    Coon, D.D.; Elliott, J.P.

    1990-01-02

    Multi-element high energy particle detector modules comprise a planar heavy metal carrier of tungsten alloy with planar detector units uniformly distributed over one planar surface. The detector units are secured to the heavy metal carrier by electrically conductive adhesive so that the carrier serves as a common ground. The other surface of each planar detector unit is electrically connected to a feedthrough electrical terminal extending through the carrier for front or rear readout. The feedthrough electrical terminals comprise sockets at one face of the carrier and mating pins projecting from the other face, so that any number of modules may be plugged together to create a stack of modules of any desired number of radiation lengths. The detector units each comprise four, preferably rectangular, p-i-n diode chips arranged around the associated feedthrough terminal to form a square detector unit providing at least 90% detector element coverage of the carrier. Integral spacers projecting from the carriers extend at least partially along the boundaries between detector units to space the p-i-n diode chips from adjacent carriers in a stack. The spacers along the perimeters of the modules are one-half the width of the interior spacers so that when stacks of modules are arranged side by side to form a large array of any size or shape, distribution of the detector units is uniform over the entire array. 5 figs.

  16. FITPULS: a code for obtaining analytic fits to aggregate fission-product decay-energy spectra. [In FORTRAN

    SciTech Connect

    LaBauve, R.J.; George, D.C.; England, T.R.

    1980-03-01

    The operation and input to the FITPULS code, recently updated to utilize interactive graphics, are described. The code is designed to retrieve data from a library containing aggregate fine-group spectra (150 energy groups) from fission products, collapse the data to few groups (up to 25), and fit the resulting spectra along the cooling time axis with a linear combination of exponential functions. Also given in this report are useful results for aggregate gamma and beta spectra from the decay of fission products released from /sup 235/U irradiated with a pulse (10/sup -4/ s irradiation time) of thermal neutrons. These fits are given in 22 energy groups that are the first 22 groups of the LASL 25-group decay-energy group structure, and the data are expressed both as MeV per fission second and particles per fission second; these pulse functions are readily folded into finite fission histories. 65 figures, 11 tables.

  17. Determination Of The Elements In The Olive Oil Responsible For The Luminescence Spectra Using A Green Laser

    NASA Astrophysics Data System (ADS)

    Fawaz, Saiof; Mahmod, Al-gafary; Lamia, Al-mamouly

    2009-09-01

    In this paper, we were able to record luminescence spectra of olive, sunflower, corn, gourd and laurel oils, chlorophyll and carotene by using an argon laser (488-514 nm) and second harmonic Nd-YAG laser (532 nm) along with a monochromator whose spectral range is 400-900 nm. Only when the luminescence light is vertical to laser light, two new peaks 540 nm and 673 nm have been detected with the latter one is more intense. In discussing our results, we succeeded in determining which materials in olive oil are responsible for producing the luminescence spectral peak; 673 nm. The experimental data has shown that the chlorophyll is the main part of the olive components which gives the olive oil luminescence spectral peak; 673 nm. The other luminescence spectral peak; 540 nm was common to all different kinds of oil in general.

  18. Rapid and non-destructive analysis of metallic dental restorations using X-ray fluorescence spectra and light-element sampling tools

    NASA Astrophysics Data System (ADS)

    Furuhashi, K.; Uo, M.; Kitagawa, Y.; Watari, F.

    2012-12-01

    IntroductionRecently, allergic diseases caused by dental metals have been increasing. Therefore, rapid and accurate analytical methods for the metal restorations in the oral cavities of patients are required. The purpose of this study was to develop a non-destructive extraction method for dental alloys, along with a subsequent, rapid and accurate elemental analysis. Materials and methodSamples were obtained by polishing the surfaces of metal restorations using a dental rotating tool with disposable buffs and polishing pastes. As materials for the analysis, three dental alloys were used. To compare the sampling and analysis efficiencies, two buffs and seven pastes were used. After polishing the surface of a metal restoration, the buff was analyzed using X-ray scanning analytical microscopy (XSAM). ResultsThe efficiency of the analysis was judged based on the sampling rate achieved and the absence of disturbing elements in the background in fluorescence X-ray spectra. The best results were obtained for the combination of TexMet as a buff with diamond as a paste. This combination produced a good collection efficiency and a plain background in the fluorescence X-ray spectra, resulting in a high precision of the analysis.

  19. The effects of ion temperature on the energy spectra of T + T → 2n + α reaction products

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2016-06-01

    The effects of ion temperature on the energy spectra of products of the T + T → 2n + α reaction are modelled and analysed. A model is derived by assuming that the spectra in the centre of mass (CM) frame for a given reaction energy are known. The model is then applied to two different sets of data for the energy spectra in the CM frame. In both cases, it is shown that varying the ion temperature causes significant changes in the shapes of the n and α spectra. For the n spectrum, the apparent intensity of sequential decay through the ground state of 5He decreases with increasing temperature. For the α spectrum, the sharp edge in the CM frame spectrum near 3.75 MeV caused by the dineutron reaction channel results in a thermally broadened spectrum with a high-energy tail at energies > 4 MeV. Knowledge of such features may help to interpret data from experiments designed to investigate the T + T reaction at low reaction energies.

  20. Enforcing elemental mass and energy balances for reduced order models

    SciTech Connect

    Ma, J.; Agarwal, K.; Sharma, P.; Lang, Y.; Zitney, S.; Gorton, I.; Agawal, D.; Miller, D.

    2012-01-01

    Development of economically feasible gasification and carbon capture, utilization and storage (CCUS) technologies requires a variety of software tools to optimize the designs of not only the key devices involved (e., g., gasifier, CO{sub 2} adsorber) but also the entire power generation system. High-fidelity models such as Computational Fluid Dynamics (CFD) models are capable of accurately simulating the detailed flow dynamics, heat transfer, and chemistry inside the key devices. However, the integration of CFD models within steady-state process simulators, and subsequent optimization of the integrated system, still presents significant challenges due to the scale differences in both time and length, as well the high computational cost. A reduced order model (ROM) generated from a high-fidelity model can serve as a bridge between the models of different scales. While high-fidelity models are built upon the principles of mass, momentum, and energy conservations, ROMs are usually developed based on regression-type equations and hence their predictions may violate the mass and energy conservation laws. A high-fidelity model may also have the mass and energy balance problem if it is not tightly converged. Conservations of mass and energy are important when a ROM is integrated to a flowsheet for the process simulation of the entire chemical or power generation system, especially when recycle streams are connected to the modeled device. As a part of the Carbon Capture Simulation Initiative (CCSI) project supported by the U.S. Department of Energy, we developed a software framework for generating ROMs from CFD simulations and integrating them with Process Modeling Environments (PMEs) for system-wide optimization. This paper presents a method to correct the results of a high-fidelity model or a ROM such that the elemental mass and energy are conserved perfectly. Correction factors for the flow rates of individual species in the product streams are solved using a

  1. Charge, energy, and LET spectra measurements of charged particles in P0006 experiment of LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Csige, I.; Oda, K.; Henke, R. P.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J. W., Jr.; Derrickson, J. H.

    1992-01-01

    Measurements are under way of the charged particle radiation environment of the LDEF satellite using stacks of plastic nuclear track detectors (PNTDs) placed in different locations of the satellite. In the initial work, the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTDs located on the west end of the satellite. Primary and secondary stopping heavy ions as well as relativistic galactic cosmic rays (mostly iron particles) were measured separately. The results will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed study of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEUs) in microelectronics and, especially, more accurate assessment of the risk, contributed by the different components of the radiation field to the health and safety of crew members.

  2. Nuclear composition and energy spectra in the 1969 April 12 solar-particle event.

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Fichtel, C. E.; Reames, D. V.

    1972-01-01

    Measurement of the charge composition for several of the multicharged nuclei and the energy spectra for hydrogen, helium, and medium (6 less than or equal to Z less than or equal to 9) nuclei in the Apr. 12, 1969, solar-particle event. The energy/nucleon spectral shape of the medium nuclei was again the same as that of the helium nuclei, and the ratio of these two species was consistent with the present best average of 58 plus or minus 5. By combining the results obtained here with previous work, improved estimates of the Ne/O and Mg/O values of 0.16 plus or minus 0.03 and 0.056 plus or minus 0.014, respectively, were obtained. Silicon and sulfur abundances relative to O were determined to be 0.208 plus or minus 0.008 plus or minus 0.006, respectively, and 85% confidence upper limits for Ar and Ca relative to O of 0.017 and 0.010 were obtained. Previously, these last four nuclei had only been listed as a group.

  3. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... effectiveness of methods for manufacturing new energy technologies; (v) Assist small and start-up businesses in... 10 Energy 3 2010-01-01 2010-01-01 false Optional elements of State Energy Program plans. 420.17 Section 420.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Formula...

  4. 10 CFR 420.17 - Optional elements of State Energy Program plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... effectiveness of methods for manufacturing new energy technologies; (v) Assist small and start-up businesses in... 10 Energy 3 2011-01-01 2011-01-01 false Optional elements of State Energy Program plans. 420.17 Section 420.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION STATE ENERGY PROGRAM Formula...

  5. R-matrix description of particle energy spectra produced by low-energy 3H + 3H reactions

    DOE PAGESBeta

    Brune, C. R.; Caggiano, J. A.; Sayre, D. B.; Bacher, A. D.; Hale, G. M.; Paris, M. W.

    2015-07-20

    An R-matrix model for three-body final states is presented and applied to a recent measurement of the neutron energy spectrum from the 3H + 3H→ 2n + α reaction. The calculation includes the n alpha and n n interactions in the final state, angular momentum conservation, antisymmetrization, and the interference between different channels. A good fit to the measured spectrum is obtained, where clear evidence for the 5He ground state is observed. The model is also used to predict the alpha-particle spectrum from 3H + 3H as well as particle spectra from 3He + 3He. The R-matrix approach presented heremore » is very general, and can be adapted to a wide variety of problems with three-body final states.« less

  6. Preliminary investigations of Monte Carlo Simulations of neutron energy and LET spectra for fast neutron therapy facilities

    SciTech Connect

    Kroc, T.K.; /Fermilab

    2009-10-01

    No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality ptimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.

  7. Derivation of photon energy spectra from transmission measurements using large fields

    NASA Astrophysics Data System (ADS)

    Nes, Elena

    Modern treatment planning systems based on Monte Carlo technique require, in order to calculate the dose, knowledge of the photon spectra produced by medical linear accelerators. The accuracy of the dose determination will increase when the spectra are better known. In the present work the 6 MV photon spectrum of a Varian 2100C linear accelerator was determined from attenuation measurements performed in large fields. The iterative algorithm written in MathematicaRTM used as input data Monte Carlo-predetermined pencil beam monoenergetic scatter kernels for various water phantom thicknesses, open beam fluences and beam fluences measured in air with phantoms of different thicknesses placed in the beam. The experimental data was measured using an ionization chamber and two types of film, GAFCHROMICRTMEBT film and KODAK EDR2 film. The iteration started with a flat spectrum used to calculate the polyenergetic kernels for each water thickness. The spectrum-dependent scatter for different thicknesses of water was calculated convolving the corresponding polyenergetic kernel with the signal obtained with the water phantom removed from the beam. For each thickness of water, transmissions on the central axis were given by the ratios of central axis primary fluences to the open beam fluence. The reconstructed energy spectrum was determined from the transmission values using the simulated annealing technique. Simulated annealing was preferred because it reaches the true global minimum better than other optimization techniques. The spectrum determined at the end of the simulated annealing loop was compared to the input spectrum of the general algorithm. If they matched within acceptable errors this was the final primary spectrum. If not, the spectrum was fed as input for a new iteration. Monte Carlo monoenergetic scatter kernels were derived for six water thicknesses. The amplitude of the monoenergetic scatter kernels increases with energy and water phantom thickness. For thin

  8. A comparison of depth dependence of dose and linear energy transfer spectra in aluminum and polyethylene

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cucinotta, F. A.

    2000-01-01

    A set of four tissue-equivalent proportional counters (TEPCs), with their detector heads at the centers of 0 (bare), 3, 7 and 9-inch-diameter aluminum spheres, were flown on Shuttle flight STS-89. Five such detectors at the centers of polyethylene spheres were flown 1 year earlier on STS-81. The results of dose-depth dependence for the two materials convincingly show the merits of using material rich in hydrogen to decrease the radiation exposure to the crew. A comparison of the calculated galactic cosmic radiation (GCR) absorbed dose and dose-equivalent rates using the radiation transport code HZETRN with nuclear fragmentation model NUCFRG2 and the measured GCR absorbed dose rates and dose-equivalent rates shows that they agree within root mean square (rms) error of 12.5 and 8.2%, respectively. However, there are significant depth-dependent differences in the linear energy transfer (LET) spectra. A comparison for trapped protons using the proton transport code BRYNTRN and the AP-8 MIN trapped-proton model shows a systematic bias, with the model underpredicting dose and dose-equivalent rates. These results show the need for improvements in the radiation transport and/or fragmentation models.

  9. The origin of thermal component in the transverse momentum spectra in high energy hadronic processes

    DOE PAGESBeta

    Bylinkin, Alexander A.; Kharzeev, Dmitri E.; Rostovtsev, Andrei A.

    2014-12-15

    The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential ("thermal") and the power ("hard") ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering (DIS) depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introducedmore » by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the t-channel exchange is color-singlet and there is no fragmenting string - so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive pp collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.« less

  10. The origin of thermal component in the transverse momentum spectra in high energy hadronic processes

    SciTech Connect

    Bylinkin, Alexander A.; Kharzeev, Dmitri E.; Rostovtsev, Andrei A.

    2014-12-15

    The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential ("thermal") and the power ("hard") ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering (DIS) depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introduced by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the t-channel exchange is color-singlet and there is no fragmenting string - so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive pp collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.

  11. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation

    SciTech Connect

    Moix, Jeremy M.; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  12. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    PubMed

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-01

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters. PMID:25747062

  13. Moments, magnitudes, and radiated energies of non-volcanic tremor near Cholame, CA, from ground motion spectra at UPSAR

    USGS Publications Warehouse

    Fletcher, Joe B.; McGarr, A.

    2011-01-01

    By averaging the spectra of events within two episodes of tremor (on Jan. 21 and 24, 2005) across the 12 stations of UPSAR, we improved the S/N sufficiently to define source spectra. Analysis of eleven impulsive events revealed attenuation-corrected spectra of displacement similar to those of earthquakes, with a low-frequency plateau, a corner frequency, and a high frequency decay proportional to f−2. Seismic moments, M0, estimated from these spectra range from about 3 to 10 × 1011 N-m or moment magnitudes in the range 1.6 to 1.9. The corner frequencies range from 2.6 to 7.2 Hz and, if interpreted in the same way as for earthquakes, indicate low stress drops that vary from 0.001 to 0.04 MPa. Seismic energies, estimated from the ground motion spectra, vary from 0.2 × 105 to 4.4 × 105 J, or apparent stresses in the range 0.002 to 0.02 MPa. The low stress parameters are consistent with a weak fault zone in the lower crust at the depth of tremor. In contrast, the same analysis on a micro-earthquake, located near Cholame (depth = 10.3 km), revealed a stress drop of 0.5 MPa and an apparent stress of 0.02 MPa. Residual spectra from ω−2 model fits to the displacement spectra of the non-volcanic tremor events show peaks near 4 Hz that are not apparent in the spectra for the microearthquake nor for the spectrum of earth noise. These spectral peaks may indicate that tremor entails more than shear failure reminiscent of mechanisms, possibly entailing fluid flow, associated with volcanic tremor or deep volcanic earthquakes.

  14. Changes in local energy spectra with SPECT rotation for two Anger cameras

    SciTech Connect

    Koral, K.F.; Luo, J.Q.; Ahmad, W.; Buchbinder, S.; Ficaro, E.

    1995-08-01

    The authors investigated the shift of local energy spectra with SPECT rotation for the GE 400 AT and the Picker Prism 3000 tomographs. A Co-57 flood source was taped to the parallel-beam collimator of the GE 400 AT; a Tc-99m line source was placed at the focus of the fan-beam collimator of one head of the Picker Prism. The count-based method, which employs a narrow window (about 4 keV) on the maximum slope of the photopeak, was used with both systems. Non-linear, polynomial spectral fittings was applied to x-y-E data acquisitions with the GE camera. The fitting yielded either shifts or shifts and width changes. Results show (1) the shifts are pseudo-sinusoidal with angle and similar for different spatial locations, (2) the average of their absolute value is 0.71 keV and 0.13 keV for the GE and Picker cameras, respectively, (3) width changes for the GE camera are small and appear random, (4) the calculated shifts from the count-based method for the central part of the GE camera are correlated with those from the spectral fitting method. They are 12% smaller. The conclusion is that energy shift with angle may be present with many rotating cameras although they may be smaller with newer cameras. It might be necessary to account for them in schemes designed for high-accuracy compensation of Compton-scattered gamma rays although they possibly could be ignored for newer cameras.

  15. Effect of surface topography on reflection electron energy loss plasmon spectra of group III metals

    SciTech Connect

    Strawbridge, B.; Singh, R. K.; Beach, C.; Mahajan, S.; Newman, N.

    2006-09-15

    In situ reflection electron energy loss spectroscopy (REELS) and reflection high energy electron diffraction employing a 20 keV electron beam at a 2 deg. grazing angle were used to characterize the surface properties of molecular beam epitaxy (MBE) grown Al, Ga, and In metals on silicon and sapphire substrates. In our study we found that the surface topography strongly influences the REELS plasmon spectra. Smooth Al films with <1 nm rms roughness exhibited surface plasmon peaks. Both surface and bulk plasmons are seen from an Al film with a rms roughness of 3.5 nm. Aluminum surfaces with >5 nm rms roughness yielded only bulk plasmon peaks. To understand the EELS spectrum for the Ga and In films, the rms roughness alone is not the relevant figure of merit as the electron beam interaction with the surface is influenced most by the shape of the tops of the surface grains and the grain size. Indium films on Si with a rms roughness of 52 nm were found to excite predominantly surface plasmons as the grazing angle electron beam scattered mostly off the flat top surface of each grain and was not strongly influenced by the crevices between the grains. The rounded tops of the Ga topography with 31 nm rms roughness facilitated transmission through the grains and therefore excited a combination of bulk and surface plasmons. This experimental method is very surface sensitive, as a probe depth of 0.8 nm was inferred from the diminishing intensity of the substrate peak with increasing coverage of a flat metal surface. The techniques and methods discussed here can be readily applied to other thin film systems such as MBE-grown III-V semiconductors, sputtered oxides, and other vacuum deposited materials.

  16. Analysis of Electron and Antineutrino Energy Spectra from Fissile Samples under Irradiation based on Gross Theory of Beta-decay

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Tachibana, T.; Chiba, S.

    2016-06-01

    We applied the gross theory of β-decay to calculate the reactor electron and antineutrino ({{{bar ν }}{e}}) spectra emitted from 235,238U and 239,241Pu by summing up all the contributions from a large number of decaying fission-products (FPs). We make it clear what kinds of transition types and FP nuclides are important to shape the lepton spectra. After taking the ambiguity in the current data for fission yields and Qβ-values into account, we suggested a possibility that the high-energy part of the widely referred electron-spectra by Schreckenbach et al., almost only one experimental data set available now, might possibly be too low. Arguments on a special role of the odd(Z)-odd(N) nuclides and on the consistency between U-238 and other fissiles in the experimental data lead to the importance of a new and independent measurement of electron energy spectra which could be converted into the reactor {{{bar ν }}{e}} spectra.

  17. Investigating Possible Departures from Maxwellian Energy Distributions in Nebulae using High-Resolution Emission Line Spectra

    NASA Astrophysics Data System (ADS)

    Turbyfill, Amanda; Dinerstein, H. L.; Sterling, N. C.

    2014-01-01

    The derivation of ionic abundance ratios from collisionally excited emission lines in gaseous nebulae requires knowledge of the physical state of the gas, particularly the electron kinetic temperature, Te, to which the resulting abundances are highly sensitive. A long-standing problem in nebular analyses has been pervasive discrepancies among values of Te obtained from different diagnostic ratios for a single nebula. Recently, Nicholls et al. (2012, ApJ, 752, 148) have suggested that the nebular electrons may not obey an equilibrium Maxwell-Boltzmann (M-B) energy distribution, but instead follow a “κ distribution” seen in many solar system plasmas, a family of distributions for which the M-B distribution is the limiting case where κ → ∞. The high-energy tail of supra-thermal electrons in κ distributions have a disproportionate effect on strongly energy dependent quantities, such as Te diagnostics, for even modest departures from M-B distributions. We apply prescriptions given by Nicholls et al. (2013, ApJS, 207, 21) to high-resolution (R=36,700) optical spectra of 10 planetary nebulae obtained with the 2d-coudé echelle spectrograph on the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The advantages of these data include their broad spectral coverage and sufficiently high spectral resolution to separate blended lines and assess possible atmospheric absorption issues. The line fluxes were obtained using ROBOSPECT, an automated spectral line measurement package developed by Waters & Hollek (2013, PASP, 125, 1164). We solve both for Te under the assumption of M-B distributions, and the parameters of κ distributions consistent with the data. Our goal is to test whether the κ distribution hypothesis provides a better fit to the observed line ratios. Finally, we discuss effects on the derived ionic abundances under this alternate description of the particle energy distributions. This research was supported by NSF grant AST 0708245 and the John W

  18. Source indicators of humic substances and proto-kerogen - Stable isotope ratios, elemental compositions and electron spin resonance spectra

    NASA Technical Reports Server (NTRS)

    Stuermer, D. H.; Peters, K. E.; Kaplan, I. R.

    1978-01-01

    Stable isotope ratios of C, N and H, elemental compositions, and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments, and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of stable carbon isotope ratio and H/C ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The stable nitrogen isotope ratios are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.

  19. Simulated vibrational spectra of aflatoxins and their demethylated products and the estimation of the energies of the demethylation reactions

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Móricz, Ágnes M.; Tyihák, Ernő; Mikosch, Hans

    2006-06-01

    The structure of four natural mycotoxins, the aflatoxin B 1, B 2, G 1 and G 2 and their demethylated products were optimized with quantum chemical method. The energies and the thermodynamic functions of the molecules were calculated and applied to calculation of the reaction energies of the demethylations. Further results of the calculations are the vibrational force constants, the infrared spectra of the molecules and the assignments of the spectral bands.

  20. Measurements of cosmic-ray low-energy antiproton and proton spectra in a transient period of solar field reversal.

    PubMed

    Asaoka, Y; Shikaze, Y; Abe, K; Anraku, K; Fujikawa, M; Fuke, H; Haino, S; Imori, M; Izumi, K; Maeno, T; Makida, Y; Matsuda, S; Matsui, N; Matsukawa, T; Matsumoto, H; Matsunaga, H; Mitchell, J; Mitsui, T; Moiseev, A; Motoki, M; Nishimura, J; Nozaki, M; Orito, S; Ormes, J F; Saeki, T; Sanuki, T; Sasaki, M; Seo, E S; Sonoda, T; Streitmatter, R; Suzuki, J; Tanaka, K; Tanizaki, K; Ueda, I; Wang, J Z; Yajima, Y; Yamagami, Y; Yamamoto, A; Yamamoto, Y; Yamato, K; Yoshida, T; Yoshimura, K

    2002-02-01

    The energy spectra of cosmic-ray low-energy antiprotons ( *p's) and protons ( p's) have been measured by BESS in 1999 and 2000, during a period covering reversal at the solar magnetic field. Based on these measurements, a sudden increase of the *p/p flux ratio following the solar magnetic field reversal was observed, and it generally agrees with a drift model of the solar modulation. PMID:11863712

  1. MEMS electrostatic vibration energy harvester without switches and inductive elements

    NASA Astrophysics Data System (ADS)

    Dorzhiev, V.; Karami, A.; Basset, P.; Dragunov, V.; Galayko, D.

    2014-11-01

    The paper is devoted to a novel study of monophase MEMS electrostatic Vibration Energy Harvester (e-VEH) with conditioning circuit based on Bennet's doubler. Unlike the majority of conditioning circuits that charge a power supply, the circuit based on Bennet's doubler is characterized by the absence of switches requiring additional control electronics, and is free from hardly compatible with batch fabrication process inductive elements. Our experiment with a 0.042 cm3 batch fabricated MEMS e-VEH shows that a pre-charged capacitor as a power supply causes a voltage increase, followed by a saturation which was not reported before. This saturation is due to the nonlinear dynamics of the system and the electromechanical damping that is typical for MEMS. It has been found that because of that coupled behavior there exists an optimal power supply voltage at which output power is maximum. At 187 Hz / 4 g external vibrations the system is shown to charge a 12 V supply with a output power of 1.8 μW.

  2. Energy spectra of three electrons in SiGe/Si/SiGe laterally coupled triple quantum dots

    NASA Astrophysics Data System (ADS)

    Ren, Y. F.; Wang, L.; Liu, Z.; Wu, M. W.

    2014-09-01

    We investigate the energy spectra of three electrons in SiGe/Si/SiGe equilateral triangular and symmetric linear triple quantum dots in the presence of magnetic (in either Faraday or Voigt configuration) and electric fields with only the lowest valley eigenstate being relevant by using the real-space configuration interaction method. The strong electron-electron Coulomb interaction, which is crucial to the energy spectra, is explicitly calculated whereas the weak spin-orbit coupling is treated perturbatively. In both equilateral triangular and symmetric linear triple quantum dots, we find doublet-quartet transition of ground-state spin configuration by varying dot size or interdot distance in the absence of external fields. This transition has not been reported in the literature on triple quantum dots. In the magnetic-field (Faraday configuration) dependence of energy spectra, we find anticrossings with large energy splittings between the energy levels with the same spin state in the absence of the spin-orbit coupling. This anticrossing behavior originates from the triple quantum dot confinement potential. In addition, with the inclusion of the spin-orbit coupling, we find that all the intersections shown in the equilateral triangular case become anticrossing whereas only part of the intersections in symmetric linear case show anticrossing behavior in the presence of magnetic field in either the Faraday or Voigt configuration. All the anticrossing behaviors are analyzed based on symmetry consideration. Moreover, we show that the electric field can effectively influence the energy levels and the charge configurations.

  3. Energy Spectra of Cosmic Ray Nuclei to Above 100 Gev/nucleon. [measurement of energy spectra of cosmic ray nuclei boron to iron

    NASA Technical Reports Server (NTRS)

    Simon, M.; Spiegelhauer, H.; Schmidt, W. K. H.; Siohan, F.; Ormes, J. F.; Balasubrahmanyan, V. K.; Arens, J. F.

    1979-01-01

    The chemical composition cosmic rays as a function of energy in the range of a few GeV/nucleon to some hundreds of GeV/nucleon for boron through iron are presented. The experiment combined an ionization spectrometer and a gas Cherenkov counter, which was flown on a balloon, to perform two different and independent energy measurements. The experimental apparatus is described in detail. The energy dependence of the cosmic ray escape length for boron and iron is reported and predicted changes in the energy dependence of the ratios of primary nuclei 0/C and iron/C+0 are discussed.

  4. Multi-element Abundance Measurements from Medium-resolution Spectra. II. Catalog of Stars in Milky Way Dwarf Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guhathakurta, Puragra; Simon, Joshua D.; Geha, Marla C.; Rockosi, Constance M.; Sneden, Christopher; Cohen, Judith G.; Sohn, Sangmo Tony; Majewski, Steven R.; Siegel, Michael

    2010-12-01

    We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 stars in eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy (MRS) combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters (GCs). We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing to high-resolution spectroscopic abundances of the same stars. For this purpose, a sample of 132 stars with published high-resolution spectroscopy in GCs, the MW halo field, and dwarf galaxies has been observed with MRS. The standard deviations of the differences in [Fe/H] and lang[α/Fe]rang (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass. Data herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES

    SciTech Connect

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Rockosi, Constance M.; Geha, Marla C.; Sneden, Christopher; Sohn, Sangmo Tony; Majewski, Steven R.; Siegel, Michael

    2010-12-15

    We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 stars in eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy (MRS) combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters (GCs). We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing to high-resolution spectroscopic abundances of the same stars. For this purpose, a sample of 132 stars with published high-resolution spectroscopy in GCs, the MW halo field, and dwarf galaxies has been observed with MRS. The standard deviations of the differences in [Fe/H] and ([{alpha}/Fe]) (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.

  6. Energy spectra of cosmic rays above 1 TeV per nucleon

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.

    1990-01-01

    Direct measurements of cosmic-ray nuclei above 1 TeV/nucleon have been performed in a series of balloon-borne experiments with emulsion chambers. The observed all-particle spectrum above 20 TeV is consistent with the results of the Proton satellite and many air shower experiments. The proton spectrum is consistent with a power law having an index of 2.76 + or - 0.09 up to at least 100 TeV, but an overabundance of helium by a factor of 2 above 2 TeV per nucleon is found when compared with the extrapolation from the low energies. For heavy elements (C through Fe), the intensities around 1 TeV/nucleon are consistent, within the statistical errors, with the extrapolation from lower energy data using the Spacelab 2 spectral indices. An enhancement for the medium-heavy components (C through Ca) above 200 TeV is indicated. The mean mass above 50 TeV indicates slightly higher values than the results of the air shower experiments.

  7. Uranium and Plutonium Average Prompt-fission Neutron Energy Spectra (PFNS) from the Analysis of NTS NUEX Data

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.; Shores, E. F.

    2014-05-01

    In neutron experiments (NUEX) conducted at the Nevada Test Site (NTS) by Los Alamos National Laboratory, the time-of-flight of fission-neutrons emitted from nuclear tests were observed by measuring the current generated by the collection of protons scattered from a thin CH2 foil many meters from the nuclear device into a Faraday cup. The time dependence of the Faraday cup current is a measure of the energy spectrum of the neutrons that leak from the device. With good device models and accurate neutron-transport codes, the leakage spectra can be converted into prompt fast-neutron-induced fission-neutron energy spectra. This has been done for two events containing plutonium, and for an earlier event containing uranium. The prompt-fission neutron spectra have been inferred for 1.5-MeV 239Pu(n,f) and 235U(n,f) reactions for outgoing neutron energies from 1.5 to ∼10.5 MeV, in 1-MeV steps. These spectra are in good agreement with the Los Alamos fission model.

  8. Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model

    SciTech Connect

    Kawano, Toshihiko; Moller, Peter; Wilson, William B

    2008-01-01

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  9. ''Magic'' Energies for Detecting Light Elements with Resonant Alpha Particle Backscattering

    SciTech Connect

    Wetteland, C.J.; Maggiore, C.J.; Tesmer, J.R.; He, X-M.; Lee, D-H.

    1998-11-04

    Resonant backscattering is widely used to improve the detection limit of the light elements such as B, C, N and O. One disadvantage, however, is that several incident energies are normally needed if the sample contains a number of the light elements. There are ''magic'' energies at which several light elements can be detected simultaneously with suitable sensitivities. When these energies are used along with the elastic recoil detection of hydrogen, multiple elements can be detected without changing the beam energy, and the analysis time is greatly reduced. These reactions along with examples will be discussed.

  10. HEAO 1 A-2 low-energy detector X-ray spectra of the Lupus Loop and SN 1006

    SciTech Connect

    Leahy, D.A.; Nousek, J.; Hamilton, A.J.S. Pennsylvania State University, University Park Joint Institute for Laboratory Astrophysics, Boulder, CO )

    1991-06-01

    The Lupus Loop and SN 1006 were observed by the A-2 low-energy detector proportional counters on the HEAO 1 satellite as part of the all-sky survey. As a result of a major advance in understanding of detector response and background accurate analysis of the data has become possible. Soft X-ray spectra for both supernova remnants were constructed from the PHA data taken during the scanning observations. Single-temperature and two-temperature Raymond-Smith models were fitted to the observed spectra. In addition, power-law and power-law plus one-temperature models were fitted to the spectrum of SN 1006. Only two-component models provide an adequate description for both Lupus Loop and SN 1006 spectra. The temperatures, column densities, and emission measures are significantly more accurate than previous results. 29 refs.

  11. HEAO 1 A-2 low-energy detector X-ray spectra of the Lupus Loop and SN 1006

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Nousek, J.; Hamilton, A. J. S.

    1991-01-01

    The Lupus Loop and SN 1006 were observed by the A-2 low-energy detector proportional counters on the HEAO 1 satellite as part of the all-sky survey. As a result of a major advance in understanding of detector response and background accurate analysis of the data has become possible. Soft X-ray spectra for both supernova remnants were constructed from the PHA data taken during the scanning observations. Single-temperature and two-temperature Raymond-Smith models were fitted to the observed spectra. In addition, power-law and power-law plus one-temperature models were fitted to the spectrum of SN 1006. Only two-component models provide an adequate description for both Lupus Loop and SN 1006 spectra. The temperatures, column densities, and emission measures are significantly more accurate than previous results.

  12. Simulation studies for operating electron beam ion trap at very low energy for disentangling edge plasma spectra

    SciTech Connect

    Jin Xuelong; Fei Zejie; Xiao Jun; Lu Di; Hutton, Roger; Zou Yaming

    2012-07-15

    Electron beam ion traps (EBITs) are very useful tools for disentanglement studies of atomic processes in plasmas. In order to assist studies on edge plasma spectroscopic diagnostics, a very low energy EBIT, SH-PermEBIT, has been set up at the Shanghai EBIT lab. In this work, simulation studies for factors which hinder an EBIT to operate at very low electron energies were made based on the Tricomp (Field Precision) codes. Longitudinal, transversal, and total kinetic energy distributions were analyzed for all the electron trajectories. Influences from the electron current and electron energy on the energy depression caused by the space charge are discussed. The simulation results show that although the energy depression is most serious along the center of the electron beam, the electrons in the outer part of the beam are more likely to be lost when an EBIT is running at very low energy. Using the simulation results to guide us, we successfully managed to reach the minimum electron beam energy of 60 eV with a beam transmission above 57% for the SH-PermEBIT. Ar and W spectra were measured from the SH-PermEBIT at the apparent electron beam energies (read from the voltage difference between the electron gun cathode and the central drift tube) of 60 eV and 1200 eV, respectively. The spectra are shown in this paper.

  13. Simulation studies for operating electron beam ion trap at very low energy for disentangling edge plasma spectra

    NASA Astrophysics Data System (ADS)

    Jin, Xuelong; Fei, Zejie; Xiao, Jun; Lu, Di; Hutton, Roger; Zou, Yaming

    2012-07-01

    Electron beam ion traps (EBITs) are very useful tools for disentanglement studies of atomic processes in plasmas. In order to assist studies on edge plasma spectroscopic diagnostics, a very low energy EBIT, SH-PermEBIT, has been set up at the Shanghai EBIT lab. In this work, simulation studies for factors which hinder an EBIT to operate at very low electron energies were made based on the Tricomp (Field Precision) codes. Longitudinal, transversal, and total kinetic energy distributions were analyzed for all the electron trajectories. Influences from the electron current and electron energy on the energy depression caused by the space charge are discussed. The simulation results show that although the energy depression is most serious along the center of the electron beam, the electrons in the outer part of the beam are more likely to be lost when an EBIT is running at very low energy. Using the simulation results to guide us, we successfully managed to reach the minimum electron beam energy of 60 eV with a beam transmission above 57% for the SH-PermEBIT. Ar and W spectra were measured from the SH-PermEBIT at the apparent electron beam energies (read from the voltage difference between the electron gun cathode and the central drift tube) of 60 eV and 1200 eV, respectively. The spectra are shown in this paper.

  14. The knee in the cosmic ray energy spectrum from the simultaneous EAS charged particles and muon density spectra

    NASA Astrophysics Data System (ADS)

    Bijay, Biplab; Banik, Prabir; Bhadra, Arunava

    2016-09-01

    In this work we examine with the help of Monte Carlo simulation whether a consistent primary energy spectrum of cosmic rays emerges from both the experimentally observed total charged particles and muon size spectra of cosmic ray extensive air showers considering primary composition may or may not change beyond the knee of the energy spectrum. It is found that EAS-TOP observations consistently infer a knee in the primary energy spectrum provided the primary is pure unchanging iron whereas no consistent primary spectrum emerges from simultaneous use of the KASCADE observed total charged particle and muon spectra. However, it is also found that when primary composition changes across the knee the estimation of spectral index of total charged particle spectrum is quite tricky, depends on the choice of selection of points near the knee in the size spectrum.

  15. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  16. Study of electron transition energies between anions and cations in spinel ferrites using differential UV-vis absorption spectra

    NASA Astrophysics Data System (ADS)

    Xue, L. C.; Wu, L. Q.; Li, S. Q.; Li, Z. Z.; Tang, G. D.; Qi, W. H.; Ge, X. S.; Ding, L. L.

    2016-07-01

    It is very important to determine electron transition energies (Etr) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV-vis absorption spectra using the curve (αhν)2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV-vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (Etr) between the anions and cations, Fe2+ and Fe3+ at the (A) and [B] sites and Ni2+ at the [B] sites for the (A)[B]2O4 spinel ferrite samples CoxNi0.7-xFe2.3O4 (0.0≤x≤0.3), CrxNi0.7Fe2.3-xO4 (0.0≤x≤0.3) and Fe3O4. We suggest that the differential UV-vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  17. Correlation between the quantized energies and the photovoltaic spectra for a GaAs/AlGaAs quantum well structure

    SciTech Connect

    Russo, O.L.; Rehn, V.; Nee, T.W.; Dumas, K.A.

    1996-12-31

    The authors have measured the photovoltaic spectra at 300K for a PIN GaAs/AlGaAs structure containing five coupled wells (50A/28A) grown by molecular beam epitaxy (MBE). The spectra were obtained in the energy range from 1.40 eV to 1.60 eV. This is the region in which optical transitions between the sub-band valence and conduction states are possible. Five direct optical transitions are allowed for this structure. These transitions are normally difficult to measure at room temperature because of broadening, nevertheless, some of the allowed transitions were observed from the photovoltaic spectra and agreed with calculations. The authors have previously shown that measurements made using electroreflectance (ER) agree with these results. However, with ER, three possible transitions were observed but only one with certainty, possibly because of interference caused by adjacent line spectra interaction. This interference appears to be less pronounced in the photovoltaic spectra, which aids in the identification of transitions.

  18. Low-energy chlorophyll states in the CP43 antenna protein complex: simulation of various optical spectra. II.

    PubMed

    Reppert, Mike; Zazubovich, Valter; Dang, Nhan C; Seibert, Michael; Jankowiak, Ryszard

    2008-08-14

    The CP43 protein complex of the core antenna of higher plant photosystem II (PSII) has two quasidegenerate "red" absorption states. It has been shown in the accompanying paper I (Dang, N. C., et al. J. Phys. Chem. B 2008, 112, 9921.) that the site distribution functions (SDFs) of red-states A and B are uncorrelated and the narrow holes are burned in subpopulations of chlorophylls (Chls) from states A and B that are the lowest-energy pigments in their particular CP43 complexes and cannot further transfer energy downhill. In this work, we present the results of a series of Monte Carlo simulations using the 3.0-A structure of the PSII core complex from cyanobacteria (Loll, B., et al. Nature 2005, 303, 1040.) to model absorption, emission, persistent, and transient hole burned (HB) spectra. At the current structural resolution, we found calculated site energies (obtained from INDO/S calculations) to be only suggestive because their values are different for the two monomers of CP43 in the PS II dimer. As a result, to probe the excitonic structure, a simple fitting procedure was employed to optimize Chl site energies from various starting values corresponding to different A/B pigment combinations to provide simultaneously good fits to several types of optical spectra. It is demonstrated that the shape of the calculated absorption, emission, and transient/persistent hole-burned spectra is consistent with experimental data and our model for excitation energy transfer between two quasi-degenerate lowest-E states (A and B) with uncorrelated SDFs discussed in paper I. Calculations revealed that absorption changes observed near 670 nm in the non-line-narrowed persistent HB spectra (assigned to photoconversion involving Chl-protein hydrogen-bonding by Hughes (Biochemistry 2006, 45, 12345.) are most likely the result of nonphotochemical hole-burning (NPHB) accompanied by the redistribution of oscillator strength due to modified excitonic interactions. We argue that a unique

  19. Experimental measurement of energy density in a vibrating plate and comparison with energy finite element analysis

    NASA Astrophysics Data System (ADS)

    Navazi, H. M.; Nokhbatolfoghahaei, A.; Ghobad, Y.; Haddadpour, H.

    2016-08-01

    In this paper, a new method and formulation is presented for experimental measurement of energy density of high frequency vibrations of a plate. By use of the new proposed method and eight accelerometers, both kinetic and potential energy densities are measured. Also, a computer program is developed based on energy finite element method to evaluate the proposed method. For several points, the results of the developed experimental formulation are compared with those of the energy finite element analysis results. It is observed that, there is a good agreement between experimental results and analyses. Finally, another test setup with reduced accelerometer spacing was prepared and based on the comparison between kinetic and potential results, it is concluded that, the kinetic and potential counterparts of the energy density are equal in high frequency bands. Based on this conclusion, the measurement procedure was upgraded to an efficient and very simple one for high frequency ranges. According to the new test procedure, another experimental measurement was performed and the results had a good agreement with the EFEA results.

  20. Effects of Incident Electron Fluence and Energy on the Election Yield Curves and Emission Spectra of Dielectrics

    NASA Technical Reports Server (NTRS)

    Sim, Alec; Dennison, J. R.; Thomson, Clint

    2005-01-01

    We present an experimental study of evolution of electron emission yields and spectra as a result of internal charge build up due to electron dose. Reliable total, backscattered and secondary yield curves and electron emission spectra for un-charged insulators using a low fluence, pulsed electron beam (= or < 5 microsec at = or < 3 nA/sq mm or = or < 10(exp 5) e/sq mm per pulse) with low energy electron and UV flooding to neutralize the charging between pulses. Quantifiable changes in yield curves are observed due to < 100 fC/sq mm fluences for several excellent dielectric thin film materials. We find good agreement with a phenomenological argument based on insulator charging predicted by the yield curve; this includes an approximately linear decrease in the magnitude of the yield as incident energies approach the crossover energies and an exponential decrease in yield as accumulated internal charge reduces the landing energy to asymptotically approach a steady state surface charge and unity yield. We also find that the exponential decay of yield curves with fluence exhibit an energy dependent decay constant, alpha(E), over a broad range of incident energies below, between and above the crossover energies. Finally, we present some preliminary physics-based models for this energy dependence and attempt to relate our charging measurements to knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and transport, and how the profile of trapped charge affects the transport and emission of charges from insulators.

  1. Statistical Energy Analysis (SEA) and Energy Finite Element Analysis (EFEA) Predictions for a Floor-Equipped Composite Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.

    2011-01-01

    Comet Enflow is a commercially available, high frequency vibroacoustic analysis software founded on Energy Finite Element Analysis (EFEA) and Energy Boundary Element Analysis (EBEA). Energy Finite Element Analysis (EFEA) was validated on a floor-equipped composite cylinder by comparing EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) and experimental results. Statistical Energy Analysis (SEA) predictions were made using the commercial software program VA One 2009 from ESI Group. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 100 Hz to 4000 Hz.

  2. The quiet time spectra of low energy hydrogen and helium nuclei. [suggesting protons and alphas of solar origin

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.; Vogt, R. E.

    1975-01-01

    Measurements of the 1972-1973 quiet time hydrogen and helium spectra from 1.3-40 MeV/nuc are discussed. For both spectra the relative-intensity minimum occurs at lower energies than those reported for earlier years. There is no evidence of a low energy turnup in the He spectrum down to 2.4 MeV/nuc. The spectra indicate that the galactic component dominates down to about 10 MeV; a stable, non-solar He-4 component extends from higher energies down to about 2.4 MeV/nuc. At lower energies the periods of minimum H and He intensity do not coincide, and the relative abundance of H and He at 1.3-2.3 MeV/nuc is variable, with H/He ratios ranging from about 3 to about 10. The observations suggest that the 1.3-2.3 MeV/nuc protons and alphas are of solar origin.

  3. VizieR Online Data Catalog: New FeI level energies from stellar spectra (Peterson+, 2015)

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.; Kurucz, R. L.

    2015-02-01

    The spectrum of the Fe I atom is critical to many areas of astrophysics and beyond. Measurements of the energies of its high-lying levels remain woefully incomplete, however, despite extensive laboratory and solar analysis. In this work, we use high-resolution archival absorption-line ultraviolet and optical spectra of stars whose warm temperatures favor moderate Fe I excitation. We derive the energy for a particular upper level in Kurucz's semiempirical calculations by adopting a trial value that yields the same wavelength for a given line predicted to be about as strong as that of a strong unidentified spectral line observed in the stellar spectra, then checking the new wavelengths of other strong predicted transitions that share the same upper level for coincidence with other strong observed unidentified lines. To date, this analysis has provided the upper energies of 66 Fe I levels. Many new energy levels are higher than those accessible to laboratory experiments; several exceed the Fe I ionization energy. These levels provide new identifications for over 2000 potentially detectable lines. Almost all of the new levels of odd parity include UV lines that were detected but unclassified in laboratory Fe I absorption spectra, providing an external check on the energy values. We motivate and present the procedure, provide the resulting new energy levels and their uncertainties, list all the potentially detectable UV and optical new Fe I line identifications and their gf values, point out new lines of astrophysical interest, and discuss the prospects for additional Fe I energy level determinations. (3 data files).

  4. Oxygen-induced changes in electron-energy-loss spectra for Al, Be and Ni. [Al; Be; Ni

    SciTech Connect

    Madden, H.H.; Landers, R.; Kleiman, G.G. , 13081-970 Campinas, Sao Paulo, Brasil); Zehner, D.M. )

    1999-09-01

    Electron-energy-loss spectroscopy (EELS) data are presented to illustrate line shape changes that occur as a result of oxygen interaction with metal surfaces. The metals were aluminum, beryllium and nickel. Core-level EELS data were taken for excitations from Al(2p), Be(1s), Ni(3p/3s) and O(1s) levels to the conduction band (CB) density of states (DOS) of the materials. The primary beam energies for the spectra were 300, 450, 300, and 1135 eV, respectively. The data are presented in both the (as measured) first-derivative and the integral forms. The integral spectra were corrected for coherent background losses and analyzed for CB DOS information. These spectra were found to be in qualitative agreement with published experimental and theoretical studies of these materials. One peak in the spectra for Al oxide is analyzed for its correlation with excitonic screening of the Al(2p) core hole. Similar evidence for exciton formation is found in the Ni(3p) spectra for Ni oxide. Data are also presented showing oxygen-induced changes in the lower-loss-energy EELS curves that, in the pure metal, are dominated by plasmon-loss and interband-transition signals. Single-scattering loss profiles in the integral form of the data were calculated using a procedure of Tougaard and Chorkendorff [S. Tougaard and I. Chorkendorff, Phys. Rev. B. [bold 35], 6570 (1987)]. For all three oxides these profiles are dominated by a feature with a loss energy of around 20[endash]25 eV. Although this feature has been ascribed by other researchers as due to bulk plasmon losses in the oxide, an alternative explanation is that the feature is simply due to O(2s)-to-CB-level excitations. An even stronger feature is found at 7 eV loss energy for Ni oxide. Speculation is given as to its source. The line shapes in both the core-level and noncore-level spectra can also be used simply as [open quotes]fingerprints[close quotes] of the surface chemistry of the materials. Our data were taken using commercially

  5. Test of hadron interaction models in the most important energy range of secondary particles in spectra of atmospheric muons

    NASA Astrophysics Data System (ADS)

    Dedenko, L. G.; Roganova, T. M.; Fedorova, G. F.

    2014-10-01

    A simple method has been proposed for testing hadron interaction models, which are used to simulate extensive air showers, in observed spectra of atmospheric muons. It has been shown that muon flux intensities in the energy range of 102-104 GeV that are calculated within the SIBYLL 2.1, QGSJETII-04, and QGSJET01 models exceed the data of the classical experiments L3 + Cosmic, MACRO, and LVD on the spectra of atmospheric muons by a factor of 1.5-2. It has been concluded that these tested models overestimate the generation of secondary particles with the highest energies in elementary events of interaction between hadrons in agreement with the LHCf and TOTEM accelerator experiments.

  6. Quantum-chemical modeling of energy parameters and vibrational spectra of chain and cyclic clusters of monohydric alcohols

    NASA Astrophysics Data System (ADS)

    Golub, P.; Doroshenko, I.; Pogorelov, V.

    2014-05-01

    The specific peculiarities of alcohols such as heightened viscosity, boiling temperature and surface tension can be explained by the capability of their molecules to form relatively stable associates named clusters due to hydrogen bonding. In present work the stability of different chain-like and cyclic clusters of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol was investigated by means of quantum-chemical simulation and particular by recently developed DFT exchange-correlation functional M06-2X. The relative stability of the cluster structure was evaluated by the total energy per molecule at low temperatures (where all alcohols exist in solid state) and by the changing of the free Gibbs energy upon cluster formation at the room temperature. For the verification of revealed results the conformity of calculated IR spectra of the most stable cluster structures with the experimental IR spectra at different temperatures was analyzed.

  7. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics

    SciTech Connect

    Li, Chen; Ma, Jie; May, Andrew F; Cao, Huibo; Christianson, Andrew D; Ehlers, Georg; Singh, David J; Sales, Brian C; Delaire, Olivier A

    2014-01-01

    The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe and PbTe are investigated with inelastic neutron scattering (INS) and first-principles calculations. The experiments show that, surprisingly, although SnTe is closer to the ferroelectric instability, phonon spectra in PbTe exhibit a more anharmonic character. This behavior is reproduced in first-principles calculations of the temperature-dependent phonon self-energy. Our simulations reveal how the nesting of phonon dispersions induces prominent features in the self-energy, which account for the measured INS spectra and their temperature dependence. We establish that the phase-space for three-phonon scattering processes, rather than just the proximity to the lattice instability, is the mechanism determining the complex spectrum of the transverse-optical ferroelectric mode.

  8. LOCALIZING INTEGRAL SOURCES WITH CHANDRA: X-RAY AND MULTI-WAVELENGTH IDENTIFICATIONS AND ENERGY SPECTRA

    SciTech Connect

    Tomsick, John A.; Bodaghee, Arash; Chaty, Sylvain; Rodriguez, Jerome; Halpern, Jules; Kalemci, Emrah; Oezbey Arabaci, Mehtap

    2012-08-01

    We report on Chandra observations of 18 hard X-ray (>20 keV) sources discovered with the INTEGRAL satellite near the Galactic plane. For 14 of the INTEGRAL sources, we have uncovered one or two potential Chandra counterparts per source. These provide soft X-ray (0.3-10 keV) spectra and subarcsecond localizations, which we use to identify counterparts at other wavelengths, providing information about the nature of each source. Despite the fact that all of the sources are within 5 Degree-Sign of the plane, four of the IGR sources are active galactic nuclei (AGNs; IGR J01545+6437, IGR J15391-5307, IGR J15415-5029, and IGR J21565+5948) and four others are likely AGNs (IGR J03103+5706, IGR J09189-4418, IGR J16413-4046, and IGR J16560-4958) based on each of them having a strong IR excess and/or extended optical or near-IR emission. We compare the X-ray and near-IR fluxes of this group of sources to those of AGNs selected by their 2-10 keV emission in previous studies and find that these IGR AGNs are in the range of typical values. There is evidence in favor of four of the sources being Galactic (IGR J12489-6243, IGR J15293-5609, IGR J16173-5023, and IGR J16206-5253), but only IGR J15293-5609 is confirmed as a Galactic source as it has a unique Chandra counterpart and a parallax measurement from previous optical observations that puts its distance at 1.56 {+-} 0.12 kpc. The 0.3-10 keV luminosity for this source is (1.4{sup +1.0}{sub -0.4}) Multiplication-Sign 10{sup 32} erg s{sup -1}, and its optical/IR spectral energy distribution is well described by a blackbody with a temperature of 4200-7000 K and a radius of 12.0-16.4 R{sub Sun }. These values suggest that IGR J15293-5609 is a symbiotic binary with an early K-type giant and a white dwarf accretor. We also obtained likely Chandra identifications for IGR J13402-6428 and IGR J15368-5102, but follow-up observations are required to constrain their source types.

  9. Influence of Finite Element Software on Energy Release Rates Computed Using the Virtual Crack Closure Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Goetze, Dirk; Ransom, Jonathon (Technical Monitor)

    2006-01-01

    Strain energy release rates were computed along straight delamination fronts of Double Cantilever Beam, End-Notched Flexure and Single Leg Bending specimens using the Virtual Crack Closure Technique (VCCT). Th e results were based on finite element analyses using ABAQUS# and ANSYS# and were calculated from the finite element results using the same post-processing routine to assure a consistent procedure. Mixed-mode strain energy release rates obtained from post-processing finite elem ent results were in good agreement for all element types used and all specimens modeled. Compared to previous studies, the models made of s olid twenty-node hexahedral elements and solid eight-node incompatible mode elements yielded excellent results. For both codes, models made of standard brick elements and elements with reduced integration did not correctly capture the distribution of the energy release rate acr oss the width of the specimens for the models chosen. The results suggested that element types with similar formulation yield matching results independent of the finite element software used. For comparison, m ixed-mode strain energy release rates were also calculated within ABAQUS#/Standard using the VCCT for ABAQUS# add on. For all specimens mod eled, mixed-mode strain energy release rates obtained from ABAQUS# finite element results using post-processing were almost identical to re sults calculated using the VCCT for ABAQUS# add on.

  10. Photoacoustic spectra of Zn1-xBexTe near the energy gap

    NASA Astrophysics Data System (ADS)

    Todorović, D. M.; Zakrzewski, J.; Maliński, M.; Grozdić, T.; Firszt, F.

    2008-01-01

    The results of experimental studies of optical and structural properties in bulk crystals of Zn1-xBe_xTe (x = 0.02, 0.06 and 0.12) were presented. The amplitude and phase photoacoustic (PA) spectra were measured and analyzed in dependence on the wavelength of the excitation optical beam, at different frequencies of modulation, using the PA microphone (PAmic) and PA piezoelectric (PApze) spectroscopy methods. The differences in PA spectra of as grown and annealed in zinc vapor samples were observed.

  11. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    SciTech Connect

    Alemi, Mallory; Loring, Roger F.

    2015-06-07

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes.

  12. Measurement of energy spectra of small-angle scattering and distribution of optical microinhomogeneities in laser ceramics

    SciTech Connect

    Tverdokhleb, P E; Shepetkin, Yu A; Steinberg, I Sh; Belikov, A Yu; Vatnik, S M; Vedin, I A; Kurbatov, P F

    2014-06-30

    The energy spectra of small-angle light scattering from the samples of Nd:YAG ceramics and the spatial distributions of optical microinhomogeneities in them are measured. The spatial profiles of microinhomogeneities are found using the collinear heterodyne microprobe technique. Based on the obtained data, the comparison of noise and lasing characteristics of foreign and domestic samples of laser ceramics is carried out. (extreme light fields and their applications)

  13. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    NASA Astrophysics Data System (ADS)

    Alemi, Mallory; Loring, Roger F.

    2015-06-01

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes.

  14. Translational energy spectra for single-electron capture by O[sup 2+] in He, Ne, and Ar

    SciTech Connect

    Lee, A.R.; Wilkins, A.C.R.; Leather, C.; Brenton, A.G. Mass Spectrometry Research Unit, University College of Swansea, Singleton Park, Swansea SA2 8PP )

    1994-08-01

    High-resolution single-electron capture spectra have been obtained for O[sup 2+] ions colliding with He, Ne, and Ar at 4-keV energy. For the He and Ne targets the dominant capture channels involve transitions from the ground [sup 3][ital P] state of O[sup 2+] to the first and second excited states ([sup 2][ital D][sup [ital o

  15. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    PubMed Central

    Alemi, Mallory; Loring, Roger F.

    2015-01-01

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes. PMID:26049437

  16. MEASUREMENT OF THE HIGH ENERGY COMPONENT OF THE X-RAY SPECTRA INTHE VENUS ECR ION SOURCE

    SciTech Connect

    Leitner, Daniela; Benitez, Janilee Y.; Lyneis, Claude M.; Todd,Damon S.; Ropponen,Tommi; Ropponen,Janne; Koivisto, Hannu; Gammino, Santo

    2007-11-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for Nuclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental set-up to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular the collimation and background shielding can be problematic. In this paper we will discuss the experimental set-up for such a measurement, the energy calibration and background reduction, the correction for detector efficiency, the shielding of the detector and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power and heating frequency.

  17. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  18. Kramers-Kronig analysis of reflection electron-energy-loss spectra measured with a cylindrical mirror analyzer

    NASA Astrophysics Data System (ADS)

    Ohno, Youichi

    1989-04-01

    We have discussed a valence-electron energy-loss spectrum measured in reflection geometry using a cylindrical mirror analyzer (CMA) and derived the angular distribution of inelastic scattering, the momentum transfer, and the differential cross section per unit energy. If a critical inelastic-scattering angle is smaller than the angular aperture of the analyzer, the differential cross section no longer depends on momentum transfer. The reflection electron-energy-loss spectroscopy (REELS) spectra of MoS2 and graphite have been measured and the Kramers-Kronig analysis has been applied. The results are compared with those of the composite energy-loss function calculated from the energy-loss functions perpendicular and parallel to the c axis. It has been shown that the Kramers-Kronig analysis is still valid for the REELS spectra at higher incident energies than 500 eV and that the derived optical constants consist approximately of 80% of the perpendicular component and 20% of the parallel component.

  19. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer

    NASA Technical Reports Server (NTRS)

    Jackson, Frederick C.

    1987-01-01

    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  20. Raman spectra of normal and cancerous mouse mammary gland tissue using near infrared excitation energy

    NASA Astrophysics Data System (ADS)

    Naik, Vaman; Serhatkulu, G. K.; Dai, H.; Shukla, N.; Weber, R.; Thakur, J. S.; Freeman, D. C.; Pandya, A. K.; Auner, G. W.; Naik, R.; Miller, R. F.; Cao, A.; Klein, M. D.; Rabah, R.

    2006-03-01

    Raman spectra of normal mammary gland tissues, malignant mammary gland tumors, and lymph nodes have been recorded using fresh tissue from mice. Tumors were induced in mice by subcutaneously injecting 4T1 BALB/c mammary tumor (a highly malignant) cell line. The Raman spectra were collected using the same tissues that were examined by histopathology for determining the cancerous/normal state of the tissue. Differences in various peak intensities, peak shifts and peak ratios were analyzed to determine the Raman spectral features that differentiate mammary gland tumors from non-tumorous tissue. Tissues that were confirmed by pathology as cancerous (tumors) show several distinctive features in the Raman spectra compared to the spectra of the normal tissues. For example, the cancerous tissues show Raman peaks at 621, 642, 1004, 1032, 1175 and 1208 cm-1 that are assignable to amino acids containing aromatic side-chains such as phenylalanine, tryptophan and tyrosine. Further, the cancerous tissues show a greatly reduced level of phospholipids compared to the normal tissues. The Raman spectral regions that are sensitive to pathologic alteration in the tissue will be discussed.

  1. X-Ray Spectra of Young Pulsars and Their Wind Nebulae: Dependence on Spin-Down Energy Loss Rate

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.

    2003-01-01

    An observational model is presented for the spectra of young rotation-powered pulsars and their nebulae based on a study of nine bright Crab-like pulsar systems observed with the Chandra X-ray observatory. A significant correlation is discovered between the X-ray spectra of these pulsars and that of their associated pulsar wind nebulae, both of which are observed to be a function of the spin-down energy loss rate, E. The 2-10 keV spectra of these objects are well characterized by an absorbed power-law model with photon indices, Gamma, in the range of 0.6 < Gamma (sub PSR) < 2.1 and 1.3 < Gamma(sub PWN) < 2.3, for the pulsars and their nebulae, respectively. A linear regression fit relating these two sets of indexes yields Gamma(sub PWN) = 0.91 +/- 0.18 + (0.66 +/- 0.11) Gamma (sub PSR), with a correlation coefficient of r = 0.97. The spectra of these pulsars are found to steepen as Gamma = Gamma(sub max) + alpha E (exp -1/2), with Gamma(sub max) providing an observational limit on the spectral slopes of young rotation-powered pulsars. These results reveal basic properties of young pulsar systems, allow new observational constraints on models of pulsar wind emission, and provide a means of predicting the energetics of pulsars lacking detected pulsations.

  2. XUV spectra of 2nd transition row elements: identification of 3d-4p and 3d-4f transition arrays

    NASA Astrophysics Data System (ADS)

    Lokasani, Ragava; Long, Elaine; Maguire, Oisin; Sheridan, Paul; Hayden, Patrick; O'Reilly, Fergal; Dunne, Padraig; Sokell, Emma; Endo, Akira; Limpouch, Jiri; O'Sullivan, Gerry

    2015-12-01

    The use of laser produced plasmas (LPPs) in extreme ultraviolet/soft x-ray lithography and metrology at 13.5 nm has been widely reported and recent research efforts have focused on developing next generation sources for lithography, surface morphology, patterning and microscopy at shorter wavelengths. In this paper, the spectra emitted from LPPs of the 2nd transition row elements from yttrium (Z = 39) to palladium (Z = 46), with the exception of zirconium (Z = 40) and technetium (Z = 43), produced by two Nd:YAG lasers which delivered up to 600 mJ in 7 ns and 230 mJ in 170 ps, respectively, are reported. Intense emission was observed in the 2-8 nm spectral region resulting from unresolved transition arrays (UTAs) due to 3d-4p, 3d-4f and 3p-3d transitions. These transitions in a number of ion stages of yttrium, niobium, ruthenium and rhodium were identified by comparison with results from Cowan code calculations and previous studies. The theoretical data were parameterized using the UTA formalism and the mean wavelength and widths were calculated and compared with experimental results.

  3. Transport analysis of measured neutron energy spectra in a graphite stack with a collimated deuterium-tritium neutron beam

    SciTech Connect

    Tsechanski, A.; Ofek, R.; Goldfeld, A.; Shani, G.

    1989-02-01

    The Ben-Gurion University measurements of neutron energy spectra in a graphite stack, resulting from the scattering of 14.7-MeV neutrons streaming through a 6-cm-diam collimator in a 121-cm-thick paraffin wall, have been used as a benchmark for the compatability and accuracy of discrete ordinates, P/sub n/, and transport calculations and as a tool for fusion reactor neutronics. The transport analysis has been carried out with the DOT 4.2 discrete ordinates code and with cross sections processed with the NJOY code. Most of the parameters affecting the accuracy of the flux and L system scattering cross sections in the P/sub n/ approximation, the quadrature set employed, and the energy multigroup structure. First, a spectrum calculated with DOT 4.2, with a detector located on the axis of the system, was compared with a spectrum calculated with the MCNP Monte Carlo code, which was a preliminary verification of the DOT 4.2 results. Both calculated spectra were in good agreement. Next, the DOT 4.2 calculations were compared with the measured spectra. The comparison showed that the discrepancies between the measurements and the calculations increase as the distance between the detector and the system axis increases. This trend indicates that when the flux is determined mainly by multiple scatterings, a more divided multigroup structure should be employed.

  4. Absorption spectra of CdSe-ZnS core-shell quantum dots at high photon energies: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Mukherjee, Amlan; Ghosh, Sandip

    2014-11-01

    Absorption spectra of CdSe-ZnS core-shell quantum dot (QD) ensembles, with average core diameters ranging from 2.6 nm to 7.2 nm have been obtained using both transmission and photoluminescence excitation measurements. In agreement with previous reports, the absorption coefficient at energies ≃1 eV above the effective bandgap increases monotonically as in bulk solids. A simple effective-mass spherical core-shell potential model cannot explain the relatively high absorption at higher energies. The calculated electron and hole radial envelope wavefunctions show asymmetry due to the core-shell structure. It leads to normally symmetry-disallowed transitions acquiring a weak oscillator strength, with their number and strength increasing with energy. A phenomenological model that invokes normally disallowed transitions in general is shown to reproduce the absorption spectrum at higher energies quite well. The oscillator strength scaling factor for such transitions increases with decrease in QD size, consistent with expectations.

  5. SINGLE- AND TWO-COMPONENT GAMMA-RAY BURST SPECTRA IN THE FERMI GBM-LAT ENERGY RANGE

    SciTech Connect

    Veres, P.; Meszaros, P. E-mail: nnp@astro.psu.edu

    2012-08-10

    Most Fermi gamma-ray burst spectra appear as either a broken power law extending to GeV energies or as a broken power with a separate GeV power-law component. Here we show that such spectra can be understood in terms of magnetically dominated relativistic jets where a dissipative photosphere produces the prompt MeV emission, which is extended into the GeV range by inverse Compton scattering in the external shock, with possible contributions from a reverse shock as well. The bulk Lorentz factors required in these models are in the range of 300-600, and the MeV-GeV time delays arise naturally. In some cases an optical flash and a sub-dominant thermal component are also present.

  6. Relative Abundances and Energy Spectra of C, N, and 0 as Measured by the Advanced Thin Ionization Calorimeter Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Fazely, A. R.; Gunasingha, R. M.; Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.

    2003-01-01

    We present results on the spectra and the relative abundances of C, N, and 0 nuclei in the cosmic radiation as measured from the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) . The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate calorimeter. It is equipped with a large area mosaic of silicon detector pixels capable of charge identification from H to Fe. As a redundancy check for the charge identification and a particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the middle and below a 0.75 nuclear interaction length graphite target.

  7. Elemental composition of low energy Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Ferrando, P.; Lal, N.; McDonald, F. B.

    1989-03-01

    This paper describes new measurements (at about 100 MeV/n) of elemental ratios in cosmic rays, made from Voyager 2 at about 22.5 AU. These data are characterized by a very low level of solar modulation, which results from the combination of the 1986-1987 solar minimum period and the large heliocentric distance. The data were obtained from one of the two HET telescopes on board Voyager 2, collected during 1986 and 1987; the charges were derived from a double dE/dx vs E analysis. The results on the secondary/primary elemental ratios are presented along with previous results obtained at 1 AU by IMP-8 and ISEE-3.

  8. Elemental composition of low energy Galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Ferrando, P.; Lal, N.; Mcdonald, F. B.

    1989-01-01

    This paper describes new measurements (at about 100 MeV/n) of elemental ratios in cosmic rays, made from Voyager 2 at about 22.5 AU. These data are characterized by a very low level of solar modulation, which results from the combination of the 1986-1987 solar minimum period and the large heliocentric distance. The data were obtained from one of the two HET telescopes on board Voyager 2, collected during 1986 and 1987; the charges were derived from a double dE/dx vs E analysis. The results on the secondary/primary elemental ratios are presented along with previous results obtained at 1 AU by IMP-8 and ISEE-3.

  9. Differential energy spectra of low energy (less than 8.5 MeV per nucleon) heavy cosmic rays during solar quiet times. [from Explorer 47 satellite observation

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.; Vollmer, O.; Gloeckler, G.; Fan, C. Y.

    1973-01-01

    Explorer 47 satellite observations of carbon, oxygen, and heavier nuclei differential energy spectra below 8.5 MeV/nucleon are presented for solar quiet time periods. A dE/dx vs E method for particle identification and energy determination was used. The instrumentation telescope included an isobutane proportional counter, a surface barrier Si detector, and a cylindrical plastic scintillator anticoincidence shield. The observations were performed outside the bow-shock and in the ecliptic plane. Results show an anisotropy of about 25% at 22 degrees west of the sun with a C/O ratio of 0.5 supporting a solar origin. The low energy portions of the C and O spectra have steep negative slopes, and the corresponding power law is given. Peculiarities in the O spectrum are discussed.

  10. Evaluation of turbulent magnetic energy spectra in the three-dimensional wave vector domain in the solar wind

    SciTech Connect

    Gary, S Peter; Narita, Y; Glassmeier, K H; Goldstein, M L; Safraoui, F; Treumann, R A

    2009-01-01

    Using four-point measurements of the CLUSTER spacecraft, the energy distribution of magnetic field fluctuations in the solar wind is determined directly in the three-dimensional wave vector domain in the range 3 x 10{sup -4} rad/km < k < 3 x 10{sup -3} rad/km. The analysis method takes account of a regular tetrahedron configuration of CLUSTER and the Doppler effect. The energy distribution in the flow rest frame is anisotropic, characterized by two distinct extended structures perpendicular to the mean magnetic field and furthermore perpendicular to the flow direction. The three-dimensional distribution is averaged around the direction of the mean magnetic field direction, and then is further reduced to one-dimensional distributions in the wave number domain parallel and perpendicular to the mean magnetic field. The one-dimensional energy spectra are characterized by the power law with the index -5/3 and furthermore very close energy density between parallel and perpendicular directions to the mean magnetic field at the same wave numbers. Though the distributions and the spectra are not covered in a wide range of wave vectors, our measurements suggest that the solar wind fluctuation is anisotropic in the three-dimensional wave vector space. It is, however, rather isotropic when reduced into the parallel and perpendicular wave vector geometries due to the second anisotropy imposed by the flow direction.

  11. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  12. ENERGY-DEPENDENT LIGHT CURVES AND PHASE-RESOLVED SPECTRA OF HIGH-ENERGY GAMMA-RAYS FROM THE CRAB PULSAR

    SciTech Connect

    Li, X.; Zhang, L.

    2010-12-20

    Energy-dependent light curves and phase-resolved spectra of high-energy {gamma}-ray emission from the Crab pulsar have been detected recently by the Fermi Large Area Telescope (LAT). Within the framework of a two-pole, three-dimensional outer gap model, we calculate the energy-dependent light curves and phase-resolved spectra in the inertial observer's frame. Our results show that (1) the observed {gamma}-ray properties from both Fermi LAT and MAGIC can be reproduced well in this model; (2) the first peak of the light curves in the energy region less than {approx}10 GeV comes from the sum of emissions from both the north and south poles, and the second peak comes only from the emission from the south pole; however, the relative contribution of the two poles to the first peak changes with increasing {gamma}-ray energy, and the light curve in the energy region greater than {approx}20 GeV comes completely from the emission of the south pole; and (3) {gamma}-rays in the energy region greater than 100 MeV are produced through inverse Compton scattering from secondary pairs and the survival curvature photons, where the latter dominate over {gamma}-ray emission in the energy region greater than several GeV.

  13. Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter

    NASA Astrophysics Data System (ADS)

    Bradai, Sonia; Naifar, Slim; Kanoun, Olfa

    2015-12-01

    In this paper we report on the design and optimization of a novel combined vibration energy harvester based on the use of electrodynamic and magnetoelectric (ME) principles to increase the energy outcome of an electrodynamic harvester without significantly increasing its size. Thereby the most important aspect is the dependence of magnetic flux variation on design parameters, as is it is the decisive effect for energy conversion. Magnetic circuit form and magnetization are optimized for maximizing energy outcome. We conclude that better magnetic flux variation is reached for a magnetic circuit formed with two magnets stacked one within the other using the same magnetization. Results illustrate that the use of combined converter enables to enhance the performance of simple electrodynamic or ME converter.

  14. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  15. The Old, Super-metal-rich Open Cluster, NGC 6791—Elemental Abundances in Turn-off Stars from Keck/HIRES Spectra

    NASA Astrophysics Data System (ADS)

    Boesgaard, Ann Merchant; Lum, Michael G.; Deliyannis, Constantine P.

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]n with a mean of -0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  16. THE OLD, SUPER-METAL-RICH OPEN CLUSTER, NGC 6791—ELEMENTAL ABUNDANCES IN TURN-OFF STARS FROM KECK/HIRES SPECTRA

    SciTech Connect

    Merchant Boesgaard, Ann; Lum, Michael G.; Deliyannis, Constantine P. E-mail: mikelum@ifa.hawaii.edu

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]{sub n} with a mean of –0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  17. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles.

    PubMed

    Slater, Thomas J A; Lewis, Edward A; Haigh, Sarah J

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  18. ANALYSIS OF SPACE CHARGE DRIVEN MODULATION IN ELECTRON BUNCH ENERGY SPECTRA.

    SciTech Connect

    SHAFTAN,T.YU,L.H.

    2003-08-22

    As was discussed earlier [1,2] longitudinal space charge force in initially nonuniform bunch transforms density fluctuations into energy modulation along the bunch. For characterization of the resulted energy modulation one can chirp the bunch using accelerator section, located upstream of beam spectrometer, and record energy spectrum of such chirped bunch. Measured spectrum shows structure with parameters, depending on the bunch properties. In this paper we present analysis of the structure in the bunch energy spectrum and its connection with energy modulation along the bunch.

  19. A new background subtraction method for energy dispersive X-ray fluorescence spectra using a cubic spline interpolation

    NASA Astrophysics Data System (ADS)

    Yi, Longtao; Liu, Zhiguo; Wang, Kai; Chen, Man; Peng, Shiqi; Zhao, Weigang; He, Jialin; Zhao, Guangcui

    2015-03-01

    A new method is presented to subtract the background from the energy dispersive X-ray fluorescence (EDXRF) spectrum using a cubic spline interpolation. To accurately obtain interpolation nodes, a smooth fitting and a set of discriminant formulations were adopted. From these interpolation nodes, the background is estimated by a calculated cubic spline function. The method has been tested on spectra measured from a coin and an oil painting using a confocal MXRF setup. In addition, the method has been tested on an existing sample spectrum. The result confirms that the method can properly subtract the background.

  20. Reconsideration of the Iwasaki-Waggener iterative perturbation method for reconstructing high-energy X-ray spectra.

    PubMed

    Iwasaki, Akira; Kimura, Shigenobu; Sutoh, Kohji; Kamimura, Kazuo; Sasamori, Makoto; Seino, Morio; Komai, Fumio; Terashima, Singo; Kubota, Mamoru; Narita, Yuichiro; Hosokawa, Yoichiro; Miyazawa, Masanori

    2012-07-01

    We have reviewed applicable ranges for attenuating media and off-axis distances regarding the high-energy X-ray spectra reconstructed via the Iwasaki-Waggener iterative perturbation method for 4-20 MV X-ray beams. Sets of in-air relative transmission data used for reconstruction of spectra were calculated for low- and high-Z attenuators (acrylic and lead, respectively) by use of a functional spectral formula. More accurate sets of spectra could be reconstructed by dividing the off-axis distances of R = 0-20 cm into two series of R = 0-10 cm and R = 10-20 cm, and by taking into account the radiation attenuation and scatter in the buildup cap of the dosimeter. We also incorporated in the reconstructed spectra an adjustment factor (f (adjust) ≈ 1) that is determined by the attenuating medium, the acceleration voltage, and the set of off-axis distances. This resulted in calculated in-air relative transmission data to within ±2 % deviation for the low-Z attenuators water, acrylic, and aluminum (Al) with 0-50 cm thicknesses and R = 0-20 cm; data to within ±3 % deviation were obtained for high-Z attenuators such as iron (Fe), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), gold (Au), lead (Pb), thorium (Th), and uranium (U) having thicknesses of 0-10 cm and R = 0-20 cm. By taking into account the radiation attenuation and scatter in the buildup cap, we could analyze the in-air chamber response along a line perpendicular to the isocenter axis. PMID:22696171

  1. Targeted energy transfer between a system with a set of Saint-Venant elements and a nonlinear energy sink

    NASA Astrophysics Data System (ADS)

    Lamarque, C.-H.; Ture Savadkoohi, A.

    2015-09-01

    Targeted energy transfer between a main oscillator with a set of parallel Saint-Venant elements and a nonlinear energy sink with a general nonlinear and odd potential function around 1:1 resonance is studied. The complexified system has been investigated at fast and slow time scales by detecting its invariant manifold, equilibrium and singular points, which can explain bifurcation(s) and different regimes of the system. Then, we introduce an example which treats vibratory energy exchanges between a main oscillator with two parallel Saint-Venant elements and a coupled cubic nonlinear energy sink. Finally, analytical predictions are compared with results obtained by numerical integrations of system equations.

  2. Plastic identification based on molecular and elemental information from laser induced breakdown spectra: a comparison of plasma conditions in view of efficient sorting

    NASA Astrophysics Data System (ADS)

    Barbier, Sophie; Perrier, Sébastien; Freyermuth, Pierre; Perrin, Didier; Gallard, Benjamin; Gilon, Nicole

    2013-10-01

    This work is dedicated to a comparison of plasma conditions for the accurate determination of some elements: Br, Cl, Ca, P and Sb, in polymers. The comparison of the plasma conditions to sort plastics according to CN, C2 and element signals was also investigated. The comparison of a helium atmosphere and an air atmosphere led to improved results using helium as a buffer gas. The improvement is obtained in two areas, it increased the detection of halogens (Br, Cl) usually employed as flame retardants. It was also found to significantly improve the discrimination based on simple calculations of C2/He and CN/He ratios. Best conditions were based on a laser emitting at 266 nm, with a low 6 mJ energy focalized on a 50 μm spot and the helium buffer gas. A plot of C2/He against CN/He was efficient to identify the four groups of plastics employed in this study: polystyrene, polypropylene, acrylonitryle-butadiene-styrene and acrylonitryle-butadiene-styrene/polycarbonate.

  3. High Energy Cosmic Ray Electron Spectra measured from the ATIC Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2003-01-01

    The Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) is specifically designed for high energy cosmic ray ion detection. From simulation and a CERN beam test exposure we find that the design consisting of a graphite target and an energy detection device, a totally active calorimeter of BGO scintillator, gives us sufficient information to distinguish electrons from protons up to the TeV energy range. Balloon observations were successfully carried out over Antarctica in both 2000/2001 and 2002/2003 for a total of more than 35 days. This paper presents preliminary results on the spectrum of high energy electrons observed in the first ATIC flight.

  4. Evaluation of Energy Gradients and Infrared Vibrational Spectra through Molecules-in-Molecules Fragment-Based Approach.

    PubMed

    Jose, K V Jovan; Raghavachari, Krishnan

    2015-03-10

    Molecules-in-Molecules (MIM) is a general hybrid fragment-based extrapolation approach for calculating accurate total energies of large molecules, similar in spirit to the popular ONIOM methodology. In this work, the MIM model is extended for the precise evaluation of the energy gradients and infrared (IR) vibrational spectra of large molecules. The overlapping subsystems in this work are constructed from nonoverlapping fragments using a number-based scheme, and the dangling bonds are saturated with link-hydrogen atoms. Independent fragment calculations are performed to evaluate the energies and its gradients. Subsequently, the link-atom energy gradient components are projected back onto the corresponding host and supporting atoms, through the Jacobian projection method, as in the ONIOM approach. After geometry optimization, the Jacobian link-atom projection method is also employed for the precise evaluation of the force constants and dipole derivatives of the full molecule. The performance of the MIM model is benchmarked on 25 small-to-large peptides, with inevitable weak long-range intramolecular interactions. Upon accounting these long-range interactions through a second layer, at an inexpensive low-level of theory (MIM2), the energy accuracy improve by 80%, compared to MIM with one layer (MIM1). The MIM2 IR frequencies and intensities have an ∼75% improvement, compared to the corresponding values at the MIM1 level of theory. A similar improvement is also observed for anion, cation, and radical systems constructed from the neutral benchmark molecules. The accuracy and performance of the benchmark systems validate the MIM model for exploring the vibrational infrared spectra of large molecules. PMID:26579749

  5. Optical absorption spectra and energy levels of Er3+ ions in glassy lithium tetraborate matrix

    NASA Astrophysics Data System (ADS)

    Danilyuk, P. S.; Popovich, K. P.; Puga, P. P.; Gomonai, A. I.; Primak, N. V.; Krasilinets, V. N.; Turok, I. I.; Puga, G. D.; Rizak, V. M.

    2014-11-01

    The optical absorption spectra of Er:Li2B4O7 glasses are studied in the range 200-800 nm. The lines corresponding to the direct f-f parity-forbidden intraconfigurational transitions from the ground 4 I 15/2 state to the levels of the excited 4 F 9/2, 4 S 3/2, 2 H 9/2, 2 H 11/2, 4 F 7/2, 4 F 5/2, 4 F 3/2, 2 H 9/2, 4 G 11/2, 4 D 3/2, 4 D 1/2, and 2 D 3/2 states are found.

  6. Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS

    SciTech Connect

    Tucker, Lucas P.; Shores, Erik F.; Myers, Steven C.; Felsher, Paul D.; Garner, Scott E.; Solomon, Clell J. Jr.

    2012-08-14

    The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.

  7. The Crab nebula energy origin and its high frequency radiation spectra

    NASA Astrophysics Data System (ADS)

    Machabeli, George Z.; Rogava, A.; Chkheidze, N.; Osmanov, Z.; Shapakidze, D.

    2016-06-01

    > In the present work there is presented a model describing transfer of the Crab pulsar's spin-down energy into the powerful synchrotron emission of the nebula. The process of the energy transfer consists of several consecutive stages. The physical processes underlying the theoretical model provide us with the synchrotron emission spectrum, which fits well with the observed one.

  8. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  9. The TDF System for Thermonuclear Plasma Reaction Rates, Mean Energies and Two-Body Final State Particle Spectra

    SciTech Connect

    Warshaw, S I

    2001-07-11

    The rate of thermonuclear reactions in hot plasmas as a function of local plasma temperature determines the way in which thermonuclear ignition and burning proceeds in the plasma. The conventional model approach to calculating these rates is to assume that the reacting nuclei in the plasma are in Maxwellian equilibrium at some well-defined plasma temperature, over which the statistical average of the reaction rate quantity {sigma}v is calculated, where {sigma} is the cross-section for the reaction to proceed at the relative velocity v between the reacting particles. This approach is well-understood and is the basis for much nuclear fusion and astrophysical nuclear reaction rate data. The Thermonuclear Data File (TDF) system developed at the Lawrence Livermore National Laboratory (Warshaw 1991), which is the topic of this report, contains data on the Maxwellian-averaged thermonuclear reaction rates for various light nuclear reactions and the correspondingly Maxwellian-averaged energy spectra of the particles in the final state of those reactions as well. This spectral information closely models the output particle and energy distributions in a burning plasma, and therefore leads to more accurate computational treatments of thermonuclear burn, output particle energy deposition and diagnostics, in various contexts. In this report we review and derive the theoretical basis for calculating Maxwellian-averaged thermonuclear reaction rates, mean particle energies, and output particle spectral energy distributions for these reactions in the TDF system. The treatment of the kinematics is non-relativistic. The current version of the TDF system provides exit particle energy spectrum distributions for two-body final state reactions only. In a future report we will discuss and describe how output particle energy spectra for three- and four-body final states can be developed for the TDF system. We also include in this report a description of the algorithmic implementation of the

  10. Modeling of electron energy spectra and mobilities in semi-metallic Hg1-xCdxTe quantum wells

    NASA Astrophysics Data System (ADS)

    Melezhik, E. O.; Gumenjuk-Sichevska, J. V.; Sizov, F. F.

    2015-11-01

    Electron mobility, energy spectra, and intrinsic carrier concentrations in the n-type Hg0.32Cd0.68Te/Hg1-xCdxTe/Hg0.32Cd0.68Te quantum well (QW) in semi-metallic state are numerically modeled. Energy spectra and wave functions were calculated in the framework of the 8-band k-p Hamiltonian. In our model, electron scattering on longitudinal optical phonons, charged impurities, and holes has been taken into account, and the mobility has been calculated by an iterative solution of the Boltzmann transport equation. Our results show that the increase of the electron concentration in the well enhances the screening of the 2D electron gas, decreases the hole concentration, and can ultimately lead to a high electron mobility at liquid nitrogen temperatures. The increase of the electron concentration in the QW could be achieved in situ by delta-doping of barriers or by applying the top-gate potential. Our modeling has shown that for low molar composition x the concentration of holes in the well is high in a wide range of electron concentrations; in this case, the purity of samples does not significantly influence the electron mobility. These results are important in the context of establishing optimal parameters for the fabrication of high-mobility Hg1-xCdxTe quantum wells able to operate at liquid nitrogen temperature and thus suitable for applications in terahertz detectors.

  11. Proton energy spectra in the nonmesonic weak decay of 12lambdaC and 28lambdaSi hypernuclei.

    PubMed

    Hashimoto, O; Ajimura, S; Aoki, K; Bhang, H; Hasegawa, T; Hotchi, H; Kim, Y D; Kishimoto, T; Maeda, K; Noumi, H; Ohta, Y; Omata, K; Outa, H; Park, H; Sato, Y; Sekimoto, M; Shibata, T; Takahashi, T; Youn, M

    2002-01-28

    Numbers of protons per Gamma hypernuclear weak decay were measured as a function of proton energy above 40 MeV, explicitly identifying production of Gamma hypernuclei by the (pi+,K+) reaction. The ratios between the neutron-stimulated to proton-stimulated nonmesonic decay widths, Gamma((Lambda)n-->nn)/Gamma((Lambda)p-->np) ( = Gamma(n)/Gamma(p)) were extracted by fitting the proton energy spectra. The present result claims that the proton yields are suppressed and the Gamma(n)/Gamma(p) ratios are close to 1 both for 12LambdaC and 28LambdaSi in contradiction to theoretical expectations based on meson exchange models. PMID:11801115

  12. Energy Spectra of Electrons Backscattered from Sample Surfaces with Heterostructures using Field-Emission Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Hirade, Masato; Arai, Toyoko; Tomitori, Masahiko

    2006-03-01

    We have improved the combined instrument of field-emission scanning tunneling microscopy (STM) with surface electron spectroscopy to directly identify the atomic species on a sample; we supplement an electric shield near the tip, the position of which can be adjusted by three-dimensional coarse stages, and optimize the grazing angle of a sample surface with respect to the entrance of an energy analyzer by placing the STM head on a rotation stage. We observe STM images and take the energy spectra of backscattered electrons from clean Si(111) and Al-deposited Si(111) using the improved instrument. The Auger peaks of Si LVV are found at a tip-sample separation of approximately 1 μm for Si(111), and Al LVV and Si LVV peaks are found for Al-deposited Si samples, depending on the deposited amount. The present study implies that submicron surface analysis of samples with heterostructures can be performed with the combined instrument.

  13. The beta-SiC(100) surface studied by low energy electron diffraction, Auger electron spectroscopy, and electron energy loss spectra

    NASA Technical Reports Server (NTRS)

    Dayan, M.

    1986-01-01

    The beta-SiC(100) surface has been studied by low energy electron diffraction, Auger electron spectroscopy, high resolution electron energy loss spectra (HREELS), and core level excitation EELS. Two new Si-terminated phases have been discovered, one with (3 x 2) symmetry, and the other with (2 x 1) symmetry. Models are presented to describe these phases. New results, for the C-rich surface, are presented and discussed. In addition, core level excitation EELS results are given and compared with theory.

  14. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Puchalska, Monika; Sihver, Lembit

    2015-06-01

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  15. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator.

    PubMed

    Puchalska, Monika; Sihver, Lembit

    2015-06-21

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature. PMID:26057186

  16. Relativistic X-ray reverberation modelling of the combined time-averaged and lag-energy spectra in AGN

    NASA Astrophysics Data System (ADS)

    Chainakun, P.; Young, A. J.; Kara, E.

    2016-08-01

    General relativistic ray tracing simulations of the time-averaged spectrum and energy-dependent time delays in active galactic nuclei (AGN) are presented. We model the lamp-post geometry in which the accreting gas is illuminated by an X-ray source located on the rotation axis of the black hole. The spectroscopic features imprinted in the reflection component are modelled using REFLIONX. The associated time delays after the direct continuum, known as reverberation lags, are computed including the full effects of dilution and ionization gradients on the disc. We perform, for the first time, simultaneous fitting of the time-averaged and lag-energy spectra in three AGN: Mrk 335, IRAS 13224-3809 and Ark 564 observed with XMM-Newton. The best-fitting source height and central mass of each AGN partly agree with those previously reported. We find that including the ionization gradient in the model naturally explains lag-energy observations in which the 3 keV and 7-10 keV bands precede other bands. To obtain the clear 3 keV and 7-10 keV dips in the lag-energy profile, the model requires either a source height >5 rg, or a disc that is highly ionized at small radii and is colder further out. We also show that fitting the lag or the mean spectra alone can lead to different results and interpretations. This is therefore important to combine the spectral and timing data in order to find the plausible but self-consistent fits which are achievable with our model.

  17. Relativistic X-ray reverberation modelling of the combined time-averaged and lag-energy spectra in AGN

    NASA Astrophysics Data System (ADS)

    Chainakun, P.; Young, A. J.; Kara, E.

    2016-08-01

    General relativistic ray tracing simulations of the time-averaged spectrum and energy-dependent time delays in AGN are presented. We model the lamp-post geometry in which the accreting gas is illuminated by an X-ray source located on the rotation axis of the black hole. The spectroscopic features imprinted in the reflection component are modelled using REFLIONX. The associated time delays after the direct continuum, known as reverberation lags, are computed including the full effects of dilution and ionization gradients on the disc. We perform, for the first time, simultaneous fitting of the time-averaged and lag-energy spectra in three AGN: Mrk 335, IRAS 13224-3809 and Ark 564 observed with XMM-Newton. The best fitting source height and central mass of each AGN partly agree with those previously reported. We find that including the ionization gradient in the model naturally explains lag-energy observations in which the 3 keV and 7-10 keV bands precede other bands. To obtain the clear 3 keV and 7-10 keV dips in the lag-energy profile, the model requires either a source height > 5$r_g$, or a disc that is highly ionized at small radii and is colder further out. We also show that fitting the lag or the mean spectra alone can lead to different results and interpretations. This is therefore important to combine the spectral and timing data in order to find the plausible but self-consistent fits which is achievable with our model.

  18. A new potential energy surface and microwave and infrared spectra of the He-OCS complex

    SciTech Connect

    Wang, Zhongquan Zhang, Chunzao; Sun, Chunyan; Feng, Eryin

    2014-11-07

    A new high quality potential energy surface for the He-OCS van der Waals complex was calculated using the CCSD(T) method and avqz+33221 basis set. It is found that the global minimum energy is −51.33 cm{sup −1} at R{sub e} = 6.30a{sub 0} and θ{sub e} = 110.0°, the shallower minimum is located at R = 8.50a{sub 0} and θ = 0° with well depth −32.26 cm{sup −1}. Using the fitted potential energy surface, we have calculated bound energy levels of the He-OCS, He-O{sup 13}CS, He-OC{sup 34}S, and {sup 3}He-OCS complexes. The theoretical results are all in better agreement compared to previous theoretical work.

  19. Feynman scaling violation on baryon spectra in pp collisions at LHC and cosmic ray energies

    SciTech Connect

    Arakelyan, G. H.; Merino, C. Pajares, C.; Shabelski, Yu. M.

    2013-03-15

    A significant asymmetry in baryon/antibaryon yields in the central region of high energy collisions is observed when the initial state has nonzero baryon charge. This asymmetry is connected with the possibility of baryon charge diffusion in rapidity space. Such a diffusion should decrease the baryon charge in the fragmentation region and translate into the corresponding decrease of the multiplicity of leading baryons. As a result, a new mechanism for Feynman scaling violation in the fragmentation region is obtained. Another numerically more significant reason for the Feynman scaling violation comes from the fact that the average number of cut Pomerons increases with initial energy. We present the quantitative predictions of the Quark-Gluon String Model for the Feynman scaling violation at LHC energies and at even higher energies that can be important for cosmic ray physics.

  20. Relativistic model of secondary-electron energy spectra in electron-impact ionization

    SciTech Connect

    Miller, J.H. ); Manson, S.T. )

    1991-10-01

    A relativistic model for differential electron-impact-ionization cross sections that allows the energy spectrum of secondary electrons to be calculated over a wide range of primary-electron energies is presented. The semiempirical method requires only experimental total ionization cross sections and optical oscillator strengths for the target species of interest, but other information, if available, can be incorporated to make the formulation still more accurate. Results for ionization of helium indicate that the lower limit on primary-electron energy for application of the model is about 100 eV. The simple analytic form of the model facilitates investigation of the regions of the secondary-electron energy spectrum where relativistic effects are important.

  1. Method for sampling from fission neutron energy spectra. [For DEC KA-10

    SciTech Connect

    Froehner, F.H.; Spencer, R.R.

    1981-02-01

    A simple method for fast and efficient sampling from the Watt fission neutron energy spectrum is described. As a limiting case the Maxwellian energy distribution can also be sampled. A short FORTRAN routine written for this purpose and results obtained with it are presented. The routine is shown to give accurate results, and requires <1 ms/sample on a DEC KA-10 processor. 1 figure, 1 table.

  2. X-ray spectra of Hercules X-1. 3: Pulse phase dependence in high energy continuum

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Bussard, R. W.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    Pulse phase-dependent spectral changes in the high energy (less than 20 keV) continuum of Hercules X-1 were observed. Cyclotron absorption of underlying continua can reproduce the observed angular dependence in the high energy cutoff. Implications of this model, which include the possibility of determining the angular separation between the line of sight and the neutron star magnetic field if the absorbing electron spectrum is known are discussed.

  3. Investigation of Coulombic bremsstrahlung spectra of metallic targets for the photon energy region of 1-100keV.

    PubMed

    Singh, Amrit; Dhaliwal, A S

    2016-09-01

    In the present paper, the formation of bremsstrahlung spectra by ordinary bremsstrahlung (OB) and polarization bremsstrahlung (PB) in metallic targets by (35)S beta particles has been investigated in the photon energy region of 1-100keV. From the experimental measurements and the theoretical results obtained from Elwert corrected (non-relativistic) Bethe Heitler (EBH) theory, modified Elwert factor (relativistic) (FmodBH) theories for OB and Avdonina and Pratt (FmodBH+PB) theory for total bremsstrahlung (BS) having the contribution of PB into OB, it has been found that the contribution of PB into BS in a target is limited to a low energy region only and also varies with the atomic number of target material. The FmodBH+PB theory is in agreement with the experimental results in low energy regions of the target, whereas at high energy region FmodBH is found to give better agreement. Further, the present experimental results indicate that the screening effects in the Coulombic bremsstrahlung process cannot be neglected in the high energy region, and the multiple scattering and secondary electron emissions effects in thick target are required to be taken into account in describing the bremsstrahlung process. PMID:27400163

  4. Primary-energy dependence of the momentum transfer in reflection inner-shell-electron energy-loss spectra of layered transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Ohno, Youichi

    1987-11-01

    Sulfur L2.3 and titanium L2.3 and M2.3 inner-shell-electron energy-loss spectra in 1T-TiS2, 1T-TiSe2, 2H-TaS2, and 2H-MoS2 have been measured at various primary energies in the reflection mode. A remarkable primary-energy dependence is found. As the primary energy decreases, the first peak that is assigned to the unoccupied t2g band for the 1T compounds & band for 2H-TaS2 increases in intensity relative to the second peak. The peak positions are almost unchanged. They are in agreement with those of band-structure calculations and x-ray absorption spectra. The primary-energy dependence has been discussed mainly in terms of the breakdown of dipole selection rules due to momentum transfer involved in the inelastic scattering process and anisotropy in electronic structures.

  5. Rovibrational spectra of ammonia. I. Unprecedented accuracy of a potential energy surface used with nonadiabatic corrections.

    PubMed

    Huang, Xinchuan; Schwenke, David W; Lee, Timothy J

    2011-01-28

    In this work, we build upon our previous work on the theoretical spectroscopy of ammonia, NH(3). Compared to our 2008 study, we include more physics in our rovibrational calculations and more experimental data in the refinement procedure, and these enable us to produce a potential energy surface (PES) of unprecedented accuracy. We call this the HSL-2 PES. The additional physics we include is a second-order correction for the breakdown of the Born-Oppenheimer approximation, and we find it to be critical for improved results. By including experimental data for higher rotational levels in the refinement procedure, we were able to greatly reduce our systematic errors for the rotational dependence of our predictions. These additions together lead to a significantly improved total angular momentum (J) dependence in our computed rovibrational energies. The root-mean-square error between our predictions using the HSL-2 PES and the reliable energy levels from the HITRAN database for J = 0-6 and J = 7∕8 for (14)NH(3) is only 0.015 cm(-1) and 0.020∕0.023 cm(-1), respectively. The root-mean-square errors for the characteristic inversion splittings are approximately 1∕3 smaller than those for energy levels. The root-mean-square error for the 6002 J = 0-8 transition energies is 0.020 cm(-1). Overall, for J = 0-8, the spectroscopic data computed with HSL-2 is roughly an order of magnitude more accurate relative to our previous best ammonia PES (denoted HSL-1). These impressive numbers are eclipsed only by the root-mean-square error between our predictions for purely rotational transition energies of (15)NH(3) and the highly accurate Cologne database (CDMS): 0.00034 cm(-1) (10 MHz), in other words, 2 orders of magnitude smaller. In addition, we identify a deficiency in the (15)NH(3) energy levels determined from a model of the experimental data. PMID:21280738

  6. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  7. Neutron irradiation of superconductors and damage energy scaling of different neutron spectra

    NASA Astrophysics Data System (ADS)

    Hahn, P. A.; Weber, H. W.; Guinan, M. W.; Birtcher, R. C.; Brown, B. S.; Greenwood, L. R.

    1985-08-01

    Three different neutron sources were used to irradiate identical sets of NbTi superconductors up to about half the lifetime dose of a superconducting magnet in a fusion reactor. Based on a careful source characterization of the TRIGA Mark-II reactor in Vienna, the spallation neutron source IPNS at Argonne and the 14 MeV neutron source RTNS-II at Livermore, the damage energy cross sections were calculated for four different types of NbTi alloys (42, 46.5, 49 and 54 wt % Ti). The experimental results on the variations of critical current densities j sub c with neutron dose are found to scale within the experimental uncertainties with the appropriate damage energy cross sections. This first explicit proof of damage energy scaling for j sub c-variations in superconductors is considered to be most valuable for the evaluation of radiation damage in superconductors under fusion reactor conditions.

  8. Survey of quantitative data on the solar energy and its spectra distribution

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1976-01-01

    This paper presents a survey of available quantitative data on the total and spectral solar irradiance at ground level and outside the atmosphere. Measurements from research aircraft have resulted in the currently accepted NASA/ASTM standards of the solar constant and zero air mass solar spectral irradiance. The intrinsic variability of solar energy output and programs currently under way for more precise measurements from spacecraft are discussed. Instrumentation for solar measurements and their reference radiation scales are examined. Insolation data available from the records of weather stations are reviewed for their applicability to solar energy conversion. Two alternate methods of solarimetry are briefly discussed.

  9. Vibration transmission through rolling element bearings. IV - Statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Lim, T. C.; Singh, R.

    1992-01-01

    A theoretical broadband coupling-loss factor is developed analytically for use in the statistical energy analysis (SEA) of a shaft-bearing-plate system. The procedure is based on the solution of the boundary-value problem at the plate-bearing interface and incorporates a bearing-stiffness matrix developed by the authors. Three examples are utilized to illustrate the SEA incorporating the coupling-loss factor including: (1) a shaft-bearing-plate system; (2) a plate-cantilevered beam; and (3) a circular-shaft-bearing plate. The coupling-loss factor in the case of the thin plate-cantilevered beam is found to be more accurate than that developed by Lyon and Eichler (1964). The coupling-loss factor is described for the bearing system and extended to describe the mean-square vibratory response of a rectangular plate. The proposed techniques are of interest to the study of vibration and noise in rotating machinery such as gearboxes.

  10. Waste to energy--key element for sustainable waste management.

    PubMed

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. PMID:24630214

  11. Waste to energy – key element for sustainable waste management

    SciTech Connect

    Brunner, Paul H. Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  12. Energy spectra of a particle confined in a finite ellipsoidal shaped potential well

    NASA Astrophysics Data System (ADS)

    Kereselidze, Tamaz; Tchelidze, Tamar; Nadareishvili, Teimuraz; Kezerashvili, Roman Ya.

    2016-07-01

    A charged particle confined in a strongly prolate ellipsoidal shaped finite potential well is studied. In the case when a distance R between foci is large and accordingly R-1 is small, the asymptotic solutions of quasiradial and quasiangular equations in prolate spheroidal coordinates are found. We demonstrate that quasiangular wave functions inside and outside of the potential well coincide on the entire surface of strongly prolate ellipsoid if separation parameters are chosen appropriately. This allows us to obtain the transcendental equation for the energy levels by equating the quasiradial wave function and its derivative on the surface of ellipsoid. The obtained equation is solved numerically and algebraically. The calculated energies are in good qualitative and quantitative agreement with the results obtained earlier for the infinitely high ellipsoidal potential well via a numerical solution of the quasiradial and quasiangular equations. An importance of the actual shape of ellipsoidal potential well for calculation of the energy spectrum for the trapped particle is shown. A dependence of the energy spectrum on the effective mass when it is a different constant inside and outside of the ellipsoid is addressed.

  13. Probing high-lying N2 ++ and CO++ states via energy-selective fragment spectra

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Saha, K.; Bapat, B.; Kumar, P.; Banerjee, S. B.; Subramanian, K. P.

    2016-07-01

    Dissociation of molecular ions from highly excited states is difficult to probe, so our knowledge of their dynamical evolution and the parameters governing the dissociation is limited. The main complication is due to the large density of high-lying states and crossing of states. The latter may change the kinematics of the fragments, but in general, the contributions from different states to the fragment kinetic energy distributions cannot be separated. Consequently, the exact nature of the evolution remains elusive. In the present work, we have performed kinematic analysis of the dissociation dynamics of di-cations of N2 and CO formed by photoionization, aiming to probe their highly excited states. Correlated fragment ion momenta are measured in coincidence with energy-analyzed ejected electrons, allowing us to estimate energy of the transient molecular ions. These measurements bring out the differences in kinematics of the fragmentation of transient molecular ions having different internal energies. Our analysis indicates that highly excited states decay primarily to their own asymptotic limits with only weak coupling to states decaying to lower asymptotes.

  14. In-out asymmetry of surface excitations in reflection-electron-energy-loss spectra of polycrystalline Al

    NASA Astrophysics Data System (ADS)

    Salvat-Pujol, Francesc; Werner, Wolfgang S. M.; Novák, Mihaly; Jiricek, Petr; Zemek, Josef

    2014-05-01

    We present experimental evidence for differences in surface energy losses between (a) electrons entering a solid from vacuum and (b) electrons leaving the solid into vacuum. Although these so-called in-out asymmetries have been long assumed to exist on theoretical grounds, the present work constitutes a clear experimental observation of the phenomenon. The effect has been exposed by comparing reflection-electron-energy-loss spectra of polycrystalline Al for pairs of conjugate scattering geometries where the directions of the source and the detector were interchanged. Differences of up to 30% in the peak height of surface energy-loss features are observed. The experimentally observed in-out asymmetry has been examined within the semiclassical dielectric formalism using state-of-the-art models for surface scattering of charged projectiles. The theoretical analysis suggests that in-out asymmetry effects are most accentuated for surface-crossing directions close to the surface normal and for high kinetic energies, in good agreement with the observed behavior. The effect is assumed to be present not only for electrons, but in principle for any charged particle.

  15. Numerical values of the surface free energies of solid chemical elements

    NASA Astrophysics Data System (ADS)

    Mezey, L. Z.; Giber, J.

    1984-10-01

    The applicability of a 'standard table' of values of surface free energies (or enthalpies) obtained by the CCSS (complex calculation of surface segregation) method is demonstrated by comparing calculated surface-free-energy values with several recently published experimental results. The investigation (encompassing temperatures from 1023 to 2075 K) shows that a simplified variation of the second step of CCSS is applicable in the calculation of the surface free energies of polycrystalline solid elements for any temperature of interest.

  16. Counterintuitive energy shifts in joint electron-nuclear-energy spectra of strong-field fragmentation of H2+

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Min; Zhou, Yueming; Li, Yang; Lan, Pengfei; Lu, Peixiang

    2016-01-01

    By numerically solving the time-dependent Schrödinger equation, we investigate electron-nuclear-energy sharing in strong-field fragmentation of the H2+ molecule. We find a counterintuitive energy shift in the joint electron-nuclear-energy spectrum. This energy shift becomes larger for lower nuclear energies. Through tracing the time evolution of the electron wave packet of bound states, we identify that the energy shift originates from the Stark effect due to the coupling of the ground state and the first exited state of the H2+ molecule in strong laser fields. We achieve a good agreement between the ab initio result and the analytic method that includes the Stark effect of molecules.

  17. DISENTANGLING PROTOSTELLAR EVOLUTIONARY STAGES IN CLUSTERED ENVIRONMENTS USING SPITZER-IRS SPECTRA AND COMPREHENSIVE SPECTRAL ENERGY DISTRIBUTION MODELING

    SciTech Connect

    Forbrich, Jan; Tappe, Achim; Robitaille, Thomas; Muench, August A.; Lada, Charles J.; Teixeira, Paula S.; Lada, Elizabeth A.; Stolte, Andrea

    2010-06-20

    When studying the evolutionary stages of protostars that form in clusters, the role of any intracluster medium cannot be neglected. High foreground extinction can lead to situations where young stellar objects (YSOs) appear to be in earlier evolutionary stages than they actually are, particularly when using simple criteria like spectral indices. To address this issue, we have assembled detailed spectral energy distribution characterizations of a sample of 56 Spitzer-identified candidate YSOs in the clusters NGC 2264 and IC 348. For these, we use spectra obtained with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope and ancillary multi-wavelength photometry. The primary aim is twofold: (1) to discuss the role of spectral features, particularly those due to ices and silicates, in determining a YSO's evolutionary stage, and (2) to perform comprehensive modeling of SEDs enhanced by the IRS data. The SEDs consist of ancillary optical-to-submillimeter multi-wavelength data as well as an accurate description of the 9.7 {mu}m silicate feature and of the mid-infrared continuum derived from line-free parts of the IRS spectra. We find that using this approach, we can distinguish genuine protostars in the cluster from T Tauri stars masquerading as protostars due to external foreground extinction. Our results underline the importance of photometric data in the far-infrared/submillimeter wavelength range, at sufficiently high angular resolution to more accurately classify cluster members. Such observations are becoming possible now with the advent of the Herschel Space Observatory.

  18. [MEASUREMENT OF SPACE RADIATION DOSES AND LINEAR ENERGY TRANSFER SPECTRA INSIDE BIOLOGICAL SATELLITE BION-M1].

    PubMed

    Inozemtsev, K O; Kushin, V V; Tolochek, R V; Shurshakov, V A

    2015-01-01

    The paper presents the results of measuring biologically significant characteristics of space radiation (spectra of linear energy transfer (LET), absorbed and equivalent doses and averaged quality factors) inside the descend capsule of biosatellite Bion-M1 in space experiment Bioradiation. Measurements combined the use of thermoluminescent detectors DTG-4 (TDL) and solid state nuclear track detectors CR-39 (Tastrak) (SSNTD). Differential and integral LET spectra of high-LET space radiation were determined in 4 points inside spacecraft using passive detectors assembles (PDA). Total absorbed dose rates for PDA boxes No 1-4 made up 2.4 ± 0.2; 1.1 ± 0.1; 1.6 ± 0.2; 2.0 ± 0.1 mGy/d respectively, whereas total equivalent dose rates estimated based on ICRP Publication 60 recommendations made up 3.4 ± 0.2; 2.0 ± 0.1; 2.6 ± 0.2; 3.1 ± 0.1 mSv/d respectively. Values of the averaged quality factor for different PDSs were in the range between 1.4 and 1.8. PMID:26087582

  19. Measurements of the linear energy transfer spectra on the Mir orbital station and comparison with radiation transport models

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Konradi, A.; Atwell, W.; Golightly, M. J.; Cucinotta, F. A.; Wilson, J. W.; Petrov, V. M.; Tchernykh, I. V.; Shurshakov, V. A.; Lobakov, A. P.

    1996-01-01

    A tissue equivalent proportional counter designed to measure the linear energy transfer spectra (LET) in the range 0.2-1250 keV/micrometer was flown in the Kvant module on the Mir orbital station during September 1994. The spacecraft was in a 51.65 degrees inclination, elliptical (390 x 402 km) orbit. This is nearly the lower limit of its flight altitude. The total absorbed dose rate measured was 411.3 +/- 4.41 microGy/day with an average quality factor of 2.44. The galactic cosmic radiation (GCR) dose rate was 133.6 microGy/day with a quality factor of 3.35. The trapped radiation belt dose rate was 277.7 microGy/day with an average quality factor of 1.94. The peak rate through the South Atlantic Anomaly was approximately 12 microGy/min and nearly constant from one pass to another. A detailed comparison of the measured LET spectra has been made with radiation transport models. The GCR results are in good agreement with model calculations; however, this is not the case for radiation belt particles and again points to the need for improving the AP8 omni-directional trapped proton models.

  20. SYNCHROTRON POLARIZATION AND SYNCHROTRON SELF-ABSORPTION SPECTRA FOR A POWER-LAW PARTICLE DISTRIBUTION WITH FINITE ENERGY RANGE

    SciTech Connect

    Fouka, M.; Ouichaoui, S. E-mail: souichaoui@usthb.dz

    2011-12-10

    We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N({gamma}) {approx} {gamma}{sup -p} with {gamma}{sub 1} < {gamma} < {gamma}{sub 2}, especially for a finite high-energy limit, {gamma}{sub 2}, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x >> {eta}{sup 2} with parameter {eta} = {gamma}{sub 2}/{gamma}{sub 1}. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, {alpha}{sub {nu}}, for the high-frequency range {nu} >> {nu}{sub 2} (with {nu}{sub 2} the synchrotron frequency corresponding to {gamma}{sub 2}). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.

  1. On the Energy Spectra of GeV/TeV Cosmic Ray Leptons

    SciTech Connect

    Stawarz, Lukasz; Petrosian, Vahe; Blandford, Roger D.; /KIPAC, Menlo Park

    2011-08-19

    Recent observations of cosmic ray electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power-law, in a form of an excess around 0.1 to 1 TeV energies. An even more prominent deviation and excess has been observed in the fraction of cosmic ray positrons around 10 and 100 GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding the dark matter distribution or particle acceleration. In this paper we show that the observed excesses in the electron spectrum may be easily reproduced without invoking any unusual sources other than the general diffuse Galactic components of cosmic rays. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants, and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium. The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local interstellar medium, we can reproduce the most recent observations by Fermi and HESS experiments. Interestingly, in our model the injection spectral index of cosmic ray electrons becomes comparable to, or even equal to that of cosmic ray protons. The Klein-Nishina effect may also affect the propagation of the secondary e{sup {+-}} pairs, and therefore modify the cosmic ray positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e{sup {+-}} pairs within the Galaxy. The first is due to the decay of {pi}{sup {+-}}'s produced by interaction of cosmic ray nuclei with ambient protons

  2. ON THE ENERGY SPECTRA OF GeV/TeV COSMIC RAY LEPTONS

    SciTech Connect

    Stawarz, Lukasz; Petrosian, Vahe; Blandford, Roger D.

    2010-02-10

    Recent observations of cosmic ray (CR) electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power law, in the form of an excess around 0.1-1 TeV energies. An even more prominent deviation and excess has been observed in the fraction of CR positrons around 10 and 100 GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding dark matter distribution or particle acceleration. In this paper, we show that the observed excesses in the electron spectrum may be easily re-produced without invoking any unusual sources other than the general diffuse Galactic components of CRs. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants (SNRs), and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium (ISM). The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local ISM, we can reproduce the most recent observations by the Fermi and HESS experiments. Interestingly, in our model the injection spectral index of CR electrons becomes comparable to, or even equal to that of CR protons. The Klein-Nishina effect may also affect the propagation of the secondary e {sup +}- pairs, and therefore modify the CR positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e {sup +}- pairs within the Galaxy. The first is due to the decay of pi{sup +}-'s produced by interaction of CR nuclei with ambient protons. The second source discussed here is due to the

  3. Finite element solution for energy conservation using a highly stable explicit integration algorithm

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1972-01-01

    Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.

  4. Solid-state effects and atomiclike effects on shallow inner-shell-electron energy-loss spectra of a cation p or d hole in sulfides

    NASA Astrophysics Data System (ADS)

    Ohno, Youichi

    1994-03-01

    Inner-shell-electron energy-loss spectroscopy studies have been done for the systems in which a shallow p or d core hole exists in the final state of a cation. Optically allowed and forbidden transitions have been distinguished from spectral variations due to the breakdown of dipole selection rules. The Ti and V M2,3 spectra and the Zr, Nb, and Mo M4,5 spectra in layered transition-metal disulfides and related misfit-layer compounds are well explained in terms of the energy-band structures. The overall structures of the Pb and Bi O4,5 spectra are understood within the atomic model containing j-j coupling. The Sn N4,5 spectra in SnS and SnS2 are intermediate between them. A reasonable explanation is given by both the atomic model and the band-structure model.

  5. Origin of Unexpected Low Energy Structure in Photoelectron Spectra Induced by Midinfrared Strong Laser Fields

    SciTech Connect

    Liu Chengpu; Hatsagortsyan, Karen Z.

    2010-09-10

    Using a semiclassical model which incorporates tunneling and Coulomb field effects, the origin of the low-energy structure (LES) in the above-threshold ionization spectrum observed in recent experiments [Blaga et al., Nature Phys. 5, 335 (2009); Quan et al., Phys. Rev. Lett. 103, 093001 (2009).] is identified. We show that the LES arises due to an interplay between multiple forward scattering of an ionized electron and the electron momentum disturbance by the Coulomb field immediately after the ionization. The multiple forward scattering is mainly responsible for the appearance of LES, while the initial disturbance mainly determines the position of the LES peaks. The scaling laws for the LES parameters, such as the contrast ratio and the maximal energy, versus the laser intensity and wavelength are deduced.

  6. Measurement of magnetic field aligned potential differences using high resolution conjugate photoelectron energy spectra

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Doering, J. P.; Potemra, T. A.; Bostrom, C. O.; Brace, L. H.; Heelis, R. A.; Hanson, W. B.

    1977-01-01

    Simultaneous high-resolution observations of a distinctive feature in the energy spectrum of conjugate photoelectrons and spacecraft potential relative to the local ionosphere have allowed the net potential difference between magnetic conjugate points at latitudes below the region of low-energy (i.e., lower than 100 eV) auroral electron precipitation to be determined. Measurements made at 300 km from Atmosphere Explorer C show that there is normally no net potential difference between hemispheres in this region, which extended up to invariant latitudes as high as 74 deg. Two types of apparently related anomalous behavior were infrequently observed at high latitudes. During these periods the incident flux of conjugate photoelectrons was either decelerated by about 3 eV or was not detected.

  7. Absolute energy distribution in the spectra of 32 Cygni. Eclipses of 1987 and 1990

    NASA Astrophysics Data System (ADS)

    Burnashev, V. I.; Burnasheva, B. A.

    2011-06-01

    The photometric observations during 1953-1994 were used for the construction of the summary light curve for 32 Cygni in the photometric UBV-system. On the basis of energy distribution data, the spectral classes and luminosities of the components of this binary system were obtained. The column density of HI during several ingresses and egresses was estimated, suggesting that the depression at λ 3650 Å was caused by hydrogen absorption.

  8. ON THERMALIZATION IN GAMMA-RAY BURST JETS AND THE PEAK ENERGIES OF PHOTOSPHERIC SPECTRA

    SciTech Connect

    Vurm, Indrek; Piran, Tsvi; Lyubarsky, Yuri

    2013-02-20

    The low-energy spectral slopes of the prompt emission of most gamma-ray bursts (GRBs) are difficult to reconcile with radiatively efficient optically thin emission models irrespective of the radiation mechanism. An alternative is to ascribe the radiation around the spectral peak to a thermalization process occurring well inside the Thomson photosphere. This quasi-thermal spectrum can evolve into the observed non-thermal shape by additional energy release at moderate to small Thomson optical depths, which can readily give rise to the hard spectral tail. The position of the spectral peak is determined by the temperature and Lorentz factor of the flow in the thermalization zone, where the total number of photons carried by the jet is established. To reach thermalization, dissipation alone is not sufficient and photon generation requires an efficient emission/absorption process in addition to scattering. We perform a systematic study of all relevant photon production mechanisms searching for possible conditions in which thermalization can take place. We find that a significant fraction of the available energy should be dissipated at intermediate radii, {approx}10{sup 10} to a few Multiplication-Sign 10{sup 11} cm, and the flow there should be relatively slow: the bulk Lorentz factor could not exceed a few tens for all but the most luminous bursts with the highest E {sub pk} values. The least restrictive constraint for successful thermalization, {Gamma} {approx}< 20, is obtained if synchrotron emission acts as the photon source. This requires, however, a non-thermal acceleration deep below the Thomson photosphere transferring a significant fraction of the flow energy to relativistic electrons with Lorentz factors between 10 and 100. Other processes require bulk flow Lorentz factors of order of a few for typical bursts. We examine the implications of these results to different GRB photospheric emission models.

  9. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement

    SciTech Connect

    Ma, Jian; Cao, Jianshu

    2015-03-07

    We study the Förster resonant energy transfer rate, absorption and emission spectra in multichromophoric systems. The multichromophoric Förster theory (MCFT) is determined from an overlap integral of generalized matrices related to the donor’s emission and acceptor’s absorption spectra, which are obtained via a full 2nd-order cumulant expansion technique developed in this work. We calculate the spectra and MCFT rate for both localized and delocalized systems, and calibrate the analytical 2nd-order cumulant expansion with the exact stochastic path integral method. We present three essential findings: (i) The role of the initial entanglement between the donor and its bath is found to be crucial in both the emission spectrum and the MCFT rate. (ii) The absorption spectra obtained by the cumulant expansion method are nearly identical to the exact spectra for both localized and delocalized systems, even when the system-bath coupling is far from the perturbative regime. (iii) For the emission spectra, the cumulant expansion can give reliable results for localized systems, but fail to provide reliable spectra of the high-lying excited states of a delocalized system, when the system-bath coupling is large and the thermal energy is small. This paper also provides a simple golden-rule derivation of the MCFT, reviews existing methods, and motivates further developments in the subsequent papers.

  10. The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra

    SciTech Connect

    Murphy, T. J.

    2014-07-15

    Measuring the width of the energy spectrum of fusion-produced neutrons from deuterium (DD) or deuterium-tritium (DT) plasmas is a commonly used method for determining the ion temperature in inertial confinement fusion (ICF) implosions. In a plasma with a Maxwellian distribution of ion energies, the spread in neutron energy arises from the thermal spread in the center-of-mass velocities of reacting pairs of ions. Fluid velocities in ICF are of a similar magnitude as the center-of-mass velocities and can lead to further broadening of the neutron spectrum, leading to erroneous inference of ion temperature. Motion of the reacting plasma will affect DD and DT neutrons differently, leading to disagreement between ion temperatures inferred from the two reactions. This effect may be a contributor to observations over the past decades of ion temperatures higher than expected from simulations, ion temperatures in disagreement with observed yields, and different temperatures measured in the same implosion from DD and DT neutrons. This difference in broadening of DD and DT neutrons also provides a measure of turbulent motion in a fusion plasma.

  11. Energy Spectra and High Frequency Oscillations in 4U 0614+091

    NASA Technical Reports Server (NTRS)

    Ford, E. C.; Kaaret, P.; Chen, K.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.

    1997-01-01

    We investigate the behavior of the high frequency quasi-periodic oscillations (QPOs) in 4U 0614+091, combining timing and spectral analysis of RXTE (Rossi X-ray Timing Explorer) observations. The energy spectrum of the source can be described by a power law plus a blackbody component. The blackbody has a variable temperature (kT approximately 0.8 to 1.4 keV) and accounts for 10 to 25% of the total energy flux. The power law flux and photon index also vary (F approximately 0.8 to 1.6 x 10(exp -9) erg/sq cm.s and alpha approximately 2.0 to 2.8 respectively). We find a robust correlation of the frequency of the higher frequency QPO with the flux of the blackbody. The source follows the same relation even in observations separated by several months. The QPO frequency does not have a similarly unique correlation with the total flux or the flux of the power law component. The RMS amplitudes of the higher frequency QPO rise with energy but are consistent with a constant for the lower frequency QPO. These results may be interpreted in terms of a beat frequency model for the production of the high frequency QPOs.

  12. The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.

    2014-07-01

    Measuring the width of the energy spectrum of fusion-produced neutrons from deuterium (DD) or deuterium-tritium (DT) plasmas is a commonly used method for determining the ion temperature in inertial confinement fusion (ICF) implosions. In a plasma with a Maxwellian distribution of ion energies, the spread in neutron energy arises from the thermal spread in the center-of-mass velocities of reacting pairs of ions. Fluid velocities in ICF are of a similar magnitude as the center-of-mass velocities and can lead to further broadening of the neutron spectrum, leading to erroneous inference of ion temperature. Motion of the reacting plasma will affect DD and DT neutrons differently, leading to disagreement between ion temperatures inferred from the two reactions. This effect may be a contributor to observations over the past decades of ion temperatures higher than expected from simulations, ion temperatures in disagreement with observed yields, and different temperatures measured in the same implosion from DD and DT neutrons. This difference in broadening of DD and DT neutrons also provides a measure of turbulent motion in a fusion plasma.

  13. High-energy electron-energy spectra of atoms undergoing tunneling and barrier-suppression ionization by superintense linearly polarized laser radiation

    SciTech Connect

    Krainov, V.P.; Sofronov, A.V.

    2004-01-01

    The high-energy electron-energy spectra of atoms and atomic ions undergoing direct tunneling or barrier-suppression ionization by superintense linearly polarized femtosecond laser pulse are derived. The Landau-Dykhne adiabatic approximation is used. The new result is the simple analytic expression for the electron momentum spectrum along the polarization axis and along the other directions in the case of the relativistic quiver electron energies. The contribution from the direct tunneling ionization exceeds the contribution from the ionization occurring in the rescattering processes. The energy spectrum is independent of the laser frequency and of the nonrelativistic ionization potential of the atom (atomic ion) considered. The conclusions have been made that (1) the drift electron energy along the polarization axis is much greater than in other directions. (2) the energy distribution depends on the sign of the electron drift momentum along the propagation of laser radiation, and (3) the electron drift energy is the nonrelativistic quantity even when the quiver electron energy has high ultrarelativistic values.

  14. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra

    SciTech Connect

    Bravaya, Ksenia B.; Kostko, Oleg; Dolgikh, Stanislav; Landau, Arie; Ahmed, Musahid; Krylov, Anna I.

    2010-08-02

    We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C) and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the {omega}B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25 and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67 and 7.75-7.87 eV for A,T,C and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 {+-} 0.05, 8.95 {+-} 0.05, 8.60 {+-} 0.05 and 7.75 {+-} 0.05 eV). Vibrational progressions for the S{sub 0}-D{sub 0} vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra.

  15. Photoelectron energy spectra from elastic rescattering in ultrastrong laser fields: A relativistic extension of the three-step model

    NASA Astrophysics Data System (ADS)

    Luo, S. S.; Grugan, P. D.; Walker, B. C.

    2015-03-01

    Using a relativistic adaptation of a three-step recollision model we calculate photoelectron energy spectra for ionization with elastic scattering in ultrastrong laser fields up to 24 a.u. (2 ×1019 W/cm 2) . Hydrogenlike and noble gas species with Hartree-Fock scattering potentials show a reduction in elastic rescattering beyond 6 ×1016 W/cm 2 when the laser Lorentz deflection of the photoelectron exceeds its wave-function spread. A relativistic rescattering enhancement occurs at 2 ×1018 W/cm 2, commensurate with the relativistic motion of a classical electron in a single field cycle. The noble gas results are compared with available experiments. The theory approach is well suited to modeling scattering in the ultrastrong intensity regime that lies between traditional strong fields and extreme relativistic interactions.

  16. Reconstruction of Time-Resolved Neutron Energy Spectra in Z-Pinch Experiments Using Time-of-flight Method

    SciTech Connect

    Rezac, K.; Klir, D.; Kubes, P.; Kravarik, J.

    2009-01-21

    We present the reconstruction of neutron energy spectra from time-of-flight signals. This technique is useful in experiments with the time of neutron production in the range of about tens or hundreds of nanoseconds. The neutron signals were obtained by a common hard X-ray and neutron fast plastic scintillation detectors. The reconstruction is based on the Monte Carlo method which has been improved by simultaneous usage of neutron detectors placed on two opposite sides from the neutron source. Although the reconstruction from detectors placed on two opposite sides is more difficult and a little bit inaccurate (it followed from several presumptions during the inclusion of both sides of detection), there are some advantages. The most important advantage is smaller influence of scattered neutrons on the reconstruction. Finally, we describe the estimation of the error of this reconstruction.

  17. Energy flow prediction in built-up structures through a hybrid finite element/wave and finite element approach

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Collet, M.; Ichchou, M.; Li, L.; Bareille, O.; Dimitrijevic, Z.

    2016-01-01

    This paper presents a rapid and accurate numerical tool for the energy flow evaluation in a periodic substructure from the near-field to the far-field domain. Here we suppose that the near-field part contains a point source characterized by the injected power in the structure. The near-field part is then modeled by Finite Element Method (FEM) while the periodic structure and the far-field part are regarded as waveguides and modeled by an enhanced Wave and Finite Element Method (WFEM). Enhancements are made on the eigenvalue scheme, the condensation of the unit cell and the consideration of a reduced wave basis. Efforts are made to adapt substructures modeled by different strategies in a multi-scale manner such that the final matrices dimensions of the built-up structure are largely reduced. The method is then validated numerically and theoretically. An application is presented, where a structural dynamical system coupled with periodic resistive piezoelectric shunts is discussed.

  18. A theoretical investigation of spectra utilization for a CMOS based indirect detector for dual energy applications

    NASA Astrophysics Data System (ADS)

    Kalyvas, N.; Martini, N.; Koukou, V.; Michail, C.; Sotiropoulou, P.; Valais, I.; Kandarakis, I.; Fountos, G.

    2015-09-01

    Dual Energy imaging is a promising method for visualizing masses and microcalcifications in digital mammography. Currently commercially available detectors may be suitable for dual energy mammographic applications. The scope of this work was to theoretically examine the performance of the Radeye CMOS digital indirect detector under three low- and high-energy spectral pairs. The detector was modeled through the linear system theory. The pixel size was equal to 22.5μm and the phosphor material of the detector was a 33.9 mg/cm2 Gd2O2S:Tb phosphor screen. The examined spectral pairs were (i) a 40kV W/Ag (0.01cm) and a 70kV W/Cu (0.1cm) target/filter combinations, (ii) a 40kV W/Cd (0.013cm) and a 70kV W/Cu (0.1cm) target/filter combinations and (iii) a 40kV W/Pd (0.008cm) and a 70kV W/Cu (0.1cm) target/filter combinations. For each combination the Detective Quantum Efficiency (DQE), showing the signal to noise ratio transfer, the detector optical gain (DOG), showing the sensitivity of the detector and the coefficient of variation (CV) of the detector output signal were calculated. The second combination exhibited slightly higher DOG (326 photons per X-ray) and lower CV (0.755%) values. In terms of electron output from the RadEye CMOS, the first two combinations demonstrated comparable DQE values; however the second combination provided an increase of 6.5% in the electron output.

  19. Energy Spectra and Mass Composition of Cosmic Rays in the Fractal-Like Galactic Medium

    NASA Astrophysics Data System (ADS)

    Lagutin, A. A.; Tyumentsev, A. G.; Yushkov, A. V.

    We consider the problem of the cosmic ray spectrum formation assuming that cosmic rays are produced by galactic sources. The fractional diffusion equation proposed in our recent papers is used to describe the cosmic rays propagation in interstellar medium. We show that in the framework of this approach it is possible to explain the locally observed basic features of the cosmic rays in the energy region 1010 ÷ 1020 eV: difference between spectral exponents of protons and other nuclei, mass composition variation, "knee" problem, flattening of the primary spectrum for E ≥ 1018 ÷ 1019 eV.

  20. THE SEGUE STELLAR PARAMETER PIPELINE. V. ESTIMATION OF ALPHA-ELEMENT ABUNDANCE RATIOS FROM LOW-RESOLUTION SDSS/SEGUE STELLAR SPECTRA

    SciTech Connect

    Lee, Young Sun; Beers, Timothy C.; Prieto, Carlos Allende; Lai, David K.; Rockosi, Constance M.; Johnson, Jennifer A.; An, Deokkeun; Sivarani, Thirupathi; Yanny, Brian E-mail: beers@pa.msu.edu E-mail: david@ucolick.org E-mail: heather@vegemite.case.edu E-mail: deokkeun@ewha.ac.kr E-mail: yanny@fnal.gov

    2011-03-15

    We present a method for the determination of [{alpha}/Fe] ratios from low-resolution (R = 2000) SDSS/SEGUE stellar spectra. By means of a star-by-star comparison with degraded spectra from the ELODIE spectral library and with a set of moderately high-resolution (R = 15, 000) and medium-resolution (R = 6000) spectra of SDSS/SEGUE stars, we demonstrate that we are able to measure [{alpha}/Fe] from SDSS/SEGUE spectra (with S/N>20/1) to a precision of better than 0.1 dex, for stars with atmospheric parameters in the range T{sub eff} = [4500, 7000] K, log g = [1.5, 5.0], and [Fe/H] = [-1.4, +0.3], over the range [{alpha}/Fe] = [-0.1, +0.6]. For stars with [Fe/H] <-1.4, our method requires spectra with slightly higher signal-to-noise to achieve this precision (S/N>25/1). Over the full temperature range considered, the lowest metallicity star for which a confident estimate of [{alpha}/Fe] can be obtained from our approach is [Fe/H] {approx}-2.5; preliminary tests indicate that a metallicity limit as low as [Fe/H] {approx}-3.0 may apply to cooler stars. As a further validation of this approach, weighted averages of [{alpha}/Fe] obtained for SEGUE spectra of likely member stars of Galactic globular clusters (M15, M13, and M71) and open clusters (NGC 2420, M67, and NGC 6791) exhibit good agreement with the values of [{alpha}/Fe] from previous studies. The results of the comparison with NGC 6791 imply that the metallicity range for the method may extend to {approx}+0.5.

  1. The Effect of Magnetic Turbulence Energy Spectra on the Heating of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.; Isenberg, P. A.; Munsi, D.; Smith, C. W.

    2008-11-01

    Recently, a phenomenological solar wind heating model based on a turbulent energy cascade prescribed by the Kolmogorov theory has produced reasonably good agreement with observations on proton temperatures out to distances around 70 AU, provided the effect of turbulence generation due to pickup ions is included in the model. In the present study, we have incorporated in the heating model the energy cascade rate based on Iroshnikov-Kraichnan (IK) scaling, derivable from incompressible magnetohydrodynamics. We show that the IK cascade rate can also produce good agreement with observations, with or without the inclusion of pickup ions. This effect is confirmed both by integrating the model using average boundary conditions at 1 AU, and by applying a method [Smith et al., Astrophys. J. 638, 508 (2006)] that uses directly observed values as boundary conditions. These results suggest that if the observed proton heating rates are used to constrain theories of turbulence, there is room in the model to include spectral scalings of magnetic fluctuations varying from IK to Kolmogorov.

  2. A new ab initio potential energy surface and infrared spectra for the Ar–CS{sub 2} complex

    SciTech Connect

    Yuan, Ting; Sun, Xueli; Hu, Yi; Zhu, Hua

    2014-09-14

    We report a new three-dimensional potential energy surface for Ar–CS{sub 2} involving the Q{sub 3} normal mode for the υ{sub 3} antisymmetric stretching vibration of the CS{sub 2} molecule. The potential energies were calculated using the supermolecular method at the coupled-cluster singles and doubles level with noniterative inclusion of connected triples, using augmented correlation-consistent quadruple-zeta basis set plus midpoint bond functions. Two vibrationally averaged potentials with CS{sub 2} at both the ground (υ = 0) and the first excited (υ = 1)υ{sub 3} vibrational states were generated from the integration of the three-dimensional potential over the Q{sub 3} coordinate. Each potential was found to have a T-shaped global minimum and two equivalent linear local minima. The radial discrete variable representation /angular finite basis representation method and the Lanczos algorithm were applied to calculate the rovibrational energy levels. The calculated band origin shift of the complex (0.0622 cm{sup −1}) is very close to the observed one (0.0671 cm{sup −1}). The predicted infrared spectra and spectroscopic parameters based on the two averaged potentials are in excellent agreement with the available experimental data.

  3. The weakly bound He-HCCCN complex: High-resolution microwave spectra and intermolecular potential-energy surface

    NASA Astrophysics Data System (ADS)

    Topic, Wendy C.; Jäger, Wolfgang

    2005-08-01

    Rotational spectra of the weakly bound He-HCCCN and He-DCCCN van der Waals complexes were observed using a pulsed-nozzle Fourier-transform microwave spectrometer in the 7-26-GHz frequency region. Nuclear quadrupole hyperfine structures due to the N14 and D nuclei (both with nuclear-spin quantum number I =1) were resolved and assigned. Both strong a and weaker b-type transitions were observed and the assigned transitions were used to fit the parameters of a distortable asymmetric rotor model. The dimers are floppy, near T-shaped complexes. Three intermolecular potential-energy surfaces were calculated using the coupled-cluster method with single and double excitations and noniterative inclusion of triple excitations. Bound-state rotational energy levels supported by these surfaces were determined. The quality of the potential-energy surfaces was assessed by comparing the experimental and calculated transition frequencies and also the corresponding spectroscopic parameters. Simple scaling of the surfaces improved both the transition frequencies and spectroscopic constants. Five other recently reported surfaces [O. Akin-Ojo, R. Bukowski, and K. Szalewicz, J. Chem. Phys. 119, 8379 (2003)], calculated using a variety of methods, and their agreement with spectroscopic properties of He-HCCCN are discussed.

  4. Effect of strain on low-loss electron energy loss spectra of group-III nitrides

    NASA Astrophysics Data System (ADS)

    Palisaitis, J.; Hsiao, C.-L.; Junaid, M.; Birch, J.; Hultman, L.; Persson, P. O. Å.

    2011-12-01

    Thin films of AlN experiencing different strain states were investigated with a scanning transmission electron microscope (STEM) by low-loss electron energy loss spectroscopy (EELS). The results conclude that the low-loss properties and in particular, the plasmon peak position is shifted as a direct consequence of the inherent strain of the sample. The results reveal that strain, even minor levels, can be measured by STEM-EELS. These results were further corroborated by full potential calculations and expanded to include the similar III nitrides GaN and InN. It is found that a unit-cell volume change of 1% results in a bulk plasmon peak shift of 0.159, 0.168, and 0.079 eV for AlN, GaN, and InN, respectively, according to simulations. The AlN peak shift was experimentally corroborated with a corresponding peak shift of 0.156 eV. The unit-cell volume is used here since it is found that regardless of in- and out-of-plane lattice augmentation, the low-loss properties appear near identical for constant volume. These results have an impact on the interpretation of the plasmon energy and its applicability for determining and separating stress and composition. It is found that while the bulk plasmon energy can be used as a measure of the composition in a group-III nitride alloy for relaxed structures, the presence of strain significantly affects such a measurement. The strain is found to have a lower impact on the peak shift for Al1-xInxN (˜3% compositional error per 1% volume change) and In1-xGaxN alloys compared to significant variations for Al1-xGaxN (16% compositional error for 1% volume change). Hence a key understanding in low-loss studies of III nitrides is that strain and composition are coupled and affect one another.

  5. Quasi-particle energy spectra in local reduced density matrix functional theory.

    PubMed

    Lathiotakis, Nektarios N; Helbig, Nicole; Rubio, Angel; Gidopoulos, Nikitas I

    2014-10-28

    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids. PMID:25362285

  6. Quasi-particle energy spectra in local reduced density matrix functional theory

    SciTech Connect

    Lathiotakis, Nektarios N.; Helbig, Nicole; Rubio, Angel

    2014-10-28

    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C{sub 20} isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.

  7. Energy levels and spectral lines in the X-ray spectra of highly charged W XLIV

    NASA Astrophysics Data System (ADS)

    Hao, Liang-Huan; Kang, Xiao-Ping

    2014-07-01

    The multi-configuration Dirac-Hartree-Fock method is employed to calculate the fine-structure energy levels, wavelengths, transition probabilities, and oscillator strengths for electric dipole allowed (E1) and forbidden (M1, E2, M2) lines for the 4 s 24 p and 4 s4 p 2 configurations of W XLIV. The valence-valence and core-valence correlation effects are accounted for in a systematic way. Breit interactions and quantum electrodynamics (QED) effects are estimated in subsequent relativistic configuration interaction (CI) calculations. The present results are in good agreement with other available theoretical and experimental values, and we predict new data for several levels where no other theoretical and/or experimental results are available, precise measurements are clearly needed here.

  8. Differential neutron energy spectra measured on spacecraft in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Akopova, A. B.; Melkumyan, L. V.; Benton, E. V.; Frank, A. L.

    1990-01-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the 6Li(n,alpha)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.

  9. Computing energy spectra for quantum systems using the Feynman-Kac path integral method

    NASA Astrophysics Data System (ADS)

    Rejcek, J. M.; Fazleev, N. G.

    2009-10-01

    We use group theory considerations and properties of a continuous path to define a failure tree numerical procedure for calculating the lowest energy eigenvalues for quantum systems using the Feynman-Kac path integral method. Within this method the solution of the imaginary time Schr"odinger equation is approximated by random walk simulations on a discrete grid constrained only by symmetry considerations of the Hamiltonian. The required symmetry constraints on random walk simulations are associated with a given irreducible representation and are found by identifying the eigenvalues for the irreducible representations corresponding to the symmetric or antisymmetric eigenfunctions for each group operator. The numerical method is applied to compute the eigenvalues of the ground and excited states of the hydrogen and helium atoms.

  10. Anharmonic Effects on the Electron-Energy Spectra of Surface Vibrations

    NASA Astrophysics Data System (ADS)

    Ariyasu, Janice Carol

    First, we consider the effect of lateral interactions on double losses and overtones in electron-energy-loss studies of surface vibrations. We develop a theory of two-phonon losses in the dipole-dominated regime of small -angle scattering. Our calculation employs the simple model of an ordered overlayer of molecules adsorbed on a crystal surface. With this model, we can identify two features; one which corresponds to the double loss and another which corresponds the excitation of an overtone. We then study the role of lateral interactions in each. We find that the presence of lateral interactions affects the position of the overtone relative to the double loss, and influences both its width and shape. The implications of these results are discussed, particularly as they relate to estimates of dissociation energies by the Birge-Sponer procedure. Next, we consider the anharmonic damping of adsorbate vibrations, with specific applications to species (S, O, and CO) adsorbed on the Ni(100) and Ni(111) surfaces. Our attention is restricted to adsorbate modes that can decay by two-phonon processes to one substrate phonon and either another substrate mode phonon or to a phonon of a mode that is localized on the adsorbate. The magnitude and temperature variation of the linewidth of adsorbate modes by this mechanism is explored; we find that near room temperature the calculated linewidths vary linearly with temperature. We also simulate the inhomogeneous broadening produced by disorder by considering the eigenfrequencies of infrared -active modes. Finally, we consider the diffuse scattering of electrons from surfaces by long-wavelength, acoustic phonons. The mechanism that we explore is the modulation of the image potential from ripples induced in the surface profile by thermally-excited surface and bulk phonons. We compare our results with earlier studies, and with the scattering produced by the dynamic-dipole moment of the surface atoms.

  11. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    NASA Astrophysics Data System (ADS)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-03-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  12. Rapid, Automated Determination of Elemental Compositions of Ions in Mass Spectra Obtained with an Open-Air Ion Source (2 of 2)

    EPA Science Inventory

    An inexpensive autosampler for a DART/TOFMS provides mass spectra from analytes absorbed on 76 cotton swab, wipe samples in 7.5 min. A field sample carrier simplifies sample collection and provides swabs nearly ready for analysis to the lab. Applications of the high throughput pr...

  13. Photofragmentation spectra of halogenated methanes in the VUV photon energy range

    SciTech Connect

    Cartoni, Antonella; Bolognesi, Paola; Fainelli, Ettore; Avaldi, Lorenzo

    2014-05-14

    In this paper an investigation of the photofragmentation of dihalomethanes CH{sub 2}X{sub 2} (X = F, Cl, Br, I) and chlorinated methanes (CH{sub n}Cl{sub 4−n} with n = 0–3) with VUV helium, neon, and argon discharge lamps is reported and the role played by the different halogen atoms is discussed. Halogenated methanes are a class of molecules used in several fields of chemistry and the study of their physical and chemical proprieties is of fundamental interest. In particular their photodissociation and photoionization are of great importance since the decomposition of these compounds in the atmosphere strongly affects the environment. The results of the present work show that the halogen-loss is the predominant fragmentation channel for these molecules in the VUV photon energy range and confirm their role as reservoir of chlorine, bromine, and iodine atoms in the atmosphere. Moreover, the results highlight the peculiar feature of CH{sub 2}F{sub 2} as a source of both fluorine and hydrogen atoms and the characteristic formation of I{sub 2}{sup +} and CH{sub 2}{sup +} ions from the photofragmentation of the CH{sub 2}I{sub 2} molecule.

  14. RELATIVE COMPOSITION AND ENERGY SPECTRA OF LIGHT NUCLEI IN COSMIC RAYS: RESULTS FROM AMS-01

    SciTech Connect

    Aguilar, M.; Alcaraz, J.; Berdugo, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Azzarello, P.; Battiston, R.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Barao, F.; Barreira, G.; Basile, M.; Bellagamba, L.; Bartoloni, A.; Becker, R.; Becker, U.; Bene, P.

    2010-11-20

    Measurement of the chemical and isotopic composition of cosmic rays is essential for the precise understanding of their propagation in the galaxy. While the model parameters are mainly determined using the B/C ratio, the study of extended sets of ratios can provide stronger constraints on the propagation models. In this paper, the relative abundances of light-nuclei lithium, beryllium, boron, and carbon are presented. The secondary-to-primary ratios Li/C, Be/C, and B/C have been measured in the kinetic energy range 0.35-45 GeV nucleon{sup -1}. The isotopic ratio {sup 7}Li/{sup 6}Li is also determined in the magnetic rigidity interval 2.5-6.3 GV. The secondary-to-secondary ratios Li/Be, Li/B, and Be/B are also reported. These measurements are based on the data collected by the Alpha Magnetic Spectrometer AMS-01 during the STS-91 space shuttle flight in 1998 June. Our experimental results are in substantial agreement with other measurements, where they exist. We describe our light-nuclei data with a diffusive-reacceleration model. A 10%-15% overproduction of Be is found in the model predictions and can be attributed to uncertainties in the production cross-section data.

  15. Photofragmentation spectra of halogenated methanes in the VUV photon energy range.

    PubMed

    Cartoni, Antonella; Bolognesi, Paola; Fainelli, Ettore; Avaldi, Lorenzo

    2014-05-14

    In this paper an investigation of the photofragmentation of dihalomethanes CH2X2 (X = F, Cl, Br, I) and chlorinated methanes (CH(n)Cl(4-n) with n = 0-3) with VUV helium, neon, and argon discharge lamps is reported and the role played by the different halogen atoms is discussed. Halogenated methanes are a class of molecules used in several fields of chemistry and the study of their physical and chemical proprieties is of fundamental interest. In particular their photodissociation and photoionization are of great importance since the decomposition of these compounds in the atmosphere strongly affects the environment. The results of the present work show that the halogen-loss is the predominant fragmentation channel for these molecules in the VUV photon energy range and confirm their role as reservoir of chlorine, bromine, and iodine atoms in the atmosphere. Moreover, the results highlight the peculiar feature of CH2F2 as a source of both fluorine and hydrogen atoms and the characteristic formation of I2(+) and CH2(+) ions from the photofragmentation of the CH2I2 molecule. PMID:24832270

  16. Influence of Turbulent Energy Spectra on Damping and Frequency Reduction of the Solar F-Mode

    NASA Astrophysics Data System (ADS)

    Mędrek, M.; Murawski, K.

    2000-01-01

    This paper generalizes the random wave theory that was developed to explain the recently observed line width spreading and frequency reduction of the f-mode. The generalization is based on a replacement of the Gaussian energy spectrum by a more realistic spectrum such as von Karman, Reynolds, or exponential as well as on an averaging of the results over various granules. The f-mode reduces its frequency as it spends more time propagating against the flow than with the flow. As a result, its effective speed and consequent frequency ω are reduced. This reduction is revealed by the real part of ω. The negative imaginary part of the frequency represents the damping of the coherent f-mode field due to scattering by turbulent flow. The f-mode damping is a result of the generation of the turbulent field at the expense of the coherent field. Theoretical estimation of the line width and frequency shift leads to the conclusion that for high spherical degree the results are consistent with the properties of the f-mode obtained from the high-resolution Michelson Doppler Imager (MDI) data from the Solar and Heliospheric Observatory recently reported by Duvall et al. As a result of averaging, we have obtained a significant improvement of our theoretical results.

  17. Dielectric Function Spectra and Critical-Point Energies of Cu2ZnSnSe4 from 0.5 to 9.0 eV

    SciTech Connect

    Choi, S. G.; Zhao, H. Y.; Persson, C.; Perkins, C. L.; Donohue, A. L.; To, B.; Norman, A. G.; Li, J.; Repins, I. L.

    2012-02-01

    We present dielectric function {var_epsilon} = {var_epsilon}{sub 1} + i{var_epsilon}{sub 2} spectra and critical-point energies of Cu{sub 2}ZnSnSe{sub 4} determined by spectroscopic ellipsometry from 0.5 to 9.0 eV. We reduce artifacts from surface overlayers to the maximum extent possible by performing chemical-mechanical polishing and wet-chemical etching of the surface of a Cu{sub 2}ZnSnSe{sub 4} thin film. Ellipsometric data are analyzed by the multilayer model and the {var_epsilon} spectra are extracted. The data exhibit numerous spectral features associated with critical points, whose energies are obtained by fitting standard lineshapes to second energy derivatives of the data. The experimental results are in good agreement with the {var_epsilon} spectra calculated within the GW quasi-particle approximation, and possible origins of the pronounced critical-point structures are identified.

  18. Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions

    NASA Astrophysics Data System (ADS)

    Deta, U. A.; Suparmi, Cari, Husein, A. S.; Yuliani, H.; Khaled, I. K. A.; Luqman, H.; Supriyanto

    2014-09-01

    The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analitically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitary l-state (l ≠ 0) in D-dimensions are formulated in the form of diferential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectra of system.

  19. Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions

    SciTech Connect

    Deta, U. A.; Suparmi,; Cari,; Husein, A. S.; Yuliani, H.; Khaled, I. K. A.; Luqman, H.; Supriyanto

    2014-09-30

    The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectra of system.

  20. Elemental electron energy loss mapping of a precipitate in a multi-component aluminium alloy.

    PubMed

    Mørtsell, Eva A; Wenner, Sigurd; Longo, Paolo; Andersen, Sigmund J; Marioara, Calin D; Holmestad, Randi

    2016-07-01

    The elemental distribution of a precipitate cross section, situated in a lean Al-Mg-Si-Cu-Ag-Ge alloy, has been investigated in detail by electron energy loss spectroscopy (EELS) and aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). A correlative analysis of the EELS data is connected to the results and discussed in detail. The energy loss maps for all relevant elements were recorded simultaneously. The good spatial resolution allows elemental distribution to be evaluated, such as by correlation functions, in addition to being compared with the HAADF image. The fcc-Al lattice and the hexagonal Si-network within the precipitates were resolved by EELS. The combination of EELS and HAADF-STEM demonstrated that some atomic columns consist of mixed elements, a result that would be very uncertain based on one of the techniques alone. EELS elemental mapping combined with a correlative analysis have great potential for identification and quantification of small amounts of elements at the atomic scale. PMID:27124585

  1. Distribution function representation of energy spectra of H, He, C, O and Fe in corotating particle streams

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Ipavich, F. M.; Mason, G. M.; Hovestadt, D.

    1980-01-01

    From an analysis of nine corotating events observed near 1 AU during the 1974-1976 solar minimum, the spectral parameters for H, He, C, O and Fe and relative abundances of these elements and of Ne, Mg, Si, and S-Ca were determined. The distribution functions of H, He, O and Fe are well represented by an exponential in particle speed over the energy range of the measurements from 0.3 to 5 MeV/nucleon. The composition resembles that of the solar corona, particularly in the O/C ratio which is 0.95 + or - 0.19, and the He/H and He/Ne ratios are similar to the respective ratios in the solar wind. The results are consistent with interplanetary statistical acceleration of these particles out of the high-energy tail of the high-speed solar wind.

  2. Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions.

    PubMed

    Harris, Frank E

    2016-05-28

    Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators. PMID:27250282

  3. Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions

    NASA Astrophysics Data System (ADS)

    Harris, Frank E.

    2016-05-01

    Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.

  4. NIST Databases on Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new

  5. The energy of waves in the photosphere and lower chromosphere. IV. Inversion results of Ca II H spectra

    NASA Astrophysics Data System (ADS)

    Beck, C.; Rezaei, R.; Puschmann, K. G.

    2013-05-01

    Context. Most semi-empirical static one-dimensional (1D) models of the solar atmosphere in the magnetically quiet Sun (QS) predict an increase in temperature at chromospheric layers. Numerical simulations of the solar chromosphere with a variable degree of sophistication, i.e. from 1D to three-dimensional (3D) simulations; assuming local thermal equilibrium (LTE) or non-LTE (NLTE), on the other hand, only yielded an increase in the brightness temperature without any stationary increase in the gas temperature. Aims: We investigate the thermal structure in the solar chromosphere as derived from an LTE inversion of observed Ca ii H spectra in QS and active regions (ARs). Methods: We applied an inversion strategy based on the SIR (Stokes inversion by response functions) code to Ca ii H spectra to obtain 1D temperature stratifications. We investigated the temperature stratifications on differences between magnetic and field-free regions in the QS, and on differences between QS and ARs. We determined the energy content of individual calcium bright grains (BGs) as specific candidates of chromospheric heating events. We compared observed with synthetic NLTE spectra to estimate the significance of the LTE inversion results. Results: The fluctuations of observed intensities yield a variable temperature structure with spatio-temporal rms fluctuations below 100 K in the photosphere and between 200 and 300 K in the QS chromosphere. The average temperature stratification in the QS does not exhibit a clear chromospheric temperature rise, unlike the AR case. We find a characteristic energy content of about 7 × 1018 J for BGs that repeat with a cadence of about 160 s. The precursors of BGs have a vertical extent of about 200 km and a horizontal extent of about 1 Mm. The comparison of observed with synthetic NLTE profiles partly confirms the results of the LTE inversion that the solar chromosphere in the QS oscillates between an atmosphere in radiative equilibrium and one with a

  6. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism

    SciTech Connect

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-10-20

    Electron acceleration to non-thermal energies in low Mach number (M{sub s} ≲ 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ≅ 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  7. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-21

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy. PMID:18361554

  8. Far-Infrared and Raman Spectra and The Ring-Twisting Potential Energy Function of 1,3-Cyclohexadiene

    NASA Astrophysics Data System (ADS)

    Autrey, Daniel; Choo, Jaebum; Laane, Jaan

    2001-10-01

    The nu19 (A2) ring-twisting vibration of 1,3-cyclohexadiene has been analyzed from the vapor-phase Raman and infrared spectra. The Raman spectrum shows nine ring-twisting transitions in the 116 - 199 cm-1 region. The far-infrared spectrum confirms five of these transitions, despite the fact that the vibration is infrared forbidden in the C2v (planar) approximation. Other Raman and infrared combination bands verify the assignments and provide information on the vibrational coupling. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function, which has a barrier to planarity of 1132 cm-1 and energy minima corresponding to twisting angles of 9.1º and 30.1º. Ab initio calculations were also carried out using Moller-Plesset perturbation theory (MP2) with a large number of different basis sets. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range and calculated vibrational frequencies in excellent agreement with the experimental values.

  9. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives.

    PubMed

    Monson, Brian B; Lotto, Andrew J; Story, Brad H

    2012-09-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech. PMID:22978902

  10. Electron energy spectra of H{sup {minus}} autodetaching states resulting from collisions of H{sup {minus}} with He at 1 keV

    SciTech Connect

    Kimura, M.; Sato, H. |; Hino, K.; Matsuzawa, M.

    1995-06-01

    Electron energy spectra for H{sup {minus}} autodetaching states resulting from collisions H{sup {minus}} with He at 1 keV are rigorously calculated by including couplings between doubly excited states and continuum states and their interference with direct detachment processes. An energy sampling procedure, based on the Gauss quadratures, is used to discretize continuum states. The present theoretical result, for the first time, clarifies mechanisms of excitation to doubly excited states, quantitatively reproduces the experimental spectra first observed by Risley and Geballe in 1974, separates the contributions from each of three autodetaching states, and identifies the cause of the interference between autodetaching and direct-detaching excitation channels.

  11. Thermodynamic analysis of spectra

    SciTech Connect

    Mitchell, G. E.; Shriner, J. F. Jr.

    2008-04-04

    Although random matrix theory had its initial application to neutron resonances, there is a relative scarcity of suitable nuclear data. The primary reason for this is the sensitivity of the standard measures used to evaluate spectra--the spectra must be essential pure (no state with a different symmetry) and complete (no states missing). Additional measures that are less sensitive to these experimental limitations are of significant value. The standard measure for long range order is the {delta}{sub 3} statistic. In the original paper that introduced this statistic, Dyson and Mehta also attempted to evaluate spectra with thermodynamic variables obtained from the circular orthogonal ensemble. We consider the thermodynamic 'internal energy' and evaluate its sensitivity to experimental limitations such as missing and spurious levels. Monte Carlo simulations suggest that the internal energy is less sensitive to mistakes than is {delta}{sub 3}, and thus the internal energy can serve as a addition to the tool kit for evaluating experimental spectra.

  12. Wave energy in white dwarf atmospheres. I - Magnetohydrodynamic energy spectra for homogeneous DB and layered DA stars

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1987-01-01

    The radiative damping of acoustic and MHD waves that propagate through white dwarf photospheric layers is studied, and other damping processes that may be important for the propagation of the MHD waves are calculated. The amount of energy remaining after the damping processes have occurred in different types of waves is estimated. The results show that lower acoustic fluxes should be expected in layered DA and homogeneous DB white dwarfs than had previously been estimated. Acoustic emission manifests itself in an enhancement of the quadrupole term, but this term may become comparable to or even lower than the dipole term for cool white dwarfs. Energy carried by the acoustic waves is significantly dissipated in deep photospheric layers, mainly because of radiative damping. Acoustically heated corona cannot exist around DA and DB white dwarfs in a range T(eff) = 10,000-30,000 K and for log g = 7 and 8. However, relatively hot and massive white dwarfs could be exceptions.

  13. Automation system for measurement of gamma-ray spectra of induced activity for multi-element high volume neutron activation analysis at the reactor IBR-2 of Frank Laboratory of Neutron Physics at the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Pavlov, S. S.; Dmitriev, A. Yu.; Chepurchenko, I. A.; Frontasyeva, M. V.

    2014-11-01

    The automation system for measurement of induced activity of gamma-ray spectra for multi-element high volume neutron activation analysis (NAA) was designed, developed and implemented at the reactor IBR-2 at the Frank Laboratory of Neutron Physics. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis of linear positioning module M202A by DriveSet company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma spectra at constant interaction with the NAA database.

  14. Direct and inverse cascades of energy, momentum and wave action in spectra of wind-driven waves

    NASA Astrophysics Data System (ADS)

    Badulin, S. I.; Pushkarev, A. N.; Resio, D.; Zakharov, V. E.

    2003-04-01

    The time-dependent, spatially uniform Hasselmann's kinetic equation for surface gravity waves in presence of wind forcing and white-capping dissipation is studied numerically. We use conventional parameterizations of wind wave input (Snyder et al. 1981; Plant 1982; Hsiao &Shemdin 1983; Donelan, Pierson 1987) that are consistent with weakly nonlinear scaling. We assume that strong dissipation due to white-capping is essential for short waves only (with frequencies above 1Hz) belonging to the spectral tail and can be neglected near the spectral peak. We compare our numerical results with the predictions of the theory of weak turbulence and found a very good coincidence. It is shown that asymptotic behavior of wave spectra is in perfect agreement with stationary solutions of the Hasselmann equation -- Kolmogorov's solutions for direct (Zakharov & Filonenko 1966) and inverse (Zakharov &Zaslavskii 1982) cascades. This asymptotic behavior appears at rather early stages of wind wave evolution (physical time of order of few hours in our experiments); A strong tendency of solutions to self-similar behavior of duration limited solutions is found for rather wide range of initial conditions and external forcing; Good quantitative coincidence with recapitulative experimental data for duration limited wind wave growth (Young 1999, p.111) and for fetch-limited (JONSWAP) spectra parameterized by wave age C_p/Uwind is found. The findings here are quite robust and hopefully will be applied to the practical problems. Present wave prediction models are based on fairly crude parameterizations of the nonlinear energy transfers. In large part due to inaccuracies in these parameterizations, these models have had to rely on empirical fitting of general growth equation as a basis for constraining additional source-sink terms in the detailed balance equations. Results from this study could be used to reformulate a complete energy balance equation for wave generation, propagation and decay

  15. Could the extensive use of rare elements in renewable energy technologies become a cause for concern?

    NASA Astrophysics Data System (ADS)

    Bradshaw, A. M.; Reuter, B.; Hamacher, T.

    2015-08-01

    The energy transformation process beginning to take place in many countries as a response to climate change will reduce substantially the consumption of fossil fuels, but at the same time cause a large increase in the demand for other raw materials. Whereas it is difficult to estimate the quantities of, for example, iron, copper and aluminium required, the situation is somewhat simpler for the rare elements that might be needed in a sustainable energy economy based largely on photovoltaic sources, wind and possibly nuclear fusion. We consider briefly each of these technologies and discuss the supply risks associated with the rare elements required, if they were to be used in the quantities that might be required for a global energy transformation process. In passing, we point out the need in resource studies to define the terms "rare", "scarce" and "critical" and to use them in a consistent way.

  16. Characterizing high energy spectra of NIF ignition Hohlraums using a differentially filtered high energy multipinhole x-ray imager.

    PubMed

    Park, Hye-Sook; Dewald, E D; Glenzer, S; Kalantar, D H; Kilkenny, J D; MacGowan, B J; Maddox, B R; Milovich, J L; Prasad, R R; Remington, B A; Robey, H F; Thomas, C A

    2010-10-01

    Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics. PMID:21034047

  17. Characterizing high energy spectra of NIF ignition Hohlraums using a differentially filtered high energy multipinhole x-ray imager

    SciTech Connect

    Park, Hye-Sook; Dewald, E. D.; Glenzer, S.; Kalantar, D. H.; Kilkenny, J. D.; MacGowan, B. J.; Maddox, B. R.; Milovich, J. L.; Prasad, R. R.; Remington, B. A.; Robey, H. F.; Thomas, C. A.

    2010-10-15

    Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87x during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.

  18. Element partitioning in combustion- and gasification-based waste-to-energy units

    SciTech Connect

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-05-15

    Highlights: ► Element partitioning of waste-to-energy units by means of a substance flow analysis. ► A comparison between moving grate combustors and high temperature gasifiers. ► Classification of key elements according to their behavior during WtE processes. ► Slags and metals from waste gasifiers are completely and immediately recyclable. ► Potential reduction of amounts of solid residue to be sent to landfill disposal. - Abstract: A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal.

  19. Time evolution of endpoint energy of Bremsstrahlung spectra and ion production from an electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, Ollie; Ropponen, Tommi; Jones, Peter; Kalvas, Taneli

    2008-01-01

    Electron cyclotron resonance ion sources (ECRIS) are used to produce high charge state heavy ion beams for the use of nuclear and materials science, for instance. The most powerful ECR ion sources today are superconducting. One of the problems with superconducting ECR ion sources is the use of high radio frequency (RF) power which results in bremsstrahlung radiation adding an extra heat load to the cryostat. In order to understand the electron heating process and timescales in the ECR plasma, time evolution measurement of ECR bremsstrahlung was carried out. In the measurements JYFL 14 GHz ECRIS was operated in a pulsed mode and bremsstrahlung data from several hundred RF pulses was recorded. Time evolution of ion production was also studied and compared to one of the electron heating theories. To analyze the measurement data at C++ program was developed. Endpoint energies of the bremsstrahlung spectra as a function of axial magnetic field strength, pressure and RF power are presented and ion production timescales obtained from the measurements are compared to bremsstrahlung emission timescales and one of the stochastic heating theories.

  20. Two-center interference in molecular photoelectron energy spectra with intense attosecond circularly polarized XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bian, Xue-Bin; Bandrauk, André D.

    2014-08-01

    We study two-center electron interference in molecular photoionization processes by intense attosecond circularly polarized extreme ultraviolet (XUV) laser pulses in both symmetric H2+ and nonsymmetric HHe2+ one-electron diatomic systems. Simulations from numerical solutions of time-dependent Schrödinger equations for the oriented symmetric molecular ion H2+ exhibit a signature of interference with double peaks (minima) in molecular attosecond photoelectron energy spectra (MAPES) at critical angles ϑc between the continuum electron momentum pe and the molecular internuclear R axis. The interference patterns are shown to be influenced by the molecular Coulomb potential, leading to a shift of the critical angle ϑc. Dependence of the two-center interference on the pulse ellipticity is also investigated. Furthermore, it is found that the interference phenomena are critically sensitive to the molecular orbital symmetry. For the nonsymmetric molecular ion HHe2+, such double peaks in MAPES also occur, thus suggesting a method for imaging orbitals in molecules by intense ultrashort circularly polarized XUV pulses on the attosecond time scale.

  1. Quantum-mechanical study of energies, structures, and vibrational spectra of the H(D)Cl complexed with dimethyl ether

    SciTech Connect

    Boda, Łukasz Boczar, Marek; Gług, Maciej; Wójcik, Marek J.

    2015-11-28

    Interaction energies, molecular structure and vibrational frequencies of the binary complex formed between H(D)Cl and dimethyl ether have been obtained using quantum-chemical methods. Equilibrium and vibrationally averaged structures, harmonic and anharmonic wavenumbers of the complex and its deuterated isotopomer were calculated using harmonic and anharmonic second-order perturbation theory procedures with Density Functional Theory B3LYP and B2PLYP-D and ab initio Møller-Plesset second-order methods, and a 6-311++G(3d,3p) basis set. A phenomenological model describing anharmonic-type vibrational couplings within hydrogen bonds was developed to explain the unique broadening and fine structure, as well as the isotope effect of the Cl–H and Cl–D stretching IR absorption bands in the gaseous complexes with dimethyl ether, as an effect of hydrogen bond formation. Simulations of the rovibrational structure of the Cl–H and Cl–D stretching bands were performed and the results were compared with experimental spectra.

  2. Numerical models for the diffuse ionized gas in galaxies. I. Synthetic spectra of thermally excited gas with turbulent magnetic reconnection as energy source

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Lieb, S.; Pauldrach, A. W. A.; Lesch, H.; Hultzsch, P. J. N.; Birk, G. T.

    2012-08-01

    Aims: The aim of this work is to verify whether turbulent magnetic reconnection can provide the additional energy input required to explain the up to now only poorly understood ionization mechanism of the diffuse ionized gas (DIG) in galaxies and its observed emission line spectra. Methods: We use a detailed non-LTE radiative transfer code that does not make use of the usual restrictive gaseous nebula approximations to compute synthetic spectra for gas at low densities. Excitation of the gas is via an additional heating term in the energy balance as well as by photoionization. Numerical values for this heating term are derived from three-dimensional resistive magnetohydrodynamic two-fluid plasma-neutral-gas simulations to compute energy dissipation rates for the DIG under typical conditions. Results: Our simulations show that magnetic reconnection can liberate enough energy to by itself fully or partially ionize the gas. However, synthetic spectra from purely thermally excited gas are incompatible with the observed spectra; a photoionization source must additionally be present to establish the correct (observed) ionization balance in the gas.

  3. Effect of noise, order and range in fitting the photopeak region of local, Anger-camera energy spectra

    NASA Astrophysics Data System (ADS)

    Wang, X.; Koral, K. F.; Clinthorne, N. H.; Rogers, W. L.; Floyd, C. E.; Jaszczak, R. J.

    1990-12-01

    In order to estimate and correct Compton scattering in nuclear-medicine Anger-camera imaging, we have previously required the least-mean-square error between the locally measured energy spectrum and one dependent on a model. The model assumes a fixed-order polynomial for the spectrum of scatter and fits the data over a specified energy range. In this study, a Monte Carlo simulation program produces spectra at specified locations in a projection image of a 99mTc "hot" sphere in a "cold" cylinder. Poisson noise is subsequently added to each spectral channel, modelling a given count level within the acceptance window. Tests were done at two pixel locations, one at the center of the sphere and the other near the edge. Without noise, we find that the calculated-to-true ratio for unscattered counts is reasonably close to 1.0 (average 1.03, range 0.85 to 1.16) for all of the 16 order-range combinations that were tested. Tests on experimental data yield comparable results. For comparison, without any Compton-scatter correction the average ratio is 1.39. Optimizing the fitting parameters is difficult because, for example, the best set for location 1 is the worst for location 2. With noisy data, the relative standard deviation, and sometimes the bias for the estimate of direct (i.e. unscattered) counts, increases as the statistical noise increases. The average relative error for the estimate is 10% for the 3 cases measured with about 5000 unscattered counts but increases to 20% if that number decreases to 700.

  4. Towards the estimation of the scattered energy spectra reaching the head of the medical staff during interventional radiology: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Zagorska, A.; Bliznakova, K.; Buchakliev, Z.

    2015-09-01

    In 2012, the International Commission on Radiological Protection has recommended a reduction of the dose limits to the eye lens for occupational exposure. Recent studies showed that in interventional rooms is possible to reach these limits especially without using protective equipment. The aim of this study was to calculate the scattered energy spectra distribution at the level of the operator's head. For this purpose, an in-house developed Monte Carlo-based computer application was used to design computational phantoms (patient and operator), the acquisition geometry as well as to simulate the photon transport through the designed system. The initial spectra from 70 kV tube voltage and 8 different filtrations were calculated according to the IPEM Report 78. An experimental study was carried out to verify the results from the simulations. The calculated scattered radiation distributions were compared to the initial incident on the patient spectra. Results showed that there is no large difference between the effective energies of the scattered spectra registered in front of the operator's head obtained from simulations of all 8 incident spectra. The results from the experimental study agreed well to simulations as well.

  5. A measurement of the energy spectra and relative abundance of the cosmic-ray H and He isotopes over a broad energy range

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Yushak, S. M.

    1983-01-01

    The measurements reported of these isotopes were made using two sets of detectors during the same minimum modulation period in 1977. One measurement was made with a balloon-borne telescope, the other with telescopes on the Voyager spacecraft. It is noted that together they provide the widest energy range yet available for studying these isotopes: 14-150 MeV per nucleon for H2 and 10-290 MeV per nucleon for He-3. The simultaneous helium isotope observations are used to give a mutually consistent picture of galactic propagation and solar modulation. The data define the form of the interstellar H-1 and He-4 spectra, an interstellar matter path length for both H-1 and He-4, and a total residual modulation for He-4. The H-2 observations suggest a picture that is very similar for the galactic propagation of H-1 and He-4.

  6. R-matrix description of particle energy spectra produced by low-energy 3H + 3H reactions

    SciTech Connect

    Brune, C. R.; Caggiano, J. A.; Sayre, D. B.; Bacher, A. D.; Hale, G. M.; Paris, M. W.

    2015-07-20

    An R-matrix model for three-body final states is presented and applied to a recent measurement of the neutron energy spectrum from the 3H + 3H→ 2n + α reaction. The calculation includes the n alpha and n n interactions in the final state, angular momentum conservation, antisymmetrization, and the interference between different channels. A good fit to the measured spectrum is obtained, where clear evidence for the 5He ground state is observed. The model is also used to predict the alpha-particle spectrum from 3H + 3H as well as particle spectra from 3He + 3He. The R-matrix approach presented here is very general, and can be adapted to a wide variety of problems with three-body final states.

  7. Measurement of LET (linear energy transfer) spectra using CR-39 at different depths of water irradiated by 171 MeV protons: A comparison with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Sahoo, G. S.; Tripathy, S. P.; Molokanov, A. G.; Aleynikov, V. E.; Sharma, S. D.; Bandyopadhyay, T.

    2016-05-01

    In this work, we have used CR-39 detectors to estimate the LET (linear energy transfer) spectrum of secondary particles due to 171 MeV proton beam at different depths of water including the Bragg peak region. The measured LET spectra were compared with those obtained from FLUKA Monte Carlo simulation. The absorbed dose (DLET), dose equivalent (HLET) were estimated using the LET spectra. The values of DLET and HLET per incident proton fluence were found to increase with the increase in depth of water and were maximum at Bragg peak.

  8. Nuclear modification of electron spectra and implications for heavy quark energy loss in Au+Au collisions at [FORMULA: SEE TEXT].

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; Egdemir, J; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszprémi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L

    2006-01-27

    The PHENIX experiment has measured midrapidity ([FORMULA: SEE TEXT]) transverse momentum spectra ([FORMULA: SEE TEXT]) of electrons as a function of centrality in Au+Au collisions at [FORMULA: SEE TEXT]. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi0 and eta mesons, were removed. The resulting nonphotonic electron spectra are primarily due to the semileptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to nonphotonic electrons in p+p collisions. A significant suppression of electrons at high pT is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks. PMID:16486687

  9. Element concentrations in urban grass cuttings from roadside verges in the face of energy recovery.

    PubMed

    Piepenschneider, Meike; De Moor, Sofie; Hensgen, Frank; Meers, Erik; Wachendorf, Michael

    2015-05-01

    Grass from municipal roadside verges is a potential yet largely unused resource for bioenergy recovery, which is mainly due to its unknown elemental composition. Therefore, we measured the concentration of 16 elements (Ca, K, Mg, N, Na, P, S, Al, Cd, Cl, Cr, Cu, Mn, Pb, Si and Zn) in a material from the city of Kassel harvested in different management intensities. The element concentrations were mainly close to reference values of agricultural or nature conservation grassland and usually within the range of literature data. Concentrations of most elements, including heavy metals, were below limiting values. Only N and Cl concentrations in the raw material exceeded the limiting values for combustion, but washing and dewatering of the biomass with the "integrated generation of solid fuel and biogas from biomass" technique resulted in concentrations in the press cake well below the limiting values. Considering the element concentrations of grass from urban roadside verges, utilisation for energy recovery may be possible, provided an appropriate technology is applied. PMID:25801367

  10. Relationship between energy flux Q and mean energy of auroral electron spectra based on radar data from the 1987 CEDAR Campaign at Sondre Stromfjord, Greenland

    SciTech Connect

    Strickland, D.J.; Hecht, J.H.; Christensen, A.B.; Kelly, J.

    1994-10-01

    The incoherent scatter radar at Sondre Stromfjord, Greenland, measured electron density profiles from 90 to 500 km during four auroral events over a 3-hour period on February 28, 1987. The profiles were obtained with the radar pointed along the magnetic field near zenith at 15-s intervals. Under the assumption that proton/H atom precipitation was unimportant during these events a representation of the incident electron flux was obtained by fitting calculated profiles with measured profiles in the vicinity of their peaks (lower E region). Maxwellian and Gaussian electron distributions with high- and low-energy tails were used to generate the calculated profiles. The distributions were specified in terms of average energy and energy flux Q. The authors find that they can clearly distinguish between profiles that result from a Maxwellian incident electron spectrum and those that result from a Gaussian spectrum. Interpreting Gaussian and Maxwellian spectra as representative of discrete and diffuse aurora, respectively, the measurements indicated good correlation between and Q for discrete aurora, while essentially no correlation was observed for diffuse aurora. This is consistent with current understanding that discrete auroras are produced by electrons accelerated by magnetic field-aligned potential drops whereas diffuse auroras are produced by pitch angle diffusion of plasma sheet electrons into the loss cone. 27 refs., 8 figs., 2 tabs.

  11. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage

    PubMed Central

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.

    2016-01-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance. PMID:27001915

  12. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.

    2016-03-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance.

  13. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage.

    PubMed

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L; Sadoway, Donald R

    2016-01-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance. PMID:27001915

  14. A Measurement of the Energy Spectra of Cosmic Rays from 20 to 1000 GeV Per Amu

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Thoburn, C.; Smith, A. E.; Petruzzo, J. J., III; Austin, R. W.; Derrickson, J. H.; Parnell, T. A.; Masheder, M. R. W.; Fowler, P. H.

    1997-01-01

    The design features and operational performance from the test flight of the fourth generation of spherical geometry cosmic ray detectors developed at Bristol University (Bristol University Gas Scintillator 4 - BUGS-4) are presented. The flight from Ft. Sumner (NM) in Sept. 1993 was the premier flight of a large (1m radius) spherical drift chamber which also gave gas scintillation and Cerenkov signals. The combinations of this chamber with one gas and two solid Cerenkov radiators lead to a large aperture factor (4.5 m2sr), but low (approximately 3.5 g/sq cm) instrument mass over the energy sensitive range 1 to several hundred GeV/a. Moreover, one simple timing measurement determined the impact parameter which provided a trajectory (path length) correction for all detector elements. This innovative and efficient design will be of interest to experimental groups engaged in studies of energetic charged particles. Although there were technical problems on the flight, which were compounded by the total destruction of BUGS-4 by fire while landing in Oklahoma, there was a period of stable operation during which the instrument was exposed at float altitude (approximately 125,000 ft.) to high energy cosmic rays. We present the performance of the instrument as determined from the analysis of these data and an appraisal of its novel design features. Suggestions for design improvements in a future instrument are made.

  15. A Measurement of the Energy Spectra of Cosmic Rays from 20 to 1000 GeV Per AMU

    NASA Astrophysics Data System (ADS)

    Gregory, J. C.; Thoburn, C.; Smith, A. E.; Petruzzo, J. J., III; Austin, R. W.; Derrickson, J. H.; Parnell, T. A.; Masheder, M. R. W.; Fowler, P. H.

    1997-11-01

    The design features and operational performance from the test flight of the fourth generation of spherical geometry cosmic ray detectors developed at Bristol University (Bristol University Gas Scintillator 4 - BUGS-4) are presented. The flight from Ft. Sumner (NM) in Sept. 1993 was the premier flight of a large (1m radius) spherical drift chamber which also gave gas scintillation and Cerenkov signals. The combinations of this chamber with one gas and two solid Cerenkov radiators lead to a large aperture factor (4.5 m2sr), but low (approximately 3.5 g/sq cm) instrument mass over the energy sensitive range 1 to several hundred GeV/a. Moreover, one simple timing measurement determined the impact parameter which provided a trajectory (path length) correction for all detector elements. This innovative and efficient design will be of interest to experimental groups engaged in studies of energetic charged particles. Although there were technical problems on the flight, which were compounded by the total destruction of BUGS-4 by fire while landing in Oklahoma, there was a period of stable operation during which the instrument was exposed at float altitude (approximately 125,000 ft.) to high energy cosmic rays. We present the performance of the instrument as determined from the analysis of these data and an appraisal of its novel design features. Suggestions for design improvements in a future instrument are made.

  16. Influence of trace elements in human tissue in low-energy photon brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    White, Shane A.; Landry, Guillaume; van Gils, Francis; Verhaegen, Frank; Reniers, Brigitte

    2012-06-01

    The aim of this paper is to determine the dosimetric impact of trace elements in human tissues for low-energy photon sources used in brachytherapy. Monte Carlo dose calculations were used to investigate the dosimetric effect of trace elements present in normal or cancerous human tissues. The effect of individual traces (atomic number Z = 11-30) was studied in soft tissue irradiated by low-energy brachytherapy sources. Three other tissue types (prostate, adipose and mammary gland) were also simulated with varying trace concentrations to quantify the contribution of each trace to the dose distribution. The dose differences between cancerous and healthy prostate tissues were calculated in single- and multi-source geometries. The presence of traces in a tissue produces a difference in the dose distribution that is dependent on Z and the concentration of the trace. Low-Z traces (Na) have a negligible effect (<0.3%) in all tissues, while higher Z (K) had a larger effect (>3%). There is a potentially significant difference in the dose distribution between cancerous and healthy prostate tissues (4%) and even larger if compared to the trace-free composition (15%) in both single- and multi-sourced geometries. Trace elements have a non-negligible (up to 8% in prostate D90) effect on the dose in tissues irradiated with low-energy photon sources. This study underlines the need for further investigation into accurate determination of the trace composition of tissues associated with low-energy brachytherapy. Alternatively, trace elements could be incorporated as a source of uncertainty in dose calculations. This work was part of an invited presentation at the ‘International Workshop on Recent Advances in Monte Carlo Techniques for Radiation Therapy’, held in Montreal, June 8-10, 2011.

  17. Calculation of delayed-neutron energy spectra in a quasiparticle random-phase approximation-Hauser-Feshbach model

    SciTech Connect

    Kawano, T.; Moeller, P.; Wilson, W. B.

    2008-11-15

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  18. The use of IR, magnetism, reflectance, and mass spectra together with thermal analyses in structure investigation of codeine phosphate complexes of d-block elements

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; El-shahat, M. F.; Abdullah, S. M.

    2005-06-01

    Codeine is an analgesic with uses similar to morphines, but it is of much less effect, i.e., it had a mild sedative effect; codeine is usually used as the phosphate form (Cod.P) and is often administrated by mouth with aspirin of paracetamol. Due to its serious use, if it is in large dose, attention is paid in this research to the synthesis and stereochemistry of new iron, cobalt, nickel, copper, and zinc complexes of this drug in both solution and the solid states. The spectra of these complexes in solution and the study of their stoichiometry refer to the formation of 1:1 ratio of metal (M) to ligand (L). The steriochemical structures of the solid complexes were studied on the basis of their analytical, spectroscopic, magnetic, and thermal data. Infrared spectra proved the presence of M sbnd O bonds. Magnetic susceptibility and solid reflectance spectral measurements were used to infer the structures. The prepared complexes were found to have the general formulae [ML(OH) x(H 2O) y](H 2O) zH 3PO 4, M: Co(II), Ni(II), and Cu(II), x = 1, y = 0, z = 0; M: Fe(II), x = 1, y = 2, z = 1; Fe(III), x = 2, y = 1, z = 0; Co(III), x = 0, y = 2, z = 1; Zn(II), x = 1, y = 0, z = 3; and L: (Cod.P) of the general formula C 18H 24NO 7P (anhydrate). Octahedral, tetrahedral, and square planer structures were proposed for these complexes depending upon the magnetic and reflectance data and were confirmed by detailed mass and thermal analyses comparative studies.

  19. The elemental abundances of hydrogen through nickel in the low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Simpson, J. A.

    1980-01-01

    The relative abundances of the elements H through Ni in the galactic cosmic rays have been measured in the energy range 70-280 MeV/nucleon with the University of Chicago cosmic ray telescope on board the satellite IMP-8 from January 1973 to September 1978. Cosmic ray source abundances have been derived by extrapolating the measured composition back to the source. A key factor in the propagation calculation is the use of a pathlength distribution and a solar modulation level shown to be consistent with the secondary to primary ratios and their energy dependence below about 1 GeV/n.

  20. Element partitioning in combustion- and gasification-based waste-to-energy units.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-05-01

    A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal. PMID:23465309