Science.gov

Sample records for embedded fiber optic

  1. Embedding Optical Fibers In Cast Metal Parts

    NASA Technical Reports Server (NTRS)

    Gibler, William N.; Atkins, Robert A.; Lee, Chung E.; Taylor, Henry F.

    1995-01-01

    Use of metal strain reliefs eliminates breakage of fibers during casting process. Technique for embedding fused silica optical fibers in cast metal parts devised. Optical fiber embedded in flange, fitting, or wall of vacuum or pressure chamber, to provide hermetically sealed feedthrough for optical transmission of measurement or control signals. Another example, optical-fiber temperature sensor embedded in metal structural component to measure strain or temperature inside component.

  2. Composite embedded fiber optic data links in Standard Electronic Modules

    NASA Astrophysics Data System (ADS)

    Ehlers, S. L.; Jones, K. J.; Morgan, R. E.; Hixson, Jay

    1990-12-01

    The goal of this project is to fabricate a chassis/circuit card demonstration entirely 'wired' with embedded and interconnected optical fibers. Graphite/epoxy Standard Electronic Module E (SEM-E) configured panels have been successfully fabricated. Fiber-embedded SEM-E configured panels have been subjected to simultaneous signal transmission and vibration testing. Packaging constraints will require tapping composite-embedded optical fibers at right angles to the direction of optical transmission.

  3. Fiber optical Bragg grating sensors embedded in CFRP wires

    NASA Astrophysics Data System (ADS)

    Nellen, Philipp M.; Frank, Andreas; Broennimann, Rolf; Meier, Urs; Sennhauser, Urs J.

    1999-05-01

    Based on the example application of Emmenbridge, a newly built steel-concrete-composite bridge in Switzerland with 47 m long built-in carbon fiber reinforced polymer (CFRP) prestressing cables, we will present and analyze the process chain leading to a reliable surveillance of modern civil engineering structures with embedded fiber optical Bragg gratings. This consists first in the embedding of optical fibers and in-fiber Bragg gratings in long CFRP wires in an industrial environment, including fiber optical monitoring of the curing process. Then, various qualifying tests were done: annealing experiments for determining optical lifetime of the Bragg gratings used, dynamic and static tensile tests for estimating their mechanical lifetime under operation, push-out experiments to check adhesion of fiber/coating/matrix interfaces, and performance tests to determine strain and temperature sensitivity of the embedded Bragg gratings. Finally, the prestressing cables were equipped with the CFRP sensor wires and built into the bridge.

  4. Structural monitoring of filamentary composites using embedded fiber optics

    NASA Technical Reports Server (NTRS)

    Cashon, John L.; Lehner, David L.; Bower, Mark V.; Gilbert, John A.

    1990-01-01

    The feasibility of monitoring overall integrity of structural components made of filamentary composites, by embedding optical fibers between lamina of a composite beam, is investigated using a beam constructed of Kevlar/epoxy cloth with embedded optical fibers aligned with the longitudinal axis of the beam. Phase changes were monitored in three different optical fibers as the composite beam was subjected to pure bending, and the strain response of the fibers was compared to the strain gage readings taken at the surface, showing a strong correlation between the phase change and the applied deformation.

  5. Fiber optic Bragg grating sensors embedded in GFRP rockbolts

    NASA Astrophysics Data System (ADS)

    Frank, Andreas; Nellen, Philipp M.; Broennimann, Rolf; Sennhauser, Urs J.

    1999-05-01

    Rockbolt anchors for tunnel or mine roofs are key elements during construction and operation. We report on the fabrication of glass fiber reinforced polymer (GFRP) rockbolts with embedded fiber optical Bragg grating sensors and their first field application in a test tunnel. Optical fibers and in-fiber Bragg grating sensors were embedded in GFRP rockbolts during a continuously ongoing pultrusion process on an industrial production machine. Depending on their outer diameter the rods equipped with fiber sensors serve as measuring rockbolts or as extensometric sensors for the motion of boulders in the tunnel roof. The adhesion and force transfer of different fiber coatings were tested by push-out experiments. By temperature and strain cycle tests the performance of the rockbolt sensors was evaluated. We will present these results and the measurements made during a first installation of fiber optical rockbolt sensors in a tunnel.

  6. Composite-embedded optical fibers for communication links

    NASA Astrophysics Data System (ADS)

    Morgan, R. E.; Mitkus, V. V.; Jones, K. J.; Hixson, R. L.

    1989-12-01

    A design concept is examined in which fiber optics embedded in a composite material for avionics packaging will serve as communication links (rather than as stress sensors as in so called 'smart skins/structures'). Attention is given to the material processing technologies, optical fibers, connectors, and composite materials suitable for this purpose. It is emphasized that embedded optical fibers will make it possible to increase signal throughput and the security from EMI/EMP, and will become part of the avionic structure without affecting its shape and volume (or significantly increase its weight).

  7. Polymer fiber-image-guide-based embedded optical circuit board.

    PubMed

    Ai, J; Li, Y

    1999-01-10

    We propose a poly(methyl methacrylate) fiber-image-guide-based embedded optical circuit board for future optoelectronic array-interconnection applications. An experimental prototypical board that embeds perfect-shuffle and banyan interconnect patterns of 16 x 16 parallel links, each of which offers a fiber pixel density of >1000 pixels/mm(2), are demonstrated experimentally. PMID:18305618

  8. Tracking Polymer Cure Via Embedded Optical Fibers

    NASA Technical Reports Server (NTRS)

    Dean, David L.; Davidson, T. Fred

    1993-01-01

    Fourier-transform infrared spectroscopy applied in interior of specimen of material by bringing infrared light through specimen in optical fiber. Light interacts with material via evanescent-wave effect. Spectra obtained in this way at various times during curing process also combined with data from ultrasonic, thermographic, and dielectric-impedance monitoring, and other measurement techniques to obtain more complete characterization of progress of curing process.

  9. Optical fiber sensors embedded in flexible polymer foils

    NASA Astrophysics Data System (ADS)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  10. EMBEDDED FIBER OPTIC SENSORS FOR INTEGRAL ARMOR

    EPA Science Inventory

    This report describes the work performed with Production Products Manufacturing & Sales (PPMS), Inc., under the "Liquid Molded Composite Armor Smart Structures Using Embedded Sensors" Small Business Innovative Research (SBlR) Program sponsored by the U.S. Army Research Laboratory...

  11. Nonpigtail optical coupling to embedded fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Qiu, Liang; Goossen, Keith W.; Heider, Dirk; O'Brien, Daniel J.; Wetzel, Eric D.

    2010-05-01

    In recent decades, optical fiber has proven useful for many sensor applications. Specifically, fiber Bragg grating (FBG) sensors have shown great utility for integrity management and environmental sensing of composite structures. One major drawback of FBG sensors, however, is the lack of a robust, nonpigtail technique for coupling to the embedded FBG sensor. In this paper, a novel method of free-space passive coupling of light into FBG sensors is described. An angled 45-deg mirror integrated directly into the fiber was used as an input coupling technique. We investigated the application of this approach to both single- and multimode glass fibers containing FBGs. For multimode FBGs, we studied the grating's uniformity across the fiber diameter and its effect on normal free-space coupling. In single-mode investigations, a novel method of coupling to the sensor via splicing a multimode fiber to a single-mode FBG (SMFBG) was developed. Finally, free-space coupling to an embedded SMFBG was employed to measure the tensile strain. Excellent agreement was found between the FBG and conventional electrical resistance strain gauges. We conclude that this coupling method might eliminate the need for pigtailing by providing a more robust coupling method for FBG sensors.

  12. Standard and embedded solitons in nematic optical fibers.

    PubMed

    Rodríguez, R F; Reyes, J A; Espinosa-Cerón, A; Fujioka, J; Malomed, B A

    2003-09-01

    A model for a non-Kerr cylindrical nematic fiber is presented. We use the multiple scales method to show the possibility of constructing different kinds of wave packets of transverse magnetic modes propagating through the fiber. This procedure allows us to generate different hierarchies of nonlinear partial differential equations which describe the propagation of optical pulses along the fiber. We go beyond the usual weakly nonlinear limit of a Kerr medium and derive a complex modified Korteweg-de Vries equation (CM KdV) which governs the dynamics for the amplitude of the wave packet. In this derivation the dispersion, self-focussing, and diffraction in the nematic fiber are taken into account. It is shown that this CM KdV equation has two-parameter families of bright and dark complex solitons. We show analytically that under certain conditions, the bright solitons are actually double-embedded solitons. We explain why these solitons do not radiate at all, even though their wave numbers are contained in the linear spectrum of the system. We study (numerically and analytically) the stability of these solitons. Our results show that these embedded solitons are stable solutions, which is an interesting property since in most systems the embedded solitons are weakly unstable solutions. Finally, we close the paper by making comments on the advantages as well as the limitations of our approach, and on further generalizations of the model and method presented. PMID:14524911

  13. Nitromethane ignition observed with embedded PDV optical fibers

    NASA Astrophysics Data System (ADS)

    Mercier, P.; Bénier, J.; Frugier, P. A.; Debruyne, M.; Crouzet, B.

    For a long time, the nitromethane (NM) ignition has been observed with different means such as high-speed cameras, VISAR or optical pyrometry diagnostics. By 2000, David Goosmann (LLNL) studied solid high-explosive detonation and shock loaded metal plates by measuring velocity (Fabry-Pérot interferometry) in embedded optical fibers. For six years Photonic Doppler Velocimetry (PDV) has become a major tool to better understand the phenomena occurring in shock physics experiments. In 2006, we began to use in turn this technique and studied shock-to-detonation transition in NM. Different kinds of bare optical fibers were set in the liquid; they provided two types of velocity information; those coming from phenomena located in front of the fibers (interface velocity, shock waves, overdriven detonation wave) and those due to phenomena environing the fibers (shock or detonation waves). We achieved several shots; devices were composed of a high explosive plane wave generator ended by a metal barrier followed by a cylindrical vessel containing NM. We present results.

  14. Capillary electrophoresis microchip detecting system based on embedded optical fiber

    NASA Astrophysics Data System (ADS)

    Yan, Weiping; Li, Yuanyuan; Ma, Lingzhi

    2007-12-01

    Microchip capillary electrophoresis(CE) has been recognized as a powerful tool for biochemical analyses due to its smaller size, faster separation and lower sample requirement. According to the principle of laser-induced fluorescence, the detecting system of CE microchip embedded optical fiber is discussed in this paper as well as its small volume and simple detection optical circuit. The system was composed with semiconductor laser (532nm), high voltage control system, photon counter, PC and CE chip embedded optical fibers. With the constructed detection system, different samples and different concentrations were detected, including Rhodamine B, Rhodamine 6G, and mingling solution of Rhodamine B and Rhodamine 6G. The lowest detected concentration is 1×10 -6mol/L for Rhodamine B, and 1×10 -5mol/L for Rhodamine 6G, respectively. The separation of the mingling solution of Rhodamine B and Rhodamine 6G was completed, whose concentration were both about 1×10 -4mol/L. The results show that the constructed detection system possesses some advantages, such as compact structure, higher sensitivity and repetition, which are beneficial to the development of microminiaturization and integration of micro CE chip.

  15. Smart aircraft composite structures with embedded small-diameter optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Takeda, Nobuo; Minakuchi, Shu

    2012-02-01

    This talk describes the embedded optical fiber sensor systems for smart aircraft composite structures. First, a summary of the current Japanese national project on structural integrity diagnosis of aircraft composite structures is described with special emphasis on the use of embedded small-diameter optical fiber sensors including FBG sensors. Then, some examples of life-cycle monitoring of aircraft composite structures are presented using embedded small-diameter optical fiber sensors for low-cost and reliable manufacturing merits.

  16. Strain and dynamic measurements using fiber optic sensors embedded into graphite/epoxy tubes

    NASA Technical Reports Server (NTRS)

    Dehart, D. W.; Doederlein, T.; Koury, J.; Rogowski, R. S.; Heyman, J. S.; Holben, M. S., Jr.

    1989-01-01

    Graphite/epoxy tubes were fabricated with embedded optical fibers to evaluate the feasibility of monitoring strains with a fiber optic technique. Resistance strain gauges were attached to the tubes to measure strain at four locations along the tube for comparison with the fiber optic sensors. Both static and dynamic strain measurements were made with excellent agreement between the embedded fiber optic strain sensor and the strain gauges. Strain measurements of 10(exp -7) can be detected with the optical phase locked loop (OPLL) system using optical fiber. Because of their light weight, compatibility with composites, immunity to electromagnetic interference, and based on the static and dynamic results obtained, fiber optic sensors embedded in composites may be useful as the sensing component of smart structures.

  17. In-situ strain sensing with fiber optic sensors embedded into stainless steel 316

    NASA Astrophysics Data System (ADS)

    Havermann, Dirk; Mathew, Jinesh; Macpherson, William N.; Maier, Robert R. J.; Hand, Duncan P.

    2015-04-01

    Fiber Bragg Grating (FBG) sensors are embedded into Stainless Steel (SS) 316 components using bespoke Selective Laser Melting (SLM) technology. SS 316 material is added on substrates by SLM, incorporating U-shaped grooves with dimensions suitable to hold nickel coated optical fibers. Coated optical fibers containing fiber Bragg gratings for strain monitoring are placed in the groove. Melting subsequent powder layer on top of the fiber completes the embedding. Strain levels exceeding 3 mɛ are applied to specimens and are measured by embedded fiber optic sensors. Elastic deformation of the steel component is reliably measured by the Bragg grating from within the component with high accuracy. During plastic deformation of the steel the optical fiber is slipping due to poor adhesive bonding between fused silica and metal surround.

  18. Embedded intrinsic Fabry-Perot optical fiber sensors in cement concrete structures

    NASA Astrophysics Data System (ADS)

    Kim, Ki S.; Yoo, Jae-Wook; Kim, Seung Kwan; Kim, Byoung Yoon

    1996-05-01

    Intrinsic Fabry-Perot optical fiber sensors were embedded to the tensile side of the 20 cm by 20 cm by 150 cm cement concrete structures. The sensors were attached to the reinforcing steels and then, the cement concretes were applied. It took 30 days for curing the specimens. After that, the specimens were tested with 4-point bending method by a universal testing machine. Strains were measured and recorded by the strain gauges embedded near optical fiber sensors. Output data of fiber sensor showed good linearity to the strain data from the strain gauges up to 2000 microstrain. The optical fiber sensors showed good response after yielding of the structure while embedded metal film strain gauges did not show any response. We also investigated the behavior of the optical fiber sensor when the specimens were broken down. In conclusion, the optical fiber sensors can be used as elements of health monitoring systems for cement concrete infra-structures.

  19. Method for embedding optical fibers in an aluminum matrix by ultrasonic consolidation

    NASA Astrophysics Data System (ADS)

    Yen Kong, Choon; Soar, Rupert

    2005-10-01

    The overall aim of the research, part of which is outlined in this paper, was to utilize the ultrasonic consolidation (UC) process for the fabrication of smart metal structures, capable of measuring an external stimulus and responding to this stimulus by adapting its structure accordingly through embedding both active and passive functional elements. This paper presents a fundamental study of embedding methods for the fabrication of optical fibers embedded within aluminum structures. The methods considered in this paper produced embedded optical fiber specimens in which large amounts of plastic flow were observed within the matrix. The matrix material deformed around the fibers, resulting in fully embedded optical fibers capable of transmitting a bright light source and without damaging the fibers. Based on light responses, a general process window was drawn to show the range at which optical fibers can be embedded within aluminum structures using the UC process. The outcomes lay down initial investigative principles for the further development of the technology for embedding or cladding of optical fiber sensors, such as fiber Bragg grating devices, within or on metal structures: for example, the cladding of large free-form metal structures or smart “skinned” metal foam or metal honeycomb structures.

  20. The performance of graphite - epoxy composite with embedded optical fibers under compression

    NASA Astrophysics Data System (ADS)

    Mall, S.; Dosedel, S. B.; Holl, M. W.

    1996-04-01

    The effect of embedded optical fibers on the compressive strength and stiffness of a graphite - epoxy composite, AS4/3501-6, consisting of 30 plies with 40% 0964-1726/5/2/009/img1 plies, 20% 0964-1726/5/2/009/img2 plies, and 40% 0964-1726/5/2/009/img3 plies, was investigated. Five laminates were fabricated with different numbers of optical fibers, optical fiber diameters, optical fiber locations, and optical fiber orientations with respect to reinforcing graphite fibers, which provided 15 groups of specimens. Each group contained 10 specimens which were tested under compression using an IITRI fixture. Optical fibers were oriented perpendicular to the loading direction in all specimens. The maximum reduction in compressive strength was 27% in specimens where two optical fibers were placed perpendicular to surrounding graphite fibers. In this case, one optical fiber was located at the specimen midplane while the other was located three plies from the outer surface, resulting in an asymmetric condition about the midplane. Other variations of optical fibers perpendicular to graphite fibers resulted in less reduction and in some cases did not affect the compressive strength. All specimens where the optical fibers were placed parallel to reinforcing fibers resulted in no degradation of the compressive strength. No change in modulus was observed due to the presence of optical fibers in any group of specimens.

  1. Microstructured Optical Fiber Sensors Embedded in a Laminate Composite for Smart Material Applications

    PubMed Central

    Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo

    2011-01-01

    Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures. PMID:22163755

  2. Development of smart textiles with embedded fiber optic chemical sensors

    NASA Astrophysics Data System (ADS)

    Khalil, Saif E.; Yuan, Jianming; El-Sherif, Mahmoud A.

    2004-03-01

    Smart textiles are defined as textiles capable of monitoring their own health conditions or structural behavior, as well as sensing external environmental conditions. Smart textiles appear to be a future focus of the textile industry. As technology accelerates, textiles are found to be more useful and practical for potential advanced technologies. The majority of textiles are used in the clothing industry, which set up the idea of inventing smart clothes for various applications. Examples of such applications are medical trauma assessment and medical patients monitoring (heart and respiration rates), and environmental monitoring for public safety officials. Fiber optics have played a major role in the development of smart textiles as they have in smart structures in general. Optical fiber integration into textile structures (knitted, woven, and non-woven) is presented, and defines the proper methodology for the manufacturing of smart textiles. Samples of fabrics with integrated optical fibers were processed and tested for optical signal transmission. This was done in order to investigate the effect of textile production procedures on optical fiber performance. The tests proved the effectiveness of the developed methodology for integration of optical fibers without changing their optical performance or structural integrity.

  3. Development of a 2-Channel Embedded Infrared Fiber-Optic Temperature Sensor Using Silver Halide Optical Fibers

    PubMed Central

    Yoo, Wook Jae; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jinsoo; Han, Ki-Tek; Park, Jang-Yeon; Park, Byung Gi; Lee, Bongsoo

    2011-01-01

    A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured. The response time and the reproducibility of the fiber-optic temperature sensor were also obtained. Thermometry with the proposed sensor is immune to changes if parameters such as offset voltage, ambient temperature, and emissivity of any warm object. In particular, the temperature sensing probe with silver halide optical fibers can withstand a high temperature/pressure and water-chemistry environment. It is expected that the proposed sensor can be further developed to accurately monitor temperature in harsh environments. PMID:22163711

  4. Distributed fiber optic sensors embedded in technical textiles for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Krebber, Katerina; Lenke, Philipp; Liehr, Sascha; Noether, Nils; Wendt, Mario; Wosniok, Aleksander

    2010-09-01

    Technical textiles with embedded distributed fiber optic sensors have been developed for the purposes of structural health monitoring in geotechnical and civil engineering. The distributed fiber optic sensors are based on Brillouin scattering in silica optical fibers and OTDR in polymer optical fibers. Such "smart" technical textiles can be used for reinforcement of geotechnical and masonry structures and the embedded fiber optic sensors can provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, structural health monitoring of critical geotechnical and civil infrastructures can be realized. The paper highlights the results achieved in this innovative field in the framework of several German and European projects.

  5. Embedded fiber optic sensor arrays for structural health monitoring of filament wound composite pressure vessels

    NASA Astrophysics Data System (ADS)

    Foedinger, Richard C.; Rea, David L.; Sirkis, James S.; Baldwin, Christopher S.; Troll, John R.; Grande, Robert; Davis, Craig S.; Vandiver, Terry L.

    1999-05-01

    Optical Fiber Bragg Grating (FBG) strain and temperature sensors were embedded into four carbon/epoxy, filament-wound 5.75' diameter Standard Testing and Evaluation Bottles (STEBs). These sensors were used to monitor temperature and strain during cure and pressurization of the pressure vessels. Preliminary to this work, micrographs were made of embedded fiber, showing good incorporation of the fiber into the material and no degradation of the optical fiber's acrylate coating. A survey was also made of different ingress/egress techniques to protecting the fiber as in enters the bottle and preventing attenuation and power fluctuation, with Tefzel tubing proving to be the most effective method. The FBGs were embedded parallel to the reinforcing fibers, in the hoop and helical directions, and also in the axial direction. The sensors showed close agreement with surface-mounted Resistance Strain Gages (RSGs),as well as finite element modeling. Sensors in the hoop direction embedded at mid-cylinder showed the closest agreement (-1.2%), while agreement for hoop- direction sensors embedded near the ends of the bottle (11%) was not as close. The agreement was also better for helically directed sensors embedded at mid-cylinder (-1.6%?) than for those embedded near the ends (-24%). Some preliminary impact testing was conducted that indicated FBG sensors would be appropriate for sensing impact damage.

  6. Fabrication of fiber Bragg gratings in embedded-core hollow optical fiber

    NASA Astrophysics Data System (ADS)

    Mao, Guopei; Sun, Bo; Yuan, Tingting; Zhong, Xing; Shi, Jinhui; Guan, Chunying; Yuan, Libo

    2015-07-01

    A novel Bragg fiber grating (FBG) in an embedded-core hollow optical fiber (ECHOF) has been proposed and experimentally demonstrated. The high-quality FBG fabricated with phase-mask technique by using 248 nm ultraviolet laser, has a resonant wavelength of ~943.1 nm and a dip of ~24.2 dB. Subsequently, the dependences of the resonant peak on the temperature and the axial strain were studied. Experimental results show that the temperature and axial stain sensitivity are 6.5 pm/°С and 1.1 pm/μɛ, respectively. In addition, a 0.03 nm shift of the transmission dip can be obtained when the polarization state changes from X polarization to Y polarization.

  7. Palladium particles embedded into silica optical fibers for hydrogen gas detection

    NASA Astrophysics Data System (ADS)

    Leparmentier, Stéphanie; Auguste, Jean-Louis; Humbert, Georges; Delaizir, Gaëlle; Delepine-Lesoille, Sylvie; Bertrand, Johan; Buschaert, Stéphane; Perisse, Jocelyn; Macé, Jean Reynald

    2014-05-01

    In this paper, we report the fabrication and characterization of a new concept of optical fibers whose cladding is composed of palladium particles embedded into the silica glass cladding. Since conventional fiber processes are not suitable for such realizations, we developed an original process based on powder technology to prepare our specific preforms. Step, graded index and photonic crystal optical fibers with original shapes were realized. The use of high purity powders as raw materials combined to a specific preforms heat treatment allowed the fabrication of resistant and long length metal-cladding optical fibers. Microstructured Pd-SiO2 composite cladding optical fibers with single-mode behavior and optical losses lower than 2 dB/m at 1530 nm were characterized. Hydrogen-induced attenuation sensitivity of these fibers at the 1245 nm wavelength was demonstrated after long H2 exposure. Dehydrogenation kinetics calculations and experiments were studied.

  8. Embedding properties of optical fibers integrated into ceramic coatings obtained by wire flame thermal spray

    NASA Astrophysics Data System (ADS)

    Duo, Yi; Costil, Sophie; Pfeiffer, Pierre; Serio, Bruno

    2015-03-01

    The elaboration of smart materials with optical fiber sensors embedded into several dissimilar layers is capable of monitoring various system parameters inside the layered structure without damaging the host structure itself. This work mainly concentrates on the thermal elaboration process used to embed optical fibers into ceramic coating layers and their characterization. A new mechanical holder is first proposed in order to maintain the optical fiber during the thermal spray process and protect it from the strong atmospheric turbulence caused by the heat flux. Wire flame thermal spray where particles are propelled on the substrate at a temperature of more than 2000 °C is chosen as the elaboration process and the favorable elaboration conditions are evaluated. The microscopic characteristics of both the surface and cross-section of the embedding structure are evaluated, and the mechanical adhesion strength of the embedded optical fiber is then measured and discussed. The results show that the optical fiber remains undamaged after the thermal spray process and keeps perfect adhesion with the ceramic coating, making the former a competitive method to elaborate the embedded hybrid structure.

  9. Embedded fiber optic sensors for monitoring processing, quality and structural health of resin transfer molded components

    NASA Astrophysics Data System (ADS)

    Keulen, C.; Rocha, B.; Yildiz, M.; Suleman, A.

    2011-07-01

    Due to their small size and flexibility fiber optics can be embedded into composite materials with little negative effect on strength and reliability of the host material. Fiber optic sensors such as Fiber Bragg Gratings (FBG) or Etched Fiber Sensors (EFS) can be used to detect a number of relevant parameters such as flow, degree of cure, quality and structural health throughout the life of a composite component. With a detection algorithm these embedded sensors can be used to detect damage in real time while the component remains in service. This paper presents the research being conducted on the use of fiber optic sensors for process and Structural Health Monitoring (SHM) of Resin Transfer Molded (RTM) composite structures. Fiber optic sensors are used at all life stages of an RTM composite panel. A laboratory scale RTM apparatus was developed with the capability of visually monitoring the resin filling process. A technique for embedding fiber optic sensors with this apparatus has also been developed. Both FBGs and EFSs have been embedded in composite panels using the apparatus. EFSs to monitor the fabrication process, specifically resin flow have been embedded and shown to be capable of detecting the presence of resin at various locations as it is injected into the mold. Simultaneously these sensors were multiplexed on the same fiber with FBGs, which have the ability to measure strain. Since multiple sensors can be multiplexed on a single fiber the number of ingress/egress locations required per sensor can be significantly reduced. To characterize the FBGs for strain detection tensile test specimens with embedded FBG sensors have been produced. These specimens have been instrumented with a resistive strain gauge for benchmarking. Both specimens and embedded sensors were characterized through tensile testing. Furthermore FBGs have been embedded into composite panels in a manner that is conducive to detection of Lamb waves generated with a centrally located PZT

  10. Optical fiber sensor layer embedded in smart composite material and structure

    NASA Astrophysics Data System (ADS)

    Pan, Xiao Wen; Liang, Da Kai; Li, Dongsheng

    2006-10-01

    A composite structure health monitoring system with optical fiber sensors is an important development in smart materials and structures. But it is difficult to embed a network of distributed optical fiber sensors in a smart composite structure, and the most effective method would be integrating the network of sensors with the polyimide film as a layer, called the optical fiber sensor layer, and then embedding the layer with optical fiber sensors in the composite material. This paper introduces three methods of making a distributed optical fiber sensor layer with polyimide. The first is to sandwich optical fiber sensors in two polyimide films. The second is to deposit the network of sensors in polyimide solution, and dry the polyimide solution. The last is to build thin-film optical waveguides and optical sensors by using fluorinated polyimide, which is expected to have high integration and high reliability. Some tests indicate that there is a little influence on the mechanical performance of the structure; however, optical fiber sensor built-in polyimide films work very well.

  11. Optical link between FPGA microprocessors using a fiber-embedded rigid PCB

    NASA Astrophysics Data System (ADS)

    Kim, Do-Won; Lee, Tae-Woo; Im, Dong-Min; Cho, Mu Hee; Lee, Min-Hyuk; Choi, Jae-Bong; Park, Hyo-Hoon

    2010-02-01

    A platform for video data link between FPGA microprocessors based on an optical printed-circuit board (OPCB) was implemented. Optimized compact size of 9.5 x 10.5 x 1.0 mm3 Tx/Rx modules were prepared and applied for the optical link of the platform. A low insertion loss of 0.42 dB and stable optical fiber-layer integrated with connectors was embedded in FR4 board for the implementation of the OPCB. The platform shows that embedding the optical fiber-layer with connectors can improve the degree of freedom for packaging as well as optical and physical characteristics. Real time video image from a charge-coupled-device (CCD) camera was successfully transmitted to a monitor through optical link between FPGA microprocessors of the platform. The captured image was successfully saved in a static random access memory (SRAM) and clearly shown on the monitor. This study shows that chip-to-chip optical interconnection technology based on fiber-layer embedded OPCB can be applied for the CPU-to-CPU/memory optical interconnections.

  12. A novel method of embedding distributed optical fiber sensors for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mao, J. H.; Jin, W. L.; He, Y.; Cleland, D. J.; Bai, Y.

    2011-12-01

    A distributed optical fiber sensor based on Brillouin scattering (BOTDR or BOTDA) can measure and monitor strain and temperature generated along optical fiber. Because it can measure in real-time with high precision and stability, it is quite suitable for health monitoring of large-scale civil infrastructures. However, the main challenge of applying it to structural health monitoring is to ensure it is robust and can be repaired by adopting a suitable embedding method. In this paper, a novel method based on air-blowing and vacuum grouting techniques for embedding long-distance optical fiber sensors was developed. This method had no interference with normal concrete construction during its installation, and it could easily replace the long-distance embedded optical fiber sensor (LEOFS). Two stages of static loading tests were applied to investigate the performance of the LEOFS. The precision and the repeatability of the LEOFS were studied through an overloading test. The durability and the stability of the LEOFS were confirmed by a corrosion test. The strains of the LEOFS were used to evaluate the reinforcing effect of carbon fiber reinforced polymer and thereby the health state of the beams.

  13. Effect of embedded fiber optics on the mechanical properties of a composite host material

    NASA Astrophysics Data System (ADS)

    Holl, Michael W.; Boyd, Steven

    1993-07-01

    The effects of embedded fiber optics (FO) on the mechanical properties of a graphite/epoxy composite host material were studied. Optical fibers 125 micrometers and 240 micrometers in diameter were embedded in AS4/3501-6 graphite/epoxy, and the static performance of the material was evaluated. FO were placed in the midplane of the specimens both parallel and perpendicular to the loading direction. The mechanical tests included O degree(s) compression, 90 degree(s) tension, (0, +/- 45, 90)S tension, and first ply failure of (O2, 902)S specimens. Microstructural analysis of the fracture surfaces showed little influence of the FO on crack initiation or propagation. Test results showed no distinct influence of the FO on failure strength or modulus, but did open questions on the coupled effects of processing history, FO embedment, and failure strength.

  14. Process and Structural Health Monitoring of Composite Structures with Embedded Fiber Optic Sensors and Piezoelectric Transducers

    NASA Astrophysics Data System (ADS)

    Keulen, Casey James

    Advanced composite materials are becoming increasingly more valuable in a plethora of engineering applications due to properties such as tailorability, low specific strength and stiffness and resistance to fatigue and corrosion. Compared to more traditional metallic and ceramic materials, advanced composites such as carbon, aramid or glass reinforced plastic are relatively new and still require research to optimize their capabilities. Three areas that composites stand to benefit from improvement are processing, damage detection and life prediction. Fiber optic sensors and piezoelectric transducers show great potential for advances in these areas. This dissertation presents the research performed on improving the efficiency of advanced composite materials through the use of embedded fiber optic sensors and surface mounted piezoelectric transducers. Embedded fiber optic sensors are used to detect the presence of resin during the injection stage of resin transfer molding, monitor the degree of cure and predict the remaining useful life while in service. A sophisticated resin transfer molding apparatus was developed with the ability of embedding fiber optics into the composite and a glass viewing window so that resin flow sensors could be verified visually. A novel technique for embedding optical fiber into both 2- and 3-D structures was developed. A theoretical model to predict the remaining useful life was developed and a systematic test program was conducted to verify this model. A network of piezoelectric transducers was bonded to a composite panel in order to develop a structural health monitoring algorithm capable of detecting and locating damage in a composite structure. A network configuration was introduced that allows for a modular expansion of the system to accommodate larger structures and an algorithm based on damage progression history was developed to implement the network. The details and results of this research are contained in four manuscripts that

  15. Embedded optical fibers for PDV measurements in shock-loaded, light and heavy water

    NASA Astrophysics Data System (ADS)

    Mercier, Patrick; Benier, Jacky; Frugier, Pierre Antoine; Debruyne, Michel; Bolis, Cyril

    2012-03-01

    In order to study the shock-detonation transition, we propose to characterize the shock loading of a high explosive plane wave generator into a nitromethane cell. To eliminate the reactive behaviour, we replace the nitromethane by an inert liquid compound. Light water (H2O) has been first employed; eventually heavy water (D2O) has been chosen for its better infrared spectral properties. We present the PDV results of different embedded optical fibers which sense the medium with two different approaches: a non intrusive optical observation of phenomena coming in front of them (interface, shock wave, detonation wave) followed by their mechanical interaction with the fiber.

  16. Determination of the coefficient of thermal expansion with embedded long-gauge fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Feng, Xin; Sun, Changsen; Zhang, Xiaotan; Ansari, Farhad

    2010-06-01

    A novel methodology for the determination of the coefficient of thermal expansion (CTE) is proposed by using long-gauge fiber optic sensors. Current approaches either neglect the shear-lag effects or do not compensate for the thermo-optic effects in optical fibers leading to precision errors. The embedded long-gauge sensor measures not only the thermo-optic effect due to temperature fluctuations, but also the strain-optic effect created by thermal stresses. However, it is difficult to directly separate these two effects in the measurements. Given that only the strain-optic effect correlates to the CTE of a host material, it is necessary to compensate for the thermo-optic effect. An additional error is attributed to the fact that the shear-lag effect is ignored, i.e. assumption is made that the strain distribution in the optical fiber is the same as that in the host material. This study reports on the development of a methodology for the computation of the coefficient of thermal expansion in structural materials using long-gauge fiber optic sensors. The proposed formulations account for both the shear-lag and thermo-optic effects.

  17. Special optical fiber design to reduce reflection peak distortion of a FBG embedded in inhomogeneous material

    NASA Astrophysics Data System (ADS)

    Cheng, Lun-Kai; Toet, Peter; de Vreugd, Jan; Nieuwland, Remco; Tse, Ming-Leung Vincent; Tam, Hwayaw

    2014-03-01

    During the last decades, the use of optical fiber for sensing applications has gained increasing acceptance because of its unique properties of being intrinsically safe, unsusceptible to EMI, potentially lightweight and having a large operational temperature range. Among the different Fiber Optic sensor types, Fiber Bragg Grating (FBG) is most widely used for its unique multiplexing potential and the possibility of embedding in composite material for Structural Health Monitoring. When the fiber is embedded in an inhomogeneous environment, typically a material composed of filler and base material of different stiffness, local stiff material will generate extra lateral load to the fiber. Via the Poisson effect, this will be converted to a local axial strain. The narrow and sharp peak in the reflection spectrum of an FBG sensor relies on the constant periodicity of the grating. An inhomogeneous axial strain distribution will result in distortion or broadening of the FBG reflection spectrum. For the FBG strain sensitivity of about 1.2pm/μɛ, the spectral distortion can be disastrous for strain measurements. A fiber design to tackle this critical problem is presented. Finite Element Modeling is performed to demonstrate the effectiveness of the solution. Modeling with different configurations has been performed to verify the influence of the design. The deformation of the core in the special fiber depends on the design. For a particular configuration, the core deformation in the axial direction is calculated to be a factor of 10 lower than that of a standard fiber. The first prototype fiber samples were drawn and the manufacturing of FBG in this special fiber using the phase mask method was demonstrated successfully.

  18. Protection of critical infrastructure using fiber optic sensors embedded in technical textiles

    NASA Astrophysics Data System (ADS)

    Krebber, Katerina; Lenke, Philipp; Liehr, Sascha; Noether, Nils; Wendt, Mario; Wosniok, Aleksander

    2010-04-01

    Terrorists and criminals more and more attack and destroy important infrastructures like routes, railways, bridges, tunnels, dikes and dams, important buildings. Therefore, reliable on-line and long-term monitoring systems are required to protect such critical infrastructures. Fiber optic sensors are well-suited for that. They can be installed over many kilometers and are able to measure continuously distributed strain, pressure, temperature and further mechanical and physical quantities. The very tiny optical fibers can be integrated into structures and materials and can provide information about any significant changes or damages of the structures. These so-called smart materials and smart structures are able to monitor itself or its environment. Particularly smart technical textiles with embedded fiber optic sensors have become very attractive because of their high importance for the structural health monitoring of geotechnical and masonry infrastructures. Such textiles are usually used for reinforcement of the structures; the embedded fiber optic sensors provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, critical infrastructures can be preventively protected. The paper will introduce this innovative field and will present the results achieved within several German and European projects.

  19. Drop-test study of parachute textile with embedded fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Li, Min; Li, Yulin

    2005-04-01

    We developed here a novel embedded strain measurement system that fulfilled a dynamic analysis of the characteristics of parachute canopy based on fiber optics technology. As a continue study of the dynamic characteristics of the parachute canopy, a series of drop tests were developed in the laboratory, and followed by the field test. Sample results obtained by both mode power distribution (MPD) system and fiber Bragg grating (FBG) sensors are taken into the comparison between the optical and mechanical testing results. Drop test results from both MPD and FBG sensors were analysis and correlated to the mechanical characteristics of the parachute canopy textile based on the previous relatins derived from quasi-static test. The curves show clearly that the results of the two types of sensors are consistent. The achieved results provided a nice correlation between the optical and mechanical signals, which dues primarily to the model built up in previous quasi-static test, and will be discussed in this paper.

  20. Embedded optical fibers for PDV measurements in shock-loaded, light and heavy water

    NASA Astrophysics Data System (ADS)

    Mercier, Patrick; Benier, Jacky; Frugier, Pierre-Antoine; Debruyne, Michel; Bolis, Cyril

    2011-06-01

    In order to study the shock-detonation transition, it is necessary to characterize the shock loading of a high explosive plane wave generator into a nitromethane cell. To eliminate the reactive behaviour, we replace the nitromethane by an inert liquid compound. Light water has been first employed; eventually heavy water has been chosen for its better infrared spectral properties. We present the PDV results of different submerged embedded optical fibers which sense the medium with two different approaches: a non-intrusive optical observation of phenomena coming in front of them (interface, shock wave) followed by the mechanical interaction with the shock wave.

  1. Novel bidirectional optical subassembly with embedded filter, 45-degree angle polished fiber cladding and etched fiber core

    NASA Astrophysics Data System (ADS)

    Lee, Seihyoung; Lim, Kwon-Seob; Lee, Jong Jin; Kang, Hyun Seo

    2009-10-01

    The optical wavelength-division-multiplex filter for bidirectional optical subassembly (BOSA) is embedded to the fiber core, which results in simplicity of the BOSA module. The fiber cladding is 45-deg angle polished to receive a downstream signal. The core is etched by a femtosecond laser to have a normal core facet and to transmit an upstream signal. The downstream signal, which is core mode, is coupled to the cladding mode by the long-period fiber grating and then detected by a photodiode by means of the total internal reflection effect at the 45-deg angle polished cladding facet. The measured transmitted and received coupling efficiencies are 27.3 and 43.8%, respectively.

  2. Embedded infrared fiber-optic sensor for thermometry in a high temperature/pressure environment

    NASA Astrophysics Data System (ADS)

    Yoo, Wook Jae; Jang, Kyoung Won; Moon, Jinsoo; Han, Ki-Tek; Jeon, Dayeong; Lee, Bongsoo; Park, Byung Gi

    2012-11-01

    In this study, we developed an embedded infrared fiber-optic temperature sensor for thermometry in high temperature/pressure and water-chemistry environments by using two identical silver-halide optical fibers. The performance of the fabricated temperature sensor was assessed in an autoclave filled with an aqueous coolant solution containing boric acid and lithium hydroxide. We carried out real-time monitoring of the infrared radiation emitted from the signal and reference probes for various temperatures over a temperature range from 95 to 225 °C. In order to decide the temperature of the synthetic coolant solution, we measured the difference between the infrared radiation emitted from the two temperature-sensing probes. Thermometry with the proposed sensor is immune to any changes in the physical conditions and the emissivity of the heat source. From the experimental results, the embedded infrared fiber-optic temperature sensor can withstand, and normally operate in a high temperature/pressure test loop system corresponding to the coolant system used for nuclear power plant simulation. We expect that the proposed sensor can be developed to accurately monitor temperatures in harsh environments.

  3. Embedded fiber-optic strain sensors for process monitoring of composites

    NASA Astrophysics Data System (ADS)

    Lawrence, Craig Michael

    1997-11-01

    A new class of mechanical structures, termed 'smart' or 'adaptive' structures, has been proposed by engineers for use in aerospace, civil, and industrial applications. These structures integrate sensors and actuators directly into the materials from which they are formed, and are envisioned to have the ability to monitor themselves during manufacturing, assess their structural integrity, adapt to changing conditions, and perform self-repair. Two of the key enabling technologies for smart structures are fiber optic sensors and composite materials. Fiber optic sensors are capable of responding to a variety of environmental stimuli, such as temperature and strain. These small sensors can be embedded within polymer-matrix composite materials to form the basic building block of a smart structure. In the first part of this research, the ability of fiber optic sensors to monitor residual stresses generated during the processing of composites is investigated. A new measurement technique is described-the embedded fiber optic sensor (EFOS) method-in which residual stresses are computed from measurements of internal strain and temperature using a viscoelastic, cure- dependent process model. The EFOS method has the advantage that it is non-destructive and provides information on residual stress development during cure in real-time. Experiments were performed to test the method, and the resulting residual stress measurements compared favorably with prior theoretical predictions and measurements by a destructive technique. The EFOS method was also used to accurately predict the residual-stress induced warpage in a non-symmetric composite sample. In the second part of this work, the development of a multi-parameter fiber optic sensor is presented which is created by forming two Bragg gratings at widely spaced wavelengths in polarization-maintaining optical fiber. The spectra of the light reflected from this sensor contains four peaks which may be used, in principle, to determine

  4. Monitoring of transverse displacement of reinforced concrete beams under flexural loading with embedded arrays of optical fibers

    NASA Astrophysics Data System (ADS)

    Gonzalez-Tinoco, Juan E.; Gomez-Rosas, Enrique R.; Guzmán-Olguín, Héctor; Khotiaintsev, Sergei; Zuñiga-Bravo, Miguel A.

    2015-04-01

    We present results of an ongoing study of structural health monitoring of concrete elements by means of arrays of telecommunications-grade optical fibers embedded in such elements. In this work, we show a possibility of using this technique for monitoring the transverse displacement of the reinforced concrete beams under flexural loading. We embedded a number of multimode silica-core/polymer-clad/polymer-coated optical fibers in a mold with preinstalled reinforcing steel bars and fresh concrete mix. Then the concrete was compacted and cured. Some optical fibers were broken during the fabrication process. The fiber survival rate varied with concrete grade, compacting technique and optical fiber type. The fibers that survived the fabrication process were employed for the monitoring. They were connected to the optical transmitter and receiver that formed a part of a larger measurement system. The system continuously measured the optical transmission of all optical fibers while the reinforced concrete beams were subjected to incremental transverse loading. We observed a quasi-linear decrease in optical transmission in all optical fibers of the array vs. the applied load and respective flexural displacement. Although the underlying phenomena that lead to such a variation in optical transmission are not clear yet, the observed behavior might be of interest for assessing the transverse displacement of the reinforced concrete beams under flexural loading.

  5. Effect of resin type on the signal integrity of an embedded perfluorinated polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Hamouda, Tamer; Peters, Kara; Seyam, Abdel-Fattah M.

    2012-05-01

    Polymer optical fibers (POF) hold many advantages for embedded sensing, such as their low cost, flexibility, high tensile strain limits and high fracture toughness. POF sensors may therefore be integrated into fiber reinforced composite structures for monitoring structural behavior. Since POFs do not require a protective coating, it is critical to verify that the resin system does not have a negative impact on the noise level or performance of POF sensors during composite manufacture. This study measured the effect of vinylester and epoxy resin systems on the signal loss of embedded perfluorinated, graded index POFs. Photon-counting optical time domain reflectometry (OTDR) was used to monitor the signal attenuation and backscattering level of the POFs throughout the resin curing cycle. Fourier transform infrared spectrometry (FTIR) and cross section analyses using scanning electronic microscope (SEM) images were also conducted to investigate whether the resin system caused chemical and physical changes of the POF. This study showed that vinylester resin caused a significant increase in the backscattering level of POF sensors and therefore induced high fiber signal losses. On the other hand, the POF treated with epoxy showed no change in backscattering level, indicating that no chemical or physical change had occurred to the POF.

  6. Design And Fabrication Considerations For Composite Structures With Embedded Fiber Optic Sensors

    NASA Astrophysics Data System (ADS)

    Wood, Robert L.; Tay, Andrew K.; Wilson, Dale A.

    1990-02-01

    Tactical aircraft and commercial and military space structures of the 21st century will employ embedded sensors and actuators to optimize their performance and survivability. As design engineers attempt to incorporate these devices into the new designs, they are faced with numerous additional variables but little criteria for making critical decisions. Textron Aerostructures and Tennessee Technological University have undertaken to develop the technologies necessary to design and build laminated composite structures incorporating a variety of embedded devices. Production techniques are being developed for embedding the devices using both manual and automated methods. Design guidelines to help establish the appropriate device, embedding location and installation methods are also being developed. The experience obtained through the fabrication of a variety of test panels will be discussed and shown. Photomicrographs will be used to illustrate a range of embedding techniques and to document the results. A variety of techniques to bring the optical fibers out of the laminate will also be illustrated and discussed. Conclusions, preliminary recommendations and future plans will also be discussed.

  7. Monitoring of Structural Integrity of Composite Structures by Embedded Optical Fiber Sensors

    NASA Technical Reports Server (NTRS)

    Osei, Albert J.

    2002-01-01

    advanced structural materials expected to become the mainstay of the current and future generation space structures. Since carbon-epoxy composites are the materials of choice for the current space structures, the initial study is concentrated on this type of composite. The goals of this activity are to use embedded FBG sensors for measuring strain and temperature of composite structures, and to investigate the effects of various parameters such as composite fiber orientation with respect to the optical sensor, unidirectional fiber composite, fabrication process etc., on the optical performance of the sensor. This paper describes an experiment to demonstrate the use of an embedded FBG for measuring strain in a composite material. The performance of the fiber optic sensor is determined by direct comparison with results from more conventional instrumentation.

  8. Measurement of process-induced strains in composite materials using embedded fiber optic sensors

    SciTech Connect

    Lawrence, C.M.; Nelson, D.V.; Spingarn, J.R.; Bennett, T.E.

    1996-05-01

    This paper presents the results of experiments to measure the internal strains and temperatures that are generated in graphite/epoxy composite specimens during processing using embedded fiber optic strain sensors and thermocouples. Measurements of strain and temperature, combined with a computational model, offer the potential for non-destructive, real-time determination of residual stress in composites, and may be useful for process monitoring and control. Extrinsic Fabry-Perot interferometer, Bragg grating strain sensors, and thermocouples were embedded in graphite/epoxy composite laminates prior to cure. The specimens were cured in a press, and the internal strains and temperatures developed during processing were monitored and recorded. The results are compared with expected values, and limitations of the experimental technique are discussed.

  9. Optimization of coating diameter of fiber optic sensors embedded in composite structures under arbitrary loading conditions

    NASA Astrophysics Data System (ADS)

    Lammens, Nicolas; Luyckx, Geert; Voet, Eli; van Paepegem, Wim; Degrieck, Joris

    2015-11-01

    Due to mismatches in size and material properties, optical fiber (OF) sensors act as inclusions when embedded in composite hosts. The resulting stress concentrations surrounding the OF sensor may lead to premature failure of the host structure. In this work, a novel technique is presented to determine optimal coating properties for OF sensors embedded in composite structures in order to minimize stress concentrations surrounding these sensors. The method is validated against methodologies available in literature and is shown to produce identical results under these specific circumstances. Compared to the methods in literature, the proposed method is significantly more flexible as it allows the optimization of the coating for any arbitrary load condition. The results of the computations can be reused for any load case in the given combination of host and coating material, reducing the computations to a one time effort for a specific combination of host and coating.

  10. A formal protocol test procedure for the Survivable Adaptable Fiber Optic Embedded Network (SAFENET)

    NASA Astrophysics Data System (ADS)

    High, Wayne

    1993-03-01

    This thesis focuses upon a new method for verifying the correct operation of a complex, high speed fiber optic communication network. These networks are of growing importance to the military because of their increased connectivity, survivability, and reconfigurability. With the introduction and increased dependence on sophisticated software and protocols, it is essential that their operation be correct. Because of the speed and complexity of fiber optic networks being designed today, they are becoming increasingly difficult to test. Previously, testing was accomplished by application of conformance test methods which had little connection with an implementation's specification. The major goal of conformance testing is to ensure that the implementation of a profile is consistent with its specification. Formal specification is needed to ensure that the implementation performs its intended operations while exhibiting desirable behaviors. The new conformance test method presented is based upon the System of Communicating Machine model which uses a formal protocol specification to generate a test sequence. The major contribution of this thesis is the application of the System of Communicating Machine model to formal profile specifications of the Survivable Adaptable Fiber Optic Embedded Network (SAFENET) standard which results in the derivation of test sequences for a SAFENET profile. The results applying this new method to SAFENET's OSI and Lightweight profiles are presented.

  11. Investigation of Structural Properties of Carbon-Epoxy Composites Using Embedded Fiber-Optic Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Osei, Albert J.

    2003-01-01

    coupled into the optical fiber sensor, a reflection peak will be obtained centered around a wavelength called Bragg-wavelength. The Bragg-wavelength depends on the refractive index and the period of the grating, which both change due to mechanical and thermal strain applied to the sensor. The shift in the Bragg-wavelength is directly proportional to the strain. Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of advanced structural materials expected to become the mainstay of the current and future generation space structures. Since carbon-epoxy composites are the materials of choice for the current space structures, the initial study is concentrated on this type of composite. The goals of this activity are to use embedded FBG sensors for measuring strain and temperature of composite structures, and to investigate the effects of various parameters such as composite fiber orientation with respect to the optical sensor, unidirectional fiber composite, fabrication process etc., on the optical performance of the sensor. This paper describes an experiment to demonstrate the use of an embedded FBG for measuring strain in a composite material. The performance of the fiber optic sensor is determined by direct comparison with results from more conventional instrumentation.

  12. Impact damage detection of curved stiffened composite panels by using wavy embedded small-diameter optical fibers

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hiroaki; Kawamata, Akio; Kimoto, Junichi; Sanda, Tomio; Takeda, Nobuo

    2002-07-01

    It is well known that barely visible damage is often induced in composite structures subjected to our-of-plane impact, and the mechanical properties of the composites decrease markedly. So far, for the significance of the damage monitoring, the impact test of the CFRP laminate plates with embedded small-diameter optical fibers were conducted, and it was found possible to detect impact load and impact damage in real-time by measuring the optical loss and strain response. But the stiffened composite panels, which are the representative structural elements of airplane. Are characterized by different impact damage from that of the composite plates. In this study, single-mode and multi-mode optical fibers are used as a sensor for detecting impact load and impact damage in curved/stiffened composite panels. Those fibers have polyimide coating and about 40 micron in diameter which will have no serious effect on the mechanical properties of composites. Impact test are performed using the panels with wavy embedded optical fibers. The characteristics of impact damage are investigated. The impact load, the strain measured by FBG sensors and the optical intensity of the optical fibers embedded in the composites are monitored as a function of time. And we discuss the relationship between optical response, impact load and impact damage.

  13. Embedded and surface-mounted fiber optic sensors for civil structural monitoring

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Casanova, Nicoletta; Kronenberg, Pascal; Marazzi, Silvio; Vurpillot, Samuel

    1997-05-01

    Civil structural monitoring by optical fiber sensors, require the development of reliable sensors that can be embedded or surface mounted in concrete, mortars, steel, timber and other construction materials as well as in rocks, soils and road pavements. These sensors should be rapid and simple to install in order to avoid any interference with the building site schedule and not to require specialized operators to accomplish the task. The sensors have to be rugged enough to withstand the harsh conditions typically found in civil engineering including, dust, moisture, shocks, EM disturbances and unskilled workman. It is also desirable that the instrumentation survives for tens of years in order to allow a constant monitoring of the structure aging. This contribution presents the results of a four-year effort to develop, test and industrially produce a palette of sensors responding to the above requirements and adapted to different applications and host materials. These sensors include a small version (length up to 2 m) adapted for embedding in mortars, grout and glues, an intermediate version of length between 20 cm and 6 m adapted to direct concrete embedding or surface installation and a long version adapted to measure large deformations (up to 2%) over length up to 30 m and especially adapted for geostructures monitoring.

  14. Metal embedded Fiber Brag Grating Sensors

    NASA Astrophysics Data System (ADS)

    Khanal, Chooda; Vargas, Garman; Balani, Kantesh; Keshri, Anup; Barbosa, Carmen; Agarwal, Arvind; Panepucci, Roberto

    2009-03-01

    A novel method of embedding optical fibers and optical fiber sensors, inside metallic structures will be discussed. We specifically report results for embedding fiber bragg grating sensors in an aluminum coating onto a steel plate. Characterization of an embedded FBG sensor and its effects on the sensor operation are also presented. Temperature sensitivity and the strain sensitivity will be discussed. The novel high throughput deposition method show the potential of embedding optical sensors onto metallic structures which make it suitable for many engineering applications in biomedical, civil, mechanical and aeronautical, among other fields.

  15. Structural integrity and damage assessment of high performance arresting cable systems using an embedded distributed fiber optic sensor (EDIFOS) system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan; Prohaska, John; Bentley, Doug; Glasgow, Andy; Campbell, Richard

    2010-04-01

    Redondo Optics in collaboration with the Cortland Cable Company, TMT Laboratories, and Applied Fiber under a US Navy SBIR project is developing an embedded distributed fiber optic sensor (EDIFOSTM) system for the real-time, structural health monitoring, damage assessment, and lifetime prediction of next generation synthetic material arresting gear cables. The EDIFOSTM system represents a new, highly robust and reliable, technology that can be use for the structural damage assessment of critical cable infrastructures. The Navy is currently investigating the use of new, all-synthetic- material arresting cables. The arresting cable is one of the most stressed components in the entire arresting gear landing system. Synthetic rope materials offer higher performance in terms of the strength-to-weight characteristics, which improves the arresting gear engine's performance resulting in reduced wind-over-deck requirements, higher aircraft bring-back-weight capability, simplified operation, maintenance, supportability, and reduced life cycle costs. While employing synthetic cables offers many advantages for the Navy's future needs, the unknown failure modes of these cables remains a high technical risk. For these reasons, Redondo Optics is investigating the use of embedded fiber optic sensors within the synthetic arresting cables to provide real-time structural assessment of the cable state, and to inform the operator when a particular cable has suffered impact damage, is near failure, or is approaching the limit of its service lifetime. To date, ROI and its collaborators have developed a technique for embedding multiple sensor fibers within the strands of high performance synthetic material cables and use the embedded fiber sensors to monitor the structural integrity of the cable structures during tensile and compressive loads exceeding over 175,000-lbsf without any damage to the cable structure or the embedded fiber sensors.

  16. Impact damage detection system using small-diameter optical fiber sensors wavily embedded in CFRP laminate structures

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hiroaki; Kawamata, Akio; Kimoto, Junichi; Isoe, Akira; Hirose, Yasuo; Sanda, Tomio; Takeda, Nobuo

    2003-08-01

    It is well known that barely visible damage is often induced in composite structures subjected to out-of plane impact, and the mechanical properties of the composites decrease markedly. In this study, some element technologies for the detection of the damage are explained. Those are (1) the technologies for the arrangement of embedded small-diameter optical fibers which have no serious effect on the mechanical properties of composites, (2) the technologies for the egress of the optical fibers using "the embedded connector for smart structures" which can be trimmed without care about the optical fibers, (3) the technologies for the damage detection system that has the functions for data acquisition and analysis, the evaluation of the initiation and the position of damage, and the visualization of damage information. The impact test using the composite airframe demonstrator is conducted. The sensors embedded in the upper panel of the stiffened cylindrical composite structure with 1.5 m in diameter and 3 m in length, are FBG sensors for strain measurement and the optical fibers for optical loss measurement. The detection of damage in the composite structures using a developed damage detection system is demonstrated.

  17. Embedded infrared fiber optic absorption studies of nitramine propellant strand burning

    SciTech Connect

    Wormhoudt, J.; Kebabian, P.L.; Kolb, C.E.

    1997-10-01

    Additional examples of the use of infrared fiber optics to probe the decomposition processes in burning gun propellant strands are presented. These experiments involve measuring the absorption across an open gap between two embedded fibers as it fills with gaseous decomposition products. Several improvements have been made to the experimental technique. In the most significant, detection techniques for the nitrogen oxide species NO{sub 2} and NO have been added to the N{sub 2}O detection system developed in earlier work. NO{sub 2} detection was accomplished by differential absorption of red and green HeNe lasers, while NO detection used a tunable infrared diode laser. The authors have observed N{sub 2}O, NO{sub 2}, and NO evolving into the observation volume during the burning of an RDX-based composite propellant. Observations indicate that NO appears at similar times as N{sub 2}O, that is, while the observation region is relatively cool and far from the burning surface, while NO{sub 2} can significantly precede both NO and N{sub 2}O.

  18. A novel periodic macrobending hetero-core fiber optic sensor embedded in textile for respiratory movements' analysis

    NASA Astrophysics Data System (ADS)

    Alemdar, Kubra; Likoglu, Sumeyra; Fidanboylu, Kemal; Toker, Onur

    2014-03-01

    This paper presents the design of a novel periodic macrobending hetero-core fiber optic sensor embedded in textile for respiratory movements' analysis. We report on several different designs based on textiles which have different loop periodicity and configuration of optical fiber types. In all experiments, the changes of textile elongation are measured during breathing movements. In order to demonstrate the superiority of the proposed sensor, experiments were done on a macrobending sensor constructed from 62.5-50-62.5 hetero-core fiber and a macrobending sensor constructed from 62.5/125 μm multi-mode fiber having different loops. Experimental results show that the sensitivity of the proposed macrobending sensor constructed using hetero-core optical fiber is much higher than the sensor constructed from plain multi-mode optical fiber. It is also shown that, the sensitivity of the sensor increases as the number of loops is increased. On the other hand, several experiments were performed for periodic macrobending sensors having different bending radius by changing the lengths of loops amplitude and period. We demonstrate that the sensors tested on different patients' morphology can successfully sense respiratory movements.

  19. Characterization of embedded fiber optic strain sensors into metallic structures via ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Schomer, John J.; Hehr, Adam J.; Dapino, Marcelo J.

    2016-04-01

    Fiber Bragg Grating (FBG) sensors measure deviation in a reflected wavelength of light to detect in-situ strain. These sensors are immune to electromagnetic interference, and the inclusion of multiple FBGs on the same fiber allows for a seamlessly integrated sensing network. FBGs are attractive for embedded sensing in aerospace applications due to their small noninvasive size and prospect of constant, real-time nondestructive evaluation. In this study, FBG sensors are embedded in aluminum 6061 via ultrasonic additive manufacturing (UAM), a rapid prototyping process that uses high power ultrasonic vibrations to weld similar and dissimilar metal foils together. UAM was chosen due to the desire to embed FBG sensors at low temperatures, a requirement that excludes other additive processes such as selective laser sintering or fusion deposition modeling. In this paper, the embedded FBGs are characterized in terms of birefringence losses, post embedding strain shifts, consolidation quality, and strain sensing performance. Sensors embedded into an ASTM test piece are compared against an exterior surface mounted foil strain gage at both room and elevated temperatures using cyclic tensile tests.

  20. Optical design of endoscopic shape-tracker using quantum dots embedded in fiber bundles

    NASA Astrophysics Data System (ADS)

    Eisenstein, Jessica; Gavalis, Robb; Wong, Peter Y.; Cao, Caroline G. L.

    2009-08-01

    Colonoscopy is the current gold standard for colon cancer screening and diagnosis. However, the near-blind navigation process employed during colonoscopy results in endoscopist disorientation and scope looping, leading to missed detection of tumors, incorrect localization, and pain for the patient. A fiber optic bend sensor, which would fit into the working channel of a colonoscope, is developed to aid navigation through the colon during colonoscopy. The bend sensor is comprised of a bundle of seven fibers doped with quantum dots (QDs). Each fiber within the bundle contains a unique region made up of three zones with differently-colored QDs, spaced 120° apart circumferentially on the fiber. During bending at the QD region, light lost from the fiber's core is coupled into one of the QD zones, inducing fluorescence of the corresponding color whose intensity is proportional to the degree of bending. A complementary metal oxide semiconductor camera is used to obtain an image of the fluorescing end faces of the fiber bundle. The location of the fiber within the bundle, the color of fluorescence, and the fluorescence intensity are used to determine the bundle's bending location, direction, and degree of curvature, respectively. Preliminary results obtained using a single fiber with three QD zones and a seven-fiber bundle containing one active fiber with two QDs (180° apart) demonstrate the feasibility of the concept. Further developments on fiber orientation during bundling and the design of a graphical user interface to communicate bending information are also discussed.

  1. Microring embedded hollow polymer fiber laser

    SciTech Connect

    Linslal, C. L. Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M.

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  2. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  3. Investigation of Carbon-Polymer Structures with Embedded Fiber-Optic Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kaul, R.; Taylor, S.; Myers, G.; Sharma, A.

    2003-01-01

    Several Bragg-grating sensors fabricated within the same optical fiber are buried within multiple-ply carbon-epoxy planar and cylindrical structures. Effect of different orientation of fiber-sensors with respect to carbon fibers in the composite structure is investigated. This is done for both fabric and uni-tape material samples. Response of planar structures to axial and transverse strain up to 1 millistrain is investigated with distributed Bragg-grating sensors. Material properties like Young's Modulus and Poisson ratio is measured. A comparison is made between response measured by sensors in different ply-layers and those bonded on the surface. The results from buried fiber- sensors do not completely agree with surface bonded conventional strain gauges. A plausible explanation is given for observed differences. The planar structures are subjected to impacts with energies up to 10 ft-lb. Effect of this impact on the material stiffness is also investigated with buried fiber-optic Bragg sensors. The strain response of such optical sensors is also measured for cylindrical carbon-epoxy composite structures. The sensors are buried within the walls of the cylinder as well as surface bonded in both the axial as well as hoop directions. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 1500 psi. This is done at both room temperature as well as cryogenic temperatures. The recorded response is compared with that from a conventional strain gauge.

  4. Embedded Fiber Optic Sensors for Measuring Transient Detonation/Shock Behavior;Time-of-Arrival Detection and Waveform Determination.

    SciTech Connect

    Chavez, Marcus Alexander; Willis, Michael David; Covert, Timothy Todd

    2014-09-01

    The miniaturization of explosive components has driven the need for a corresponding miniaturization of the current diagnostic techniques available to measure the explosive phenomena. Laser interferometry and the use of spectrally coated optical windows have proven to be an essential interrogation technique to acquire particle velocity time history data in one- dimensional gas gun and relatively large-scale explosive experiments. A new diagnostic technique described herein allows for experimental measurement of apparent particle velocity time histories in microscale explosive configurations and can be applied to shocks/non-shocks in inert materials. The diagnostic, Embedded Fiber Optic Sensors (EFOS), has been tested in challenging microscopic experimental configurations that give confidence in the technique's ability to measure the apparent particle velocity time histories of an explosive with pressure outputs in the tenths of kilobars to several kilobars. Embedded Fiber Optic Sensors also allow for several measurements to be acquired in a single experiment because they are microscopic, thus reducing the number of experiments necessary. The future of EFOS technology will focus on further miniaturization, material selection appropriate for the operating pressure regime, and extensive hydrocode and optical analysis to transform apparent particle velocity time histories into true particle velocity time histories as well as the more meaningful pressure time histories.

  5. Monitoring the energy efficiency of buildings with Raman DTS and embedded optical fiber cables

    NASA Astrophysics Data System (ADS)

    Ferdinand, P.; Giuseffi, M.; Roussel, N.; Rougeault, S.; Fléchon, O.; Barentin, V.

    2014-05-01

    To reduce greenhouse gas emissions and to promote energy savings in the building sector, a project named Batimetre has been set-up, to measure parameters affecting building energy consumption. For the first time, optical fibers have been deployed on internal and external faces of two experimental houses, designed for low energy consumption. With a DTS Raman system, these cables provide a distributed measurement of walls temperature every meter and every two minutes. Such instrumentation is able to deliver a very large number of data at a reduced operating cost. It allows to isolate thermal phenomena in dynamic thermal simulation tools, and to compare several intermediate predicted and measured parameters.

  6. Embedded Fiber Optic Probes to Measure Detonation Velocities Using the Photonic Doppler Velocimeter

    SciTech Connect

    Hare, D E; Holtkamp, D B; Strand, O T

    2010-03-02

    Detonation velocities for high explosives can be in the 7 to 8 km/s range. Previous work has shown that these velocities may be measured by inserting an optical fiber probe into the explosive assembly and recording the velocity time history using a Fabry-Perot velocimeter. The measured velocity using this method, however, is the actual velocity multiplied times the refractive index of the fiber core, which is on the order of 1.5. This means that the velocimeter diagnostic must be capable of measuring velocities as high as 12 km/s. Until recently, a velocity of 12 km/s was beyond the maximum velocity limit of a homodyne-based velocimeter. The limiting component in a homodyne system is usually the digitizer. Recently, however, digitizers have come on the market with 20 GHz bandwidth and 50 GS/s sample rate. Such a digitizer coupled with high bandwidth detectors now have the total bandwidth required to make velocity measurements in the 12 km/s range. This paper describes measurements made of detonation velocities using a high bandwidth homodyne system.

  7. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  8. APPLICATION OF THE EMBEDDED FIBER OPTIC PROBE IN HIGH EXPLOSIVE DETONATION STUDIES: PBX-9502 AND LX-17

    SciTech Connect

    Hare, D; Goosman, D; Lorenz, K; Lee, E

    2006-09-26

    The Embedded Fiber Optic probe directly measures detonation speed continuously in time, without the need to numerically differentiate data, and is a new tool for measuring time-dependent as well as steady detonation speed to high accuracy. It consists of a custom-design optical fiber probe embedded in high explosive. The explosive is detonated and a refractive index discontinuity is produced in the probe at the location of the detonation front by the compression of the detonation. Because this index-jump tracks the detonation front a measurement of the Doppler shift of laser light reflected from the jump makes it possible to continuously measure detonation velocity with high spatial and temporal resolution. We have employed this probe with a Fabry-Perot-type laser Doppler velocimetry system additionally equipped with a special filter for reducing the level of non-Doppler shifted light relative to the signal. This is necessary because the index-jump signal is relatively weak compared to the return expected from a well-prepared surface in the more traditional and familiar example of material interface velocimetry. Our observations were carried out on a number of explosives but this work is focused on our results on PBX-9502 (95% TATB, 5% Kel-F) and LX-17 (92.5% TATB, 7.5% Kel-F) at varying initial charge density. Our measurements reveal a density dependence significantly lower than previous quoted values and lower than theoretical calculations. Our limited data on detonation speed dependence on wave curvature is in reasonable agreement with previous work using more standard methods and confirms deviation from the Wood-Kirkwood theoretical formula.

  9. Scintillator fiber optic long counter

    DOEpatents

    McCollum, T.; Spector, G.B.

    1994-03-29

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  10. Scintillator fiber optic long counter

    DOEpatents

    McCollum, Tom; Spector, Garry B.

    1994-01-01

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.

  11. Strain Measurement Validation of Embedded Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Emmons, Michael C.; Karnani, Sunny; Trono, Stefano; Mohanchandra, Kotekar P.; Richards, W. Lance; Carman, Gregory P.

    2010-03-01

    This study investigates the influence of strain state distribution on the accuracy of embedded optical fiber Bragg gratings (FBGs) used as strain sensors. An optical fiber embedded parallel to adjacent structural fibers in a graphite epoxy quasi-isotropic [(90/ ±45/0)S]3 lay-up is evaluated with mechanical loading parallel to the fiber optic direction. Finite element analysis (FEA) is used to evaluate the fiber optic sensors' responses both in the far field and near field regions of the mechanical grips. Comparison between experimental fiber optic strains, strain gauges, and FEA provides good correlation in the far field with differences of less than 1%. However, in the near field region, some discrepancies are found and attributed to birefringence arising from complex strain states.

  12. Fiber optic coupled optical sensor

    DOEpatents

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  13. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  14. Embedded fiducials in optical surfaces

    DOEpatents

    Sommargren, Gary E.

    2000-01-01

    Embedded fiducials are provided in optical surfaces and a method for embedding the fiducials. Fiducials, or marks on a surface, are important for optical fabrication and alignment, particularly when individual optical elements are aspheres. Fiducials are used during the course of the polishing process to connect interferometric data, and the equation describing the asphere, to physical points on the optic. By embedding fiducials below the surface of the optic and slightly outside the clear aperture of the optic, the fiducials are not removed by polishing, do not interfere with the polishing process, and do not affect the performance of the finished optic.

  15. Embedded fiducials in optical surfaces

    SciTech Connect

    Sommargren, G.E.

    2000-01-11

    Embedded fiducials are provided in optical surfaces and a method for embedding the fiducials. Fiducials, or marks on a surface, are important for optical fabrication and alignment, particularly when individual optical elements are aspheres. Fiducials are used during the course of the polishing process to connect interferometric data, and the equation describing the asphere, to physical points on the optic. By embedding fiducials below the surface of the optic and slightly outside the clear aperture of the optic, the fiducials are not removed by polishing, do not interfere with the polishing process, and do not affect the performance of the finished optic.

  16. Chiral fiber optical isolator

    NASA Astrophysics Data System (ADS)

    Kopp, Victor I.; Zhang, Guoyin; Zhang, Sheng; Genack, Azriel Z.; Neugroschl, Dan

    2009-02-01

    We propose an in-fiber chiral optical isolator based on chiral fiber polarizer technology and calculate its performance by incorporating the magnetic field into the scattering matrix. The design will be implemented in a special preform, which is passed through a miniature heat zone as it is drawn and twisted. The birefringence of the fiber is controlled by adjusted the diameter of a dual-core optical fiber. By adjusting the twist, the fiber can convert linear to circular polarization and reject one component of circular polarization. In the novel central portion of the isolator, the fiber diameter is large. The effective birefringence of the circular central core with high Verdet constant embedded in an outer core of slightly smaller index of refraction is small. The central potion is a non-reciprocal polarization converter which passes forward traveling left circularly polarized (LCP) light as LCP, while converting backward propagating LCP to right circularly polarized (RCP) light. Both polarizations of light traveling backwards are scattered out of the isolator. Since it is an all-glass structure, we anticipate that the isolator will be able to handle several watts of power and will be environmentally robust.

  17. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Congjun; Ohodnicki, Paul R.; Su, Xin; Keller, Murphy; Brown, Thomas D.; Baltrus, John P.

    2015-01-01

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an

  18. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  19. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  20. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  1. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  2. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices. PMID:25572664

  3. Fiber optic monitoring device

    DOEpatents

    Samborsky, J.K.

    1993-10-05

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

  4. Fiber optic monitoring device

    SciTech Connect

    Samborsky, J.K.

    1992-12-31

    This invention is comprised of a device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  5. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  6. Fiber optic chemical sensors

    NASA Astrophysics Data System (ADS)

    Jung, Chuck C.; McCrae, David A.; Saaski, Elric W.

    1998-09-01

    This paper provides a broad overview of the field of fiber optic chemical sensors. Several different types of fiber optic sensors and probes are described, and references are cited for each category discussed.

  7. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  8. Fiber optics in adverse environments

    SciTech Connect

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations.

  9. Temperature diffusion and thermal strain from embedded fiber optic sensors installed at the Deep Underground Science and Engineering Laboratory (DUSEL) site Lead, South Dakota

    NASA Astrophysics Data System (ADS)

    Gage, J.; Noni, N.; Maclaughlin, M.; Turner, A. L.; Wang, H. F.; Geox^Tm

    2010-12-01

    We are monitoring temperature and rock deformation at the 4100’-level of DUSEL using six Micron Optics Inc. OS3600 temperature-compensated Fiber Bragg Grating (FBG) strain gages. This study is part of a larger project to measure mechanical and thermal strain on the meter-scale within an intact rock mass. Each sensor measures one-dimensional strain and changes in environmental temperature at the sensor. Two of the six sensors are embedded ~1 meter into the rock mass. The other four sensors are mounted on the rock surface on two perpendicular walls of an alcove (2 x 6 m and 2 m tall). Temperature and strain measurements have been recorded continuously at 1 minute intervals since October 1, 2009. Temperature data from the surface mounted sensors show both long-term (> 1 week) and short-term (instantaneous to > 5 days) temperature changes in the alcove. The long-term temperature changes in the alcove propagate into the rock mass creating a thermal gradient between the rock surface and the embedded sensors. Temperature changes measured by the embedded sensors do not record the short-term temperature effects seen at the surface, and temperature changes in the embedded sensors lag behind changes in temperature in the drift; this lag is attributed to thermal diffusion into the rock mass. In order to model thermal diffusion, we use a model for the heating of a semi-infinite half-space due to a time-dependent surface temperature as a boundary condition. The predicted temperature trend is then compared to the measured temperature from the embedded FBG temperature gages. The model gives a good approximation of temperature at both embedded sensors at depths of 0.8 and 0.9 meters. The shape of the temperature trend at the embedded sensors is accurately modeled, and the 0.1 m difference in depth between the two embedded sensors is resolvable using this model. The model fit to the data is based on a coefficient of thermal diffusivity of κ = ~2.0 x 10-6 m2/s for both sensors

  10. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  11. Tapered fibers embedded in silica aerogel.

    PubMed

    Xiao, Limin; Grogan, Michael D W; Leon-Saval, Sergio G; Williams, Rhys; England, Richard; Wadsworth, Willam J; Birks, Tim A

    2009-09-15

    We have embedded thin tapered fibers (with diameters down to 1 microm) in silica aerogel with low loss. The aerogel is rigid but behaves refractively like air, protecting the taper without disturbing light propagation along it. This enables a new class of fiber devices exploiting volume evanescent interactions with the aerogel itself or with dopants or gases in the pores. PMID:19756084

  12. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  13. Specialty optical fibers: revisited

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-10-01

    The paper contains description of chosen aspects of analysis and design of tailored optical fibers. By specialty optical fibers we understand here the fibers which have complex construction and which serve for the functional processing of optical signal rather than long distance transmission. Thus, they are called also instrumentation optical fibers. The following issues are considered: transmission properties, transformation of optical signal, fiber characteristics, fiber susceptibility to external reactions. The technology of tailored optical fibers offers a wider choice of the design tools for the fiber itself, and then various devices made from these fiber, than classical technology of communication optical fibers. The consequence is different fiber properties, nonstandard dimensions and different metrological problems. The price to be paid for wider design possibilities are bigger optical losses of these fibers and weaker mechanical properties, and worse chemical stability. These fibers find their applications outside the field of telecommunications. The applications of instrumentation optical fibers combine other techniques apart from the photonics ones like: electronic, chemical and mechatronic.

  14. Omnidirectional fiber optic tiltmeter

    DOEpatents

    Benjamin, B.C.; Miller, H.M.

    1983-06-30

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  15. Triboluminescent Fiber-Optic Sensors Measure Stresses

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.

    1994-01-01

    Triboluminescence exploited in fiber-optic sensor system for measuring changes in pressures, strains, vibrations, and acoustic emissions, in structural members. Sensors embedded in members for in situ monitoring of condition of structure. System passive in sense no source of radiation required to interrogate optical fiber. Technique has potential for wide range of applications in which detection and measurement of structural stress required.

  16. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  17. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  18. Fiber optic micro accelerometer

    DOEpatents

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  19. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  20. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  1. STRUCTURAL HEALTH MONITORING OF COMPOSITE LAMINATES WITH EMBEDDED PIEZOELECTRIC FIBERS

    SciTech Connect

    Lissenden, Cliff J.; Puthillath, Padma K.; Blackshire, James L.

    2009-03-03

    The actuation of ultrasonic guided waves in a carbon fiber reinforced polymer plate from embedded metal core piezoelectric fibers is studied for structural health monitoring applications. A linear array of fibers embedded at the midplane can generate guided waves transverse to the fiber direction. Finite element simulations show that a significant source influence is associated with the small diameter piezoelectric fibers.

  2. Infrared optical fibers

    NASA Astrophysics Data System (ADS)

    Drexhage, Martin G.; Moynihan, Cornelius T.

    1988-11-01

    The development of IR optical fibers for medical, laser, industrial, and telecommunications applications is discussed. IR studies of single and polycrystalline materials, chalcogenide glasses, and heavy-metal fluoride glasses are reviewed. It is suggested that heavy-metal fluoride glasses are the best prospects for obtaining optical losses lower than those in high-quality silica fibers.

  3. Multimode optical fiber

    DOEpatents

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  4. Embedded system of image storage based on fiber channel

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Su, Wanxin; Xing, Zhongbao; Wang, Hualong

    2008-03-01

    In domains of aerospace, aviation, aiming, and optic measure etc., the embedded system of imaging, processing and recording is absolutely necessary, which has small volume, high processing speed and high resolution. But the embedded storage technology becomes system bottleneck because of developing slowly. It is used to use RAID to promote storage speed, but it is unsuitable for the embedded system because of its big volume. Fiber channel (FC) technology offers a new method to develop the high-speed, portable storage system. In order to make storage subsystem meet the needs of high storage rate, make use of powerful Virtex-4 FPGA and high speed fiber channel, advance a project of embedded system of digital image storage based on Xilinx Fiber Channel Arbitrated Loop LogiCORE. This project utilizes Virtex- 4 RocketIO MGT transceivers to transmit the data serially, and connects many Fiber Channel hard drivers by using of Arbitrated Loop optionally. It can achieve 400MBps storage rate, breaks through the bottleneck of PCI interface, and has excellences of high-speed, real-time, portable and massive capacity.

  5. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Morey, W. W.; Glenn, W. H.; Snitzer, E.

    1983-01-01

    A temperature sensor has been developed that utilizes the temperature dependent absorption of a rare earth doped optical fiber. The temperature measurement is localized at a remote position by splicing a short section of the rare earth fiber into a loop of commercial data communication fiber that sends and returns an optical probe signal to the temperature sensitive section of fiber. The optical probe signal is generated from two different wavelength filtered LED sources. A four port fiber optic coupler combines the two separate wavelength signals into the fiber sensing loop. Time multiplexing is used so that each signal wavelength is present at a different time. A reference signal level measurement is also made from the LED sources and a ratio taken with the sensor signal to produce a transmission measurement of the fiber loop. The transmission is affected differently at each wavelength by the rare earth temperature sensitive fiber. The temperature is determined from a ratio of the two transmission measurements. This method eliminates any ambiguity with respect to changes in signal level in the fiber loop such as mating and unmating optical connectors. The temperature range of the sensor is limited to about 800 C by the temperature limit fo the feed fibers.

  6. Strain transferring of embedded fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Li, Dong-Sheng; Li, Hong-Nan

    2005-05-01

    The relationship between the strains measured by a fiber Bragg grating sensor and the actual structural strains is deduced, then the average strain transfer rate computed by the formulation developed in this paper is compared with available experimental data. The critical adherence length of an optical fiber sensor is determined by a strain lag parameter, which contains both the effects of the geometry and the relative stiffness of the structural components. The analyses shows that the critical adherence length of a fiber sensing segment is the minimum length with which the fiber has to be tightly glued to a structure for adequate sensing. The strain transfer rate of an optical fiber sensor embedded in a multi-layered structure is developed in a similar way, and the factors that influence the efficiency of optical fiber sensor strain transferring are discussed. It is concluded that the strains, sensed by a fiber Bragg grating, have to be magnified by a factor (strain transfer rate) to equal exactly to the actual structural strains.

  7. Fiber optic attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F. (Inventor)

    1994-01-01

    A fiber optic attenuator of the invention is a mandrel structure through which a bundle of optical fibers is wrapped around in a complete circle. The mandrel structure includes a flexible cylindrical sheath through which the bundle passes. A set screw on the mandrel structure impacts one side of the sheath against two posts on the opposite side of the sheath. By rotating the screw, the sheath is deformed to extend partially between the two posts, bending the fiber optic bundle to a small radius controlled by rotating the set screw. Bending the fiber optic bundle to a small radius causes light in each optical fiber to be lost in the cladding, the amount depending upon the radius about which the bundle is bent.

  8. Python fiber optic seal

    SciTech Connect

    Ystesund, K.; Bartberger, J.; Brusseau, C.; Fleming, P.; Insch, K.; Tolk, K.

    1993-08-01

    Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.

  9. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  10. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  11. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1987-01-01

    The challenge of those involved in control-system hardware development is to accommodate an ever-increasing complexity in aircraft control, while limiting the size and weight of the components and improving system reliability. A technology that displays promise towards this end is the area of fiber optics for controls. The primary advantages of employing optical fibers, passive optical sensors, and optically controlled actuators are weight and volume reduction, immunity from electromagnetic effects, superior bandwidth capabilities, and freedom from short circuits and sparking contacts. Since 1975, NASA Lewis has performed in-house, contract, and grant research in fiber optic sensors, high-temperature electro-optic switches, and fly-by-light control-system architecture. Passive optical sensor development is an essential yet challenging area of work and has therefore received much attention during this period. A major effort to develop fly-by-light control-system technology, known as the Fiber-Optic Control System Integration (FOCSI) program, was initiated in 1985 as a cooperative effort between NASA and DOD. Phase 1 of FOCSI, completed in 1986, was aimed at the design of a fiber-optic integrated propulsion/flight control system. Phase 2, yet to be initiated, will provide subcomponent and system development, and a system engine test. In addition to a summary of the benefits of fiber optics, the FOCSI program, sensor advances, and future directions in the NASA Lewis program will be discussed.

  12. Fiber optic moisture sensor

    DOEpatents

    Kirkham, R.R.

    1984-08-03

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  13. Fiber optic choline biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong

    2001-10-01

    A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.

  14. Embedded Optical Sensors for Thermal Barrier Coatings

    SciTech Connect

    David R. Clarke

    2006-07-31

    The third year of this program on developing embedded optical sensors for thermal barrier coatings has been devoted to two principal topics: (i) continuing the assessment of the long-term, thermal cycle stability of the Eu{sup 3+} doped 8YSZ temperature sensor coatings, and (ii) improving the fiber-optic based luminescence detector system. Following the earlier, preliminary findings, it has been found that not only is the luminescence from the sensors not affected by prolonged thermal cycling, even after 195 hours at 1425 C, but the variation in luminescence lifetime with temperature remains unchanged. As the temperature of 1425 C is much higher than present engines attain or even planned in the foreseeable future, our findings indicate that the Eu{sup 3+} doped thermal barrier coating sensors are very robust and have the potential of being stable throughout the life of coatings. Investigation of Eu{sup 3+} doped coatings prepared by plasma-spraying exhibited the same luminescence characteristics as those prepared by electron-beam evaporation. This is of major significance since thermal barrier coatings can be prepared by both process technologies. A fiber-optic based luminescence system has been constructed in which the hottest section of fiber operates to at least 1250 C.

  15. Infrared fiber optic materials

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1987-01-01

    The development of IR fiber optics for use in astronomical and other space applications is summarized. Candidate materials were sought for use in the 1 to 200 micron and the 200 to 1000 micron wavelength range. Synthesis and optical characterization were carried out on several of these materials in bulk form. And the fabrication of a few materials in single crystal fiber optic form were studied.

  16. Fiber-Optic Chemical and Biosensors

    NASA Astrophysics Data System (ADS)

    El-Sherif, Mahmoud

    In the past 15 years, the fiber-optic communication industry has literally revolutionized the telecommunication industry by providing higher performance and more reliable telecommunication links. In parallel to these developments, and due to the high volume production of fiber-optic components at reasonable performance and costs, other industries associated with fiber optics have been developed like the sensors industry. As component prices have fallen and quality improvements have been made, the ability of fiber-optic sensors to displace conventional sensors have become a reality. A major category in fiber-optic sensors is the chemical and biosensors. These sensors can provide numerous advantages over conventional sensors. These advantages are higher performance, light weight, small and compact size, immunity to electromagnetic interference, remote sensing, ability to be multiplexed, and ability to be embedded into various structures and materials. The sensor's sensitivity and selectivity are enhanced by using optical transducers capable of precise detection of surround changes.

  17. Fiber optic communication links

    SciTech Connect

    Meyer, R. H.

    1980-01-01

    Fiber optics is a new, emerging technology which offers relief from many of the problems which limited past communications links. Its inherent noise immunity and high bandwidth open the door for new designs with greater capabilities. Being a new technology, certain problems can be encountered in specifying and installing a fiber optic link. A general fiber optic system is discussed with emphasis on the advantages and disadvantages. It is not intended to be technical in nature, but a general discussion. Finally, a general purpose prototype Sandia communications link is presented.

  18. Use of optical fibers in composite materials

    NASA Astrophysics Data System (ADS)

    Surace, Giuseppe; Chiaradia, Agostino

    1997-06-01

    Following a number of essential considerations concerning smart materials and structures as well as the structural diagnostics issues involved with the use of optical fibers in composite materials, the paper builds on earlier theoretical study of the micromechanics of laminae reinforced with multidirectional fibers, proposing that optical fiber grids embedded in matrix material be used to improve strength and monitoring performance. The paper then addresses the static characterization of such laminae, detailing previously obtained results for multidirectional generic fiber grids. For any given percentage fiber content, a numerical application demonstrates that laminae reinforced with a right triangular grid of optical fibers show consistent improvement in their extension and bending stiffness characteristics as compared with laminae reinforced with unidirectional fibers.

  19. Evaluations of fiber optic sensors for interior applications

    SciTech Connect

    Sandoval, M.W.; Malone, T.P.

    1996-02-01

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  20. Splicing Efficiently Couples Optical Fibers

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1985-01-01

    Method of splicing single-mode optical fibers results in very low transmission losses through joined fiber ends. Coupling losses between joined optical-fiber ends only 0.1 dB. Method needs no special operator training.

  1. Fiber Optics: No Illusion.

    ERIC Educational Resources Information Center

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  2. Fiber optic data transmission

    NASA Technical Reports Server (NTRS)

    Shreve, Steven T.

    1987-01-01

    The Ohio University Avionics Engineering Center is currently developing a fiber optic data bus transmission and reception system that could eventually replace copper cable connections in airplanes. The original form of the system will transmit information from an encoder to a transponder via a fiber optic cable. An altimeter and an altitude display are connected to a fiber optic transmitter by copper cable. The transmitter converts the altimetry data from nine bit parallel to serial form and send these data through a fiber optic cable to a receiver. The receiver converts the data using a cable similar to that used between the altimeter and display. The transmitting and receiving ends also include a display readout. After completion and ground testing of the data bus, the system will be tested in an airborne environment.

  3. Simulating Optical Fibers.

    ERIC Educational Resources Information Center

    Edgar, Dale

    1988-01-01

    Described is a demonstration of Snell's law using a laser beam and an optical fiber. Provided are the set-up method of the demonstration apparatus and some practical suggestions including "index matching" technique using vaseline. (YP)

  4. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  5. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1992-10-06

    An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

  6. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, Bruce R.; Prather, William S.

    1992-01-01

    An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

  7. Fiber optic detector

    SciTech Connect

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  8. Fiber optic detector

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1990-04-01

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  9. Fiber optics welder

    DOEpatents

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  10. Fiber optics: A research paper

    NASA Technical Reports Server (NTRS)

    Drone, Melinda M.

    1987-01-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  11. Self Similar Optical Fiber

    NASA Astrophysics Data System (ADS)

    Lai, Zheng-Xuan

    This research proposes Self Similar optical fiber (SSF) as a new type of optical fiber. It has a special core that consists of self similar structure. Such a structure is obtained by following the formula for generating iterated function systems (IFS) in Fractal Theory. The resulted SSF can be viewed as a true fractal object in optical fibers. In addition, the method of fabricating SSF makes it possible to generate desired structures exponentially in numbers, whereas it also allows lower scale units in the structure to be reduced in size exponentially. The invention of SSF is expected to greatly ease the production of optical fiber when a large number of small hollow structures are needed in the core of the optical fiber. This dissertation will analyze the core structure of SSF based on fractal theory. Possible properties from the structural characteristics and the corresponding applications are explained. Four SSF samples were obtained through actual fabrication in a laboratory environment. Different from traditional conductive heating fabrication system, I used an in-house designed furnace that incorporated a radiation heating method, and was equipped with automated temperature control system. The obtained samples were examined through spectrum tests. Results from the tests showed that SSF does have the optical property of delivering light in a certain wavelength range. However, SSF as a new type of optical fiber requires a systematic research to find out the theory that explains its structure and the associated optical properties. The fabrication and quality of SSF also needs to be improved for product deployment. As a start of this extensive research, this dissertation work opens the door to a very promising new area in optical fiber research.

  12. Fiber optic hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Jung, Chuck C.; Saaski, Elric W.; McCrae, David A.

    1998-09-01

    This paper describes a novel fiber optic-based hydrogen sensor. The sensor consists of a thin-film etalon, constructed on the distal end of a fiber optic. The exterior mirror of the etalon is palladium or a palladium-alloy, which undergoes an optical change upon exposure to hydrogen. Data is presented on fiber optic sensors constructed with palladium and several alloys of palladium. The linearity of the optical response of these sensors to hydrogen is examined. Etalons made with pure palladium are found to be desirable for sensing low concentrations of hydrogen, or for one-time exposure to high concentrations of hydrogen. Etalons made from palladium alloys are found to be more desirable in applications were repeated cycling in high concentrations of hydrogen occurs.

  13. Fiber optic accelerometer

    NASA Technical Reports Server (NTRS)

    August, Rudolf R. (Inventor); Strahan, Virgil H. (Inventor); James, Kenneth A. (Inventor); Nichols, Donald K. (Inventor)

    1980-01-01

    An inexpensive, light weight fiber optic accelerometer to convert input mechanical motion (e.g. acceleration) into digitized optical output signals. The output of the accelerometer may be connected directly to data processing apparatus without the necessity of space consuming analog to digital interface means.

  14. Fiber optic accelerometer

    NASA Technical Reports Server (NTRS)

    Strahan, Virgil H. (Inventor); James, Kenneth A. (Inventor); Quick, William H. (Inventor)

    1983-01-01

    An inexpensive, light weight fiber optic accelerometer to convert input mechanical motion (e.g. acceleration) into digitized optical output signals. The output of the accelerometer may be connected directly to data processing apparatus without the necessity of space consuming analog to digital interface means.

  15. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1990-01-01

    The design, development, and testing of a fiber optic integrated propulsion/flight control system for an advanced supersonic dash aircraft (flies at supersonic speeds for short periods of time) is the goal of the joint NASA/DOD Fiber Optic Control System Integration (FOCSI) program. Phase 1 provided a comparison of electronic and optical control systems, identified the status of current optical sensor technology, defined the aircraft sensor/actuator environment, proposed architectures for fully optical control systems, and provided schedules for development. Overall, it was determined that there are sufficient continued efforts to develop such a system. It was also determined that it is feasible to build a fiber optic control system for the development of a data base for this technology, but that further work is necessary in sensors, actuators, and components to develop an optimum design, fully fiber optic integrated control system compatible with advanced aircraft environments. Phase 2 is to design, construct, and ground test a fly by light control system. Its first task is to provide a detailed design of the electro-optic architecture.

  16. Fiber optic interferometric accelerometers

    SciTech Connect

    Vohra, S.T.; Danver, B.; Tveten, A.; Dandridge, A.

    1996-04-01

    Recent progress on the development of flexural disk based fiber optic acceleration sensors is reported. Appropriate geometric considerations have resulted in fiber optic accelerometers with many desirable features including (i) high sensitivity ({approx_gt}20 dB rerad/g), (ii) flat frequency response (200 Hz to {approx_gt}10 kHz), and (iii) low pressure ({lt}{minus}180 dB rerad/{mu}Pa) and transverse sensitivity ({lt}{minus}30 dB). Alternate transducer designs are discussed and preliminary results reported. Various optical multiplexing schemes for accelerometer arrays are discussed. {copyright} {ital 1996 American Institute of Physics.}

  17. Silicon fiber optic sensors

    DOEpatents

    Pocha, Michael D.; Swierkowski, Steve P.; Wood, Billy E.

    2007-10-02

    A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

  18. Optical fiber laser

    SciTech Connect

    Snitzer, E.

    1988-10-25

    This patent describes an optical fiber laser comprising: a gain cavity including a single mode optical fiber of given length and index of refraction and a cladding surrounding the core and having an index of refraction lower than that of the core. The core comprising a host material having incorporated therein a predetermined concentration of just erbium oxide having a fluorescence spectrum with a peak emission line at 1.54 micrometers; filter means optically coupled to each end of the fiber gain cavity for providing feedback in the cavity at the peak emission line of the erbium oxide and for permitting energy to be introduced into the cavity at the absorption band of the erbium oxide in the region of 1.45 to 1.53 micrometers; and a laser diode optically coupled to one end of the core for pumping energy into the end of the gain cavity so that the gain cavity oscillates at just the peak emission line.

  19. Optical fiber switch

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  20. Electrospun Amplified Fiber Optics

    PubMed Central

    2015-01-01

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm–1). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics. PMID:25710188

  1. Embedded Optical Sensors for Thermal Barrier Coatings

    SciTech Connect

    David R. Clarke

    2005-11-09

    In the second year of this program on developing embedded optical sensors for thermal barrier coatings, our research has focused three topics: (1) Eu{sup 3+} doping for temperature sensing, (2) the effect of long-term, high-temperature aging on the characteristics of the luminescence from the Eu{sup 3+} ions of 8YSZ materials, (3) construction of a fiber-optic based luminescence detector system. It has been demonstrated that the variation in luminescence lifetime with temperature is identical for electron-beam evaporated Eu-doped YSZ coatings as for bulk ceramics of the same composition. Experiments indicate that the luminescence lifetime method of measuring temperatures is sensitive up to 1150 C for both Eu-doped YSZ coatings and Eu-doped Gd{sub 2}Zr{sub 2}O{sub 7}. Furthermore, the technique is sensitive up to 1250 C for the composition Eu{sub 2}Zr{sub 2}O{sub 7}. The luminescence spectra Eu-doped YSZ are insensitive to long-term aging at high-temperatures, even to 195 hours at 1425 C, except for a small frequency shift that is probably too small in measure except with instruments of the highest spectral resolution. The temperature of 1425 C is much higher than present engines attain or even planned in the foreseeable future. Nevertheless, experiments are on-going to explore longer term exposures. A fiber-optic based luminescence system has been constructed in which the hottest section of fiber operates to at least 1250 C.

  2. Optical fiber stripper positioning apparatus

    DOEpatents

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  3. Fiber Optic Calorimetry

    SciTech Connect

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-12-12

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian ({micro}rad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  4. Ultra Small Integrated Optical Fiber Sensing System

    PubMed Central

    Van Hoe, Bram; Lee, Graham; Bosman, Erwin; Missinne, Jeroen; Kalathimekkad, Sandeep; Maskery, Oliver; Webb, David J.; Sugden, Kate; Van Daele, Peter; Van Steenberge, Geert

    2012-01-01

    This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 μm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.

  5. Applications of capillary optical fibers

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard

    2006-10-01

    The paper updates and summarizes contemporary applications of capillary optical fibers. Some of these applications are straight consequence of the classical capillary properties and capillary devices like: rheometry, electrophoresis, column chromatography (gas and liquid). Some new applications are tightly connected with co-propagation (or counter-propagation) of micro-mass together with optical wave - evanescent or of considerable intensity. In the first case, the optical wave is propagated in a narrow (more and more frequently single-mode) optical ring core adjacent to the capillary hole. The optical propagation is purely refractive. In the second case, the intensity maximum of optical wave is on the capillary long axis, i.e. in the center of the hole. The optical propagation is purely photonic, i.e. in a Bragg waveguide (one dimensional photonic band-gap). The capillary hole is filled with vacuum or with propagated matter (gas, liquid, single atoms, continuous particle arrangement). Optical capillaries, filamentary and embedded, are turning to a fundamental component of nano- and micro-MOEMS.

  6. Hermetically coated specialty optical fibers

    NASA Astrophysics Data System (ADS)

    Semjonov, Sergey L.; Bogatyrev, Vladimir A.; Malinin, Alexei A.

    2010-10-01

    Manufacturing processes for different types of hermetically coated fibers are described. Optical and mechanical properties of metal and carbon coated fibers are compared. Prospects of application of both types of hermetically coated fibers in special applications are discussed.

  7. Integrated optics for fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Minford, W. J.; Depaula, R. P.

    1991-01-01

    Recent progress achieved in the field of fiber-optic sensor applications is discussed with emphasis placed on LiNbO3-based integrated optics (IO). Particular consideration is given to advanced electromagnetic-field sensors, an integrated laser vibrometer system, and a fiber-optic gyroscope system. It is shown that the multifunction IO chips have enabled high perforamance fiber-optic sensors (e.g., fiber-optic gyros), provided advanced and unique signal processing capabilities and advanced architectures, and have a potential of making fiber-optic sensors at low cost.

  8. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  9. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  10. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  11. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  12. Fiber-Optic Sensing Technology

    SciTech Connect

    Milnes, M.; Baylor, L.C.; Bave, S.

    1996-10-24

    This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

  13. Fiber optic calorimetry

    SciTech Connect

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian ({mu}rad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% {sup 240}Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium.

  14. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  15. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  16. Improved Optical Fiber Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  17. Fiber Optics and Library Technology.

    ERIC Educational Resources Information Center

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  18. Large core fiber optic cleaver

    DOEpatents

    Halpin, John M.

    1996-01-01

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  19. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  20. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  1. Buying Fiber-Optic Networks.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2003-01-01

    Describes consortia formed by college and university administrators to buy, manage, and maintain their own fiber-optic networks with the goals of cutting costs of leasing fiber-optic cable and planning for the future. Growth capacity is the real advantage of owning fiber-optic systems. (SLD)

  2. Fiber optic and laser sensors VIII; Proceedings of the Meeting, San Jose, CA, Sept. 17-19, 1990

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P. (Editor); Udd, Eric (Editor)

    1991-01-01

    This issue presents topics on the advances in fiber-optic sensor technology, fiber-optic gyroscope, fiber-optic position and pressure sensors, fiber-optic magnetic and temperature sensors, and generic fiber-optic sensors. Papers included are on a novel analog phase tracker for interferometric fiber-optic sensor applications, recent development status of fiber-optic sensors in China, the magnetic-field sensitivity of depolarized fiber-optic gyros, a depolarized fiber-optic gyro for future tactical applications, fiber-optic position transducers for aircraft controls, and a metal embedded optical-fiber pressure sensor. Attention is also given to a fiber-optic magnetic field sensor using spectral modulation encoding, a bare-fiber temperature sensor, an interferometric fiber-optic accelerometer, improvement of specular reflection pyrometer, a theoretical analysis of two-mode elliptical-core optical fiber sensors, and a fiber probe for ring pattern.

  3. Fiber optics: A brief introduction

    SciTech Connect

    Gruchalla, M.E.

    1989-01-01

    A basic introduction into the principles of fiber optics is presented. A review of both the underlying physical principles and the individual elements of typical fiber-optic systems are presented. The optical phenomenon of total internal reflection is reviewed. The basic construction of the optical fiber is presented. Both step-index and graded-index fiber designs are reviewed. Multimode and single-mode fiber constructions are considered and typical performance parameters given. Typical optical-fiber bandwidth and loss characteristics are compared to various common coaxial cables, waveguides, and air transmission. The constructions of optical-fiber cables are reviewed. Both loose-tube and tightly-buffered designs are considered. Several optical connection approaches are presented. Photographs of several representative optical connectors are included. Light Emitting Diode and Laser Diode emitters for fiber-optic applications are reviewed, and some advantages and shortcomings of each are considered. The phenomenon of modal noise is briefly explained. Both PIN and Avalanche photodetectors are reviewed and their performance parameters compared. Methods of data transmission over optical fiber are introduced. Principles of Wavelength, Frequency, and Time Division Multiplexing are briefly presented. The technology of fiber-optic sensors is briefly reviewed with basic principles introduced. The performance of a fiber-optic strain sensor is included as a practical example. 7 refs., 10 figs.

  4. Fiber optic plantar pressure/shear sensor

    NASA Astrophysics Data System (ADS)

    Soetanto, William; Nguyen, Ngoc T.; Wang, Wei-Chih

    2011-04-01

    A full-scale foot pressure/shear sensor that has been developed to help diagnose the cause of ulcer formation in diabetic patients is presented. The design involves a tactile sensor array using intersecting optical fibers embedded in soft elastomer. The basic configuration incorporates a mesh that is comprised of two sets of parallel optical fiber plane; the planes are configured so the parallel rows of fiber of the top and bottom planes are perpendicular to each other. Threedimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution and the shifting of the layers relative to each other. In this paper we will present the latest development on the fiber optic plantar pressure/shear sensor which can measure normal force up from 19.09 kPa to 1000 kPa.

  5. Squeezing in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Boivin, Luc

    The generation of squeezed radiation in single -mode optical fibers is discussed. A self-consistent theory for the quantum propagation of pulses in dispersive and Raman active fibers is developed. A numerical implementation of the corresponding linearized noise theory is presented. This code was used to design a new fiber squeezer operating at 830nm. A closed-form solution to the nonlinear, stochastic and integro-differential equation for the quantum envelope is found at zero dispersion. We use this solution to study the resonance-fluorescence spectrum of a fiber excited by a monochromatic laser field. We also evaluate the mean field and the squeezing level for fiber lengths where the linearized approximation is no longer valid. The predictions of this continuous-time theory are compared with those of the discretized-time model. We show that quantum revivals predicted by the latter are spurious. We show that the linearized approximation in the soliton regime is valid for nonlinear phase shifts up to n_0^ {1/4}. The noise of the four soliton operators is shown to be minimized in a Poisson-Gaussian soliton state. We propose a new method for generating squeezed vacuum using a low birefringence fiber. This method relies on cross-phase modulation between modes with orthogonal polarizations, and does not require a interferometric geometry. We predict the nonlinear depolarization of an intense linearly polarized pulse coupled into a low birefringence fiber due to its interaction with quantum noise. Finally, progress in the construction of a fiber squeezer driven by a high repetition rate modelocked Ti:Sapphire laser is reported. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  6. Optical fiber smart structures applied to secure containers

    SciTech Connect

    Sliva, P.; Gordon, N.R.; Stahl, K.A.; Simmon, K.L.; Anheier, N.C.

    1994-07-01

    A prototype secure container was prepared that uses continually monitored optical fiber as the smart structure. A small ({approx}7.6 cm {times} 10.2 cm {times} 12.7 cm), matchbox-shaped container consisting of an inner drawer within an outer shell was fabricated from polymer resin. The optical fiber was sandwiched between additional non-optical, strength-promoting fibers and embedded into the polymer. The additional non-optical fiber provides strength to the container, protects the optical fiber from damage, hides the fiber and acts as a decoy. The optical fiber was wound with a winding density such that a high probability of fiber damage would be expected if the container was penetrated.

  7. Optical data porting to networks embedded in composite materials

    NASA Astrophysics Data System (ADS)

    Teitelbaum, Michael E.

    Intravehicle communications has been increasing at a rapid pace in recent years. The advent of multimedia applications, global positioning systems and increased use of safety devices and sensors has fueled network traffic within vehicular networks. Military vehicles have had similar advances as well. The bandwidth necessary to provide adequate communication between systems is slowly approaching the limit of traditional copper based networks. Optical fiber is finding its way into these networks for a variety of reasons including large bandwidth, low weight and small volume. Along with these advantages optical fiber allows the possibility to directly integrate fiber into the structure of a vehicle, thus offering an automated process for running network cabling. Automating this process eliminates a large manufacturing cost associated with running cable manually throughout the vehicle. Also, for military applications it can add an extra layer of protection to the network for increased reliability. Along with communications applications, the integration of optical fiber into structural components allows for the possibility of embedding sensor networks within structures. The major hurdle in achieving integration is the communication from outside to inside the panel. To overcome this, various methods of optical data porting to embedded optical fibers were designed, fabricated and tested. Active methods, both electrical and photonic in nature, were explored as well as using external and self-powering techniques. In the end a passive method of integrating a mirror into the fibers themselves was determined to provide the most advantageous approach. The application of this approach towards off chip optical interconnects was also explored as it was noticed that the mirror integration technique provided for a low-cost process for parallel optical interconnects between chips on a PCB.

  8. Optical Fiber Spectroscopy

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.

    1999-01-01

    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  9. Fiber optic flocculation sensor

    NASA Astrophysics Data System (ADS)

    Cheng, Lun K.; Stelwagen, Uilke

    1994-02-01

    A fiber optic flocculation sensor based on measuring the intensity of light reflected by solid particles in suspension (i.e. paper pulp) in a well defined measurement volume, was constructed. This sensor is designed for monitoring the flocculation state of paper pulp in the papermaking process. The flocculation determines to a great extent the quality of the final product, the paper. Tests with different types of pulp were performed in both a closed loop system and a small paper machine. In this investigation the flocculation state is expressed as a root mean square flocculation index. The flocculation index delivered by this fiber optic system shows a very high correlation with the flocculation index provided by a camera system `looking at' the same pulp, while the latter has a great resemblance with the human perception of the flocculation.

  10. Fiber Optic Attenuators

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Mike Buzzetti designed a fiber optic attenuator while working at Jet Propulsion Laboratory, intended for use in NASA's Deep Space Network. Buzzetti subsequently patented and received an exclusive license to commercialize the device, and founded Nanometer Technologies to produce it. The attenuator functions without introducing measurable back-reflection or insertion loss, and is relatively insensitive to vibration and changes in temperature. Applications include cable television, telephone networks, other signal distribution networks, and laboratory instrumentation.

  11. Optical fiber laser

    SciTech Connect

    Hakimi, F.; Po, H.; Snitzer, E.

    1987-07-14

    An optical fiber laser is described comprising: a gain cavity including a single mode optical fiber of given length having a core with a given index of refraction and a cladding surrounding the core and having an index of refraction lower than that of the core. The core comprises a host glass having incorporated a laser gain material with a fluorescence spectrum having at least one broadband region in which there is at least one peak emission line; filter means optically coupled to one end of the gain cavity and reflective to radiation emitted from the gain material over a predetermined wavelength interval about the peak emission line to provide feedback in the gain cavity; an etalon filter section butt coupled to the remaining end of the gain cavity optical fiber, the etalon filter section comprising a pair of filters spaced apart in parallel by a predetermined length of material transparent to any radiation emitted from the gain cavity. The predetermined length of the transparent material is such that the etalon filter section is no longer than the distance over which the wave train energy from the fiber core remains substantially planar so that the etalon filter section is inside the divergent region to enhance feedback in the gain cavity; and means for pumping energy into the gain cavity to raise the interval energy level such that only a small part of the ion population, corresponding to a predetermined bandwidth about the peak emission line, is raised above laser threshold. The laser emits radiation only over narrow lines over a narrow wavelength interval centered about the peak emission line.

  12. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  13. Noncontact fiber optic micrometer

    NASA Astrophysics Data System (ADS)

    Betancourt Ibarra, F.; Guajardo-Gonzalez, Candelario; Castillo-Guzman, Arturo; Guzman-Ramos, Valentin; Selvas, Romeo

    2010-10-01

    A sensor instrument able to measuring the thickness of different semitransparent objects with a resolution of one micron is described. This is based on a fiber optic reflectometer and a laser autofocus system and permit to measuring the thickness of thin surfaces such as semiconductor films, plastic materials and semitransparent objects. The response time for the measuring was roughly 2 sec and the thickness results were compared with a digital mechanical micrometer and both are in good agreement.

  14. Shedding Light on Fiber Optics.

    ERIC Educational Resources Information Center

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  15. Design and fabrication of embedded two elliptical cores hollow fiber

    NASA Astrophysics Data System (ADS)

    Tian, Fengjun; Yuan, Libo; Dai, Qian; Liu, Zhihai

    2011-11-01

    We propose a novel embedded two elliptical cores fiber with a hollow air hole, and demonstrate the fabrication of the embedded two elliptical cores hollow fiber (EECHF). By using a suspended core-in-tube technique, the fibers are drawn from the preform utilizing a fiber drawing system with a pressure controller. The fiber have a 60μm diameter hollow air hole centrally, a 125μm diameter cladding, two 7.2μm /3.0μm (major axis/minor axis) elliptical cores, and a 3μm thickness silica cladding between core layer and air hole. The EECHF has a great potential for PMFs, high sensitivity in-fiber interferometers, poling fiber and Bio-sensor based on evanescent wave field. The fabrication technology is simple and versatile, and can be easily utilized to fabricate multi-core fiber with any desired aspect ratio elliptical core.

  16. Pipeline corrosion assessment using embedded Fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Huang, Ying; Galedari, Sahar Abuali; Azarmi, Fardad

    2015-04-01

    Corrosion is a leading cause of failure in metallic transmission pipelines. It significantly impacts the reliability and safety of metallic pipelines. An accurate assessment of corrosion status of the pipelines would contribute to timely pipeline maintenance and repair and extend the service life of the associated pipelines. To assess pipeline corrosion, various technologies have been investigated and the pipe-to-soil voltage potential measurement was commonly applied. However, remote and real-time corrosion assessment approaches are in urgent needs but yet achieved. Fiber optic sensors, especially, fiber Bragg gating (FBG) sensors, with unique advantages of real-time sensing, compactness, immune to EMI and moisture, capability of quasi-distributed sensing, and long life cycle, will be a perfect candidate for longterm pipeline corrosion assessment. In this study, FBG sensors are embedded inside pipeline external coating for corrosion monitoring of on-shore buried metallic transmission pipelines. Detail sensing principle, sensor calibration and embedment are introduced in this paper together with experimental corrosion evaluation testing ongoing. Upon validation, the developed sensing system could serve the purpose of corrosion monitoring to the numerous metallic pipelines across nation and would possibly reduce the pipeline corrosion induced tragedies.

  17. Selenium semiconductor core optical fibers

    SciTech Connect

    Tang, G. W.; Qian, Q. Peng, K. L.; Wen, X.; Zhou, G. X.; Sun, M.; Chen, X. D.; Yang, Z. M.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  18. Anisotropic metamaterial optical fibers.

    PubMed

    Pratap, Dheeraj; Anantha Ramakrishna, S; Pollock, Justin G; Iyer, Ashwin K

    2015-04-01

    Internal physical structure can drastically modify the properties of waveguides: photonic crystal fibers are able to confine light inside a hollow air core by Bragg scattering from a periodic array of holes, while metamaterial loaded waveguides for microwaves can support propagation at frequencies well below cutoff. Anisotropic metamaterials assembled into cylindrically symmetric geometries constitute light-guiding structures that support new kinds of exotic modes. A microtube of anodized nanoporous alumina, with nanopores radially emanating from the inner wall to the outer surface, is a manifestation of such an anisotropic metamaterial optical fiber. The nanopores, when filled with a plasmonic metal such as silver or gold, greatly increase the electromagnetic anisotropy. The modal solutions in such anisotropic circular waveguides can be uncommon Bessel functions with imaginary orders. PMID:25968741

  19. Fiber optic TV direct

    NASA Technical Reports Server (NTRS)

    Kassak, John E.

    1991-01-01

    The objective of the operational television (OTV) technology was to develop a multiple camera system (up to 256 cameras) for NASA Kennedy installations where camera video, synchronization, control, and status data are transmitted bidirectionally via a single fiber cable at distances in excess of five miles. It is shown that the benefits (such as improved video performance, immunity from electromagnetic interference and radio frequency interference, elimination of repeater stations, and more system configuration flexibility) can be realized if application of the proven fiber optic transmission concept is used. The control system will marry the lens, pan and tilt, and camera control functions into a modular based Local Area Network (LAN) control network. Such a system does not exist commercially at present since the Television Broadcast Industry's current practice is to divorce the positional controls from the camera control system. The application software developed for this system will have direct applicability to similar systems in industry using LAN based control systems.

  20. Optical fiber smartphone spectrometer.

    PubMed

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2016-05-15

    An optical fiber-based smartphone spectrometer incorporating an endoscopic fiber bundle is demonstrated. The endoscope allows transmission of the smartphone camera LED light to a sample, removing complications from varying background illumination. The reflected spectra collected from a surface or interface is dispersed onto the camera CMOS using a reflecting diffraction grating. A spectral resolution as low as δλ∼2.0  nm over a bandwidth of Δλ∼250  nm is obtained using a slit width, ωslit=0.7  mm. The instrument has vast potential in a number of industrial applications including agricultural produce analysis. Spectral analysis of apples shows straightforward measurement of the pigments anthocyanins, carotenoid, and chlorophyll, all of which decrease with increasing storage time. PMID:27176971

  1. Buckling of a fiber bundle embedded in epoxy

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Sohi, M. M.

    1986-01-01

    Buckling of a fiber bundle embedded in epoxy resin was studied to gain insight into compressive failure mechanisms in unidirectional composites. The fibers used were E-glass, T300 graphite, T700 graphite, and P75 graphite. These fibers were combined with two different resins: Epon 815/V140 and Epon 828/Z. In both resins the failure mode of the bundle was found to be microbuckling of fibers for the first three types of fibers; however, the high-modulus P75 fibers failed in shear without any sign of microbuckling. The strains at which microbuckling occurred were higher than the compressive failure strains of the corresponding unidirectional composites. In the soft resin, Epon 815/V140, fibers buckled at lower strains than in the stiff resin, Epon 828/Z. The buckling strains and the segment lengths followed the trends predicted for a single filament embedded in an infinite matrix.

  2. Anisotropic optical film embedded with cellulose nanowhisker.

    PubMed

    Kim, Dah Hee; Song, Young Seok

    2015-10-01

    We investigated anisotropic optical behaviors of composite films embedded with CNWs. To control the orientation of CNWs, elongation was applied to the composite film. Morphological and mechanical analyses of the specimens were carried out to examine the influence of the applied extension. The CNWs were found to be aligned in the elongated direction, yielding remarkable anisotropic microstructure and optical properties. As the applied elongation and CNW loading increased, the resulting degree of polarization and birefringence increased due to increased interactions between the embedded particles. This study suggests a way to prepare an anisotropic optical component with nanoparticles of which the microstructures, such as orientation and filler content, can be controlled. PMID:26076646

  3. Fiber optic light sensor.

    PubMed

    Chudyk, Wayne; Flynn, Kyle F

    2015-06-01

    We describe a low-cost fiber optic sensor for measuring photosynthetically active radiation (PAR) in turbulent flow. Existing technology was combined in a novel way for probe development addressing the need for a small but durable instrument for use in flowing water. Optical components including fiber optics and a wide-spectrum light detector were used to separate light collection from electronic detection so that measurements could be completed in either the field or laboratory, in air or underwater. Connection of the detector to Arduino open-source electronics and a portable personal computer (PC) enabled signal processing and allowed data to be stored in a spreadsheet for ease of analysis. Calibration to a commercial cosine-corrected instrument showed suitable agreement with the added benefit that the small sensor face allowed measurements in tight spaces such as close to the streambed or within leafy or filamentous plant growth. Subsequently, we applied the probe in a separate study where over 35 experiments were successfully completed to characterize downward light attenuation in filamentous algae in turbulent flow. PMID:26009160

  4. System for testing optical fibers

    DOEpatents

    Golob, J.E.; Looney, L.D.; Lyons, P.B.; Nelson, M.A.; Davies, T.J.

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector. 2 figs.

  5. System for testing optical fibers

    DOEpatents

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  6. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  7. Fiber optic photoplethysmograph

    NASA Astrophysics Data System (ADS)

    Bokun, Leszek J.; Domanski, Andrzej W.

    1991-07-01

    Using a very well known characteristic of infrared radiation absorbance by human skin versus the length of radiation wave and by application of the newest achievements of radiation detecting techniques and very fast computing techniques - the authors have designed and manufactured the complete computer system for noninvasive diagnosis of blood vessels in legs. As the basic unit in this system, fiber-optic photoplethysmograph was applied. The measurement method used here was very well described by V. Blazek and some other scientists. This article presents photoplethysmograph and all features of the computer system.

  8. A fiber optic damage monitor

    NASA Astrophysics Data System (ADS)

    Jen, C. K.; Cielo, P.; Farnell, G. W.; Parker, M.

    A simplified fiber-optic damage monitoring system for on-line assessments of the condition of composite structural materials in F/A-18 fighters is described. Optical fibers are implanted into the composite mesh in a configuration with horizontal and vertical orientations. When light is pumped into the fibers, and failure of transmittance in either the x- or y-coordinates indicates the location of a defect at that coordinate, as revealed by the fiber damage. Attaching photodiodes to the optic fibers and connecting the entire system to a video camera and computer permits on-line monitoring of the mesh-holding panels. Sample results are provided from a system with multimode step index fibers, a VAX 11/780 computer and a video camera with a 488 x 380 cell photodiode array. Image subtraction is an effective means for fast determination of the identities of broken fibers by comparisons of images of arrays of original and damaged fibers.

  9. Optical Fiber Networks for Remote Fiber Optic Sensors

    PubMed Central

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011

  10. Optical fiber networks for remote fiber optic sensors.

    PubMed

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011

  11. Dynamic measurement of inside strain distributions in adhesively bonded joints by embedded fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Murayama, Hideaki; Ning, Xiaoguang; Kageyama, Kazuro; Wada, Daichi; Igawa, Hirotaka

    2014-05-01

    Long-length fiber Bragg grating (FBG) with the length of about 100 mm was embedded onto the surface of a carbon fiber reinforced plastics (CFRP) substrate and two CFRP adherends were joined by adhesive to form an adhesive bonded single-lap joint. The joint was subjected to 0.5 Hz cyclic tensile load and longitudinal strain distributions along FBG were measured at 5 Hz by the fiber-optic distributed sensing system based on optical frequency domain reflectometry (OFDR). We could successfully monitor the strain distributions accurately with high spatial resolution of around 1 mm.

  12. Fiber optic to integrated optical chip coupler

    NASA Technical Reports Server (NTRS)

    Pikulski, Joseph I. (Inventor); Ramer, O. Glenn (Inventor)

    1987-01-01

    Optical fibers are clamped by a block onto a substrate. Thereupon, metal is plated over the fibers to hold them in place upon the substrate. The clamp block is removed and the opening, resulting from the clamp block's presence, is then plated in. The built-up metallic body is a coupling which holds the fibers in position so that the ends can be polished for coupling to an integrated optical chip upon a coupling fixture.

  13. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  14. Fabrication of Optical Fiber Devices

    NASA Astrophysics Data System (ADS)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  15. Fiber Optic Smart Structures And Skins Conference II Fiber Optics Smart Structures Program At Utias

    NASA Astrophysics Data System (ADS)

    Measures, Raymond M.

    1990-02-01

    Structurally integrated arrays of fiber optic sensors could serve as an effective nervous system for future Smart Structures. The structural integrity of such structures would be monitored throughout their life making obsolete the catastropic failures that sometimes plague aircraft, trains, cars......today. In addition the strain, deformation, vibration and temperature state of these structures could also be monitored. Our research program is directed at both the development and application of this new technology. We have built and carefully characterized a localized, all-fiber, dual wavelength polarimetric fiber optic sensor. We have also developed a localized, all-fiber, Michelson fiber optic sensor that has measured the strain within a thermoplastic and detected the acoustic emission associated with delamination within a composite. It has also been used as the basis of an optical strain rosette . We have demonstrated that embedded optical fibers do not reduce the strength or damage resistance of composites but can detect load-induced growth of damage. Within the past week we have completed the first fabrication of an aircraft composite leading edge with a built' in fiber optic damage detection system.

  16. Fiber optic approach for detecting corrosion

    NASA Astrophysics Data System (ADS)

    Kostecki, Roman; Ebendorff-Heidepriem, Heike; Davis, Claire; McAdam, Grant; Wang, Tianyu; Monro, Tanya M.

    2016-04-01

    Corrosion is a multi-billion dollar problem faced by industry. The ability to monitor the hidden metallic structure of an aircraft for corrosion could result in greater availability of existing aircraft fleets. Silica exposed-core microstructured optical fiber sensors are inherently suited towards this application, as they are extremely lightweight, robust, and suitable both for distributed measurements and for embedding in otherwise inaccessible corrosion-prone areas. By functionalizing the fiber with chemosensors sensitive to corrosion by-products, we demonstrate in-situ kinetic measurements of accelerated corrosion in simulated aluminum aircraft joints.

  17. Simplified sensor design for temperature-strain discrimination using fiber Bragg gratings embedded in laminated composites

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cobo, L.; Marques, A. T.; Lopez-Higuera, J. M.; Santos, J. L.; Frazão, O.

    2013-05-01

    Several easy-to-manufacture designs based on a pair of Fiber Bragg Gratings structure embedded in Carbon Fiber Reinforced Plastic (CFRP) have been explored. These smart composites can be used for strain and temperature discrimination. A Finite Elements Analysis and Matlab software were used to study the mechanical responses and its optical behaviors. The results exhibited different sensitivity and using a matrix method it is possible to compensate the thermal drift in a real application keeping a simple manufacture process.

  18. Experimental optical fiber communications link

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1980-01-01

    An optical fiber communications link 1.5 kilometers in length was installed between the Interim Frequency Standard Test Facility and the Timing and Frequency Systems Research Laboratory at JPL. It is being used to develop optical fiber technology for use in the DSN and particularly for precise time and frequency distribution.

  19. Fiber-optic proximity sensor

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Hermann, W. A.; Primus, H. C.

    1980-01-01

    Proximity sensor for mechanical hand of remote manipulator incorporates fiber optics to conduct signals between light source and light detector. Fiber optics are not prone to noise from electromagnetic interference and radio-frequency interference as are sensors using long electrical cables.

  20. Aircraft fiber optic structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih

    2012-06-01

    Structural Health Monitoring (SHM) is a sought after concept that is expected to advance military maintenance programs, increase platform operational safety and reduce its life cycle cost. Such concept is further considered to constitute a major building block of any Integrated Health Management (IHM) capability. Since 65% to 80% of military assets' Life Cycle Cost (LCC) is devoted to operations and support (O&S), the aerospace industry and military sectors continue to look for opportunities to exploit SHM systems, capability and tools. Over the past several years, countless SHM concepts and technologies have emerged. Among those, fiber optic based systems were identified of significant potential. This paper introduces the elements of an SHM system and investigates key issues impeding the commercial implementation of fiber optic based SHM capability. In particular, this paper presents an experimental study of short gauge, intrinsic, spectrometric-based in-fiber Bragg grating sensors, for potential use as a component of an SHM system. Fiber optic Bragg grating sensors are evaluated against resistance strain gauges for strain monitoring, sensitivity, accuracy, reliability, and fatigue durability. Strain field disturbance is also investigated by "embedding" the sensors under a photoelastic coating in order to illustrate sensor intrusiveness in an embedded configuration.

  1. Propagation or failure of detonation across an air gap in an LX-17 column: continuous time-dependent detonation or shock speed using the Embedded Fiber Optic (EFO) technique

    SciTech Connect

    Hare, D E; Chandler, J B; Compton, S M; Garza, R G; Grimsley, D A; Hernandez, A; Villafana, R J; Wade, J T; Weber, S R; Wong, B M; Souers, P C

    2008-01-16

    The detailed history of the shock/detonation wave propagation after crossing a room-temperature-room-pressure (RTP) air gap between a 25.4 mm diameter LX-17 donor column and a 25.4 mm diameter by 25.4 mm long LX-17 acceptor pellet is investigated for three different gap widths (3.07, 2.08, and 0.00 mm) using the Embedded Fiber Optic (EFO) technique. The 2.08 mm gap propagated and the 3.07 mm gap failed and this can be seen clearly and unambiguously in the EFO data even though the 25.4 mm-long acceptor pellet would be considered quite short for a determination by more traditional means such as pins.

  2. Fiber-optic measurement standards

    NASA Astrophysics Data System (ADS)

    Pollitt, Stuart

    1991-09-01

    Measurement needs, some very novel, arise at all stages of the development, manufacture, commercial exploitation and use of optical fibers. Measurement standards for fiber parameters enable users and manufacturers to verify the accuracy of their results and, hence, have confidence in their measurements. The facilities developed at the National Physical Laboratory to provide measurement standards for the physical and transmission properties of optical fibers are described and the sources of error are discussed.

  3. Fiber optic combiner and duplicator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The investigation of the possible development of two optical devices, one to take two images as inputs and to present their arithmetic sum as a single output, the other to take one image as input and present two identical images as outputs is described. Significant engineering time was invested in establishing precision fiber optics drawing capabilities, real time monitoring of the fiber size and exact measuring of fiber optics ribbons. Various assembly procedures and tooling designs were investigated and prototype models were built and evaluated that established technical assurance that the device was feasible and could be fabricated. Although the interleaver specification in its entirety was not achieved, the techniques developed in the course of the program improved the quality of images transmitted by fiber optic arrays by at least an order of magnitude. These techniques are already being applied to the manufacture of precise fiber optic components.

  4. Python fiber-optic seal

    SciTech Connect

    Ystesund, K.; Bartberger, J.; Brusseau, C.; Fleming, P.; Insch, K.; Tolk, K.

    1993-12-31

    Sandia National Laboratories (SNL) has developed a high-security fiber-optic seal that incorporates tamper-resistance features not available in commercial fiber-optic seals. The Python Seal is a passive fiber-optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber-optic pattern created when the seal is installed. The fiber-optic cable used for the seal loop is produced with tamper-resistant features that increase the difficulty of attacking this component of a seal. A Seal Reader has been developed that records the seal signature and the fingerprint feature of the seal. A Correlator software program compares seal images to establish a match or mismatch. SNL also is developing a Polaroid Reader to permit hard copies of the seal patterns to be obtained directly from the seal.

  5. Advances In Optical Fiber Sensors

    NASA Astrophysics Data System (ADS)

    Cole, J. H.; Giallorenzi, T. G.; Bucaro, J. A.

    1981-07-01

    Over the past several years, a new non-communication optical fiber application has emerged. This application utilizes optical fibers for sensing. Initial interest centered around rate rotation sensing. Since that time, however, acoustic, magnetic, and temperature sensing utilizing optical fibers has evolved into a viable research effort with significant potential payoff. As an example, laboratory fiber optic acoustic sensors now rival the best sensitivity obtained with piezoelectric ceramics. These sensors possess a unique geometric versatility previously unavailable. In conjunction with the Defense Advanced Research Projects Agency (DARPA), the Navy has begun a Fiber Optic Sensor System (FOSS) program to develop associated technology necessary to realize these sensors. Substantial effort is ongoing at the Naval Research Laboratory (NRL) and other Navy laboratories with considerable contractual effort from universities and industry. This paper reviews the status of the FOSS program.

  6. Fiber optic sensor and method for making

    DOEpatents

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  7. Numerical analysis of stress distribution in embedded highly birefringent PANDA fibers

    NASA Astrophysics Data System (ADS)

    Lesiak, Piotr; Woliński, Tomasz

    2015-09-01

    The paper presents numerical analysis compared with experimental data of influence of polymerization shrinkage on highly birefringent (HB) PANDA optical fibers embedded in a composite material. Since polymerization is a chemical process consisting in combining single molecules in a macromolecular compound [1], principal directions of the polymerization shrinkage depend on a number of the composite layers associated with this process. In this paper a detailed analysis of the piezo-optic effects occurring in HB optical fibers before and after the lamination process answers the question to what extent a degree of the material degradation can be properly estimated.

  8. Hydrogen Optical Fiber Sensors

    SciTech Connect

    Lieberman, Robert A.; Beshay, Manal; Cordero, Steven R.

    2008-07-28

    Optically-based hydrogen sensors promise to deliver an added level of safety as hydrogen and fuel cell technologies enter the mainstream. More importantly, they offer reduced power consumption and lower cost, which are desirable for mass production applications such as automobiles and consumer appliances. This program addressed two of the major challenges previously identified in porous optrode-based optical hydrogen sensors: sensitivity to moisture (ambient humidity), and interference from the oxygen in air. Polymer coatings to inhibit moisture and oxygen were developed in conjunction with newer and novel hydrogen sensing chemistries. The results showed that it is possible to achieve sensitive hydrogen detection and rapid response with minimal interference from oxygen and humidity. As a result of this work, a new and more exciting avenue of investigation was developed: the elimination of the porous optrode and deposition of the sensor chemistry directly into the polymer film. Initial results have been promising, and open up a wider range of potential applications from extended optical fiber sensing networks, to simple plastic "stickers" for use around the home and office.

  9. Optical fiber inspection system

    DOEpatents

    Moore, F.W.

    1985-04-05

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected. 10 figs.

  10. Optical fiber inspection system

    DOEpatents

    Moore, Francis W.

    1987-01-01

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  11. Fiber optic hydrogen sensor

    SciTech Connect

    Butler, M.A.; Sanchez, R.; Dulleck, G.R.

    1996-05-01

    This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

  12. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  13. Fiber-optic fluorescence imaging

    PubMed Central

    Flusberg, Benjamin A; Cocker, Eric D; Piyawattanametha, Wibool; Jung, Juergen C; Cheung, Eunice L M; Schnitzer, Mark J

    2010-01-01

    Optical fibers guide light between separate locations and enable new types of fluorescence imaging. Fiber-optic fluorescence imaging systems include portable handheld microscopes, flexible endoscopes well suited for imaging within hollow tissue cavities and microendoscopes that allow minimally invasive high-resolution imaging deep within tissue. A challenge in the creation of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, fiber-based fluorescence imaging was mainly limited to epifluorescence and scanning confocal modalities. Two new classes of photonic crystal fiber facilitate ultrashort pulse delivery for fiber-optic two-photon fluorescence imaging. An upcoming generation of fluorescence imaging devices will be based on microfabricated device components. PMID:16299479

  14. Laser Processing of Carbon Fiber Reinforced Polymer Composite for Optical Fiber Guidelines

    NASA Astrophysics Data System (ADS)

    Lima, M. S. F.; Sakamoto, J. M. S.; Simoes, J. G. A.; Riva, R.

    The replacement of copper wires by optical fibers for control and monitoring of aircraft systems are gaining more and more acceptance due to weight reductions and their intrinsic reliability. The present investigation proposes a new method for producing fiber optical guidelines in carbon fiber reinforced polymer (CFRP) composites using laser texturing and machining. Laser texturing was used to improve the adhesion bonding between the CFRP parts and laser machining is used to create a channel where the optical fiber will be placed and protected. The results show that using only 20 W of a Nd:YAG pulsed laser it is possible to enhance the joint resistance of CFRP composites and also protecting the optical fiber embedded in between two CFRP pieces. Using the proposed technology, the maximum load of a lap joint increased by 85% and the optical fiber remained integral even under severe bending conditions.

  15. Optical fiber dispersion characterization study

    NASA Technical Reports Server (NTRS)

    Geeslin, A.; Arriad, A.; Riad, S. M.; Padgett, M. E.

    1979-01-01

    The theory, design, and results of optical fiber pulse dispersion measurements are considered. Both the hardware and software required to perform this type of measurement are described. Hardware includes a thermoelectrically cooled injection laser diode source, an 800 GHz gain bandwidth produce avalanche photodiode and an input mode scrambler. Software for a HP 9825 computer includes fast Fourier transform, inverse Fourier transform, and optimal compensation deconvolution. Test set construction details are also included. Test results include data collected on a 1 Km fiber, a 4 Km fiber, a fused spliced, eight 600 meter length fibers concatenated to form 4.8 Km, and up to nine optical connectors.

  16. Dynamic temperature measurements with embedded optical sensors.

    SciTech Connect

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, %5CDynamic Temperature Measurements with Embedded Optical Sensors%22. The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  17. Critical reviews of fiber-optic communication technology Optical fibers

    NASA Astrophysics Data System (ADS)

    Kapron, F. P.

    The review begins with brief highlights of the history of fiber optics, followed by a discussion of the attributes of shortwave and longwave transmission. This leads to an investigation of various fiber types, short-haul considerations, and then single-mode aspects. Specialty fiber is briefly covered, followed by a survey of several research trends today that will lead to new systems capabilities in the future. No references are given, since hundreds would be necessary to make the list even partially complete.

  18. Simultaneous temperature and tension monitoring of a multi-layer composite film with embedded Hi-Bi optical fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Chen, Guanghui; Sha, Jianbo; Zhao, Ming; Gao, Kan; Xue, Ping; Zhu, Lianqing

    2016-05-01

    Hi-Bi FBGs were employed and embedded in multi-layer composite films (Tedlar + Dacron +Mylar) to monitor temperature and tension. The temperature and tension characteristics of those embedded FBGs were demonstrated quantitatively. The Bragg wavelengths of embedded FBGs shift linearly with the temperature and tension loading on the multi-layer composite films. The slow-axis mode and the fast-axis mode of the Hi-Bi FBGs have different temperature sensitivity and tension sensitivity. The Hi-Bi FBGs have higher temperature sensitivity at low temperature than that at high temperature. Compared with non-embedded, the tension sensitivity of the embedded Hi-Bi FBG increased from 0.01424nm/N and 0.01439nm/N to 0.01516nm/N and 0.01532nm/N, respectively corresponding to the slow-axis mode and the fast-axis mode.

  19. Harmonic generation in optical fibers

    SciTech Connect

    Sherborn, H.P.

    1990-05-01

    This patent describes an apparatus for providing second harmonic generated radiation. It comprises: an optical fiber disposed in a laser cavity, the optical fiber having a substantially single-mode core which is doped with an active laser material, the laser material being self-organizable to produce radiation by second harmonic generation, the laser material further being substantially transparent to the second harmonic generated radiation; and means for pumping the core of the optical fiber to produce laser radiation therein and the laser cavity further comprising means for extracting at least a portion of the second harmonic generated radiation.

  20. Fault tolerant topologies for fiber optic networks and computer interconnects operating in the severe avionics environment

    NASA Astrophysics Data System (ADS)

    Glista, Andrew S., Jr.

    1991-02-01

    The history of fiber optics technology development for naval aircraft is reviewed, and the current status of network and fly-by-light flight control development is examined. Fiber-optic component selection for aircraft is addressed, covering fiber and cables, optical sources, couplers, and connectors. Novel fault-tolerant network topologies for both analog and digital fiber optic transmission, which will permit both packet- and circuit-switched operation of robust fiber optic networks are discussed. The application of smart skin technology, i.e., fibers embedded in composite materials, to optical computer backplanes is briefly considered.

  1. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    NASA Technical Reports Server (NTRS)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  2. Fiber optic strain monitoring for pipelines

    SciTech Connect

    Berthold, J.W.

    1998-04-08

    The objective of this project was to demonstrate the feasibility of using fiber optic Bragg grating sensors (BGS) to measure axial and bending strain in pipes. Work was performed by McDermott Technology Inc. (MTI) and included BGS design and procurement. In addition to the pipe strain testing, a number of BGS evaluations were performed. Several methods were evaluated to protect and encapsulate the BGS, which are embedded inside an optical fiber, and strain transfer tests were performed on two of the encapsulation approaches. A high strain bending test to failure was performed on one BGS. A special test section was used to characterize the performance of the BGS and compare to standard electrical resistance foil strain gages. Two sets of pipe strain tests were performed. In the first test series, optical fiber was positioned along the pipe test section and embedded BGS were attached directly to the outside of the pipe wall. In the second tests series, the BGS were encapsulated inside a stainless steel tube which was attached to the outside of the pipe wall. All the tests were successfully completed, the data analyzed, and the results summarized in this report.

  3. Communications satellites versus fiber optics

    NASA Astrophysics Data System (ADS)

    Goldman, A. M., Jr.

    Examples of the interfaces encountered in the provision of intercity, long-distance service in the U.S. are examined, and a comparison is conducted of the costs of the Intercity, Long-Distance portion of a single voice circuit derived from either fixed satellite trunking service or fiber optic bulk capacity. It is estimated that by the end of 1988, fiber optic should span the nation connecting New York and Washington with Los Angeles and San Francisco. It is shown that once fiber connects a given pair of cities, it becomes the least costly transmission medium, especially compared to fixed satellite service. Attention is given to equivalent transmission capacities, six providers of fiber optic capacity, a total satellite capacity comparison, an economic lifetime comparison, satellite and fiber optic network maps, satellite city-pair distance and cost matrices, and fiber optic city-pair distance matrices. It is pointed out that certain future CONUS satellite service applications will be inherently invulnerable to terrestrial fiber optics serving fixed routes.

  4. Silica optical fibers: technology update

    NASA Astrophysics Data System (ADS)

    Krohn, David A.; McCann, Brian P.

    1995-05-01

    Silica-core optical fibers have long been the standard delivery medium for medical laser delivery systems. Their high strength, excellent flexibility, and low cost continue to make them the fiber of choice for systems operating from 300 to 2200 nm. An overview of the current fiber constructions available to the industry is reviewed. Silicone-clad fibers, hard- fluoropolymer clad fibers and silica-clad fibers are briefly compared in terms of mechanical and optical properties. The variety of fiber coatings available is also discussed. A significant product development of silica fiber delivery systems has been in side-firing laser delivery systems for Urology. These devices utilize silica-core fibers to project the laser energy at a substantial lateral angle to the conventional delivery system, typically 40 to 100 degrees off axis. Many unique distal tips have been designed to meet the needs of this potentially enormous application. There are three primary technologies employed in side-firing laser delivery systems: reflection off of an attached medium; reflection within an angle-polished fiber through total internal reflection; and reflection from both an angle-polished fiber and an outside medium. Each technology is presented and compared on the basis of operation modality, transmission efficiency, and power-handling performance.

  5. Optical-Fiber-Welding Machine

    NASA Technical Reports Server (NTRS)

    Goss, W. C.; Mann, W. A.; Goldstein, R.

    1985-01-01

    Technique yields joints with average transmissivity of 91.6 percent. Electric arc passed over butted fiber ends to melt them together. Maximum optical transmissivity of joint achieved with optimum choice of discharge current, translation speed, and axial compression of fibers. Practical welding machine enables delicate and tedious joining operation performed routinely.

  6. System for testing optical fibers

    DOEpatents

    Davies, Terence J.; Franks, Larry A.; Nelson, Melvin A.

    1981-01-01

    A system for nondestructively determining the attenuation coefficient, .alpha.(.lambda.), of low-loss optical fiber wave guides. Cerenkov light pulses are generated at a plurality of locations in the fiber by a beam of charged particles. The transit times of selected spectral components and their intensities are utilized to unfold the .alpha.(.lambda.) values over the measured spectrum.

  7. Fiber optic refractive index monitor

    DOEpatents

    Weiss, Jonathan David

    2002-01-01

    A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

  8. Fiber Optics: A Bright Future.

    ERIC Educational Resources Information Center

    Rice, James, Jr.

    1980-01-01

    Presents an overview of the impact of fiber optics on telecommunications and its application to information processing and library services, including information retrieval, news services, remote transmission of library services, and library networking. (RAA)

  9. Application of Fiber Optic Instrumentation

    NASA Technical Reports Server (NTRS)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  10. Mobile fiber optic emission spectrograph

    SciTech Connect

    Spencer, W.A.; Coleman, C.J.; McCarty, J.E.; Beck, R.S.

    1997-05-01

    Technical Assistance Request HLW/DWPF-TAR-970064 asked SRTC to evaluate the use of a fiber optic coupled emission spectrometer. The spectrometer would provide additional ICP analyses in the DWPF laboratory.

  11. Arc detector uses fiber optics

    NASA Technical Reports Server (NTRS)

    Finnegan, E. J.; Leech, R. A.

    1979-01-01

    Arc detector for protecting high-power microwave klystron oscillators uses fiber optics connected to remote solid-state light-sensing circuits. Detector is more reliable, smaller, and sensitive than other systems that locate detector in waveguide.

  12. Fiber-optic temperature sensor

    SciTech Connect

    O`Rourke, P.E.; Livingston, R.R.; Jantzen, C.M.; Ramsey, W.G.; Hopkins, C.D.

    1993-10-01

    Researchers at the Savannah River Technology Center (SRTC) have developed a class of fiber-optic temperature sensors based upon temperature induced changes in the absorption spectrum of selected materials. For example, a neodymium (Nd) doped glass sensor can be used over a very broad temperature range ({minus}196 to 500{degree}C) and provide good precision and accuracy ({plus_minus}1{degree}C). This type temperature probe is constructed so that light from a fiber optic cable shines through the Nd glass and is reflected onto a second fiber optic cable. Light from this second fiber optic is measured by a diode array spectrophotometer, and the absorption spectrum of the Nd glass used to compute temperature.

  13. Internal strain monitoring in composite materials with embedded photonic crystal fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Geernaert, Thomas; Sulejmani, Sanne; Sonnenfeld, Camille; Chah, Karima; Luyckx, Geert; Lammens, Nicolas; Voet, Eli; Becker, Martin; Thienpont, Hugo; Berghmans, Francis

    2014-09-01

    The possibility of embedding optical fiber sensors inside carbon fiber reinforced polymer (CFRP) for structural health monitoring purposes has already been demonstrated previously. So far however, these sensors only allowed axial strain measurements because of their low sensitivity for strain in the direction perpendicular to the optical fiber's axis. The design flexibility provided by novel photonic crystal fiber (PCF) technology now allows developing dedicated fibers with substantially enhanced sensitivity to such transverse loads. We exploited that flexibility and we developed a PCF that, when equipped with a fiber Bragg grating (FBG), leads to a sensor that allows measuring transverse strains in reinforced composite materials, with an order of magnitude increase of the sensitivity over the state-of-the-art. In addition it allows shear strain sensing in adhesive bonds, which are used in composite repair patches. This is confirmed both with experiments and finite element simulations on such fibers embedded in CFRP coupons and adhesive bonds. Our sensor brings the achievable transverse strain measurement resolution close to a target value of 1 μstrain and could therefore play an important role for multi-dimensional strain sensing, not only in the domain of structural health monitoring, but also in the field of composite material production monitoring. Our results thereby illustrate the added value that PCFs have to offer for internal strain measurements inside composite materials and structures.

  14. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  15. Small Business Innovations (Fiber Optics)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Foster-Miller, Inc. Waltham, MA developed the In-Situ Fiber Optic Polymer Reaction Monitor which could lead to higher yields and lower costs in complex composite manufacturing. The monitor, developed under a Small Business Innovation Research (SBIR) contract with Langley Research Center, uses an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. It is the first analytical system capable of directly measuring the chemistry of advanced composite materials.

  16. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  17. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  18. Fiber optic diffraction grating maker

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1991-01-01

    A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

  19. Fiber optic diffraction grating maker

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1991-05-21

    A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

  20. Fiber optic frequency transfer link

    NASA Technical Reports Server (NTRS)

    Primas, Lori E. (Inventor); Sydnor, Richard L. (Inventor); Lutes, George F. (Inventor)

    1991-01-01

    A reference frequency distribution system is disclosed for transmitting a reference frequency from a reference unit to a remote unit while keeping the reference frequency at the reference unit and the remote unit in phase. A fiber optic cable connects the reference unit to the remote unit. A frequency source at the reference unit produces a reference frequency having an adjustable phase. A fiber optic transmitter at the reference unit modulates a light beam with the reference frequency and transmits the light beam into the fiber optic cable. A 50/50 reflector at the remote unit reflects a first portion of the light beam from the reference unit back into the fiber optic cable to the reference unit. A first fiber optic receiver disposed at the remote unit receives a second portion of the light beam and demodulates the reference frequency to be used at the remote unit. A second fiber optic receiver disposed at the reference unit receives the first portion of the light beam and demodulates a reference frequency component. A phase conjugator is connected to the frequency source for comparing the phase of the reference frequency component to the phase of the reference frequency modulating the light beam being transmitted from the reference unit to maintain a conjugate (anti-symmetric) relationship between the reference frequency component and the reference frequency modulating the light beam where virtually no phase difference exists between the phase of the reference frequency component and the phase of the reference frequency modulating the light beam.

  1. Using embedded fibers to measure explosive detonation velocities

    SciTech Connect

    Podsednik, Jason W.; Parks, Shawn Michael; Navarro, Rudolfo J.

    2012-07-01

    Single-mode fibers were cleverly embedded into fixtures holding nitromethane, and used in conjunction with a photonic Doppler velocimeter (PDV) to measure the associated detonation velocity. These measurements have aided us in our understanding of energetic materials and enhanced our diagnostic capabilities.

  2. Fiber Ring Optical Gyroscope (FROG)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design, construction, and testing of a one meter diameter fiber ring optical gyro, using 1.57 kilometers of single mode fiber, are described. The various noise components: electronic, thermal, mechanical, and optical, were evaluated. Both dc and ac methods were used. An attempt was made to measure the Earth rotation rate; however, the results were questionable because of the optical and electronic noise present. It was concluded that fiber ring optical gyroscopes using all discrete components have many serious problems that can only be overcome by discarding the discrete approach and adapting an all integrated optic technique that has the laser source, modulator, detector, beamsplitters, and bias element on a single chip.

  3. Supercontinuum Generation in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Dudley, J. M.; Taylor, J. R.

    2010-04-01

    1. Introduction and history J. R. Taylor; 2. Supercontinuum generation in microstructure fiber - an historical note J. K. Ranka; 3. Nonlinear fiber optics overview J. C. Travers, M. H. Frosz and J. M. Dudley; 4. Fiber supercontinuum generation overview J. M. Dudley; 5. Silica fibers for supercontinuum generation J. C. Knight and W. Wadsworth; 6. Supercontinuum generation and nonlinearity in soft glass fibers J. H. V. Price and D. J. Richardson; 7. Increasing the blue-shift of a picosecond pumped supercontinuum M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen and O. Bang; 8. Continuous wave supercontinuum generation J. C. Travers; 9. Theory of supercontinuum and interactions of solitons with dispersive waves D. V. Skryabin and A. V. Gorbach; 10. Interaction of four-wave mixing and stimulated Raman scattering in optical fibers S. Coen, S. G. Murdoch and F. Vanholsbeeck; 11. Nonlinear optics in emerging waveguides: revised fundamentals and implications S. V. Afshar, M. Turner and T. M. Monro; 12. Supercontinuum generation in dispersion varying fibers G. Genty; 13. Supercontinuum generation in chalcogenide glass waveguides Dong-Il Yeom, M. R. E. Lamont, B. Luther Davies and B. J. Eggleton; 14. Supercontinuum generation for carrier-envelope phase stabilization of mode-locked lasers S. T. Cundiff; 15. Biophotonics applications of supercontinuum generation C. Dunsby and P. M. W. French; 16. Fiber sources of tailored supercontinuum in nonlinear microspectroscopy and imaging A. M. Zheltikov; Index.

  4. Fiber-optically sensorized composite wing

    NASA Astrophysics Data System (ADS)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  5. Fiber optic snapshot hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Mansur, David J.; Rentz Dupuis, Julia; Vaillancourt, Robert

    2012-06-01

    OPTRA is developing a snapshot hyperspectral imager (HSI) employing a fiber optic bundle and dispersive spectrometer. The fiber optic bundle converts a broadband spatial image to an array of fiber columns which serve as multiple entrance slits to a prism spectrometer. The dispersed spatially resolved spectra are then sampled by a two-dimensional focal plane array (FPA) at a greater than 30 Hz update rate, thereby qualifying the system as snapshot. Unlike snapshot HSI systems based on computed tomography or coded apertures, our approach requires only the remapping of the FPA frame into hyperspectral cubes rather than a complex reconstruction. Our system has high radiometric efficiency and throughput supporting sufficient signal to noise for hyperspectral imaging measurements made over very short integration times (< 33 ms). The overall approach is compact, low cost, and contains no moving parts, making it ideal for unmanned airborne surveillance. In this paper we present a preliminary design for the fiber optic snapshot HSI system.

  6. Bidirectional fiber optic cable adapter

    NASA Astrophysics Data System (ADS)

    Linehan, M.; Gee, N. B.; Taylor, R.

    1983-02-01

    The technical objective of the BIFOCS program was to develop, build, and test a full-duplex single fiber, fiber optic link, operating in the 1.0 micron to 1.6 micron region, capable of transmitting 20 Mb/s data (10 to the -9th power BER) over a range of at least 10 km, with a goal of 15 km. The link MTBF goal was 5 X 10 to the 3rd power hours and operation over a temperature range of 0 to 50 C. The fiber optic cable consisted of sections not exceeding 2 km in length joined by commercially available dry fiber optic connectors. The system performed successfully at ambient temperature over 15 km of cable.

  7. Integration of long-gage fiber optic sensor into a fiber-reinforced composite sensing tape

    NASA Astrophysics Data System (ADS)

    Glisic, Branko; Inaudi, Daniele

    2003-07-01

    Thermoplastic and thermoset fiber-reinforced composite materials are well established in aerospace engineering, but also more and more used in the oil and gas industry as well as in civil engineering. In these applications they are mainly used to reinfoce, repair or straighten existing structures, but recently full-composite structures have also been built. Independently from the domain of the use, there is a need for these composite structures to be monitored. Since the composite materials are usually applied in the form of thin tapes or sheets, sensors have to be embedded within the structure, depending on structural layer that has to be monitored. Embedding the sensors may have as a consequence a significant decrease of the mechanical properties of the composite material due to the dimensions of the sensor. The solution presented in this paper is integration of a fiber optic sensor directly into the main composite component, i.e. into the composite tape. In this paper we present the development of a thermoplastic fiber-reinforced composite tape with integrated long-gage fiber-optic sensors. The fiber-optic sensors are selected due to small transversal dimension and good compatibility with the plastic materials. The tape with integrated optical fiber can be used for tape winding of a structural element, embedded between different layers, but also as a separate sensor - a sensing tape. The optical and mechanical properties of the tapes with sensor are tested. The sensing tape is then installed onto the rail along with standard long-gage fiber optic sensor, additional tests are performed and performance of both sensor compared. The integration of optical fiber into the composite tape, the results of the tests as well as the performances of the tape with integrated optical fiber are presented in this paper.

  8. Stress analysis of carbon fiber embedded composite material of rubber

    SciTech Connect

    Watanabe, O.; Taya, M.

    1995-12-31

    Thermo-mechanical properties of a composite of rubber embedded by carbon fill has been studied from the viewpoint of developing an electric device. The objective of the present study is to show stress analysis of carbon fiber embedded composite material of rubber by using a mixed-type finite element method. Based on the condition o plane strain, the geometry of composite material is taken as the two types of orientation of carbon fiber, which are distributed regularly according the specified volume fraction along the horizontal and vertical directions in the base material of rubber. The loading condition is assumed to be the two types of axial and shearing deformations. Through the calculated results of equivalent and mean stress distributions and the load-deflection curve, effects of the geometry size, the carbon fiber orientation and the loading condition are clarified. The results for the typical axial deformation is compared with the experimental results.

  9. Monolithic fiber optic sensor assembly

    SciTech Connect

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  10. Optical fiber interferometer for the study of ultrasonic waves in composite materials

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Zewekh, P. S.; Turner, T. M.; Wade, J. C.; Rogers, R. T.; Garg, A. O.

    1981-01-01

    The possibility of acoustic emission detection in composites using embedded optical fibers as sensing elements was investigated. Optical fiber interferometry, fiber acoustic sensitivity, fiber interferometer calibration, and acoustic emission detection are reported. Adhesive bond layer dynamical properties using ultrasonic interface waves, the design and construction of an ultrasonic transducer with a two dimensional Gaussian pressure profile, and the development of an optical differential technique for the measurement of surface acoustic wave particle displacements and propagation direction are also examined.