Sample records for em motor ciclo

  1. Electric Motor Thermal Management | Transportation Research | NREL

    Science.gov Websites

    Electric Motor Thermal <em>Management> Electric Motor Thermal <em>Management> A photo of a piece of of electric-drive vehicles. Photo by Kevin Bennion, NREL NREL's electric motor thermal <em>management> construction of new electric motors. Electric motor thermal <em>management> involves a multifaceted interaction of

  2. A Behavior Analytic Approach to Exploratory Motor Behavior: How Can Caregivers Teach EM Behavior to Infants with Down Syndrome?

    ERIC Educational Resources Information Center

    Bauer, Sara M.; Jones, Emily A.

    2014-01-01

    Impairment in exploratory motor (EM) behavior is part of the Down syndrome behavioral phenotype. Exploratory motor behavior may be a pivotal skill for early intervention with infants with Down syndrome. Exploratory motor impairments are often attributed to general delays in motor development in infants with Down syndrome. A behavior analytic…

  3. Piezoelectric Motors and Transformers

    NASA Astrophysics Data System (ADS)

    Uchino, K.

    Piezoelectric ceramics forms a new field between electronic and structural ceramics [1-4]. Application fields are classified into three categories: positioners, motors, and vibration suppressors. From the market research result for 80 Japanese component industries in 1992, tiny motors in the range of 5-8 mm are required in large numbers for office and portable equipment; the conventional electromagnetic (EM) motors are rather difficult to produce in this size with sufficient energy efficiency, while Silicon MEMS actuators are too small to be used in practice. Piezoelectric ultrasonic motors whose efficiency is insensitive to size are superior in the millimeter motor area. The manufacturing precision of optical instruments such as lasers and cameras, and the positioning accuracy for fabricating semiconductor chips are of the order of 0.1μm which is much smaller than the backlash of the EM motors. Vibration suppression in space structures and military vehicles also require compact but mighty piezoelectric actuators.

  4. Motor Recovery After Subcortical Stroke Depends on Modulation of Extant Motor Networks.

    PubMed

    Sharma, Nikhil; Baron, Jean-Claude

    2015-01-01

    Stroke is the leading cause of long-term disability. Functional imaging studies report widespread changes in movement-related cortical networks after stroke. Whether these are a result of stroke-specific cognitive processes or reflect modulation of existing movement-related networks is unknown. Understanding this distinction is critical in establishing more effective restorative therapies after stroke. Using multivariate analysis (tensor-independent component analysis - TICA), we map the neural networks involved during motor imagery (MI) and executed movement (EM) in subcortical stroke patients and age-matched controls. Twenty subcortical stroke patients and 17 age-matched controls were recruited. They were screened for their ability to carry out MI (Chaotic MI Assessment). The fMRI task was a right-hand finger-thumb opposition sequence (auditory-paced 1 Hz; 2, 3, 4, 5, 2…). Two separate runs were acquired (MI and rest and EM and rest; block design). There was no distinction between groups or tasks until the last stage of analysis, which allowed TICA to identify independent components (ICs) that were common or distinct to each group or task with no prior assumptions. TICA defined 28 ICs. ICs representing artifacts were excluded. ICs were only included if the subject scores were significant (for either EM or MI). Seven ICs remained that involved the primary and secondary motor networks. All ICs were shared between the stroke and age-matched controls. Five ICs were common to both tasks and three were exclusive to EM. Two ICs were related to motor recovery and one with time since stroke onset, but all were shared with age-matched controls. No IC was exclusive to stroke patients. We report that the cortical networks in stroke patients that relate to recovery of motor function represent modulation of existing cortical networks present in age-matched controls. The absence of cortical networks specific to stroke patients suggests that motor adaptation and other

  5. Thermal Measurements of Packed Copper Wire Enables Better Electric Motor

    Science.gov Websites

    transmittance characterization <em>methods> both parallel and perpendicular to the axis. A measurement of apparent from all three test <em>methods> indicated that the k_app of the packed copper wire was significantly higher <em>methods> for examining the thermal impact of new materials for winding structures relevant to motor

  6. General Motors Partners with NREL to Reduce Automotive Fuel Cell Costs |

    Science.gov Websites

    Reduce <em>Automotive> Fuel Cell Costs General Motors (GM) is partnering with NREL on a multiyear , multimillion-dollar joint research and development effort to lower the cost of <em>automotive> fuel cell stacks

  7. Does intrinsic motivation enhance motor cortex excitability?

    PubMed

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research. © 2016 Society for Psychophysiological Research.

  8. Does motor imagery share neural networks with executed movement: a multivariate fMRI analysis

    PubMed Central

    Sharma, Nikhil; Baron, Jean-Claude

    2013-01-01

    Introduction: Motor imagery (MI) is the mental rehearsal of a motor first person action-representation. There is interest in using MI to access the motor network after stroke. Conventional fMRI modeling has shown that MI and executed movement (EM) activate similar cortical areas but it remains unknown whether they share cortical networks. Proving this is central to using MI to access the motor network and as a form of motor training. Here we use multivariate analysis (tensor independent component analysis-TICA) to map the array of neural networks involved during MI and EM. Methods: Fifteen right-handed healthy volunteers (mean-age 28.4 years) were recruited and screened for their ability to carry out MI (Chaotic MI Assessment). fMRI consisted of an auditory-paced (1 Hz) right hand finger-thumb opposition sequence (2,3,4,5; 2…) with two separate runs acquired (MI & rest and EM & rest: block design). No distinction was made between MI and EM until the final stage of processing. This allowed TICA to identify independent-components (IC) that are common or distinct to both tasks with no prior assumptions. Results: TICA defined 52 ICs. Non-significant ICs and those representing artifact were excluded. Components in which the subject scores were significantly different to zero (for either EM or MI) were included. Seven IC remained. There were IC's shared between EM and MI involving the contralateral BA4, PMd, parietal areas and SMA. IC's exclusive to EM involved the contralateral BA4, S1 and ipsilateral cerebellum whereas the IC related exclusively to MI involved ipsilateral BA4 and PMd. Conclusion: In addition to networks specific to each task indicating a degree of independence, we formally demonstrate here for the first time that MI and EM share cortical networks. This significantly strengthens the rationale for using MI to access the motor networks, but the results also highlight important differences. PMID:24062666

  9. Functional magnetic resonance imaging and transcranial magnetic stimulation: effects of motor imagery, movement and coil orientation.

    PubMed

    Niyazov, D M; Butler, A J; Kadah, Y M; Epstein, C M; Hu, X P

    2005-07-01

    To compare fMRI activations during movement and motor imagery to corresponding motor evoked potential (MEP) maps obtained with the TMS coil in three different orientations. fMRI activations during executed (EM) and imagined (IM) movements of the index finger were compared to MEP maps of the first dorsal interosseus (FDI) muscle obtained with the TMS coil in anterior, posterior and lateral handle positions. To ensure spatial registration of fMRI and MEP maps, a special grid was used in both experiments. No statistically significant difference was found between the TMS centers of gravity (TMS CoG) obtained with the three coil orientations. There was a significant difference between fMRI centers of gravity during IMs (IM CoG) and EMs (EM CoG), with IM CoGs localized on average 10.3mm anterior to those of EMs in the precentral gyrus. Most importantly, the IM CoGs closely matched cortical projections of the TMS CoGs while the EM CoGs were on average 9.5mm posterior to the projected TMS CoGs. TMS motor maps are more congruent with fMRI activations during motor imagery than those during EMs. These findings are not significantly affected by changing orientation of the TMS coil. Our results suggest that the discrepancy between fMRI and TMS motor maps may be largely due to involvement of the somatosensory component in the EM task.

  10. The "Long Pipe" in CICLoPE: A Design for Detailed Turbulence Measurements

    NASA Astrophysics Data System (ADS)

    Talamelli, A.; Bellani, G.; Rossetti, A.

    A new facility to study high Reynolds number wall bounded turbulent flow has been designed. It will be installed in the laboratory of Center for International Collaboration on Long Pipe Experiments "CICLoPE" in Predappio (Italy). The facility consists of a large pipe, allowing to reach high Reynolds numbers, where all turbulent scales can be resolved with standard measurement techniques. The pipe operates with air at ambient conditions with a maximum speed of 60 m/s in order to avoid any compressibility effect. In order to maintain stable conditions over long period of time the pipe is part of a close loop circuit. The pipe will be located in a tunnel 60 m underground, thus ensuring very low level of external perturbations. The layout resembles an ordinary wind tunnel where the main difference is the long test section, which produces most of the friction losses. This requires the use of a multiple stage axial fan driven by two independent motors. Even though many of the various aerodynamic components are similar to those ordinary used in wind tunnel (corners, diffusers, turbulence manipulators, contraction, etc.) they have been designed aiming at obtaining a very good quality of the flow and minimizing the overall pressure losses.

  11. Síntesis del estado del conocimiento del ciclo de carbono en ecosistemas boscosos de los Estados Unidos

    Treesearch

    Michael G. Ryan; Mark E. Harmon; Richard A. Birdsey; Christian P. Giardina; Linda S. Heath; Richard A. Houghton; Robert B. Jackson; Duncan C. McKinley; James F. Morrison; Brian C. Murray; Diane E. Pataki; Kenneth E. Skog

    2010-01-01

    Los bosques juegan un papel central en el ciclo de carbono de los Estados Unidos y global. El secuestro de carbono de los bosques de los Estados Unidos, a través de su crecimiento y la cosecha de productos madereros, compensa en la actualidad entre un 12 y un 19% de las emisiones de carbono asociadas al uso de combustible fósil de dicho país. El ciclo natural de un...

  12. Mapping the involvement of BA 4a and 4p during Motor Imagery.

    PubMed

    Sharma, Nikhil; Jones, P S; Carpenter, T A; Baron, Jean-Claude

    2008-05-15

    Motor Imagery (MI) is an attractive but intriguing means to access the motor network. There are marked inconsistencies in the functional imaging literature regarding the degree, extent and distribution of the primary motor cortex (BA 4) involvement during MI as compared to Executed Movement (EM), which may in part be related to the diverse role of BA 4 and its two subdivisions (i.e., 4a and 4p) in motor processes as well as to methodological issues. Here we used fMRI with monitoring of compliance to show that in healthy volunteers optimally screened for their ability to perform MI the contralateral BA 4 is involved during MI of a finger opposition sequence (2, 3, 4, 5; paced at 1 Hz), albeit less than during EM of the same sequence, and in a location sparing the hand area. Furthermore, both 4a and 4p subdivisions were found to be involved in MI, but the relative involvement of BA 4p appeared more robust and closer to that seen with EM. We suggest that during MI the role of BA 4 and its subdivisions may be non-executive, perhaps related to spatial encoding, though clearly further studies are needed. Finally, we report a similar hemispheric activation balance within BA 4 with both tasks, which extends the commonalities between EM and MI.

  13. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  14. 77 FR 8898 - Certain Starter Motors and Alternators; Determination Not To Review an Initial Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... joint motion to terminate the investigation as to respondent Electric Motor Service, Inc. (EMS) of Logan... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-755] Certain Starter Motors and... for importation, and the sale within the United States after importation of certain starter motors and...

  15. Wireless and Powerless Sensing Node System Developed for Monitoring Motors.

    PubMed

    Lee, Dasheng

    2008-08-27

    Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program.

  16. Wireless and Powerless Sensing Node System Developed for Monitoring Motors

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program. PMID:27873798

  17. 76 FR 28808 - In the Matter of Certain Starter Motors And Alternators; Notice of Commission Decision Not To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... San Francisco, California (``Yun Sheng'') and Electric Motor Services of Logan, West Virginia (``EMS..., San Francisco, California 94080; Electric Motor Services, 70 River Rd., Logan, West Virginia 25601... Motors And Alternators; Notice of Commission Decision Not To Review an Initial Determination Granting...

  18. Population density and mortality among individuals in motor vehicle crashes.

    PubMed

    Gedeborg, Rolf; Thiblin, Ingemar; Byberg, Liisa; Melhus, Håkan; Lindbäck, Johan; Michaelsson, Karl

    2010-10-01

    To assess whether higher mortality rates among individuals in motor vehicle crashes in areas with low population density depend on injury type and severity or are related to the performance of emergency medical services (EMS). Prehospital and hospital deaths were studied in a population-based cohort of 41,243 motor vehicle crashes that occurred in Sweden between 1998 and 2004. The final multivariable analysis was restricted to 6884 individuals in motor vehicle crashes, to minimise the effects of confounding factors. Crude mortality rates following motor vehicle crashes were inversely related to regional population density. In regions with low population density, the unadjusted rate ratio for prehospital death was 2.2 (95% CI 1.9 to 2.5) and for hospital death 1.5 (95% CI 1.1 to 1.9), compared with a high-density population. However, after controlling for regional differences in age, gender and the type/severity of injuries among 6884 individuals in motor vehicle crashes, low population density was no longer associated with increased mortality. At 25 years of age, predicted prehospital mortality was 9% lower (95% CI 5% to 12%) in regions with low population density compared with high population density. This difference decreased with increasing age, but was still 3% lower (95% CI 0.5% to 5%) at 65 years of age. The inverse relationship between population density and mortality among individuals in motor vehicle crashes is related to pre-crash factors that influence the type and severity of injuries and not to differences in EMS.

  19. Insertion of Astronomy as a High School Subject. (Spanish Title: Inserción de Astronomia Como Materia del Ciclo Secundario.) Inserção da Astronomia Como Disciplina Curricular do Ensino Médio

    NASA Astrophysics Data System (ADS)

    Dias, Claudio André C. M.; Santa Rita, Josué R.

    2008-12-01

    Astronomy is considered among the first sciences that man dominated, however, the basic skills for the construction of knowledge, relatively to the contents "Earth and the Universe" are not being developed properly for the majority of students concluding the high school level. The students are concluding this teaching cycle without proper knowledge of several subjects in the area of Astronomy, which are mandatory in the national Curricular National Parameters (PCN). Because of this discrepancy, this work stresses the need of the incorporation of a specific subject of Astronomy in the high school, in order to reduce the gap between what is taught and which should be taught. La Astronomía es considerada una de las primeras ciencias que el hombre dominó. Sin embargo, las habilidades básicas para la construcción del conocimento, relativo al eje temático "Tierra y Universo", no vienen siendo trabajadas adecuadamente con la mayoría de los alumnos que concluyen el ciclo escolar medio. Los alumnos están concluyendo este nivel de enseñanza sin conocimentos de varios temas en el área de Astronomía, que son obligatorios según los Parámetros Curriculares Nacionales (PCN). En virtud de esta discrepancia, este trabajo enfatiza la necesidad de incorporar una disciplina específica de Astronomía em el ciclo medio, em pro de la reducción de las distorsiones entre lo que es enseñado y lo que se debe enseñar. A Astronomia é considerada uma das primeiras ciências que o homem dominou, porém as competências básicas para a construção do conhecimento, relativo ao eixo temático "Terra e Universo", não vêm sendo trabalhadas a contento com a maioria dos alunos que concluem o ensino médio. Os alunos estão concluindo este nível de ensino sem conhecimento de vários temas na área de Astronomia, que são obrigatórios nos Parâmetros Curriculares Nacionais (PCN). Em virtude desta discrepância, este trabalho vem evidenciar a necessidade da incorporação de uma

  20. Optimization and Verification of a Brushless DC-Motor for Cryogenic Mechanisms

    NASA Astrophysics Data System (ADS)

    Eggens, M.; van Loon, D.; Smit, H. P.; Jellema, W.; Dieleman, P.; Detrain, A.; Stokroos, M.; Nieuwenhuizen, A. C. T.

    2013-09-01

    In this paper we report on the results of the investigation on the feasibility of a cryogenic motor for a Filter Wheel Mechanism (FWM) for the instrument SpicA FAR-infrared Instrument (SAFARI). The maximum allowed dissipation of 1 mW is a key requirement, as a result of the limited cooling resources of the satellite. Therefore a quasi 3D electromagnetic (EM) model of a Brushless DC (BLDC) motor has been developed. To withstand the severe launch loads a mechanical concept has been designed to limit the friction torque in the bearings. The model was verified by room temperature and cryogenic measurements on an existing motor from the test setup. The model shows that the proposed BLDC motor design fulfills the requirements.

  1. Structural atlas of dynein motors at atomic resolution.

    PubMed

    Toda, Akiyuki; Tanaka, Hideaki; Kurisu, Genji

    2018-04-01

    Dynein motors are biologically important bio-nanomachines, and many atomic resolution structures of cytoplasmic dynein components from different organisms have been analyzed by X-ray crystallography, cryo-EM, and NMR spectroscopy. This review provides a historical perspective of structural studies of cytoplasmic and axonemal dynein including accessory proteins. We describe representative structural studies of every component of dynein and summarize them as a structural atlas that classifies the cytoplasmic and axonemal dyneins. Based on our review of all dynein structures in the Protein Data Bank, we raise two important points for understanding the two types of dynein motor and discuss the potential prospects of future structural studies.

  2. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  3. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  4. Injury risks of EMS responders: evidence from the National Fire Fighter Near-Miss Reporting System

    PubMed Central

    Taylor, Jennifer A; Davis, Andrea L; Barnes, Brittany; Lacovara, Alicia V; Patel, Reema

    2015-01-01

    Objectives We analysed near-miss and injury events reported to the National Fire Fighter Near-Miss Reporting System (NFFNMRS) to investigate the workplace hazards and safety concerns of Emergency Medical Services (EMS) responders in the USA. Methods We reviewed 769 ‘non-fire emergency event’ reports from the NFFNMRS using a mixed methods approach. We identified 185 emergency medical calls and analysed their narrative text fields. We assigned Mechanism of Near-Miss/Injury and Nature of Injury codes and then tabulated frequencies (quantitative). We coded major themes regarding work hazards and safety concerns reported by the EMS responders (qualitative). Results Of the 185 emergency medical calls, the most commonly identified Mechanisms of Near-Miss/Injury to EMS responders was Assaults, followed by Struck-by Motor Vehicle, and Motor Vehicle Collision. The most commonly identified weapon used in an assault was a firearm. We identified 5 major domains of workplace hazards and safety concerns: Assaults by Patients, Risks from Motor Vehicles, Personal Protective Equipment, Relationships between Emergency Responders, and Policies, Procedures and Practices. Conclusions Narrative text from the NFFNMRS is a rich source of data that can be analysed quantitatively and qualitatively to provide insight into near-misses and injuries sustained by EMS responders. Near-miss reporting systems are critical components for occupational hazard surveillance. PMID:26068510

  5. Reynolds stress scaling in pipe flow turbulence—first results from CICLoPE

    PubMed Central

    Fiorini, T.; Bellani, G.; Talamelli, A.

    2017-01-01

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×104 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend–Perry constant of A2≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend–Perry constant, i.e. A2,w≈A2/2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167586

  6. Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE.

    PubMed

    Örlü, R; Fiorini, T; Segalini, A; Bellani, G; Talamelli, A; Alfredsson, P H

    2017-03-13

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×10 4 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A 2 ≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A 2,w ≈A 2 /2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  7. EMS Provider Assessment of Vehicle Damage Compared to a Professional Crash Reconstructionist

    PubMed Central

    Lerner, E. Brooke; Cushman, Jeremy T.; Blatt, Alan; Lawrence, Richard; Shah, Manish N.; Swor, Robert; Brasel, Karen; Jurkovich, Gregory J.

    2011-01-01

    Objective To determine the accuracy of EMS provider assessments of motor vehicle damage, when compared to measurements made by a professional crash reconstructionist. Methods EMS providers caring for adult patients injured during a motor vehicle crash and transported to the regional trauma center in a midsized community were interviewed upon ED arrival. The interview collected provider estimates of crash mechanism of injury. For crashes that met a preset severity threshold, the vehicle’s owner was asked to consent to having a crash reconstructionist assess their vehicle. The assessment included measuring intrusion and external auto deformity. Vehicle damage was used to calculate change in velocity. Paired t-test and correlation were used to compare EMS estimates and investigator derived values. Results 91 vehicles were enrolled; of these 58 were inspected and 33 were excluded because the vehicle was not accessible. 6 vehicles had multiple patients. Therefore, a total of 68 EMS estimates were compared to the inspection findings. Patients were 46% male, 28% admitted to hospital, and 1% died. Mean EMS estimated deformity was 18” and mean measured was 14”. Mean EMS estimated intrusion was 5” and mean measured was 4”. EMS providers and the reconstructionist had 67% agreement for determination of external auto deformity (kappa 0.26), and 88% agreement for determination of intrusion (kappa 0.27) when the 1999 Field Triage Decision Scheme Criteria were applied. Mean EMS estimated speed prior to the crash was 48 mph±13 and mean reconstructionist estimated change in velocity was 18 mph±12 (correlation -0.45). EMS determined that 19 vehicles had rolled over while the investigator identified 18 (kappa 0.96). In 55 cases EMS and the investigator agreed on seatbelt use, for the remaining 13 cases there was disagreement (5) or the investigator was unable to make a determination (8) (kappa 0.40). Conclusions This study found that EMS providers are good at estimating

  8. Validation of a motor activity system by a robotically controlled vehicle and using standard reference compounds.

    PubMed

    Patterson, John P; Markgraf, Carrie G; Cirino, Maria; Bass, Alan S

    2005-01-01

    A series of experiments were undertaken to evaluate the accuracy, precision, specificity, and sensitivity of an automated, infrared photo beam-based open field motor activity system, the MotorMonitor v. 4.01, Hamilton-Kinder, LLC, for use in a good laboratory practices (GLP) Safety Pharmacology laboratory. This evaluation consisted of two phases: (1) system validation, employing known inputs using the EM-100 Controller Photo Beam Validation System, a robotically controlled vehicle representing a rodent and (2) biologic validation, employing groups of rats treated with the standard pharmacologic agents diazepam or D-amphetamine. The MotorMonitor's parameters that described the open-field activity of a subject were: basic movements, total distance, fine movements, x/y horizontal ambulations, rearing, and total rest time. These measurements were evaluated over a number of zones within each enclosure. System validation with the EM-100 Controller Photo Beam Validation System showed that all the parameters accurately and precisely measured what they were intended to measure, with the exception of fine movements and x/y ambulations. Biologic validation using the central nervous system depressant diazepam at 1, 2, or 5 mg/kg, i.p. produced the expected dose-dependent reduction in rat motor activity. In contrast, the central nervous system stimulant D-amphetamine produced the expected increases in rat motor activity at 0.1 and 1 mg/kg, i.p, demonstrating the specificity and sensitivity of the system. Taken together, these studies of the accuracy, precision, specificity, and sensitivity show the importance of both system and biologic validation in the evaluation of an automated open field motor activity system for use in a GLP compliant laboratory.

  9. Variation in motor output and motor performance in a centrally generated motor pattern

    PubMed Central

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  10. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  11. EMS Provider assessment of vehicle damage compared with assessment by a professional crash reconstructionist.

    PubMed

    Lerner, E Brooke; Cushman, Jeremy T; Blatt, Alan; Lawrence, Richard D; Shah, Manish N; Swor, Robert A; Brasel, Karen; Jurkovich, Gregory J

    2011-01-01

    To determine the accuracy of emergency medical services (EMS) provider assessments of motor vehicle damage when compared with measurements made by a professional crash reconstructionist. EMS providers caring for adult patients injured during a motor vehicle crash and transported to the regional trauma center in a midsized community were interviewed upon emergency department arrival. The interview collected provider estimates of crash mechanism of injury. For crashes that met a preset severity threshold, the vehicle's owner was asked to consent to having a crash reconstructionist assess the vehicle. The assessment included measuring intrusion and external automobile deformity. Vehicle damage was used to calculate change in velocity. Paired t-test, correlation, and kappa were used to compare EMS estimates and investigator-derived values. Ninety-one vehicles were enrolled; of these, 58 were inspected and 33 were excluded because the vehicle was not accessible. Six vehicles had multiple patients. Therefore, a total of 68 EMS estimates were compared with the inspection findings. Patients were 46% male, 28% were admitted to hospital, and 1% died. The mean EMS-estimated deformity was 18 inches and the mean measured deformity was 14 inches. The mean EMS-estimated intrusion was 5 inches and the mean measured intrusion was 4 inches. The EMS providers and the reconstructionist had 68% agreement for determination of external automobile deformity (kappa 0.26) and 88% agreement for determination of intrusion (kappa 0.27) when the 1999 American College of Surgeons Field Triage Decision Scheme criteria were applied. The mean (± standard deviation) EMS-estimated speed prior to the crash was 48 ± 13 mph and the mean reconstructionist-estimated change in velocity was 18 ± 12 mph (correlation -0.45). The EMS providers determined that 19 vehicles had rolled over, whereas the investigator identified 18 (kappa 0.96). In 55 cases, EMS and the investigator agreed on seat belt use; for

  12. Effect of Pain Neuroscience Education Combined With Cognition-Targeted Motor Control Training on Chronic Spinal Pain: A Randomized Clinical Trial.

    PubMed

    Malfliet, Anneleen; Kregel, Jeroen; Coppieters, Iris; De Pauw, Robby; Meeus, Mira; Roussel, Nathalie; Cagnie, Barbara; Danneels, Lieven; Nijs, Jo

    2018-04-16

    Effective treatments for chronic spinal pain are essential to reduce the related high personal and socioeconomic costs. To compare pain neuroscience education combined with cognition-targeted motor control training with current best-evidence physiotherapy for reducing pain and improving functionality, gray matter morphologic features, and pain cognitions in individuals with chronic spinal pain. Multicenter randomized clinical trial conducted from January 1, 2014, to January 30, 2017, among 120 patients with chronic nonspecific spinal pain in 2 outpatient hospitals with follow-up at 3, 6, and 12 months. Participants were randomized into an experimental group (combined pain neuroscience education and cognition-targeted motor control training) and a control group (combining education on back and neck pain and general exercise therapy). Primary outcomes were pain (pressure pain thresholds, numeric rating scale, and central sensitization inventory) and function (pain disability index and mental health and physical health). There were 22 men and 38 women in the experimental group (mean [SD] age, 39.9 [12.0] years) and 25 men and 35 women in the control group (mean [SD] age, 40.5 [12.9] years). Participants in the experimental group experienced reduced pain (small to medium effect sizes): higher pressure pain thresholds at primary test site at 3 months (estimated marginal [EM] mean, 0.971; 95% CI, -0.028 to 1.970) and reduced central sensitization inventory scores at 6 months (EM mean, -5.684; 95% CI, -10.589 to -0.780) and 12 months (EM mean, -6.053; 95% CI, -10.781 to -1.324). They also experienced improved function (small to medium effect sizes): significant and clinically relevant reduction of disability at 3 months (EM mean, -5.113; 95% CI, -9.994 to -0.232), 6 months (EM mean, -6.351; 95% CI, -11.153 to -1.550), and 12 months (EM mean, -5.779; 95% CI, -10.340 to -1.217); better mental health at 6 months (EM mean, 36.496; 95% CI, 7.998-64.995); and better physical

  13. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  14. Life-cycle optimization model for distributed generation in buildings

    NASA Astrophysics Data System (ADS)

    Safaei, Amir

    principal objetivo desta tese de doutoramento foi desenvolver um modelo para otimizar o desenho e operacao de sistemas de GD para o setor da construcao de edificios comerciais em Portugal, considerando os respetivos Impactes de Ciclo de Vida (IAVC) e Custos de Ciclo de Vida (CCV), de modo a satisfazer as necessidades energeticas do edificio. Tres tipos de tecnologias de cogeracao (Micro-Turbinas, Motores de combustao interna, e Celulas combustiveis de Oxido solido), e dois tipos de tecnologias de energia solar, solar termica e fotovoltaica, constituem os sistemas de GD que sao acoplados aos sistemas convencionais. Foi desenvolvido um modelo de CV, tendo em conta todos os impactes relacionados com a construcao e operacao dos sistemas de energia, bem como os processos a montante relacionados com a producao do GN. Em particular, o mix de GN consumido em Portugal em 2011 foi identificado (60% da Nigeria, 40% da Argelia) e os impactes relativos a cada uma das vias de abastecimento foram avaliados separadamente para quatro categorias de impacte ambiental: Consumo de Energia Primaria (CEP), Gases com Efeito de Estufa (GEE), acidificacao, e eutrofizacao. Devido a importancia das emissoes de GEE na formulacao de politicas, foi tambem realizada uma analise de incerteza as emissoes de GEE do GN fornecido a Portugal. Foi desenvolvido um modelo matematico, em linguagem de Programacao General Algebraic Modeling System (GAMS), que utiliza os resultados da ACV dos sistemas de energia e as suas implicacoes economicas para minimizar o CCV e IACV ao longo de um horizonte de planeamento definido pelo decisor. Foram derivadas fronteiras otimas de Pareto, representando as relacoes entre o tipo de IACV (CEP, GEE, acidificacao, eutrofizacao) e CCV decorrentes da satisfacao das necessidades energeticas do edificio. Para aumentar a robustez do modelo, dada a incerteza dos precos dos combustiveis (GN e eletricidade), foi desenvolvido um modelo de custos robusto para os sistemas de GD, que e menos

  15. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience.

    PubMed

    Monfils, Marie-H; Plautz, Erik J; Kleim, Jeffrey A

    2005-10-01

    Motor skill acquisition occurs through modification and organization of muscle synergies into effective movement sequences. The learning process is reflected neurophysiologically as a reorganization of movement representations within the primary motor cortex, suggesting that the motor map is a motor engram. However, the specific neural mechanisms underlying map plasticity are unknown. Here the authors review evidence that 1) motor map topography reflects the capacity for skilled movement, 2) motor skill learning induces reorganization of motor maps in a manner that reflects the kinematics of acquired skilled movement, 3) map plasticity is supported by a reorganization of cortical microcircuitry involving changes in synaptic efficacy, and 4) motor map integrity and topography are influenced by various neurochemical signals that coordinate changes in cortical circuitry to encode motor experience. Finally, the role of motor map plasticity in recovery of motor function after brain damage is discussed.

  16. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    PubMed Central

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery. PMID:28154614

  17. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    PubMed

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery.

  18. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  19. Neurons other than motor neurons in motor neuron disease.

    PubMed

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  20. Motor "dexterity"?: Evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children.

    PubMed

    Barber, Anita D; Srinivasan, Priti; Joel, Suresh E; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H

    2012-01-01

    Motor control relies on well-established motor circuits, which are critical for typical child development. Although many imaging studies have examined task activation during motor performance, none have examined the relationship between functional intrinsic connectivity and motor ability. The current study investigated the relationship between resting state functional connectivity within the motor network and motor performance assessment outside of the scanner in 40 typically developing right-handed children. Better motor performance correlated with greater left-lateralized (mean left hemisphere-mean right hemisphere) motor circuit connectivity. Speed, rhythmicity, and control of movements were associated with connectivity within different individual region pairs: faster speed was associated with more left-lateralized putamen-thalamus connectivity, less overflow with more left-lateralized supplementary motor-primary motor connectivity, and less dysrhythmia with more left-lateralized supplementary motor-anterior cerebellar connectivity. These findings suggest that for right-handed children, superior motor development depends on the establishment of left-hemisphere dominance in intrinsic motor network connectivity.

  1. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  2. Predicting explorative motor learning using decision-making and motor noise.

    PubMed

    Chen, Xiuli; Mohr, Kieran; Galea, Joseph M

    2017-04-01

    A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant's level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning.

  3. Predicting explorative motor learning using decision-making and motor noise

    PubMed Central

    Galea, Joseph M.

    2017-01-01

    A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant’s level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning. PMID:28437451

  4. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b) The...

  5. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    PubMed Central

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  6. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    PubMed

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  7. Motor/generator

    DOEpatents

    Hickam, Christopher Dale [Glasford, IL

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  8. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.85 What motor vehicles require motor vehicle identification? All Government motor vehicles must...

  9. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.85 What motor vehicles require motor vehicle identification? All Government motor vehicles must...

  10. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.85 What motor vehicles require motor vehicle identification? All Government motor vehicles must...

  11. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.85 What motor vehicles require motor vehicle identification? All Government motor vehicles must...

  12. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.85 What motor vehicles require motor vehicle identification? All Government motor vehicles must...

  13. Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train

    NASA Astrophysics Data System (ADS)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.

  14. Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel

    Science.gov Websites

    to the tire specifications provided by the manufacturer. Recommended Motor <em>Oil> Using the manufacturer's recommended grade of motor <em>oil> in an engine can improve fuel economy by 1%-2%. Check your owner's manual for the manufacturer's recommended grade of motor <em>oil>. Also, you may select motor <em>oil> that

  15. System and method for motor speed estimation of an electric motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN

    2012-06-19

    A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

  16. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  17. Motor experience with a sport-specific implement affects motor imagery

    PubMed Central

    Zhu, Hua; Shen, Cheng; Zhang, Jian

    2018-01-01

    The present study tested whether sport-specific implements facilitate motor imagery, whereas nonspecific implements disrupt motor imagery. We asked a group of basketball players (experts) and a group of healthy controls (novices) to physically perform (motor execution) and mentally simulate (motor imagery) basketball throws. Subjects produced motor imagery when they were holding a basketball, a volleyball, or nothing. Motor imagery performance was measured by temporal congruence, which is the correspondence between imagery and execution times estimated as (imagery time minus execution time) divided by (imagery time plus execution time), as well as the vividness of motor imagery. Results showed that experts produced greater temporal congruence and vividness of kinesthetic imagery while holding a basketball compared to when they were holding nothing, suggesting a facilitation effect from sport-specific implements. In contrast, experts produced lower temporal congruence and vividness of kinesthetic imagery while holding a volleyball compared to when they were holding nothing, suggesting the interference effect of nonspecific implements. Furthermore, we found a negative correlation between temporal congruence and the vividness of kinesthetic imagery in experts while holding a basketball. On the contrary, the implement manipulation did not modulate the temporal congruence of novices. Our findings suggest that motor representation in experts is built on motor experience associated with specific-implement use and thus was subjected to modulation of the implement held. We conclude that sport-specific implements facilitate motor imagery, whereas nonspecific implements could disrupt motor representation in experts. PMID:29719738

  18. Oral-Motor and Motor-Speech Characteristics of Children with Autism.

    ERIC Educational Resources Information Center

    Adams, Lynn

    1998-01-01

    This study compared the oral-motor and motor-speech characteristics of four young children with autism and four nonautistic children. Three tasks requiring oral motor movements, simple syllable productions, and complex syllable productions were utilized. Significant differences were found in scores on the oral-motor movements and the…

  19. A Descriptive Analysis of Care Provided by Law Enforcement Prior to EMS Arrival in the United States.

    PubMed

    Klassen, Aaron B; Core, S Brent; Lohse, Christine M; Sztajnkrycer, Matthew D

    2018-04-01

    Study Objectives Law enforcement is increasingly viewed as a key component in the out-of-hospital chain of survival, with expanded roles in cardiac arrest, narcotic overdose, and traumatic bleeding. Little is known about the nature of care provided by law enforcement prior to the arrival of Emergency Medical Services (EMS) assets. The purpose of the current study was to perform a descriptive analysis of events reported to a national EMS database. This study was a descriptive analysis of the 2014 National Emergency Medical Services Information System (NEMSIS) public release research data set, containing EMS emergency response data from 41 states. Code E09_02 1200 specifically identifies care provided by law enforcement prior to EMS arrival. A total of 25,835,729 unique events were reported. Of events in which pre-arrival care was documented, 2.0% received prior aid by law enforcement. Patients receiving law enforcement care prior to EMS arrival were more likely to be younger (52.8 [SD=23.3] years versus 58.7 [SD=23.3] years), male (54.8% versus 46.7%), and white (80.3% versus 77.5%). Basic Life Support (BLS) EMS response was twice as likely in patients receiving prior aid by law enforcement. Multiple-casualty incidents were five times more likely with prior aid by law enforcement. Compared with prior aid by other services, law enforcement pre-arrival care was more likely with motor vehicle accidents, firearm assaults, knife assaults, blunt assaults, and drug overdoses, and less likely at falls and childbirths. Cardiac arrest was significantly more common in patients receiving prior aid by law enforcement (16.5% versus 2.6%). Tourniquet application and naloxone administration were more common in the law enforcement prior aid group. Where noted, law enforcement pre-arrival care occurs in 2.0% of EMS patient encounters. The majority of cases involve cardiac arrest, motor vehicle accidents, and assaults. Better understanding of the nature of law enforcement care is

  20. Method for assessing motor insulation on operating motors

    DOEpatents

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  1. Alternative Fuels Data Center

    Science.gov Websites

    Ethanol and Methanol Tax Ethyl alcohol and methyl alcohol <em>motor> fuels are taxed at a rate of $0.14 per gallon when used as a <em>motor> fuel. Ethyl alcohol is defined as a <em>motor> fuel that is typically derived from agricultural products that have been denatured. Methyl alcohol is a <em>motor> fuel that is most

  2. Motor cortex is required for learning but not executing a motor skill

    PubMed Central

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  3. Coupling with concentric contact around motor shaft for line start synchronous motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melfi, Michael J.; Burdeshaw, Galen E.

    A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, andmore » driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.« less

  4. Motor cortex inhibition

    PubMed Central

    Isaacs, K.M.; Augusta, M.; MacNeil, L.K.; Mostofsky, S.H.

    2011-01-01

    Objective: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset behavioral diagnosis in which children often fail to meet age norms in development of motor control, particularly timed repetitive and sequential movements, motor overflow, and balance. The neural substrate of this motor delay may include mechanisms of synaptic inhibition in or adjacent to the motor cortex. The primary objective of this study was to determine whether transcranial magnetic stimulation (TMS)–evoked measures, particularly short interval cortical inhibition (SICI), in motor cortex correlate with the presence and severity of ADHD in childhood as well as with commonly observed delays in motor control. Methods: In this case-control study, behavioral ratings, motor skills, and motor cortex physiology were evaluated in 49 children with ADHD (mean age 10.6 years, 30 boys) and 49 typically developing children (mean age 10.5 years, 30 boys), all right-handed, aged 8–12 years. Motor skills were evaluated with the Physical and Neurological Examination for Subtle Signs (PANESS) and the Motor Assessment Battery for Children version 2. SICI and other physiologic measures were obtained using TMS in the left motor cortex. Results: In children with ADHD, mean SICI was reduced by 40% (p < 0.0001) and less SICI correlated with higher ADHD severity (r = −0.52; p = 0.002). Mean PANESS motor development scores were 59% worse in children with ADHD (p < 0.0001). Worse PANESS scores correlated modestly with less SICI (r = −.30; p = 0.01). Conclusion: Reduced TMS-evoked SICI correlates with ADHD diagnosis and symptom severity and also reflects motor skill development in children. PMID:21321335

  5. Motor Controller System For Large Dynamic Range of Motor Operation

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor); Paulson, Mitchell Scott (Inventor)

    2006-01-01

    A motor controller system uses a rotary sensor with a plurality of signal conditioning units, coupled to the rotary sensor. Each of these units, which is associated with a particular range of motor output shaft rotation rates, generate a feedback signal indicative of the position of the motor s output shaft. A controller (i) converts a selected motor output shaft rotation rate to a corresponding incremental amount of rotational movement for a selected fixed time period, (ii) selects, at periodic completions of the selected fixed time period, the feedback signal from one of the signal conditioning units for which the particular range of motor output shaft rotation rates associated therewith encompasses the selected motor output shaft rotation rate, and (iii) generates a motor drive signal based on a difference between the incremental amount of rotational movement and the feedback signal from the selected one of the signal conditioning Units.

  6. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  7. Cerebral palsy in Victoria: motor types, topography and gross motor function.

    PubMed

    Howard, Jason; Soo, Brendan; Graham, H Kerr; Boyd, Roslyn N; Reid, Sue; Lanigan, Anna; Wolfe, Rory; Reddihough, Dinah S

    2005-01-01

    To study the relationships between motor type, topographical distribution and gross motor function in a large, population-based cohort of children with cerebral palsy (CP), from the State of Victoria, and compare this cohort to similar cohorts from other countries. An inception cohort was generated from the Victorian Cerebral Palsy Register (VCPR) for the birth years 1990-1992. Demographic information, motor types and topographical distribution were obtained from the register and supplemented by grading gross motor function according to the Gross Motor Function Classification System (GMFCS). Complete data were obtained on 323 (86%) of 374 children in the cohort. Gross motor function varied from GMFCS level I (35%) to GMFCS level V (18%) and was similar in distribution to a contemporaneous Swedish cohort. There was a fairly even distribution across the topographical distributions of hemiplegia (35%), diplegia (28%) and quadriplegia (37%) with a large majority of young people having the spastic motor type (86%). The VCPR is ideal for population-based studies of gross motor function in children with CP. Gross motor function is similar in populations of children with CP in developed countries but the comparison of motor types and topographical distribution is difficult because of lack of consensus with classification systems. Use of the GMFCS provides a valid and reproducible method for clinicians to describe gross motor function in children with CP using a universal language.

  8. DC Motor control using motor-generator set with controlled generator field

    DOEpatents

    Belsterling, Charles A.; Stone, John

    1982-01-01

    A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.

  9. Gross Motor Development.

    ERIC Educational Resources Information Center

    Florida Learning Resources System/CROWN, Jacksonville.

    The document is designed to help teachers identify and remediate gross motor development deficits in elementary school students. A definition of gross motor development and a checklist of gross motor skills are provided. Sections cover the following topics: successful teaching techniques; activities for perceptual-motor training; activities for…

  10. [Sensory oral motor and global motor development of preterm infants].

    PubMed

    de Castro, Adriana Guerra; Lima, Marilia de Carvalho; de Aquino, Rebeca Raposo; Eickmann, Sophie Helena

    2007-01-01

    development assessment of preterm infants. to evaluate the association between the gestational ages (GA) of premature infants with the global motor development as well as with early signs of sensory oral motor development delay, and to verify a possible association between them. an exploratory study that assessed the development of 55 infants with corrected chronological ages between four to five months, born preterm at the Instituto Materno Infantil Professor Fernando Figueira (IMIP) and who were followed at the Kangaroo Mother Program Clinic between March and August of 2004. The assessment of the sensory oral motor development was performed through pre-selected indicators and of the global motor development through the Alberta Infant Motor Scale (AIMS). infants with lower GA (29 to 34 weeks) presented a higher median of risk signs in the sensory oral motor development assessment when compared to those with higher GA (35 to 36 weeks). Regarding the global motor development, infants born with lower GA presented a higher number of scores in the AIMS below percentile 10 (26%) when compared to those with a higher GA (4%) (p=0.009). The median index of the risk signs for the sensory oral motor development were significantly higher among infants with total AIMS scores below percentile 25 when compared to those with scores equal to or above percentile 25. the gestational age of infants at birth influenced the sensory oral motor and global motor development - infants with lower gestational ages presented worse performances. These findings suggest a possible association between both aspects of infant development.

  11. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    EPA Science Inventory

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  12. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2003-05-13

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  13. Motorized support jack

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe

    2001-01-01

    A compact, vacuum compatible motorized jack for supporting heavy loads and adjusting their positions is provided. The motorized jack includes: (a) a housing having a base; (b) a first roller device that provides a first slidable surface and that is secured to the base; (c) a second roller device that provides a second slidable surface and that has an upper surface; (d) a wedge that is slidably positioned between the first roller device and the second roller device so that the wedge is in contact with the first slidable surface and the second slidable surface; (e) a motor; and (d) a drive mechanism that connects the motor and the wedge to cause the motor to controllably move the wedge forwards or backwards. Individual motorized jacks can support and lift of an object at an angle. Two or more motorized jacks can provide tip, tilt and vertical position adjustment capabilities.

  14. DIVISION OF MOTOR VEHICLES

    Science.gov Websites

    Appointment at Palmer Appointment at Fairbanks Schedule My Road <em>Test> Road <em>Test> Wait List DRIVERS Get My Card Track My ID or License Practice Knowledge <em>Test> Register to Vote VEHICLES Renew My Registration Road <em>Test> Road <em>Test> Wait List Locations & Hours Office Hours Check Wait Times Dealer and Fleet

  15. Motor cortex is required for learning but not for executing a motor skill.

    PubMed

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P

    2015-05-06

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Modulation of motor performance and motor learning by transcranial direct current stimulation.

    PubMed

    Reis, Janine; Fritsch, Brita

    2011-12-01

    Transcranial direct current stimulation (tDCS) has shown preliminary success in improving motor performance and motor learning in healthy individuals, and restitution of motor deficits in stroke patients. This brief review highlights some recent work. Within the past years, behavioural studies have confirmed and specified the timing and polarity specific effects of tDCS on motor skill learning and motor adaptation. There is strong evidence that timely co-application of (hand/arm) training and anodal tDCS to the contralateral M1 can improve motor learning. Improvements in motor function as measured by clinical scores have been described for combined tDCS and training in stroke patients. For this purpose, electrode montages have been modified with respect to interhemispheric imbalance after brain injury. Cathodal tDCS applied to the unlesioned M1 or bihemispheric M1 stimulation appears to be well tolerated and useful to induce improvements in motor function. Mechanistic studies in humans and animals are discussed with regard to physiological motor learning. tDCS is well tolerated, easy to use and capable of inducing lasting improvements in motor function. This method holds promise for the rehabilitation of motor disabilities, although acute studies in patients with brain injury are so far lacking.

  17. Full Hybrid: Cruising

    Science.gov Websites

    1 At speeds above mid-range, both <em>the> engine and electric motor are used to propel <em>the> vehicle. <em>The> gasoline engine provides power to <em>the> drive-train directly and to <em>the> electric motor via <em>the> generator. Go , generator, power split device, and electric motor visible. <em>The> car is moving. There are blue arrows flowing

  18. Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.

    PubMed

    Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M

    2015-01-01

    Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years.

  19. Motor deficits correlate with resting state motor network connectivity in patients with brain tumours

    PubMed Central

    Mikell, Charles B.; Youngerman, Brett E.; Liston, Conor; Sisti, Michael B.; Bruce, Jeffrey N.; Small, Scott A.; McKhann, Guy M.

    2012-01-01

    While a tumour in or abutting primary motor cortex leads to motor weakness, how tumours elsewhere in the frontal or parietal lobes affect functional connectivity in a weak patient is less clear. We hypothesized that diminished functional connectivity in a distributed network of motor centres would correlate with motor weakness in subjects with brain masses. Furthermore, we hypothesized that interhemispheric connections would be most vulnerable to subtle disruptions in functional connectivity. We used task-free functional magnetic resonance imaging connectivity to probe motor networks in control subjects and patients with brain tumours (n = 22). Using a control dataset, we developed a method for automated detection of key nodes in the motor network, including the primary motor cortex, supplementary motor area, premotor area and superior parietal lobule, based on the anatomic location of the hand-motor knob in the primary motor cortex. We then calculated functional connectivity between motor network nodes in control subjects, as well as patients with and without brain masses. We used this information to construct weighted, undirected graphs, which were then compared to variables of interest, including performance on a motor task, the grooved pegboard. Strong connectivity was observed within the identified motor networks between all nodes bilaterally, and especially between the primary motor cortex and supplementary motor area. Reduced connectivity was observed in subjects with motor weakness versus subjects with normal strength (P < 0.001). This difference was driven mostly by decreases in interhemispheric connectivity between the primary motor cortices (P < 0.05) and between the left primary motor cortex and the right premotor area (P < 0.05), as well as other premotor area connections. In the subjects without motor weakness, however, performance on the grooved pegboard did not relate to interhemispheric connectivity, but rather was inversely

  20. Review of Motor Development, Perceptual-Motor and Physical Fitness Testing.

    ERIC Educational Resources Information Center

    Bundschuh, Ernest; And Others

    Tests of motor development, perceptual-motor coordination, and physical fitness, for the retarded and non-retarded, are reviewed regarding their usage and administration. The tests reviewed are the: Denver Developmental Screening Test, Bayley Scales of Infant Development, Dayton Sensory Motor Awareness Survey, Minnetonka Physical Performance…

  1. Permanent magnet motors

    NASA Astrophysics Data System (ADS)

    Richter, E.

    1984-09-01

    The work deals with the design and analysis study for the conceptual design of an economical high efficiency ac motor based on permanent magnets. The design and trade off studies have covered the material considerations, the design tradeoff options as well as transient and steady state performance considerations, and other options. The baseline comparison is the high efficiency induction motor. The permanent magnet (PM) motor must fit into the same frame size and surpass the induction motor on a life cost basis that includes 2.5 years of operation at a 50% duty cycle. It is shown that a motor based upon ferrite magnets does meet the objectives of the program in ratings of up to 25 hp. A 7.5 motor design is carried through the conceptual design stage.

  2. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    PubMed

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-10-01

    The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.

  3. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  4. Brain Activation in Primary Motor and Somatosensory Cortices during Motor Imagery Correlates with Motor Imagery Ability in Stroke Patients

    PubMed Central

    Confalonieri, Linda; Pagnoni, Giuseppe; Barsalou, Lawrence W.; Rajendra, Justin; Eickhoff, Simon B.; Butler, Andrew J.

    2012-01-01

    Aims. While studies on healthy subjects have shown a partial overlap between the motor execution and motor imagery neural circuits, few have investigated brain activity during motor imagery in stroke patients with hemiparesis. This work is aimed at examining similarities between motor imagery and execution in a group of stroke patients. Materials and Methods. Eleven patients were asked to perform a visuomotor tracking task by either physically or mentally tracking a sine wave force target using their thumb and index finger during fMRI scanning. MIQ-RS questionnaire has been administered. Results and Conclusion. Whole-brain analyses confirmed shared neural substrates between motor imagery and motor execution in bilateral premotor cortex, SMA, and in the contralesional inferior parietal lobule. Additional region of interest-based analyses revealed a negative correlation between kinaesthetic imagery ability and percentage BOLD change in areas 4p and 3a; higher imagery ability was associated with negative and lower percentage BOLD change in primary sensorimotor areas during motor imagery. PMID:23378930

  5. Heritability of motor control and motor learning

    PubMed Central

    Missitzi, Julia; Gentner, Reinhard; Misitzi, Angelica; Geladas, Nickos; Politis, Panagiotis; Klissouras, Vassilis; Classen, Joseph

    2013-01-01

    Abstract The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the tracing of the peak force in a force window defined between 30% and 40% of the subject's maximum force, as determined beforehand. The initial level of proficiency was defined as the number of attempts reaching the force window criterion within the first 100 trials. The difference between the number of successful trials within the last and the first 100 trials was taken as a measure of motor learning. For motor control, defined by the initial level of proficiency, the intrapair differences in monozygotic (MZ) and dizygotic (DZ) twins were 6.8 ± 7.8 and 13.8 ± 8.4, and the intrapair correlations 0.77 and 0.39, respectively. Heritability was estimated at 0.68. Likewise for motor learning intrapair differences in the increment of the number of successful trials in MZ and DZ twins were 5.4 ± 5.2 and 12.8 ± 7, and the intrapair correlations 0.58 and 0.19. Heritability reached 0.70. The present findings suggest that heredity accounts for a major part of existing differences in motor control and motor learning, but uncertainty remains which gene polymorphisms may be responsible. PMID:24744865

  6. Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning

    PubMed Central

    Cheung, Vincent C. K.; DeBoer, Caroline; Hanson, Elizabeth; Tunesi, Marta; D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Cattaneo, Antonino; Goosens, Ki A.

    2013-01-01

    The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation. PMID:23637843

  7. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    PubMed Central

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-01-01

    Abstract Background The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls’ physical activity behavior. Methods A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh’s Self-Description Questionnaire. Children’s physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Results Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R2=0.21, F=48.9, P=0.001), and motor skill competence (R2=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R2=0.06, ᵝ=0.25, P=0.001) in physical activity. Conclusion Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls. PMID:26060623

  8. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  9. Motor Starters

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The power factor controller (PFC) was invented by a NASA engineer. It matches voltage with a motor's actual need by sensing shifts in the relationship between voltage and current flow. With the device, power can be trimmed as much as 65%. Intellinet adopted this technology and designed "soft start" and "load-responsive" control modes to start engines gradually and recycle voltage without reducing motor speed. Other features are lower motor heat and faster fault identification.

  10. Interacting adiabatic quantum motor

    NASA Astrophysics Data System (ADS)

    Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix

    2018-05-01

    We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.

  11. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation

    PubMed Central

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease. PMID:25938462

  12. Motor nerve transplantation.

    PubMed

    Gray, W P; Keohane, C; Kirwan, W O

    1997-10-01

    The motor nerve transplantation (MNT) technique is used to transfer an intact nerve into a denervated muscle by harvesting a neurovascular pedicle of muscle containing motor endplates from the motor endplate zone of a donor muscle and implanting it into a denervated muscle. Thirty-six adult New Zealand White rabbits underwent reinnervation of the left long peroneal (LP) muscle (fast twitch) with a motor nerve graft from the soleus muscle (slow twitch). The right LP muscle served as a control. Reinnervation was assessed using microstimulatory single-fiber electromyography (SFEMG), alterations in muscle fiber typing and grouping, and isometric response curves. Neurofilament antibody was used for axon staining. The neurofilament studies provided direct evidence of nerve growth from the motor nerve graft into the adjacent denervated muscle. Median motor endplate jitter was 13 microsec preoperatively, and 26 microsec at 2 months, 29.5 microsec at 4 months, and 14 microsec at 6 months postoperatively (p < 0.001). Isometric tetanic tension studies showed a progressive functional recovery in the reinnervated muscle over 6 months. There was no histological evidence of aberrant reinnervation from any source outside the nerve pedicle. Isometric twitch responses and adenosine triphosphatase studies confirmed the conversion of the reinnervated LP muscle to a slow-type muscle. Acetylcholinesterase studies confirmed the presence of functioning motor endplates beneath the insertion of the motor nerve graft. It is concluded that the MNT technique achieves motor reinnervation by growth of new nerve fibers across the pedicle graft into the recipient muscle.

  13. The Relationship between Fine-Motor Play and Fine-Motor Skill

    ERIC Educational Resources Information Center

    Marr, Deborah; Cermak, Sharon; Cohn, Ellen S.; Henderson, Anne

    2004-01-01

    This study examined the relationship between free-play choices and fine-motor skill in 4-year-old children attending Head Start. Children with poor fine-motor skill were matched for age and gender with children in the same classroom that exhibited good fine-motor skill. Each pair was observed during free-play sessions to examine the degree of…

  14. Motor proteins and molecular motors: how to operate machines at the nanoscale.

    PubMed

    Kolomeisky, Anatoly B

    2013-11-20

    Several classes of biological molecules that transform chemical energy into mechanical work are known as motor proteins or molecular motors. These nanometer-sized machines operate in noisy stochastic isothermal environments, strongly supporting fundamental cellular processes such as the transfer of genetic information, transport, organization and functioning. In the past two decades motor proteins have become a subject of intense research efforts, aimed at uncovering the fundamental principles and mechanisms of molecular motor dynamics. In this review, we critically discuss recent progress in experimental and theoretical studies on motor proteins. Our focus is on analyzing fundamental concepts and ideas that have been utilized to explain the non-equilibrium nature and mechanisms of molecular motors.

  15. Motor Experience Reprograms Development of a Genetically-Altered Bilateral Corticospinal Motor Circuit.

    PubMed

    Serradj, Najet; Martin, John H

    Evidence suggests that motor experience plays a role in shaping development of the corticospinal system and voluntary motor control, which is a key motor function of the system. Here we used a mouse model with conditional forebrain deletion of the gene for EphA4 (Emx1-Cre:EphA4tm2Kldr), which regulates development of the laterality of corticospinal tract (CST). We combined study of Emx1-Cre:EphA4tm2Kldr with unilateral forelimb constraint during development to expand our understanding of experience-dependent CST development from both basic and translational perspectives. This mouse develops dense ipsilateral CST projections, a bilateral motor cortex motor representation, and bilateral motor phenotypes. Together these phenotypes can be used as readouts of corticospinal system organization and function and the changes brought about by experience. The Emx1-Cre:EphA4tm2Kldr mouse shares features with the common developmental disorder cerebral palsy: bilateral voluntary motor impairments and bilateral CST miswiring. Emx1-Cre:EphA4tm2Kldr mice with typical motor experiences during development display the bilateral phenotype of "mirror" reaching, because of a strongly bilateral motor cortex motor representation and a bilateral CST. By contrast, Emx1-Cre:EphA4tm2Kldr mice that experienced unilateral forelimb constraint from P1 to P30 and tested at maturity had a more contralateral motor cortex motor representation in each hemisphere; more lateralized CST projections; and substantially more lateralized/independent reaching movements. Changes in CST organization and function in this model can be explained by reduced synaptic competition of the CST from the side without developmental forelimb motor experiences. Using this model we show that unilateral constraint largely abrogated the effects of the genetic mutation on CST projections and thus demonstrates how robust and persistent experience-dependent development can be for the establishment of corticospinal system

  16. Motor unit recruitment by size does not provide functional advantages for motor performance

    PubMed Central

    Dideriksen, Jakob L; Farina, Dario

    2013-01-01

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers. PMID:24144879

  17. Motor unit recruitment by size does not provide functional advantages for motor performance.

    PubMed

    Dideriksen, Jakob L; Farina, Dario

    2013-12-15

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.

  18. A Recommended New Approach on Motorization Ratio Calculations of Stepper Motors

    NASA Technical Reports Server (NTRS)

    Nalbandian, Ruben; Blais, Thierry; Horth, Richard

    2014-01-01

    Stepper motors are widely used on most spacecraft mechanisms requiring repeatable and reliable performance. The unique detent torque characteristics of these type of motors makes them behave differently when subjected to low duty cycle excitations where the applied driving pulses are only energized for a fraction of the pulse duration. This phenomenon is even more pronounced in discrete permanent magnet stepper motors used in the space industry. While the inherent high detent properties of discrete permanent magnets provide desirable unpowered holding performance characteristics, it results in unique behavior especially in low duty cycles. Notably, the running torque reduces quickly to the unpowered holding torque when the duty cycle is reduced. The space industry's accepted methodology of calculating the Motorization Ratio (or Torque Margin) is more applicable to systems where the power is continuously applied to the motor coils like brushless DC motors where the cogging torques are low enough not to affect the linear performance of the motors as a function of applied current. This paper summarizes the theoretical and experimental studies performed on a number of space qualified motors under different pulse rates and duty cycles. It is the intention of this paper to introduce a new approach to calculate the Motorization Ratios for discrete permanent magnet steppers under all full and partial duty cycle regimes. The recommended approach defines two distinct relationships to calculate the Motorization Ratio for 100 percent duty cycle and partial duty cycle, when the motor detent (unpowered holding torque) is the main contributor to holding position. These two computations reflect accurately the stepper motor physical behavior as a function of the command phase (ON versus OFF times of the pulses), pointing out how the torque contributors combine. Important points highlighted under this study are the torque margin computations, in particular for well characterized

  19. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    PubMed

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Alternative Fuels Data Center

    Science.gov Websites

    in Nevada unless it is capable of operating in compliance with all applicable <em>motor> vehicle and traffic laws, it has been granted an exemption by the Nevada Department of <em>Motor> Vehicles (DMV), and it system fails. Autonomous vehicles are <em>motor> vehicles equipped with technology that allows vehicle

  1. Hybrid: Overview

    Science.gov Websites

    electric motor provides additional power <em>when> needed, such as for accelerating and passing. This allows a at an intersection. Electric Motor: The electric motor assists the gasoline engine <em>when> additional braking into electricity and stores it in the battery. It also starts the gasoline engine instantly <em>when>

  2. Training voluntary motor suppression with real-time feedback of motor evoked potentials.

    PubMed

    Majid, D S Adnan; Lewis, Christina; Aron, Adam R

    2015-05-01

    Training people to suppress motor representations voluntarily could improve response control. We evaluated a novel training procedure of real-time feedback of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) over motor cortex. On each trial, a cue instructed participants to use a mental strategy to suppress a particular finger representation without overt movement. A single pulse of TMS was delivered over motor cortex, and an MEP-derived measure of hand motor excitability was delivered visually to the participant within 500 ms. In experiment 1, we showed that participants learned to reduce the excitability of a particular finger beneath baseline (selective motor suppression) within 30 min of practice. In experiment 2, we performed a double-blind study with 2 training groups (1 with veridical feedback and 1 with matched sham feedback) to show that selective motor suppression depends on the veridical feedback itself. Experiment 3 further demonstrated the importance of veridical feedback by showing that selective motor suppression did not arise from mere mental imagery, even when incentivized with reward. Thus participants can use real-time feedback of TMS-induced MEPs to discover an effective mental strategy for selective motor suppression. This high-temporal-resolution, trial-by-trial-feedback training method could be used to help people better control response tendencies and may serve as a potential therapy for motor disorders such as Tourette's and dystonia. Copyright © 2015 the American Physiological Society.

  3. In vitro assays of molecular motors--impact of motor-surface interactions.

    PubMed

    Mansson, Alf; Balaz, Martina; Albet-Torres, Nuria; Rosengren, K Johan

    2008-05-01

    In many types of biophysical studies of both single molecules and ensembles of molecular motors the motors are adsorbed to artificial surfaces. Some of the most important assay systems of this type (in vitro motility assays and related single molecule techniques) will be briefly described together with an account of breakthroughs in the understanding of actomyosin function that have resulted from their use. A poorly characterized, but potentially important, entity in these studies is the mechanism of motor adsorption to surfaces and the effects of motor surface interactions on experimental results. A better understanding of these phenomena is also important for the development of commercially viable nanotechnological applications powered by molecular motors. Here, we will consider several aspects of motor surface interactions with a particular focus on heavy meromyosin (HMM) from skeletal muscle. These aspects will be related to heavy meromyosin structure and relevant parts of the vast literature on protein-surface interactions for non-motor proteins. An overview of methods for studying motor-surface interactions will also be given. The information is used as a basis for further development of a model for HMM-surface interactions and is discussed in relation to experiments where nanopatterning has been employed for in vitro reconstruction of actomyosin order. The challenges and potentials of this approach in biophysical studies, compared to the use of self-assembly of biological components into supramolecular protein aggregates (e.g. myosin filaments) will be considered. Finally, this review will consider the implications for further developments of motor-powered lab-on-a-chip devices.

  4. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... practicable, conflicts between motorized and non-motorized rivercraft users and between both types of...-motorized rivercraft may be permitted subject to restrictions on size, type of craft, numbers, duration... Service where such activity may be permitted subject to restrictions on size, type of craft, numbers...

  5. Self-modulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback

    PubMed Central

    Berman, Brian D.; Horovitz, Silvina G.; Venkataraman, Gaurav; Hallett, Mark

    2011-01-01

    Advances in fMRI data acquisition and processing have made it possible to analyze brain activity as rapidly as the images are acquired allowing this information to be fed back to subjects in the scanner. The ability of subjects to learn to volitionally control localized brain activity within motor cortex using such real-time fMRI-based neurofeedback (NF) is actively being investigated as it may have clinical implications for motor rehabilitation after central nervous system injury and brain-computer interfaces. We investigated the ability of fifteen healthy volunteers to use NF to modulate brain activity within the primary motor cortex (M1) during a finger tapping and tapping imagery task. The M1 hand area ROI (ROIm) was functionally localized during finger tapping and a visual representation of BOLD signal changes within the ROIm fed back to the subject in the scanner. Surface EMG was used to assess motor output during tapping and ensure no motor activity was present during motor imagery task. Subjects quickly learned to modulate brain activity within their ROIm during the finger-tapping task, which could be dissociated from the magnitude of the tapping, but did not show a significant increase within the ROIm during the hand motor imagery task at the group level despite strongly activating a network consistent with the performance of motor imagery. The inability of subjects to modulate M1 proper with motor imagery may reflect an inherent difficulty in activating synapses in this area, with or without NF, since such activation may lead to M1 neuronal output and obligatory muscle activity. Future real-time fMRI-based NF investigations involving motor cortex may benefit from focusing attention on cortical regions other than M1 for feedback training or alternative feedback strategies such as measures of functional connectivity within the motor system. PMID:21803163

  6. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations Operating at... motor that is responsive to motor current or to both motor current and temperature may be used. (b) The...

  7. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...

  8. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...

  9. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...

  10. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...

  11. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pump, elevator, steering gear, or auxiliary that is vital to the vessel's propulsion system, except a... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor... operation is not hazardous. If automatic restart is hazardous, the motor controller must have low-voltage...

  12. Method for assessing in-service motor efficiency and in-service motor/load efficiency

    DOEpatents

    Kueck, John D.; Otaduy, Pedro J.

    1997-01-01

    A method and apparatus for assessing the efficiency of an in-service motor. The operating characteristics of the in-service motor are remotely measured. The operating characteristics are then applied to an equivalent circuit for electrical motors. Finally the equivalent circuit is evaluated to determine the performance characteristics of said in-service motor. Based upon the evaluation an individual is able to determine the rotor speed, power output, efficiency, and toque of the in-service motor. Additionally, an individual is able to confirm the calculations by comparing measured values with values obtained as a result of the motor equivalent circuit evaluation.

  13. Motor command inhibition and the representation of response mode during motor imagery.

    PubMed

    Scheil, Juliane; Liefooghe, Baptist

    2018-05-01

    Research on motor imagery proposes that overt actions during motor imagery can be avoided by proactively signaling subthreshold motor commands to the effectors and by invoking motor-command inhibition. A recent study by Rieger, Dahm, and Koch (2017) found evidence in support of motor command inhibition, which indicates that MI cannot be completed on the sole basis of subthreshold motor commands. However, during motor imagery, participants know in advance when a covert response is to be made and it is thus surprising such additional motor-command inhibition is needed. Accordingly, the present study tested whether the demand to perform an action covertly can be proactively integrated by investigating the formation of task-specific action rules during motor imagery. These task-specific action rules relate the decision rules of a task to the mode in which these rules need to be applied (e.g., if smaller than 5, press the left key covertly). To this end, an experiment was designed in which participants had to switch between two numerical judgement tasks and two response modes: covert responding and overt responding. First, we observed markers of motor command inhibition and replicated the findings of Rieger and colleagues. Second, we observed evidence suggesting that task-specific action rules are created for the overt response mode (e.g., if smaller than 5, press the left key). In contrast, for the covert response mode, no task-specific action rules are formed and decision rules do not include mode-specific information (e.g., if smaller than 5, left). Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.

    PubMed

    Wu, Howard G; Miyamoto, Yohsuke R; Gonzalez Castro, Luis Nicolas; Ölveczky, Bence P; Smith, Maurice A

    2014-02-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.

  15. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability

    PubMed Central

    Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A

    2015-01-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700

  16. Chronic Nicotine Mitigates Aberrant Inhibitory Motor Learning Induced by Motor Experience under Dopamine Deficiency

    PubMed Central

    Krok, Anne C.; Xu, Jian; Contractor, Anis; McGehee, Daniel S.; Zhuang, Xiaoxi

    2016-01-01

    Although dopamine receptor antagonism has long been associated with impairments in motor performance, more recent studies have shown that dopamine D2 receptor (D2R) antagonism, paired with a motor task, not only impairs motor performance concomitant with the pharmacodynamics of the drug, but also impairs future motor performance once antagonism has been relieved. We have termed this phenomenon “aberrant motor learning” and have suggested that it may contribute to motor symptoms in movement disorders such as Parkinson's disease (PD). Here, we show that chronic nicotine (cNIC), but not acute nicotine, treatment mitigates the acquisition of D2R-antagonist-induced aberrant motor learning in mice. Although cNIC mitigates D2R-mediated aberrant motor learning, cNIC has no effect on D1R-mediated motor learning. β2-containing nicotinic receptors in dopamine neurons likely mediate the protective effect of cNIC against aberrant motor learning, because selective deletion of β2 nicotinic subunits in dopamine neurons reduced D2R-mediated aberrant motor learning. Finally, both cNIC treatment and β2 subunit deletion blunted postsynaptic responses to D2R antagonism. These results suggest that a chronic decrease in function or a downregulation of β2-containing nicotinic receptors protects the striatal network against aberrant plasticity and aberrant motor learning induced by motor experience under dopamine deficiency. SIGNIFICANCE STATEMENT Increasingly, aberrant plasticity and aberrant learning are recognized as contributing to the development and progression of movement disorders. Here, we show that chronic nicotine (cNIC) treatment or specific deletion of β2 nicotinic receptor subunits in dopamine neurons mitigates aberrant motor learning induced by dopamine D2 receptor (D2R) blockade in mice. Moreover, both manipulations also reduced striatal dopamine release and blunt postsynaptic responses to D2R antagonists. These results suggest that chronic downregulation of

  17. Motor Experience Reprograms Development of a Genetically-Altered Bilateral Corticospinal Motor Circuit

    PubMed Central

    Serradj, Najet

    2016-01-01

    Evidence suggests that motor experience plays a role in shaping development of the corticospinal system and voluntary motor control, which is a key motor function of the system. Here we used a mouse model with conditional forebrain deletion of the gene for EphA4 (Emx1-Cre:EphA4tm2Kldr), which regulates development of the laterality of corticospinal tract (CST). We combined study of Emx1-Cre:EphA4tm2Kldr with unilateral forelimb constraint during development to expand our understanding of experience-dependent CST development from both basic and translational perspectives. This mouse develops dense ipsilateral CST projections, a bilateral motor cortex motor representation, and bilateral motor phenotypes. Together these phenotypes can be used as readouts of corticospinal system organization and function and the changes brought about by experience. The Emx1-Cre:EphA4tm2Kldr mouse shares features with the common developmental disorder cerebral palsy: bilateral voluntary motor impairments and bilateral CST miswiring. Emx1-Cre:EphA4tm2Kldr mice with typical motor experiences during development display the bilateral phenotype of “mirror” reaching, because of a strongly bilateral motor cortex motor representation and a bilateral CST. By contrast, Emx1-Cre:EphA4tm2Kldr mice that experienced unilateral forelimb constraint from P1 to P30 and tested at maturity had a more contralateral motor cortex motor representation in each hemisphere; more lateralized CST projections; and substantially more lateralized/independent reaching movements. Changes in CST organization and function in this model can be explained by reduced synaptic competition of the CST from the side without developmental forelimb motor experiences. Using this model we show that unilateral constraint largely abrogated the effects of the genetic mutation on CST projections and thus demonstrates how robust and persistent experience-dependent development can be for the establishment of corticospinal system

  18. Dynamometer Research Facilities | Wind | NREL

    Science.gov Websites

    drivetrains by replacing the rotor and blades of a turbine with a powerful <em>motor>. The National Renewable -horsepower variable-speed induction <em>motor>, with AC grid connections of 120, 240, and 480 volts (V) and a dynamometer features a 3,351-horsepower (hp), 415-amp AC induction <em>motor> with variable-frequency drive that

  19. Hybrid: Braking

    Science.gov Websites

    motor slows the vehicle down. Go to next… stage graphic: vertical blue rule Main stage: See through <em>car> with battery, engine, and electric motor visible. The <em>car> is decelerating. There are arrows flowing from the front wheels to the electric motor to the battery. Main stage: See through <em>car> with battery

  20. Full Hybrid: Braking

    Science.gov Websites

    wasted energy from braking into <em>electricity> and stores it in the battery. In regenerative braking, the electric motor is reversed so that, instead of using <em>electricity> to turn the wheels, the rotating wheels turn the motor and create <em>electricity>. Using energy from the wheels to turn the motor slows the vehicle

  1. Full Hybrid: Passing

    Science.gov Websites

    additional power is needed, the gasoline engine and electric motor <em>are> both used to propel the vehicle. Go to , power split device, and electric motor visible while passing another vehicle. There <em>are> purple arrows flowing from the generator to the electric motor to the power split device to the front wheels. There <em>are>

  2. What happens to the motor theory of perception when the motor system is damaged?

    PubMed

    Stasenko, Alena; Garcea, Frank E; Mahon, Bradford Z

    2013-09-01

    Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems.

  3. Permanent magnet DC motor control by using arduino and motor drive module BTS7960

    NASA Astrophysics Data System (ADS)

    Syukriyadin, S.; Syahrizal, S.; Mansur, G.; Ramadhan, H. P.

    2018-05-01

    This study proposes a control system for permanent magnet DC (PMDC) motor. PMDC drive control system has two critical parameters: control and monitoring. Control system includes rotation speed control and direction of rotation of motor using motor drive module BTS7960. The PWM signal has a fixed frequency of waves with varying duty cycles (between 0% and 100%), so the motor rotation can be regulated gradually using a potentiometer already programmed on the Arduino Uno board. The motor rotation direction setting uses the H-bridge circuit method using a 3-way switch to set the direction of forward-reverse rotation of the motor. The monitoring system includes measurements of rotational speed, current, and voltage. Motor rotation speed can be adjusted from the armature voltage settings through the duty cycle PWM setting so that the motor speed can be increased or decreased by the desired duty cycle. From the unload PMDC motor test results it has also been shown that the torque of the motor is relatively constant when there is a change in speed from low rpm to high rpm or vice versa.

  4. Cerebellar motor learning versus cerebellar motor timing: the climbing fibre story

    PubMed Central

    Llinás, Rodolfo R

    2011-01-01

    Abstract Theories concerning the role of the climbing fibre system in motor learning, as opposed to those addressing the olivocerebellar system in the organization of motor timing, are briefly contrasted. The electrophysiological basis for the motor timing hypothesis in relation to the olivocerebellar system is treated in detail. PMID:21486816

  5. Comparison of Linear Induction Motor Theories for the LIMRV and TLRV Motors

    DOT National Transportation Integrated Search

    1978-01-01

    The Oberretl, Yamamura, and Mosebach theories of the linear induction motor are described and also applied to predict performance characteristics of the TLRV & LIMRV linear induction motors. The effect of finite motor width and length on performance ...

  6. What happens to the motor theory of perception when the motor system is damaged?

    PubMed Central

    Stasenko, Alena; Garcea, Frank E.; Mahon, Bradford Z.

    2016-01-01

    Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems. PMID:26823687

  7. Cryogenic Electric Motor Tested

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  8. Motor potential profile and a robust method for extracting it from time series of motor positions.

    PubMed

    Wang, Hongyun

    2006-10-21

    Molecular motors are small, and, as a result, motor operation is dominated by high-viscous friction and large thermal fluctuations from the surrounding fluid environment. The small size has hindered, in many ways, the studies of physical mechanisms of molecular motors. For a macroscopic motor, it is possible to observe/record experimentally the internal operation details of the motor. This is not yet possible for molecular motors. The chemical reaction in a molecular motor has many occupancy states, each having a different effect on the motor motion. The overall effect of the chemical reaction on the motor motion can be characterized by the motor potential profile. The potential profile reveals how the motor force changes with position in a motor step, which may lead to insights into how the chemical reaction is coupled to force generation. In this article, we propose a mathematical formulation and a robust method for constructing motor potential profiles from time series of motor positions measured in single molecule experiments. Numerical examples based on simulated data are shown to demonstrate the method. Interestingly, it is the small size of molecular motors (negligible inertia) that makes it possible to recover the potential profile from time series of motor positions. For a macroscopic motor, the variation of driving force within a cycle is smoothed out by the large inertia.

  9. Assessment of Preschoolers' Gross Motor Proficiency: Revisiting Bruininks-Oseretsky Test of Motor Proficiency

    ERIC Educational Resources Information Center

    Lam, Hazel Mei Yung

    2011-01-01

    Literature reveals that there are very few validated motor proficiency tests for young children. According to Gallahue and Ozmun, the Bruininks-Oseretsky Test of Motor Proficiency is a valid test. However, manipulative skills, which are classified as gross motor skills by most motor development specialists, are only tested in the Upper Limb…

  10. Auditory-motor interactions in pediatric motor speech disorders: neurocomputational modeling of disordered development.

    PubMed

    Terband, H; Maassen, B; Guenther, F H; Brumberg, J

    2014-01-01

    Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. The reader will be able to: (1) identify the difficulties in studying disordered speech motor development; (2) describe the differences in speech motor characteristics between SSD and subtype CAS; (3) describe the different types of learning that occur in the sensory-motor system during babbling and early speech acquisition; (4) identify the neural control subsystems involved in speech production; (5) describe the potential role of auditory self-monitoring in developmental speech disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  12. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  13. 75 FR 67770 - General Motors Company, Formerly Known as General Motors Corporation, Orion Assembly Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ..., Formerly Known as General Motors Corporation, Orion Assembly Plant, Including On-Site Leased Workers From... of General Motors Company, formerly known as General Motors Corporation, Orion Assembly Plant, Lake... General Motors Company, formerly known as General Motors Corporation, Orion Assembly Plant. The Department...

  14. 76 FR 179 - General Motors Company, Formerly Known as General Motors Corporation, Willow Run Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ..., Formerly Known as General Motors Corporation, Willow Run Transmission Plant, Including On-Site Leased... to workers of General Motors Company, formerly known as General Motors Corporation, Willow Run... location of General Motors Company, formerly known as General Motors Corporation, Willow Run Transmission...

  15. Bridging the gap between motor imagery and motor execution with a brain-robot interface.

    PubMed

    Bauer, Robert; Fels, Meike; Vukelić, Mathias; Ziemann, Ulf; Gharabaghi, Alireza

    2015-03-01

    According to electrophysiological studies motor imagery and motor execution are associated with perturbations of brain oscillations over spatially similar cortical areas. By contrast, neuroimaging and lesion studies suggest that at least partially distinct cortical networks are involved in motor imagery and execution. We sought to further disentangle this relationship by studying the role of brain-robot interfaces in the context of motor imagery and motor execution networks. Twenty right-handed subjects performed several behavioral tasks as indicators for imagery and execution of movements of the left hand, i.e. kinesthetic imagery, visual imagery, visuomotor integration and tonic contraction. In addition, subjects performed motor imagery supported by haptic/proprioceptive feedback from a brain-robot-interface. Principal component analysis was applied to assess the relationship of these indicators. The respective cortical resting state networks in the α-range were investigated by electroencephalography using the phase slope index. We detected two distinct abilities and cortical networks underlying motor control: a motor imagery network connecting the left parietal and motor areas with the right prefrontal cortex and a motor execution network characterized by transmission from the left to right motor areas. We found that a brain-robot-interface might offer a way to bridge the gap between these networks, opening thereby a backdoor to the motor execution system. This knowledge might promote patient screening and may lead to novel treatment strategies, e.g. for the rehabilitation of hemiparesis after stroke. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    NASA Astrophysics Data System (ADS)

    Crapo, Alan D.; Lloyd, Jerry D.

    1991-03-01

    Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.

  17. Descending motor pathways and the spinal motor system - Limbic and non-limbic components

    NASA Technical Reports Server (NTRS)

    Holstege, Gert

    1991-01-01

    Research on descending motor pathways to caudal brainstem and spinal cord in the spinal motor system is reviewed. Particular attention is given to somatic and autonomic motoneurons in the spinal cord and brainstem, local projections to motoneurons, bulbospinal interneurons projecting to motoneurons, descending pathways of somatic motor control systems, and descending pathways involved in limbic motor control systems.

  18. Auditory-Motor Interactions in Pediatric Motor Speech Disorders: Neurocomputational Modeling of Disordered Development

    PubMed Central

    Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J.

    2014-01-01

    Background/Purpose Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. Method In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Results Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. Conclusions These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. PMID:24491630

  19. Compromised Motor Planning and Motor Imagery in Right Hemiparetic Cerebral Palsy

    ERIC Educational Resources Information Center

    Craje, Celine; van Elk, Michiel; Beeren, Manuela; van Schie, Hein T.; Bekkering, Harold; Steenbergen, Bert

    2010-01-01

    We investigated whether motor planning problems in people with Hemiparetic Cerebral Palsy (HCP) are paralleled by impaired ability to use Motor Imagery (MI). While some studies have shown that individuals with HCP can solve a mental rotation task, it was not clear if they used MI or Visual Imagery (VI). In the present study, motor planning and MI…

  20. Automatic inoculating apparatus. [includes movable carraige, drive motor, and swabbing motor

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Mills, S. M. (Inventor)

    1974-01-01

    An automatic inoculating apparatus for agar trays is described and using a simple inoculating element, such as a cotton swab or inoculating loop. The apparatus includes a movable carriage for supporting the tray to be inoculated, a drive motor for moving the tray along a trackway, and a swabbing motor for automatically swabbing the tray during the movement. An actuator motor controls lowering of the inoculating element onto the tray and lifting of the inoculating element. An electrical control system, including limit microswitches, enables automatic control of the actuator motor and return of the carriage to the initial position after inoculating is completed.

  1. Stepper motor

    NASA Technical Reports Server (NTRS)

    Dekramer, Cornelis

    1994-01-01

    The purpose of this document is to describe the more commonly used permanent magnet stepper motors for spaceflight. It will discuss the mechanical and electrical aspects of the devices, their torque behavior, those parameters which need to be controlled and measured, and test methods to be employed. It will also discuss torque margins, compare these to the existing margin requirements, and determine the applicability of these requirements. Finally it will attempt to generate a set of requirements which will be used in any stepper motor procurement and will fully characterize the stepper motor behavior in a consistent and repeatable fashion.

  2. Electric vehicle motors and controllers

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  3. Electric vehicle motors and controllers

    NASA Astrophysics Data System (ADS)

    Secunde, R. R.

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  4. The Infant Motor Profile: A Standardized and Qualitative Method to Assess Motor Behaviour in Infancy

    ERIC Educational Resources Information Center

    Heineman, Kirsten R.; Bos, Arend F.; Hadders-Algra, Mijna

    2008-01-01

    A reliable and valid instrument to assess neuromotor condition in infancy is a prerequisite for early detection of developmental motor disorders. We developed a video-based assessment of motor behaviour, the Infant Motor Profile (IMP), to evaluate motor abilities, movement variability, ability to select motor strategies, movement symmetry, and…

  5. Telescópio de patrulhamento solar em 12 GHz

    NASA Astrophysics Data System (ADS)

    Utsumi, F.; Costa, J. E. R.

    2003-08-01

    O telescópio de patrulhamento solar é um instrumento dedicado à observação de explosões solares com início de suas operações em janeiro de 2002, trabalhando próximo ao pico de emissão do espectro girossincrotrônico (12 GHz). Trata-se de um arranjo de três antenas concebido para a detecção de explosões e determinação em tempo real da localização da região emissora. Porém, desde sua implementação em uma montagem equatorial movimentada por um sistema de rotação constante (15 graus/hora) o rastreio apresentou pequenas variações de velocidade e folgas nas caixas de engrenagens. Assim, tornou-se necessária a construção de um sistema de correção automática do apontamento que era de fundamental importância para os objetivos do projeto. No segundo semestre de 2002 empreendemos uma série de tarefas com o objetivo de automatizar completamente o rastreio, a calibração, a aquisição de dados, controle de ganhos, offsets e transferência dos dados pela internet através de um projeto custeado pela FAPESP. O rastreio automático é realizado através de um inversor que controla a freqüência da rede de alimentação do motor de rastreio podendo fazer micro-correções na direção leste-oeste conforme os radiômetros desta direção detectem uma variação relativa do sinal. Foi adicionado também um motor na direção da declinação para correção automática da variação da direção norte-sul. Após a implementação deste sistema a precisão do rastreio melhorou para um desvio máximo de 30 segundos de arco, o que está muito bom para este projeto. O Telescópio se encontra em funcionamento automático desde março de 2003 e já conta com várias explosões observadas após a conclusão desta fase de automação. Estamos apresentando as explosões mais intensas do período e com as suas respectivas posições no disco solar.

  6. Higher Efficiency HVAC Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Charles Joseph

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design,more » development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing

  7. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.

    PubMed

    Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C

    2014-12-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.

  8. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation

    PubMed Central

    Seven, Yasin B.; Mantilla, Carlos B.

    2014-01-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. PMID:25257864

  9. Motor demand-dependent activation of ipsilateral motor cortex.

    PubMed

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  10. Reduced Motor Cortex Activity during Movement Preparation following a Period of Motor Skill Practice

    PubMed Central

    Wright, David J.; Holmes, Paul; Di Russo, Francesco; Loporto, Michela; Smith, Dave

    2012-01-01

    Experts in a skill produce movement-related cortical potentials (MRCPs) of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training. PMID:23251647

  11. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    PubMed

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    PubMed

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  13. Improving the Accuracy and Training Speed of Motor Imagery Brain-Computer Interfaces Using Wavelet-Based Combined Feature Vectors and Gaussian Mixture Model-Supervectors.

    PubMed

    Lee, David; Park, Sang-Hoon; Lee, Sang-Goog

    2017-10-07

    In this paper, we propose a set of wavelet-based combined feature vectors and a Gaussian mixture model (GMM)-supervector to enhance training speed and classification accuracy in motor imagery brain-computer interfaces. The proposed method is configured as follows: first, wavelet transforms are applied to extract the feature vectors for identification of motor imagery electroencephalography (EEG) and principal component analyses are used to reduce the dimensionality of the feature vectors and linearly combine them. Subsequently, the GMM universal background model is trained by the expectation-maximization (EM) algorithm to purify the training data and reduce its size. Finally, a purified and reduced GMM-supervector is used to train the support vector machine classifier. The performance of the proposed method was evaluated for three different motor imagery datasets in terms of accuracy, kappa, mutual information, and computation time, and compared with the state-of-the-art algorithms. The results from the study indicate that the proposed method achieves high accuracy with a small amount of training data compared with the state-of-the-art algorithms in motor imagery EEG classification.

  14. System and method for motor parameter estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values formore » motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.« less

  15. Motor Controller

    NASA Technical Reports Server (NTRS)

    1988-01-01

    M.H. Marks Enterprises' Power Factor Controller (PFC) matches voltage with motor's actual need. Plugged into a motor, PFC continuously determines motor load by sensing shifts between voltage and current flow. When it senses a light load, it cuts voltage to the minimum needed. It offers potential energy savings ranging from eight percent up to 65 percent depending on the application. Myles Marks started out with the notion of writing an article for Popular Electronics magazine at the same time offering to furnish kits to readers interested in assembling PFC's. Within two weeks from publication he had orders for 500 kits and orders are still coming three years later.

  16. Prevendo a atividade solar através de redes neurais nebulosas

    NASA Astrophysics Data System (ADS)

    Martin, V. A. F.; Poppe, P. C. R.

    2003-08-01

    Atualmente, a integração de redes neurais com técnicas da Matemática Nebulosa (Fuzzy Sets), tem sido usada robustamente para fazer previsões em vários sistemas físicos. Este trabalho representa uma continuidade da contribuição apresentada anteriormente durante a XXVIIa Reunião Anual da SAB, onde exploramos a aplicação de redes neurais para previsões futuras de séries temporais. Para este, enfatizamos o uso da técnica ANFIS (Adaptative Neuro-Fuzzy Inference System), que consiste em uma rede do tipo back-propagation, onde os dados são processados em uma camada intermediária, tendo numa camada de saída, os dados numéricos. Para que a previsão seja feita com sucesso utilizando-se técnicas matemáticas adequadas, é fundamental a existência de uma série razoavelmente longa de modo que a dinâmica contida nesta possa ser melhor extraída pela rede neural. Nesse sentido, foram utilizados novamente os dados históricos das manchas do Sol (1818-2002) afim de verificar o comportamento futuro da atividade solar (Ciclos de Schawbe) a partir da técnica descrita acima. Previsões realizadas para o ciclo anterior (n.22, máximo de 158,5 em julho de 1989), bem como para o atual (n.23, máximo de 153 em setembro de 2000), apontam valores bastante coerentes com os publicados na literatura, levando em consideração, respectivamente, as barras de erros associadas: 166+/-18 e 160+/-14. Para o próximo ciclo de Schawbe (2006-2017), nossa previsão aponta o valor de 172+/-23 como máximo para o primeiro semestre de 2011 (Abril +/- 3 meses). A ANFIS acompanha de maneira satisfatória o movimento das séries estudadas durante o treinamento e durante a verificação (menor dispersão das funções de pertinência), com erro absoluto inferior a 20 por cento.

  17. ISRO's solid rocket motors

    NASA Astrophysics Data System (ADS)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were

  18. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity

    PubMed Central

    Grover, Rahul; Fischer, Janine; Schwarz, Friedrich W.; Walter, Wilhelm J.; Schwille, Petra; Diez, Stefan

    2016-01-01

    In eukaryotic cells, membranous vesicles and organelles are transported by ensembles of motor proteins. These motors, such as kinesin-1, have been well characterized in vitro as single molecules or as ensembles rigidly attached to nonbiological substrates. However, the collective transport by membrane-anchored motors, that is, motors attached to a fluid lipid bilayer, is poorly understood. Here, we investigate the influence of motors’ anchorage to a lipid bilayer on the collective transport characteristics. We reconstituted “membrane-anchored” gliding motility assays using truncated kinesin-1 motors with a streptavidin-binding peptide tag that can attach to streptavidin-loaded, supported lipid bilayers. We found that the diffusing kinesin-1 motors propelled the microtubules in the presence of ATP. Notably, we found the gliding velocity of the microtubules to be strongly dependent on the number of motors and their diffusivity in the lipid bilayer. The microtubule gliding velocity increased with increasing motor density and membrane viscosity, reaching up to the stepping velocity of single motors. This finding is in contrast to conventional gliding motility assays where the density of surface-immobilized kinesin-1 motors does not influence the microtubule velocity over a wide range. We reason that the transport efficiency of membrane-anchored motors is reduced because of their slippage in the lipid bilayer, an effect that we directly observed using single-molecule fluorescence microscopy. Our results illustrate the importance of motor–cargo coupling, which potentially provides cells with an additional means of regulating the efficiency of cargo transport. PMID:27803325

  19. Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia.

    PubMed

    Bracht, Tobias; Schnell, Susanne; Federspiel, Andrea; Razavi, Nadja; Horn, Helge; Strik, Werner; Wiest, Roland; Dierks, Thomas; Müller, Thomas J; Walther, Sebastian

    2013-02-01

    Little is known about the neurobiology of hypokinesia in schizophrenia. Therefore, the aim of this study was to investigate alterations of white matter motor pathways in schizophrenia and to relate our findings to objectively measured motor activity. We examined 21 schizophrenia patients and 21 healthy controls using diffusion tensor imaging and actigraphy. We applied a probabilistic fibre tracking approach to investigate pathways connecting the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the supplementary motor area proper (SMA-proper), the primary motor cortex (M1), the caudate nucleus, the striatum, the pallidum and the thalamus. Schizophrenia patients had lower activity levels than controls. In schizophrenia we found higher probability indices forming part of a bundle of interest (PIBI) in pathways connecting rACC, pre-SMA and SMA-proper as well as in pathways connecting M1 and pre-SMA with caudate nucleus, putamen, pallidum and thalamus and a reduced spatial extension of motor pathways in schizophrenia. There was a positive correlation between PIBI and activity level in the right pre-SMA-pallidum and the left M1-thalamus connection in healthy controls, and in the left pre-SMA-SMA-proper pathway in schizophrenia. Our results point to reduced volitional motor activity and altered motor pathway organisation in schizophrenia. The identified associations between the amount of movement and structural connectivity of motor pathways suggest dysfunction of cortico-basal ganglia pathways in the pathophysiology of hypokinesia in schizophrenia. Schizophrenia patients may use cortical pathways involving the supplementary motor area to compensate for basal ganglia dysfunction. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Electrifying the motor engram: effects of tDCS on motor learning and control

    PubMed Central

    de Xivry, Jean-Jacques Orban; Shadmehr, Reza

    2014-01-01

    Learning to control our movements accompanies neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e. the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: 1) firing rates are increased by anodal polarization and decreased by cathodal polarization, 2) anodal polarization strengthens newly formed associations, and 3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning. PMID:25200178

  1. Electrifying the motor engram: effects of tDCS on motor learning and control.

    PubMed

    Orban de Xivry, Jean-Jacques; Shadmehr, Reza

    2014-11-01

    Learning to control our movements is accompanied by neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e., the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: (1) Firing rates are increased by anodal polarization and decreased by cathodal polarization, (2) anodal polarization strengthens newly formed associations, and (3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning.

  2. Re-thinking the role of motor cortex: Context-sensitive motor outputs?

    PubMed Central

    Gandolla, Marta; Ferrante, Simona; Molteni, Franco; Guanziroli, Eleonora; Frattini, Tiziano; Martegani, Alberto; Ferrigno, Giancarlo; Friston, Karl; Pedrocchi, Alessandra; Ward, Nick S.

    2014-01-01

    The standard account of motor control considers descending outputs from primary motor cortex (M1) as motor commands and efference copy. This account has been challenged recently by an alternative formulation in terms of active inference: M1 is considered as part of a sensorimotor hierarchy providing top–down proprioceptive predictions. The key difference between these accounts is that predictions are sensitive to the current proprioceptive context, whereas efference copy is not. Using functional electric stimulation to experimentally manipulate proprioception during voluntary movement in healthy human subjects, we assessed the evidence for context sensitive output from M1. Dynamic causal modeling of functional magnetic resonance imaging responses showed that FES altered proprioception increased the influence of M1 on primary somatosensory cortex (S1). These results disambiguate competing accounts of motor control, provide some insight into the synaptic mechanisms of sensory attenuation and may speak to potential mechanisms of action of FES in promoting motor learning in neurorehabilitation. PMID:24440530

  3. Single-Resonance Longitudinal and Torsional Vibrator Combination-Type Motor: Improvement of Motor Characteristics

    NASA Astrophysics Data System (ADS)

    Shimanuki, Masaharu; Aoyagi, Manabu; Tomikawa, Yoshiro

    1994-05-01

    The present paper deals with the single-resonance longitudinal and torsional vibrator combination-type motor, which is one of the ultrasonic motors with a relatively large torque. To improve the characteristics of this motor, the authors studied the calculation method of the resonance frequencies and designed the motor so that the resonance frequencies of the longitudinal and torsional vibrations were very close to the measured ones, because it was thought that the motor characteristics were largely affected by the degree of approximation of the resonance frequencies. Experimental results have proven that the prototype motor produced large torque with a maximum of 14.0 kgf·cm under a total electrical input power of 30 W; this value was 1.5 times as large as that reported previously. That is, it has been clarified that with sufficient degree of approximation of the resonance frequencies, as mentioned above, the output torque of the motor could be greatly improved; however, its efficiency (maximum of 13.1%) was maintained at almost the same value as before.

  4. GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM.

    PubMed

    Hauer, Florian; Gerle, Christoph; Fischer, Niels; Oshima, Atsunori; Shinzawa-Itoh, Kyoko; Shimada, Satoru; Yokoyama, Ken; Fujiyoshi, Yoshinori; Stark, Holger

    2015-09-01

    We developed a method, named GraDeR, which substantially improves the preparation of membrane protein complexes for structure determination by single-particle cryo-electron microscopy (cryo-EM). In GraDeR, glycerol gradient centrifugation is used for the mild removal of free detergent monomers and micelles from lauryl maltose-neopentyl glycol detergent stabilized membrane complexes, resulting in monodisperse and stable complexes to which standard processes for water-soluble complexes can be applied. We demonstrate the applicability of the method on three different membrane complexes, including the mammalian FoF1 ATP synthase. For this highly dynamic and fragile rotary motor, we show that GraDeR allows visualizing the asymmetry of the F1 domain, which matches the ground state structure of the isolated domain. Therefore, the present cryo-EM structure of FoF1 ATP synthase provides direct structural evidence for Boyer's binding change mechanism in the context of the intact enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fine motor control

    MedlinePlus

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  6. KIFC3, a microtubule minus end–directed motor for the apical transport of annexin XIIIb–associated Triton-insoluble membranes

    PubMed Central

    Noda, Yasuko; Okada, Yasushi; Saito, Nobuhito; Setou, Mitsutoshi; Xu, Ying; Zhang, Zheizeng; Hirokawa, Nobutaka

    2001-01-01

    We have identified and characterized a COOH-terminal motor domain–type kinesin superfamily protein (KIFC), KIFC3, in the kidney. KIFC3 is a minus end–directed microtubule motor protein, therefore it accumulates in regions where minus ends of microtubules assemble. In polarized epithelial cells, KIFC3 is localized on membrane organelles immediately beneath the apical plasma membrane of renal tubular epithelial cells in vivo and polarized MDCK II cells in vitro. Flotation assay, coupled with detergent extraction, demonstrated that KIFC3 is associated with Triton X-100–insoluble membrane organelles, and that it overlaps with apically transported TGN-derived vesicles. This was confirmed by immunoprecipitation and by GST pulldown experiments showing the specific colocalization of KIFC3 and annexin XIIIb, a previously characterized membrane protein for apically transported vesicles (Lafont, F., S. Lecat, P. Verkade, and K. Simons. 1998. J. Cell Biol. 142:1413–1427). Furthermore, we proved that the apical transport of both influenza hemagglutinin and annexin XIIIb was partially inhibited or accelerated by overexpression of motor-domainless (dominant negative) or full-length KIFC3, respectively. Absence of cytoplasmic dynein on these annexin XIIIb–associated vesicles and distinct distribution of the two motors on the EM level verified the existence of KIFC3-driven transport in epithelial cells. PMID:11581287

  7. Changes of motor-cortical oscillations associated with motor learning.

    PubMed

    Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A

    2014-09-05

    Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Aberrant Hyperconnectivity in the Motor System at Rest Is Linked to Motor Abnormalities in Schizophrenia Spectrum Disorders.

    PubMed

    Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V

    2017-09-01

    Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  10. Sliding of microtubules by a team of dynein motors: Understanding the effect of spatial distribution of motor tails and mutual exclusion of motor heads on microtubules

    NASA Astrophysics Data System (ADS)

    Singh, Hanumant Pratap; Takshak, Anjneya; Mall, Utkarsh; Kunwar, Ambarish

    2016-06-01

    Molecular motors are natural nanomachines that use the free energy released from ATP hydrolysis to generate mechanical forces. Cytoplasmic dynein motors often work collectively as a team to drive important processes such as axonal growth, proplatelet formation and mitosis, as forces generated by single motors are insufficient. A large team of dynein motors is used to slide cytoskeletal microtubules with respect to one another during the process of proplatelet formation and axonal growth. These motors attach to a cargo microtubule via their tail domains, undergo the process of detachment and reattachment of their head domains on another track microtubule, while sliding the cargo microtubule along the track. Traditional continuum/mean-field approaches used in the past are not ideal for studying the sliding mechanism of microtubules, as they ignore spatial and temporal fluctuations due to different possible distributions of motor tails on cargo filament, as well as binding/unbinding of motors from their track. Therefore, these models cannot be used to address important questions such as how the distribution of motor tails on microtubules, or how the mutual exclusion of motor heads on microtubule tracks affects the sliding velocity of cargo microtubule. To answer these, here we use a computational stochastic model where we model each dynein motor explicitly. In our model, we use both random as well as uniform distributions of dynein motors on cargo microtubule, as well as mutual exclusion of motors on microtubule tracks. We find that sliding velocities are least affected by the distribution of motor tails on microtubules, whereas they are greatly affected by mutual exclusion of motor heads on microtubule tracks. We also find that sliding velocity depends on the length of cargo microtubule if mutual exclusion among motor heads is considered.

  11. EM Diffusion for a Time-Domain Airborne EM System

    NASA Astrophysics Data System (ADS)

    Yin, C.; Qiu, C.; Liu, Y.; Cai, J.

    2014-12-01

    Visualization of EM diffusion for an airborne EM (AEM) system is important for understanding the transient procedure of EM diffusion. The current distribution and diffusion features also provide effective means to evaluate EM footprint, depth of exploration and further help AEM system design and data interpretation. Most previous studies on EM diffusion (or "smoke ring" effect) are based on the static presentation of EM field, where the dynamic features of EM diffusion were not visible. For visualizing the dynamic feature of EM diffusion, we first calculate in this paper the frequency-domain EM field by downward continuation of the EM field at the EM receiver to the deep earth. After that, we transform the results to time-domain via a Fourier transform. We take a homogeneous half-space and a two-layered earth induced by a step pulse to calculate the EM fields and display the EM diffusion in the earth as 3D animated vectors or time-varying contours. The "smoke ring" effect of EM diffusion, dominated by the resistivity distribution of the earth, is clearly observed. The numerical results for an HCP (vertical magnetic dipole) and a VCX (horizontal magnetic dipole) transmitting coil above a homogeneous half-space of 100 ohm-m are shown in Fig.1. We display as example only the distribution of EM field inside the earth for the diffusion time of 0.05ms. The detailed EM diffusion will be shown in our future presentation. From the numerical experiments for different models, we find that 1) the current for either an HCP or a VCX transmitting dipole propagates downward and outward with time, becoming wider and more diffuse, forming a "smoke ring"; 2) for a VCX transmitter, the underground current forms two ellipses, corresponding to the two polarities of the magnetic flux of a horizontal magnetic dipole, injecting into or ejected from the earth; 3) for a HCP transmitter, however, the underground current forms only one circle, corresponding to the polarity of the magnetic flux

  12. Does EMS Perceived Anatomic Injury Predict Trauma Center Need?

    PubMed Central

    Lerner, E. Brooke; Roberts, Jennifer; Guse, Clare E.; Shah, Manish N.; Swor, Robert; Cushman, Jeremy T.; Blatt, Alan; Jurkovich, Gregory J.; Brasel, Karen

    2013-01-01

    Objective Our objective was to determine the predictive value of the anatomic step of the 2011 Field Triage Decision Scheme for identifying trauma center need. Methods EMS providers caring for injured adults transported to regional trauma centers in 3 midsized communities were interviewed over two years. Patients were included, regardless of injury severity, if they were at least 18 years old and were transported by EMS with a mechanism of injury that was an assault, motor vehicle or motorcycle crash, fall, or pedestrian or bicyclist struck. The interview was conducted upon ED arrival and collected physiologic condition and anatomic injury data. Patients who met the physiologic criteria were excluded. Trauma center need was defined as non-orthopedic surgery within 24 hours, intensive care unit admission, or death prior to hospital discharge. Data were analyzed by calculating descriptive statistics including positive likelihood ratios (+LR) with 95% confidence intervals. Results 11,892 interviews were conducted. One was excluded because of missing outcome data and 1,274 were excluded because they met the physiologic step. EMS providers identified 1,167 cases that met the anatomic criteria, of which 307 (26%) needed the resources of a trauma center (38% sensitivity, 91% specificity, +LR 4.4; CI: 3.9 - 4.9). Criteria with a +LR ≥5 were flail chest (9.0; CI: 4.1 - 19.4), paralysis (6.8; CI: 4.2 - 11.2), two or more long bone fractures (6.3; CI: 4.5 - 8.9), and amputation (6.1; CI: 1.5 - 24.4). Criteria with a +LR >2 and <5 were penetrating injury (4.8; CI: 4.2 - 5.6), and skull fracture (4.8; CI: 3.0 - 7.7). Only pelvic fracture (1.9; CI: 1.3 - 2.9) had a +LR less than 2. Conclusions The anatomic step of the Field Triage Guidelines as determined by EMS providers is a reasonable tool for determining trauma center need. Use of EMS perceived pelvic fracture as an indicator for trauma center need should be re-evaluated. PMID:23627418

  13. 30 CFR 18.34 - Motors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.34 Motors. Explosion-proof electric motor assemblies intended for use in approved equipment in underground... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Motors. 18.34 Section 18.34 Mineral Resources...

  14. 75 FR 54388 - General Motors Company Formerly Known as General Motors Corporation, Orion Assembly Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... Formerly Known as General Motors Corporation, Orion Assembly Plant Including On-Site Leased Workers From... Motors Corporation, Orion Assembly Plant, Lake Orion, Michigan. The notice was published in the Federal..., Michigan location of General Motors Company, formerly known as General Motors Corporation, Orion Assembly...

  15. Spinal Accessory Motor Neurons in the Mouse: A Special Type of Branchial Motor Neuron?

    PubMed

    Watson, Charles; Tvrdik, Petr

    2018-04-16

    The spinal accessory nerve arises from motor neurons in the upper cervical spinal cord. The axons of these motor neurons exit dorsal to the ligamentum denticulatum and form the spinal accessory nerve. The nerve ascends in the spinal subarachnoid space to enter the posterior cranial fossa through the foramen magnum. The spinal accessory nerve then turns caudally to exit through the jugular foramen alongside the vagus and glossopharyngeal nerves, and then travels to supply the sternomastoid and trapezius muscles in the neck. The unusual course of the spinal accessory nerve has long prompted speculation that it is not a typical spinal motor nerve and that it might represent a caudal remnant of the branchial motor system. Our cell lineage tracing data, combined with images from public databases, show that the spinal accessory motor neurons in the mouse transiently express Phox2b, a transcription factor that is required for development of brain stem branchial motor nuclei. While this is strong prima facie evidence that the spinal accessory motor neurons should be classified as branchial motor, the evolutionary history of these motor neurons in anamniote vertebrates suggests that they may be considered to be an atypical branchial group that possesses both branchial and somatic characteristics. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  16. Motor Neuron Diseases

    MedlinePlus

    ... length SMN protein, which is critical for the maintenance of motor neurons. Physical and speech therapy, occupational ... length SMN protein, which is critical for the maintenance of motor neurons. Physical and speech therapy, occupational ...

  17. An actomyosin motor.

    PubMed

    Shimizu, H

    1984-01-01

    I would like to report some results obtained by Yano , Yamamoto and myself on a novel system ( Yano et al., 1982) we have named the actomyosin motor in which a rotor with attached F-actin rotates in a specific direction, driven by the ATP-splitting interaction with active fragments of myosin, heavy meromyosin or subfragment-1, in a solution containing MgATP. The actomyosin motor is not only interesting as a new kind of motor made of biological material but also, as a stream cell ( Yano , 1978; Yano et al., 1978; Yano & Shimizu, 1978; Shimizu & Yano , 1978; Shimizu, 1979), is suitable for the study of chemo-mechanical coupling by actin and active fragments of myosin. Active motion of the motor was observed in almost 100% of the experiments, when carefully performed.

  18. Re-thinking the role of motor cortex: context-sensitive motor outputs?

    PubMed

    Gandolla, Marta; Ferrante, Simona; Molteni, Franco; Guanziroli, Eleonora; Frattini, Tiziano; Martegani, Alberto; Ferrigno, Giancarlo; Friston, Karl; Pedrocchi, Alessandra; Ward, Nick S

    2014-05-01

    The standard account of motor control considers descending outputs from primary motor cortex (M1) as motor commands and efference copy. This account has been challenged recently by an alternative formulation in terms of active inference: M1 is considered as part of a sensorimotor hierarchy providing top-down proprioceptive predictions. The key difference between these accounts is that predictions are sensitive to the current proprioceptive context, whereas efference copy is not. Using functional electric stimulation to experimentally manipulate proprioception during voluntary movement in healthy human subjects, we assessed the evidence for context sensitive output from M1. Dynamic causal modeling of functional magnetic resonance imaging responses showed that FES altered proprioception increased the influence of M1 on primary somatosensory cortex (S1). These results disambiguate competing accounts of motor control, provide some insight into the synaptic mechanisms of sensory attenuation and may speak to potential mechanisms of action of FES in promoting motor learning in neurorehabilitation. Copyright © 2014 unknown. Published by Elsevier Inc. All rights reserved.

  19. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  20. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements.

    PubMed

    Mizuguchi, N; Nakata, H; Kanosue, K

    2016-02-19

    To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    ERIC Educational Resources Information Center

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  2. Motor Priming in Neurorehabilitation

    PubMed Central

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2014-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few are practical for the current clinical environment, and the optimal priming modalities for specific clinical presentations are not known. Accordingly, developing an understanding of the various types of motor priming paradigms and their underlying neural mechanisms is an important step for therapists in neurorehabilitation. Most importantly, an understanding of the methods and their underlying mechanisms is essential for optimizing rehabilitation outcomes. The future of neurorehabilitation is likely to include these priming methods, which are delivered prior to or in conjunction with primary neurorehabilitation therapies. In this Special Interest article we discuss those priming paradigms that are supported by the greatest amount of evidence including: (i) stimulation-based priming, (ii) motor imagery and action observation, (iii) sensory priming, (iv) movement-based priming, and (v) pharmacological priming. PMID:25415551

  3. Early-Stage Research & Development | Transportation Research | NREL

    Science.gov Websites

    <em>thermal> <em>conductivity> of packed copper wire used in electric-drive vehicle motor applications provides a research on <em>thermal> management in copper-wound electric motors is helping to improve the performance and reliability of electric-drive vehicles. Photo by Kevin Bennion, NREL. Anisotropic <em>Thermal> Measurement Study

  4. Brushless direct-current motors

    NASA Technical Reports Server (NTRS)

    Bahm, E. J.

    1970-01-01

    Survey results are presented on the use of unconventional motor windings and switching sequences to optimize performance of brushless dc motors. A motor was built, each coil terminal having a separate, accessible lead. With the shaft and all electronics excluded, length and outside diameter measured 1.25 and 0.75 in., respectively.

  5. Electric Motor Thermal Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin S

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  6. Control Circuit For Two Stepping Motors

    NASA Technical Reports Server (NTRS)

    Ratliff, Roger; Rehmann, Kenneth; Backus, Charles

    1990-01-01

    Control circuit operates two independent stepping motors, one at a time. Provides following operating features: After selected motor stepped to chosen position, power turned off to reduce dissipation; Includes two up/down counters that remember at which one of eight steps each motor set. For selected motor, step indicated by illumination of one of eight light-emitting diodes (LED's) in ring; Selected motor advanced one step at time or repeatedly at rate controlled; Motor current - 30 mA at 90 degree positions, 60 mA at 45 degree positions - indicated by high or low intensity of LED that serves as motor-current monitor; Power-on reset feature provides trouble-free starts; To maintain synchronism between control circuit and motors, stepping of counters inhibited when motor power turned off.

  7. Formation of model-free motor memories during motor adaptation depends on perturbation schedule

    PubMed Central

    Lefèvre, Philippe

    2015-01-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787–801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124–136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787–801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. PMID:25673736

  8. Skeletal maturation, fundamental motor skills and motor performance in preschool children.

    PubMed

    Freitas, D L; Lausen, B; Maia, J A; Gouveia, É R; Antunes, A M; Thomis, M; Lefevre, J; Malina, R M

    2018-06-01

    Relationships among skeletal age (SA), body size and fundamental motor skills (FMS) and motor performance were considered in 155 boys and 159 girls 3-6 years of age. Stature and body mass were measured. SA of the hand-wrist was assessed with the Tanner-Whitehouse II 20 bone method. The Test of Gross Motor Development, 2 nd edition (TGMD-2) and the Preschool Test Battery were used, respectively, to assess FMS and motor performance. Based on hierarchical regression analyses, the standardized residuals of SA on chronological age (SAsr) explained a maximum of 6.1% of the variance in FMS and motor performance in boys (ΔR 2 3 , range 0.0% to 6.1%) and a maximum of 20.4% of the variance in girls (ΔR 2 3 , range 0.0% to 20.4%) over that explained by body size and interactions of SAsr with body size (step 3). The interactions of the SAsr and stature and body mass (step 2) explained a maximum of 28.3% of the variance in boys (ΔR 2 2 , range 0.5% to 28.3%) and 16.7% of the variance in girls (ΔR 2 2 , range 0.7% to 16.7%) over that explained by body size alone. With the exception of balance, relationships among SAsr and FMS or motor performance differed between boys and girls. Overall, SA per se or interacting with body size had a relatively small influence in FMS and motor performance in children 3-6 years of age. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature

    DOEpatents

    Kelledes, William L.; St. John, Don K.

    1992-01-01

    The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.

  10. 76 FR 10396 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor...

  11. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations.

    PubMed

    Butler, Andrew J; James, Thomas W; James, Karin Harman

    2011-11-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent perception and recognition of associations among multiple senses has not been investigated. Twenty participants were included in an fMRI study that explored the impact of active motor learning on subsequent processing of unisensory and multisensory stimuli. Participants were exposed to visuo-motor associations between novel objects and novel sounds either through self-generated actions on the objects or by observing an experimenter produce the actions. Immediately after exposure, accuracy, RT, and BOLD fMRI measures were collected with unisensory and multisensory stimuli in associative perception and recognition tasks. Response times during audiovisual associative and unisensory recognition were enhanced by active learning, as was accuracy during audiovisual associative recognition. The difference in motor cortex activation between old and new associations was greater for the active than the passive group. Furthermore, functional connectivity between visual and motor cortices was stronger after active learning than passive learning. Active learning also led to greater activation of the fusiform gyrus during subsequent unisensory visual perception. Finally, brain regions implicated in audiovisual integration (e.g., STS) showed greater multisensory gain after active learning than after passive learning. Overall, the results show that active motor learning modulates the processing of multisensory associations.

  12. Compensatory Motor Network Connectivity is Associated with Motor Sequence Learning after Subcortical Stroke

    PubMed Central

    Wadden, Katie P.; Woodward, Todd S.; Metzak, Paul D.; Lavigne, Katie M.; Lakhani, Bimal; Auriat, Angela M.; Boyd, Lara A.

    2015-01-01

    Following stroke, functional networks reorganize and the brain demonstrates widespread alterations in cortical activity. Implicit motor learning is preserved after stroke. However the manner in which brain reorganization occurs, and how it supports behaviour within the damaged brain remains unclear. In this functional magnetic resonance imaging (fMRI) study, we evaluated whole brain patterns of functional connectivity during the performance of an implicit tracking task at baseline and retention, following 5 days of practice. Following motor practice, a significant difference in connectivity within a motor network, consisting of bihemispheric activation of the sensory and motor cortices, parietal lobules, cerebellar and occipital lobules, was observed at retention. Healthy subjects demonstrated greater activity within this motor network during sequence learning compared to random practice. The stroke group did not show the same level of functional network integration, presumably due to the heterogeneity of functional reorganization following stroke. In a secondary analysis, a binary mask of the functional network activated from the aforementioned whole brain analyses was created to assess within-network connectivity, decreasing the spatial distribution and large variability of activation that exists within the lesioned brain. The stroke group demonstrated reduced clusters of connectivity within the masked brain regions as compared to the whole brain approach. Connectivity within this smaller motor network correlated with repeated sequence performance on the retention test. Increased functional integration within the motor network may be an important neurophysiological predictor of motor learning-related change in individuals with stroke. PMID:25757996

  13. 27. View, looking north, of motor house; the electric motor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. View, looking north, of motor house; the electric motor and electric-powered winch are housed in section of building to the left. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  14. Age-Related Decline in Anticipatory Motor Planning and Its Relation to Cognitive and Motor Skill Proficiency.

    PubMed

    Stöckel, Tino; Wunsch, Kathrin; Hughes, Charmayne M L

    2017-01-01

    Anticipatory motor planning abilities mature as children grow older, develop throughout childhood and are likely to be stable till the late sixties. In the seventh decade of life, motor planning performance dramatically declines, with anticipatory motor planning abilities falling to levels of those exhibited by children. At present, the processes enabling successful anticipatory motor planning in general, as do the cognitive processes mediating these age-related changes, remain elusive. Thus, the aim of the present study was (a) to identify cognitive and motor functions that are most affected by normal aging and (b) to elucidate key (cognitive and motor) factors that are critical for successful motor planning performance in young ( n = 40, mean age = 23.1 ± 2.6 years) and older adults ( n = 37, mean age = 73.5 ± 7.1 years). Results indicate that normal aging is associated with a marked decline in all aspects of cognitive and motor functioning tested. However, age-related declines were more apparent for fine motor dexterity, processing speed and cognitive flexibility. Furthermore, up to 64% of the variance in motor planning performance across age groups could be explained by the cognitive functions processing speed, response planning and cognitive flexibility. It can be postulated that anticipatory motor planning abilities are strongly influenced by cognitive control processes, which seem to be key mechanisms to compensate for age-related decline. These findings support the general therapeutic and preventive value of cognitive-motor training programs to reduce adverse effects associated with high age.

  15. Monoaminergic Modulation of Motor Cortex Function

    PubMed Central

    Vitrac, Clément; Benoit-Marand, Marianne

    2017-01-01

    Elaboration of appropriate responses to behavioral situations rests on the ability of selecting appropriate motor outcomes in accordance to specific environmental inputs. To this end, the primary motor cortex (M1) is a key structure for the control of voluntary movements and motor skills learning. Subcortical loops regulate the activity of the motor cortex and thus contribute to the selection of appropriate motor plans. Monoamines are key mediators of arousal, attention and motivation. Their firing pattern enables a direct encoding of different states thus promoting or repressing the selection of actions adapted to the behavioral context. Monoaminergic modulation of motor systems has been extensively studied in subcortical circuits. Despite evidence of converging projections of multiple neurotransmitters systems in the motor cortex pointing to a direct modulation of local circuits, their contribution to the execution and learning of motor skills is still poorly understood. Monoaminergic dysregulation leads to impaired plasticity and motor function in several neurological and psychiatric conditions, thus it is critical to better understand how monoamines modulate neural activity in the motor cortex. This review aims to provide an update of our current understanding on the monoaminergic modulation of the motor cortex with an emphasis on motor skill learning and execution under physiological conditions. PMID:29062274

  16. Visuomotor learning by passive motor experience

    PubMed Central

    Sakamoto, Takashi; Kondo, Toshiyuki

    2015-01-01

    Humans can adapt to unfamiliar dynamic and/or kinematic transformations through the active motor experience. Recent studies of neurorehabilitation using robots or brain-computer interface (BCI) technology suggest that passive motor experience would play a measurable role in motor recovery, however our knowledge of passive motor learning is limited. To clarify the effects of passive motor experience on human motor learning, we performed arm reaching experiments guided by a robotic manipulandum. The results showed that the passive motor experience had an anterograde transfer effect on the subsequent motor execution, whereas no retrograde interference was confirmed in the ABA paradigm experiment. This suggests that the passive experience of the error between visual and proprioceptive sensations leads to the limited but actual compensation of behavior, although it is fragile and cannot be consolidated as a persistent motor memory. PMID:26029091

  17. The association between brain activity and motor imagery during motor illusion induction by vibratory stimulation.

    PubMed

    Kodama, Takayuki; Nakano, Hideki; Katayama, Osamu; Murata, Shin

    2017-01-01

    The association between motor imagery ability and brain neural activity that leads to the manifestation of a motor illusion remains unclear. In this study, we examined the association between the ability to generate motor imagery and brain neural activity leading to the induction of a motor illusion by vibratory stimulation. The sample consisted of 20 healthy individuals who did not have movement or sensory disorders. We measured the time between the starting and ending points of a motor illusion (the time to illusion induction, TII) and performed electroencephalography (EEG). We conducted a temporo-spatial analysis on brain activity leading to the induction of motor illusions using the EEG microstate segmentation method. Additionally, we assessed the ability to generate motor imagery using the Japanese version of the Movement Imagery Questionnaire-Revised (JMIQ-R) prior to performing the task and examined the associations among brain neural activity levels as identified by microstate segmentation method, TII, and the JMIQ-R scores. The results showed four typical microstates during TII and significantly higher neural activity in the ventrolateral prefrontal cortex, primary sensorimotor area, supplementary motor area (SMA), and inferior parietal lobule (IPL). Moreover, there were significant negative correlations between the neural activity of the primary motor cortex (MI), SMA, IPL, and TII, and a significant positive correlation between the neural activity of the SMA and the JMIQ-R scores. These findings suggest the possibility that a neural network primarily comprised of the neural activity of SMA and M1, which are involved in generating motor imagery, may be the neural basis for inducing motor illusions. This may aid in creating a new approach to neurorehabilitation that enables a more robust reorganization of the neural base for patients with brain dysfunction with a motor function disorder.

  18. The association between brain activity and motor imagery during motor illusion induction by vibratory stimulation

    PubMed Central

    Kodama, Takayuki; Nakano, Hideki; Katayama, Osamu; Murata, Shin

    2017-01-01

    Background: The association between motor imagery ability and brain neural activity that leads to the manifestation of a motor illusion remains unclear. Objective: In this study, we examined the association between the ability to generate motor imagery and brain neural activity leading to the induction of a motor illusion by vibratory stimulation. Methods: The sample consisted of 20 healthy individuals who did not have movement or sensory disorders. We measured the time between the starting and ending points of a motor illusion (the time to illusion induction, TII) and performed electroencephalography (EEG). We conducted a temporo-spatial analysis on brain activity leading to the induction of motor illusions using the EEG microstate segmentation method. Additionally, we assessed the ability to generate motor imagery using the Japanese version of the Movement Imagery Questionnaire-Revised (JMIQ-R) prior to performing the task and examined the associations among brain neural activity levels as identified by microstate segmentation method, TII, and the JMIQ-R scores. Results: The results showed four typical microstates during TII and significantly higher neural activity in the ventrolateral prefrontal cortex, primary sensorimotor area, supplementary motor area (SMA), and inferior parietal lobule (IPL). Moreover, there were significant negative correlations between the neural activity of the primary motor cortex (MI), SMA, IPL, and TII, and a significant positive correlation between the neural activity of the SMA and the JMIQ-R scores. Conclusion: These findings suggest the possibility that a neural network primarily comprised of the neural activity of SMA and M1, which are involved in generating motor imagery, may be the neural basis for inducing motor illusions. This may aid in creating a new approach to neurorehabilitation that enables a more robust reorganization of the neural base for patients with brain dysfunction with a motor function disorder. PMID:29172013

  19. Big Savings from Smart Motors

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Chesebrough-Pond's operates 32 plants across the nation and in those plants are more than 10,000 electric motors. In an effort to cut down on waste of electrical power used by these motors, Chesebrough organized a Corporate Advanced Technology Group to devise ways of improving productivity and cut manufacturing costs. Chesebrough used NASA's Marshall Space Flight Center's Power Factor Controller technology as a departure point for development of their own computerized motor controller that enables motors to operate at maximum efficiency regardless of the motor's applications or operating condition.

  20. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOEpatents

    Casada, D.A.

    1996-01-16

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization. 14 figs.

  1. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization.

  2. 75 FR 26794 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation... United Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor... reviewed the certification for workers of the subject firm. The workers assemble the Toyota Corolla and the...

  3. Motor Neuron Rescue in Spinal Muscular Atrophy Mice Demonstrates That Sensory-Motor Defects Are a Consequence, Not a Cause, of Motor Neuron Dysfunction

    PubMed Central

    Gogliotti, Rocky G.; Quinlan, Katharina A.; Barlow, Courtenay B.; Heier, Christopher R.; Heckman, C. J.

    2012-01-01

    The loss of motor neurons (MNs) is a hallmark of the neuromuscular disease spinal muscular atrophy (SMA); however, it is unclear whether this phenotype autonomously originates within the MN. To address this question, we developed an inducible mouse model of severe SMA that has perinatal lethality, decreased motor function, motor unit pathology, and hyperexcitable MNs. Using an Hb9-Cre allele, we increased Smn levels autonomously within MNs and demonstrate that MN rescue significantly improves all phenotypes and pathologies commonly described in SMA mice. MN rescue also corrects hyperexcitability in SMA motor neurons and prevents sensory-motor synaptic stripping. Survival in MN-rescued SMA mice is extended by only 5 d, due in part to failed autonomic innervation of the heart. Collectively, this work demonstrates that the SMA phenotype autonomously originates in MNs and that sensory-motor synapse loss is a consequence, not a cause, of MN dysfunction. PMID:22423102

  4. 75 FR 76038 - General Motors Company Formerly Known as General Motors Corporation Willow Run Transmission Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Formerly Known as General Motors Corporation Willow Run Transmission Plant Including On-Site Leased Workers... Company, formerly known as General Motors Corporation, Willow Run Transmission Plant, Ypsilanti, Michigan... Motors Company, formerly known as General Motors Corporation, Willow Run Transmission Plant. The...

  5. Motor-sensory confluence in tactile perception.

    PubMed

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  6. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    PubMed

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  7. Heavy metals in locus ceruleus and motor neurons in motor neuron disease.

    PubMed

    Pamphlett, Roger; Kum Jew, Stephen

    2013-12-12

    The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons.

  8. Heavy metals in locus ceruleus and motor neurons in motor neuron disease

    PubMed Central

    2013-01-01

    Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons. PMID:24330485

  9. Electric vehicle traction motors - The development of an advanced motor concept

    NASA Technical Reports Server (NTRS)

    Campbell, P.

    1980-01-01

    An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.

  10. The development of motor behavior

    PubMed Central

    Adolph, Karen E.; Franchak, John M.

    2016-01-01

    This article reviews research on the development of motor behavior from a developmental systems perspective. We focus on infancy when basic action systems are acquired. Posture provides a stable base for locomotion, manual actions, and facial actions. Experience facilitates improvements in motor behavior and infants accumulate immense amounts of experience with all of their basic action systems. At every point in development, perception guides motor behavior by providing feedback about the results of just prior movements and information about what to do next. Reciprocally, the development of motor behavior provides fodder for perception. More generally, motor development brings about new opportunities for acquiring knowledge about the world, and burgeoning motor skills can instigate cascades of developmental changes in perceptual, cognitive, and social domains. PMID:27906517

  11. Chemistry in motion: tiny synthetic motors.

    PubMed

    Colberg, Peter H; Reigh, Shang Yik; Robertson, Bryan; Kapral, Raymond

    2014-12-16

    CONSPECTUS: Diffusion is the principal transport mechanism that controls the motion of solute molecules and other species in solution; however, the random walk process that underlies diffusion is slow and often nonspecific. Although diffusion is an essential mechanism for transport in the biological realm, biological systems have devised more efficient transport mechanisms using molecular motors. Most biological motors utilize some form of chemical energy derived from their surroundings to induce conformational changes in order to carry out specific functions. These small molecular motors operate in the presence of strong thermal fluctuations and in the regime of low Reynolds numbers, where viscous forces dominate inertial forces. Thus, their dynamical behavior is fundamentally different from that of macroscopic motors, and different mechanisms are responsible for the production of useful mechanical motion. There is no reason why our interest should be confined to the small motors that occur naturally in biological systems. Recently, micron and nanoscale motors that use chemical energy to produce directed motion by a number of different mechanisms have been made in the laboratory. These small synthetic motors also experience strong thermal fluctuations and operate in regimes where viscous forces dominate. Potentially, these motors could be directed to perform different transport tasks, analogous to those of biological motors, for both in vivo and in vitro applications. Although some synthetic motors execute conformational changes to effect motion, the majority do not, and, instead, they use other mechanisms to convert chemical energy into directed motion. In this Account, we describe how synthetic motors that operate by self-diffusiophoresis make use of a self-generated concentration gradient to drive motor motion. A description of propulsion by self-diffusiophoresis is presented for Janus particle motors comprising catalytic and noncatalytic faces. The properties

  12. 77 FR 6587 - General Motors Vehicle Manufacturing, Formerly Known as General Motors Corporation, Shreveport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... Manufacturing, Formerly Known as General Motors Corporation, Shreveport Assembly Plant, Including On-Site Leased... Vehicle Manufacturing, formerly known as General Motors Corporation, Shreveport Assembly Plant, including..., formerly known as General Motors Corporation, Shreveport Assembly Plant. The Department has determined that...

  13. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operationmore » and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.« less

  14. Formation of model-free motor memories during motor adaptation depends on perturbation schedule.

    PubMed

    Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2015-04-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124-136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. Copyright © 2015 the American Physiological Society.

  15. Development of Ulta-Efficient Electric Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoykhet, B.; Schiferl, R.; Duckworth, R.

    2008-05-01

    Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrialmore » motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air

  16. Motor development of preterm infants assessed by the Alberta Infant Motor Scale: systematic review article.

    PubMed

    Fuentefria, Rubia do N; Silveira, Rita C; Procianoy, Renato S

    Premature newborns are considered at risk for motor development deficits, leading to the need for monitoring in early life. The aim of this study was to systematically review the literature about gross motor development of preterm infants, assessed by the Alberta Infant Motor Scale (AIMS) to identify the main outcomes in development. Systematic review of studies published from 2006 to 2015, indexed in Pubmed, Scielo, Lilacs, and Medline databases in English and Portuguese. The search strategy included the keywords: Alberta Infant Motor Scale, prematurity, preterm, motor development, postural control, and follow-up. A total of 101 articles were identified and 23 were selected, according to the inclusion criteria. The ages of the children assessed in the studies varied, including the first 6 months up to 15 or 18 months of corrected age. The percentage variation in motor delay was identified in the motor outcome descriptions of ten studies, ranging from 4% to 53%, depending on the age when the infant was assessed. The studies show significant differences in the motor development of preterm and full-term infants, with a description of lower gross scores in the AIMS results of preterm infants. It is essential that the follow-up services of at-risk infants have assessment strategies and monitoring of gross motor development of preterm infants; AIMS is an assessment tool indicated to identify atypical motor development in this population. Copyright © 2017. Published by Elsevier Editora Ltda.

  17. Echoes on the motor network: how internal motor control structures afford sensory experience.

    PubMed

    Burgess, Jed D; Lum, Jarrad A G; Hohwy, Jakob; Enticott, Peter G

    2017-12-01

    Often, during daily experiences, hearing peers' actions can activate motor regions of the CNS. This activation is termed auditory-motor resonance (AMR) and is thought to represent an internal simulation of one's motor memories. Currently, AMR is demonstrated at the neuronal level in the Macaque and songbird, in conjunction with evidence on a systems level in humans. Here, we review evidence of AMR development from a motor control perspective. In the context of internal modelling, we consider data that demonstrates sensory-guided motor learning and action maintenance, particularly the notion of sensory comparison seen during songbird vocalisation. We suggest that these comparisons generate accurate sensory-to-motor inverse mappings. Furthermore, given reports of mapping decay after songbird learning, we highlight the proposal that the maintenance of these sensorimotor maps potentially explains why frontoparietal regions are activated upon hearing known sounds (i.e., AMR). In addition, we also recommend that activation of these types of internal models outside of action execution may provide an ecological advantage when encountering known stimuli in ambiguous conditions.

  18. [Children and motor competence].

    PubMed

    Sigmundsson, H; Haga, M

    2000-10-20

    Recently, the topic of motor competence has figured prominently in the media. The claims made are many, but the research that support the statements is seldom cited. The aim of this review article is to address that deficiency by documenting what is really known about the motor competence of children. Motor competence not only allows children to carry out everyday practical tasks, but it is also an important determinant of their level of self-esteem and of their popularity and status in their peer group. While many studies have shown a significant correlation between motor problems and other problems in the social sphere, it has been difficult to establish causal relationships with any degree of confidence, as there appear to be several interactions which need to be taken into account. Research has shown that 6-10% of Norwegian children in the 7 to 10 year age group have a motor competence well below the norm. It is unusual for motor problems to simply disappear over time. In the absence of intervention the syndrome is likely to continue to manifest itself. More recent research points to some of the circularity in this causal network, children with motor problems having been shown to be less physically active than their peers. In a larger health perspective this in itself can have very serious consequences for the child.

  19. Full Hybrid: Overview

    Science.gov Websites

    conditions. stage graphic: vertical blue rule Main stage: See through <em>car> with battery, engine, generator , power split device, and electric motor visible. The <em>car> is stopped at an intersection. Main stage: See through <em>car> with battery, engine, generator, power split device, and electric motor visible. The <em>car> is

  20. Full Hybrid: Braking

    Science.gov Websites

    : vertical blue rule Main stage: See through <em>car> with battery, engine, generator, power split device, and electric motor visible. The <em>car> is stopped at an intersection. Main stage: See through <em>car> with battery , engine, generator, power split device, and electric motor visible. The <em>car> is stopped at an intersection

  1. Age-Related Decline in Anticipatory Motor Planning and Its Relation to Cognitive and Motor Skill Proficiency

    PubMed Central

    Stöckel, Tino; Wunsch, Kathrin; Hughes, Charmayne M. L.

    2017-01-01

    Anticipatory motor planning abilities mature as children grow older, develop throughout childhood and are likely to be stable till the late sixties. In the seventh decade of life, motor planning performance dramatically declines, with anticipatory motor planning abilities falling to levels of those exhibited by children. At present, the processes enabling successful anticipatory motor planning in general, as do the cognitive processes mediating these age-related changes, remain elusive. Thus, the aim of the present study was (a) to identify cognitive and motor functions that are most affected by normal aging and (b) to elucidate key (cognitive and motor) factors that are critical for successful motor planning performance in young (n = 40, mean age = 23.1 ± 2.6 years) and older adults (n = 37, mean age = 73.5 ± 7.1 years). Results indicate that normal aging is associated with a marked decline in all aspects of cognitive and motor functioning tested. However, age-related declines were more apparent for fine motor dexterity, processing speed and cognitive flexibility. Furthermore, up to 64% of the variance in motor planning performance across age groups could be explained by the cognitive functions processing speed, response planning and cognitive flexibility. It can be postulated that anticipatory motor planning abilities are strongly influenced by cognitive control processes, which seem to be key mechanisms to compensate for age-related decline. These findings support the general therapeutic and preventive value of cognitive-motor training programs to reduce adverse effects associated with high age. PMID:28928653

  2. Treatment of the motor and non-motor symptoms in Parkinson's disease according to cluster symptoms presentation.

    PubMed

    Lauretani, Fulvio; Saginario, Antonio; Ceda, Gian Paolo; Galuppo, Laura; Ruffini, Livia; Nardelli, Anna; Maggio, Marcello

    2014-01-01

    The term Parkinson's disease has been changed in 'Parkinson's diseases' to describe different clinical entities observed in several studies investigating the existence of PD subtypes. PD patients could be grouped based on clinical features. By considering only motor symptoms, we can classically distinguish two groups: " the tremorigen-form" and "akinetic- rigidity-form" where resting tremor and akinesia/bradikynesia and rigidity are the most motor predominant symptoms, respectively. Non-motor symptoms (NMSs) are practically always present during the course of the disease and some of them (constipation, depressive status, hyposmia and anxiety) could even exist before the onset of classical motor symptoms. Many other NMSs and in particular hallucinations, cognitive impairment, sleep disorders and difficulty in swallowing strongly affect the advanced stage of disease, and represent a real therapeutic challenge when these symptoms are simultaneously present with different severity. If not adequately treated, they can increase the risk of hospitalization and admissions in nursing home, and profoundly and negatively influence the quality of life and participation in social activity of these patients. PD subtypes according to the combination of motor and non-motor symptoms have been recently proposed. This classification derives from cluster analysis which permits to identify statistically distinct subtypes of Parkinsonian patients according to the relevance of both motor and non-motor symptoms. In this point of view, we propose a schematic therapeutic approach of motor and non-motor symptoms in Parkinson's disease according to cluster symptoms presentation (motor and non-motor symptoms) and using medications that act on multiple domains of PD symptoms.

  3. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.

    PubMed

    Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T

    2015-06-01

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p < 0.001) with the skill retained 24 h later in MP and a 16 % improvement in AC. Corticospinal excitability at rest and during task did not change, but when measured during contraction at 20 % of maximal force, it strongly increased in MP and decreased in AC (interaction, p = 0.002). Intracortical inhibition at rest and during the task decreased and facilitation at rest increased in MP, but these metrics changed in the opposite direction in AC. These neuronal changes were especially profound at retention. Healthy old adults can learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.

  4. Individual Differences in Motor Timing and Its Relation to Cognitive and Fine Motor Skills

    PubMed Central

    Lorås, Håvard; Stensdotter, Ann-Katrin; Öhberg, Fredrik; Sigmundsson, Hermundur

    2013-01-01

    The present study investigated the relationship between individual differences in timing movements at the level of milliseconds and performance on selected cognitive and fine motor skills. For this purpose, young adult participants (N = 100) performed a repetitive movement task paced by an auditory metronome at different rates. Psychometric measures included the digit-span and symbol search subtasks from the Wechsler battery as well as the Raven SPM. Fine motor skills were assessed with the Purdue Pegboard test. Motor timing performance was significantly related (mean r = .3) to cognitive measures, and explained both unique and shared variance with information-processing speed of Raven's scores. No significant relations were found between motor timing measures and fine motor skills. These results show that individual differences in cognitive and motor timing performance is to some extent dependent upon shared processing not associated with individual differences in manual dexterity. PMID:23874952

  5. Individual differences in motor timing and its relation to cognitive and fine motor skills.

    PubMed

    Lorås, Håvard; Stensdotter, Ann-Katrin; Öhberg, Fredrik; Sigmundsson, Hermundur

    2013-01-01

    The present study investigated the relationship between individual differences in timing movements at the level of milliseconds and performance on selected cognitive and fine motor skills. For this purpose, young adult participants (N = 100) performed a repetitive movement task paced by an auditory metronome at different rates. Psychometric measures included the digit-span and symbol search subtasks from the Wechsler battery as well as the Raven SPM. Fine motor skills were assessed with the Purdue Pegboard test. Motor timing performance was significantly related (mean r = .3) to cognitive measures, and explained both unique and shared variance with information-processing speed of Raven's scores. No significant relations were found between motor timing measures and fine motor skills. These results show that individual differences in cognitive and motor timing performance is to some extent dependent upon shared processing not associated with individual differences in manual dexterity.

  6. Alternative Fuels Data Center

    Science.gov Websites

    Reduced Registration Fee for Fuel-Efficient Vehicles A new <em>motor> vehicle with a U.S. Environmental . For more information, see the District of Columbia Department of <em>Motor> Vehicles website. (Reference

  7. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    PubMed

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Structural equation modeling of motor impairment, gross motor function, and the functional outcome in children with cerebral palsy.

    PubMed

    Park, Eun-Young; Kim, Won-Ho

    2013-05-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Experimental thermodynamics of single molecular motor.

    PubMed

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor.

  10. Experimental thermodynamics of single molecular motor

    PubMed Central

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor. PMID:27493546

  11. Development of kinesthetic-motor and auditory-motor representations in school-aged children.

    PubMed

    Kagerer, Florian A; Clark, Jane E

    2015-07-01

    In two experiments using a center-out task, we investigated kinesthetic-motor and auditory-motor integrations in 5- to 12-year-old children and young adults. In experiment 1, participants moved a pen on a digitizing tablet from a starting position to one of three targets (visuo-motor condition), and then to one of four targets without visual feedback of the movement. In both conditions, we found that with increasing age, the children moved faster and straighter, and became less variable in their feedforward control. Higher control demands for movements toward the contralateral side were reflected in longer movement times and decreased spatial accuracy across all age groups. When feedforward control relies predominantly on kinesthesia, 7- to 10-year-old children were more variable, indicating difficulties in switching between feedforward and feedback control efficiently during that age. An inverse age progression was found for directional endpoint error; larger errors increasing with age likely reflect stronger functional lateralization for the dominant hand. In experiment 2, the same visuo-motor condition was followed by an auditory-motor condition in which participants had to move to acoustic targets (either white band or one-third octave noise). Since in the latter directional cues come exclusively from transcallosally mediated interaural time differences, we hypothesized that auditory-motor representations would show age effects. The results did not show a clear age effect, suggesting that corpus callosum functionality is sufficient in children to allow them to form accurate auditory-motor maps already at a young age.

  12. Development of kinesthetic-motor and auditory-motor representations in school-aged children

    PubMed Central

    Clark, Jane E.

    2015-01-01

    In two experiments using a center-out task, we investigated kinesthetic-motor and auditory-motor integrations in 5- to 12-year-old children and young adults. In experiment 1, participants moved a pen on a digitizing tablet from a starting position to one of three targets (visuo-motor condition), and then to one of four targets without visual feedback of the movement. In both conditions, we found that with increasing age, the children moved faster and straighter, and became less variable in their feedforward control. Higher control demands for movements toward the contralateral side were reflected in longer movement times and decreased spatial accuracy across all age groups. When feedforward control relies predominantly on kinesthesia, 7- to 10-year-old children were more variable, indicating difficulties in switching between feedforward and feedback control efficiently during that age. An inverse age progression was found for directional endpoint error; larger errors increasing with age likely reflect stronger functional lateralization for the dominant hand. In experiment 2, the same visuo-motor condition was followed by an auditory-motor condition in which participants had to move to acoustic targets (either white band or one-third octave noise). Since in the latter directional cues come exclusively from transcallosally mediated interaural time differences, we hypothesized that auditory-motor representations would show age effects. The results did not show a clear age effect, suggesting that corpus callosum functionality is sufficient in children to allow them to form accurate auditory-motor maps already at a young age. PMID:25912609

  13. Human motor unit recordings: origins and insight into the integrated motor system.

    PubMed

    Duchateau, Jacques; Enoka, Roger M

    2011-08-29

    Soon after Edward Liddell [1895-1981] and Charles Sherrington [1857-1952] introduced the concept of a motor unit in 1925 and the necessary technology was developed, the recording of single motor unit activity became feasible in humans. It was quickly discovered by Edgar Adrian [1889-1977] and Detlev Bronk [1897-1975] that the force exerted by muscle during voluntary contractions was the result of the concurrent recruitment of motor units and modulation of the rate at which they discharged action potentials. Subsequent studies found that the relation between discharge frequency and motor unit force was characterized by a sigmoidal function. Based on observations on experimental animals, Elwood Henneman [1915-1996] proposed a "size principle" in 1957 and most studies in humans focussed on validating this concept during various types of muscle contractions. By the end of the 20th C, the experimental evidence indicated that the recruitment order of human motor units was determined primarily by motoneuron size and that the occasional changes in recruitment order were not an intended strategy of the central nervous system. Fundamental knowledge on the function of Sherrington's "common final pathway" was expanded with observations on motor unit rotation, minimal and maximal discharge rates, discharge variability, and self-sustained firing. Despite the great amount of work on characterizing motor unit activity during the first century of inquiry, however, many basic questions remain unanswered and these limit the extent to which findings on humans and experimental animals can be integrated and generalized to all movements. 2011 Elsevier B.V. All rights reserved.

  14. Alternative Fuels Data Center

    Science.gov Websites

    (DOD) must exhibit a preference for the lease or procurement of <em>motor> vehicles with electric or hybrid at a cost reasonably comparable to <em>motor> vehicles with internal combustion engines. Tactical vehicles

  15. Early postnatal motor experience shapes the motor properties of C57BL/6J adult mice.

    PubMed

    Serradj, Nadjet; Picquet, Florence; Jamon, Marc

    2013-11-01

    This study aimed to evaluate the long-term consequences of early motor training on the muscle phenotype and motor output of middle-aged C57BL/6J mice. Neonatal mice were subjected to a variety of motor training procedures, for 3 weeks during the period of acquisition of locomotion. These procedures are widely used for motor training in adults; they include enriched environment, forced treadmill, chronic centrifugation, and hindlimb suspension. At 9 months, the mice reared in the enriched environment showed a slower type of fibre in slow muscles and a faster type in fast muscles, improved performance in motor tests, and a modified gait and body posture while walking. The proportion of fibres in the postural muscles of centrifuged mice did not change, but these mice showed improved resistance to fatigue. The suspended mice showed increased persistence of immature hybrid fibres in the tibialis, with a slower shift in the load-bearing soleus, without any behavioural changes. The forced treadmill was very stressful for the mice, but had limited effects on motor output, although a slower profile was observed in the tibialis. These results support the hypothesis that motor experience during a critical period of motor development shapes muscle phenotype and motor output. The different impacts of the various training procedures suggest that motor performance in adults can be optimized by appropriate training during a defined period of motor development. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Simple motor tasks independently predict extubation failure in critically ill neurological patients.

    PubMed

    Kutchak, Fernanda Machado; Rieder, Marcelo de Mello; Victorino, Josué Almeida; Meneguzzi, Carla; Poersch, Karla; Forgiarini, Luiz Alberto; Bianchin, Marino Muxfeldt

    2017-01-01

    To evaluate the usefulness of simple motor tasks such as hand grasping and tongue protrusion as predictors of extubation failure in critically ill neurological patients. This was a prospective cohort study conducted in the neurological ICU of a tertiary care hospital in the city of Porto Alegre, Brazil. Adult patients who had been intubated for neurological reasons and were eligible for weaning were included in the study. The ability of patients to perform simple motor tasks such as hand grasping and tongue protrusion was evaluated as a predictor of extubation failure. Data regarding duration of mechanical ventilation, length of ICU stay, length of hospital stay, mortality, and incidence of ventilator-associated pneumonia were collected. A total of 132 intubated patients who had been receiving mechanical ventilation for at least 24 h and who passed a spontaneous breathing trial were included in the analysis. Logistic regression showed that patient inability to grasp the hand of the examiner (relative risk = 1.57; 95% CI: 1.01-2.44; p < 0.045) and protrude the tongue (relative risk = 6.84; 95% CI: 2.49-18.8; p < 0.001) were independent risk factors for extubation failure. Acute Physiology and Chronic Health Evaluation II scores (p = 0.02), Glasgow Coma Scale scores at extubation (p < 0.001), eye opening response (p = 0.001), MIP (p < 0.001), MEP (p = 0.006), and the rapid shallow breathing index (p = 0.03) were significantly different between the failed extubation and successful extubation groups. The inability to follow simple motor commands is predictive of extubation failure in critically ill neurological patients. Hand grasping and tongue protrusion on command might be quick and easy bedside tests to identify neurocritical care patients who are candidates for extubation. Avaliar a utilidade de tarefas motoras simples, tais como preensão de mão e protrusão da língua, para predizer extubação malsucedida em pacientes neurológicos críticos. Estudo

  17. Assessment of global motor performance and gross and fine motor skills of infants attending day care centers.

    PubMed

    Souza, Carolina T; Santos, Denise C C; Tolocka, Rute E; Baltieri, Letícia; Gibim, Nathália C; Habechian, Fernanda A P

    2010-01-01

    To analyze the global motor performance and the gross and fine motor skills of infants attending two public child care centers full-time. This was a longitudinal study that included 30 infants assessed at 12 and 17 months of age with the Motor Scale of the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). This scale allows the analysis of global motor performance, fine and gross motor performance, and the discrepancy between them. The Wilcoxon test and Spearman's correlation coefficient were used. Most of the participants showed global motor performance within the normal range, but below the reference mean at 12 and 17 months, with 30% classified as having "suspected delays" in at least one of the assessments. Gross motor development was poorer than fine motor development at 12 and at 17 months of age, with great discrepancy between these two subtests in the second assessment. A clear individual variability was observed in fine motor skills, with weak linear correlation between the first and the second assessment of this subtest. A lower individual variability was found in the gross motor skills and global motor performance with positive moderate correlation between assessments. Considering both performance measurements obtained at 12 and 17 months of age, four infants were identified as having a "possible delay in motor development". The study showed the need for closer attention to the motor development of children who attend day care centers during the first 17 months of life, with special attention to gross motor skills (which are considered an integral part of the child's overall development) and to children with suspected delays in two consecutive assessments.

  18. Optimization of a motor learning attention-directing strategy based on an individual's motor imagery ability.

    PubMed

    Sakurada, Takeshi; Hirai, Masahiro; Watanabe, Eiju

    2016-01-01

    Motor learning performance has been shown to be affected by various cognitive factors such as the focus of attention and motor imagery ability. Most previous studies on motor learning have shown that directing the attention of participants externally, such as on the outcome of an assigned body movement, can be more effective than directing their attention internally, such as on body movement itself. However, to the best of our knowledge, no findings have been reported on the effect of the focus of attention selected according to the motor imagery ability of an individual on motor learning performance. We measured individual motor imagery ability assessed by the Movement Imagery Questionnaire and classified the participants into kinesthetic-dominant (n = 12) and visual-dominant (n = 8) groups based on the questionnaire score. Subsequently, the participants performed a motor learning task such as tracing a trajectory using visuomotor rotation. When the participants were required to direct their attention internally, the after-effects of the learning task in the kinesthetic-dominant group were significantly greater than those in the visual-dominant group. Conversely, when the participants were required to direct their attention externally, the after-effects of the visual-dominant group were significantly greater than those of the kinesthetic-dominant group. Furthermore, we found a significant positive correlation between the size of after-effects and the modality-dominance of motor imagery. These results suggest that a suitable attention strategy based on the intrinsic motor imagery ability of an individual can improve performance during motor learning tasks.

  19. Interactive effect of acute pain and motor learning acquisition on sensorimotor integration and motor learning outcomes

    PubMed Central

    Dancey, Erin; Andrew, Danielle; Yielder, Paul

    2016-01-01

    Previous work has demonstrated differential changes in early somatosensory evoked potentials (SEPs) when motor learning acquisition occurred in the presence of acute pain; however, the learning task was insufficiently complex to determine how these underlying neurophysiological differences impacted learning acquisition and retention. To address this limitation, we have utilized a complex motor task in conjunction with SEPs. Two groups of 12 participants (n = 24) were randomly assigned to either a capsaicin (capsaicin cream) or a control (inert lotion) group. SEP amplitudes were collected at baseline, after application, and after motor learning acquisition. Participants performed a motor acquisition task followed by a pain-free retention task within 24–48 h. After motor learning acquisition, the amplitude of the N20 SEP peak significantly increased (P < 0.05) and the N24 SEP peak significantly decreased (P < 0.001) for the control group while the N18 SEP peak significantly decreased (P < 0.01) for the capsaicin group. The N30 SEP peak was significantly increased (P < 0.001) after motor learning acquisition for both groups. The P25 SEP peak decreased significantly (P < 0.05) after the application of capsaicin cream. Both groups improved in accuracy after motor learning acquisition (P < 0.001). The capsaicin group outperformed the control group before motor learning acquisition (P < 0.05) and after motor learning acquisition (P < 0.05) and approached significance at retention (P = 0.06). Improved motor learning in the presence of capsaicin provides support for the enhancement of motor learning while in acute pain. In addition, the changes in SEP peak amplitudes suggest that early SEP changes reflect neurophysiological alterations accompanying both motor learning and mild acute pain. PMID:27535371

  20. Early gross motor development of preterm infants according to the Alberta Infant Motor Scale.

    PubMed

    van Haastert, I C; de Vries, L S; Helders, P J M; Jongmans, M J

    2006-11-01

    To systematically examine gross motor development in the first 18 months of life of preterm infants. A total of 800 preterm infants (356 boys), ages between 1 and 18 months and corrected for degree of prematurity, were assessed with the use of the Alberta Infant Motor Scale. Comparison of the mean Alberta Infant Motor Scale scores of the preterm infants with the norm-referenced values derived from term infants revealed that as a group, the preterm infants scored significantly lower at all age levels, even with full correction for degree of prematurity. In general, preterm infants exhibit different gross motor developmental trajectories compared with term infants in the first 18 months of life. The gross motor developmental profile of preterm infants may reflect a variant of typical gross motor development, which seems most likely to be specific for this population. As a consequence, adjusted norms should be used for proper evaluation and clinical decision-making in relation to preterm infants.

  1. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation.

    PubMed

    King, Bradley R; Hoedlmoser, Kerstin; Hirschauer, Franziska; Dolfen, Nina; Albouy, Genevieve

    2017-09-01

    For the past two decades, it has generally been accepted that sleep benefits motor memory consolidation processes. This notion, however, has been challenged by recent studies and thus the sleep and motor memory story is equivocal. Currently, and in contrast to the declarative memory domain, a comprehensive overview and synthesis of the effects of post-learning sleep on the behavioral and neural correlates of motor memory consolidation is not available. We therefore provide an extensive review of the literature in order to highlight that sleep-dependent motor memory consolidation depends upon multiple boundary conditions, including particular features of the motor task, the recruitment of relevant neural substrates (and the hippocampus in particular), as well as the specific architecture of the intervening sleep period (specifically, sleep spindle and slow wave activity). For our field to continue to advance, future research must consider the multifaceted nature of sleep-related motor memory consolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Alternative Fuels Data Center

    Science.gov Websites

    is defined as repowering a motor vehicle or special <em>mobile> equipment by replacing its original retrofitting a motor vehicle or special <em>mobile> equipment with parts that enable its original gasoline or diesel

  3. Alternative Fuels Data Center

    Science.gov Websites

    Renewable Fuel Retailer Tax <em>Incentive> A licensed retail motor fuel dealer may receive a quarterly <em>incentive> for selling and dispensing renewable fuels, including biodiesel. A qualified motor fuel dealer is funding is available for this <em>incentive> through June 30, 2018 (confirmed July 2017). (Reference Kansas

  4. Opposing effects of dopamine antagonism in a motor sequence task—tiapride increases cortical excitability and impairs motor learning

    PubMed Central

    Lissek, Silke; Vallana, Guido S.; Schlaffke, Lara; Lenz, Melanie; Dinse, Hubert R.; Tegenthoff, Martin

    2014-01-01

    The dopaminergic system is involved in learning and participates in the modulation of cortical excitability (CE). CE has been suggested as a marker of learning and use-dependent plasticity. However, results from separate studies on either motor CE or motor learning challenge this notion, suggesting opposing effects of dopaminergic modulation upon these parameters: while agonists decrease and antagonists increase CE, motor learning is enhanced by agonists and disturbed by antagonists. To examine whether this discrepancy persists when complex motor learning and motor CE are measured in the same experimental setup, we investigated the effects of dopaminergic (DA) antagonism upon both parameters and upon task-associated brain activation. Our results demonstrate that DA-antagonism has opposing effects upon motor CE and motor sequence learning. Tiapride did not alter baseline CE, but increased CE post training of a complex motor sequence while simultaneously impairing motor learning. Moreover, tiapride reduced activation in several brain regions associated with motor sequence performance, i.e., dorsolateral PFC (dlPFC), supplementary motor area (SMA), Broca's area, cingulate and caudate body. Blood-oxygenation-level-dependent (BOLD) intensity in anterior cingulate and caudate body, but not CE, correlated with performance across groups. In summary, our results do not support a concept of CE as a general marker of motor learning, since they demonstrate that a straightforward relation of increased CE and higher learning success does not apply to all instances of motor learning. At least for complex motor tasks that recruit a network of brain regions outside motor cortex, CE in primary motor cortex is probably no central determinant for learning success. PMID:24994972

  5. Solid rocket motor witness test

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S.

    1991-01-01

    The Solid Rocket Motor Witness Test was undertaken to examine the potential for using thermal infrared imagery as a tool for monitoring static tests of solid rocket motors. The project consisted of several parts: data acquisition, data analysis, and interpretation. For data acquisition, thermal infrared data were obtained of the DM-9 test of the Space Shuttle Solid Rocket Motor on December 23, 1987, at Thiokol, Inc. test facility near Brigham City, Utah. The data analysis portion consisted of processing the video tapes of the test to produce values of temperature at representative test points on the rocket motor surface as the motor cooled down following the test. Interpretation included formulation of a numerical model and evaluation of some of the conditions of the motor which could be extracted from the data. These parameters included estimates of the insulation remaining following the tests and the thickness of the charred layer of insulation at the end of the test. Also visible was a temperature signature of the star grain pattern in the forward motor segment.

  6. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.

    1997-01-01

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  7. Hybrid: Braking

    Science.gov Websites

    automatically. Go back… stage graphic: vertical blue rule Main stage: See through <em>car> with battery, engine, and electric motor visible. The <em>car> is stopped at an intersection. Main stage: See through <em>car> with battery , engine, and electric motor visible. The <em>car> is stopped at an intersection. Battery: The battery stores

  8. Motor control is decision-making.

    PubMed

    Wolpert, Daniel M; Landy, Michael S

    2012-12-01

    Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Structure and assembly of the essential RNA ring component of a viral DNA packaging motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fang; Lu, Changrui; Zhao, Wei

    2011-07-25

    Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage {psi}29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 {angstrom} resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNAmore » cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of {psi}29 DNA.« less

  10. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    PubMed

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.

  11. Alternative Fuels Data Center

    Science.gov Websites

    natural gas (LNG) and propane used as <em>motor> fuel in diesel gallon equivalents (DGEs). For taxation compressed natural gas (CNG) used as <em>motor> fuel in gasoline gallon equivalents (GGEs). CNG must be reported

  12. Alternative Fuels Data Center

    Science.gov Websites

    Liquefied Natural Gas (LNG) Measurement LNG is measured in <em>motor> fuel gallon equivalents. One gallon of LNG is the equivalent of one gallon of <em>motor> fuel. (Reference House Bill 26, 2017, and Ohio

  13. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect.

    PubMed

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R

    2016-05-18

    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures

  14. Torque-Summing Brushless Motor

    NASA Technical Reports Server (NTRS)

    Vaidya, J. G.

    1986-01-01

    Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.

  15. High Power Density Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  16. Full Hybrid: Passing

    Science.gov Websites

    Main stage: See through <em>car> with battery, engine, generator, power split device, and electric motor the power split device to the front wheels. Main stage: See through <em>car> with battery, engine : See through <em>car> with battery, engine, generator, power split device, and electric motor visible while

  17. Brain oscillatory signatures of motor tasks

    PubMed Central

    Birbaumer, Niels

    2015-01-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  18. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...

  19. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...

  20. Spinogenesis in spinal cord motor neurons following pharmacological lesions to the rat motor cortex.

    PubMed

    Martínez-Torres, N I; González-Tapia, D; Flores-Soto, M; Vázquez-Hernández, N; Salgado-Ceballos, H; González-Burgos, I

    2018-03-16

    Motor function is impaired in multiple neurological diseases associated with corticospinal tract degeneration. Motor impairment has been linked to plastic changes at both the presynaptic and postsynaptic levels. However, there is no evidence of changes in information transmission from the cortex to spinal motor neurons. We used kainic acid to induce stereotactic lesions to the primary motor cortex of female adult rats. Fifteen days later, we evaluated motor function with the BBB scale and the rotarod and determined the density of thin, stubby, and mushroom spines of motor neurons from a thoracolumbar segment of the spinal cord. Spinophilin, synaptophysin, and β iii-tubulin expression was also measured. Pharmacological lesions resulted in poor motor performance. Spine density and the proportion of thin and stubby spines were greater. We also observed increased expression of the 3 proteins analysed. The clinical symptoms of neurological damage secondary to Wallerian degeneration of the corticospinal tract are associated with spontaneous, compensatory plastic changes at the synaptic level. Based on these findings, spontaneous plasticity is a factor to consider when designing more efficient strategies in the early phase of rehabilitation. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. A Motor-Skills Programme to Enhance Visual Motor Integration of Selected Pre-School Learners

    ERIC Educational Resources Information Center

    Africa, Eileen K.; van Deventer, Karel J.

    2017-01-01

    Pre-schoolers are in a window period for motor skill development. Visual-motor integration (VMI) is the foundation for academic and sport skills. Therefore, it must develop before formal schooling. This study attempted to improve VMI skills. VMI skills were measured with the "Beery-Buktenica developmental test of visual-motor integration 6th…

  2. 75 FR 22317 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... 1300 [Docket No. NHTSA-2010-0054] Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of..., multipurpose passenger vehicles, trucks, buses, trailers, incomplete vehicles, motorcycles, and motor vehicle...

  3. 77 FR 69586 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... [Docket No. NHTSA-2012-0155] Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of..., multipurpose passenger vehicles, trucks, buses, trailers, motorcycles, and motor vehicle equipment. DATES: You...

  4. Apoptosis of Limb Innervating Motor Neurons and Erosion of Motor Pool Identity Upon Lineage Specific Dicer Inactivation

    PubMed Central

    Chen, Jun-An; Wichterle, Hynek

    2012-01-01

    Diversification of mammalian spinal motor neurons into hundreds of subtypes is critical for the maintenance of body posture and coordination of complex movements. Motor neuron differentiation is controlled by extrinsic signals that regulate intrinsic genetic programs specifying and consolidating motor neuron subtype identity. While transcription factors have been recognized as principal regulators of the intrinsic program, the role of posttranscriptional regulations has not been systematically tested. MicroRNAs produced by Dicer mediated cleavage of RNA hairpins contribute to gene regulation by posttranscriptional silencing. Here we used Olig2-cre conditional deletion of Dicer gene in motor neuron progenitors to examine effects of miRNA biogenesis disruption on postmitotic spinal motor neurons. We report that despite the initial increase in the number of motor neuron progenitors, disruption of Dicer function results in a loss of many limb- and sympathetic ganglia-innervating spinal motor neurons. Furthermore, it leads to defects in motor pool identity specification. Thus, our results indicate that miRNAs are an integral part of the genetic program controlling motor neuron survival and acquisition of subtype specific properties. PMID:22629237

  5. 75 FR 28656 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation, and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, and Toyota Engineering and Manufacturing... joint venture of General Motors Corporation and Toyota Motor Corporation, including on-site leased...

  6. 75 FR 62424 - New United Motor Manufacturing, Inc. Formerly a Joint Venture of General Motors Corporation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... Manufacturing, Inc. Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor Corporation...

  7. 75 FR 47632 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... of General Motors Corporation and Toyota Motor Corporation, including on-site leased workers from...

  8. Alternative Fuels Data Center

    Science.gov Websites

    Idle Reduction Requirement A person that operates a diesel powered <em>motor> vehicle in certain counties and townships may not cause or allow the <em>motor> vehicle, when it is not in motion, to idle for more

  9. Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits.

    PubMed

    Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A

    2015-12-01

    When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. How to make spinal motor neurons.

    PubMed

    Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin

    2014-02-01

    All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.

  11. Mechanochemical models of processive molecular motors

    NASA Astrophysics Data System (ADS)

    Lan, Ganhui; Sun, Sean X.

    2012-05-01

    Motor proteins are the molecular engines powering the living cell. These nanometre-sized molecules convert chemical energy, both enthalpic and entropic, into useful mechanical work. High resolution single molecule experiments can now observe motor protein movement with increasing precision. The emerging data must be combined with structural and kinetic measurements to develop a quantitative mechanism. This article describes a modelling framework where quantitative understanding of motor behaviour can be developed based on the protein structure. The framework is applied to myosin motors, with emphasis on how synchrony between motor domains give rise to processive unidirectional movement. The modelling approach shows that the elasticity of protein domains are important in regulating motor function. Simple models of protein domain elasticity are presented. The framework can be generalized to other motor systems, or an ensemble of motors such as muscle contraction. Indeed, for hundreds of myosins, our framework can be reduced to the Huxely-Simmons description of muscle movement in the mean-field limit.

  12. Genetic heterogeneity of motor neuropathies

    PubMed Central

    Bansagi, Boglarka; Griffin, Helen; Whittaker, Roger G.; Antoniadi, Thalia; Evangelista, Teresinha; Miller, James; Greenslade, Mark; Forester, Natalie; Duff, Jennifer; Bradshaw, Anna; Kleinle, Stephanie; Boczonadi, Veronika; Steele, Hannah; Ramesh, Venkateswaran; Franko, Edit; Pyle, Angela; Lochmüller, Hanns; Chinnery, Patrick F.

    2017-01-01

    Objective: To study the prevalence, molecular cause, and clinical presentation of hereditary motor neuropathies in a large cohort of patients from the North of England. Methods: Detailed neurologic and electrophysiologic assessments and next-generation panel testing or whole exome sequencing were performed in 105 patients with clinical symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). Results: The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% confidence interval 1.62–2.66) in the North of England. Causative mutations were identified in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, which is higher than previously reported (20%). We detected a significant defect of neuromuscular transmission in 7 cases and identified potentially causative mutations in 4 patients with multifocal demyelinating motor neuropathy. Conclusions: Many of the genes were shared between dHMN and motor CMT2, indicating identical disease mechanisms; therefore, we suggest changing the classification and including dHMN also as a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some genetic forms provides a treatable target to develop therapies. PMID:28251916

  13. MotorBrain: A mobile app for the assessment of users' motor performance in neurology.

    PubMed

    Vianello, Andrea; Chittaro, Luca; Burigat, Stefano; Budai, Riccardo

    2017-05-01

    Human motor skills or impairments have been traditionally assessed by neurologists by means of paper-and-pencil tests or special hardware. More recently, technologies such as digitizing tablets and touchscreens have offered neurologists new assessment possibilities, but their use has been restricted to a specific medical condition, or to stylus-operated mobile devices. The objective of this paper is twofold. First, we propose a mobile app (MotorBrain) that offers six computerized versions of traditional motor tests, can be used directly by patients (with and without the supervision of a clinician), and aims at turning millions of smartphones and tablets available to the general public into data collection and assessment tools. Then, we carry out a study to determine whether the data collected by MotorBrain can be meaningful for describing aging in human motor performance. A sample of healthy participants (N= 133) carried out the motor tests using MotorBrain on a smartphone. Participants were split into two groups (Young, Old) based on their age (less than or equal to 30 years, greater than or equal to 50 years, respectively). The data collected by the app characterizes accuracy, reaction times, and speed of movement. It was analyzed to investigate differences between the two groups. The app does allow measuring differences in neuromotor performance. Data collected by the app allowed us to assess performance differences due to the aging of the neuromuscular system. Data collected through MotorBrain is suitable to make meaningful distinctions among different kinds of performance, and allowed us to highlight performance differences associated to aging. MotorBrain supports the building of a large database of neuromotor data, which can be used for normative purposes in clinical use. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    PubMed

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P < .01), resulting in a reduced cortical activity at global (P < .02) and local levels (P < .01). Participants who showed better timed motor performance also showed stronger oscillatory synchronization (r = -0.356; P < .05) and higher cortical activity (r = -0.393; P < .05). Our data may model the ability of the motor command to respond to more subtle, physiological inputs from other brain areas. This novel insight indicates that impairments of the timing accuracy of synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  15. Evidence of motor-control difficulties in children with attention deficit hyperactivity disorder, explored through a hierarchical motor-systems perspective.

    PubMed

    Macoun, Sarah J; Kerns, Kimberly A

    2016-01-01

    Attention deficit hyperactivity disorder (ADHD) may reflect a disorder of neural systems that regulate motor control. The current study investigates motor dysfunction in children with ADHD using a hierarchical motor-systems perspective where frontal-striatal/"medial" brain systems are viewed as regulating parietal/"lateral" brain systems in a top down manner, to inhibit automatic environmentally driven responses in favor of goal-directed behavior. It was hypothesized that due to frontal-striatal hypoactivation, children with ADHD would have difficulty with higher order motor control tasks felt to be dependent on these systems, yet have preserved general motor function. A total of 63 children-ADHD and matched controls-completed experimental motor tasks that required maintenance of internal motor representations and the ability to inhibit visually driven responses. Children also completed a measure of motor inhibition, and a portion of the sample completed general motor function tasks. On motor tasks that required them to maintain internal motor representations and to inhibit automatic motor responses, children with ADHD had significantly greater difficulty than controls, yet on measures of general motor dexterity, their performance was comparable. Children with ADHD displayed significantly greater intraindividual (subject) variability than controls. Intraindividual variability (IIV) contributed to variations in performance across the motor tasks, but did not account for all of the variance on all tasks. These findings suggest that children with ADHD may be more controlled by external stimuli than by internally represented information, possibly due to dysfunction of the medial motor system. However, it is likely that children with ADHD also display general motor-execution problems (as evidenced by IIV findings), suggesting that atypicalities may extend to both medial and lateral motor systems. Findings are interpreted within the context of contemporary theories

  16. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Science.gov Websites

    alternative fuel in combination with an electric motor that <em>uses> energy stored in a battery. HEVs combine the combustion engine and an electric motor, which <em>uses> energy stored in batteries. The extra power provided by <em>uses> regenerative braking and the internal combustion engine to charge. The vehicle captures energy

  17. Molecular motors and their functions in plants

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.

    2001-01-01

    Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory

  18. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.

    1997-10-07

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

  19. 29 CFR 1926.601 - Motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Motor vehicles. 1926.601 Section 1926.601 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Motor Vehicles, Mechanized Equipment, and Marine Operations § 1926.601 Motor vehicles. (a) Coverage. Motor vehicles as covered by this part are those vehicles...

  20. 29 CFR 1926.601 - Motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Motor vehicles. 1926.601 Section 1926.601 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Motor Vehicles, Mechanized Equipment, and Marine Operations § 1926.601 Motor vehicles. (a) Coverage. Motor vehicles as covered by this part are those vehicles...

  1. 29 CFR 1926.601 - Motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Motor vehicles. 1926.601 Section 1926.601 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Motor Vehicles, Mechanized Equipment, and Marine Operations § 1926.601 Motor vehicles. (a) Coverage. Motor vehicles as covered by this part are those vehicles...

  2. 29 CFR 1926.601 - Motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Motor vehicles. 1926.601 Section 1926.601 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Motor Vehicles, Mechanized Equipment, and Marine Operations § 1926.601 Motor vehicles. (a) Coverage. Motor vehicles as covered by this part are those vehicles...

  3. 26. View, looking east, of motor house; the electric motor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. View, looking east, of motor house; the electric motor and electric-powered winch are housed in section of building to the left. The U-bolt and concrete deadman which anchors the cable of the tramway is to the right. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  4. 78 FR 76265 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... Through 578, Except Parts 571 and 575 [Docket No. NHTSA-2013-0116] Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National Highway Traffic Safety Administration... passenger cars, multipurpose passenger vehicles, trucks, buses, trailers, motorcycles, and motor vehicle...

  5. Alternative Fuels Data Center

    Science.gov Websites

    Compressed Natural Gas (CNG) and Propane <em>Tax> CNG and propane used in motor vehicles is subject to a state motor fuel <em>tax> rate of $0.26 per gasoline gallon equivalent (GGE). For taxation purposes, one GGE

  6. Alternative Fuels Data Center

    Science.gov Websites

    electric vehicle. An eligible vehicle must: Be a four-wheeled <em>motor> vehicle manufactured for use on public maximum speed of at least 55 mph, and Be propelled at least in part by an electric <em>motor> and associated

  7. Evaluating the importance of social motor synchronization and motor skill for understanding autism.

    PubMed

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-10-01

    Impairments in social interaction and communicating with others are core features of autism spectrum disorder (ASD), but the specific processes underlying such social competence impairments are not well understood. An important key for increasing our understanding of ASD-specific social deficits may lie with the social motor synchronization that takes place when we implicitly coordinate our bodies with others. Here, we tested whether dynamical measures of synchronization differentiate children with ASD from controls and further explored the relationships between synchronization ability and motor control problems. We found (a) that children with ASD exhibited different and less stable patterns of social synchronization ability than controls; (b) children with ASD performed motor movements that were slower and more variable in both spacing and timing; and (c) some social synchronization that involved motor timing was related to motor ability but less rhythmic synchronization was not. These findings raise the possibility that objective dynamical measures of synchronization ability and motor skill could provide new insights into understanding the social deficits in ASD that could ultimately aid clinical diagnosis and prognosis. Autism Res 2017, 10: 1687-1699. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  8. Halbach array DC motor/generator

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  9. Halbach array DC motor/generator

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  10. Chronic motor tic disorder

    MedlinePlus

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  11. Motor learning.

    PubMed

    Wolpert, Daniel M; Flanagan, J Randall

    2010-06-08

    Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis. 2010 Elsevier Ltd. All rights reserved.

  12. Eye Gaze Correlates of Motor Impairment in VR Observation of Motor Actions.

    PubMed

    Alves, J; Vourvopoulos, A; Bernardino, A; Bermúdez I Badia, S

    2016-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". Identify eye gaze correlates of motor impairment in a virtual reality motor observation task in a study with healthy participants and stroke patients. Participants consisted of a group of healthy subjects (N = 20) and a group of stroke survivors (N = 10). Both groups were required to observe a simple reach-and-grab and place-and-release task in a virtual environment. Additionally, healthy subjects were required to observe the task in a normal condition and a constrained movement condition. Eye movements were recorded during the observation task for later analysis. For healthy participants, results showed differences in gaze metrics when comparing the normal and arm-constrained conditions. Differences in gaze metrics were also found when comparing dominant and non-dominant arm for saccades and smooth pursuit events. For stroke patients, results showed longer smooth pursuit segments in action observation when observing the paretic arm, thus providing evidence that the affected circuitry may be activated for eye gaze control during observation of the simulated motor action. This study suggests that neural motor circuits are involved, at multiple levels, in observation of motor actions displayed in a virtual reality environment. Thus, eye tracking combined with action observation tasks in a virtual reality display can be used to monitor motor deficits derived from stroke, and consequently can also be used for rehabilitation of stroke patients.

  13. Collective effects in models for interacting molecular motors and motor-microtubule mixtures

    NASA Astrophysics Data System (ADS)

    Menon, Gautam I.

    2006-12-01

    Three problems in the statistical mechanics of models for an assembly of molecular motors interacting with cytoskeletal filaments are reviewed. First, a description of the hydrodynamical behaviour of density-density correlations in fluctuating ratchet models for interacting molecular motors is outlined. Numerical evidence indicates that the scaling properties of dynamical behaviour in such models belong to the KPZ universality class. Second, the generalization of such models to include boundary injection and removal of motors is provided. In common with known results for the asymmetric exclusion processes, simulations indicate that such models exhibit sharp boundary driven phase transitions in the thermodynamic limit. In the third part of this paper, recent progress towards a continuum description of pattern formation in mixtures of motors and microtubules is described, and a non-equilibrium “phase-diagram” for such systems discussed.

  14. Understanding molecular motor walking along a microtubule: a themosensitive asymmetric Brownian motor driven by bubble formation.

    PubMed

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng

    2013-06-12

    The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.

  15. Full Hybrid: Low Speed

    Science.gov Websites

    blue rule Main stage: See through <em>car> with battery, engine, generator, power split device, and electric motor visible. The <em>car> is moving at a low speed. There are arrows flowing from the battery to the electric motor to the power split device to the front wheels. Main stage: See through <em>car> with battery

  16. Motor learning in animal models of Parkinson’s Disease: Aberrant synaptic plasticity in the motor cortex

    PubMed Central

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R.; Ding, Jun B

    2017-01-01

    In Parkinson’s disease (PD), dopamine depletion causes dramatic changes in the brain resulting in debilitating cognitive and motor deficits. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time point of PD progression. Models of PD where dopamine tone in the brain are chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this paper, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo, time-lapse imaging and motor-skill behavior assays. In combination with previous studies, a role of the motor cortex in skill-learning, and the impairment of this ability with the loss of dopamine, is becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in the motor-skill learning and cognitive impairments of PD, with the possibility of targeting the motor cortex for future PD therapeutics. PMID:28343366

  17. Experimenting with theoretical motor neuroscience.

    PubMed

    Ajemian, Robert; Hogan, Neville

    2010-11-01

    Motor neuroscience is well over 100 years old, with seminal work such as G. T. Fritz and E. Hitzig's discovery of motor cortex occurring in 1870. Theoretical motor neuroscience has been ongoing for at least the last 50 years. How mature a scientific discipline is motor neuroscience? Are experimentalists and theoreticians working together productively to help the field progress? This article addresses these questions by advancing the following theses. Motor neuroscience remains at a descriptive stage due to the incredible complexity of the problem to be solved. The proliferation of models--and distinct modeling camps--stems from the absence of unifying conceptual constructs. To advance the field, theoreticians must rely more heavily on the concept of falsification by producing models that lend themselves to clear experimental testing.

  18. Space shuttle booster separation motor design

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1976-01-01

    The separation characteristics of the space shuttle solid rocket boosters (SRBs) are introduced along with the system level requirements for the booster separation motors (BSMs). These system requirements are then translated into specific motor requirements that control the design of the BSM. Each motor component is discussed including its geometry, material selection, and fabrication process. Also discussed is the propellant selection, grain design, and performance capabilities of the motor. The upcoming test program to develop and qualify the motor is outlined.

  19. Magnetostrictive direct drive motor

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1991-01-01

    Highly magnetostrictive materials such as Tb.3Dy.7Fe2, commercially known as TERFENOL-D, have been used to date in a variety of devices such as high power actuators and linear motors. The larger magnetostriction available in twinned single crystal TERFENOL-D, approx. 2000 ppm at moderate magnetic field strengths, makes possible a new generation of magnetomechanical devices. NASA researchers are studying the potential of this material as the basis for a direct microstepping rotary motor with torque densities on the order of industrial hydraulics and five times greater than that of the most efficient, high power electric motors. Such a motor would be a micro-radian stepper, capable of precision movements and self-braking in the power-off state. Innovative mechanical engineering techniques are juxtaposed on proper magnetic circuit design to reduce losses in structural flexures, inertias, thermal expansions, eddy currents, and magneto-mechanical coupling, thus optimizing motor performance and efficiency. Mathematical models are presented, including magnetic, structural, and both linear and nonlinear dynamic calculations and simulations. In addition, test results on prototypes are presented.

  20. Characterization of the occult nature of injury for frequently occurring motor vehicle crash injuries.

    PubMed

    Schoell, Samantha L; Doud, Andrea N; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Winslow, James E; Stitzel, Joel D

    2017-01-01

    Occult injuries are not easily detected and can be potentially life-threatening. The purpose of this study was to quantify the perceived occultness of the most frequent motor vehicle crash injuries according to emergency medical services (EMS) professionals. An electronic survey was distributed to 1,125 EMS professionals who were asked to quantify the likelihood that first responders would miss symptoms related to a particular injury on a 5-point Likert scale. The Occult Score for each injury was computed from the average of all the survey responses and normalized to be a continuous metric ranging from 0 to 1 where 0 is a non-occult (highly apparent on initial presentation) injury and 1 is an occult (unapparent on initial presentation) injury. Overall, 110,671 survey responses were collected. The Occult Score ranged from 0 to 1 with a mean, median, and standard deviation of 0.443, 0.450, and 0.233, respectively. When comparing the Occult Score of an injury to its corresponding AIS severity, there was no relationship between the metrics. When stratifying by body region, injury type, and AIS severity, it was evident that AIS 2-4 abdominal injuries with lacerations, hemorrhage, or contusions were perceived as the most occult injuries. Timely triage is key to reduce the morbidity and mortality associated with occult injuries. The Occult Score developed in this study to describe the predictability of an injury in a motor vehicle crash will be used as part of a larger effort, including incorporation into an advanced automatic crash notification (AACN) algorithm to detect crash conditions associated with a patient's need for prompt treatment at a trauma center. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Alternative Fuels Data Center

    Science.gov Websites

    motor fuel tax of $0.05 per gasoline gallon <em>equivalent> (GGE) until January 1, 2020. Beginning January 1 also subject to a state motor fuel tax rate of $0.05 per diesel gallon <em>equivalent> (DGE) until January 1

  2. Alternative Fuels Data Center

    Science.gov Websites

    Biodiesel Blend Mandate All diesel fuel sold for use in on-road <em>motor> vehicles to state agencies fuel sold to consumers for use in on-road <em>motor> vehicles is mandated to contain at least B5. As of

  3. Electric motor for laser-mechanical drilling

    DOEpatents

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  4. Genetic heterogeneity of motor neuropathies.

    PubMed

    Bansagi, Boglarka; Griffin, Helen; Whittaker, Roger G; Antoniadi, Thalia; Evangelista, Teresinha; Miller, James; Greenslade, Mark; Forester, Natalie; Duff, Jennifer; Bradshaw, Anna; Kleinle, Stephanie; Boczonadi, Veronika; Steele, Hannah; Ramesh, Venkateswaran; Franko, Edit; Pyle, Angela; Lochmüller, Hanns; Chinnery, Patrick F; Horvath, Rita

    2017-03-28

    To study the prevalence, molecular cause, and clinical presentation of hereditary motor neuropathies in a large cohort of patients from the North of England. Detailed neurologic and electrophysiologic assessments and next-generation panel testing or whole exome sequencing were performed in 105 patients with clinical symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% confidence interval 1.62-2.66) in the North of England. Causative mutations were identified in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, which is higher than previously reported (20%). We detected a significant defect of neuromuscular transmission in 7 cases and identified potentially causative mutations in 4 patients with multifocal demyelinating motor neuropathy. Many of the genes were shared between dHMN and motor CMT2, indicating identical disease mechanisms; therefore, we suggest changing the classification and including dHMN also as a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some genetic forms provides a treatable target to develop therapies. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  5. Motor run-up system. [power lines

    NASA Technical Reports Server (NTRS)

    Daeges, J. J. (Inventor)

    1975-01-01

    A starting system is described for bringing a large synchronous motor up to speed to prevent large power line disturbances at the moment the motor is connected to the power line. The system includes (1) a digital counter which generates a count determined by the difference in frequency between the power line and a small current generated by the synchronous motor; (2) a latch which stores the count; and (3) a comparator which compares the stored count with a newly generated count to determine whether the synchronous motor is accelerating or decelerating. Signals generated by the counter and comparator control the current to a clutch that couples a starting motor to the large synchronous motor.

  6. 77 FR 20558 - Federal Motor Vehicle Safety Standards; Platform Lifts for Motor Vehicles; Platform Lift...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... amendments to the Federal motor vehicle safety standards on platform lift systems for motor vehicles. The... [email protected] . For legal issues, you may contact David Jasinski, Office of the Chief Counsel, NCC... in the Federal Register a final rule establishing FMVSS No. 403, Platform lift systems for motor...

  7. Computational motor control: feedback and accuracy.

    PubMed

    Guigon, Emmanuel; Baraduc, Pierre; Desmurget, Michel

    2008-02-01

    Speed/accuracy trade-off is a ubiquitous phenomenon in motor behaviour, which has been ascribed to the presence of signal-dependent noise (SDN) in motor commands. Although this explanation can provide a quantitative account of many aspects of motor variability, including Fitts' law, the fact that this law is frequently violated, e.g. during the acquisition of new motor skills, remains unexplained. Here, we describe a principled approach to the influence of noise on motor behaviour, in which motor variability results from the interplay between sensory and motor execution noises in an optimal feedback-controlled system. In this framework, we first show that Fitts' law arises due to signal-dependent motor noise (SDN(m)) when sensory (proprioceptive) noise is low, e.g. under visual feedback. Then we show that the terminal variability of non-visually guided movement can be explained by the presence of signal-dependent proprioceptive noise. Finally, we show that movement accuracy can be controlled by opposite changes in signal-dependent sensory (SDN(s)) and SDN(m), a phenomenon that could be ascribed to muscular co-contraction. As the model also explains kinematics, kinetics, muscular and neural characteristics of reaching movements, it provides a unified framework to address motor variability.

  8. Optical Measurements on Solid Specimens of Solid Rocket Motor Exhaust and Solid Rocket Motor Slag

    NASA Technical Reports Server (NTRS)

    Roberts, F. E., III

    1991-01-01

    Samples of aluminum slag were investigated to aid the Earth Science and Applications Division at the Marshall Space Flight Center (MSFC). Alumina from space motor propellant exhaust and space motor propellant slag was examined as a component of space refuse. Thermal emittance and solar absorptivity measurements were taken to support their comparison with reflectance measurements derived from actual debris. To determine the similarity between the samples and space motor exhaust or space motor slag, emittance and absorbance results were correlated with an examination of specimen morphology.

  9. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  10. 76 FR 12792 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY: National Highway Traffic Safety Administration, Department of Transportation (DOT). ACTION: Grant of...

  11. Brain correlates to facial motor imagery and its somatotopy in the primary motor cortex.

    PubMed

    Soliman, Ramy S; Lee, Sanghoon; Eun, Seulgi; Mohamed, Abdalla Z; Lee, Jeungchan; Lee, Eunyoung; Makary, Meena M; Kathy Lee, Seung Min; Lee, Hwa-Jin; Choi, Woo Suk; Park, Kyungmo

    2017-03-22

    Motor imagery (MI) has attracted increased interest for motor rehabilitation as many studies have shown that MI shares the same neural networks as motor execution (ME). Nevertheless, MI in terms of facial movement has not been studied extensively; thus, in the present study, we investigated shared neural networks between facial motor imagery (FMI) and facial motor execution (FME). In addition, FMI somatotopy within-face was investigated between the forehead and the mouth. Functional MRI was used to examine 34 healthy individuals with ME and MI paradigms for the forehead and the mouth. The general linear model and a paired t-test were performed to define the facial area in the primary motor cortex (M1) and this area has been used to investigate somatotopy between the forehead and mouth FMI. FMI recruited similar brain motor areas as FME, but showed less neural activity in all activated regions. The facial areas in M1 were distinguishable from other body movements such as finger movement. Further investigation of this area showed that forehead and mouth imagery tended to lack a somatotopic representation for position on M1, and yet had distinct characteristics in terms of neural activity level. FMI showed different characteristics from general MI as the former exclusively activated facial processing areas. In addition, FME and FMI showed different characteristics in terms of BOLD signal level, while sharing the same neural areas. The results imply a potential usefulness of MI training for rehabilitation of facial motor disease considering that forehead and mouth somatotopy showed no clear position difference, and yet showed a significant BOLD signal intensity variation.

  12. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  13. Does increased emergency medical services prehospital time affect patient mortality in rural motor vehicle crashes? A statewide analysis.

    PubMed

    Gonzalez, Richard P; Cummings, Glenn R; Phelan, Herbert A; Mulekar, Madhuri S; Rodning, Charles B

    2009-01-01

    Fatality rates from rural vehicular trauma are almost double those found in urban settings. It has been suggested that increased prehospital time is a factor that adversely affects fatality rates in rural vehicular trauma. By linking and analyzing Alabama's statewide prehospital data, emergency medical services (EMS) prehospital time was assessed for rural and urban vehicular crashes. An imputational methodology permitted linkage of data from police motor vehicle crash (MVC) and EMS records. MVCs were defined as rural or urban by crash location using the United States Census Bureau criteria. Areas within Alabama that fell outside the Census Bureau definition of urban were defined as rural. Prehospital data were analyzed to determine EMS response time, scene time, and transport time in rural and urban settings. Over a 2-year period from January 2001 through December 2002, data were collected from EMS Patient Care Reports and police crash reports for the entire state of Alabama. By using an imputational methodology and join specifications, 45,763 police crash reports were linked to EMS Patient Care Reports. Of these, 34,341 (75%) were injured in rural settings and 11,422 (25%) were injured in urban settings. A total of 714 mortalities were identified, of which 611 (1.78%) occurred in rural settings and 103 (.90%) occurred in urban settings (P < .0001). When mortalities occurred, the mean EMS response time in rural settings was 10.67 minutes and 6.50 minutes in urban settings (P < .0001). When mortalities occurred, the mean EMS scene time in rural settings was 18.87 minutes and 10.83 minutes in urban settings (patients who were dead on scene and extrication patients were excluded from both settings) (P < .0001). When mortalities occurred, the mean EMS transport time in rural settings was 12.45 minutes and 7.43 minutes in urban settings (P < .0001). When mortalities occurred, the overall mean prehospital time in rural settings was 42.0 minutes and 24.8 minutes in urban

  14. Motor system contribution to action prediction: Temporal accuracy depends on motor experience.

    PubMed

    Stapel, Janny C; Hunnius, Sabine; Meyer, Marlene; Bekkering, Harold

    2016-03-01

    Predicting others' actions is essential for well-coordinated social interactions. In two experiments including an infant population, this study addresses to what extent motor experience of an observer determines prediction accuracy for others' actions. Results show that infants who were proficient crawlers but inexperienced walkers predicted crawling more accurately than walking, whereas age groups mastering both skills (i.e. toddlers and adults) were equally accurate in predicting walking and crawling. Regardless of experience, human movements were predicted more accurately by all age groups than non-human movement control stimuli. This suggests that for predictions to be accurate, the observed act needs to be established in the motor repertoire of the observer. Through the acquisition of new motor skills, we also become better at predicting others' actions. The findings thus stress the relevance of motor experience for social-cognitive development. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. 77 FR 26607 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... frame that is not necessarily a NEMA- equivalent but otherwise covered under EISA 2007) that is June 4.... Definition of NEMA Design B Motors E. Fire Pump Motors Definition F. Fire Pump Motor Coverage G. Energy... provisions designed to improve appliance and commercial equipment energy efficiency. (All references to EPCA...

  16. Postnatal Maturation of the Red Nucleus Motor Map Depends on Rubrospinal Connections with Forelimb Motor Pools

    PubMed Central

    Williams, Preston T. J. A.; Kim, Sangsoo

    2014-01-01

    The red nucleus (RN) and rubrospinal tract (RST) are important for forelimb motor control. Although the RST is present postnatally in cats, nothing is known about when rubrospinal projections could support motor functions or the relation between the development of the motor functions of the rubrospinal system and the corticospinal system, the other major system for limb control. Our hypothesis is that the RN motor map is present earlier in development than the motor cortex (M1) map, to support early forelimb control. We investigated RN motor map maturation with microstimulation and RST cervical enlargement projections using anterograde tracers between postnatal week 3 (PW3) and PW16. Microstimulation and tracer injection sites were verified histologically to be located within the RN. Microstimulation at PW4 evoked contralateral wrist, elbow, and shoulder movements. The number of sites producing limb movement increased and response thresholds decreased progressively through PW16. From the outset, all forelimb joints were represented. At PW3, RST projections were present within the cervical intermediate zone, with a mature density of putative synapses. In contrast, beginning at PW5 there was delayed and age-dependent development of forelimb motor pool projections and putative rubromotoneuronal synapses. The RN has a more complete forelimb map early in development than previous studies showed for M1, supporting our hypothesis of preferential rubrospinal rather than corticospinal control for early movements. Remarkably, development of the motor pool, not intermediate zone, RST projections paralleled RN motor map development. The RST may be critical for establishing the rudiments of motor skills that subsequently become refined with further CST development. PMID:24647962

  17. How Kinesthetic Motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise.

    PubMed

    Ridderinkhof, K Richard; Brass, Marcel

    2015-01-01

    Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits involved in KMI in sports are still poorly understood. In the present article, which aims at bridging the sport sciences and cognitive neurophysiology literatures, we give a brief overview of relevant research in the field of KMI. Furthermore, we develop a theoretical account that relates KMI to predictive motor control theories assuming that it is based on internal activation of anticipatory images of action effects. This mechanism allows improving motor performance solely based on internal emulation of action. In accordance with previous literature, we propose that this emulation mechanism is implemented in brain regions that partially overlap with brain areas involved in overt motor performance including the posterior parietal cortex, the cerebellum, the basal ganglia and the premotor cortex. Finally, we outline one way to test the heuristic value of our theoretical framework for KMI; we suggest that experience with motor performance improves the ability to correctly infer the goals of others, in particular in penalty blocking in soccer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Contingent involuntary motoric inhibition: the involuntary inhibition of a motor response contingent on top-down goals.

    PubMed

    Anderson, Brian A; Folk, Charles L

    2012-12-01

    Effective motor control involves both the execution of appropriate responses and the inhibition of inappropriate responses that are evoked by response-associated stimuli. The inhibition of a motor response has traditionally been characterized as either a voluntary act of cognitive control or a low-level perceptual bias arising from processes such as inhibition of return and priming. Involuntary effects of top-down goals on motoric inhibition have been reported, but involve the perseveration of an inhibitory strategy. It is unknown whether the inhibition of a motor response can be selectively triggered by a goal-relevant stimulus, reflecting the automatic activation of a top-down inhibitory strategy. Here we show that irrelevant flankers that share the color of a no-go target elicit the inhibition of their associated motor response while other-colored flankers do not, even when participants have sufficient time to prepare for the upcoming target while ignoring the flankers. Our results demonstrate contingent involuntary motoric inhibition: motoric inhibition can be automatically triggered by a stimulus based on top-down goals.

  19. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    PubMed Central

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174

  20. The validity of parental reports on motor skills performance level in preschool children: a comparison with a standardized motor test.

    PubMed

    Zysset, Annina E; Kakebeeke, Tanja H; Messerli-Bürgy, Nadine; Meyer, Andrea H; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Ferrazzini, Valentina; Kriemler, Susi; Munsch, Simone; Puder, Jardena J; Jenni, Oskar G

    2018-05-01

    Motor skills are interrelated with essential domains of childhood such as cognitive and social development. Thus, the evaluation of motor skills and the identification of atypical or delayed motor development is crucial in pediatric practice (e.g., during well-child visits). Parental reports on motor skills may serve as possible indicators to decide whether further assessment of a child is necessary or not. We compared parental reports on fundamental motor skills performance level (e.g., hopping, throwing), based on questions frequently asked in pediatric practice, with a standardized motor test in 389 children (46.5% girls/53.5% boys, M age = 3.8 years, SD = 0.5, range 3.0-5.0 years) from the Swiss Preschoolers' Health Study (SPLASHY). Motor skills were examined using the Zurich Neuromotor Assessment 3-5 (ZNA3-5), and parents filled in an online questionnaire on fundamental motor skills performance level. The results showed that the answers from the parental report correlated only weakly with the objectively assessed motor skills (r = .225, p < .001). Although a parental screening instrument for motor skills would be desirable, the parent's report used in this study was not a valid indicator for children's fundamental motor skills. Thus, we may recommend to objectively examine motor skills in clinical practice and not to exclusively rely on parental report. What is Known: • Early assessment of motor skills in preschool children is important because motor skills are essential for the engagement in social activities and the development of cognitive abilities. Atypical or delayed motor development can be an indicator for different developmental needs or disorders. • Pediatricians frequently ask parents about the motor competences of their child during well-child visits. What is New: • The parental report on fundamental motor skills performance level used in this study was not a reliable indicator for describing motor development in the

  1. Preservation of motor maps with increased motor evoked potential amplitude threshold in RMT determination.

    PubMed

    Lucente, Giuseppe; Lam, Steven; Schneider, Heike; Picht, Thomas

    2018-02-01

    Non-invasive pre-surgical mapping of eloquent brain areas with navigated transcranial magnetic stimulation (nTMS) is a useful technique linked to the improvement of surgical planning and patient outcomes. The stimulator output intensity and subsequent resting motor threshold determination (rMT) are based on the motor-evoked potential (MEP) elicited in the target muscle with an amplitude above a predetermined threshold of 50 μV. However, a subset of patients is unable to achieve complete relaxation in the target muscles, resulting in false positives that jeopardize mapping validity with conventional MEP determination protocols. Our aim is to explore the feasibility and reproducibility of a novel mapping approach that investigates how an increase of the MEP amplitude threshold to 300 and 500 μV affects subsequent motor maps. Seven healthy subjects underwent motor mapping with nTMS. RMT was calculated with the conventional methodology in conjunction with experimental 300- and 500-μV MEP amplitude thresholds. Motor mapping was performed with 105% of rMT stimulator intensity using the FDI as the target muscle. Motor mapping was possible in all patients with both the conventional and experimental setups. Motor area maps with a conventional 50-μV threshold showed poor correlation with 300-μV (α = 0.446, p < 0.001) maps, but showed excellent consistency with 500-μV motor area maps (α = 0.974, p < 0.001). MEP latencies were significantly less variable (23 ms for 50 μV vs. 23.7 ms for 300 μV vs. 23.7 ms for 500 μV, p < 0.001). A slight but significant increase of the electric field (EF) value was found (EF: 60.8 V/m vs. 64.8 V/m vs. 66 V/m p < 0.001). Our study demonstrates the feasibility of increasing the MEP detection threshold to 500 μV in rMT determination and motor area mapping with nTMS without losing precision.

  2. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    ERIC Educational Resources Information Center

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  3. Motor development and motor resonance difficulties in autism: relevance to early intervention for language and communication skills

    PubMed Central

    McCleery, Joseph P.; Elliott, Natasha A.; Sampanis, Dimitrios S.; Stefanidou, Chrysi A.

    2013-01-01

    Research suggests that a sub-set of children with autism experience notable difficulties and delays in motor skills development, and that a large percentage of children with autism experience deficits in motor resonance. These motor-related deficiencies, which evidence suggests are present from a very early age, are likely to negatively affect social-communicative and language development in this population. Here, we review evidence for delayed, impaired, and atypical motor development in infants and children with autism. We then carefully review and examine the current language and communication-based intervention research that is relevant to motor and motor resonance (i.e., neural “mirroring” mechanisms activated when we observe the actions of others) deficits in children with autism. Finally, we describe research needs and future directions and developments for early interventions aimed at addressing the speech/language and social-communication development difficulties in autism from a motor-related perspective. PMID:23630476

  4. Motor resources in peripersonal space are intrinsic to spatial encoding: evidence from motor interference.

    PubMed

    Iachini, Tina; Ruggiero, Gennaro; Ruotolo, Francesco; Vinciguerra, Michela

    2014-11-01

    The aim of this study was to explore the role of motor resources in peripersonal space encoding: are they intrinsic to spatial processes or due to action potentiality of objects? To answer this question, we disentangled the effects of motor resources on object manipulability and spatial processing in peripersonal and extrapersonal spaces. Participants had to localize manipulable and non-manipulable 3-D stimuli presented within peripersonal or extrapersonal spaces of an immersive virtual reality scenario. To assess the contribution of motor resources to the spatial task a motor interference paradigm was used. In Experiment 1, localization judgments were provided with the left hand while the right dominant arm could be free or blocked. Results showed that participants were faster and more accurate in localizing both manipulable and non-manipulable stimuli in peripersonal space with their arms free. On the other hand, in extrapersonal space there was no significant effect of motor interference. Experiment 2 replicated these results by using alternatively both hands to give the response and controlling the possible effect of the orientation of object handles. Overall, the pattern of results suggests that the encoding of peripersonal space involves motor processes per se, and not because of the presence of manipulable stimuli. It is argued that this motor grounding reflects the adaptive need of anticipating what may happen near the body and preparing to react in time. Copyright © 2014. Published by Elsevier B.V.

  5. 77 FR 65765 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... the vehicle. The antenna module translates the radio frequency signal received from the key into a... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY...

  6. 77 FR 25534 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... response back to the vehicle. The antenna module translates the radio frequency signal received from the... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY...

  7. Motor Vehicle Theft. Special Report.

    ERIC Educational Resources Information Center

    Harlow, Caroline Wolf

    Thirteen years of data from the National Crime Survey were analyzed to examine the characteristics of motor vehicle theft, to identify trends during the past 13 years, and to determine who are most likely to be victims of motor vehicle theft. All motor vehicle thefts reported to the National Crime Survey from 1973 through 1985 were examined.…

  8. Experiments with a DC Motor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…

  9. Motor Education: Educational Development Programs.

    ERIC Educational Resources Information Center

    Tansley, A. E.

    This booklet presents educational programs and activities focusing on motor skills for 5- to 9-year-old children and older children with learning problems. The premise of the activities is that the acquisition of motor skills is essential to basic learning. The role of language as a mediator and controller of motor development is emphasized. The…

  10. Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.

    PubMed

    Nodera, Hiroyuki; Manto, Mario

    2014-12-01

    Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.

  11. Motor automaticity in Parkinson’s disease

    PubMed Central

    Wu, Tao; Hallett, Mark; Chan, Piu

    2017-01-01

    Bradykinesia is the most important feature contributing to motor difficulties in Parkinson’s disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable. PMID:26102020

  12. Integrated optical motor.

    PubMed

    Kelemen, Lóránd; Valkai, Sándor; Ormos, Pál

    2006-04-20

    A light-driven micrometer-sized mechanical motor is created by laser-light-induced two-photon photopolymerization. All necessary components of the engine are built upon a glass surface by an identical procedure and include the following: a rigid mechanical framework, a rotor freely rotating on an axis, and an integrated optical waveguide carrying the actuating light to the rotor. The resulting product is a most practical stand-alone system. The light introduced into the integrated optical waveguide input of the motor provides the driving force: neither optical tweezers or even a microscope are needed for the function. The power and efficiency of the motor are evaluated. The independent unit is expected to become an important component of more complex integrated lab-on-a-chip devices.

  13. Motor stereotypy disorders.

    PubMed

    Muthugovindan, Deivasumathy; Singer, Harvey

    2009-04-01

    This review highlights recent advances in understanding the clinical features, prevalence, and outcomes of motor stereotypy disorders in typically developing children. Longitudinal data indicate that stereotypies in children with normal intelligence show an early age of onset, chronicity, and high prevalence of comorbid difficulties, including tics, obsessive-compulsive behaviors, and attention deficit hyperactivity disorder. The underlying abnormality remains unknown, but there is increasing evidence for Mendelian inheritance and a neurobiological mechanism. Primary motor stereotypies are relatively common in childhood and can be subdivided into three groups (common, head nodding, and complex motor). Movements are similar to those seen in children with autistic spectrum disorders, mental retardation, and sensory deprivation. The role of pharmacotherapy is not established and behavioral therapy can be beneficial.

  14. Aversive stimuli exacerbate defensive motor behaviour in motor conversion disorder.

    PubMed

    Blakemore, Rebekah L; Sinanaj, Indrit; Galli, Silvio; Aybek, Selma; Vuilleumier, Patrik

    2016-12-01

    Conversion disorder or functional neurological symptom disorder (FND) can affect the voluntary motor system, without an organic cause. Functional symptoms are thought to be generated unconsciously, arising from underlying psychological stressors. However, attempts to demonstrate a direct relationship between the limbic system and disrupted motor function in FND are lacking. We tested whether negative affect would exacerbate alterations of motor control and corresponding brain activations in individuals with FND. Ten patients and ten healthy controls produced an isometric precision-grip contraction at 10% of maximum force while either viewing visual feedback of their force output, or unpleasant or pleasant emotional images (without feedback). Force magnitude was continuously recorded together with change in brain activity using fMRI. For controls, force output decayed from the target level while viewing pleasant and unpleasant images. Patients however, maintained force at the target level without decay while viewing unpleasant images, indicating a pronounced effect of negative affect on force output in FND. This emotional modulation of force control was associated with different brain activation patterns between groups. Contrasting the unpleasant with the pleasant condition, controls showed increased activity in the inferior frontal cortex and pre-supplementary motor area, whereas patients had greater activity in the cerebellum (vermis), posterior cingulate cortex, and hippocampus. Engagement of a cerebellar-limbic network in patients is consistent with heightened processing of emotional salience, and supports the role of the cerebellum in freezing responses in the presence of aversive events. These data highlight a possible neural circuit through which psychological stressors elicit defensive behaviour and modulate motor function in FND. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Subclinical recurrent neck pain and its treatment impacts motor training-induced plasticity of the cerebellum and motor cortex

    PubMed Central

    Baarbé, Julianne K.; Yielder, Paul; Haavik, Heidi; Holmes, Michael W. R.

    2018-01-01

    The cerebellum processes pain inputs and is important for motor learning. Yet, how the cerebellum interacts with the motor cortex in individuals with recurrent pain is not clear. Functional connectivity between the cerebellum and motor cortex can be measured by a twin coil transcranial magnetic stimulation technique in which stimulation is applied to the cerebellum prior to stimulation over the motor cortex, which inhibits motor evoked potentials (MEPs) produced by motor cortex stimulation alone, called cerebellar inhibition (CBI). Healthy individuals without pain have been shown to demonstrate reduced CBI following motor acquisition. We hypothesized that CBI would not reduce to the same extent in those with mild-recurrent neck pain following the same motor acquisition task. We further hypothesized that a common treatment for neck pain (spinal manipulation) would restore reduced CBI following motor acquisition. Motor acquisition involved typing an eight-letter sequence of the letters Z,P,D,F with the right index finger. Twenty-seven neck pain participants received spinal manipulation (14 participants, 18–27 years) or sham control (13 participants, 19–24 years). Twelve healthy controls (20–27 years) also participated. Participants had CBI measured; they completed manipulation or sham control followed by motor acquisition; and then had CBI re-measured. Following motor acquisition, neck pain sham controls remained inhibited (58 ± 33% of test MEP) vs. healthy controls who disinhibited (98 ± 49% of test MEP, P<0.001), while the spinal manipulation group facilitated (146 ± 95% of test MEP, P<0.001). Greater inhibition in neck pain sham vs. healthy control groups suggests that neck pain may change cerebellar-motor cortex interaction. The change to facilitation suggests that spinal manipulation may reverse inhibitory effects of neck pain. PMID:29489878

  16. IRON DEFICIENCY AND INFANT MOTOR DEVELOPMENT

    PubMed Central

    Shafir, Tal; Angulo-Barroso, Rosa; Jing, Yuezhou; Lu Angelilli, Mary; Jacobson, Sandra W.; Lozoff, Betsy

    2011-01-01

    Background Iron deficiency (ID) during early development impairs myelination and basal ganglia function in animal models. Aims To examine the effects of iron deficiency anemia (IDA) and iron deficiency (ID) without anemia on infant motor skills that are likely related to myelination and basal ganglia function. Study design Observational study. Subjects Full-term inner-city African-American 9- to 10-month-old infants who were free of acute or chronic health problems with iron status indicators ranging from IDA to iron sufficiency (n = 106). Criteria for final iron status classification were met by 77 of these infants: 28 IDA, 28 non-anemic iron-deficient (NA ID), and 21 iron-sufficient (IS). Outcome measures Gross motor developmental milestones, Peabody Developmental Motor Scale, Infant Neurological International Battery (INFANIB), motor quality factor of the Bayley Behavioral Rating Scale, and a sequential/bi-manual coordination toy retrieval task. General linear model analyses tested for linear effects of iron status group and thresholds for effects. Results There were linear effects of iron status on developmental milestones, Peabody gross motor (suggestive trend), INFANIB standing item, motor quality, and toy retrieval. The threshold for effects was ID with or without anemia for developmental milestones, INFANIB standing item, and motor quality and IDA for toy retrieval. Conclusions Using a comprehensive and sensitive assessment of motor development, this study found poorer motor function in ID infants with and without anemia. Poorer motor function among non-anemic ID infants is particularly concerning, since ID without anemia is not detected by common screening procedures and is more widespread than IDA. PMID:18272298

  17. Task-relevant cognitive and motor functions are prioritized during prolonged speed-accuracy motor task performance.

    PubMed

    Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas

    2018-06-01

    This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.

  18. 41 CFR 102-34.90 - What motor vehicle identification must we display on Government motor vehicles?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... identification must we display on Government motor vehicles? 102-34.90 Section 102-34.90 Public Contracts and... Vehicle Identification § 102-34.90 What motor vehicle identification must we display on Government motor...) Identification that readily identifies the agency owning the vehicle. ...

  19. 41 CFR 102-34.90 - What motor vehicle identification must we display on Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... identification must we display on Government motor vehicles? 102-34.90 Section 102-34.90 Public Contracts and... Vehicle Identification § 102-34.90 What motor vehicle identification must we display on Government motor...) Identification that readily identifies the agency owning the vehicle. ...

  20. 41 CFR 102-34.90 - What motor vehicle identification must we display on Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... identification must we display on Government motor vehicles? 102-34.90 Section 102-34.90 Public Contracts and... Vehicle Identification § 102-34.90 What motor vehicle identification must we display on Government motor...) Identification that readily identifies the agency owning the vehicle. ...

  1. 41 CFR 102-34.90 - What motor vehicle identification must we display on Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... identification must we display on Government motor vehicles? 102-34.90 Section 102-34.90 Public Contracts and... Vehicle Identification § 102-34.90 What motor vehicle identification must we display on Government motor...) Identification that readily identifies the agency owning the vehicle. ...

  2. 41 CFR 102-34.90 - What motor vehicle identification must we display on Government motor vehicles?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... identification must we display on Government motor vehicles? 102-34.90 Section 102-34.90 Public Contracts and... Vehicle Identification § 102-34.90 What motor vehicle identification must we display on Government motor...) Identification that readily identifies the agency owning the vehicle. ...

  3. Measurement of motor disability in MPTP-treated macaques using a telemetry system for estimating circadian motor activity.

    PubMed

    Barcia, C; De Pablos, V; Bautista-Hernández, V; Sanchez-Bahillo, A; Fernández-Barreiro, A; Poza, M; Herrero, M T

    2004-03-15

    The parkinsonian symptoms of primates after MPTP exposure can be measured by several visual methods (classical motor scores). However, these methods have a subjective bias, especially as regards the evaluation of the motor activity. Computerized monitoring systems represent an unbiased method for measuring the motor disability of monkeys after MPTP administration. In this work the motor activity of monkeys before and after MPTP administration is measured and compared with the activity of a control intact group by means of a telemetry system. A pronounced decrease in motor activity was observed after MPTP administration. These results suggest the monitoring method used is suited for characterizing the motor incapacity and possible improvements following treatments to test different therapies to control Parkinson's disease in MPTP models involving primates.

  4. MotorSense: Using Motion Tracking Technology to Support the Identification and Treatment of Gross-Motor Dysfunction.

    PubMed

    Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît

    2017-01-01

    MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.

  5. Effect of private versus emergency medical systems transportation in motor vehicle accident victims: Trauma Center Experience in Saudi Arabia.

    PubMed

    Alshahrani, Mohammed S

    2017-01-01

    To assess the effect of the mode of transportation of trauma patients (emergency medical service [EMS] vs. non-EMS) on their final clinical outcome in terms of mortality and length of hospital stay. A retrospective study included all patients who were involved in motor vehicle crashes, and who were transferred immediately to an emergency department of a trauma care center from December 2008 to December 2012. Patients were classified into two groups: those brought through EMS and those brought by non-EMS (private transport). Information on demographic characteristics including age and gender was recorded and medical data such as blood pressure, pulse, oxygen saturation, temperature, initial Glasgow Coma Score (GCS), saturation, temperature, initial Glasgow Coma Score (GCS), injury severity score (ISS), and final outcome (discharged or expired) were obtained. Descriptive statistics, mean and standard deviation (SD) were computed for continuous variables and statistical significance was tested by t -test or Mann-Whitney U-test. Categorical variables were described by frequency distribution and percentages; Chi-square or Fisher's exact test as appropriate were employed to test for statistical significance. Logistics regression was performed with mortality as dependent variable and mode of transport and all demographic and prehospital variables as independent variables. A general linear model analysis was performed to test whether the mode of transport was significant to length of hospital stay in EMS and non-EMS clients. Out of 308 patients identified during the study period, 232 were transported through EMS and 76 through non-EMS. The two groups were similar with regard to mortality and length of stay. The crude mortality rate was 30.6% (95% confidence interval [CI]: 24.64-36.53) in the EMS group and 28.9% (95% CI: 18.44-38.76) in the non-EMS group ( p = 0.785). The average length of hospital stay was 9 days (interquartile range [IQR] = 8, 95% CI: 7.3-10.1) for the

  6. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Cromwell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor contro ller that incorporates Hall-array sensing in a small, 42-gram packag e that provides 4096 absolute counts per motor revolution position s ensing. The unit is the size of a miniature hockey puck, and is a 44 -pin male connector that provides many I/O channels, including CANbus , RS-232 communications, general-purpose analog and digital I/O (GPI O), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier.

  7. World Motor Vehicle Demand

    DOT National Transportation Integrated Search

    1982-08-01

    This report discusses the level and nature of world motor vehicle demand for the period 1980-1990. A general understanding of the structure of motor vehicle demand is developed. Published demand forecasts, varying widely, are gathered and their discr...

  8. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    PubMed

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  9. Concurrent Validity of Preschooler Gross Motor Quality Scale with Test of Gross Motor Development-2

    ERIC Educational Resources Information Center

    Sun, Shih-Heng; Sun, Hsiao-Ling; Zhu, Yi-Ching; Huang, Li-chi; Hsieh, Yueh-Ling

    2011-01-01

    Preschooler Gross Motor Quality Scale (PGMQ) was recently developed to evaluate motor skill quality of preschoolers. The purpose of this study was to establish the concurrent validity of PGMQ using Test of Gross Motor Development-2 (TGMD-2) as the gold standard. One hundred and thirty five preschool children aged from three to six years were…

  10. Multiple stage miniature stepping motor

    DOEpatents

    Niven, William A.; Shikany, S. David; Shira, Michael L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed.

  11. Large-Scale Hybrid Motor Testing. Chapter 10

    NASA Technical Reports Server (NTRS)

    Story, George

    2006-01-01

    Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.

  12. 49 CFR 369.1 - Annual reports of motor carriers of property, motor carriers of household goods, and dual...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Annual reports of motor carriers of property, motor carriers of household goods, and dual property carriers. 369.1 Section 369.1 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER...

  13. 76 FR 12220 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Jaguar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; Jaguar Land Rover AGENCY: National... 543, Exemption from the Theft Prevention Standard. This petition is granted because the agency has... effective in reducing and deterring motor vehicle theft as compliance with the parts-marking requirements of...

  14. Motor Control Abnormalities in Parkinson’s Disease

    PubMed Central

    Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo

    2012-01-01

    The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667

  15. Actual motor performance and self-perceived motor competence in children with attention-deficit hyperactivity disorder compared with healthy siblings and peers.

    PubMed

    Fliers, Ellen A; de Hoog, Marieke L A; Franke, Barbara; Faraone, Stephen V; Rommelse, Nanda N J; Buitelaar, Jan K; Nijhuis-van der Sanden, Maria W G

    2010-01-01

    : Children with attention-deficit hyperactivity disorder (ADHD) frequently experience comorbid motor problems, developmental coordination disorder. Also, children with ADHD are said to overestimate their abilities in the cognitive and social domain, the so-called "Positive Illusory Bias." In this cross-sectional study, the relationship between actual motor performance and perceived motor competence was examined. Motor performance was assessed using the Movement Assessment Battery for Children in 100 children and adolescents (age 6-17 years), including 32 children with ADHD combined type, 18 unaffected siblings, and 50 healthy control children. ADHD was diagnosed using Parent and Teacher questionnaires and a clinical interview. Perceived motor competence and interest in the motor domain were rated with the Dutch supplement scale to Harters' Self-Perception Profile for Children, especially focusing on the motor domain (m-CBSK). Children with ADHD had poorer motor performance than unaffected siblings and control children, especially in the field of manual dexterity. However, no relationship was found between motor performance and perceived motor competence. Only children with the very lowest motor performance had a significantly lowered perception of their motor competence. Interest in the motor domain and motor self-perception was positively correlated. Children with ADHD performed poorer on the Movement Assessment Battery for Children, but generally overestimated their own motor competence.

  16. Ultrasonic Linear Motor with Two Independent Vibrations

    NASA Astrophysics Data System (ADS)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  17. 41 CFR 102-34.105 - Before we sell a motor vehicle, what motor vehicle identification must we remove?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicle, what motor vehicle identification must we remove? 102-34.105 Section 102-34.105 Public Contracts... Vehicle Identification § 102-34.105 Before we sell a motor vehicle, what motor vehicle identification must we remove? You must remove all motor vehicle identification before you transfer the title or deliver...

  18. 41 CFR 102-34.105 - Before we sell a motor vehicle, what motor vehicle identification must we remove?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicle, what motor vehicle identification must we remove? 102-34.105 Section 102-34.105 Public Contracts... Vehicle Identification § 102-34.105 Before we sell a motor vehicle, what motor vehicle identification must we remove? You must remove all motor vehicle identification before you transfer the title or deliver...

  19. 41 CFR 102-34.105 - Before we sell a motor vehicle, what motor vehicle identification must we remove?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... vehicle, what motor vehicle identification must we remove? 102-34.105 Section 102-34.105 Public Contracts... Vehicle Identification § 102-34.105 Before we sell a motor vehicle, what motor vehicle identification must we remove? You must remove all motor vehicle identification before you transfer the title or deliver...

  20. 41 CFR 102-34.105 - Before we sell a motor vehicle, what motor vehicle identification must we remove?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... vehicle, what motor vehicle identification must we remove? 102-34.105 Section 102-34.105 Public Contracts... Vehicle Identification § 102-34.105 Before we sell a motor vehicle, what motor vehicle identification must we remove? You must remove all motor vehicle identification before you transfer the title or deliver...

  1. 41 CFR 102-34.105 - Before we sell a motor vehicle, what motor vehicle identification must we remove?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vehicle, what motor vehicle identification must we remove? 102-34.105 Section 102-34.105 Public Contracts... Vehicle Identification § 102-34.105 Before we sell a motor vehicle, what motor vehicle identification must we remove? You must remove all motor vehicle identification before you transfer the title or deliver...

  2. Finding of widespread viral and bacterial revolution dsDNA translocation motors distinct from rotation motors by channel chirality and size

    PubMed Central

    2014-01-01

    Background Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA translocation. Previously, biomotors have been primarily classified into linear and rotational motors. We recently discovered a third class of dsDNA translocation motors in Phi29 utilizing revolution mechanism without rotation. Analogically, the Earth rotates around its own axis every 24 hours, but revolves around the Sun every 365 days. Results Single-channel DNA translocation conductance assay combined with structure inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses showed that revolution motor is widespread. The force generation mechanism for revolution motors is elucidated. Revolution motors can be differentiated from rotation motors by their channel size and chirality. Crystal structure inspection revealed that revolution motors commonly exhibit channel diameters larger than 3 nm, while rotation motors that rotate around one of the two separated DNA strands feature a diameter smaller than 2 nm. Phi29 revolution motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest channel cross-section, respectively, evidencing that revolution motors exhibit channel diameters significantly wider than the dsDNA. Left-handed oriented channels found in revolution motors drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels observed in rotation motors drive the right-handed dsDNA via parallel threads. Tethering both the motor and the dsDNA distal-end of the revolution motor does not block DNA packaging, indicating that no rotation is required for motors of dsDNA phages, while a small-angle left

  3. Motor skills of toddlers with autism spectrum disorders.

    PubMed

    Lloyd, Meghann; MacDonald, Megan; Lord, Catherine

    2013-03-01

    With increased interest in the early diagnosis and treatment of children with autism spectrum disorders (ASD), more attention has been called to the motor skills of very young children with ASD. This study describes the gross and fine motor skills of a cross-sectional group of 162 children with ASD between the ages of 12 and 36 months, as well as a subset of 58 children followed longitudinally. Gross motor and fine motor age equivalent scores were obtained for all children. A 'motor difference' variable was calculated for each child's gross and fine motor skills by taking the absolute difference of the children's age equivalent motor score and their respective chronological age. In Study 1 (the cross-sectional analysis), ANCOVA (co-varied for nonverbal problem solving) revealed significant group differences in the gross motor and fine motor age difference variables. Post-hoc analysis revealed that gross motor and fine motor differences became significantly greater with each 6-month period of chronological age. In Study 2, 58 children were measured twice, an average of 12 months apart. Results indicate that the gross motor and fine motor difference scores significantly increased between the first and second measurements. The importance of addressing motor development in early intervention treatments is discussed.

  4. Motor development in individuals with congenital adrenal hyperplasia: strength, targeting, and fine motor skill.

    PubMed

    Collaer, Marcia L; Brook, Charles G D; Conway, Gerard S; Hindmarsh, Peter C; Hines, Melissa

    2009-02-01

    This study investigated early androgen influence on the development of human motor and visuomotor characteristics. Participants, ages 12-45 years, were individuals with congenital adrenal hyperplasia (CAH), a disorder causing increased adrenal androgen production before birth (40 females, 29 males) and their unaffected relatives (29 females, 30 males). We investigated grip strength and visuomotor targeting tasks on which males generally outperform females, and fine motor pegboard tasks on which females generally outperform males. Physical characteristics (height and weight) were measured to explore whether body parameters could explain differences in motor skills. Females with CAH were stronger and showed better targeting than unaffected females and showed reduced fine visuomotor skill on one pegboard measure, with no difference on the other. Males with CAH were weaker than unaffected males in grip strength but did not differ on the targeting or pegboard measures. Correction for body size could not explain the findings for females, but suggests that the reduced strength of males with CAH may relate to their smaller stature. Further, the targeting advantage in females with CAH persisted following adjustment for their greater strength. Results in females support the hypothesis that androgen may masculinize, or promote, certain motor characteristics at which males excel, and contribute to defeminization of certain fine motor characteristics at which females excel. Thus, these data suggest that organizational effects of androgens on behavior during prenatal life may extend to motor characteristics and may contribute to general sex differences in motor-related behaviors; however, alternative explanations based on activational influences of androgen or altered experiential factors cannot be excluded without further study.

  5. 41 CFR 102-34.185 - What license plates do we use on motor vehicles that are exempt from motor vehicle identification...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... we use on motor vehicles that are exempt from motor vehicle identification requirements? 102-34.185... Registering Motor Vehicles Identification Exemptions § 102-34.185 What license plates do we use on motor vehicles that are exempt from motor vehicle identification requirements? For motor vehicles that are exempt...

  6. 41 CFR 102-34.185 - What license plates do we use on motor vehicles that are exempt from motor vehicle identification...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... we use on motor vehicles that are exempt from motor vehicle identification requirements? 102-34.185... Registering Motor Vehicles Identification Exemptions § 102-34.185 What license plates do we use on motor vehicles that are exempt from motor vehicle identification requirements? For motor vehicles that are exempt...

  7. 41 CFR 102-34.185 - What license plates do we use on motor vehicles that are exempt from motor vehicle identification...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... we use on motor vehicles that are exempt from motor vehicle identification requirements? 102-34.185... Registering Motor Vehicles Identification Exemptions § 102-34.185 What license plates do we use on motor vehicles that are exempt from motor vehicle identification requirements? For motor vehicles that are exempt...

  8. 41 CFR 102-34.185 - What license plates do we use on motor vehicles that are exempt from motor vehicle identification...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... we use on motor vehicles that are exempt from motor vehicle identification requirements? 102-34.185... Registering Motor Vehicles Identification Exemptions § 102-34.185 What license plates do we use on motor vehicles that are exempt from motor vehicle identification requirements? For motor vehicles that are exempt...

  9. 41 CFR 102-34.185 - What license plates do we use on motor vehicles that are exempt from motor vehicle identification...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... we use on motor vehicles that are exempt from motor vehicle identification requirements? 102-34.185... Registering Motor Vehicles Identification Exemptions § 102-34.185 What license plates do we use on motor vehicles that are exempt from motor vehicle identification requirements? For motor vehicles that are exempt...

  10. Alternative Fuels Data Center

    Science.gov Websites

    Liquefied Natural <em>Gas> (LNG) Tax LNG is taxed at a rate of $0.14 per gallon when used as a motor 1.5536 gallons of LNG to equal one volumetric gross gallon of gasoline. LNG is defined as natural <em>gas> for use as a motor fuel, which has been cooled to approximately -260 degrees Fahrenheit and is in a <em>liquid>

  11. Na+-driven bacterial flagellar motors.

    PubMed

    Imae, Y; Atsumi, T

    1989-12-01

    Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

  12. Hybrid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A 10,000-pound thrust hybrid rocket motor is tested at Stennis Space Center's E-1 test facility. A hybrid rocket motor is a cross between a solid rocket and a liquid-fueled engine. It uses environmentally safe solid fuel and liquid oxygen.

  13. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  14. Course 3: Modelling Motor Protein Systems

    NASA Astrophysics Data System (ADS)

    Duke, T.

    Contents 1 Making a move: Principles of energy transduction 1.1 Motor proteins and Carnot engines 1.2 Simple Brownian ratchet 1.3 Polymerization ratchet 1.4 Isothermal ratchets 1.5 Motor proteins as isothermal ratchets 1.6 Design principles for effective motors 2 Pulling together: Mechano-chemical model of actomyosin 2.1 Swinging lever-arm model 2.2 Mechano-chemical coupling 2.3 Equivalent isothermal ratchet 2.4 Many motors working together 2.5 Designed to work 2.6 Force-velocity relation 2.7 Dynamical instability and biochemical synchronization 2.8 Transient response ofmuscle 3 Motors at work: Collective properties of motor proteins 3.1 Dynamical instabilities 3.2 Bidirectional movement 3.3 Critical behaviour 3.4 Oscillations 3.5 Dynamic buckling instability 3.6 Undulation of flagella 4 Sense and sensitivity: Mechano-sensation in hearing 4.1 System performance 4.2 Mechano-sensors: Hair bundles 4.3 Active amplification 4.4 Self-tuned criticality 4.5 Motor-driven oscillations 4.6 Channel compliance and relaxation oscillations 4.7 Channel-driven oscillations 4.8 Hearing at the noise limit

  15. Failure analysis of solid rocket apogee motors

    NASA Technical Reports Server (NTRS)

    Martin, P. J.

    1972-01-01

    The analysis followed five selected motors through initial design, development, test, qualification, manufacture, and final flight reports. An audit was conducted at the manufacturing plants to complement the literature search with firsthand observations of the current philosophies and practices that affect reliability of the motors. A second literature search emphasized acquisition of spacecraft and satellite data bearing on solid motor reliability. It was concluded that present practices at the plants yield highly reliable flight hardware. Reliability can be further improved by new developments of aft-end bonding and initiator/igniter nondestructive test methods, a safe/arm device, and an insulation formulation. Minimum diagnostic instrumentation is recommended for all motor flights. Surplus motors should be used in margin testing. Criteria should be established for pressure and zone curing. The motor contractor should be represented at launch. New design analyses should be made of stretched motors and spacecraft/motor pairs.

  16. Method and apparatus for controlling multiple motors

    DOEpatents

    Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.

    1987-01-01

    A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.

  17. Neuropsychological Investigation of Motor Impairments in Autism

    PubMed Central

    Duffield, Tyler; Trontel, Haley; Bigler, Erin D.; Froehlich, Alyson; Prigge, Molly B.; Travers, Brittany; Green, Ryan R.; Cariello, Annahir N.; Cooperrider, Jason; Nielsen, Jared; Alexander, Andrew; Anderson, Jeffrey; Fletcher, P. Thomas; Lange, Nicholas; Zielinski, Brandon; Lainhart, Janet

    2013-01-01

    It is unclear how standardized neuropsychological measures of motor function relate to brain volumes of motor regions in autism spectrum disorder (ASD). An all male sample composed of 59 ASD and 30 controls (ages 5–33 years) completed three measures of motor function: strength of grip (SOG), finger tapping test (FTT), and grooved peg-board test (GPT). Likewise, all participants underwent magnetic resonance imaging with region of interest (ROI) volumes obtained to include the following regions: motor cortex (pre-central gyrus), somatosensory cortex (post-central gyrus), thalamus, basal ganglia, cerebellum and caudal middle frontal gyrus. These traditional neuropsychological measures of motor function are assumed to differ in motor complexity with GPT requiring the most followed by FTT and SOG. Performance by ASD participants on the GPT and FTT differed significantly from controls, with the largest effect size differences observed on the more complex GPT task. Differences on the SOG task between the two groups were non-significant. Since more complex motor tasks tap more complex networks, poorer GPT performance by those with ASD may reflect less efficient motor networks. There was no gross pathology observed in classic motor areas of the brain in ASD, as region of interest (ROI) volumes did not differ, but FTT was negatively related to motor cortex volume in ASD. The results suggest a hierarchical motor disruption in ASD, with difficulties evident only in more complex tasks as well as a potential anomalous size-function relation in motor cortex in ASD. PMID:23985036

  18. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy.

    PubMed

    Park, Myoung-Ok

    2017-02-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.

  19. Cross-cultural analysis of the motor development of Brazilian, Greek and Canadian infants assessed with the Alberta Infant Motor Scale.

    PubMed

    Saccani, Raquel; Valentini, Nadia Cristina

    2013-09-01

    To compare the motor development of infants from three population samples (Brazil, Canada and Greece), to investigate differences in the percentile curves of motor development in these samples, and to investigate the prevalence of motor delays in Brazilian children. Observational, descriptive and cross-sectional study with 795 Brazilian infants from zero to 18 months of age, assessed by the Alberta Infant Motor Scale (AIMS) at day care centers, nurseries, basic health units and at home. The Brazilian infants' motor scores were compared to the results of two population samples from Greece (424 infants) and Canada (2,400 infants). Descriptive statistics was used, with one-sample t-test and binomial tests, being significant p ≤ 0.05. 65.4% of Brazilian children showed typical motor development, although with lower mean scores. In the beginning of the second year of life, the differences in the motor development among Brazilian, Canadian and Greek infants were milder; at 15 months of age, the motor development became similar in the three groups. A non-linear motor development trend was observed. The lowest motor percentiles of the Brazilian sample emphasized the need for national norms in order to correctly categorize the infant motor development. The different ways of motor development may be a consequence of cultural differences in infant care.

  20. Variability of Delirium Motor Subtype Scale-Defined Delirium Motor Subtypes in Elderly Adults with Hip Fracture: A Longitudinal Study.

    PubMed

    Scholtens, Rikie M; van Munster, Barbara C; Adamis, Dimitrios; de Jonghe, Annemarieke; Meagher, David J; de Rooij, Sophia E J A

    2017-02-01

    To examine changes in motor subtype profile in individuals with delirium. Observational, longitudinal study; substudy of a multicenter, randomized controlled trial. Departments of surgery and orthopedics, Academic Medical Center and Tergooi Hospital, the Netherlands. Elderly adults acutely admitted for hip fracture surgery who developed delirium according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, for 2 days or longer (n = 76, aged 86.4 ± 6.1, 68.4% female). Delirium Motor Subtype Scale (DMSS), Delirium Rating Scale R98 (DRS-R98), comorbidity, and function. Median delirium duration was 3 days (interquartile range 2.0 days). At first assessment, the hyperactive motor subtype was most common (44.7%), followed by hypoactive motor subtype (28.9%), mixed motor subtype (19.7%), and no motor subtype (6.6%). Participants with no motor subtype had lower DRS-R98 scores than those with the other subtypes (P < .001). The DMSS-defined motor subtype of 47 (61.8%) participants changed over time. Katz Index of Activities of Daily Living, Charlson Comorbidity Index, cognitive impairment, age, sex, and delirium duration or severity were not associated with change in motor subtype. Motor subtype profile was variable in the majority of participants, although changes that occurred were often related to changes from or to no motor subtype, suggesting evolving or resolving delirium. Changes appeared not be associated with demographic or clinical characteristics, suggesting that evidence from cross-sectional studies of motor subtypes could be applied to many individuals with delirium. Further longitudinal studies should be performed to clarify the stability of motor subtypes in different clinical populations. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  1. The role of early fine and gross motor development on later motor and cognitive ability.

    PubMed

    Piek, Jan P; Dawson, Lisa; Smith, Leigh M; Gasson, Natalie

    2008-10-01

    The aim of this study was to determine whether information obtained from measures of motor performance taken from birth to 4 years of age predicted motor and cognitive performance of children once they reached school age. Participants included 33 children aged from 6 years to 11 years and 6 months who had been assessed at ages 4 months to 4 years using the ages and stages questionnaires (ASQ: [Squires, J. K., Potter, L., & Bricker, D. (1995). The ages and stages questionnaire users guide. Baltimore: Brookes]). These scores were used to obtain trajectory information consisting of the age of asymptote, maximum or minimum score, and the variance of ASQ scores. At school age, both motor and cognitive ability were assessed using the McCarron Assessment of Neuromuscular Development (MAND: [McCarron, L. (1997). McCarron assessment of neuromuscular development: Fine and gross motor abilities (revised ed.). Dallas, TX: Common Market Press.]), and the Wechsler Intelligence Scale for Children-Version IV (WISC-IV: [Wechsler, D. (2004). WISC-IV integrated technical and interpretive manual. San Antonio, Texas: Harcourt Assessment]). In contrast to previous research, results demonstrated that, although socio-economic status (SES) predicted fine motor performance and three of four cognitive domains at school age, gestational age was not a significant predictor of later development. This may have been due to the low-risk nature of the sample. After controlling for SES, fine motor trajectory information did not account for a significant proportion of the variance in school aged fine motor performance or cognitive performance. The ASQ gross motor trajectory set of predictors accounted for a significant proportion of the variance for cognitive performance once SES was controlled for. Further analysis showed a significant predictive relationship for gross motor trajectory information and the subtests of working memory and processing speed. These results provide evidence for detecting

  2. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation

    PubMed Central

    Streeter, K.A.; Baker-Herman, T.L.

    2014-01-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30 min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  3. Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories

    PubMed Central

    Herzfeld, David J.; Pastor, Damien; Haith, Adrian M.; Rossetti, Yves; Shadmehr, Reza; O’Shea, Jacinta

    2014-01-01

    We investigated the contributions of the cerebellum and the motor cortex (M1) to acquisition and retention of human motor memories in a force field reaching task. We found that anodal transcranial direct current stimulation (tDCS) of the cerebellum, a technique that is thought to increase neuronal excitability, increased the ability to learn from error and form an internal model of the field, while cathodal cerebellar stimulation reduced this error-dependent learning. In addition, cathodal cerebellar stimulation disrupted the ability to respond to error within a reaching movement, reducing the gain of the sensory-motor feedback loop. By contrast, anodal M1 stimulation had no significant effects on these variables. During sham stimulation, early in training the acquired motor memory exhibited rapid decay in error-clamp trials. With further training the rate of decay decreased, suggesting that with training the motor memory was transformed from a labile to a more stable state. Surprisingly, neither cerebellar nor M1 stimulation altered these decay patterns. Participants returned 24 hours later and were re-tested in error-clamp trials without stimulation. The cerebellar group that had learned the task with cathodal stimulation exhibited significantly impaired retention, and retention was not improved by M1 anodal stimulation. In summary, non-invasive cerebellar stimulation resulted in polarity-dependent up- or down-regulation of error-dependent motor learning. In addition, cathodal cerebellar stimulation during acquisition impaired the ability to retain the motor memory overnight. Thus, in the force field task we found a critical role for the cerebellum in both formation of motor memory and its retention. PMID:24816533

  4. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.; Nyilas, Charles P.; Denmeade, Timothy J.

    1997-01-01

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  5. A balanced motor primitive framework can simultaneously explain motor learning in unimanual and bimanual movements.

    PubMed

    Takiyama, Ken; Sakai, Yutaka

    2017-02-01

    Certain theoretical frameworks have successfully explained motor learning in either unimanual or bimanual movements. However, no single theoretical framework can comprehensively explain motor learning in both types of movement because the relationship between these two types of movement remains unclear. Although our recent model of a balanced motor primitive framework attempted to simultaneously explain motor learning in unimanual and bimanual movements, this model focused only on a limited subset of bimanual movements and therefore did not elucidate the relationships between unimanual movements and various bimanual movements. Here, we extend the balanced motor primitive framework to simultaneously explain motor learning in unimanual and various bimanual movements as well as the transfer of learning effects between unimanual and various bimanual movements; these phenomena can be simultaneously explained if the mean activity of each primitive for various unimanual movements is balanced with the corresponding mean activity for various bimanual movements. Using this balanced condition, we can reproduce the results of prior behavioral and neurophysiological experiments. Furthermore, we demonstrate that the balanced condition can be implemented in a simple neural network model. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Border Injuries: An Analysis of Prehospital Demographics, Mechanisms, and Patterns of Injuries Encountered by USBP EMS Agents in the El Paso (Texas USA) Sector.

    PubMed

    Baker, Russell A

    2017-08-01

    Study Objective The aim of this study was to evaluate Emergency Medical Services (EMS), use, injury mechanisms, prehospital assessments, and injuries among those receiving aid from the United States Border Patrol (USBP) in the El Paso (Texas USA) Sector. This is a time-series, retrospective analysis of all prehospital data for injuries among patients receiving care from USBP EMS on the US Mexico border in the El Paso sector from February 6, 2014 to February 6, 2016. A total of 473 documented EMS encounters occurred in this two-year period and demonstrated a male gender predominance (male 63%; female 37%) with the most prominent ages between 22-40 years old. The most prevalent EMS call types were medical (55%) and trauma (42%). The most common chief complaints were an injured or painful extremity (35%) and rash (13%). The most common USBP EMS provider primary impression was traumatic injury (34%), followed by fever/infection (17%) and extremity injury (7%); however, the most common secondary impression was also extremity injury (20%). The most common mechanism of injury was fall (26%) and motor vehicle accident (MVA; 22%). The USBP EMS was the first provider on scene in 96% of the MVAs. The author reports on injury patterns, mechanisms, chief complaints, EMS impressions, as well as demographics of patients reporting to USBP EMS. A knowledge of these injury patterns will be useful to EMS administrators and physicians along the US Mexico border. Baker RA . Border injuries: an analysis of prehospital demographics, mechanisms, and patterns of injuries encountered by USBP EMS agents in the El Paso (Texas USA) Sector. Prehosp Disaster Med. 2017;32(4):431-436.

  7. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults

    PubMed Central

    King, Bradley R.; Fogel, Stuart M.; Albouy, Geneviève; Doyon, Julien

    2013-01-01

    As the world's population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL) and motor adaptation (MA) with respect to behavioral, neurological, and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning. PMID:23616757

  8. High-Temperature Switched-Reluctance Electric Motor

    NASA Technical Reports Server (NTRS)

    Montague, Gerald; Brown, Gerald; Morrison, Carlos; Provenza, Andy; Kascak, Albert; Palazzolo, Alan

    2003-01-01

    An eight-pole radial magnetic bearing has been modified into a switched-reluctance electric motor capable of operating at a speed as high as 8,000 rpm at a temperature as high as 1,000 F (=540 C). The motor (see figure) is an experimental prototype of starter-motor/generator units that have been proposed to be incorporated into advanced gas turbine engines and that could operate without need for lubrication or active cooling. The unique features of this motor are its electromagnet coils and, to some extent, its control software. Heretofore, there has been no commercial-off-the-shelf wire capable of satisfying all of the requirements for fabrication of electromagnet coils capable of operation at temperatures up to 1,000 F (=540 C). The issues addressed in the development of these electromagnet coils included thermal expansion, oxidation, pliability to small bend radii, micro-fretting, dielectric breakdown, tensile strength, potting compound, thermal conduction, and packing factor. For a test, the motor was supported, along with a rotor of 18 lb (.8-kg) mass, 3-in. (.7.6-cm) diameter, 21-in. (.53-cm) length, on bearings packed with high-temperature grease. The motor was located at the mid span of the rotor and wrapped with heaters. The motor stator was instrumented with thermocouples. At the time of reporting the information for this article, the motor had undergone 14 thermal cycles between room temperature and 1,000 F (.540 C) and had accumulated operating time >27.5 hours at 1,000 F (=540 C). The motor-controller hardware includes a personal computer equipped with analog-to-digital input and digital-to-analog output cards. The controller software is a C-language code that implements a switched-reluctance motor-control principle: that is, it causes the coils to be energized in a sequence timed to generate a rotating magnetic flux that creates a torque on a scalloped rotor. The controller can operate in an open- or closed-loop mode. In addition, the software has

  9. [Anticipatory postural adjustment in bimanual unloading: role of the motor cortex in motor learning].

    PubMed

    Kazennikov, O V; Solopova, I A; Talis, V L; Ioffe, M E

    2006-01-01

    The role of the motor cortex was investigated during learning unusual postural adjustment. Healthy subjects held their right (postural) forearm in a horizontal position while supporting a 1-kG load via an electromagnet. The postural forearm position was perturbed by the load release triggered by other elbow voluntary movement. Repetition of the imposed unloading test resulted in a progressive reduction of the maximal forearm rotation, accompanied by the anticipatory decrease in m. biceps brachii activity (learning). Control situation consisted of the voluntary forearm loading. Using the transcranial magnetic stimulation we examined changes in the motor evoked potential of the m. biceps brahii at the beginning and at the end of learning. The evoked potential amplitude did not significantly change in process of the decrease of m. biceps brachii activity. At the end of learning, motor evoked potential / baseline electromyogram ratio increased as compared to the beginning of learning and to the control situation. The results highlight the fundamental role of the motor cortex in suppression of synergies which interfere with formation of a new coordination during motor learning.

  10. Busca de estruturas em grandes escalas em altos redshifts

    NASA Astrophysics Data System (ADS)

    Boris, N. V.; Sodré, L., Jr.; Cypriano, E.

    2003-08-01

    A busca por estruturas em grandes escalas (aglomerados de galáxias, por exemplo) é um ativo tópico de pesquisas hoje em dia, pois a detecção de um único aglomerado em altos redshifts pode por vínculos fortes sobre os modelos cosmológicos. Neste projeto estamos fazendo uma busca de estruturas distantes em campos contendo pares de quasares próximos entre si em z Â3 0.9. Os pares de quasares foram extraídos do catálogo de Véron-Cetty & Véron (2001) e estão sendo observados com os telescópios: 2,2m da University of Hawaii (UH), 2,5m do Observatório de Las Campanas e com o GEMINI. Apresentamos aqui a análise preliminar de um par de quasares observado nos filtros i'(7800 Å) e z'(9500 Å) com o GEMINI. A cor (i'-z') mostrou-se útil para detectar objetos "early-type" em redshifts menores que 1.1. No estudo do par 131046+0006/J131055+0008, com redshift ~ 0.9, o uso deste método possibilitou a detecção de sete objetos candidatos a galáxias "early-type". Num mapa da distribuição projetada dos objetos para 22 < i' < 25 observou-se que estas galáxias estão localizadas próximas a um dos quasares e há indícios de que estejam aglomeradas dentro de um área de ~ 6 arcmin2. Se esse for o caso, estes objetos seriam membros de uma estrutura em grande escala. Um outro argumento em favor dessa hipótese é que eles obedecem uma relação do tipo Kormendy (raio equivalente X brilho superficial dentro desse raio), como a apresentada pelas galáxias elípticas em z = 0.

  11. Motorized control for mirror mount apparatus

    DOEpatents

    Cutburth, Ronald W.

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  12. Neurofeedback-based functional near-infrared spectroscopy upregulates motor cortex activity in imagined motor tasks

    PubMed Central

    Lapborisuth, Pawan; Zhang, Xian; Noah, Adam; Hirsch, Joy

    2017-01-01

    Abstract. Neurofeedback is a method for using neural activity displayed on a computer to regulate one’s own brain function and has been shown to be a promising technique for training individuals to interact with brain–machine interface applications such as neuroprosthetic limbs. The goal of this study was to develop a user-friendly functional near-infrared spectroscopy (fNIRS)-based neurofeedback system to upregulate neural activity associated with motor imagery, which is frequently used in neuroprosthetic applications. We hypothesized that fNIRS neurofeedback would enhance activity in motor cortex during a motor imagery task. Twenty-two participants performed active and imaginary right-handed squeezing movements using an elastic ball while wearing a 98-channel fNIRS device. Neurofeedback traces representing localized cortical hemodynamic responses were graphically presented to participants in real time. Participants were instructed to observe this graphical representation and use the information to increase signal amplitude. Neural activity was compared during active and imaginary squeezing with and without neurofeedback. Active squeezing resulted in activity localized to the left premotor and supplementary motor cortex, and activity in the motor cortex was found to be modulated by neurofeedback. Activity in the motor cortex was also shown in the imaginary squeezing condition only in the presence of neurofeedback. These findings demonstrate that real-time fNIRS neurofeedback is a viable platform for brain–machine interface applications. PMID:28680906

  13. Neurofeedback-based functional near-infrared spectroscopy upregulates motor cortex activity in imagined motor tasks.

    PubMed

    Lapborisuth, Pawan; Zhang, Xian; Noah, Adam; Hirsch, Joy

    2017-04-01

    Neurofeedback is a method for using neural activity displayed on a computer to regulate one's own brain function and has been shown to be a promising technique for training individuals to interact with brain-machine interface applications such as neuroprosthetic limbs. The goal of this study was to develop a user-friendly functional near-infrared spectroscopy (fNIRS)-based neurofeedback system to upregulate neural activity associated with motor imagery, which is frequently used in neuroprosthetic applications. We hypothesized that fNIRS neurofeedback would enhance activity in motor cortex during a motor imagery task. Twenty-two participants performed active and imaginary right-handed squeezing movements using an elastic ball while wearing a 98-channel fNIRS device. Neurofeedback traces representing localized cortical hemodynamic responses were graphically presented to participants in real time. Participants were instructed to observe this graphical representation and use the information to increase signal amplitude. Neural activity was compared during active and imaginary squeezing with and without neurofeedback. Active squeezing resulted in activity localized to the left premotor and supplementary motor cortex, and activity in the motor cortex was found to be modulated by neurofeedback. Activity in the motor cortex was also shown in the imaginary squeezing condition only in the presence of neurofeedback. These findings demonstrate that real-time fNIRS neurofeedback is a viable platform for brain-machine interface applications.

  14. High efficiency motor selection handbook

    NASA Astrophysics Data System (ADS)

    McCoy, Gilbert A.; Litman, Todd; Douglass, John G.

    1990-10-01

    Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.

  15. Brief Assessment of Motor Function: Content Validity and Reliability of the Upper Extremity Gross Motor Scale

    ERIC Educational Resources Information Center

    Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn

    2011-01-01

    Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…

  16. Assessment of motor functioning in the preschool period.

    PubMed

    Piek, Jan P; Hands, Beth; Licari, Melissa K

    2012-12-01

    The assessment of motor functioning in young children has become increasingly important in recent years with the acknowledgement that motor impairment is linked with cognitive, language, social and emotional difficulties. However, there is no one gold standard assessment tool to investigate motor ability in children. The aim of the current paper was to discuss the issues related to the assessment of motor ability in young pre-school children and to provide guidelines on the best approach for motor assessment. The paper discusses the maturational changes in brain development at the preschool level in relation to motor ability. Other issues include sex differences in motor ability at this young age, and evidence for this in relation to sociological versus biological influences. From the previous literature it is unclear what needs to be assessed in relation to motor functioning. Should the focus be underlying motor processes or movement skill assessment? Several key assessment tools are discussed that produce a general measure of motor performance followed by a description of tools that assess specific skills, such as fine and gross motor, ball and graphomotor skills. The paper concludes with recommendations on the best approach in assessing motor function in pre-school children.

  17. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  18. A switching cost for motor planning

    PubMed Central

    Lefèvre, Philippe

    2016-01-01

    Movement planning consists of choosing the intended endpoint of the movement and selecting the motor program that will bring the effector on the endpoint. It is widely accepted that movement endpoint is updated on a trial-by-trial basis with respect to the observed errors and that the motor program for a given movement follows the rules of optimal feedback control. In this article, we show clear limitations of these theories. First, participants in the current study could not tune their motor program appropriately for each individual trial. This was true even when the participants selected the width of the target that they reached toward or when they had learned the appropriate motor program previously. These data are compatible with the existence of a switching cost for motor planning, which relates to the drop in performance due to an imposed switch of motor programs. This cost of switching shares many features of costs reported in cognitive task switching experiments and, when tested in the same participants, was correlated with it. Second, we found that randomly changing the width of a target over the course of a reaching experiment prevents the motor system from updating the endpoint of movements on the basis of the performance on the previous trial if the width of the target has changed. These results provide new insights into the process of motor planning and how it relates to optimal control theory and to an action selection based on the reward consequences of the motor program rather than that based on the observed error. PMID:27655964

  19. 47 CFR 32.6112 - Motor vehicle expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Motor vehicle expense. 32.6112 Section 32.6112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6112 Motor vehicle expense. (a... motor vehicles, such as chauffeurs and shuttle bus drivers. The costs of users of motor vehicles whose...

  20. 47 CFR 32.6112 - Motor vehicle expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Motor vehicle expense. 32.6112 Section 32.6112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6112 Motor vehicle expense. (a... motor vehicles, such as chauffeurs and shuttle bus drivers. The costs of users of motor vehicles whose...

  1. 47 CFR 32.6112 - Motor vehicle expense.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Motor vehicle expense. 32.6112 Section 32.6112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6112 Motor vehicle expense. (a... motor vehicles, such as chauffeurs and shuttle bus drivers. The costs of users of motor vehicles whose...

  2. Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals.

    PubMed

    Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T

    2018-06-01

    Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.

  3. The aging neuromuscular system and motor performance

    PubMed Central

    Keenan, Kevin G.

    2016-01-01

    Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults. PMID:27516536

  4. A Squirrel Cage Type Electric Motor Rotor Assembly.

    DTIC Science & Technology

    1996-09-05

    cage motor, but also provides efficiencies approaching those of permanent magnet motors . With the above and other objects in view, as will...and active motor life relative to known permanent magnet motors . Referring to FIG. 4, there is illustrated an alternative embodiment in which...part the.known advantages of a squirrel cage motor, and further provides improved efficiencies approaching those of permanent magnet motors . It is to

  5. Cross-cultural analysis of the motor development of Brazilian, Greek and Canadian infants assessed with the Alberta Infant Motor Scale

    PubMed Central

    Saccani, Raquel; Valentini, Nadia Cristina

    2013-01-01

    OBJECTIVE: To compare the motor development of infants from three population samples (Brazil, Canada and Greece), to investigate differences in the percentile curves of motor development in these samples, and to investigate the prevalence of motor delays in Brazilian children. METHODS: Observational, descriptive and cross-sectional study with 795 Brazilian infants from zero to 18 months of age, assessed by the Alberta Infant Motor Scale (AIMS) at day care centers, nurseries, basic health units and at home. The Brazilian infants' motor scores were compared to the results of two population samples from Greece (424 infants) and Canada (2,400 infants). Descriptive statistics was used, with one-sample t-test and binomial tests, being significant p≤0.05. RESULTS: 65.4% of Brazilian children showed typical motor development, although with lower mean scores. In the beginning of the second year of life, the differences in the motor development among Brazilian, Canadian and Greek infants were milder; at 15 months of age, the motor development became similar in the three groups. A non-linear motor development trend was observed. CONCLUSIONS: The lowest motor percentiles of the Brazilian sample emphasized the need for national norms in order to correctly categorize the infant motor development. The different ways of motor development may be a consequence of cultural differences in infant care. PMID:24142318

  6. Spherically Actuated Motor

    NASA Technical Reports Server (NTRS)

    Peeples, Steven

    2015-01-01

    A three degree of freedom (DOF) spherical actuator is proposed that will replace functions requiring three single DOF actuators in robotic manipulators providing space and weight savings while reducing the overall failure rate. Exploration satellites, Space Station payload manipulators, and rovers requiring pan, tilt, and rotate movements need an actuator for each function. Not only does each actuator introduce additional failure modes and require bulky mechanical gimbals, each contains many moving parts, decreasing mean time to failure. A conventional robotic manipulator is shown in figure 1. Spherical motors perform all three actuation functions, i.e., three DOF, with only one moving part. Given a standard three actuator system whose actuators have a given failure rate compared to a spherical motor with an equal failure rate, the three actuator system is three times as likely to fail over the latter. The Jet Propulsion Laboratory reliability studies of NASA robotic spacecraft have shown that mechanical hardware/mechanism failures are more frequent and more likely to significantly affect mission success than are electronic failures. Unfortunately, previously designed spherical motors have been unable to provide the performance needed by space missions. This inadequacy is also why they are unavailable commercially. An improved patentable spherically actuated motor (SAM) is proposed to provide the performance and versatility required by NASA missions.

  7. Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial.

    PubMed

    Sütbeyaz, Serap; Yavuzer, Gunes; Sezer, Nebahat; Koseoglu, B Füsun

    2007-05-01

    To evaluate the effects of mirror therapy, using motor imagery training, on lower-extremity motor recovery and motor functioning of patients with subacute stroke. Randomized, controlled, assessor-blinded, 4-week trial, with follow-up at 6 months. Rehabilitation education and research hospital. A total of 40 inpatients with stroke (mean age, 63.5 y), all within 12 months poststroke and without volitional ankle dorsiflexion. Thirty minutes per day of the mirror therapy program, consisting of nonparetic ankle dorsiflexion movements or sham therapy, in addition to a conventional stroke rehabilitation program, 5 days a week, 2 to 5 hours a day, for 4 weeks. The Brunnstrom stages of motor recovery, spasticity assessed by the Modified Ashworth Scale (MAS), walking ability (Functional Ambulation Categories [FAC]), and motor functioning (motor items of the FIM instrument). The mean change score and 95% confidence interval (CI) of the Brunnstrom stages (mean, 1.7; 95% CI, 1.2-2.1; vs mean, 0.8; 95% CI, 0.5-1.2; P=.002), as well as the FIM motor score (mean, 21.4; 95% CI, 18.2-24.7; vs mean, 12.5; 95% CI, 9.6-14.8; P=.001) showed significantly more improvement at follow-up in the mirror group compared with the control group. Neither MAS (mean, 0.8; 95% CI, 0.4-1.2; vs mean, 0.3; 95% CI, 0.1-0.7; P=.102) nor FAC (mean, 1.7; 95% CI, 1.2-2.1; vs mean, 1.5; 95% CI, 1.1-1.9; P=.610) showed a significant difference between the groups. Mirror therapy combined with a conventional stroke rehabilitation program enhances lower-extremity motor recovery and motor functioning in subacute stroke patients.

  8. The mirror therapy program enhances upper-limb motor recovery and motor function in acute stroke patients.

    PubMed

    Lee, Myung Mo; Cho, Hwi-Young; Song, Chang Ho

    2012-08-01

    The purpose of this study was to evaluate the effects of the mirror therapy program on upper-limb motor recovery and motor function in patients with acute stroke. Twenty-six patients who had an acute stroke within 6 mos of study commencement were assigned to the experimental group (n = 13) or the control group (n = 13). Both experimental and control group members participated in a standard rehabilitation program, but only the experimental group members additionally participated in mirror therapy program, for 25 mins twice a day, five times a week, for 4 wks. The Fugl-Meyer Assessment, Brunnstrom motor recovery stage, and Manual Function Test were used to assess changes in upper-limb motor recovery and motor function after intervention. In upper-limb motor recovery, the scores of Fugl-Meyer Assessment (by shoulder/elbow/forearm items, 9.54 vs. 4.61; wrist items, 2.76 vs. 1.07; hand items, 4.43 vs. 1.46, respectively) and Brunnstrom stages for upper limb and hand (by 1.77 vs. 0.69 and 1.92 vs. 0.50, respectively) were improved more in the experimental group than in the control group (P < 0.05). In upper-limb motor function, the Manual Function Test score (by shoulder item, 5.00 vs. 2.23; hand item, 5.07 vs. 0.46, respectively) was significantly increased in the experimental group compared with the control group (P < 0.01). No significant differences were found between the groups for the coordination items in Fugl-Meyer Assessment. This study confirms that mirror therapy program is an effective intervention for upper-limb motor recovery and motor function improvement in acute stroke patients. Additional research on mirror therapy program components, intensity, application time, and duration could result in it being used as a standardized form of hand rehabilitation in clinics and homes.

  9. 32 CFR 935.138 - Motor bus operation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Motor bus operation. 935.138 Section 935.138 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Motor Vehicle Code § 935.138 Motor bus operation. Each person operating a motor...

  10. 32 CFR 935.138 - Motor bus operation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Motor bus operation. 935.138 Section 935.138 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Motor Vehicle Code § 935.138 Motor bus operation. Each person operating a motor...

  11. 75 FR 39045 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Corporation and Toyota Motor Corporation, including on-site leased workers from Corestaff, ABM Janitorial, and...

  12. Open-Ended Electric Motor

    ERIC Educational Resources Information Center

    Gould, Mauri

    1975-01-01

    Presents complete instructions for assembling an electric motor which does not require large amounts of power to operate and which is inexpensive as well as reliable. Several open-ended experiments with the motor are included as well as information for obtaining a kit of parts and instructions. (BR)

  13. Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Friedrich, Elisabeth V. C.; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Individuals with severe motor impairment can use event-related desynchronization (ERD) based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that users control with motor imagery tasks (“SMR-AdBCI”) have proven effective for healthy users. We aim to find an improved configuration of such an adaptive ERD-based BCI for individuals with severe motor impairment as a result of spinal cord injury (SCI) or stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (“Auto-AdBCI”) could allow for higher control performance than a conventional SMR-AdBCI. To answer this question we performed offline analyses on two sessions (21 data sets total) of cue-guided, five-class electroencephalography (EEG) data recorded from individuals with SCI or stroke. On data from the twelve individuals in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI. We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen data from the nine participants in Session 2 and compared the results. On the unseen data of Session 2 from individuals with SCI or stroke, we found that automatically selecting a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI) significantly (p < 0.01) improved classification performance compared to an adaptive ERD-based BCI that only used motor imagery tasks (SMR-AdBCI; average accuracy of 75.7 vs. 66.3%). PMID:25368546

  14. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  15. 47 CFR 32.2112 - Motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed and...

  16. 47 CFR 32.2112 - Motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed and...

  17. 47 CFR 32.2112 - Motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed and...

  18. 47 CFR 32.2112 - Motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed and...

  19. Agricultural Electricity. Electric Motors. Student Manual.

    ERIC Educational Resources Information Center

    Benson, Robert T.

    Addressed to the student, this manual, which includes supplementary diagrams, discusses the following topics and principles: Electromagnetic fields, electromagnets, parts of an electric motor, determining speed of an electric motor, types of electric motors in common use (split-phase, capacitor, repulsion-induction, three-phase), the electric…

  20. Motor Development: Manual of Alternative Procedures.

    ERIC Educational Resources Information Center

    McCormack, James E.

    The manual of alternative procedures for teaching handicapped children focuses on programming, planning, and implementing training in the gross motor (posture, limb control, locomotion) and fine motor (facial, digital) skills. The manual consists of the following sections: specific teaching tactics commonly used in motor training stiuations…

  1. Gross Motor Performance and Self-Perceived Motor Competence in Children with Emotional, Behavioural, and Pervasive Developmental Disorders: A Review

    ERIC Educational Resources Information Center

    Emck, Claudia; Bosscher, Ruud; Beek, Peter; Doreleijers, Theo

    2009-01-01

    Aims: Motor performance and self-perceived motor competence have a great impact on the psychosocial development of children in general. In this review, empirical studies of gross motor performance and self-perception of motor competence in children with emotional (depression and anxiety), behavioural, and pervasive developmental disorders are…

  2. An Evaluation of Electric Motors for Ship Propulsion

    DTIC Science & Technology

    2003-06-01

    AIM). Permanent magnet motors are more power dense than a comparatively sized in- duction motor. The permanent magnet motor has been chosen to...study. They include the axial flux, the ra- dial flux, and the transverse flux permanent magnet motors . Each motor has its unique advantages...to be ideal for ship propulsion, work is ongoing to develop the PMSM for ship propulsion. Permanent magnet motors are expected to have significant

  3. 36 CFR 261.13 - Motor vehicle use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Motor vehicle use. 261.13... General Prohibitions § 261.13 Motor vehicle use. After National Forest System roads, National Forest... have been identified on a motor vehicle use map, it is prohibited to possess or operate a motor vehicle...

  4. 36 CFR 261.13 - Motor vehicle use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Motor vehicle use. 261.13... General Prohibitions § 261.13 Motor vehicle use. After National Forest System roads, National Forest... have been identified on a motor vehicle use map, it is prohibited to possess or operate a motor vehicle...

  5. 36 CFR 261.13 - Motor vehicle use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Motor vehicle use. 261.13... General Prohibitions § 261.13 Motor vehicle use. After National Forest System roads, National Forest... have been identified on a motor vehicle use map, it is prohibited to possess or operate a motor vehicle...

  6. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  7. Unstable force analysis for induction motor eccentricity

    NASA Astrophysics Data System (ADS)

    Han, Xu; Palazzolo, Alan

    2016-05-01

    The increasing popularity of motors in machinery trains has led to an intensified interest in the forces they produce that may influence machinery vibration. Motor design typically assumes a uniform air gap, however in practice all motors operate with the rotor slightly displaced from the motor centerline in what is referred to as an eccentric position. Rotor center eccentricity can cause a radially unbalanced magnetic field when the motor is operating. This will results in both a radial force pulling the motor further away from the center, and a tangential force which can induce a vibration stability problem. In this paper, a magnetic equivalent circuit MEC modeling method is proposed to calculate both the radial and tangential motor eccentric force. The treatment of tangential force determination is rarely addressed, but it is very important for rotordynamic vibration stability evaluation. The proposed model is also coupled with the motor electric circuit model to provide capability for transient vibration simulations. FEM is used to verify the MEC model. A parametric study is performed on the motor radial and tangential eccentric forces. Also a Jeffcott rotor model is used to study the influence of the motor eccentric force on mechanical vibration stability and nonlinear behavior. Furthermore, a stability criteria for the bearing damping is provided. The motor radial and tangential eccentric forces are both curved fitted to include their nonlinearity in time domain transient simulation for both a Jeffcott rotor model and a geared machinery train with coupled torsional-lateral motion. Nonlinear motions are observed, including limit cycles and bifurcation induced vibration amplitude jumps.

  8. Mountain Plains Learning Experience Guide: Electric Motor Repair.

    ERIC Educational Resources Information Center

    Ziller, T.

    This Electric Motor Repair Course is designed to provide the student with practical information for winding, repairing, and troubleshooting alternating current and direct current motors, and controllers. The course is comprised of eight units: (1) Electric Motor Fundamentals, (2) Rewinding, (3) Split-phase Induction Motors, (4) Capacitor Motors,…

  9. Dependence of the paired motor unit analysis on motor unit discharge characteristics in the human tibialis anterior muscle

    PubMed Central

    Stephenson, Jennifer L.; Maluf, Katrina S.

    2011-01-01

    The paired motor unit analysis provides in vivo estimates of the magnitude of persistent inward currents (PIC) in human motoneurons by quantifying changes in the firing rate (ΔF) of an earlier recruited (reference) motor unit at the time of recruitment and derecruitment of a later recruited (test) motor unit. This study assessed the variability of ΔF estimates, and quantified the dependence of ΔF on the discharge characteristics of the motor units selected for analysis. ΔF was calculated for 158 pairs of motor units recorded from nine healthy individuals during repeated submaximal contractions of the tibialis anterior muscle. The mean (SD) ΔF was 3.7 (2.5) pps (range −4.2 to 8.9 pps). The median absolute difference in ΔF for the same motor unit pair across trials was 1.8 pps, and the minimal detectable change in ΔF required to exceed measurement error was 4.8 pps. ΔF was positively related to the amount of discharge rate modulation in the reference motor unit (r2=0.335; P<0.001), and inversely related to the rate of increase in discharge rate (r2=0.125; P<0.001). A quadratic function provided the best fit for relations between ΔF and the time between recruitment of the reference and test motor units (r2=0.229, P<0.001), the duration of test motor unit activity (r2=0.110, P<0.001), and the recruitment threshold of the test motor unit (r2=0.237, P<0.001). Physiological and methodological contributions to the variability in ΔF estimates of PIC magnitude are discussed, and selection criteria to reduce these sources of variability are suggested for the paired motor unit analysis. PMID:21459110

  10. 33 CFR 159.69 - Motor ratings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Motor ratings. 159.69 Section 159.69 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.69 Motor ratings. Motors must be rated...

  11. 33 CFR 159.69 - Motor ratings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Motor ratings. 159.69 Section 159.69 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.69 Motor ratings. Motors must be rated...

  12. 10 CFR 431.405 - Exported electric motors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Exported electric motors. 431.405 Section 431.405 Energy... EQUIPMENT General Provisions § 431.405 Exported electric motors. Under Sections 330 and 345 of the Act, this part does not apply to any electric motor if: (a) Such electric motor is manufactured, sold, or held...

  13. Fetal motor activity and maternal cortisol

    PubMed Central

    DiPietro, Janet A.; Kivlighan, Katie T.; Costigan, Kathleen A.; Laudenslager, Mark L.

    2009-01-01

    The contemporaneous association between maternal salivary cortisol and fetal motor activity was examined at 32 and 36 weeks gestation. Higher maternal cortisol was positively associated with the amplitude of fetal motor activity at 32 weeks, r(48) = .39, p < .01, and 36 weeks, r(77)=.27, p < .05, and the amount of time fetuses spent moving at 32 weeks during the 50 minute observation period, r(48) = 33, p < .05. Observation of periods of unusually intense fetal motor activity were more common in fetuses of women with higher cortisol, Mann-Whitney U = 58.5. There were no sex differences in fetal motor activity, but the associations between maternal cortisol and fetal motor amplitude and overall movement were significantly stronger for male than female fetuses. PMID:19630038

  14. Electronically commutated motors for vehicle applications

    NASA Astrophysics Data System (ADS)

    Echolds, E. F.

    1980-02-01

    Two permanent magnet electronically commutated motors for electric vehicle traction are discussed. One, based on existing technology, produces 23 kW (peak) at 26,000 rpm, and 11 kW continuous at 18,000 rpm. The motor has a conventional design: a four-pole permanent magnet rotor and a three-phase stator similar to those used on ordinary induction motors. The other, advanced technology motor, is rated at 27 kW (peak) at 14,000 rpm, and 11 kW continuous at 10,500 rpm. The machine employs a permanent magnet rotor and a novel ironless stator design in an axial air gap, homopolar configuration. Comparison of the new motors with conventional brush type machines indicates potential for substantial cost savings.

  15. A switching cost for motor planning.

    PubMed

    Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2016-12-01

    Movement planning consists of choosing the intended endpoint of the movement and selecting the motor program that will bring the effector on the endpoint. It is widely accepted that movement endpoint is updated on a trial-by-trial basis with respect to the observed errors and that the motor program for a given movement follows the rules of optimal feedback control. In this article, we show clear limitations of these theories. First, participants in the current study could not tune their motor program appropriately for each individual trial. This was true even when the participants selected the width of the target that they reached toward or when they had learned the appropriate motor program previously. These data are compatible with the existence of a switching cost for motor planning, which relates to the drop in performance due to an imposed switch of motor programs. This cost of switching shares many features of costs reported in cognitive task switching experiments and, when tested in the same participants, was correlated with it. Second, we found that randomly changing the width of a target over the course of a reaching experiment prevents the motor system from updating the endpoint of movements on the basis of the performance on the previous trial if the width of the target has changed. These results provide new insights into the process of motor planning and how it relates to optimal control theory and to an action selection based on the reward consequences of the motor program rather than that based on the observed error. Copyright © 2016 the American Physiological Society.

  16. Load-dependent assembly of the bacterial flagellar motor.

    PubMed

    Tipping, Murray J; Delalez, Nicolas J; Lim, Ren; Berry, Richard M; Armitage, Judith P

    2013-08-20

    It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the number of torque-generating units bound to the flagellar motor also depends on the external mechanical load, with fewer stators at lower loads. Stalled motors contained at least as many stators as rotating motors at high load, indicating that rotation is unnecessary for stator binding. Mutant stators incapable of generating torque could not be detected around the motor. We speculate that a component of the bacterial flagellar motor senses external load and mediates the strength of stator binding to the rest of the motor. The transition between liquid living and surface living is important in the life cycles of many bacteria. In this paper, we describe how the flagellar motor, used by bacteria for locomotion through liquid media and across solid surfaces, is capable of adjusting the number of bound stator units to better suit the external load conditions. By stalling motors using external magnetic fields, we also show that rotation is not required for maintenance of stators around the motor; instead, torque production is the essential factor for motor stability. These new results, in addition to previous data, lead us to hypothesize that the motor stators function as mechanosensors as well as functioning as torque-generating units.

  17. Development of Torsional and Linear Piezoelectrically Driven Motors

    NASA Technical Reports Server (NTRS)

    Duong, Khanh; Newton, David; Garcia, Ephrahim

    1996-01-01

    The development of rotary and linear inchworm-motors using piezoelectric actuators is presented. The motors' design has the advantage of a macro and micro stepper motor with high load and speed. The torsional design is capable of fast angular positioning with micro level accuracy. Additionally, the rotary motor, as designed, can be used as a clutch/brake mechanism. Constructed prototype motors of both types along with their characteristics are presented. The torsional motor consists of a torsional section that provides angular displacement and torque, and two alternating clamping sections which provide the holding force. The motor relies on the principal piezoelectric coupling coefficient (d33) with no torsional elements, increasing its torque capability. The linear motor consists of a longitudinal vibrator that provides displacement and load, and two alternating clamping sections which provide the holding force. This design eliminates bending moment, tension and shear applied to the actuator elements, increase its load capability and life. Innovative flexure designs have been introduced for both motor types. Critical issues that affect the design and performance of the motors are explored and discussed. Experiments are performed demonstrating the motor prototypes based on the aforementioned design considerations.

  18. 50 CFR 35.5 - Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft, mechanical transport, structures, and installations. 35.5 Section 35.5 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUG...

  19. Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex.

    PubMed

    Deecke, L

    1987-01-01

    Topographical studies in humans of the Bereitschaftspotential (BP, or readiness potential, as averaged from the electroencephalogram) and the Bereitschaftsmagnetfeld (BM, or readiness magnetic field, as averaged from the magnetoencephalogram) revealed a widespread distribution of motor preparation over both hemispheres even before unilateral movement. This indicates the existence of several generators responsible for the BP, including generators in the ipsilateral hemisphere, which is in agreement with measurements of regional cerebral blood flow or regional cerebral energy metabolism. Nevertheless, two principal generators seem to prevail: (1) An early generator, starting its activity 1s or more before the motor act, with its maximum at the vertex. For this and other reasons, early BP generation probably stems from cortical tissue representing or including the supplementary motor area (SMA). (2) A later generator, starting its activity about 0.5s before the onset of movement and biased towards the contralateral hemisphere (contralateral preponderance of negativity, CPN). For unilateral finger movements the CPN succeeds the BP's initial bilateral symmetry in the later preparation period. Thus, this lateralized BP component probably stems from the primary motor area, MI (area 4, hand representation). While regional cerebral blood flow or regional cerebral energy metabolism show that the SMA is active in conjunction with motor acts, these data do not permit the conclusion that SMA activity precedes motor acts. This can only be shown by the Bereitschaftspotential, which proves that SMA activity occurs before the onset of movement and, what is more, before the onset of MI activity. This important order of events (first SMA, then MI activation) has been elucidated by our BP studies. It gives the SMA an important functional role: the initiation of voluntary movement. The recording of movement-related potentials associated with manual hand-tracking and motor learning

  20. [Distal hereditary motor neuropathy].

    PubMed

    Devic, P; Petiot, P

    2011-11-01

    Distal hereditary motor neuropathy (dHMN), also known as spinal muscular atrophy, represents a group of clinically and genetically heterogeneous diseases caused by degenerations of spinal motor neurons and leading to distal muscle weakness and wasting. Nerve conduction studies reveal a pure motor axonopathy and needle examination shows chronic denervation. dHMN were initially subdivided into seven subtypes according to mode of inheritance, age at onset, and clinical evolution. Recent studies have shown that these subtypes are still heterogeneous at the molecular genetic level and novel clinical and genetic entities have been characterized. To date, mutations in 11 different genes have been identified for autosomal-dominant, autosomal-recessive, and X-linked recessive dHMN. Most of the genes encode protein involved in housekeeping functions, endosomal trafficking, axonal transport, translation synthesis, RNA processing, oxidative stress response and apoptosis. The pathophysiological mechanisms underlying dHMN seem to be related to the "length-dependent" death of motor neurons of the anterior horn of the spinal cord, likely because their large axons have higher metabolic requirements for maintenance. dHMN remain heterogeneous at the clinical and molecular genetic level. The molecular pathomechanisms explaining why mutations in these ubiquitously expressed housekeeping genes result in the selective involvement of spinal motor neurons remain to be unravelled. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. 16 CFR 1505.50 - Stalled motor testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Stalled motor testing. 1505.50 Section 1505... USE BY CHILDREN Policies and Interpretations § 1505.50 Stalled motor testing. (a) § 1505.6(e)(4)(ii) requires that a motor-operated toy be tested with the motor stalled if the construction of the toy is such...

  2. 46 CFR 120.320 - Generators and motors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Generators and motors. 120.320 Section 120.320 Shipping... and Distribution Systems § 120.320 Generators and motors. (a) Each generator and motor must be: (1) In... generator and motor must be designed for an ambient temperature of 50 °C (122 °F) except that: (1) If the...

  3. 46 CFR 120.320 - Generators and motors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Generators and motors. 120.320 Section 120.320 Shipping... and Distribution Systems § 120.320 Generators and motors. (a) Each generator and motor must be: (1) In... generator and motor must be designed for an ambient temperature of 50 °C (122 °F) except that: (1) If the...

  4. 16 CFR 1505.50 - Stalled motor testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Stalled motor testing. 1505.50 Section 1505... USE BY CHILDREN Policies and Interpretations § 1505.50 Stalled motor testing. (a) § 1505.6(e)(4)(ii) requires that a motor-operated toy be tested with the motor stalled if the construction of the toy is such...

  5. 33 CFR 127.311 - Motor vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Motor vehicles. 127.311 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.311 Motor vehicles. (a) The operator... vehicle in a space that is not designated a parking space; or (2) Refuel any motor vehicle. ...

  6. 33 CFR 127.311 - Motor vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Motor vehicles. 127.311 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.311 Motor vehicles. (a) The operator... vehicle in a space that is not designated a parking space; or (2) Refuel any motor vehicle. ...

  7. 33 CFR 127.311 - Motor vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Motor vehicles. 127.311 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.311 Motor vehicles. (a) The operator... vehicle in a space that is not designated a parking space; or (2) Refuel any motor vehicle. ...

  8. 33 CFR 127.311 - Motor vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Motor vehicles. 127.311 Section... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.311 Motor vehicles. (a) The operator... vehicle in a space that is not designated a parking space; or (2) Refuel any motor vehicle. ...

  9. Motor Proficiency Traits of Deaf Children.

    ERIC Educational Resources Information Center

    Brunt, Denis; Broadhead, Geoffrey D.

    1982-01-01

    Children at the Louisiana State School for the Deaf were tested for motor proficiency using the Short Form of the Bruininks-Oseretsky Test of Motor Proficiency. The children appeared to lack balancing skills but scored better than hearing children in visual motor control. Sex and age differences are noted. (PP)

  10. The Diagnosis of Sensory-Motor Disabilities.

    ERIC Educational Resources Information Center

    Zaeske, Arnold

    The importance of motor and perceptual learning in the educational process is discussed. It is hypothesized that an internalization of sensory-motor learnings is important to the perceptual and cognitive development of a child. Developmental and corrective motor training by physical educationalists is suggested. It is concluded that although the…

  11. Meissner motor using high-Tc ceramic superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, A.; Ishikawa, A.; Suzuki, M.

    1989-03-01

    The authors developed a brand new superconducting motor using high-Tc ceramic superconductors for the first time. This motor utilizes the repulsive force caused by the Meissner effect, which appears below Tc and disappears above that, and is therefore referred to as the Meissner Motor. The motor rotated at a maximum speed of 40 rpm. Though the repulsive force to drive the motor increased with the decrease of temperature or the increase of the gradient magnetic field, it was only about 1.1 gf/g at 77 K in 3500 G/cm. The motor has a maximum torque of 5.0 gf-cm theoretically, but actuallymore » had a torque below 0.66 gf-cm, because it took some time to be cooled below Tc. The rotating speed of the motor was limited by heating ability and its torque was limited by cooling ability.« less

  12. Serum uric acid level and its association with motor subtypes and non-motor symptoms in early Parkinson's disease: PALS study.

    PubMed

    Huang, Xinxin; Ng, Samuel Yong-Ern; Chia, Nicole Shuang-Yu; Acharyya, Sanchalika; Setiawan, Fiona; Lu, Z-H; Ng, Ebonne; Tay, Kay-Yaw; Au, Wing-Lok; Tan, Eng-King; Tan, Louis Chew-Seng

    2018-05-17

    Uric acid has been found to be potentially neuroprotective in Parkinson's disease (PD). We investigated the relationship between serum uric acid levels and both motor and non-motor features in a prospective early PD cohort study. Fasting serum uric acid levels were measured from 125 early PD patients. Demographic, clinical characteristics, motor and non-motor assessments were performed. Patients were categorized into three motor subtypes: tremor-dominant (TD), postural instability/gait difficulty (PIGD), and mixed. Non-motor symptoms were classified as present or absent based on the appropriate cut-offs for each non-motor instrument. Most patients had TD (n = 51, 40.8%) and mixed (n = 63, 50.4%) motor subtypes, while a minority had PIGD (n = 11, 8.8%) motor subtype. The mean serum uric acid levels were significantly different between the three motor subtypes (p = 0.0106), with the mixed subtype having the lowest serum uric acid levels. Using the TD subtype as reference, patients with higher serum uric acid levels were less likely to have the mixed (OR = 0.684; p = 0.0312) subtype as opposed to the TD subtype. Uric acid levels were not significantly different between the TD and PIGD subtypes. For non-motor symptoms, higher serum uric acid levels were significantly associated with less fatigue (OR = 0.693; p = 0.0408). Higher serum uric acid levels were associated with TD motor subtype and less fatigue in early PD, which could be related to its anti-oxidative properties. Uric acid could be an important biomarker for specific motor features and symptoms of fatigue in PD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Bent shaft motor

    DOEpatents

    Benavides, Gilbert L.

    1998-01-01

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

  14. Bent shaft motor

    DOEpatents

    Benavides, G.L.

    1998-05-05

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

  15. Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study.

    PubMed

    Gatti, R; Tettamanti, A; Gough, P M; Riboldi, E; Marinoni, L; Buccino, G

    2013-04-12

    Both motor imagery and action observation have been shown to play a role in learning or re-learning complex motor tasks. According to a well accepted view they share a common neurophysiological basis in the mirror neuron system. Neurons within this system discharge when individuals perform a specific action and when they look at another individual performing the same or a motorically related action. In the present paper, after a short review of literature on the role of action observation and motor imagery in motor learning, we report the results of a kinematics study where we directly compared motor imagery and action observation in learning a novel complex motor task. This involved movement of the right hand and foot in the same angular direction (in-phase movement), while at the same time moving the left hand and foot in an opposite angular direction (anti-phase movement), all at a frequency of 1Hz. Motor learning was assessed through kinematics recording of wrists and ankles. The results showed that action observation is better than motor imagery as a strategy for learning a novel complex motor task, at least in the fast early phase of motor learning. We forward that these results may have important implications in educational activities, sport training and neurorehabilitation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Non-motor symptoms in Parkinson's disease.

    PubMed

    Poewe, W

    2008-04-01

    Although still considered a paradigmatic movement disorder, Parkinson's disease (PD) is associated with a broad spectrum of non-motor symptoms. These include disorders of mood and affect with apathy, anhedonia and depression, cognitive dysfunction and hallucinosis, as well as complex behavioural disorders. Sensory dysfunction with hyposmia or pain is almost universal, as are disturbances of sleep-wake cycle regulation. Autonomic dysfunction including orthostatic hypotension, urogenital dysfunction and constipation is also present to some degree in a majority of patients. Whilst overall non-motor symptoms become increasingly prevalent with advancing disease, many of them can also antedate the first occurrence of motor signs - most notably depression, hyposmia or rapid eye movement sleep behaviour disorder (RBD). Although exact clinicopathological correlations for most of these non-motor features are still poorly understood, the occurrence of constipation, RBD or hyposmia prior to the onset of clinically overt motor dysfunction would appear consistent with the ascending hypothesis of PD pathology proposed by Braak and colleagues. Screening these early non-motor features might, therefore, be one approach towards early 'preclinical' diagnosis of PD. This review article provides an overview of the clinical spectrum of non-motor symptoms in PD together with a brief review of treatment options.

  17. Electric Motor Thermal Management R&D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin

    2016-06-07

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  18. Enhanced Large Solid Rocket Motor Understanding Through Performance Margin Testing: RSRM Five-Segment Engineering Test Motor (ETM-3)

    NASA Technical Reports Server (NTRS)

    Huppi, Hal; Tobias, Mark; Seiler, James

    2003-01-01

    The Five-Segment Engineering Test Motor (ETM-3) is an extended length reusable solid rocket motor (RSRM) intended to increase motor performance and internal environments above the current four-segment RSRM flight motor. The principal purpose of ETM-3 is to provide a test article for RSRM component margin testing. As the RSRM and Space Shuttle in general continue to age, replacing obsolete materials becomes an ever-increasing issue. Having a five-segment motor that provides environments in excess of normal opera- tion allows a mechanism to subject replacement materials to a more severe environment than experienced in flight. Additionally, ETM-3 offers a second design data point from which to develop and/or validate analytical models that currently have some level of empiricism associated with them. These enhanced models have the potential to further the understanding of RSRM motor performance and solid rocket motor (SRM) propulsion in general. Furthermore, these data could be leveraged to support a five-segment booster (FSB) development program should the Space Shuttle program choose to pursue this option for abort mode enhancements during the ascent phase. A tertiary goal of ETM-3 is to challenge both the ATK Thiokol Propulsion and NASA MSFC technical personnel through the design and analysis of a large solid rocket motor without the benefit of a well-established performance database such as the RSRM. The end result of this undertaking will be a more competent and experienced workforce for both organizations. Of particular interest are the motor design characteristics and the systems engineering approach used to conduct a complex yet successful large motor static test. These aspects of ETM-3 and more will be summarized.

  19. Influence of mental practice and movement observation on motor memory, cognitive function and motor performance in the elderly

    PubMed Central

    Altermann, Caroline D. C.; Martins, Alexandre S.; Carpes, Felipe P.; Mello-Carpes, Pâmela B.

    2014-01-01

    Background With aging, it is important to maintain cognitive and motor functions to ensure autonomy and quality of life. During the acquisition of motor skills, it is necessary for the elderly to understand the purpose of the proposed activities. Physical and mental practice, as well as demonstrations, are strategies used to learn movements. Objectives To investigate the influence of mental practice and the observation of movement on motor memory and to understand the relationship between cognitive function and motor performance in the execution of a sequence of digital movements in the elderly. Method This was a cross-sectional study conducted with 45 young and 45 aged subjects. The instruments used were Mini-Mental State Examination (MMSE), Manual Preference Inventory and a Digital Motor Task (composed of a training of a sequence of movements, an interval and a test phase). The subjects were divided into three subgroups: control, mental practice and observation of movement. Results The elderly depend more strongly on mental practice for the acquisition of a motor memory. In comparing the performances of people in different age groups, we found that in the elderly, there was a negative correlation between the MMSE score and the execution time as well as the number of errors in the motor task. Conclusions For the elderly, mental practice can advantage motor performance. Also, there is a significant relationship between cognitive function, learning and the execution of new motor skills. PMID:24839046

  20. Disentangling fine motor skills' relations to academic achievement: the relative contributions of visual-spatial integration and visual-motor coordination.

    PubMed

    Carlson, Abby G; Rowe, Ellen; Curby, Timothy W

    2013-01-01

    Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.

  1. Functional connectivity in the resting-state motor networks influences the kinematic processes during motor sequence learning

    PubMed Central

    Bonzano, Laura; Palmaro, Eleonora; Teodorescu, Roxana; Fleysher, Lazar; Inglese, Matilde; Bove, Marco

    2014-01-01

    Neuroimaging studies support the involvement of the cerebello-cortical and striato-cortical motor loops in motor sequence learning. Here, we investigated whether the gain of motor sequence learning could depend on a priori resting-state functional connectivity (rsFC) between motor areas and structures belonging to these circuits. Fourteen healthy subjects underwent a resting-state fMRI session. Afterward, they were asked to reproduce a verbally-learned sequence of finger opposition movements as fast and accurate as possible. All subjects increased their movement rate with practice, by reducing touch duration and/or inter tapping interval. The rsFC analysis showed that at rest left and right M1 and left and right supplementary motor cortex (SMA) were mainly connected with other motor areas. The covariate analysis taking into account the different kinematic parameters indicated that the subjects achieving greater movement rate increase were those showing stronger rsFC of the left M1 and SMA with the right lobule VIII of the cerebellum. Notably, the subjects with greater inter tapping interval reduction showed stronger rsFC of the left M1 and SMA with the association nuclei of the thalamus. Conversely, the regression analysis with the right M1 and SMA seeds showed only few significant clusters for the different covariates not located in the cerebellum and thalamus. No common clusters were found between right M1 and SMA. All these findings indicate important functional connections at rest of those neural circuits responsible of motor learning improvement, involving the motor areas related to the hemisphere directly controlling the finger movements, the thalamus and the cerebellum. PMID:25328043

  2. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke - A Pilot Study.

    PubMed

    Faria, Ana L; Cameirão, Mónica S; Couras, Joana F; Aguiar, Joana R O; Costa, Gabriel M; Bermúdez I Badia, Sergi

    2018-01-01

    Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients' capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.

  3. Making a Simple Self-Starting Electric Motor

    ERIC Educational Resources Information Center

    Hong, Seok-In; Choi, Jung-In; Hong, Seok-Cheol

    2009-01-01

    A simple electric motor has a problem in that the current applied to the motor per se can rarely trigger its rotation. Usually such motors begin to rotate after the rotor is slightly turned by hand (i.e., manual starting). In a "self-starting" motor, the rotor starts to rotate spontaneously as soon as the current is applied. This paper describes…

  4. Motor innervation of the trapezius muscle: Intraoperative motor conduction study during neck dissection.

    PubMed

    Kim, Jin Hwan; Choi, Kyu Young; Lee, Kyu Ho; Lee, Dong Jin; Park, Bum Jung; Rho, Young-Soo

    2014-01-01

    To evaluate the motor input from the spinal accessory nerve (SAN) and the branches of the cervical plexus in an intraoperative motor nerve conduction study measuring motor action potentials by direct stimulation of the exposed nerve during neck dissection. The entire length of the SAN and the contributions from the upper cervical plexus were preserved. Compound muscle action potentials were measured for each part of the trapezius muscle on stimulation of the SAN, C2, C3, and C4 nerves. With stimulation of the spinal nerve, evoked responses were obtained from all 24 patients in the descending, transverse, and ascending trapezius muscle. C2 contributions were noted in 2 out of 24 patients; however, no patient revealed responses in all three parts of the muscle. C3 contributions were seen in 11 out of 24 patients, supplying all three parts of the muscle in 8 patients, and C4 contributions were noted in 20 out of 24 patients, supplying all three parts of the muscle in 16 of them. The SAN provided the most consistent motor input to the trapezius muscle. The C2, C3, and C4 nerves also provided motor input to the trapezius muscle; however, they were either inconsistently present or, when present, irregularly innervated the three parts of the trapezius muscle.

  5. Stepper motor control that adjusts to motor loading

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Nola, Frank J. (Inventor)

    2000-01-01

    A system and method are provided for controlling a stepper motor having a rotor and a multi-phase stator. Sinusoidal command signals define a commanded position of the motor's rotor. An actual position of the rotor is sensed as a function of an electrical angle between the actual position and the commanded position. The actual position is defined by sinusoidal position signals. An adjustment signal is generated using the sinusoidal command signals and sinusoidal position signals. The adjustment signal is defined as a function of the cosine of the electrical angle. The adjustment signal is multiplied by each sinusoidal command signal to generate a corresponding set of excitation signals, each of which is applied to a corresponding phase of the multi-phase stator.

  6. Bayley-III motor scale and neurological examination at 2 years do not predict motor skills at 4.5 years.

    PubMed

    Burakevych, Nataliia; Mckinlay, Christopher Joel Dorman; Alsweiler, Jane Marie; Wouldes, Trecia Ann; Harding, Jane Elizabeth

    2017-02-01

    To determine whether Bayley Scales of Infant and Toddler Development (3rd edition) (Bayley-III) motor scores and neurological examination at 2 years corrected age predict motor difficulties at 4.5 years corrected age. A prospective cohort study of children born at risk of neonatal hypoglycaemia in Waikato Hospital, Hamilton, New Zealand. Assessment at 2 years was performed using the Bayley-III motor scale and neurological examination, and at 4.5 years using the Movement Assessment Battery for Children (2nd edition) (MABC-2). Of 333 children, 8 (2%) had Bayley-III motor scores below 85, and 50 (15%) had minor deficits on neurological assessment at 2 years; 89 (27%) scored less than or equal to the 15th centile, and 54 (16%) less than or equal to the 5th centile on MABC-2 at 4.5 years. Motor score, fine and gross motor subtest scores, and neurological assessments at 2 years were poorly predictive of motor difficulties at 4.5 years, explaining 0 to 7% of variance in MABC-2 scores. A Bayley-III motor score below 85 predicted MABC-2 scores less than or equal to the 15th centile with a positive predictive value of 30% and a negative predictive value of 74% (7% sensitivity and 94% specificity). Bayley-III motor scale and neurological examination at 2 years were poorly predictive of motor difficulties at 4.5 years. © 2016 Mac Keith Press.

  7. Bayley-III motor scale and neurological examination at 2 years do not predict motor skills at 4.5 years

    PubMed Central

    Burakevych, Nataliia; Mckinlay, Christopher Joel Dorman; Alsweiler, Jane Marie; Wouldes, Trecia An; Harding, Jane Elizabeth

    2016-01-01

    Aim To determine whether Bayley Scales of Infant and Toddler Development (3rd edition) (Bayley-III) motor scores and neurological examination at 2 years' corrected age predict motor difficulties at 4.5 years' corrected age. Method A prospective cohort study of children born at risk of neonatal hypoglycaemia in Waikato Hospital, Hamilton, New Zealand. Assessment at 2 years was performed using the Bayley-III motor scale and neurological examination, and at 4.5 years using the Movement Assessment Battery for Children (2nd edition) (MABC-2). Results Of 333 children, 8 (2%) had Bayley-III motor scores below 85, and 50 (15%) had minor deficits on neurological assessment at 2 years; 89 (27%) scored less than or equal to the 15th centile, and 54 (16%) less than or equal to the 5th centile on MABC-2 at 4.5 years. Motor score, fine and gross motor subtest scores, and neurological assessments at 2 years were poorly predictive of motor difficulties at 4.5 years, explaining 0 to 7% of variance in MABC-2 scores. A Bayley-III motor score below 85 predicted MABC-2 scores less than or equal to the 15th centile with a positive predictive value of 30% and a negative predictive value of 74% (7% sensitivity and 94% specificity). Interpretation Bayley-III motor scale and neurological examination at 2 years were poorly predictive of motor difficulties at 4.5 years. PMID:27543144

  8. Electrical stimulation and motor recovery.

    PubMed

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  9. Vibrissa motor cortex activity suppresses contralateral whisking behavior.

    PubMed

    Ebbesen, Christian Laut; Doron, Guy; Lenschow, Constanze; Brecht, Michael

    2017-01-01

    Anatomical, stimulation and lesion data implicate vibrissa motor cortex in whisker motor control. Work on motor cortex has focused on movement generation, but correlations between vibrissa motor cortex activity and whisking are weak. The exact role of vibrissa motor cortex remains unknown. We recorded vibrissa motor cortex neurons during various forms of vibrissal touch, which were invariably associated with whisker protraction and movement. Free whisking, object palpation and social touch all resulted in decreased cortical activity. To understand this activity decrease, we performed juxtacellular recordings, nanostimulation and in vivo whole-cell recordings. Social touch resulted in decreased spiking activity, decreased cell excitability and membrane hyperpolarization. Activation of vibrissa motor cortex by intracortical microstimulation elicited whisker retraction, as if to abort vibrissal touch. Various vibrissa motor cortex inactivation protocols resulted in contralateral protraction and increased whisker movements. These data collectively point to movement suppression as a prime function of vibrissa motor cortex activity.

  10. Physical activity and motor decline in older persons.

    PubMed

    Buchman, A S; Boyle, P A; Wilson, R S; Bienias, Julia L; Bennett, D A

    2007-03-01

    We tested the hypothesis that physical activity modifies the course of age-related motor decline. More than 850 older participants of the Rush Memory and Aging Project underwent baseline assessment of physical activity and annual motor testing for up to 8 years. Nine strength measures and nine motor performance measures were summarized into composite measures of motor function. In generalized estimating equation models, global motor function declined during follow-up (estimate, -0.072; SE, 0.008; P < 0.001). Each additional hour of physical activity at baseline was associated with about a 5% decrease in the rate of global motor function decline (estimate, 0.004; SE, 0.001; P = 0.007). Secondary analyses suggested that the association of physical activity with motor decline was mostly due to the effect of physical activity on the rate of motor performance decline. Thus, higher levels of physical activity are associated with a slower rate of motor decline in older persons.

  11. Structure of Motor Abilities in Children.

    ERIC Educational Resources Information Center

    Krus, Patricia H.; And Others

    1981-01-01

    The purpose of this study was to investigate the structure of motor proficiency in a sample of 765 children between the ages of 4 1/2 to 14 1/2 years. The study was conducted as one aspect of the standardization of a motor proficiency scale, the Bruininks-Oseretsky Test of Motor Proficiency. (Author/SJL)

  12. Motor Creativity of Preschool Deaf Children.

    ERIC Educational Resources Information Center

    Lubin, Ellen

    This investigation seeks to provide information on the motor creativity of preschool deaf children. A play apparatus known as the London Trestle Tree Apparatus was used. Data were collected on motor creativity using the Torrance Test of Thinking Creatively in Action and Movement. The Lubin Motor Creativity Testing Protocol was used to test motor…

  13. Motor Programming in Apraxia of Speech

    ERIC Educational Resources Information Center

    Maas, Edwin; Robin, Donald A.; Wright, David L.; Ballard, Kirrie J.

    2008-01-01

    Apraxia of Speech (AOS) is an impairment of motor programming. However, the exact nature of this deficit remains unclear. The present study examined motor programming in AOS in the context of a recent two-stage model [Klapp, S. T. (1995). Motor response programming during simple and choice reaction time: The role of practice. "Journal of…

  14. Auditory-Motor Processing of Speech Sounds

    PubMed Central

    Möttönen, Riikka; Dutton, Rebekah; Watkins, Kate E.

    2013-01-01

    The motor regions that control movements of the articulators activate during listening to speech and contribute to performance in demanding speech recognition and discrimination tasks. Whether the articulatory motor cortex modulates auditory processing of speech sounds is unknown. Here, we aimed to determine whether the articulatory motor cortex affects the auditory mechanisms underlying discrimination of speech sounds in the absence of demanding speech tasks. Using electroencephalography, we recorded responses to changes in sound sequences, while participants watched a silent video. We also disrupted the lip or the hand representation in left motor cortex using transcranial magnetic stimulation. Disruption of the lip representation suppressed responses to changes in speech sounds, but not piano tones. In contrast, disruption of the hand representation had no effect on responses to changes in speech sounds. These findings show that disruptions within, but not outside, the articulatory motor cortex impair automatic auditory discrimination of speech sounds. The findings provide evidence for the importance of auditory-motor processes in efficient neural analysis of speech sounds. PMID:22581846

  15. Visual, Motor, and Visual-Motor Integration Difficulties in Students with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Oliver, Kimberly

    2013-01-01

    Autism spectrum disorders (ASDs) affect 1 in every 88 U.S. children. ASDs have been described as neurological and developmental disorders impacting visual, motor, and visual-motor integration (VMI) abilities that affect academic achievement (CDC, 2010). Forty-five participants (22 ASD and 23 Typically Developing [TD]) 8 to 14 years old completed…

  16. Magnetostrictive direct drive motors

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1990-01-01

    Developing magnetostrictive direct drive research motors to power robot joints is discussed. These type motors are expected to produce extraordinary torque density, to be able to perform microradian incremental steps and to be self-braking and safe with the power off. Several types of motor designs have been attempted using magnetostrictive materials. One of the candidate approaches (the magnetostrictive roller drive) is described. The method in which the design will function is described as is the reason why this approach is inherently superior to the other approaches. Following this, the design will be modelled and its expected performance predicted. This particular candidate design is currently undergoing detailed engineering with prototype construction and testing scheduled for mid 1991.

  17. Osmotic propulsion: the osmotic motor.

    PubMed

    Córdova-Figueroa, Ubaldo M; Brady, John F

    2008-04-18

    A model for self-propulsion of a colloidal particle--the osmotic motor--immersed in a dispersion of "bath" particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.

  18. The assessment of preschool children's motor skills after familiarization with motor tests.

    PubMed

    Tomac, Zvonimir; Hraski, Zeljko; Sporis, Goran

    2012-07-01

    This research study was conducted to establish the influence of familiarization on the information component of movement in a motor task for the assessment of preschool children's motor skills. The sample included 50 children whose mean age was 5.9 years (71.5 months). The experimental group consisted of 27 children who were 5.9 years (71.5 months) old, and the control group consisted of 23 children who were 5.9 years (71.5 months) old. The examinees performed 2 motor tasks, standing long jump (SJ, explosive strength) and standing on 1 leg on a beam "flamingo test" (FT, balance). The experimental group underwent a period of familiarization with the motor task in 3 sessions with 5 trials every 3 days. The results indicate statistically significant differences in the final testing between both groups of examinees; the experimental group mean was 112.73 cm, and the control group mean was 100.62 in the SJ test (p = 0.00), and the experimental group mean was 27.10 seconds and the control group mean was 15.01 seconds in the FT (for balance) (p = 0.00). The results obtained in this research indicate that children significantly improved the results in the motor test of strength and balance, being influenced by familiarization. It was confirmed that it was necessary for preschool children to be familiar with the test and it is not justified to use testing and assessment protocols and standards for adults. Physical educators and coaches, when testing preschool children, should introduce children to tests to obtain the best result.

  19. Composite Ceramic Superconducting Wires for Electric Motor Applications

    DTIC Science & Technology

    1988-12-30

    current a-yi t6-ransition. - Emerson Motor Division has begun work on DC heteropolar and homopolar motor designs. The mechanical stresses on conventional...Emerson Motor Division has begun work on DC heteropolar motor designs and, through Professor Novotny at U. Wisconsin, DC homopolar machines. The...123 3.2 Literature Research .............................. .. 124 3 3.3 Application Study .............................. .. 124 3.3.1 Homopolar Motor

  20. 76 FR 21035 - General Motors Vehicle Manufacturing, Formerly Known as General Motors Corporation, Shreveport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... Manufacturing, Formerly Known as General Motors Corporation, Shreveport Assembly Plant, Including On-Site Leased... General Motors Corporation, Shreveport Assembly Plant, including on-site leased workers from Aerotek and..., Shreveport Assembly Plant. The Department has determined that these workers were sufficiently under the...

  1. A CFD study of Screw Compressor Motor Cooling Analysis

    NASA Astrophysics Data System (ADS)

    Branch, S.

    2017-08-01

    Screw compressors use electric motors to drive the male screw rotor. They are cooled by the suction refrigerant vapor that flows around the motor. The thermal conditions of the motor can dramatically influence the performance and reliability of the compressor. The more optimized this flow path is, the better the motor performance. For that reason it is important to understand the flow characteristics around the motor and the motor temperatures. Computational fluid dynamics (CFD) can be used to provide a detailed analysis of the refrigerant’s flow behavior and motor temperatures to identify the undesirable hot spots in the motor. CFD analysis can be used further to optimize the flow path and determine the reduction of hot spots and cooling effect. This study compares the CFD solutions of a motor cooling model to a motor installed with thermocouples measured in the lab. The compressor considered for this study is an R134a screw compressor. The CFD simulation of the motor consists of a detailed breakdown of the stator and rotor components. Orthotropic thermal conductivity material properties are used to represent the simplified motor geometry. In addition, the analysis includes the motor casings of the compressor to draw heat away from the motor by conduction. The study will look at different operating conditions and motor speeds. Finally, the CFD study will investigate the predicted motor temperature change by varying the vapor mass flow rates and motor speed. Recommendations for CFD modeling of such intricate heat transfer phenomenon have thus been proposed.

  2. The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper

    PubMed Central

    Lang, Eric J.; Apps, Richard; Bengtsson, Fredrik; Cerminara, Nadia L.; De Zeeuw, Chris I.; Ebner, Timothy J.; Heck, Detlef H.; Jaeger, Dieter; Jörntell, Henrik; Kawato, Mitsuo; Otis, Thomas S.; Ozyildirim, Ozgecan; Popa, Laurentiu S.; Reeves, Alexander M.B.; Schweighofer, Nicolas; Sugihara, Izumi; Xiao, Jianqiang

    2016-01-01

    For many decades the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum, and might also play a role in development. We then consider the potential problems and benefits of its having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, variable complex spike waveform) make it more or less suitable for one or the other of these functions, and why its having a dual role makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest it has the potential to act in both the motor learning and motor control functions of the cerebellum. PMID:27193702

  3. The Infant Motor Profile: a standardized and qualitative method to assess motor behaviour in infancy.

    PubMed

    Heineman, Kirsten R; Bos, Arend F; Hadders-Algra, Mijna

    2008-04-01

    A reliable and valid instrument to assess neuromotor condition in infancy is a prerequisite for early detection of developmental motor disorders. We developed a video-based assessment of motor behaviour, the Infant Motor Profile (IMP), to evaluate motor abilities, movement variability, ability to select motor strategies, movement symmetry, and fluency. The IMP consists of 80 items and is applicable in children from 3 to 18 months. The present study aimed to test intra- and interobserver reliability and concurrent validity of the IMP with the Alberta Infant Motor Scale (AIMS) and Touwen neurological examination. The study group consisted of 40 low-risk term (median gestational age [GA] 40 wks, range 38-42 wks) and 40 high-risk preterm infants (median GA 29.6 wks, range 26-33 wks) with corrected ages 4 to 18 months (31 females, 49 males). Intra- and interobserver agreement of the IMP were satisfactory (Spearman's rho=0.9). Concurrent validity of IMP and AIMS was good (Spearman's rho=0.8, p<0.005). The IMP was able to differentiate between infants with normal neurological condition, simple minor neurological dysfunction (MND), complex MND, and abnormal neurological condition (p<0.005). This means that the IMP may be a promising tool to evaluate neurological integrity during infancy, a suggestion that needs confirmation by means of assessment of larger groups of infants with heterogeneous neurological conditions.

  4. Motor Acquisition Rate in Brazilian Infants

    ERIC Educational Resources Information Center

    Lopes, Virlaine Bardella; de Lima, Carolina Daniel; Tudella, Eloisa

    2009-01-01

    This study used the Alberta Infant Motor Scale (AIMS) with the aim of characterizing motor acquisition rate in 70 healthy 0-6-month-old Brazilian infants, as well as comparing both emergence (initial age) and establishment (final age) of each skill between the study sample and the AIMS normative data. New motor skills were continuously acquired…

  5. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules

    PubMed Central

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y.; Rymer, William Z.

    2018-01-01

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy. PMID:26916510

  6. Neonatal stroke causes poor midline motor behaviors and poor fine and gross motor skills during early infancy.

    PubMed

    Chen, Chao-Ying; Lo, Warren D; Heathcock, Jill C

    2013-03-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD) were assessed from 2 to 7 months of age. The following variables were analyzed: percentage of time in midline and fine and gross motor scores on the Bayley Scales of Infant Development (BSID-III). Infants with neonatal stroke demonstrated poor performance in midline behaviors and fine and gross motor scores on the BSID-III. These results suggest that infants with NS have poor midline behaviors and motor skill development early in infancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Learning to associate novel words with motor actions: language-induced motor activity following short training.

    PubMed

    Fargier, Raphaël; Paulignan, Yves; Boulenger, Véronique; Monaghan, Padraic; Reboul, Anne; Nazir, Tatjana A

    2012-07-01

    Action words referring to face, arm or leg actions activate areas along the motor strip that also control the planning and execution of the actions specified by the words. This electroencephalogram (EEG) study aimed to test the learning profile of this language-induced motor activity. Participants were trained to associate novel verbal stimuli to videos of object-oriented hand and arm movements or animated visual images on two consecutive days. Each training session was preceded and followed by a test-session with isolated videos and verbal stimuli. We measured motor-related brain activity (reflected by a desynchronization in the μ frequency bands; 8-12 Hz range) localized at centro-parietal and fronto-central electrodes. We compared activity from viewing the videos to activity resulting from processing the language stimuli only. At centro-parietal electrodes, stable action-related μ suppression was observed during viewing of videos in each test-session of the two days. For processing of verbal stimuli associated with motor actions, a similar pattern of activity was evident only in the second test-session of Day 1. Over the fronto-central regions, μ suppression was observed in the second test-session of Day 2 for the videos and in the second test-session of Day 1 for the verbal stimuli. Whereas the centro-parietal μ suppression can be attributed to motor events actually experienced during training, the fronto-central μ suppression seems to serve as a convergence zone that mediates underspecified motor information. Consequently, sensory-motor reactivations through which concepts are comprehended seem to differ in neural dynamics from those implicated in their acquisition. Copyright © 2011 Elsevier Srl. All rights reserved.

  8. Controllable molecular motors engineered from myosin and RNA

    NASA Astrophysics Data System (ADS)

    Omabegho, Tosan; Gurel, Pinar S.; Cheng, Clarence Y.; Kim, Laura Y.; Ruijgrok, Paul V.; Das, Rhiju; Alushin, Gregory M.; Bryant, Zev

    2018-01-01

    Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems1 or in living cells2. Previously, synthetic nucleic acid motors3-5 and modified natural protein motors6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors11-15. Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure7,9. We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing16. Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.

  9. Growth hormone combined with child-specific motor training improves motor development in infants with Prader-Willi syndrome: a randomized controlled trial.

    PubMed

    Reus, Linda; Pelzer, Ben J; Otten, Barto J; Siemensma, Elbrich P C; van Alfen-van der Velden, Janielle A A E M; Festen, Dederieke A M; Hokken-Koelega, Anita C S; Nijhuis-van der Sanden, Maria W G

    2013-10-01

    Although severe motor problems in infants with Prader-Willi syndrome (PWS) are striking, motor development has never been studied longitudinally and the results of growth hormone (GH) treatment on motor development are contradictory. The authors studied whether GH treatment can enhance the effect of physical training on motor development in infants with PWS. Twenty-two infants were followed for two years during a randomized controlled trial. The treatment and control groups began GH after baseline or following a control period, respectively. Both groups followed a child-specific physical training program. Motor performance was measured every three months. Multi-level regression analysis revealed that motor development differed significantly between infants (p<.001), and this could be partially explained by baseline motor developmental level (p<.01). GH treatment enhanced the effects of child-specific physical training on both motor developmental rate and motor developmental potential. Moreover, this effect was more pronounced when GH treatment was initiated at a younger age. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Corticobasal degeneration initially developing motor versus non-motor symptoms: a comparative clinicopathological study.

    PubMed

    Ikeda, Chikako; Yokota, Osamu; Nagao, Shigeto; Ishizu, Hideki; Morisada, Yumi; Terada, Seishi; Nakashima, Yoshihiko; Akiyama, Haruhiko; Uchitomi, Yosuke

    2014-09-01

    Clinical presentations of pathologically confirmed corticobasal degeneration (CBD) vary, and the heterogeneity makes its clinical diagnosis difficult, especially when a patient lacks any motor disturbance in the early stage. We compared clinical and pathological features of four pathologically confirmed CBD cases that initially developed non-motor symptoms, including behavioural and psychiatric symptoms but without motor disturbance (CBD-NM), and five CBD cases that initially developed parkinsonism and/or falls (CBD-M). The age range at death for the CBD-NM and CBD-M subjects (58-85 years vs 45-67 years) and the range of disease duration (2-18 years vs 2-6 years) did not significantly differ between the groups. Prominent symptoms in the early stage of CBD-NM cases included self-centred behaviours such as frontotemporal dementia (n = 1), apathy with and without auditory hallucination (n = 2), and aggressive behaviours with delusion and visual hallucination (n = 1). Among the four CBD-NM cases, only one developed asymmetric motor disturbance, and two could walk without support throughout the course. Final clinical diagnoses of the CBD-NM cases were frontotemporal dementia (n = 2), senile psychosis with delirium (n = 1), and schizophrenia (n = 1). Neuronal loss was significantly less severe in the subthalamic nucleus and substantia nigra in the CBD-NM cases than in the CBD-M cases. The severity of tau pathology in all regions examined was comparable in the two groups. CBD cases that initially develop psychiatric and behavioural changes without motor symptoms may have less severe degenerative changes in the subthalamic nucleus and substantia nigra, and some CBD cases can lack motor disturbance not only in the early stage but also in the last stage of the course. © 2014 The Authors. Psychogeriatrics © 2014 Japanese Psychogeriatric Society.

  11. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  12. Imagining is Not Doing but Involves Specific Motor Commands: A Review of Experimental Data Related to Motor Inhibition.

    PubMed

    Guillot, Aymeric; Di Rienzo, Franck; Macintyre, Tadhg; Moran, Aidan; Collet, Christian

    2012-01-01

    There is now compelling evidence that motor imagery (MI) and actual movement share common neural substrate. However, the question of how MI inhibits the transmission of motor commands into the efferent pathways in order to prevent any movement is largely unresolved. Similarly, little is known about the nature of the electromyographic activity that is apparent during MI. In addressing these gaps in the literature, the present paper argues that MI includes motor execution commands for muscle contractions which are blocked at some level of the motor system by inhibitory mechanisms. We first assemble data from neuroimaging studies that demonstrate that the neural networks mediating MI and motor performance are not totally overlapping, thereby highlighting potential differences between MI and actual motor execution. We then review MI data indicating the presence of subliminal muscular activity reflecting the intrinsic characteristics of the motor command as well as increased corticomotor excitability. The third section not only considers the inhibitory mechanisms involved during MI but also examines how the brain resolves the problem of issuing the motor command for action while supervising motor inhibition when people engage in voluntary movement during MI. The last part of the paper draws on imagery research in clinical contexts to suggest that some patients move while imagining an action, although they are not aware of such movements. In particular, experimental data from amputees as well as from patients with Parkinson's disease are discussed. We also review recent studies based on comparing brain activity in tetraplegic patients with that from healthy matched controls that provide insights into inhibitory processes during MI. We conclude by arguing that based on available evidence, a multifactorial explanation of motor inhibition during MI is warranted.

  13. Imagining is Not Doing but Involves Specific Motor Commands: A Review of Experimental Data Related to Motor Inhibition

    PubMed Central

    Guillot, Aymeric; Di Rienzo, Franck; MacIntyre, Tadhg; Moran, Aidan; Collet, Christian

    2012-01-01

    There is now compelling evidence that motor imagery (MI) and actual movement share common neural substrate. However, the question of how MI inhibits the transmission of motor commands into the efferent pathways in order to prevent any movement is largely unresolved. Similarly, little is known about the nature of the electromyographic activity that is apparent during MI. In addressing these gaps in the literature, the present paper argues that MI includes motor execution commands for muscle contractions which are blocked at some level of the motor system by inhibitory mechanisms. We first assemble data from neuroimaging studies that demonstrate that the neural networks mediating MI and motor performance are not totally overlapping, thereby highlighting potential differences between MI and actual motor execution. We then review MI data indicating the presence of subliminal muscular activity reflecting the intrinsic characteristics of the motor command as well as increased corticomotor excitability. The third section not only considers the inhibitory mechanisms involved during MI but also examines how the brain resolves the problem of issuing the motor command for action while supervising motor inhibition when people engage in voluntary movement during MI. The last part of the paper draws on imagery research in clinical contexts to suggest that some patients move while imagining an action, although they are not aware of such movements. In particular, experimental data from amputees as well as from patients with Parkinson’s disease are discussed. We also review recent studies based on comparing brain activity in tetraplegic patients with that from healthy matched controls that provide insights into inhibitory processes during MI. We conclude by arguing that based on available evidence, a multifactorial explanation of motor inhibition during MI is warranted. PMID:22973214

  14. Multidisciplinary Interventions in Motor Neuron Disease

    PubMed Central

    Williams, U. E.; Philip-Ephraim, E. E.; Oparah, S. K.

    2014-01-01

    Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2–4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease. PMID:26317009

  15. Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke.

    PubMed

    Lin, Keh-chung; Huang, Pai-chuan; Chen, Yu-ting; Wu, Ching-yi; Huang, Wen-ling

    2014-02-01

    Mirror therapy (MT) and mesh glove (MG) afferent stimulation may be effective in reducing motor impairment after stroke. A hybrid intervention of MT combined with MG (MT + MG) may broaden aspects of treatment benefits. To demonstrate the comparative effects of MG + MT, MT, and a control treatment (CT) on the outcomes of motor impairments, manual dexterity, ambulation function, motor control, and daily function. Forty-three chronic stroke patients with mild to moderate upper extremity impairment were randomly assigned to receive MT + MG, MT, or CT for 1.5 hours/day, 5 days/week for 4 weeks. Outcome measures were the Fugl-Meyer Assessment (FMA) and muscle tone measured by Myoton-3 for motor impairment and the Box and Block Test (BBT) and 10-Meter Walk Test (10 MWT) for motor function. Secondary outcomes included kinematic parameters for motor control and the Motor Activity Log and ABILHAND Questionnaire for daily function. FMA total scores were significantly higher and synergistic shoulder abduction during reach was less in the MT + MG and MT groups compared with the CT group. Performance on the BBT and the 10 MWT (velocity and stride length in self-paced task and velocity in as-quickly-as-possible task) were improved after MT + MG compared with MT. MT + MG improved manual dexterity and ambulation. MT + MG and MT reduced motor impairment and synergistic shoulder abduction more than CT. Future studies may integrate functional task practice into treatments to enhance functional outcomes in patients with various levels of motor severity. The long-term effects of MG + MT remain to be evaluated.

  16. Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point Hypothesis

    PubMed Central

    Latash, Mark L.

    2009-01-01

    This brief review analyzes the evolution of motor control theories along two lines that emphasize active (motor programs) and reactive (reflexes) features of voluntary movements. It suggests that the only contemporary hypothesis that integrates both approaches in a fruitful way is the equilibrium-point hypothesis. Physical, physiological, and behavioral foundations of the EP-hypothesis are considered as well as relations between the EP-hypothesis and the recent developments of the notion of motor synergies. The paper ends with a brief review of the criticisms of the EP-hypothesis and challenges that the hypothesis faces at this time. PMID:19823595

  17. Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point Hypothesis.

    PubMed

    Latash, Mark L

    2008-01-01

    This brief review analyzes the evolution of motor control theories along two lines that emphasize active (motor programs) and reactive (reflexes) features of voluntary movements. It suggests that the only contemporary hypothesis that integrates both approaches in a fruitful way is the equilibrium-point hypothesis. Physical, physiological, and behavioral foundations of the EP-hypothesis are considered as well as relations between the EP-hypothesis and the recent developments of the notion of motor synergies. The paper ends with a brief review of the criticisms of the EP-hypothesis and challenges that the hypothesis faces at this time.

  18. Cognitive-motor interference during fine and gross motor tasks in children with Developmental Coordination Disorder (DCD).

    PubMed

    Schott, Nadja; El-Rajab, Inaam; Klotzbier, Thomas

    2016-10-01

    While typically developing children produce relatively automatized postural control processes, children with DCD seem to exhibit an automatization deficit. Dual tasks with various cognitive loads seem to be an effective way to assess the automatic deficit hypothesis. The aims of the study were: (1) to examine the effect of a concurrent cognitive task on fine and gross motor tasks in children with DCD, and (2) to determine whether the effect varied with different difficulty levels of the concurrent task. We examined dual-task performance (Trail-Making-Test, Trail-Walking-Test) in 20 children with DCD and 39 typically developing children. Based on the idea of the Trail-Making-Test, participants walked along a fixed pathway, following a prescribed path, delineated by target markers of (1) increasing sequential numbers, and (2) increasing sequential numbers and letters. The motor and cognitive dual-task effects (DTE) were calculated for each task. Regardless of the cognitive task, children with DCD performed equally well in fine and gross motor tasks, and were slower in the dual task conditions than under single task-conditions, compared with children without DCD. Increased cognitive task complexity resulted in slow trail walking as well as slower trail tracing. The motor interference for the gross motor tasks was least for the simplest conditions and greatest for the complex conditions and was more pronounced in children with DCD. Cognitive interference was low irrespective of the motor task. Children with DCD show a different approach to allocation of cognitive resources, and have difficulties making motor skills automatic. The latter notion is consistent with impaired cerebellar function and the "automatization deficit hypothesis", suggesting that any deficit in the automatization process will appear if conscious monitoring of the motor skill is made more difficult by integrating another task requiring attentional resources. Copyright © 2016 Elsevier Ltd. All

  19. Auditory- and Vestibular-Evoked Potentials Correlate with Motor and Non-Motor Features of Parkinson’s Disease

    PubMed Central

    Shalash, Ali Soliman; Hassan, Dalia Mohamed; Elrassas, Hanan Hani; Salama, Mohamed Mosaad; Méndez-Hernández, Edna; Salas-Pacheco, José M.; Arias-Carrión, Oscar

    2017-01-01

    Degeneration of several brainstem nuclei has been long related to motor and non-motor symptoms (NMSs) of Parkinson’s disease (PD). Nevertheless, due to technical issues, there are only a few studies that correlate that association. Brainstem auditory-evoked potential (BAEP) and vestibular-evoked myogenic potential (VEMP) responses represent a valuable tool for brainstem assessment. Here, we investigated the abnormalities of BAEPs, ocular VEMPs (oVEMPs), and cervical VEMPs (cVEMPs) in patients with PD and its correlation to the motor and NMSs. Fifteen patients diagnosed as idiopathic PD were evaluated by Unified Parkinson’s Disease Rating Scale and its subscores, Hoehn and Yahr scale, Schwab and England scale, and Non-Motor Symptoms Scale. PD patients underwent pure-tone, speech audiometry, tympanometry, BAEP, oVEMPs, and cVEMPs, and compared to 15 age-matched control subjects. PD subjects showed abnormal BAEP wave morphology, prolonged absolute latencies of wave V and I–V interpeak latencies. Absent responses were the marked abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. Rigidity and bradykinesia were correlated to the BAEP and cVEMP responses contralateral to the clinically more affected side. Contralateral and ipsilateral cVEMPs were significantly correlated to sleep (p = 0.03 and 0.001), perception (p = 0.03), memory/cognition (p = 0.025), and urinary scores (p = 0.03). The oVEMP responses showed significant correlations to cardiovascular (p = 0.01) and sexual dysfunctions (p = 0.013). PD is associated with BAEP and VEMP abnormalities that are correlated to the motor and some non-motor clinical characteristics. These abnormalities could be considered as potential electrophysiological biomarkers for brainstem dysfunction and its associated motor and non-motor features. PMID:28289399

  20. [The mirror neuron system in motor and sensory rehabilitation].

    PubMed

    Oouchida, Yutaka; Izumi, Shinichi

    2014-06-01

    The discovery of the mirror neuron system has dramatically changed the study of motor control in neuroscience. The mirror neuron system provides a conceptual framework covering the aspects of motor as well as sensory functions in motor control. Previous studies of motor control can be classified as studies of motor or sensory functions, and these two classes of studies appear to have advanced independently. In rehabilitation requiring motor learning, such as relearning movement after limb paresis, however, sensory information of feedback for motor output as well as motor command are essential. During rehabilitation from chronic pain, motor exercise is one of the most effective treatments for pain caused by dysfunction in the sensory system. In rehabilitation where total intervention unifying the motor and sensory aspects of motor control is important, learning through imitation, which is associated with the mirror neuron system can be effective and suitable. In this paper, we introduce the clinical applications of imitated movement in rehabilitation from motor impairment after brain damage and phantom limb pain after limb amputation.