Sample records for embolismo gaseosos paradojico

  1. Dinámica y crecimiento de los granos de polvo en la nebulosa protoplanetaria

    NASA Astrophysics Data System (ADS)

    de La Fuente Marcos, Carlos

    2001-06-01

    En el escenario estándar de la formación planetaria, los planetesimales (cuerpos de tamaño kilométrico) crecen a partir de granos de polvo, similares a los interestelares, embebidos en un disco gaseoso denominado nebulosa protoplanetaria. Durante esta etapa, los movimientos del gas pueden tener gran influencia en la dinámica y el crecimiento de los granos de polvo, dado que el flujo kepleriano del gas frena el movimiento de los mismos haciendo que caigan hacia el Sol, y la turbulencia inhibe la inestabilidad gravitacional de la capa de polvo. Aunque se acepta que los planetesimales fueron los elementos constituyentes de los planetas, todavía se desconoce cómo se produjo la formación de los mismos. Por esta razón, en los estudios más recientes, existe un renovado interés por comprender mejor la evolución de la capa de polvo inmersa en el disco gaseoso de la Nebulosa. El gas que fluye en el disco puede engendrar estructuras carentes de simetría axial, como por ejemplo ondas espirales y vórtices, a partir de gran variedad de mecanismos de excitación e inestabilidad. En 1995, Barge y Sommeria pusieron de manifiesto que la existencia de vórtices gaseosos persistentes en la nebulosa solar tendría importantes consecuencias sobre la formación de los planetesimales y el posterior crecimiento de los planetas gigantes. La investigación desarrollada en esta Tesis analiza la relación entre el polvo y el gas debida al acoplamiento por fricción dinámica entre ambos; en concreto, se estudia el efecto del flujo medio del gas sobre la dinámica de las partículas de polvo. El primer objetivo es investigar en profundidad los procesos de captura y crecimiento de los granos de polvo dentro de un vórtice y su posible relevancia en cuanto a la formación de los planetesimales. El segundo objetivo es la exploración de los efectos de ondas espirales propagándose en el disco gaseoso sobre la dinámica y el crecimiento de las partículas. La presencia de líneas de

  2. Gas-exchange patterns of Mediterranean fruit fly Pupae (Diptera: Tephritidae): A tool to forecast developmental stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nestel, D.; Nemny-Lavy, E.; Alchanatis, V.

    The pattern of gas-exchange (CO{sub 2} emission) was investigated for developing Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) pupae incubated at different temperatures. This study was undertaken to explore the usefulness of gas-exchange systems in the determination of physiological age in developing pupae that are mass produced for sterile insect technique projects. The rate of CO{sub 2} emission was measured in a closed flow-through system connected to commercial infrared gas analysis equipment. Metabolic activity (rate of CO{sub 2} emission) was related to pupal eye-color, which is the current technique used to determine physiological age. Eye-color was characterized digitally with 3more » variables (Hue, Saturation and Intensity), and color separated by discriminant analysis. The rate of CO{sub 2} emission throughout pupal development followed a U-shape, with high levels of emission during pupariation, pupal transformation and final pharate adult stages. Temperature affected the development time of pupae, but not the basic CO{sub 2} emission patterns during development. In all temperatures, rates of CO{sub 2} emission 1 and 2 d before adult emergence were very similar. After mid larval-adult transition (e.g., phanerocephalic pupa), digital eye-color was significantly correlated with CO{sub 2} emission. Results support the suggestion that gas-exchange should be explored further as a system to determine pupal physiological age in mass production of fruit flies. (author) [Spanish] En el presente estudio se investigaron los patrones de intercambio gaseoso (emision de CO{sub 2}) en pupas de la mosca de las frutas del Mediterraneo (Ceratitis capitata Wiedemann) incubadas a diferentes temperaturas. El estudio fue realizado con la finalidad de explorar la utilizacion de sistemas de intercambio gaseoso en la determinacion de la edad fisiologica de pupas durante su produccion masiva en proyectos de mosca esteril. La proporcion de emision de CO{sub 2

  3. Estudio de la formación de galaxias espirales en un modelo de agregación jerárquica

    NASA Astrophysics Data System (ADS)

    Tissera, P.; Saiz, A.; Dominguez-Tenreiro, R.

    El estudio de formación de galaxias espirales ha llevado al desarrollo de numerosos modelos teóricos (e.g. White & Rees 1978). En la actualidad, el modelo más aceptado predice la formación de una galaxia espiral a partir del colapso disipativo del gas en el pozo de potencial de un halo oscuro, conservando su momento angular específco (Fall & Efstathiou 1980). En los últimos años, ha sido posible realizar simulaciones numéricas hidrodinámicas, las cuales describen la evolución conjunta de la materia oscura y los bariones. Estos experimentos han señalado la dificultad de formar estructuras discoidales con propiedades consistentes con las observaciones, en modelos de agregación jerárquica. El problema principal se origina en la pérdida catastrófica de momento angular de la componente disipativa, durante el proceso de ensamblaje de los objetos, a través de la fusión de subestructura (Navarro & Steinmetz 1997). Estos experimentos no incluían procesos de formación estelar. En este trabajo, se expondrán resultados de simulaciones hidrodinámicas cosmológicas, incluyendo formación estelar (Tissera et al 1997), donde ha sido posible reproducir objetos discoidales con contrapartida observacional. El elemento fundamental ha sido la formación de bulbos estelares, los cuales han evitado la pérdida catastrófica de momento angular de los bariones. Se encontró que los discos exponenciales puramente gaseosos son altamente inestables y suceptibles de generar barras, responsables de la pérdida de momento angular y la caída violenta del gas hacia la región central. Estas inestabilidades son fácilmente inducidas durante interacciones y fusiones con objetos vecinos (Barnes & Hernquist 1996). Un bulbo estelar (o un objeto masivo y compacto) estabiliza el disco ante perturbaciones externas, asegurándole un potencial simétrico (Sellwood & Moore 1998, Van der Bosch 1998). En este caso, el gas en el disco no pierde completamente su momento angular intr

  4. Moléculas orgánicas obtenidas en simulaciones experimentales del medio interestelar.

    NASA Astrophysics Data System (ADS)

    Muñoz-Caro, Guillermo Manuel

    Las nubes moleculares son regiones de formación de estrellas, con temperaturas cinéticas entre 10-50 K y densidades de 103-106 átomos cm-3. Su materia está formada por gas y polvo interestelar. Estas partículas de polvo están cubiertas por una fina capa de hielo, de unos 0.01 μm, que contiene H2O y a menudo CO, CO2, CH3OH y NH3. El hielo es presumiblemente irradiado por fotones ultravioleta y rayos cósmicos en las zonas poco profundas de las nubes moleculares y las regiones circunestelares. En un sistema de vacío, P ˜ 10-7 mbar, simulamos la deposición de hielo a partir de 10 K y la irradiación ultravioleta por medio de una lámpara de descarga de hidrógeno activada con microondas. La evolución del hielo se observa por medio de un espectrómetro infrarrojo. De este modo es posible determinar la composición del hielo observado en el medio interestelar y predecir la presencia de moléculas aún no detectadas en el espacio, que han sido producto del procesamiento del hielo en nuestros experimentos. También es posible calentar el sistema hasta temperatura ambiente para sublimar el hielo depositado. Cuando el hielo ha sido previamente irradiado, se observa un residuo compuesto por moléculas orgánicas complejas, algunas prebióticas, como varios ácidos carboxílicos, aminas, amidas, ésteres y en menor proporción moléculas heterocíclicas y aminoácidos. Algunas de estas moléculas podrían detectarse en estado gaseoso por medio de observaciones milimétricas y de radio. También podrían estar presentes en el polvo cometario, cuyo análisis químico está planeado por las misiones Stardust y Rosetta. Mientras tanto, nuestro grupo está llevando a cabo el análisis de partículas de polvo interplanetario (IDPs), algunas de las cuales pueden ser de origen cometario. Al igual que ocurre con los productos obtenidos por irradiación del hielo en nuestros experimentos, algunas IDPs son ricas en material orgánico que contiene oxígeno.