Science.gov

Sample records for embryonic fibroblasts lacking

  1. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Ghosh, Asish K Wei, Jun; Wu, Minghua; Varga, John

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI), and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.

  2. Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity

    PubMed Central

    Singhal, Prabhat K.; Sassi, Slim; Lan, Lan; Au, Patrick; Halvorsen, Stefan C.; Fukumura, Dai; Jain, Rakesh K.; Seed, Brian

    2016-01-01

    Analysis of embryonic fibroblasts from GFP reporter mice indicates that the fibroblast cell type harbors a large collection of developmentally and phenotypically heterogeneous subtypes. Some of these cells exhibit multipotency, whereas others do not. Multiparameter flow cytometry analysis shows that a large number of distinct populations of fibroblast-like cells can be found in cultures initiated from different embryonic organs, and cells sorted according to their surface phenotype typically retain their characteristics on continued propagation in culture. Similarly, surface phenotypes of individual cloned fibroblast-like cells exhibit significant variation. The fibroblast cell class appears to contain a very large number of denumerable subtypes. PMID:26699463

  3. Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity.

    PubMed

    Singhal, Prabhat K; Sassi, Slim; Lan, Lan; Au, Patrick; Halvorsen, Stefan C; Fukumura, Dai; Jain, Rakesh K; Seed, Brian

    2016-01-01

    Analysis of embryonic fibroblasts from GFP reporter mice indicates that the fibroblast cell type harbors a large collection of developmentally and phenotypically heterogeneous subtypes. Some of these cells exhibit multipotency, whereas others do not. Multiparameter flow cytometry analysis shows that a large number of distinct populations of fibroblast-like cells can be found in cultures initiated from different embryonic organs, and cells sorted according to their surface phenotype typically retain their characteristics on continued propagation in culture. Similarly, surface phenotypes of individual cloned fibroblast-like cells exhibit significant variation. The fibroblast cell class appears to contain a very large number of denumerable subtypes. PMID:26699463

  4. Defining the identity of mouse embryonic dermal fibroblasts.

    PubMed

    Budnick, Isadore; Hamburg-Shields, Emily; Chen, Demeng; Torre, Eduardo; Jarrell, Andrew; Akhtar-Zaidi, Batool; Cordovan, Olivia; Spitale, Rob C; Scacheri, Peter; Atit, Radhika P

    2016-08-01

    Embryonic dermal fibroblasts in the skin have the exceptional ability to initiate hair follicle morphogenesis and contribute to scarless wound healing. Activation of the Wnt signaling pathway is critical for dermal fibroblast fate selection and hair follicle induction. In humans, mutations in Wnt pathway components and target genes lead to congenital focal dermal hypoplasias with diminished hair. The gene expression signature of embryonic dermal fibroblasts during differentiation and its dependence on Wnt signaling is unknown. Here we applied Shannon entropy analysis to identify the gene expression signature of mouse embryonic dermal fibroblasts. We used available human DNase-seq and histone modification ChiP-seq data on various cell-types to demonstrate that genes in the fibroblast cell identity signature can be epigenetically repressed in other cell-types. We found a subset of the signature genes whose expression is dependent on Wnt/β-catenin activity in vivo. With our approach, we have defined and validated a statistically derived gene expression signature that may mediate dermal fibroblast identity and function in development and disease. genesis 54:415-430, 2016. © 2016 Wiley Periodicals, Inc. PMID:27265328

  5. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells.

    PubMed

    Kalaszczynska, Ilona; Geng, Yan; Iino, Tadafumi; Mizuno, Shin-ichi; Choi, Yoon; Kondratiuk, Ilona; Silver, Daniel P; Wolgemuth, Debra J; Akashi, Koichi; Sicinski, Piotr

    2009-07-23

    Cyclins are regulatory subunits of cyclin-dependent kinases. Cyclin A, the first cyclin ever cloned, is thought to be an essential component of the cell-cycle engine. Mammalian cells encode two A-type cyclins, testis-specific cyclin A1 and ubiquitously expressed cyclin A2. Here, we tested the requirement for cyclin A function using conditional knockout mice lacking both A-type cyclins. We found that acute ablation of cyclin A in fibroblasts did not affect cell proliferation, but led to prolonged expression of another cyclin, cyclin E, across the cell cycle. However, combined ablation of all A- and E-type cyclins extinguished cell division. In contrast, cyclin A function was essential for cell-cycle progression of hematopoietic and embryonic stem cells. Expression of cyclin A is particularly high in these compartments, which might render stem cells dependent on cyclin A, whereas in fibroblasts cyclins A and E play redundant roles in cell proliferation. PMID:19592082

  6. Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation.

    PubMed

    Lengner, Christopher J; Lepper, Christoph; van Wijnen, Andre J; Stein, Janet L; Stein, Gary S; Lian, Jane B

    2004-09-01

    Cartilage formation is an intricate process that requires temporal and spatial organization of regulatory factors in order for a mesenchymal progenitor cell to differentiate through the distinct stages of chondrogenesis. Gene function during this process has best been studied by analysis of in vivo cartilage formation in genetically altered mouse models. Mouse embryonic fibroblasts (MEFs) isolated from such mouse models have been widely used for the study of growth control and DNA damage response. Here, we address the potential of MEFs to undergo chondrogenic differentiation. We demonstrate for the first time that MEFs can enter and complete the program of chondrogenic differentiation ex vivo, from undifferentiated progenitor cells to mature, hypertrophic chondrocytes. We show that chondrogenic differentiation can be induced by cell-cell contact or BMP-2 treatment, while in combination, these conditions synergistically enhance chondrocyte differentiation resulting in the formation of 3-dimensional (3-D) cartilaginous tissue ex vivo. Temporal expression profiles of pro-chondrogenic transcription factors Bapx1 and Sox9 and cartilaginous extracellular matrix (ECM) proteins Collagen Type II and X (Coll II and Coll X) demonstrate that the in vivo progression of chondrocyte maturation is recapitulated in the MEF model system. Our findings establish the MEF as a powerful tool for the generation of cartilaginous tissue ex vivo and for the study of gene function during chondrogenesis. PMID:15254959

  7. Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells

    PubMed Central

    Xue, Fei; Ma, Yinghong; Chen, Y. Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang

    2012-01-01

    Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs. PMID:22775411

  8. Lack of vimentin impairs endothelial differentiation of embryonic stem cells.

    PubMed

    Boraas, Liana C; Ahsan, Tabassum

    2016-01-01

    The cytoskeletal filament vimentin is inherent to the endothelial phenotype and is critical for the proper function of endothelial cells in adult mice. It is unclear, however, if the presence of vimentin is necessary during differentiation to the endothelial phenotype. Here we evaluated gene and protein expression of differentiating wild type embryonic stem cells (WT ESCs) and vimentin knockout embryonic stem cells (VIM -/- ESCs) using embryoid bodies (EBs) formed from both cell types. Over seven days of differentiation VIM -/- EBs had altered morphology compared to WT EBs, with a rippled outer surface and a smaller size due to decreased proliferation. Gene expression of pluripotency markers decreased similarly for EBs of both cell types; however, VIM -/- EBs had impaired differentiation towards the endothelial phenotype. This was quantified with decreased expression of markers along the specification pathway, specifically the early mesodermal marker Brachy-T, the lateral plate mesodermal marker FLK1, and the endothelial-specific markers TIE2, PECAM, and VE-CADHERIN. Taken together, these results indicate that the absence of vimentin impairs spontaneous differentiation of ESCs to the endothelial phenotype in vitro. PMID:27480130

  9. Lack of vimentin impairs endothelial differentiation of embryonic stem cells

    PubMed Central

    Boraas, Liana C.; Ahsan, Tabassum

    2016-01-01

    The cytoskeletal filament vimentin is inherent to the endothelial phenotype and is critical for the proper function of endothelial cells in adult mice. It is unclear, however, if the presence of vimentin is necessary during differentiation to the endothelial phenotype. Here we evaluated gene and protein expression of differentiating wild type embryonic stem cells (WT ESCs) and vimentin knockout embryonic stem cells (VIM −/− ESCs) using embryoid bodies (EBs) formed from both cell types. Over seven days of differentiation VIM −/− EBs had altered morphology compared to WT EBs, with a rippled outer surface and a smaller size due to decreased proliferation. Gene expression of pluripotency markers decreased similarly for EBs of both cell types; however, VIM −/− EBs had impaired differentiation towards the endothelial phenotype. This was quantified with decreased expression of markers along the specification pathway, specifically the early mesodermal marker Brachy-T, the lateral plate mesodermal marker FLK1, and the endothelial-specific markers TIE2, PECAM, and VE-CADHERIN. Taken together, these results indicate that the absence of vimentin impairs spontaneous differentiation of ESCs to the endothelial phenotype in vitro. PMID:27480130

  10. Comparing the mechanical influence of vinculin, focal adhesion kinase and p53 in mouse embryonic fibroblasts

    SciTech Connect

    Klemm, Anna H.; Diez, Gerold; Alonso, Jose-Luis

    2009-02-13

    Cytoskeletal reorganization is an ongoing process when cells adhere, move or invade extracellular substrates. The cellular force generation and transmission are determined by the intactness of the actomyosin-(focal adhesion complex)-integrin connection. We investigated the intracellular course of action in mouse embryonic fibroblasts deficient in the focal adhesion proteins vinculin and focal adhesion kinase (FAK) and the nuclear matrix protein p53 using magnetic tweezer and nanoparticle tracking techniques. Results show that the lack of these proteins decrease cellular stiffness and affect cell rheological behavior. The decrease in cellular binding strength was higher in FAK- to vinculin-deficient cells, whilst p53-deficient cells showed no effect compared to wildtype cells. The intracellular cytoskeletal activity was lowest in wildtype cells, but increased in the following order when cells lacked FAK+p53 > p53 > vinculin. In summary, cell mechanical processes are differently affected by the focal adhesion proteins vinculin and FAK than by the nuclear matrix protein, p53.

  11. Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts

    SciTech Connect

    Michailidis, Georgios; Saretzki, Gabriele; Hall, Judith , E-Mail: Judith.hall@ncl.ac.uk

    2005-09-16

    In this study, we compared the endogenous expression of genes encoding telomere regulating proteins in cultured chicken embryonic fibroblasts (CEFs) and 10-day-old chicken embryos. CEFs maintained in vitro senesced and senescence was accompanied by reduced telomere length, telomerase activity, and expression of the chicken (c) TRF1 gene. There was no change in TRF2 gene expression although the major TRF2 transcript identified in 10-day-old chicken embryos encoded a truncated TRF2 protein (TRF2'), containing an N-terminal dimerisation domain but lacking a myb-related DNA binding domain and nuclear localisation signal. Senescence of the CEFs in vitro was associated with the loss of the TRF2' transcript, indicative of a novel function for the encoded protein. Senescence was also coupled with decreased expression of RAD51, but increased RAD52 expression. These data support that RAD51 independent recombination mechanisms do not function in vitro to maintain chicken telomeres. To attempt to rescue the CEFs from replicative senescence, we stably transfected passage 3 CEFs with the human telomerase reverse transcriptase (hTERT) catalytic subunit. While hTERT expression was detected in the stable transfectants neither telomerase activity nor the stabilisation of telomere length was observed, and the transfectant cells senesced at the same passage number as the untransfected cells. These data indicate that the human TERT is incompatible with the avian telomere maintenance apparatus and suggest the functioning of a species specific telomere system in the avian.

  12. Genotoxicity of alpha particles in human embryonic skin fibroblasts

    SciTech Connect

    Chen, D.J.; Strniste, G.F.; Tokita, N.

    1984-11-01

    Cell inactivation and induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus have been measured in cultured human fibroblasts (GM10) exposed to ..cap alpha.. particles from /sup 238/ Pu and 250 kVp X rays. The survival curves resulting from exposure to ..cap alpha.. particles are exponential. The mean lethal dose, D/sub 0/, is approximately 1.3 Gy for X rays and 0.25 Gy for ..cap alpha.. particles. As a function of radiation dose, mutation induction at the HGPRT locus was linear for ..cap alpha.. particles whereas the X-ray-induced mutation data were better fitted by a quadratic function. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in cells exposed to ..cap alpha.. particles than to X rays.

  13. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-01-01

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. PMID:26840224

  14. Ethanol Inactivated Mouse Embryonic Fibroblasts Maintain the Self-Renew and Proliferation of Human Embryonic Stem Cells

    PubMed Central

    Huang, Boxian; Ning, Song; Zhuang, Lili; Jiang, Chunyan; Cui, Yugui; Fan, Guoping; Qin, Lianju; Liu, Jiayin

    2015-01-01

    Conventionally, mouse embryonic fibroblasts (MEFs) inactivated by mitomycin C or irradiation were applied to support the self-renew and proliferation of human embryonic stem cells (hESCs). To avoid the disadvangtages of mitomycin C and irradiation, here MEFs were treated by ethanol (ET). Our data showed that 10% ET-inactivated MEFs (eiMEFs) could well maintain the self-renew and proliferation of hESCs. hESCs grown on eiMEFs expressed stem cell markers of NANOG, octamer-binding protein 4 (OCT4), stage-specific embryonic antigen-4 (SSEA4) and tumour related antigen-1-81 (TRA-1-81), meanwhile maintained normal karyotype after long time culture. Also, hESCs cocultured with eiMEFs were able to form embryoid body (EB) in vitro and develop teratoma in vivo. Moreover, eiMEFs could keep their nutrient functions after long time cryopreservation. Our results indicate that the application of eiMEF in hESCs culture is safe, economical and convenient, thus is a better choice. PMID:26091287

  15. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    PubMed Central

    El-Sayed, Ahmed Kamel; Zhang, Zhentao; Zhang, Lei; Liu, Zhiyong; Abbott, Louise C.; Zhang, Yani; Li, Bichun

    2014-01-01

    Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs) generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF) cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1) and Rex-1 (ZFP-42, zinc finger protein 42). Using embryonic stem cells (ESCs) conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs) using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF) cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations. PMID:25437916

  16. Golgi Disruption and Early Embryonic Lethality in Mice Lacking USO1

    PubMed Central

    Kim, Susie; Hill, Adele; Warman, Matthew L.; Smits, Patrick

    2012-01-01

    Golgins are a family of long rod-like proteins characterized by the presence of central coiled-coil domains. Members of the golgin family have important roles in membrane trafficking, where they function as tethering factors that capture transport vesicles and facilitate membrane fusion. Golgin family members also have essential roles in maintaining the organization of the Golgi apparatus. Knockdown of individual golgins in cultured cells resulted in the disruption of the Golgi structure and the dispersal of Golgi marker proteins throughout the cytoplasm. However, these cellular phenotypes have not always been recapitulated in vivo. For example, embryonic development proceeds much further than expected and Golgi disruption was observed in only a subset of cell types in mice lacking the ubiquitously expressed golgin GMAP-210. Cell-type specific functional compensation among golgins may explain the absence of global cell lethality when a ubiquitously expressed golgin is missing. In this study we show that functional compensation does not occur for the golgin USO1. Mice lacking this ubiquitously expressed protein exhibit disruption of Golgi structure and early embryonic lethality, indicating that USO1 is indispensable for early embryonic development. PMID:23185636

  17. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  18. Cardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation

    PubMed Central

    Talaei-Khozani, Tahereh; Heidari, Fatemeh; Esmaeilpour, Tahereh; Vojdani, Zahra; Mostafavi-Pour, Zohrah; Rohani, Leili

    2014-01-01

    Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA) and 5-Aza-2-Deoxycytidine (5-aza-dC). The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21 days. Cardiomyocyte markers were detected by immunohistochemistry. Alkaline phosphatase activity and OCT4 were also detected in cells treated by chromatin-modifying agents. Results: The cells exposed to a combination of 5-aza-dC and TSA and permeabilized in the presence of the cardiomyocyte extract showed morphological changes. The cells were unable to express cardiomyocyte markers after 24 h. Immunocytochemical assays showed a notable degree of myosin heavy chain and α-actinin expressions after 10 days. The expression of the natriuretic factor and troponin T occurred after 21 days in these cells. The cells exposed to chromatin-modifying agents also expressed cardiomyocyte markers; however, the proportion of reprogrammed cells was clearly smaller than that in the cultures exposed to 5-aza-dC , TSA, and extract. Conclusion: It seems that the fibroblasts were able to eliminate the previous epigenetic markers and form new ones according to the factors existing in the extract. Since no beating was observed, at least up to 21 days, the cells may need an appropriate extracellular matrix for their function. PMID:24753644

  19. Effect of basic fibroblast growth factor in mouse embryonic stem cell culture and osteogenic differentiation.

    PubMed

    Rose, Laura C; Fitzsimmons, Ross; Lee, Poh; Krawetz, Roman; Rancourt, Derrick E; Uludağ, Hasan

    2013-05-01

    Embryonic stem cells are actively explored as a cell source in tissue engineering and regenerative medicine involving bone repair. Basic fibroblast growth factor (bFGF) has been a valuable growth factor to support the culture of human stem cells as well as their osteogenic differentiation, but the influence of bFGF on mouse embryonic stem (mES) cells is not known. Towards this goal, D3 cells were treated with bFGF during maintenance conditions and during spontaneous and osteogenic differentiation. In feeder-free monolayers, up to 40 ng/ml of exogenous bFGF did not support self-renewal of mES without LIF during cell expansion. During spontaneous differentiation in high-density cultures, bFGF stimulated cell proliferation under certain conditions but did not influence differentiation, as judged by stage-specific embryonic antigen-1 expression. The addition of bFGF reduced the alkaline phosphatase (ALP) activity associated with osteoblast activity during differentiation induced by osteogenic supplements, although the extent of mineralization was unaffected by bFGF. The bFGF increased the mesenchymal stem cell marker Sca-1 in an mES cell population and led to an enhanced increase in osteocalcin and runx2 expression in combination with BMP-2. These results suggest that bFGF could be utilized to expand the cell population in high-density cultures in addition to enriching the BMP-2 responsiveness of mES cells. PMID:22674886

  20. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation

    PubMed Central

    Gama Sosa, Miguel A.; De Gasperi, Rita; Hof, Patrick R.; Elder, Gregory A.

    2016-01-01

    Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1−/− embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1−/− cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1−/− cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1−/− cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1−/− cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1−/− cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway. PMID:27443835

  1. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation.

    PubMed

    Gama Sosa, Miguel A; De Gasperi, Rita; Hof, Patrick R; Elder, Gregory A

    2016-01-01

    Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1-/- embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1-/- cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1-/- cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1-/- cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1-/- cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1-/- cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway. PMID:27443835

  2. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts

    PubMed Central

    Krais, Annette M.; Mühlbauer, Karl-Rudolf; Kucab, Jill E.; Chinbuah, Helena; Cornelius, Michael G.; Wei, Quan-Xiang; Hollstein, Monica; Phillips, David H.; Arlt, Volker M.; Schmeiser, Heinz H.

    2015-01-01

    We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells. PMID:25230394

  3. A human embryonic lung fibroblast with a high density of muscarinic acetylcholine receptors.

    PubMed

    André, C; Marullo, S; Convents, A; Lü, B Z; Guillet, J G; Hoebeke, J; Strosberg, D A

    1988-01-15

    Binding studies with the radiolabeled muscarinic antagonists dexetimide, quinuclidinyl benzilate and N-methylscopolamine showed that the human embryonic lung fibroblast CCL137 possesses approximately 2 X 10(5) muscarinic receptors/cell, i.e. 2.1 pmol/mg membrane protein. These receptors showed a marked stereoselectivity towards dexetimide and levetimide and only low affinity for another antagonist, pirenzepine. The muscarinic agonist carbamylcholine inhibited forskolin-stimulated adenylate cyclase and induced phosphatidylinositide turnover in the intact cells. Both effects were inhibited by the muscarinic antagonist atropine. Affinity labeling with tritiated propylbenzylcholine mustard revealed a protein of 72 kDa. Finally, down-regulation of the membrane receptors following prolonged treatment with the agonist carbamylcholine was assessed by means of the hydrophilic antagonist N-methylscopolamine. PMID:2828056

  4. Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts.

    PubMed

    Ershova, E S; Sergeeva, V A; Chausheva, A I; Zheglo, D G; Nikitina, V A; Smirnova, T D; Kameneva, L V; Porokhovnik, L N; Kutsev, S I; Troshin, P A; Voronov, I I; Khakina, E A; Veiko, N N; Kostyuk, S V

    2016-07-01

    Water-soluble fullerenes have been studied as potential nanovectors and therapeutic agents, but their possible toxicity is of concern. We have studied the effects of F-828, a soluble fullerene [C60] derivative, on diploid human embryonic lung fibroblasts (HELFs) in vitro. F-828 causes complex time-dependent changes in ROS levels. Inhibition of Nox4 activity by plumbagin blocks F-828-dependent ROS elevation. F-828 induces DNA breaks, as measured by the comet assay and γH2AX expression, and the activities of the transcription factors NF-kB and p53 increase. F-828 concentrations>25μM are cytotoxic; cell death occurs by necrosis. Expression levels of TGF-β, RHOA, RHOC, ROCK1, and SMAD2 increase following exposure to F-828. Our results raise the possibility that fullerene F-828 may induce pulmonary fibrosis in vivo. PMID:27402482

  5. Nonhomologous DNA end joining and chromosome aberrations in human embryonic lung fibroblasts treated with environmental pollutants.

    PubMed

    Rossner, Pavel; Rossnerova, Andrea; Beskid, Olena; Tabashidze, Nana; Libalova, Helena; Uhlirova, Katerina; Topinka, Jan; Sram, Radim J

    2014-01-01

    In order to evaluate the ability of a representative polycyclic aromatic hydrocarbon (PAH) and PAH-containing complex mixtures to induce double strand DNA breaks (DSBs) and repair of damaged DNA in human embryonic lung fibroblasts (HEL12469 cells), we investigated the effect of benzo[a]pyrene (B[a]P) and extractable organic matter (EOM) from ambient air particles <2.5μm (PM2.5) on nonhomologous DNA end joining (NHEJ) and induction of stable chromosome aberrations (CAs). PM2.5 was collected in winter and summer 2011 in two Czech cities differing in levels and sources of air pollutants. The cells were treated for 24h with the following concentrations of tested chemicals: B[a]P: 1μM, 10μM, 25μM; EOMs: 1μg/ml, 10μg/ml, 25μg/ml. We tested several endpoints representing key steps leading from DSBs to the formation of CAs including histone H2AX phosphorylation, levels of proteins Ku70, Ku80 and XRCC4 participating in NHEJ, in vitro ligation activity of nuclear extracts of the HEL12469 cells and the frequency of stable CAs assessed by whole chromosome painting of chromosomes 1, 2, 4, 5, 7 and 17 using fluorescence in situ hybridization. Our results show that 25μM of B[a]P and most of the tested doses of EOMs induced DSBs as indicated by H2AX phosphorylation. DNA damage was accompanied by induction of XRCC4 expression and an increased frequency of CAs. Translocations most frequently affected chromosome 7. We observed only a weak induction of Ku70/80 expression as well as ligation activity of nuclear extracts. In summary, our data suggest the induction of DSBs and NHEJ after treatment of human embryonic lung fibroblasts with B[a]P and complex mixtures containing PAHs. PMID:24694657

  6. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development.

    PubMed

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K; Bellusci, Saverio

    2015-12-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. PMID:26511927

  7. Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment.

    PubMed

    Quintana, Lluís; Muiños, Teresa Fernández; Genove, Elsa; Del Mar Olmos, María; Borrós, Salvador; Semino, Carlos E

    2009-01-01

    Cellular self-organization studies have been mainly focused on models such as Volvox, the slime mold Dictyostelium discoideum, and animal (metazoan) embryos. Moreover, animal tissues undergoing regeneration also exhibit properties of embryonic systems such as the self-organization process that rebuilds tissue complexity and function. We speculated that the recreation in vitro of the biological, biophysical, and biomechanical conditions similar to those of a regenerative milieu could elicit the intrinsic capacity of differentiated cells to proceed to the development of a tissue-like structure. Here we show that, when primary mouse embryonic fibroblasts are cultured in a soft nanofiber scaffold, they establish a cellular network that causes an organized cell contraction,proliferation, and migration that ends in the formation of a symmetrically bilateral structure with a distinct central axis. A subset of mesodermal genes (brachyury, Sox9, Runx2) is upregulated during this morphogenetic process. The expression of brachyury was localized first at the central axis, extending then to both sides of the structure. The spontaneous formation of cartilage-like tissue mainly at the paraxial zone followed expression ofSox9 and Runx2. Because cellular self-organization is an intrinsic property of the tissues undergoing development,this model could lead to new ways to consider tissue engineering and regenerative medicine. PMID:19025338

  8. Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene

    PubMed Central

    Czerwinska, Areta M.; Grabowska, Iwona; Archacka, Karolina; Bem, Joanna; Swierczek, Barbara; Helinska, Anita; Streminska, Wladyslawa; Fogtman, Anna; Iwanicka-Nowicka, Roksana; Koblowska, Marta

    2016-01-01

    The transcription factor Pax7 plays a key role during embryonic myogenesis and sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Overexpression of Pax7 has been shown to promote the myogenic differentiation of pluripotent stem cells. However, the effects of the absence of functional Pax7 in differentiating embryonic stem cells (ESCs) have not yet been directly tested. Herein, we studied mouse stem cells that lacked a functional Pax7 gene and characterized the differentiation of these stem cells under conditions that promoted the derivation of myoblasts in vitro. We analyzed the expression of myogenic factors, such as myogenic regulatory factors and muscle-specific microRNAs, in wild-type and mutant cells. Finally, we compared the transcriptome of both types of cells and did not find substantial differences in the expression of genes related to the regulation of myogenesis. As a result, we showed that the absence of functional Pax7 does not prevent the in vitro myogenic differentiation of ESCs. PMID:26649785

  9. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    SciTech Connect

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne; Nadanaciva, Sashi

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with the latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.

  10. Lack of fibroblast growth factor 21 accelerates metabolic liver injury characterized by steatohepatities in mice

    PubMed Central

    Liu, Xingkai; Zhang, Ping; Martin, Robert C; Cui, Guozhen; Wang, Guangyi; Tan, Yi; Cai, Lu; Lv, Guoyue; Li, Yan

    2016-01-01

    Fibroblast growth factor 21 (FGF21) concentrations are increased in human subjects who either have type 2 diabetes or nonalcoholic fatty liver disease (NAFLD). While excessive fat in the liver promotes the release of pro-inflammatory cytokines, NAFLD progresses from steatosis to non alcoholic steatohepatitis (NASH), a more aggressive form of hepatic damage, and lastly toward cirrhosis and HCC. In our previous study, loss of FGF21 is associated with hyper-proliferation, aberrant p53, and HCC development in diabetes mice. In this study, we proposed to investigate the liver metabolic disorders by diabetes and the potential roles of FGF21 played in NASH and potential carcinogenetic transformation of HCC. NASH was induced in FGF21 knockout (FGF21KO) mice by streptozotocin administration or fed with high fat diet (HFD). The pathological transformation of steatohepatities as well as parameters of inflammation, lipid metabolism, cellular events, mesenchymal-epithelial transition (MET) and Wnt/β-catenin signaling was determined in the FGF21 KO diabetic mice and HFD fed mice. We found that mice lacking the FGF21 gene are more prone to develop NASH. A compromised microenvironment of NASH, which could facilitate the HCC carcinogenetic transformation, was found in FGF21 KO mice under metabolic disorders by diabetes and HFD feeding. This study provided further evidence that lack of FGF21 worsened the metabolic disorders in NASH and could render a tumor microenvironment for HCC initiation and progression in the liver of diabetes mice. PMID:27293995

  11. Differentiated fibroblastic progenies of human embryonic stem cells for toxicology screening.

    PubMed

    Cao, Tong; Lu, Kai; Fu, Xin; Heng, Boon Chin

    2008-03-01

    Immortalized cell lines and live animal models are commonly used for cytotoxicity screening of biomedical devices and materials. However, these assays poorly reflect human physiology and have numerous other disadvantages. An alternative may be to utilize differentiated fibroblastic progenies of human embryonic stem cells (hESC) for in vitro toxicology screening. These were generated through random spontaneous differentiation within standard culture media, over several passages. The cytotoxic response of the differentiated hESC fibroblastic progenies (pH9) to mitomycin C was observed to be not only very similar to the L929 cell line, but was, in fact, more sensitive. At an initial seeding density of 1000 cells/well (0.33 cm(2)), the proliferation index was observed to decrease 19.0% from 1.638 to 1.326 for the L929 cell line, as the dosage of mitomycin C was gradually increased from 0 to 1.54 microg/mL. By contrast, pH9 displayed a corresponding 40.5% drop in proliferation index from 3.713 to 2.209. At a higher seeding density of 2000 cells/well (0.33 cm(2)), the proliferation index was observed to decrease 27.0% from 1.213 to 0.885 for the L929 cell line, whereas pH9 displayed a corresponding 43.7% drop in proliferation index from 3.711 to 2.091. Hence, it is apparent that pH9 exhibited a more sensitive dose-response to mitomycin C compared to L929, which could be advantageous for cytotoxicity screening assays. Additionally, this study also demonstrated that a highly purified and well-defined phenotypic population of differentiated hESC progenies is not necessary for high reproducibility and accuracy in cytotoxic response. PMID:18241121

  12. Absence of AMPKα2 accelerates cellular senescence via p16 induction in mouse embryonic fibroblasts.

    PubMed

    Ding, Ye; Chen, Jie; Okon, Imoh Sunday; Zou, Ming-Hui; Song, Ping

    2016-02-01

    Emerging evidence suggests that activation of adenosine monophosphate-activated protein kinase (AMPK), an energy gauge and redox sensor, delays aging process. However, the molecular mechanisms by which AMPKα isoform regulates cellular senescence remain largely unknown. The aim of this study was to determine if AMPKα deletion contributes to the accelerated cell senescence by inducing p16(INK4A) (p16) expression thereby arresting cell cycle. The markers of cellular senescence, cell cycle proteins, and reactive oxygen species (ROS) were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J), AMPKα1, or AMPKα2 homozygous deficient (AMPKα1(-/-), AMPKα2(-/-)) mice by Western blot and cellular immunofluorescence staining, as well as immunohistochemistry (IHC) in skin tissue of young and aged mice. Deletion of AMPKα2, the minor isoform of AMPKα, but not AMPKα1 in high-passaged MEFs led to spontaneous cell senescence demonstrated by accumulation of senescence-associated-β-galactosidase (SA-β-gal) staining and foci formation of heterochromatin protein 1 homolog gamma (HP1γ). It was shown here that AMPKα2 deletion upregulates cyclin-dependent kinase (CDK) inhibitor, p16, which arrests cell cycle. Furthermore, AMPKα2 null cells exhibited elevated ROS production. Interestingly, knockdown of HMG box-containing protein 1 (HBP1) partially blocked the cellular senescence of AMPKα2-deleted MEFs via the reduction of p16. Finally, dermal cells senescence, including fibroblasts senescence evidenced by the staining of p16, HBP1, and Ki-67, in the skin of aged AMPKα2(-/-) mice was enhanced when compared with that in wild type mice. Taken together, our results suggest that AMPKα2 isoform plays a fundamental role in anti-oxidant stress and anti-senescence. PMID:26718972

  13. Suppression of oxidative phosphorylation in mouse embryonic fibroblast cells deficient in apurinic/apyrimidinic endonuclease

    PubMed Central

    Suganya, Rangaswamy; Chakraborty, Anirban; Miriyala, Sumitra; Hazra, Tapas K.; Izumi, Tadahide

    2015-01-01

    The mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair/gene regulatory protein. Decrease of APE1 in cells by inducible shRNA knockdown or by conditional gene knockout caused apoptosis. Here we succeeded in establishing a unique mouse embryonic fibroblast (MEF) line expressing APE1 at a level far lower than those achieved with shRNA knockdown. The cells, named MEFla (MEFlowAPE1), were hypersensitive to methyl methanesulfonate (MMS), and showed little activity for repairing AP-sites and MMS induced DNA damage. While these results were consistent with the essential role of APE1 in repair of AP sites, the MEFla cells grew normally and the basal activation of poly(ADP-ribose) polymerases in MEFla was lower than that in the wild-type MEF (MEFwt), indicating the low DNA damage stress in MEFla under the normal growth condition. Oxidative phosphorylation activity in MEFla was lower than in MEFwt, while the glycolysis rates in MEFla were higher than in MEFwt. In addition, we observed decreased intracellular oxidative stress in MEFla. These results suggest that cells with low APE1 reversibly suppress mitochondrial respiration and thereby reduce DNA damage stress and increases the cell viability. PMID:25645679

  14. Morphology, cytoskeletal organization, and myosin dynamics of mouse embryonic fibroblasts cultured on nanofibrillar surfaces.

    PubMed

    Ahmed, Ijaz; Ponery, Abdul S; Nur-E-Kamal, Alam; Kamal, Jabeen; Meshel, Adam S; Sheetz, Michael P; Schindler, Melvin; Meiners, Sally

    2007-07-01

    Growth of cells in tissue culture is generally performed on two-dimensional (2D) surfaces composed of polystyrene or glass. Recent work, however, has shown that such 2D cultures are incomplete and do not adequately represent the physical characteristics of native extracellular matrix (ECM)/basement membrane (BM), namely dimensionality, compliance, fibrillarity, and porosity. In the current study, a three-dimensional (3D) nanofibrillar surface composed of electrospun polyamide nanofibers was utilized to mimic the topology and physical structure of ECM/BM. Additional chemical cues were incorporated into the nanofibrillar matrix by coating the surfaces with fibronectin, collagen I, or laminin-1. Results from the current study show an enhanced response of primary mouse embryonic fibroblasts (MEFs) to culture on nanofibrillar surfaces with more dramatic changes in cell spreading and reorganization of the cytoskeleton than previously observed for established cell lines. In addition, the cells cultured on nanofibrillar and 2D surfaces exhibited differential responses to the specific ECM/BM coatings. The localization and activity of myosin II-B for MEFs cultured on nanofibers was also compared. A dynamic redistribution of myosin II-B was observed within membrane protrusions. This was previously described for cells associated with nanofibers composed of collagen I but not for cells attached to 2D surfaces coated with monomeric collagen. These results provide further evidence that nanofibrillar surfaces offer a significantly different environment for cells than 2D substrates. PMID:17294137

  15. Neuronal and astrocyte dysfunction diverges from embryonic fibroblasts in the Ndufs4fky/fky mouse.

    PubMed

    Bird, Matthew J; Wijeyeratne, Xiaonan W; Komen, Jasper C; Laskowski, Adrienne; Ryan, Michael T; Thorburn, David R; Frazier, Ann E

    2014-01-01

    Mitochondrial dysfunction causes a range of early-onset neurological diseases and contributes to neurodegenerative conditions. The mechanisms of neurological damage however are poorly understood, as accessing relevant tissue from patients is difficult, and appropriate models are limited. Hence, we assessed mitochondrial function in neurologically relevant primary cell lines from a CI (complex I) deficient Ndufs4 KO (knockout) mouse (Ndufs4fky/fky) modelling aspects of the mitochondrial disease LS (Leigh syndrome), as well as MEFs (mouse embryonic fibroblasts). Although CI structure and function were compromised in all Ndufs4fky/fky cell types, the mitochondrial membrane potential was selectively impaired in the MEFs, correlating with decreased CI-dependent ATP synthesis. In addition, increased ROS (reactive oxygen species) generation and altered sensitivity to cell death were only observed in Ndufs4fky/fky primary MEFs. In contrast, Ndufs4fky/fky primary isocortical neurons and primary isocortical astrocytes displayed only impaired ATP generation without mitochondrial membrane potential changes. Therefore the neurological dysfunction in the Ndufs4fky/fky mouse may partly originate from a more severe ATP depletion in neurons and astrocytes, even at the expense of maintaining the mitochondrial membrane potential. This may provide protection from cell death, but would ultimately compromise cell functionality in neurons and astrocytes. Furthermore, RET (reverse electron transfer) from complex II to CI appears more prominent in neurons than MEFs or astrocytes, and is attenuated in Ndufs4fky/fky cells. PMID:25312000

  16. SILAC based protein profiling data of MKK3 knockout mouse embryonic fibroblasts.

    PubMed

    Srivastava, Anup; Shinn, Amanda S; Lam, TuKiet T; Lee, Patty J; Mannam, Praveen

    2016-06-01

    This data article reports changes in the phospho and total proteome of MKK3 knock out (MKK3(-) (/) (-)) mouse embryonic fibroblasts (MEFs). The dataset generated highlights the changes at protein level which can be helpful for understanding targets of the MAP kinase signaling pathway. Data was collected after TiO2-based phosphopeptide enrichment of whole cell lysate at baseline condition with bottom-up SILAC-based LC MS/MS quantitative mass spectrometry. We report all the proteins and peptides identified and quantified in MKK3(-/-) and WT MEFs. The altered pathways in MKK3(-/-) MEFs were analyzed by Database for Annotation, Visualization and Integrated Discovery (DAVID, v6.7) and Ingenuity Pathway Analysis (IPA) and are presented as a table and graph, respectively. The data reported here is related to the published work [1]. All the associated mass spectrometry data has been deposited in the Yale Protein Expression Database (YPED) with the web-link to the data: http://yped.med.yale.edu/repository/ViewSeriesMenu.do;jsessionid=6A5CB07543D8B529FAE8C3FCFE29471D?series_id=5044&series_name=MMK3+Deletion+in+MEFs. PMID:26977448

  17. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    SciTech Connect

    Kukat, Alexandra; Edgar, Daniel; Bratic, Ivana; Maiti, Priyanka; Trifunovic, Aleksandra

    2011-06-10

    Highlights: {yields} Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. {yields} This process is independent of endogenous ROS production. {yields} Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of the molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O{sub 2}) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.

  18. Dividing phase-dependent cytotoxicity profiling of human embryonic lung fibroblast identifies candidate anticancer reagents.

    PubMed

    Inagaki, Yoshinori; Matsumoto, Yasuhiko; Tang, Wei; Sekimizu, Kazuhisa

    2016-01-01

    Human Embryonic Lung fibroblasts (HEL cells) are widely used as a normal cell in studies of cell biology and can be easily maintained in the resting phase. Here we aimed to discover compounds that exhibit cytotoxicity against HEL cells in the dividing phase, but not in the resting phase. The cytotoxicity of each compound against HEL cells either in the resting phase or in the dividing phase was determined by MTT assay. Ratios of the IC50 of cells in the resting phase and that of cells in the dividing phase (RRD) for these compounds were compared. We selected 44 compounds that exhibited toxic effects on HEL cells in the dividing phase from a chemical library containing 325 anticancer drugs and enzyme inhibitors. The RRD values of those compounds were widely distributed. Paclitaxel and docetaxel, which are clinically used as anticancer drugs, had RRD values larger than 2000. On the other hand, the RRD value of dimethyl sulfoxide, an organic solvent, was 1. The cytotoxic effect of paclitaxel on HEL cells in the dividing phase was attenuated by aphidicolin, hydroxyurea, and nocodazole, confirming that the cytotoxic effects of paclitaxel are dependent on cells being in the dividing phase. Thapsigargin, whose RRD value was 800, the third highest RRD value in the library, exhibited therapeutic effects in a mouse model of FM3A ascites carcinoma. We suggest that compounds with high RRD values for HEL cells are candidate anticancer chemotherapy seeds. PMID:27594296

  19. Egg drop syndrome virus enters duck embryonic fibroblast cells via clathrin-mediated endocytosis.

    PubMed

    Huang, Jingjing; Tan, Dan; Wang, Yang; Liu, Caihong; Xu, Jiamin; Wang, Jingyu

    2015-12-01

    Previous studies of egg drop syndrome virus (EDSV) is restricted to serological surveys, disease diagnostics, and complete viral genome analysis. Consequently, the infection characteristics and entry routes of EDSV are poorly understood. Therefore, we aimed to explore the entry pathway of EDSV into duck embryonic fibroblast (DEF) cells as well as the infection characteristics and proliferation of EDSV in primary DEF and primary chicken embryo liver (CEL) cells. Transmission electron microscopy revealed that the virus triggered DEF cell membrane invagination as early as 10 min post-infection and that integrated endocytic vesicles formed at 20 min post-infection. The virus yield in EDSV-infected DEF cells treated with chlorpromazine (CPZ), sucrose, methyl-β-cyclodextrin (MβCD), or NH4Cl was measured by quantitative real-time PCR. Compared with the mock treatment, CPZ and sucrose greatly inhibited the production of viral progeny in a dose-dependent manner, while MβCD treatment did not result in a significant difference. Furthermore, NH4Cl had a strong inhibitory effect on the production of EDSV progeny. In addition, indirect immunofluorescence demonstrated that virus particles clustered on the surface of DEF cells treated with CPZ or sucrose. These results indicate that EDSV enters DEF cells through clathrin-mediated endocytosis followed by a pH-dependent step, which is similar to the mechanism of entry of human adenovirus types 2 and 5. PMID:26200954

  20. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Dayem, Ahmed Abdal; Kwon, Deug-Nam; Kim, Jin-Hoi

    2013-09-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a `green', natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.

  1. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro.

    PubMed

    Popov, Anton L; Popova, Nelly R; Selezneva, Irina I; Akkizov, Azamat Y; Ivanov, Vladimir K

    2016-11-01

    The increasing application of cell therapy technologies in the treatment of various diseases requires the development of new effective methods for culturing primary cells. The major limitation for the efficient use of autologous cell material is the low rate of cell proliferation. Successful cell therapy requires sufficient amounts of cell material over a short period of time with the preservation of their differentiation and proliferative potential. In this regard, the development of novel, highly efficient stimulators of proliferative activity in stem cells is a truly urgent task. In this paper we have demonstrated that citrate-stabilized cerium oxide nanoparticles (nanoceria) enhance the proliferative activity of primary mouse embryonic fibroblasts in vitro. Cerium oxide nanoparticles stimulate cell proliferation in a wide range of concentrations (10(-3)М-10(-9)M) through reduction of intracellular levels of reactive oxygen species (ROS) during the lag phase of cell growth and by modulating the expression level of the major antioxidant enzymes. We found the optimal concentration of nanoceria, which provides the greatest acceleration of cell proliferation in vitro, while maintaining the levels of intracellular ROS and mRNA of antioxidant enzymes in the physiological range. Our results confirm that nanocrystalline ceria can be considered as a basis for effective and inexpensive supplements in cell culturing. PMID:27524035

  2. Cationic, helical polypeptide-based gene delivery for IMR-90 fibroblasts and human embryonic stem cells

    PubMed Central

    Yen, Jonathan; Zhang, Yanfeng; Gabrielson, Nathan P.; Yin, Lichen; Guan, Linna; Chaudhury, Isthier; Lu, Hua

    2013-01-01

    Diblock copolymers consisting of poly(ethylene glycol)-block-poly(γ-4-(((2-(piperidin-1-yl)ethyl)amino)methyl)benzyl-L-glutamate) (PEG-b-PVBLG-8) were synthesized and evaluated for their ability to mediate gene delivery in hard-to-transfect cells like IMR-90 human fetal lung fibroblasts and human embryonic stem cells (hESCs). The PEG-b-PVBLG-8 contained a membrane-disruptive, cationic, helical polypeptide block (PVBLG-8) for complexing with DNA and a hydrophilic PEG block to improve the biocompatibility of the gene delivery vehicle. The incorporation of PEG effectively reduced the toxicity of the helical PVBLG-8 block without dramatically compromising the polymer's ability to destabilize membranes or form complexes with DNA. PEG-b-PVBLG-8 copolymers with low (n = 76) and high (n = 287) degrees of polymerization (n) of the PVBLG-8 block were synthesized and evaluated for gene delivery. PEG-b-PVBLG-8 diblock polymers with a high degree of polymerization have a greater transfection efficiency and lower toxicity in IMR-90 cells than the commercial reagent Lipofectamine 2000. The usefulness of PEG-b-PVBLG-8 was further demonstrated via the successful transfection of hESCs without a measured loss in cell pluripotency markers. PMID:23997932

  3. Cucurbitacins-type triterpene with potent activity on mouse embryonic fibroblast from Cucumis prophetarum, cucurbitaceae

    PubMed Central

    Ayyad, Seif-Eldin N.; Abdel-Lateff, Ahmed; Basaif, Salim A.; Shier, Thomas

    2011-01-01

    Background: Higher plants are considered as a well-known source of the potent anticancer metabolites with diversity of chemical structures. For instance, taxol is an amazing diterpene alkaloid had been lunched since 1990. Objective: To isolate the major compounds from the fruit extract of Cucumis prophetarum, Cucurbitaceae, which are mainly responsible for the bioactivities as anticancer. Materials and Methods: Plant material was shady air dried, extracted with equal volume of chloroform/methanol, and fractionated with different adsorbents. The structures of obtained pure compounds were elucidated with different spectroscopic techniques employing 1D (1H and 13C) and 2D (COSY, HMQC and HMBC) NMR (Nuclear Magnetic Resonance Spectrometry) and ESI-MS (Eelectrospray Ionization Mass Spectrometry) spectroscopy. The pure isolates were tested towards human cancer cell lines, mouse embryonic fibroblast (NIH3T3) and virally transformed form (KA3IT). Results: Two cucurbitacins derivatives, dihydocucurbitacin B (1) and cucurbitacin B (2), had been obtained. Compounds 1 and 2 showed (showed potent inhibitory activities toward NIH3T3 and KA31T with IC50 0.2, 0.15, 2.5 and 2.0 μg/ml, respectively. Conclusion: The naturally cucurbitacin derivatives (dihydocucurbitacin B and cucurbitacin B) showed potent activities towards NIH3T3 and KA31T, could be considered as a lead of discovering a new anticancer natural drug. PMID:22022168

  4. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts

    PubMed Central

    Marthandan, Shiva; Priebe, Steffen; Baumgart, Mario; Groth, Marco; Cellerino, Alessandro; Guthke, Reinhard; Hemmerich, Peter; Diekmann, Stephan

    2015-01-01

    Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin. PMID:26339636

  5. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts.

    PubMed

    Marthandan, Shiva; Priebe, Steffen; Baumgart, Mario; Groth, Marco; Cellerino, Alessandro; Guthke, Reinhard; Hemmerich, Peter; Diekmann, Stephan

    2015-01-01

    Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin. PMID:26339636

  6. Conditionally Immortalized Mouse Embryonic Fibroblasts Retain Proliferative Activity without Compromising Multipotent Differentiation Potential

    PubMed Central

    Huang, Enyi; Bi, Yang; Jiang, Wei; Luo, Xiaoji; Yang, Ke; Gao, Jian-Li; Gao, Yanhong; Luo, Qing; Shi, Qiong; Kim, Stephanie H.; Liu, Xing; Li, Mi; Hu, Ning; Liu, Hong; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Shen, Jikun; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Luo, Jinyong; He, Bai-Cheng; Wang, Huicong; Reid, Russell R.; Luu, Hue H.; Haydon, Rex C.; Yang, Li; He, Tong-Chuan

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells which reside in many tissues and can give rise to multiple lineages including bone, cartilage and adipose. Although MSCs have attracted significant attention for basic and translational research, primary MSCs have limited life span in culture which hampers MSCs' broader applications. Here, we investigate if mouse mesenchymal progenitors can be conditionally immortalized with SV40 large T antigen and maintain long-term cell proliferation without compromising their multipotency. Using the system which expresses SV40 large T antigen flanked with Cre/loxP sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized by SV40 large T antigen. The conditionally immortalized MEFs (iMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by Cre recombinase. The iMEFs express most MSC markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages under appropriate differentiation conditions in vitro and in vivo. The removal of SV40 large T reduces the differentiation potential of iMEFs possibly due to the decreased progenitor expansion. Furthermore, the iMEFs are apparently not tumorigenic when they are subcutaneously injected into athymic nude mice. Thus, the conditionally immortalized iMEFs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages. Our results suggest that the reversible immortalization strategy using SV40 large T antigen may be an efficient and safe approach to establishing long-term cell culture of primary mesenchymal progenitors for basic and translational research, as well as for potential clinical applications. PMID:22384246

  7. Nucleotide Excision Repair Is Not Induced in Human Embryonic Lung Fibroblasts Treated with Environmental Pollutants

    PubMed Central

    Rossner, Pavel; Spatova, Milada; Rossnerova, Andrea; Libalova, Helena; Schmuczerova, Jana; Milcova, Alena; Topinka, Jan; Sram, Radim J.

    2013-01-01

    The cellular response to genotoxic treatment depends on the cell line used. Although tumor cell lines are widely used for genotoxicity tests, the interpretation of the results may be potentially hampered by changes in cellular processes caused by malignant transformation. In our study we used normal human embryonic lung fibroblasts (HEL12469 cells) and tested their response to treatment with benzo[a]pyrene (B[a]P) and extractable organic matter (EOM) from ambient air particles <2.5 µm (PM2.5) collected in two Czech cities differing in levels and sources of air pollution. We analyzed multiple endpoints associated with exposure to polycyclic aromatic hydrocarbons (PAHs) including the levels of bulky DNA adducts and the nucleotide excision repair (NER) response [expression of XPE, XPC and XPA genes on the level of mRNA and proteins, unscheduled DNA synthesis (UDS)]. EOMs were collected in the winter and summer of 2011 in two Czech cities with different levels and sources of air pollution. The effects of the studied compounds were analyzed in the presence (+S9) and absence (–S9) of the rat liver microsomal S9 fraction. The levels of bulky DNA adducts were highest after treatment with B[a]P, followed by winter EOMs; their induction by summer EOMs was weak. The induction of both mRNA and protein expression was observed, with the most pronounced effects after treatment with B[a]P (–S9); the response induced by EOMs from both cities and seasons was substantially weaker. The expression of DNA repair genes was not accompanied by the induction of UDS activity. In summary, our results indicate that the tested compounds induced low levels of DNA damage and affected the expression of NER genes; however, nucleotide excision repair was not induced. PMID:23894430

  8. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    PubMed Central

    2013-01-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet–visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a ‘green’, natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications. PMID:24059222

  9. AMP-activated protein kinase suppresses matrix metalloproteinase-9 expression in mouse embryonic fibroblasts.

    PubMed

    Morizane, Yuki; Thanos, Aristomenis; Takeuchi, Kimio; Murakami, Yusuke; Kayama, Maki; Trichonas, George; Miller, Joan; Foretz, Marc; Viollet, Benoit; Vavvas, Demetrios G

    2011-05-01

    Matrix metalloproteinase-9 (MMP-9) plays a critical role in tissue remodeling under both physiological and pathological conditions. Although MMP-9 expression is low in most cells and is tightly controlled, the mechanism of its regulation is poorly understood. We utilized mouse embryonic fibroblasts (MEFs) that were nullizygous for the catalytic α subunit of AMP-activated protein kinase (AMPK), which is a key regulator of energy homeostasis, to identify AMPK as a suppressor of MMP-9 expression. Total AMPKα deletion significantly elevated MMP-9 expression compared with wild-type (WT) MEFs, whereas single knock-out of the isoforms AMPKα1 and AMPKα2 caused minimal change in the level of MMP-9 expression. The suppressive role of AMPK on MMP-9 expression was mediated through both its activity and presence. The AMPK activators 5-amino-4-imidazole carboxamide riboside and A769662 suppressed MMP-9 expression in WT MEFs, and AMPK inhibition by the overexpression of dominant negative (DN) AMPKα elevated MMP-9 expression. However, in AMPKα(-/-) MEFs transduced with DN AMPKα, MMP-9 expression was suppressed. AMPKα(-/-) MEFs showed increased phosphorylation of IκBα, expression of IκBα mRNA, nuclear localization of nuclear factor-κB (NF-κB), and DNA-binding activity of NF-κB compared with WT. Consistently, selective NF-κB inhibitors BMS345541 and SM7368 decreased MMP-9 expression in AMPKα(-/-) MEFs. Overall, our results suggest that both AMPKα isoforms suppress MMP-9 expression and that both the activity and presence of AMPKα contribute to its function as a regulator of MMP-9 expression by inhibiting the NF-κB pathway. PMID:21402702

  10. Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts

    PubMed Central

    Liang, Qiuli; Benavides, Gloria A.; Vasilopulos, Athanasios; Gius, David; Darley-Usmar, Victor; Zhang, Jianhua

    2014-01-01

    Synopsis Sirtuin 3 (Sirt3) is an NAD-dependent deacetylase localized to mitochondria. Sirt3 expression is increased in mouse muscle and liver by starvation, which could protect against the starvation-dependent increase in oxidative stress and protein damage. Damaged proteins and organelles depend on autophagy for removal and this is critical for cell survival but the role of Sirt3 is unclear. To examine this, we used Sirt3 knockout (KO) mouse embryonic fibroblast cells, and found that under basal conditions, Sirt3 KO cells exhibited increased autophagy flux compared to Wildtype (WT) cells. In response to nutrient deprivation, both WT and KO cells exhibited increased basal and ATP linked mitochondrial respiration, indicating an increased energy demand. Both cells exhibited lower levels of phosphorylated mTOR, and higher autophagy flux, with KO cells exhibiting lower maximal mitochondrial respiration and reserve capacity and higher levels of autophagy than WT cells. KO cells exhibit higher phospho-JNK and phospho-c-Jun than WT cells under starvation conditions. However, inhibition of JNK activity in Sirt3 KO cells did not affect LC3-I and LC3-II levels, indicating the Sirt3-regulated autophagy is independent of the JNK pathway. Caspase 3 activation and cell death are significantly higher in Sirt3 KO cells compared to WT cells in response to nutrient deprivation. Inhibition of autophagy by chloroquine, exacerbated cell death in both WT and Sirt3 KO cells, and by 3-methyadenine exacerbated cell death in Sirt3 KO cells. These data suggest that nutrient deprivation-induced autophagy plays a protective role in cell survival, and Sirt3 decreases the requirement for enhanced autophagy and improves cellular bioenergetics. PMID:23767918

  11. AP endonuclease knockdown enhances methyl methanesulfonate hypersensitivity of DNA polymerase β knockout mouse embryonic fibroblasts

    PubMed Central

    Yamamoto, Ryohei; Umetsu, Makio; Yamamoto, Mizuki; Matsuyama, Satoshi; Takenaka, Shigeo; Ide, Hiroshi; Kubo, Kihei

    2015-01-01

    Apurinic/apyrimidinic (AP) endonuclease (Apex) is required for base excision repair (BER), which is the major mechanism of repair for small DNA lesions such as alkylated bases. Apex incises the DNA strand at an AP site to leave 3′-OH and 5′-deoxyribose phosphate (5′-dRp) termini. DNA polymerase β (PolB) plays a dominant role in single nucleotide (Sn-) BER by incorporating a nucleotide and removing 5′-dRp. Methyl methanesulfonate (MMS)-induced damage is repaired by Sn-BER, and thus mouse embryonic fibroblasts (MEFs) deficient in PolB show significantly increased sensitivity to MMS. However, the survival curve for PolB-knockout MEFs (PolBKOs) has a shoulder, and increased sensitivity is only apparent at relatively high MMS concentrations. In this study, we prepared Apex-knockdown/PolB-knockout MEFs (AKDBKOs) to examine whether BER is related to the apparent resistance of PolBKOs at low MMS concentrations. The viability of PolBKOs immediately after MMS treatment was significantly lower than that of wild-type MEFs, but there was essentially no effect of Apex-knockdown on cell viability in the presence or absence of PolB. In contrast, relative counts of MEFs after repair were decreased by Apex knockdown. Parental PolBKOs showed especially high sensitivity at >1.5 mM MMS, suggesting that PolBKOs have another repair mechanism in addition to PolB-dependent Sn-BER, and that the back-up mechanism is unable to repair damage induced by high MMS concentrations. Interestingly, AKDBKOs were hypersensitive to MMS in a relative cell growth assay, suggesting that MMS-induced damage in PolB-knockout MEFs is repaired by Apex-dependent repair mechanisms, presumably including long-patch BER. PMID:25724755

  12. Noggin Over-Expressing Mouse Embryonic Fibroblasts and MS5 Stromal Cells Enhance Directed Differentiation of Dopaminergic Neurons from Human Embryonic Stem Cells

    PubMed Central

    Lim, Mi-Sun; Shin, Min-Seop; Lee, Soo Young; Minn, Yang-Ki; Hoh, Jeong-Kyu; Cho, Youl-Hee; Kim, Dong-Wook; Lee, Sang-Hun; Kim, Chun-Hyung; Park, Chang-Hwan

    2015-01-01

    Directed methods for differentiating human embryonic stem cells (hESCs) into dopaminergic (DA) precursor cells using stromal cells co-culture systems are already well established. However, not all of the hESCs differentiate into DA precursors using these methods. HSF6, H1, H7, and H9 cells differentiate well into DA precursors, but CHA13 and CHA15 cells hardly differentiate. To overcome this problem, we modified the differentiation system to include a co-culturing step that exposes the cells to noggin early in the differentiation process. This was done using γ-irradiated noggin-overexpressing CF1-mouse embryonic fibroblasts (MEF-noggin) and MS5 stromal cells (MS5-noggin and MS5-sonic hedgehog). After directed differentiation, RT-PCR analyses revealed that engrailed-1 (En-1), Lmx1b, and Nurr1, which are midbrain DA markers, were expressed regardless of differentiation stage. Moreover, tyrosine hydroxylase (Th) and an A9 midbrain-specific DA marker (Girk2) were expressed during differentiation, whereas levels of Oct3/4, an undifferentiated marker, decreased. Immunocytochemical analyses revealed that protein levels of the neuronal markers TH and TuJ1 increased during the final differentiation stage. These results demonstrate that early noggin exposure may play a specific role in the directed differentiation of DA cells from human embryonic stem cells. PMID:26383864

  13. Microarray data on altered transcriptional program of Phgdh-deficient mouse embryonic fibroblasts caused by ʟ-serine depletion

    PubMed Central

    Hamano, Momoko; Sayano, Tomoko; Kusada, Wataru; Kato, Hisanori; Furuya, Shigeki

    2016-01-01

    Inherent ʟ-Ser deficiency culminates in intrauterine growth retardation, severe malformation of multiple organs particularly the central nervous system, and perinatal or early postnatal death in human and mouse. To uncover the molecular mechanisms underlying the growth-arrested phenotypes of l-Ser deficiency, we compared gene expression profiles of mouse embryonic fibroblasts deficient in 3-phosphoglycerate dehydrogenase (Phgdh), the first enzyme of de novo ʟ-Ser synthetic pathway, between ʟ-Ser-depleted and -supplemented conditions. The datasets (CEL and CHP files) from this study are publicly available on the Gene Expression Omnibus repository (accession number GEO: GSE55687). PMID:27222860

  14. Microarray data on altered transcriptional program of Phgdh-deficient mouse embryonic fibroblasts caused by ʟ-serine depletion.

    PubMed

    Hamano, Momoko; Sayano, Tomoko; Kusada, Wataru; Kato, Hisanori; Furuya, Shigeki

    2016-06-01

    Inherent ʟ-Ser deficiency culminates in intrauterine growth retardation, severe malformation of multiple organs particularly the central nervous system, and perinatal or early postnatal death in human and mouse. To uncover the molecular mechanisms underlying the growth-arrested phenotypes of l-Ser deficiency, we compared gene expression profiles of mouse embryonic fibroblasts deficient in 3-phosphoglycerate dehydrogenase (Phgdh), the first enzyme of de novo ʟ-Ser synthetic pathway, between ʟ-Ser-depleted and -supplemented conditions. The datasets (CEL and CHP files) from this study are publicly available on the Gene Expression Omnibus repository (accession number GEO: GSE55687). PMID:27222860

  15. Lack of complementation in somatic cell hybrids between fibroblasts from patients with different forms of cystinosis

    SciTech Connect

    Pellett, O.L.; Smith, M.L.; Greene, A.A.; Schneider, J.A. )

    1988-05-01

    Cystinosis is an autosomal recessive disease in which three clinical forms are recognized: infantile nephropathic, with renal tubular damage by 1 year of age and progressive glomerular insufficiency; intermediate, with tubular and glomerular insufficiency beginning at a later age; benign, with no kidney damage. Skin fibroblasts cultured from patients with all types of cystinosis show increased intralysosomal free (nonprotein) cystine; however, fibroblasts from heterozygotes have normal free-cystine values. To determine whether genetic complementation occurs between the different forms, somatic cell hybrids were constructed between cells from a patient with infantile nephropathic cystinosis and cells from patients with other types of cystinosis. If complementation occurred, the hybrids would be expected to have normal cystine levels. To construct hybrid cells, a universal parent cell type (TG1-neo), which was hypoxanthine/aminopterin/thymidine (HAT) sensitive and G418 resistant was constructed from an infantile nephropathic cystinosis fibroblast strain. Polyethylene glycol fusion of TG1-neo with other cells that are not HAT sensitive or G418 resistant allowed for selection of hybrid cells in a medium containing HAT and the aminoglycoside G418. As indicated by elevated cystine levels, complementation did not occur between TG1-neo and two different benign cystinosis strains, an intermediate cystinosis strain, or another nephropathic cystinosis cell strain. When a normal fibroblast strain was fused with TG1-neo, all 15 hybrid clones studied contained normal amounts of intracellular free cystine.

  16. Lack of Rybp in Mouse Embryonic Stem Cells Impairs Cardiac Differentiation.

    PubMed

    Ujhelly, Olga; Szabo, Viktoria; Kovacs, Gergo; Vajda, Flora; Mallok, Sylvia; Prorok, Janos; Acsai, Karoly; Hegedus, Zoltan; Krebs, Stefan; Dinnyes, Andras; Pirity, Melinda Katalin

    2015-09-15

    Ring1 and Yy1 binding protein (Rybp) has been implicated in transcriptional regulation, apoptotic signaling and as a member of the polycomb repressive complex 1, it has an important function in regulating pluripotency and differentiation of embryonic stem cells (ESCs). Earlier, we had proved that Rybp plays an essential role in mouse embryonic and central nervous system development. This work identifies Rybp, as a critical regulator of heart development. Rybp is readily detectable in the developing mouse heart from day 8.5 of embryonic development. Prominent Rybp expression persists during all embryonic stages, and Rybp marks differentiated cell types of the heart. By utilizing rybp null ESCs in an in vitro cardiac differentiation assay, we found that rybp null ESCs do not form rhythmically beating cardiomyocytes (CMCs). Gene expression profiles revealed a downregulation of cardiac terminal and upregulation of germline-specific markers in the rybp null CMCs. Furthermore, transcriptome analysis uncovered a number of novel candidate target genes regulated by Rybp. Among these are several that are important in cardiac development and contractility such as Plagl1, Isl1, and Tnnt2. Importantly, forced expression of rybp in rybp-deficient ESCs by a lentiviral vector was able to rescue the mutant phenotype. Our data provide evidence for a previously unrecognized function of Rybp in heart development and point out the importance of germ cell lineage gene silencing during somatic differentiation. PMID:26110923

  17. Type III interferon gene expression in response to influenza virus infection in chicken and duck embryonic fibroblasts.

    PubMed

    Zhang, Zhijie; Zou, Tingting; Hu, Xiaotong; Jin, Hong

    2015-12-01

    Type III interferons (IFN-λs) comprise a group of newly identified antiviral cytokines that are functionally similar to type I IFNs and elicit first-line antiviral responses. Recently, type III IFNs were identified in several species; however, little information is available about type III IFNs in ducks. We compared the expression of type III IFNs and their receptor in chicken embryonic fibroblasts (CEFs) and duck embryonic fibroblasts (DEFs) in response to influenza virus infection. The results showed that the expression of type III IFNs was upregulated in both DEFs and CEFs following infection with H1N1 influenza virus or treatment with poly (I:C), and expression levels were significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs (IL-28Rα) was also upregulated following infection with H1N1 virus or treatment with poly (I:C) and was significantly higher in CEFs than in DEFs at each time point. The expression of the receptor for type III IFNs occurred from 8 hpi and remained at similar levels until 36 hpi in CEFs, but the expression level was elevated from 36 hpi in DEFs. These findings revealed the existence of distinct expression patterns for type III IFNs in chickens and ducks in response to influenza virus infection. The provided data are fundamentally useful in furthering our understanding of type III IFNs and innate antiviral responses in different species. PMID:26598110

  18. Epidermolysis bullosa and embryonic lethality in mice lacking the multi-PDZ domain protein GRIP1

    PubMed Central

    Bladt, Friedhelm; Tafuri, Anna; Gelkop, Sigal; Langille, Lowell; Pawson, Tony

    2002-01-01

    Glutamate receptor-interacting protein 1 (GRIP1) is an adaptor protein composed of seven PDZ (postsynaptic density-95/Discs large/zona occludens-1) domains, capable of mediating diverse protein–protein interactions. GRIP1 has been implicated in the regulation of neuronal synaptic function, but its physiologic roles have not been defined in vivo. We find that elimination of murine GRIP1 results in embryonic lethality. GRIP1−/− embryos develop abnormalities of the dermo-epidermal junction, resulting in extensive skin blistering around day 12 of embryonic life. Ultra-structural characterization of the blisters (or bullae) revealed cleavage of the dermo-epidermal junction below the lamina densa, an alteration reminiscent of the dystrophic form of human epidermolysis bullosa. Blisters were also observed in the lateral ventricle of the brain and in the meninges covering the cerebral cortex. These genetic data suggest that the GRIP1 scaffolding protein is required for the formation and integrity of the dermo-epidermal junction and reveal the importance of PDZ domains in the organization of supramolecular structures essential for mammalian embryonic development. PMID:11983858

  19. Effect of a feeder layer composed of mouse embryonic and human foreskin fibroblasts on the proliferation of human embryonic stem cells

    PubMed Central

    YANG, HUA; QIU, YING; ZENG, XIANGHUI; DING, YAN; ZENG, JIANYE; LU, KEHUAN; LI, DONGSHENG

    2016-01-01

    The aim of the present study was to investigate the effects of feeder layers composed of various ratios of mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (hFFs) on the growth of human embryonic stem cells (hESCs). In addition, the secretion levels of basic fibroblast growth factor (bFGF) by the feeder layers was detected. MEFs and hFFs were treated with mitomycin C and seeded onto gelatin-coated plates at a density of 1×108 cells/l. The hFFs and MEFs were combined and plated at the following ratios: 0:1, 1:2, 1:1, 2:1 and 1:0. The secretion of bFGF by the various hFF/MEF ratio feeder layers was detected using an enzyme-linked immunosorbent assay. Subsequently, hESCs were cultured on top of the various feeder layers. The differences in the cellular morphology of the hESCs were observed using microscopy, and the expression levels alkaline phosphatase (AKP) and octamer-binding transcription factor 4 (OCT-4) were detected using immunohistochemical analysis as indicators of differentiation status. The results showed that the hFFs secreted substantial quantities of bFGF, while no bFGF was secreted by the MEFs. The clones of hESC growing on the feeder layer containing MEF or hFF alone were flat. By contrast, hESC clones grown on a mixed feeder layer containing hFFs + MEFs at a ratio of 1:1 exhibited an accumulated growth with a clear edge, as compared with the other ratios. In addition, hESCs growing on the feeder layer were positive for the expression of AKP and OCT-4. In summary, feeder layer hFFs secreted bFGF, while MEFs did not, indicating that bFGF is not the only factor that supports the growth and differentiation of hESCs. The optimal growth of hESCs was achieved using a mixed feeder layer composed of hFFs + MEFs at a ratio of 1:1. PMID:27313670

  20. Whole transcriptome data analysis of mouse embryonic hematopoietic stem and progenitor cells that lack Geminin expression.

    PubMed

    L Patmanidi, Alexandra; Kanellakis, Nikolaos I; Karamitros, Dimitris; Papadimitriou, Christos; Lygerou, Zoi; Taraviras, Stavros

    2016-06-01

    We performed cDNA microarrays (Affymetrix Mouse Gene 1.0 ST Chip) to analyze the transcriptome of hematopoietic stem and progenitor cells (HSPCs) from E15.5dpc wild type and Geminin (Gmnn) knockout embryos. Lineage negative cells from embryonic livers were isolated using fluorescence activated cell sorting. RNA samples were used to examine the transcriptional programs regulated by Geminin during embryonic hematopoiesis. The data sets were analyzed using the GeneSpring v12.5 platform (Agilent). The list of differentially expressed genes was filtered in meta-analyses to investigate the molecular basis of the phenotype observed in the knockout embryos, which exhibited defective hematopoiesis and death. The data from this study are related to the research article "Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors" (Karamitros et al., 2015) [1]. The microarray dataset has been deposited at the Gene Expression Omnibus (GEO) under accession GEO: GSE53056. PMID:27077091

  1. Murine Embryonic Fibroblast Cell Lines Differentiate into Three Mesenchymal Lineages to Different Extents: New Models to Investigate Differentiation Processes

    PubMed Central

    Dastagir, Khaled; Lazaridis, Andrea; Jahn, Sabrina; Maurer, Viktor; Strauß, Sarah; Dastagir, Nadjib; Radtke, Christine; Kampmann, Andreas; Bucan, Vesna; Vogt, Peter M.

    2014-01-01

    Abstract Various diseases, injuries, and congenital abnormalities may result in degeneration and loss of organs and tissues. Recently, tissue engineering has offered new treatment options for these common, severe, and costly problems in human health care. Its application is often based on the usage of differentiated stem cells. However, despite intensive research and growing knowledge, many questions remain unresolved in the process of cell differentiation. The aim of this study was to find standardized cell models for analyzing molecular mechanisms of cell differentiation. We investigated the multipotency of three standardized murine embryonic fibroblast cell cultures using histological staining, western blotting, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Our results demonstrated that NIH-3T3 and mouse embryonic fibroblast (MEF) cells were able to differentiate into adipogenic, chondrogenic, and osteogenic lineages expressing typical differentiation markers. Interestingly, Flp-In-3T3 cells did not differentiate into any of the three mesenchymal lineages, although this cell line is genetically closely related to NIH-3T3. The results were confirmed by histological staining. Flp-In-3T3, NIH-3T3, and MEF cells have usually been used for DNA transfections, recombinant protein expression, and as “feeder cells.” Unlike mesenchymal stem cells (MSCs) and mesenchymal progenitor cells (MPCs), they are easy to obtain and to expand and are less prone to change their structure and morphology, even at higher passages. Our results suggest that Flp-In-3T3, MEF, and NIH-3T3 cells are highly suitable to be used as models to analyze molecular mechanisms of cell differentiation. PMID:25068630

  2. The piggyBac Transposon-Mediated Expression of SV40 T Antigen Efficiently Immortalizes Mouse Embryonic Fibroblasts (MEFs)

    PubMed Central

    Cui, Jing; Zhang, Hongmei; Chen, Xiang; Li, Ruidong; Wu, Ningning; Chen, Xian; Wen, Sheng; Zhang, Junhui; Yin, Liangjun; Deng, Fang; Liao, Zhan; Zhang, Zhonglin; Zhang, Qian; Yan, Zhengjian; Liu, Wei; Ye, Jixing; Deng, Youlin; Wang, Zhongliang; Qiao, Min; Luu, Hue H.; Haydon, Rex C.; Shi, Lewis L.; Liang, Houjie; He, Tong-Chuan

    2014-01-01

    Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs’ basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies. PMID:24845466

  3. Murine embryonic fibroblast cell lines differentiate into three mesenchymal lineages to different extents: new models to investigate differentiation processes.

    PubMed

    Dastagir, Khaled; Reimers, Kerstin; Lazaridis, Andrea; Jahn, Sabrina; Maurer, Viktor; Strauß, Sarah; Dastagir, Nadjib; Radtke, Christine; Kampmann, Andreas; Bucan, Vesna; Vogt, Peter M

    2014-08-01

    Various diseases, injuries, and congenital abnormalities may result in degeneration and loss of organs and tissues. Recently, tissue engineering has offered new treatment options for these common, severe, and costly problems in human health care. Its application is often based on the usage of differentiated stem cells. However, despite intensive research and growing knowledge, many questions remain unresolved in the process of cell differentiation. The aim of this study was to find standardized cell models for analyzing molecular mechanisms of cell differentiation. We investigated the multipotency of three standardized murine embryonic fibroblast cell cultures using histological staining, western blotting, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Our results demonstrated that NIH-3T3 and mouse embryonic fibroblast (MEF) cells were able to differentiate into adipogenic, chondrogenic, and osteogenic lineages expressing typical differentiation markers. Interestingly, Flp-In-3T3 cells did not differentiate into any of the three mesenchymal lineages, although this cell line is genetically closely related to NIH-3T3. The results were confirmed by histological staining. Flp-In-3T3, NIH-3T3, and MEF cells have usually been used for DNA transfections, recombinant protein expression, and as "feeder cells." Unlike mesenchymal stem cells (MSCs) and mesenchymal progenitor cells (MPCs), they are easy to obtain and to expand and are less prone to change their structure and morphology, even at higher passages. Our results suggest that Flp-In-3T3, MEF, and NIH-3T3 cells are highly suitable to be used as models to analyze molecular mechanisms of cell differentiation. PMID:25068630

  4. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment

    PubMed Central

    Sekinaka, Tamotsu; Hayashi, Yohei; Noce, Toshiaki; Niwa, Hitoshi; Matsui, Yasuhisa

    2016-01-01

    Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs. PMID:27608931

  5. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment.

    PubMed

    Sekinaka, Tamotsu; Hayashi, Yohei; Noce, Toshiaki; Niwa, Hitoshi; Matsui, Yasuhisa

    2016-01-01

    Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs. PMID:27608931

  6. Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts

    PubMed Central

    Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W

    2011-01-01

    Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's

  7. Gene profiling of embryonic skeletal muscle lacking type I ryanodine receptor Ca(2+) release channel.

    PubMed

    Filipova, Dilyana; Walter, Anna M; Gaspar, John A; Brunn, Anna; Linde, Nina F; Ardestani, Mostafa A; Deckert, Martina; Hescheler, Jürgen; Pfitzer, Gabriele; Sachinidis, Agapios; Papadopoulos, Symeon

    2016-01-01

    In mature skeletal muscle, the intracellular Ca(2+) concentration rises dramatically upon membrane depolarization, constituting the link between excitation and contraction. This process requires Ca(2+) release from the sarcoplasmic reticulum via the type 1 ryanodine receptor (RYR1). However, RYR1's potential roles in muscle development remain obscure. We used an established RyR1- null mouse model, dyspedic, to investigate the effects of the absence of a functional RYR1 and, consequently, the lack of RyR1-mediated Ca(2+) signaling, during embryogenesis. Homozygous dyspedic mice die after birth and display small limbs and abnormal skeletal muscle organization. Skeletal muscles from front and hind limbs of dyspedic fetuses (day E18.5) were subjected to microarray analyses, revealing 318 differentially expressed genes. We observed altered expression of multiple transcription factors and members of key signaling pathways. Differential regulation was also observed for genes encoding contractile as well as muscle-specific structural proteins. Additional qRT-PCR analysis revealed altered mRNA levels of the canonical muscle regulatory factors Six1, Six4, Pax7, MyoD, MyoG and MRF4 in mutant muscle, which is in line with the severe developmental retardation seen in dyspedic muscle histology analyses. Taken together, these findings suggest an important non-contractile role of RyR1 or RYR1-mediated Ca(2+) signaling during muscle organ development. PMID:26831464

  8. Gene profiling of embryonic skeletal muscle lacking type I ryanodine receptor Ca2+ release channel

    PubMed Central

    Filipova, Dilyana; Walter, Anna M.; Gaspar, John A.; Brunn, Anna; Linde, Nina F.; Ardestani, Mostafa A.; Deckert, Martina; Hescheler, Jürgen; Pfitzer, Gabriele; Sachinidis, Agapios; Papadopoulos, Symeon

    2016-01-01

    In mature skeletal muscle, the intracellular Ca2+ concentration rises dramatically upon membrane depolarization, constituting the link between excitation and contraction. This process requires Ca2+ release from the sarcoplasmic reticulum via the type 1 ryanodine receptor (RYR1). However, RYR1’s potential roles in muscle development remain obscure. We used an established RyR1- null mouse model, dyspedic, to investigate the effects of the absence of a functional RYR1 and, consequently, the lack of RyR1-mediated Ca2+ signaling, during embryogenesis. Homozygous dyspedic mice die after birth and display small limbs and abnormal skeletal muscle organization. Skeletal muscles from front and hind limbs of dyspedic fetuses (day E18.5) were subjected to microarray analyses, revealing 318 differentially expressed genes. We observed altered expression of multiple transcription factors and members of key signaling pathways. Differential regulation was also observed for genes encoding contractile as well as muscle-specific structural proteins. Additional qRT-PCR analysis revealed altered mRNA levels of the canonical muscle regulatory factors Six1, Six4, Pax7, MyoD, MyoG and MRF4 in mutant muscle, which is in line with the severe developmental retardation seen in dyspedic muscle histology analyses. Taken together, these findings suggest an important non-contractile role of RyR1 or RYR1-mediated Ca2+ signaling during muscle organ development. PMID:26831464

  9. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity

    PubMed Central

    Zhu, Huiping; Cabrera, Robert M; Wlodarczyk, Bogdan J; Bozinov, Daniel; Wang, Deli; Schwartz, Robert J; Finnell, Richard H

    2007-01-01

    redox status, which may contribute to cardiovascular abnormalities in mouse embryos lacking Folr1 gene activity. PMID:18028541

  10. Induction of anchorage-independent growth of human embryonic fibroblasts with a deletion in the short arm of chromosome 11 by human papillomavirus type 16 DNA

    SciTech Connect

    Smits, H.L.; Raadsheer, E.; Rood, I.; Mehendale, S.; Slater, R.M.; van der Noordaa, J.; Ter Schegget, J.

    1988-12-01

    Human embryonic fibroblasts with a large deletion (11p11.11p15.1) in the short arm of one chromosome 11 (del-11 cells) appeared to be susceptible to transformation by early human papillomavirus type 16 (HPV-16) DNA, whereas diploid human embryonic fibroblasts were not. This difference in susceptibility might be explained by the absence of a tumor suppressor gene located within the deleted part on the short arm of chromosome 11. The presence of abundant viral early-gene transcripts in transformed cells suggests that transformation was induced by an elevated level of an HPV-16 early-gene product(s). The low transcriptional activity of HPV-16 in diploid cells may indicate that cellular genes affect viral transcription. Interruption of the HPV-16 E2 early open reading frame is probably required for high-level HPV-16 early-gene expression driven from the homologous enhancer-promoter region.

  11. Genomewide approaches for BACH1 target genes in mouse embryonic fibroblasts showed BACH1-Pparg pathway in adipogenesis.

    PubMed

    Matsumoto, Mitsuyo; Kondo, Keiichi; Shiraki, Takuma; Brydun, Andrey; Funayama, Ryo; Nakayama, Keiko; Yaegashi, Nobuo; Katagiri, Hideki; Igarashi, Kazuhiko

    2016-06-01

    The transcription repressor BTB and CNC homology 1 (BACH1) represses genes involved in heme metabolism and oxidative stress response. BACH1 also suppresses the p53-dependent cellar senescence in primary mouse embryonic fibroblasts (MEFs). To investigate the role of BACH1 in MEF other than its known functions, we carried out a genomewide mapping of binding site for BACH1 and its heterodimer partner MAFK in immortalized MEFs (iMEFs) using chromatin immunoprecipitation and next-generation sequencing technology (ChIP-sequence). The comparative analysis of the ChIP-sequence data and DNA microarray data from Bach1-deficient and wild-type (WT) iMEF showed 35 novel candidate target genes of BACH1. Among these genes, five genes (Pparg, Nfia, Ptplad2, Adcy1 and Ror1) were related with lipid metabolism. Bach1-deficient iMEFs showed increased expression of mRNA and protein of PPARγ, which is the key factor of adipogenesis. These cells also showed a concomitant increase in ligand-dependent activation of PPARγ target genes compared with wild-type iMEFs. Moreover, Bach1-deficient iMEFs efficiently differentiated to adipocyte compared with wild-type cells in the presence of PPARγ ligands. Our results suggest that BACH1 regulates expression of adipocyte-related genes including Pparg and potentiates adipocyte differentiation capacity. PMID:27030212

  12. Metabolism of 6-nitrobenzo(a)pyrene by hamster embryonic fibroblasts and its interaction with nuclear macromolecules

    SciTech Connect

    Tong, S.; Selkirk, J.K.

    1983-01-01

    Incubation of 6-nitrobenzo(a)pyrene (6-nitroBaP) with hamster embryonic fibroblasts led to formation of both organic solvent-soluble and water-soluble products. High-pressure liquid chromatographic analysis of organic solvent-soluble extracellular metabolites showed the predominant presence of dihydrodiols, with only small amounts of phenolic products. This differed from microsomal metabolism, using hepatic preparations from 3-methylcholanthrene-pretreated rats, where a major phenolic peak was obtained. Subsequent treatment of aqueous layer with ..beta..-glucuronidase, however, revealed that most of the phenols were associated with glucuronic acid to form water-soluble products. Interaction of 6-nitroBaP with nuclear macromolecules from HEF was also studied. The chemical interacted with both DNA and RNA, but the specific activity was highest with nuclear proteins. This binding profile was found to be similar to that when benzo(a)pyrene was used, although the affinity toward protein binding was slightly higher for 6-nitroBaP. 23 references, 6 figures, 2 tables.

  13. Impurity of stem cell graft by murine embryonic fibroblasts - implications for cell-based therapy of the central nervous system.

    PubMed

    Molcanyi, Marek; Mehrjardi, Narges Zare; Schäfer, Ute; Haj-Yasein, Nadia Nabil; Brockmann, Michael; Penner, Marina; Riess, Peter; Reinshagen, Clemens; Rieger, Bernhard; Hannes, Tobias; Hescheler, Jürgen; Bosche, Bert

    2014-01-01

    Stem cells have been demonstrated to possess a therapeutic potential in experimental models of various central nervous system disorders, including stroke. The types of implanted cells appear to play a crucial role. Previously, groups of the stem cell network NRW implemented a feeder-based cell line within the scope of their projects, examining the implantation of stem cells after ischemic stroke and traumatic brain injury. Retrospective evaluation indicated the presence of spindle-shaped cells in several grafts implanted in injured animals, which indicated potential contamination by co-cultured feeder cells (murine embryonic fibroblasts - MEFs). Because feeder-based cell lines have been previously exposed to a justified criticism with regard to contamination by animal glycans, we aimed to evaluate the effects of stem cell/MEF co-transplantation. MEFs accounted for 5.3 ± 2.8% of all cells in the primary FACS-evaluated co-culture. Depending on the culture conditions and subsequent purification procedure, the MEF-fraction ranged from 0.9 to 9.9% of the cell suspensions in vitro. MEF survival and related formation of extracellular substances in vivo were observed after implantation into the uninjured rat brain. Impurity of the stem cell graft by MEFs interferes with translational strategies, which represents a threat to the potential recipient and may affect the graft microenvironment. The implications of these findings are critically discussed. PMID:25249934

  14. Low-Level Laser Therapy Activates NF-kB via Generation of Reactive Oxygen Species in Mouse Embryonic Fibroblasts

    PubMed Central

    Huang, Ying-Ying; Tomkinson, Elizabeth M.; Sharma, Sulbha K.; Kharkwal, Gitika B.; Saleem, Taimur; Mooney, David; Yull, Fiona E.; Blackwell, Timothy S.; Hamblin, Michael R.

    2011-01-01

    Background Despite over forty years of investigation on low-level light therapy (LLLT), the fundamental mechanisms underlying photobiomodulation at a cellular level remain unclear. Methodology/Principal Findings In this study, we isolated murine embryonic fibroblasts (MEF) from transgenic NF-kB luciferase reporter mice and studied their response to 810 nm laser radiation. Significant activation of NF-kB was observed at fluences higher than 0.003 J/cm2 and was confirmed by Western blot analysis. NF-kB was activated earlier (1 hour) by LLLT compared to conventional lipopolysaccharide treatment. We also observed that LLLT induced intracellular reactive oxygen species (ROS) production similar to mitochondrial inhibitors, such as antimycin A, rotenone and paraquat. Furthermore, we observed similar NF-kB activation with these mitochondrial inhibitors. These results, together with inhibition of laser induced NF-kB activation by antioxidants, suggests that ROS play an important role in the laser induced NF-kB signaling pathways. However, LLLT, unlike mitochondrial inhibitors, induced increased cellular ATP levels, which indicates that LLLT also upregulates mitochondrial respiration. Conclusion We conclude that LLLT not only enhances mitochondrial respiration, but also activates the redox-sensitive NFkB signaling via generation of ROS. Expression of anti-apoptosis and pro-survival genes responsive to NFkB could explain many clinical effects of LLLT. PMID:21814580

  15. Prolyl isomerase Pin1 regulated signaling pathway revealed by Pin1 +/+ and Pin1 -/- mouse embryonic fibroblast cells.

    PubMed

    Huang, Guo-Liang; Qiu, Jin-Hua; Li, Bin-Bin; Wu, Jing-Jing; Lu, Yan; Liu, Xing-Yan; He, Zhiwei

    2013-10-01

    Pin1 (peptidylprolyl cis/trans isomerase, NIMA-interacting 1) plays a key role in a number of diseases including cancer and Alzheimer disease. Previous studies have identified a wide range of phosphoproteins as Pin1 substrates. Related pathways were analyzed separately. The aim of this study was to provide a comprehensive picture involving Pin1 regulation. A genome-wide mRNA expression microarray was carried out using the RNA isolation from Pin1 (+/+) and Pin1 (-/-) mouse embryonic fibroblast (MEF) cells. Signaling pathways regulated by Pin1 were analyzed with the utility of KEGG pathway and GO annotation. An expression pattern regulated by Pin1 was revealed. A total of 606 genes, 375 being up-regulated and 231 down-regulated, were differentially expressed when comparing Pin1 +/+ to Pin1 -/- MEF cells. Totally 48 pathways were shown to be regulated by Pin1 expression in KEGG pathway analysis. In the GO annotation system, 19 processes on biological processes, 15 processes on cellular components, and 18 processes on molecular functions were found to be in the regulation of Pin1 expression. Pathways related to immune system and cancer showed most significant association with Pin1 regulation. Pin1 is an important regulator in a wide range of signaling pathways that were related to immune system and cancer. PMID:23563987

  16. Fibronectin fibrillogenesis facilitates mechano-dependent cell spreading, force generation, and nuclear size in human embryonic fibroblasts.

    PubMed

    Scott, Lewis E; Mair, Devin B; Narang, Jiten D; Feleke, Kirubel; Lemmon, Christopher A

    2015-11-01

    Cells respond to mechanical cues from the substrate to which they are attached. These mechanical cues drive cell migration, proliferation, differentiation, and survival. Previous studies have highlighted three specific mechanisms through which substrate stiffness directly alters cell function: increasing stiffness drives (1) larger contractile forces; (2) increased cell spreading and size; and (3) altered nuclear deformation. While studies have shown that substrate mechanics are an important cue, the role of the extracellular matrix (ECM) has largely been ignored. The ECM is a crucial component of the mechanosensing system for two reasons: (1) many ECM fibrils are assembled by application of cell-generated forces, and (2) ECM proteins have unique mechanical properties that will undoubtedly alter the local stiffness sensed by a cell. We specifically focused on the role of the ECM protein fibronectin (FN), which plays a critical role in de novo tissue production. In this study, we first measured the effects of substrate stiffness on human embryonic fibroblasts by plating cells onto microfabricated pillar arrays (MPAs) of varying stiffness. Cells responded to increasing substrate stiffness by generating larger forces, spreading to larger sizes, and altering nuclear geometry. These cells also assembled FN fibrils across all stiffnesses, with optimal assembly occurring at approximately 6 kPa. We then inhibited FN assembly, which resulted in dramatic reductions in contractile force generation, cell spreading, and nuclear geometry across all stiffnesses. These findings suggest that FN fibrils play a critical role in facilitating cellular responses to substrate stiffness. PMID:26412391

  17. Skp2 promotes adipocyte differentiation via a p27{sup Kip1}-independent mechanism in primary mouse embryonic fibroblasts

    SciTech Connect

    Okada, Mitsuru; Sakai, Tamon; Nakamura, Takehiro; Tamamori-Adachi, Mimi; Kitajima, Shigetaka; Matsuki, Yasushi; Watanabe, Eijiro; Hiramatsu, Ryuji; Sakaue, Hiroshi Kasuga, Masato

    2009-02-06

    Skp2, the substrate-binding subunit of an SCF ubiquitin ligase complex, is a key regulator of cell cycle progression that targets substrates for degradation by the 26S proteasome. We have now shown that ablation of Skp2 in primary mouse embryonic fibroblasts (MEFs) results both in impairment of adipocyte differentiation and in the accumulation of the cyclin-dependent kinase inhibitor p27{sup Kip1}, a principal target of the SCF{sup Skp2} complex. Genetic ablation of p27{sup Kip1} in MEFs promoted both lipid accumulation and adipocyte-specific gene expression. However, depletion of p27{sup Kip1} by adenovirus-mediated RNA interference failed to correct the impairment of adipocyte differentiation in Skp2{sup -/-} MEFs. In contrast, troglitazone, a high-affinity ligand for peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), largely restored lipid accumulation and PPAR{gamma} gene expression in Skp2{sup -/-} MEFs. Our data suggest that Skp2 plays an essential role in adipogenesis in MEFs in a manner that is at least in part independent of regulation of p27{sup Kip1} expression.

  18. Validation of a commercially available anti-REDD1 antibody using RNA interference and REDD1-/- mouse embryonic fibroblasts

    PubMed Central

    Grainger, Deborah L.; Kutzler, Lydia; Rannels, Sharon L.; Kimball, Scot R.

    2016-01-01

    REDD1 is a transcriptional target gene of p53 and HIF-1, and an inhibitor of mTOR (mechanistic target of rapamycin) complex 1 (mTORC1)-signaling through PP2A-dependent interaction, making it an important convergence point of both tumor suppression and cell growth pathways. In accordance with this positioning, REDD1 levels are transcriptionally upregulated in response to a variety of cellular stress factors such as nutrient deprivation, hypoxia and DNA damage. In the absence of such conditions, and in particular where growth factor signaling is activated, REDD1 expression is typically negligible; therefore, it is necessary to induce REDD1 prior to experimentation or detection in model systems. Here, we evaluated the performance of a commercially available polyclonal antibody recognizing REDD1 by Western blotting in the presence of thapsigargin, a pharmacological inducer of ER stress well known to upregulate REDD1 protein expression. Further, REDD1 antibody specificity was challenged in HEK-293 cells in the presence of RNA interference and with a REDD1 -/- mouse embryonic fibroblast knockout cell line. Results showed reproducibility and specificity of the antibody, which was upheld in the presence of thapsigargin treatment. We conclude that this antibody can be used to reliably detect REDD1 endogenous expression in samples of both human and mouse origin. PMID:27335637

  19. Quantitative Proteomic Analysis of Mouse Embryonic Fibroblasts and Induced Pluripotent Stem Cells Using 16O /18O labeling

    SciTech Connect

    Huang, Xin; Tian, Changhai; Liu, Miao; Wang, Yongxiang; Tolmachev, Aleksey V.; Sharma, Seema; Yu, Fang; Fu, Kai; Zheng, Jialin; Ding, Shi-Jian

    2012-04-06

    Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using this platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.

  20. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  1. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski

    PubMed Central

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J

    2011-01-01

    Ski is a transcriptional regulator that has been considered an oncoprotein, given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski−/− mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chromatin/chromosome bridges as the major cause of micronuclei formation and the subsequent aneuploidy. Although these cells arrested in mitosis after treatment with spindle disrupting drugs and exhibited a delayed metaphase/anaphase transition, Spindle Assembly Checkpoint (SAC) was not sufficient to prevent chromosome missegregation, consistent with a weakened SAC. Our in vivo analysis also showed dynamic metaphase plate rearrangements with switches in polarity in cells arrested in metaphase. Importantly, after ectopic expression of Ski the cells that displayed this metaphase arrest died directly during metaphase or after aberrant cell division, relating SAC activation and mitotic cell death. This increased susceptibility to undergo mitosis-associated cell death reduced the number of micronuclei-containing cells. The presented data support a new role for Ski in the mitotic process and in maintenance of genetic stability, providing insights into the mechanism of tumor suppression mediated by this protein. PMID:21412778

  2. Mouse embryonic fibroblasts accumulate differentially on titanium surfaces treated with nanosecond laser pulses.

    PubMed

    Radmanesh, Mitra; Ektesabi, Amin M; Wyatt, Rachael A; Crawford, Bryan D; Kiani, Amirkianoosh

    2016-01-01

    Biomaterial engineering, specifically in bone implant and osseointegration, is currently facing a critical challenge regarding the response of cells to foreign objects and general biocompatibility of the materials used in the production of these implants. Using the developing technology of the laser surface treatment, this study investigates the effects of the laser repetition rate (frequency) on cell distribution across the surface of the titanium substrates. The main objective of this research is building a fundamental understanding of how cells interact with treated titanium and how different treatments affect cell accumulation. Cells respond differently to surfaces treated with different frequency lasers. The results of this research identify the influence of frequency on surface topography properties and oxidation of titanium, and their subsequent effects on the pattern of cell accumulation on its surface. Despite increased oxidation in laser-treated regions, the authors observe that fibroblast cells prefer untreated titanium to laser-treated regions, except the regions treated with 25 kHz pulses, which become preferentially colonized after 72 h. PMID:27581527

  3. Proteasome-mediated degradation of integral inner nuclear membrane protein emerin in fibroblasts lacking A-type lamins

    SciTech Connect

    Muchir, Antoine; Massart, Catherine; Engelen, Baziel G. van; Lammens, Martin; Bonne, Gisele; Worman, Howard J. . E-mail: hjw14@columbia.edu

    2006-12-29

    We previously identified and characterized a homozygous LMNA nonsense mutation leading to the absence of A-type lamins in a premature neonate who died at birth. We show here that the absence of A-type lamins is due to degradation of the aberrant mRNA transcript with a premature termination codon. In cultured fibroblasts from the subject with the homozygous LMNA nonsense mutation, there was a decreased steady-state expression of the integral inner nuclear membrane proteins emerin and nesprin-1{alpha} associated with their mislocalization to the bulk endoplasmic reticulum and a hyperphosphorylation of emerin. To determine if decreased emerin expression occurred post-translationally, we treated cells with a selective proteasome inhibitor and observed an increase in expression. Our results show that mislocalization of integral inner nuclear membrane proteins to the endoplasmic reticulum in human cells lacking A-type lamins leads to their degradation and provides the first evidence that their degradation is mediated by the proteasome.

  4. In vivo synaptic scaling is mediated by GluA2-lacking AMPA receptors in the embryonic spinal cord

    PubMed Central

    Garcia-Bereguiain, Miguel Angel; Gonzalez-Islas, Carlos; Lindsly, Casie; Butler, Ellie; Hill, Atlantis Wilkins; Wenner, Peter

    2013-01-01

    When spiking activity within a network is perturbed for hours to days, compensatory changes in synaptic strength are triggered that are thought to be important for the homeostatic maintenance of network or cellular spiking activity. In one form of this homeostatic plasticity, called synaptic scaling, all of a cell’s AMPAergic miniature postsynaptic currents (mEPSCs) are increased or decreased by some scaling factor. While synaptic scaling has been observed in a variety of systems, the mechanisms that underlie AMPAergic scaling have been controversial. Certain studies find that synaptic scaling is mediated by GluA2-lacking calcium permeable receptors (CP-AMPARs), while others have found that scaling is mediated by GluA2-containing calcium impermeable receptors (CI-AMPARs). Spontaneous network activity is observed in most developing circuits, and in the spinal cord this activity drives embryonic movements. Blocking spontaneous network activity in the chick embryo by infusing lidocaine in vivo triggers synaptic scaling in spinal motoneurons; here we show that AMPAergic scaling occurs through increases in mEPSC conductance that appear to be mediated by the insertion of GluA2-lacking AMPA receptors at the expense of GluA2-containing receptors. We have previously reported that in vivo blockade of GABAA transmission, at a developmental stage when GABA is excitatory, also triggered AMPAergic synaptic scaling. Here, we show that this form of AMPAergic scaling is also mediated by CP-AMPARs. These findings suggest that AMPAergic scaling triggered by blocking spiking activity or GABAA receptor transmission represent similar phenomenon, supporting the idea that activity-blockade triggers scaling by reducing GABAA transmission. PMID:23595738

  5. Gsta4 Null Mouse Embryonic Fibroblasts Exhibit Enhanced Sensitivity to Oxidants: Role of 4-Hydroxynonenal in Oxidant Toxicity*

    PubMed Central

    McElhanon, Kevin E.; Bose, Chhanda; Sharma, Rajendra; Wu, Liping; Awasthi, Yogesh C.; Singh, Sharda P.

    2013-01-01

    The alpha class glutathione s-transferase (GST) isozyme GSTA4–4 (EC2.5.1.18) exhibits high catalytic efficiency to-wards 4-hydroxynon-2-enal (4-HNE), a major end product of oxidative stress induced lipid peroxidation. Exposure of cells and tissues to heat, radiation, and chemicals has been shown to induce oxidative stress resulting in elevated concentrations of 4-HNE that can be detrimental to cell survival. Alternatively, at physiological levels 4-HNE acts as a signaling molecule conveying the occurrence of oxidative events initiating the activation of adaptive pathways. To examine the impact of oxidative/electrophilic stress in a model with impaired 4-HNE metabolizing capability, we disrupted the Gsta4 gene that encodes GSTA4–4 in mice. The effect of electrophile and oxidants on embryonic fibroblasts (MEF) isolated from wild type (WT) and Gsta4 null mice were examined. Results indicate that in the absence of GSTA4–4, oxidant-induced toxicity is potentiated and correlates with elevated accumulation of 4-HNE adducts and DNA damage. Treatment of Gsta4 null MEF with 1,1,4-tris(acetyloxy)-2(E)-nonene [4-HNE(Ac)3], a pro-drug form of 4-HNE, resulted in the activation and phosphorylation of the c-jun-N-terminal kinase (JNK), extracellular-signal-regulated kinases (ERK 1/2) and p38 mitogen activated protein kinases (p38 MAPK) accompanied by enhanced cleavage of caspase-3. Interestingly, when recombinant mammalian or invertebrate GSTs were delivered to Gsta4 null MEF, activation of stress-related kinases in 4-HNE(Ac)3 treated Gsta4 null MEF were inversely correlated with the catalytic efficiency of delivered GSTs towards 4-HNE. Our data suggest that GSTA4–4 plays a major role in protecting cells from the toxic effects of oxidant chemicals by attenuating the accumulation of 4-HNE. PMID:24353929

  6. Low level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, Aaron Chih-Hao; Arany, Praveen R.; Huang, Ying-Ying; Tomkinson, Elizabeth M.; Saleem, Taimur; Yull, Fiona E.; Blackwell, Timothy S.; Hamblin, Michael R.

    2009-02-01

    Despite over forty years of investigation on low-level light therapy (LLLT), the fundamental mechanisms underlying photobiomodulation remain unclear. In this study, we isolated murine embryonic fibroblasts (MEF) from transgenic NF-kB luciferase reporter mice and studied their response to 810-nm laser radiation. Significant activation of NFkB was observed for fluences higher than 0.003 J/cm2. NF-kB activation by laser was detectable at 1-hour time point. Moreover, we demonstrated that laser phosphorylated both IKK α/β and NF-kB 15 minutes after irradiation, which implied that laser activates NF-kB via phosphorylation of IKK α/β. Suspecting mitochondria as the source of NF-kB activation signaling pathway, we demonstrated that laser increased both intracellular reactive oxygen species (ROS) by fluorescence microscopy with dichlorodihydrofluorescein and ATP synthesis by luciferase assay. Mitochondrial inhibitors, such as antimycin A, rotenone and paraquat increased ROS and NF-kB activation but had no effect on ATP. The ROS quenchers N-acetyl-L-cysteine and ascorbic acid abrogated laser-induced NF-kB and ROS but not ATP. These results suggested that ROS might play an important role in the signaling pathway of laser induced NF-kB activation. However, the western blot showed that antimycin A, a mitochondrial inhibitor, did not activate NF-kB via serine phosphorylation of IKK α/β as the laser did. On the other hand, LLLT, unlike mitochondrial inhibitors, induced increased cellular ATP levels, which indicates that light also upregulates mitochondrial respiration. ATP upregulation reached a maximum at 0.3 J/cm2 or higher. We conclude that LLLT not only enhances mitochondrial respiration, but also activates the redox-sensitive transcription factor NF-kB by generating ROS as signaling molecules.

  7. Variation in antagonism of the interferon response to rotavirus NSP1 results in differential infectivity in mouse embryonic fibroblasts.

    PubMed

    Feng, N; Sen, A; Nguyen, H; Vo, P; Hoshino, Y; Deal, E M; Greenberg, H B

    2009-07-01

    Rotavirus NSP1 has been shown to function as an E3 ubiquitin ligase that mediates proteasome-dependent degradation of interferon (IFN) regulatory factors (IRF), including IRF3, -5, and -7, and suppresses the cellular type I IFN response. However, the effect of rotavirus NSP1 on viral replication is not well defined. Prior studies used genetic analysis of selected reassortants to link NSP1 with host range restriction in the mouse, suggesting that homologous and heterologous rotaviruses might use their different abilities to antagonize the IFN response as the basis of their host tropisms. Using a mouse embryonic fibroblast (MEF) model, we demonstrate that heterologous bovine (UK and NCDV) and porcine (OSU) rotaviruses fail to effectively degrade cellular IRF3, resulting in IRF3 activation and beta IFN (IFN-beta) secretion. As a consequence of this failure, replication of these viruses is severely restricted in IFN-competent wild-type, but not in IFN-deficient (IFN-alpha/beta/gamma receptor- or STAT1-deficient) MEFs. On the other hand, homologous murine rotaviruses (ETD or EHP) or the heterologous simian rotavirus (rhesus rotavirus [RRV]) efficiently degrade cellular IRF3, diminish IRF3 activation and IFN-beta secretion and are not replication restricted in wild-type MEFs. Genetic reassortant analysis between UK and RRV maps the distinctive phenotypes of IFN antagonism and growth restriction in wild-type MEFs to NSP1. Therefore, there is a direct relationship between the replication efficiencies of different rotavirus strains in MEFs and strain-related variations in NSP1-mediated antagonism of the type I IFN response. PMID:19420080

  8. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts

    PubMed Central

    Xu, Hairong; Zhou, Yanhong; Coughlan, Kathleen A.; Ding, Ye; Wang, Shaobin; Wu, Yue; Song, Ping; Zou, Ming-Hui

    2014-01-01

    Emerging evidence suggests that activation of adenosine monophosphate-activated protein kinase (AMPK), an energy gauge and redox sensor, controls the cell cycle and protects against DNA damage. However, the molecular mechanisms by which AMPKα isoform regulates DNA damage remain largely unknown. The aim of this study was to determine if AMPKα deletion contributes to cellular hyperproliferation by reducing p21WAF1/Cip1 (p21) expression thereby leading to accumulated DNA damage. The markers for DNA damage, cell cycle proteins, and apoptosis were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J), AMPKα1, or AMPKα2 homozygous deficient (AMPKα1−/−, AMPKα2−/−) mice by Western blot, flow cytometry, and cellular immunofluorescence staining. Deletion of AMPKα1, the predominant AMPKα isoform, but not AMPKα2 in immortalized MEFs led to spontaneous DNA double-strand breaks (DSB) which corresponded to repair protein p53-binding protein1 (53BP1) foci formation and subsequent apoptosis. Furthermore, AMPKα1 localizes to chromatin and AMPKα1 deletion down-regulates cyclin-dependent kinase inhibitor, p21, an important protein that plays a role in decreasing the incidence of spontaneous DSB via inhibition of cell proliferation. In addition, AMPKα1 null cells exhibited enhanced cell proliferation. Finally, p21 overexpression partially blocked the cellular hyperproliferation of AMPKα1-deleted MEFs via the inhibition of cyclin-dependent kinase 2 (CDK2). Taken together, our results suggest that AMPKα1 plays a fundamental role in controlling the cell cycle thereby affecting DNA damage and cellular apoptosis. PMID:25307521

  9. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts.

    PubMed

    Gardner, Nicole M; Riley, Ronald T; Showker, Jency L; Voss, Kenneth A; Sachs, Andrew J; Maddox, Joyce R; Gelineau-van Waes, Janee B

    2016-05-01

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs. PMID:26905748

  10. Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering.

    PubMed

    Parrag, Ian C; Zandstra, Peter W; Woodhouse, Kimberly A

    2012-03-01

    Embryonic stem cells (ESCs) are an important source of cardiomyocytes for regenerating injured myocardium. The successful use of ESC-derived cardiomyocytes in cardiac tissue engineering requires an understanding of the important scaffold properties and culture conditions to promote cell attachment, differentiation, organization, and contractile function. The goal of this work was to investigate how scaffold architecture and coculture with fibroblasts influences the differentiated phenotype of murine ESC-derived cardiomyocytes (mESCDCs). Electrospinning was used to process an elastomeric biodegradable polyurethane (PU) into aligned or unaligned fibrous scaffolds. Bioreactor produced mESCDCs were seeded onto the PU scaffolds either on their own or after pre-seeding the scaffolds with mouse embryonic fibroblasts (MEFs). Viable mESCDCs attached to the PU scaffolds and were functionally contractile in all conditions tested. Importantly, the aligned scaffolds led to the anisotropic organization of rod-shaped cells, improved sarcomere organization, and increased mESCDC aspect ratio (length-to-diameter ratio) when compared to cells on the unaligned scaffolds. In addition, pre-seeding the scaffolds with MEFs improved mESCDC sarcomere formation compared to mESCDCs cultured alone. These results suggest that both fiber alignment and pre-treatment of scaffolds with fibroblasts improve the differentiation of mESCDCs and are important parameters for developing engineered myocardial tissue constructs using ESC-derived cardiac cells. PMID:22006660

  11. Global gene expression changes in human embryonic lung fibroblasts induced by organic extracts from respirable air particles

    PubMed Central

    2012-01-01

    Background Recently, we used cell-free assays to demonstrate the toxic effects of complex mixtures of organic extracts from urban air particles (PM2.5) collected in four localities of the Czech Republic (Ostrava-Bartovice, Ostrava-Poruba, Karvina and Trebon) which differed in the extent and sources of air pollution. To obtain further insight into the biological mechanisms of action of the extractable organic matter (EOM) from ambient air particles, human embryonic lung fibroblasts (HEL12469) were treated with the same four EOMs to assess changes in the genome-wide expression profiles compared to DMSO treated controls. Method For this purpose, HEL cells were incubated with subtoxic EOM concentrations of 10, 30, and 60 μg EOM/ml for 24 hours and global gene expression changes were analyzed using human whole genome microarrays (Illumina). The expression of selected genes was verified by quantitative real-time PCR. Results Dose-dependent increases in the number of significantly deregulated transcripts as well as dose-response relationships in the levels of individual transcripts were observed. The transcriptomic data did not differ substantially between the localities, suggesting that the air pollution originating mainly from various sources may have similar biological effects. This was further confirmed by the analysis of deregulated pathways and by identification of the most contributing gene modulations. The number of significantly deregulated KEGG pathways, as identified by Goeman's global test, varied, depending on the locality, between 12 to 29. The Metabolism of xenobiotics by cytochrome P450 exhibited the strongest upregulation in all 4 localities and CYP1B1 had a major contribution to the upregulation of this pathway. Other important deregulated pathways in all 4 localities were ABC transporters (involved in the translocation of exogenous and endogenous metabolites across membranes and DNA repair), the Wnt and TGF-β signaling pathways (associated

  12. Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    PubMed Central

    2011-01-01

    Background Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb) was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs), and retinoblastoma gene-deficient MEFs (Rb-/- MEFs). Findings Comparative analysis of the expression profiles of 3T3-L1 cells and wild-type MEFs revealed genes involved specifically in early regulation of the adipocyte differentiation as well as secreted factors and signaling molecules regulating the later phase of differentiation. In an attempt to identify transcription factors regulating adipogenesis, bioinformatics analysis of the promoters of coordinately and highly expressed genes was performed. We were able to identify a number of high-confidence target genes for follow-up experimental studies. Additionally, combination of experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1. To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs) for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis of 64 deregulated genes showed that the Rb-/- MEF model exhibits a brown(-like) adipocyte phenotype. Additionally, the analysis results indicate a different or additional role for pRb family member involvement in the lineage commitment. Conclusion In this study a number of commonly modulated genes during adipogenesis in 3T3-L1 cells and MEFs, potential transcriptional regulation mechanisms, and differentially regulated targets during adipocyte differentiation of Rb

  13. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    PubMed

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. PMID:27252227

  14. Appl1 and Appl2 are Expendable for Mouse Development But Are Essential for HGF-Induced Akt Activation and Migration in Mouse Embryonic Fibroblasts.

    PubMed

    Tan, Yinfei; Xin, Xiaoban; Coffey, Francis J; Wiest, David L; Dong, Lily Q; Testa, Joseph R

    2016-05-01

    Although Appl1 and Appl2 have been implicated in multiple cellular activities, we and others have found that Appl1 is dispensable for mouse embryonic development, suggesting that Appl2 can substitute for Appl1 during development. To address this possibility, we generated conditionally targeted Appl2 mice. We found that ubiquitous Appl2 knockout (Appl2-/-) mice, much like Appl1-/- mice, are viable and grow normally to adulthood. Intriguingly, when Appl1-/- mice were crossed with Appl2-/- mice, we found that homozygous Appl1;Appl2 double knockout (DKO) animals are also viable and grossly normal with regard to reproductive potential and postnatal growth. Appl2-null and DKO mice were found to exhibit altered red blood cell physiology, with erythrocytes from these mice generally being larger and having a more irregular shape than erythrocytes from wild type mice. Although Appl1/2 proteins have been previously shown to have a very strong interaction with phosphatidylinositol-3 kinase (Pi3k) in thymic T cells, Pi3k-Akt signaling and cellular differentiation was unaltered in thymocytes from Appl1;Appl2 (DKO) mice. However, Appl1/2-null mouse embryonic fibroblasts exhibited defects in HGF-induced Akt activation, migration, and invasion. Taken together, these data suggest that Appl1 and Appl2 are required for robust HGF cell signaling but are dispensable for embryonic development and reproduction. PMID:26445298

  15. Use of enzymatic assay to evaluate UV-induced DNA repair in human and embryonic chick fibroblasts and multinucleate heterokaryons derived from both.

    PubMed

    Paterson, M C; Lohman, P H

    1975-01-01

    A sensitive enzymatic assay has been utilized to monitor repair of UV-induced damage to DNA in primary human and embryonic chick cells and in multinucleate heterokaryons artificially derived from both. The assay exploits the unique ability of a purified repair endonuclease to attack UV-irradiated DNA at sites containing pyrimidine dimers. These nuclease-susceptible sites are subsequently observed as single-strand scissions by velocity sedimentation in alkaline sucrose gradients. Incubation of UV-damaged cultures followed by extraction and enzymatic analysis of the radioactively labeled DNA enables one to trace the disappearance of such sites in vivo and hence to monitor endogenous repair activity. When UV-irradiated human cells are incubated in the dark, the curve for site removal exhibits a two-phase exponetial decline; i.e. there exists a fast component responsible for elimination of 60% of the initial damage and a second one approximately 7 times slower in rate. The removal of sites is not further enhanced by exposing cells to blacklight during post-UV incubation. Conversely, UV-damaged chick cells rid their DNA of all nuclease-susceptible sites rapidly (i.e. at an exponential rate approximately 13 times faster than the fast component of site removal in human cells) when incubated under blacklight but not when kept in the dark. These data indicate the presence in human and embryonic chick cells of distinct enzymatic mechanisms for the elimination of dimer-containing sites. Wheneras human fibroblasts rely heavily on a light-independent process, excision-repair, chick fibroblasts possess a light-dependent mechanism, presumably photoenzymatic repair. Advantage has been taken of the contrasting repair properties of the human and embryonic chick fibroblasts to evaluate the extent to which each can assist the other in the removal of UV-induced damage from its DNA. The two cell types were fused to form giant human/chick heterokaryons containing a number of intact

  16. Translational activity and functional stability of human fibroblast beta 1 and beta 2 interferon mRNAs lacking 3'-terminal RNA sequences.

    PubMed Central

    Soreq, H; Sagar, A D; Sehgal, P B

    1981-01-01

    Polyadenylylated mRNA was purified from poly(I).poly(C)- and cycloheximide-superinduced human fibroblast (FS-4) cultures. The mRNA was subjected to electrophoresis through an agarose/CH3HgOH gel, and human fibroblast beta 1 and beta 2 interferon mRNAs were isolated. Each mRNA preparation was phosphorolyzed at 0 degrees C for 20 min by using a molar excess of polynucleotide phosphorylase to produce RNAs lacking poly(A) and then incubated at 37 degrees C for varying lengths of time to allow the phosphorylase to further digest the deadenylylated RNA from the 3' end in a processive and synchronous manner. Removal of the poly(A) (less than or equal to 100 residues) and approximately 100 adjacent residues from human fibroblast beta 1 interferon mRNA (native length, 900 residues, including a 3'-noncoding region of 203 residues) did not alter the translational activity or the functional stability of this mRNA in Xenopus oocytes, whereas deletion of the poly(A) and approximately 200 adjacent residues decreased its translational efficiency. On the other hand, removal of the poly(A) (approximately 200 residues) and approximately 200 adjacent residues from human fibroblast beta 2 interferon mRNA (native length, 1300 residues) did not alter the translational activity or the functional stability of this molecule in oocytes. Thus, neither the poly(A) nor large segments of the 3'-noncoding region (which includes the hexanucleotide A-A-U-A-A-A sequence, at least in the case of beta 1 mRNA) are required for the maintenance of the functional stability of human beta 1 and beta 2 interferon mRNAs in Xenopus oocytes. Images PMID:6165016

  17. Lack of Cul4b, an E3 Ubiquitin Ligase Component, Leads to Embryonic Lethality and Abnormal Placental Development

    PubMed Central

    Yuan, Jupeng; Qian, Yanyan; Sun, Wenjie; Zou, Yongxin; Guo, Chenhong; Chen, Bingxi; Shao, Changshun; Gong, Yaoqin

    2012-01-01

    Cullin-RING ligases (CRLs) complexes participate in the regulation of diverse cellular processes, including cell cycle progression, transcription, signal transduction and development. Serving as the scaffold protein, cullins are crucial for the assembly of ligase complexes, which recognize and target various substrates for proteosomal degradation. Mutations in human CUL4B, one of the eight members in cullin family, are one of the major causes of X-linked mental retardation. We here report the generation and characterization of Cul4b knockout mice, in which exons 3 to 5 were deleted. In contrast to the survival to adulthood of human hemizygous males with CUL4B null mutation, Cul4b null mouse embryos show severe developmental arrest and usually die before embryonic day 9.5 (E9.5). Accumulation of cyclin E, a CRL (CUL4B) substrate, was observed in Cul4b null embryos. Cul4b heterozygotes were recovered at a reduced ratio and exhibited a severe developmental delay. The placentas in Cul4b heterozygotes were disorganized and were impaired in vascularization, which may contribute to the developmental delay. As in human CUL4B heterozygotes, Cul4b null cells were selected against in Cul4b heterozygotes, leading to various degrees of skewed X-inactivation in different tissues. Together, our results showed that CUL4B is indispensable for embryonic development in the mouse. PMID:22606329

  18. Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein.

    PubMed

    Carlone, Diana L; Lee, Jeong-Heon; Young, Suzanne R L; Dobrota, Erika; Butler, Jill Sergesketter; Ruiz, Joseph; Skalnik, David G

    2005-06-01

    Cytosine methylation at CpG dinucleotides is a critical epigenetic modification of mammalian genomes. CpG binding protein (CGBP) exhibits a unique DNA-binding specificity for unmethylated CpG motifs and is essential for early murine development. Embryonic stem cell lines deficient for CGBP were generated to further examine CGBP function. CGBP(-)(/)(-) cells are viable but show an increased rate of apoptosis and are unable to achieve in vitro differentiation following removal of leukemia inhibitory factor from the growth media. Instead, CGBP(-)(/)(-) embryonic stem cells remain undifferentiated as revealed by persistent expression of the pluripotent markers Oct4 and alkaline phosphatase. CGBP(-)(/)(-) cells exhibit a 60 to 80% decrease in global cytosine methylation, including hypo-methylation of repetitive elements, single-copy genes, and imprinted genes. Total DNA methyltransferase activity is reduced by 30 to 60% in CGBP(-)(/)(-) cells, and expression of the maintenance DNA methyltransferase 1 protein is similarly reduced. However, de novo DNA methyltransferase activity is normal. Nearly all aspects of the pleiotropic CGBP(-)(/)(-) phenotype are rescued by introduction of a CGBP expression vector. Hence, CGBP is essential for normal epigenetic modification of the genome by cytosine methylation and for cellular differentiation, consistent with the requirement for CGBP during early mammalian development. PMID:15923607

  19. Fundamentals of ultrananocrystallie diamond (UNCD) thin films as biomaterials for developmental biology : embryonic fibroblasts growth on the surface of (UNCD) films.

    SciTech Connect

    Shi, B.; Jin, Q.; Chen, L.; Auciello, O.

    2008-09-13

    Ultrananocrystalline diamond (UNCD) films possess numerous valuable good physical, chemical and mechanical properties, making UNCD an excellent material for implantable biodevices. However, one very important property required for biomaterials i.e., biocompatibility has not been studied for UNCD. In this research, biocompatible UNCD films were synthesized. It was found that UNCD film coated substrates can dramatically promote the growth of mouse embryonic fibroblasts (MEFs), while the uncoated substrates inhabit cell attachment. Through analyzing the microstructure and the surface chemistry of UNCD, the mechanisms of cell growth on UNCD were investigated. Given the unique properties of UNCD on inertness and toughness, the results consolidate UNCD film as the leading coating candidate for the next generation of medical implanted devices.

  20. Alcohol modulates expression of DNA methyltranferases and methyl CpG-/CpG domain-binding proteins in murine embryonic fibroblasts

    PubMed Central

    Mukhopadhyay, Partha; Rezzoug, Francine; Kaikaus, Jahanzeb; Greene, Robert M.; Pisano, M. Michele

    2013-01-01

    Fetal alcohol syndrome (FAS), presenting with a constellation of neuro-/psychological, craniofacial and cardiac abnormalities, occurs frequently in offspring of women who consume alcohol during pregnancy, with a prevalence of 1–3 per 1000 livebirths. The present study was designed to test the hypothesis that alcohol alters global DNA methylation, and modulates expression of the DNA methyltransferases (DNMTs) and various methyl CpG-binding proteins. Murine embryonic fibroblasts (MEFs), utilized as an in vitro embryonic model system, demonstrated ~5% reduction in global DNA methylation following exposure to 200 mM ethanol. In addition, ethanol induced degradation of DNA methyltransferases (DNMT-1, DNMT-3a, and DNMT-3b), as well as the methyl CpG-binding proteins (MeCP-2, MBD-2 and MBD-3), in MEF cells by the proteasomal pathway. Such degradation could be completely rescued by pretreatment of MEF cells with the proteasomal inhibitor, MG-132. These data support a potential epigenetic molecular mechanism underlying the pathogenesis of FAS during mammalian development. PMID:23395981

  1. Signalling Through Retinoic Acid Receptors is Required for Reprogramming of Both Mouse Embryonic Fibroblast Cells and Epiblast Stem Cells to Induced Pluripotent Stem Cells

    PubMed Central

    Yang, Jian; Wang, Wei; Ooi, Jolene; Campos, Lia S.

    2015-01-01

    Abstract We previously demonstrated that coexpressing retinoic acid (RA) receptor gamma and liver receptor homolog‐1 (LRH1 or NR5A2) with OCT4, MYC, KLF4, and SOX2 (4F) rapidly reprograms mouse embryonic fibroblast cells (MEFs) into induced pluripotent stem cells (iPSCs). Here, we further explore the role of RA in reprogramming and report that the six factors (6F) efficiently and directly reprogram MEFs into integration‐free iPSCs in defined medium (N2B27) in the absence of feeder cells. Through genetic and chemical approaches, we find that RA signalling is essential, in a highly dose‐sensitive manner, for MEF reprogramming. The removal of exogenous RA from N2B27, the inhibition of endogenous RA synthesis or the expression of a dominant‐negative form of RARA severely impedes reprogramming. By contrast, supplementing N2B27 with various retinoids substantially boosts reprogramming. In addition, when coexpressed with LRH1, RA receptors (RARs) can promote reprogramming in the absence of both exogenous and endogenously synthesized RA. Remarkably, the reprogramming of epiblast stem cells into embryonic stem cell‐like cells also requires low levels of RA, which can modulate Wnt signalling through physical interactions of RARs with β‐catenin. These results highlight the important functions of RA signalling in reprogramming somatic cells and primed stem cells to naïve pluripotency. Stem Cells 2015;33:1390–1404 PMID:25546009

  2. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells

    SciTech Connect

    Marianne B. Sowa; Wilfried Goetz; Janet E. Baulch; Dinah N. Pyles; Jaroslaw Dziegielewski; Susannah Yovino; Andrew R. Snyder; Sonia M. de Toledo; Edouard I. Azzam; William F. Morgan

    2008-06-30

    Purpose: To investigate radiation induced bystander responses and to determine the role of gap junction intercellular communication and the radiation environment in propagating this response. Materials and Methods: We use medium transfer and targeted irradiation to examine radiation induced bystander effects in primary human fibroblast (AG1522) and human colon carcinoma (RKO36) cells. We examined the effect of variables such as gap junction intercellular communication, linear energy transfer (LET), and the role of the radiation environment in non-targeted responses. Endpoints included clonogenic survival, micronucleus formation and foci formation at histone 2AX over doses ranging from 10 to 100 cGy. Results: The results show no evidence of a low-LET radiation induced bystander response for the endpoints of clonogenic survival and induction of DNA damage. Nor do we see evidence of a high-LET, Fe ion radiation (1 GeV/n) induced bystander effect. However, direct comparison for 3.2 MeV α-particle exposures showed a statistically significant medium transfer bystander effect for this high-LET radiation. Conclusions: From our results, it is evident that there are many confounding factors influencing bystander responses as reported in the literature. Our observations reflect the inherent variability in biological systems and the difficulties in extrapolating from in vitro models to radiation risks in humans.

  3. Generation of Fibroblasts Lacking the Sal-like 1 Gene by Using Transcription Activator-like Effector Nuclease-mediated Homologous Recombination

    PubMed Central

    Kim, Se Eun; Kim, Ji Woo; Kim, Yeong Ji; Kwon, Deug-Nam; Kim, Jin-Hoi; Kang, Man-Jong

    2016-01-01

    The Sal-like 1 gene (Sall1) is essential for kidney development, and mutations in this gene result in abnormalities in the kidneys. Mice lacking Sall1 show agenesis or severe dysgenesis of the kidneys. In a recent study, blastocyst complementation was used to develop mice and pigs with exogenic organs. In the present study, transcription activator-like effector nuclease (TALEN)-mediated homologous recombination was used to produce Sall1-knockout porcine fibroblasts for developing knockout pigs. The vector targeting the Sall1 locus included a 5.5-kb 5′ arm, 1.8-kb 3′ arm, and a neomycin resistance gene as a positive selection marker. The knockout vector and TALEN were introduced into porcine fibroblasts by electroporation. Antibiotic selection was performed over 11 days by using 300 μg/mL G418. DNA of cells from G418-resistant colonies was amplified using polymerase chain reaction (PCR) to confirm the presence of fragments corresponding to the 3′ and 5′ arms of Sall1. Further, mono- and bi-allelic knockout cells were isolated and analyzed using PCR–restriction fragment length polymorphism. The results of our study indicated that TALEN-mediated homologous recombination induced bi-allelic knockout of the endogenous gene. PMID:26949958

  4. Mice Lacking Dystrophin or α Sarcoglycan Spontaneously Develop Embryonal Rhabdomyosarcoma with Cancer-Associated p53 Mutations and Alternatively Spliced or Mutant Mdm2 Transcripts

    PubMed Central

    Fernandez, Karen; Serinagaoglu, Yelda; Hammond, Sue; Martin, Laura T.; Martin, Paul T.

    2010-01-01

    Altered expression of proteins in the dystrophin-associated glycoprotein complex results in muscular dystrophy and has more recently been implicated in a number of forms of cancer. Here we show that loss of either of two members of this complex, dystrophin in mdx mice or α sarcoglycan in Sgca−/− mice, results in the spontaneous development of muscle-derived embryonal rhabdomyosarcoma (RMS) after 1 year of age. Many mdx and Sgca−/− tumors showed increased expression of insulin-like growth factor 2, retinoblastoma protein, and phosphorylated Akt and decreased expression of phosphatase and tensin homolog gene, much as is found in a human RMS. Further, all mdx and Sgca−/− RMS analyzed had increased expression of p53 and murine double minute (mdm)2 protein and contained missense p53 mutations previously identified in human cancers. The mdx RMS also contained missense mutations in Mdm2 or alternatively spliced Mdm2 transcripts that lacked an exon encoding a portion of the p53-binding domain. No Pax3:Fkhr or Pax7:Fkhr translocation mRNA products were evident in any tumor. Expression of natively glycosylated α dystroglycan and α sarcoglycan was reduced in mdx RMS, whereas dystrophin expression was absent in almost all human RMS, both for embryonal and alveolar RMS subtypes. These studies show that absence of members of the dystrophin-associated glycoprotein complex constitutes a permissive environment for spontaneous development of embryonal RMS associated with mutation of p53 and mutation or altered splicing of Mdm2. PMID:20019182

  5. CG hypomethylation in Lsh−/− mouse embryonic fibroblasts is associated with de novo H3K4me1 formation and altered cellular plasticity

    PubMed Central

    Yu, Weishi; Briones, Victorino; Lister, Ryan; McIntosh, Carl; Han, Yixing; Lee, Eunice Y.; Ren, Jianke; Terashima, Minoru; Leighty, Robert M.; Ecker, Joseph R.; Muegge, Kathrin

    2014-01-01

    DNA methylation patterns are established in early embryogenesis and are critical for cellular differentiation. To investigate the role of CG methylation in potential enhancer formation, we assessed H3K4me1 modification in murine embryonic fibroblasts (MEFs) derived from the DNA methylation mutant Lsh−/− mice. We report here de novo formation of putative enhancer elements at CG hypomethylated sites that can be dynamically altered. We found a subset of differentially enriched H3K4me1 regions clustered at neuronal lineage genes and overlapping with known cis-regulatory elements present in brain tissue. Reprogramming of Lsh−/− MEFs into induced pluripotent stem (iPS) cells leads to increased neuronal lineage gene expression of premarked genes and enhanced differentiation potential of Lsh−/− iPS cells toward the neuronal lineage pathway compared with WT iPS cells in vitro and in vivo. The state of CG hypomethylation and H3K4me1 enrichment is partially maintained in Lsh−/− iPS cells. The acquisition of H3K27ac and activity of subcloned fragments in an enhancer reporter assay indicate functional activity of several of de novo H3K4me1-marked sequences. Our results suggest a functional link of H3K4me1 enrichment at CG hypomethylated sites, enhancer formation, and cellular plasticity. PMID:24711395

  6. Effect of BIX-01294 on H3K9me2 levels and the imprinted gene Snrpn in mouse embryonic fibroblast cells

    PubMed Central

    Chen, Peng; Yao, Jian-Feng; Huang, Rong-Fu; Zheng, Fang-Fang; Jiang, Xiao-Hong; Chen, Xuan; Chen, Juan; Li, Ming; Huang, Hong-Feng; Jiang, Yi-Ping; Huang, Yan-Fang; Yang, Xiao-Yu

    2015-01-01

    Histone H3 lysine 9 dimethylation (H3K9me2) hypermethylation is thought to be a major influential factor in cellular reprogramming, such as somatic cell nuclear transfer (SCNT) and induction of pluripotent stem cells (iPSCs). The diazepin-quinazolin-amine derivative (BIX-01294) specifically inhibits the activity of histone methyltransferase EHMT2 (euchromatic histone-lysine N-methyltransferase 2) and reduces H3K9me2 levels in cells. The imprinted gene small nuclear ribonucleoprotein N (Snrpn) is of particular interest because of its important biological functions. The objective of the present study was to investigate the effect of BIX-01294 on H3K9me2 levels and changes in Snrpn DNA methylation and histone H3K9me2 in mouse embryonic fibroblasts (MEFs). Results showed that 1.3 μM BIX-01294 markedly reduced global levels of H3K9me2 with almost no cellular toxicity. There was a significant decrease in H3K9me2 in promoter regions of the Snrpn gene after BIX-01294 treatment. A significant increase in methylation of the Snrpn differentially methylated region 1 (DMR1) and slightly decreased transcript levels of Snrpn were found in BIX-01294-treated MEFs. These results suggest that BIX-01294 may reduce global levels of H3K9me2 and affect epigenetic modifications of Snrpn in MEFs. PMID:26285804

  7. Impurity of Stem Cell Graft by Murine Embryonic Fibroblasts – Implications for Cell-Based Therapy of the Central Nervous System

    PubMed Central

    Molcanyi, Marek; Mehrjardi, Narges Zare; Schäfer, Ute; Haj-Yasein, Nadia Nabil; Brockmann, Michael; Penner, Marina; Riess, Peter; Reinshagen, Clemens; Rieger, Bernhard; Hannes, Tobias; Hescheler, Jürgen; Bosche, Bert

    2014-01-01

    Stem cells have been demonstrated to possess a therapeutic potential in experimental models of various central nervous system disorders, including stroke. The types of implanted cells appear to play a crucial role. Previously, groups of the stem cell network NRW implemented a feeder-based cell line within the scope of their projects, examining the implantation of stem cells after ischemic stroke and traumatic brain injury. Retrospective evaluation indicated the presence of spindle-shaped cells in several grafts implanted in injured animals, which indicated potential contamination by co-cultured feeder cells (murine embryonic fibroblasts – MEFs). Because feeder-based cell lines have been previously exposed to a justified criticism with regard to contamination by animal glycans, we aimed to evaluate the effects of stem cell/MEF co-transplantation. MEFs accounted for 5.3 ± 2.8% of all cells in the primary FACS-evaluated co-culture. Depending on the culture conditions and subsequent purification procedure, the MEF-fraction ranged from 0.9 to 9.9% of the cell suspensions in vitro. MEF survival and related formation of extracellular substances in vivo were observed after implantation into the uninjured rat brain. Impurity of the stem cell graft by MEFs interferes with translational strategies, which represents a threat to the potential recipient and may affect the graft microenvironment. The implications of these findings are critically discussed. PMID:25249934

  8. Adaptation of Very Virulent Infectious Bursal Disease Virus to Chicken Embryonic Fibroblasts by Site-Directed Mutagenesis of Residues 279 and 284 of Viral Coat Protein VP2

    PubMed Central

    Lim, Boon-Leong; Cao, Yongchang; Yu, Tiffany; Mo, Chi-Wai

    1999-01-01

    The full-length RNA genomes of a chicken embryonic fibroblast (CEF)-nonpermissive, very virulent infectious bursal disease virus (IBDV) (strain HK46) were amplified into cDNAs by reverse transcription-PCR. The full-length cDNAs were sequenced and subcloned into a eukaryotic expression vector, from which point mutations were introduced into the VP2 region by site-directed mutagenesis. The wild-type and mutated plasmids were transfected directly into CEFs to examine their ability to generate CEF-permissive recombinant viruses. Substitution of amino acid residues 279 (Asp→Asn) and 284 (Ala→Thr) of the VP2 protein yielded a recombinant virus which was able to be passaged in CEFs, whereas the wild-type cDNAs and an amino acid substitution at residue 330 (Ser→Arg) of the VP2 protein alone did not yield viable virus. The results indicated that mutation of other viral proteins, including VP1, VP3, VP4, and VP5, was not required for CEF adaptation of the virus. The same approach may be used to produce CEF-adapted strains from newly evolved IBDVs or to manipulate the antigenicity of the virus. PMID:10074133

  9. In Vitro Study of Mutagenesis Induced by Crocidolite-Exposed Alveolar Macrophages NR8383 in Cocultured Big Blue Rat2 Embryonic Fibroblasts

    PubMed Central

    Guichard, Yves; Gaté, Laurent; Darne, Christian; Bottin, Marie-Claire; Langlais, Cristina; Micillino, Jean-Claude; Goutet, Michèle; Julien, Schmit; Stéphane, Binet

    2010-01-01

    Asbestos-induced mutagenicity in the lung may involve reactive oxygen/nitrogen species (ROS/RNS) released by alveolar macrophages. With the aim of proposing an alternative in vitro mutagenesis test, a coculture system of rat alveolar macrophages (NR8383) and transgenic Big Blue Rat2 embryonic fibroblasts was developed and tested with a crocidolite sample. Crocidolite exposure induced no detectable increase in ROS production from NR8383, contrasting with the oxidative burst that occurred following a brief exposure (1 hour) to zymosan, a known macrophage activator. In separated cocultures, crocidolite and zymosan induced different changes in the gene expressions involved in cellular inflammation in NR8383 and Big Blue. In particular, both particles induced up-regulation of iNOS expression in Big Blue, suggesting the formation of potentially genotoxic nitrogen species. However, crocidolite exposure in separated or mixed cocultures induced no mutagenic effects whereas an increase in Big Blue mutants was detected after exposure to zymosan in mixed cocultures. NR8383 activation by crocidolite is probably insufficient to induce in vitro mutagenic events. The mutagenesis assay based on the coculture of NR8383 and Big Blue cannot be used as an alternative in vitro method to assess the mutagenic properties of asbestos fibres. PMID:20628587

  10. Poly(2-hydroxyethyl methacrylate)-b-poly(L-Lysine) cationic hybrid materials for non-viral gene delivery in NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Johnson, Renjith P; Uthaman, Saji; John, Johnson V; Heo, Min Seon; Park, In Kyu; Suh, Hongsuk; Kim, Il

    2014-09-01

    In order to develop efficient and nontoxic gene delivery vectors, a series of biocompatible block copolymers, poly[(2-hydroxyethyl methacrylate)40 -block-(L-lysine)n ] (n = 40, 80, 120, 150), are prepared by combining an atom transfer radical polymerization of 2-hydroxyethyl methacrylate with a ring-opening polymerization of N(ϵ) -(carbobenzoxy)-L-lysine N-carboxyanhydride. The block copolymers are successfully condensed with plasmid DNA (pDNA) into nanosized (<200 nm) polyplexes. As a representative sample, p(HEMA)40 -b-p(lys)150 is utilized to confirm the effective cellular and nuclear uptake of pDNA. The polymer/pDNA polyplexes exhibit very low cytotoxicity and enhanced transfection activity by being easily taken up into mouse embryonic fibroblast cell line (NIH 3T3). Thus, the chimeric block copolymers provide a means for developing versatile nonviral gene vectors harboring the ideal requirements of low cytotoxicity, good stability, and high transfection efficiency for gene therapy. PMID:24862905

  11. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    PubMed Central

    Motohashi, Tsutomu; Watanabe, Natsuki; Nishioka, Masahiro; Nakatake, Yuhki; Yulan, Piao; Mochizuki, Hiromi; Kawamura, Yoshifumi; Ko, Minoru S. H.; Goshima, Naoki; Kunisada, Takahiro

    2016-01-01

    ABSTRACT Neural crest cells (NC cells) are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs) into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+) cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells. PMID:26873953

  12. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells.

    PubMed

    Motohashi, Tsutomu; Watanabe, Natsuki; Nishioka, Masahiro; Nakatake, Yuhki; Yulan, Piao; Mochizuki, Hiromi; Kawamura, Yoshifumi; Ko, Minoru S H; Goshima, Naoki; Kunisada, Takahiro

    2016-01-01

    Neural crest cells (NC cells) are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs) into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+) cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells. PMID:26873953

  13. Age dependency of the metabolic conversion of polyamines into amino acids in IMR-90 human embryonic lung diploid fibroblasts

    SciTech Connect

    Chen, K.Y.; Chang, Z.

    1986-07-01

    When radioactive polyamines (putrescine or spermidine) were incubated with mammalian cells in tissue culture, the radioactivity was incorporated into cellular proteins via two different metabolic pathways; one is metabolic labeling of an 18,000-dalton protein via hypusine formation, and the other is general protein synthesis employing radioactive amino acids derived from biodegradation of polyamines via GABA shunt and Krebs cycle. Aminoguanidine, a potent inhibitor of diamine oxidase, blocked the metabolic conversion of polyamines to amino acids but had no effect on the metabolic labeling of the 18,000-dalton protein. The authors have investigated these two polyamine-associated biochemical events in IMR-90 human diploid fibroblasts as a function of their population doubling level (PDL). They found that (1) the metabolic labeling of the 18,000-dalton protein was about two-fold greater in young cells (PDL = 22) than that in old cells (PDL = 48), and (2) the metabolic labeling of other cellular proteins, employing amino acids derived from putrescine via polyamine catabolic pathway, was more than six-fold greater in the old cells (PDL = 48) than in the young cells (PDL = 22). Since the rate of protein synthesis was about 1.4-fold higher in the young cells as compared to the old cells, their data indicated that the activity of catabolic conversion of putrescine (or spermidine) to amino acids in old IMR-90 cells was about eight-fold greater than that in young cells. This remarkable increase of polyamine catabolism and the slight decrease of metabolic labeling of the 18,000-dalton protein were also observed in cell strains derived from patients with premature aging disease.

  14. Dehydrodiconiferyl alcohol isolated from Cucurbita moschata shows anti-adipogenic and anti-lipogenic effects in 3T3-L1 cells and primary mouse embryonic fibroblasts.

    PubMed

    Lee, Junghun; Kim, Donghyun; Choi, Jonghyun; Choi, Hyounjeong; Ryu, Jae-Ha; Jeong, Jinhyun; Park, Eun-Jin; Kim, Seon-Hee; Kim, Sunyoung

    2012-03-16

    A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis. PMID:22262865

  15. Cloned embryos from semen. Part 1: in vitro proliferation of epithelial cells on embryonic fibroblasts after isolation from semen by gradient centrifugation.

    PubMed

    Nel-Themaat, Liesl; Gómez, Martha C; Pope, C Earle; Lopez, Monica; Wirtu, Gemechu; Cole, Alex; Dresser, Betsy L; Lyons, Leslie A; Bondioli, Kenneth R; Godke, Robert A

    2008-03-01

    Although epithelial-like somatic cells have been previously isolated from semen, cell proliferation rates were low. Culture of whole semen samples resulted in loss of potentially valuable spermatozoa. The aims of the present study were to: (1) isolate somatic cells from semen, while preserving sperm viability, and (2) optimize in vitro culture conditions for semen-derived epithelial cells. Density gradient centrifugation of washed ejaculates of two rams (Ovis aries) (n = 24) and one eland bull (Taurotragus oryx) (n = 4) was performed using a three-layer discontinuous Percoll column consisting of 90% (P-90), 50% (P-50), and 20% (P-20) Percoll. In vitro culture and Trypan Blue staining indicated that live somatic cells settled in the P-20 layer. Nonmotile spermatozoa were recovered at the P-50 and P-90 interfaces, whereas motile spermatozoa were collected in the pellet from the P-90 layer. Subsequently, somatic cells isolated from the P-20 layer were plated either on inactivated 3T3 mouse embryonic fibroblast feeder layers, collagen-coated plates with 3T3 feeder cell inserts, or on collagen-coated plates. Initial somatic cell plating was similar among treatments, but proliferation significantly increased when cocultured with 3T3 cells (feeder or insert). Furthermore, two different types of epithelial cells were obtained. The exact origin of the cells in the male reproduction system is uncertain and probably variable. The present method of cell isolation and in vitro culture may be of value for preserving endangered species. Specifically, cells isolated and cultured from cryopreserved semen of nonliving males could be used for producing embryos by somatic cell nuclear transfer. PMID:18241128

  16. Dehydrodiconiferyl Alcohol Isolated from Cucurbita moschata Shows Anti-adipogenic and Anti-lipogenic Effects in 3T3-L1 Cells and Primary Mouse Embryonic Fibroblasts*

    PubMed Central

    Lee, Junghun; Kim, Donghyun; Choi, Jonghyun; Choi, Hyounjeong; Ryu, Jae-Ha; Jeong, Jinhyun; Park, Eun-Jin; Kim, Seon-Hee; Kim, Sunyoung

    2012-01-01

    A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis. PMID:22262865

  17. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3

    PubMed Central

    2013-01-01

    Background Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity. Methods The stimulatory effect of mushrooms on neurite outgrowth was assessed in differentiating mouse neuroblastoma (N2a) cells. Neurite length was measured using Image-Pro Insight processor system. Neuritogenesis activity was further validated by fluorescence immunocytochemical staining of neurofilaments. In vitro cytotoxicity was investigated by using mouse embryonic fibroblast (BALB/3T3) and N2a cells for any embryo- and neuro-toxic effects; respectively. Results Aqueous extracts of Ganoderma lucidum, Lignosus rhinocerotis, Pleurotus giganteus and Grifola frondosa; as well as an ethanol extract of Cordyceps militaris significantly (p < 0.05) promoted the neurite outgrowth in N2a cells by 38.4 ± 4.2%, 38.1 ± 2.6%, 33.4 ± 4.6%, 33.7 ± 1.5%, and 35.8 ± 3.4%; respectively. The IC50 values obtained from tetrazolium (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) release assays showed no toxic effects following 24 h exposure of N2a and 3T3 cells to mushroom extracts. Conclusion Our results indicate that G. lucidum, L. rhinocerotis, P. giganteus, G. frondosa and C. militaris may be developed as safe and healthy dietary supplements for brain and cognitive health. PMID:24119256

  18. Downregulation of cyclin D1-CDK4 protein in human embryonic lung fibroblasts (HELF) induced by silica is mediated through the ERK and JNK pathway.

    PubMed

    Shen, Fuhai; Fan, Xueyun; Liu, Bingci; Jia, Xiaowei; Gao, Ai; Du, Hongju; Ye, Meng; You, Baorong; Huang, Chuanshu; Shi, Xianglin

    2008-10-01

    Silica is a factor in the induction of acute injury and chronic pulmonary fibrosis. In 1996, silica was also listed as a human carcinogen by the International Agency for Research on Cancer (IARC). However, the molecular mechanisms involved in its pathologic effects are not well understood. We found that exposure of human embryonic lung fibroblasts (HELF) to crystalline silica for 2h decreased cyclin D1 and cyclin-dependent kinase 4 (CDK4) expression levels. Extracellular signal-regulated protein kinase (ERKs), c-Jun NH2-terminal amino kinase (JNKs), and p38 kinase, as well as their downstream transcription factor, AP-1, had different effects on the regulation of expression levels of cyclin D1 and CDK4 alterations induced by silica. Silica activates multiple signal transduction pathways involved in coordinating cellular responses to stress. We established the requirements for ERK and JNK, members of the mitogen-activated protein kinase (MAPK) family, in mediating G1 phase arrest of HELF induced by silica. Silica treatment activated ERK in a dose-dependent manner. AG126 (a chemical inhibitor of the ERK signaling pathway) and the dominant negative mutant of ERK2 (a molecular inhibitor of ERK2) prevented decreases in cyclin D1 and CDK4 expression levels. A chemical inhibitor of JNK, SP600125, prevented the decreased expression of both cyclin D1 and CDK4, whereas SB203580, a chemical inhibitor of p38, did not. Interestingly, curcumin prevented the decrease in DK4 expression, but not in cyclin D1. These results demonstrate that ERKs and JNKs are responsible for the decrease of cyclin D1 and CDK4 expression levels in HELF induced by silica. Activator protein-1 (AP-1) was responsible for the decrease of CDK4 expression level, but not that of cyclin D1. The findings help to explain the mechanisms of diseases induced by silica. PMID:18703151

  19. MicroRNA transcriptome analysis identifies miR-365 as a novel negative regulator of cell proliferation in Zmpste24-deficient mouse embryonic fibroblasts.

    PubMed

    Xiong, Xing-dong; Jung, Hwa Jin; Gombar, Saurabh; Park, Jung Yoon; Zhang, Chun-long; Zheng, Huiling; Ruan, Jie; Li, Jiang-bin; Kaeberlein, Matt; Kennedy, Brian K; Zhou, Zhongjun; Liu, Xinguang; Suh, Yousin

    2015-07-01

    Zmpste24 is a metalloproteinase responsible for the posttranslational processing and cleavage of prelamin A into mature laminA. Zmpste24(-/-) mice display a range of progeroid phenotypes overlapping with mice expressing progerin, an altered version of lamin A associated with Hutchinson-Gilford progeria syndrome (HGPS). Increasing evidence has demonstrated that miRNAs contribute to the regulation of normal aging process, but their roles in progeroid disorders remain poorly understood. Here we report the miRNA transcriptomes of mouse embryonic fibroblasts (MEFs) established from wild type (WT) and Zmpste24(-/-) progeroid mice using a massively parallel sequencing technology. With data from 19.5 × 10(6) reads from WT MEFs and 16.5 × 10(6) reads from Zmpste24(-/-) MEFs, we discovered a total of 306 known miRNAs expressed in MEFs with a wide dynamic range of read counts ranging from 10 to over 1 million. A total of 8 miRNAs were found to be significantly down-regulated, with only 2 miRNAs upregulated, in Zmpste24(-/-) MEFs as compared to WT MEFs. Functional studies revealed that miR-365, a significantly down-regulated miRNA in Zmpste24(-/-) MEFs, modulates cellular growth phenotypes in MEFs. Overexpression of miR-365 in Zmpste24(-/-) MEFs increased cellular proliferation and decreased the percentage of SA-β-gal-positive cells, while inhibition of miR-365 function led to an increase of SA-β-gal-positive cells in WT MEFs. Furthermore, we identified Rasd1, a member of the Ras superfamily of small GTPases, as a functional target of miR-365. While expression of miR-365 suppressed Rasd1 3' UTR luciferase-reporter activity, this effect was lost with mutations in the putative 3' UTR target-site. Consistently, expression levels of miR-365 were found to inversely correlate with endogenous Rasd1 levels. These findings suggest that miR-365 is down-regulated in Zmpste24(-/-) MEFs and acts as a novel negative regulator of Rasd1. Our comprehensive miRNA data provide a resource to

  20. Piper betle induces phase I & II genes through Nrf2/ARE signaling pathway in mouse embryonic fibroblasts derived from wild type and Nrf2 knockout cells

    PubMed Central

    2014-01-01

    Background Nuclear factor-erythroid 2 p45 related factor 2 (Nrf2) is a primary transcription factor, protecting cells from oxidative stress by regulating a number of antioxidants and phase II detoxifying enzymes. Dietary components such as sulforaphane in broccoli and quercetin in onions have been shown to be inducers of Nrf2. Piper betle (PB) grows well in tropical climate and the leaves are used in a number of traditional remedies for the treatment of stomach ailments and infections among Asians. The aim of this study was to elucidate the effect of Piper betle (PB) leaves extract in Nrf2 signaling pathway by using 2 types of cells; mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) and Nrf2 knockout (N0) mice. Methods WT and N0 cells were treated with 5 and 10 μg/ml of PB for 10 and 12-h for the determination of nuclear translocation of Nrf2 protein. Luciferase reporter gene activity was performed to evaluate the antioxidant response element (ARE)-induction by PB. Real-time PCR and Western blot were conducted on both WT and N0 cells after PB treatment for the determination of antioxidant enzymes [superoxide dismutase (SOD1) and heme-oxygenase (HO-1)], phase I oxidoreductase enzymes [NAD(P)H: quinone oxidoreductase (NQO1)] and phase II detoxifying enzyme [glutathione S-transferase (GST)]. Results Nuclear translocation of Nrf2 by PB in WT cells was better after 10 h incubation compared to 12 h. Real time PCR and Western blot analysis showed increased expressions of Nrf2, NQO1 and GSTA1 genes with corresponding increases in glutathione, NQO1 and HO-1 proteins in WT cells. Reporter gene ARE was stimulated by PB as shown by ARE/luciferase assay. Interestingly, PB induced SOD1 gene and protein expressions in N0 cells but not in WT cells. Conclusion The results of this study confirmed that PB activated Nrf2-ARE signaling pathway which subsequently induced some phase I oxidoreductase, phase II detoxifying and antioxidant genes expression via ARE reporter

  1. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells: Importance of ERK1/2 and AKT Signaling Pathways.

    PubMed

    Liang, Xinyue; Gu, Junlian; Yu, Dehai; Wang, Guanjun; Zhou, Lei; Zhang, Xiaoying; Zhao, Yuguang; Chen, Xiao; Zheng, Shirong; Liu, Qiang; Cai, Lu; Cui, Jiuwei; Li, Wei

    2016-01-01

    Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR). In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3' -kinase(PI3K)-Akt (PI3K/AKT) phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy). In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy. PMID:26788032

  2. Sensitivity to methylmercury toxicity is enhanced in oxoguanine glycosylase 1 knockout murine embryonic fibroblasts and is dependent on cellular proliferation capacity

    SciTech Connect

    Ondovcik, Stephanie L.; Tamblyn, Laura; McPherson, John Peter; Wells, Peter G.

    2013-07-01

    Methylmercury (MeHg) is a persistent environmental contaminant with potent neurotoxic action for which the underlying molecular mechanisms remain to be conclusively delineated. Our objectives herein were twofold: first, to corroborate our previous findings of an increased sensitivity of spontaneously-immortalized oxoguanine glycosylase 1-null (Ogg1{sup −/−}) murine embryonic fibroblasts (MEFs) to MeHg through generation of Simian virus 40 (SV40) large T antigen-immortalized wild-type and Ogg1{sup −/−} MEFs; and second, to determine whether MeHg toxicity is proliferation-dependent. As with the spontaneously-immortalized cells used previously, the SV40 large T antigen-immortalized cells exhibited similar tendencies to undergo MeHg-initiated cell cycle arrest, with increased sensitivity in the Ogg1{sup −/−} MEFs as measured by clonogenic survival and DNA damage. Compared to exponentially growing cells, those seeded at a higher density exhibited compromised proliferation, which proved protective against MeHg-mediated cell cycle arrest and induction of DNA double strand breaks (DSBs), measured by phosphorylation of the core histone H2A variant (H2AX) on serine 139 (γH2AX), and by its functional confirmation by micronucleus assessment. This enhanced sensitivity of Ogg1{sup −/−} MEFs to MeHg toxicity using discrete SV40 immortalization corroborates our previous studies, and suggests a novel role for OGG1 in minimizing MeHg-initiated DNA lesions that trigger replication-associated DSBs. Furthermore, proliferative capacity may determine MeHg toxicity in vivo and in utero. Accordingly, variations in cellular proliferative capacity and interindividual variability in repair activity may modulate the risk of toxicological consequences following MeHg exposure. - Highlights: • SV40 large T antigen-immortalized Ogg1{sup −/−} cells are more sensitive to MeHg. • Sensitivity to MeHg is dependent on cellular proliferation capacity. • OGG1 maintains genomic

  3. Lack of Phenotypical and Morphological Evidences of Endothelial to Hematopoietic Transition in the Murine Embryonic Head during Hematopoietic Stem Cell Emergence

    PubMed Central

    Iizuka, Kazuhide; Yokomizo, Tomomasa; Watanabe, Naoki; Tanaka, Yosuke; Osato, Motomi; Takaku, Tomoiku; Komatsu, Norio

    2016-01-01

    During mouse ontogeny, hematopoietic cells arise from specialized endothelial cells, i.e., the hemogenic endothelium, and form clusters in the lumen of arterial vessels. Hemogenic endothelial cells have been observed in several embryonic tissues, such as the dorsal aorta, the placenta and the yolk sac. Recent work suggests that the mouse embryonic head also produces hematopoietic stem cells (HSCs)/progenitors. However, a histological basis for HSC generation in the head has not yet been determined because the hematopoietic clusters and hemogenic endothelium in the head region have not been well characterized. In this study, we used whole-mount immunostaining and 3D confocal reconstruction techniques to analyze both c-Kit+ hematopoietic clusters and Runx1+ hemogenic endothelium in the whole-head vasculature. The number of c-Kit+ hematopoietic cells was 20-fold less in the head arteries than in the dorsal aorta. In addition, apparent nascent hematopoietic cells, which are characterized by a “budding” structure and a Runx1+ hemogenic endothelium, were not observed in the head. These results suggest that head HSCs may not be or are rarely generated from the endothelium in the same manner as aortic HSCs. PMID:27227884

  4. Transformation and scattering activities of the receptor tyrosine kinase RON/Stk in rodent fibroblasts and lack of regulation by the jaagsiekte sheep retrovirus receptor, Hyal2

    PubMed Central

    Miller, A Dusty; Van Hoeven, Neal S; Liu, Shan-Lu

    2004-01-01

    Background The envelope (Env) protein of jaagsiekte sheep retrovirus (JSRV) can transform cells in culture and is likely to be the main factor responsible for lung cancer induction by JSRV in animals. A recent report indicates that the epithelial-cell transforming activity of JSRV Env depends on activation of the cell-surface receptor tyrosine kinase Mst1r (called RON for the human and Stk for the rodent orthologs). In the immortalized line of human epithelial cells used (BEAS-2B cells), the virus receptor Hyal2 was found to bind to and suppress the activity of RON. When Env was expressed it bound to Hyal2 causing its degradation, release of RON activity from Hyal2 suppression, and activation of pathways resulting in cell transformation. Methods Due to difficulty with reproducibility of the transformation assay in BEAS-2B cells, we have used more tractable rodent fibroblast models to further study Hyal2 modulation of RON/Stk transforming activity and potential effects of Hyal2 on RON/Stk activation by its natural ligand, macrophage stimulating protein (MSP). Results We did not detect transformation of NIH 3T3 cells by plasmids expressing RON or Stk, but did detect transformation of 208F rat fibroblasts by these plasmids at a very low rate. We were able to isolate 208F cell clones that expressed RON or Stk and that showed changes in morphology indicative of transformation. The parental 208F cells did not respond to MSP but 208F cells expressing RON or Stk showed obvious increases in scattering/transformation in response to MSP. Human Hyal2 had no effect on the basal or MSP-induced phenotypes of RON-expressing 208F cells, and human, mouse or rat Hyal2 had no effect on the basal or MSP-induced phenotypes of Stk-expressing 208F cells. Conclusions We have shown that RON or Stk expression in 208F rat fibroblasts results in a transformed phenotype that is enhanced by addition of the natural ligand for these proteins, MSP. Hyal2 does not directly modulate the basal or MSP

  5. Gene expression profiles in mouse embryo fibroblasts lacking stathmin, a microtubule regulatory protein, reveal changes in the expression of genes contributing to cell motility

    PubMed Central

    Ringhoff, Danielle N; Cassimeris, Lynne

    2009-01-01

    Background Stathmin (STMN1) protein functions to regulate assembly of the microtubule cytoskeleton by destabilizing microtubule polymers. Stathmin over-expression has been correlated with cancer stage progression, while stathmin depletion leads to death of some cancer cell lines in culture. In contrast, stathmin-null mice are viable with minor axonopathies and loss of innate fear response. Several stathmin binding partners, in addition to tubulin, have been shown to affect cell motility in culture. To expand our understanding of stathmin function in normal cells, we compared gene expression profiles, measured by microarray and qRT-PCR, of mouse embryo fibroblasts isolated from STMN1+/+ and STMN1-/- mice to determine the transcriptome level changes present in the genetic knock-out of stathmin. Results Microarray analysis of STMN1 loss at a fold change threshold of ≥ 2.0 revealed expression changes for 437 genes, of which 269 were up-regulated and 168 were down-regulated. Microarray data and qRT-PCR analysis of mRNA expression demonstrated changes in the message levels for STMN4, encoding RB3, a protein related to stathmin, and in alterations to many tubulin isotype mRNAs. KEGG Pathway analysis of the microarray data indicated changes to cell motility-related genes, and qRT-PCR plates specific for focal adhesion and ECM proteins generally confirmed the microarray data. Several microtubule assembly regulators and motors were also differentially regulated in STMN1-/- cells, but these changes should not compensate for loss of stathmin. Conclusion Approximately 50% of genes up or down regulated (at a fold change of ≥ 2) in STMN1-/- mouse embryo fibroblasts function broadly in cell adhesion and motility. These results support models indicating a role for stathmin in regulating cell locomotion, but also suggest that this functional activity may involve changes to the cohort of proteins expressed in the cell, rather than as a direct consequence of stathmin

  6. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field.

    PubMed

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; d'Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components. PMID:26762783

  7. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field

    PubMed Central

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; d’Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components. PMID:26762783

  8. Combined Effects of High-Dose Bisphenol A and Oxidizing Agent (KBrO3) on Cellular Microenvironment, Gene Expression, and Chromatin Structure of Ku70-deficient Mouse Embryonic Fibroblasts

    PubMed Central

    Gassman, Natalie R.; Coskun, Erdem; Jaruga, Pawel; Dizdaroglu, Miral; Wilson, Samuel H.

    2016-01-01

    Background: Exposure to bisphenol A (BPA) has been reported to alter global gene expression, induce epigenetic modifications, and interfere with complex regulatory networks of cells. In addition to these reprogramming events, we have demonstrated that BPA exposure generates reactive oxygen species and promotes cellular survival when co-exposed with the oxidizing agent potassium bromate (KBrO3). Objectives: We determined the cellular microenvironment changes induced by co-exposure of BPA and KBrO3 versus either agent alone. Methods: Ku70-deficient cells were exposed to 150 μM BPA, 20 mM KBrO3, or co-exposed to both agents. Four and 24 hr post-damage initiation by KBrO3, with BPA-only samples timed to coincide with these designated time points, we performed whole-genome microarray analysis and evaluated chromatin structure, DNA lesion load, glutathione content, and intracellular pH. Results: We found that 4 hr post-damage initiation, BPA exposure and co-exposure transiently condensed chromatin compared with untreated and KBrO3-only treated cells; the transcription of DNA repair proteins was also reduced. At this time point, BPA exposure and co-exposure also reduced the change in intracellular pH observed after treatment with KBrO3 alone. Twenty-four hours post-damage initiation, BPA-exposed cells showed less condensed chromatin than cells treated with KBrO3 alone; the intracellular pH of the co-exposed cells was significantly reduced compared with untreated and KBrO3-treated cells; and significant up-regulation of DNA repair proteins was observed after co-exposure. Conclusion: These results support the induction of an adaptive response by BPA co-exposure that alters the microcellular environment and modulates DNA repair. Further work is required to determine whether BPA induces similar DNA lesions in vivo at environmentally relevant doses; however, in the Ku70-deficient mouse embryonic fibroblasts, exposure to a high dose of BPA was associated with changes in the

  9. Multiple roles of Activin/Nodal, bone morphogenetic protein, fibroblast growth factor and Wnt/β-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures

    PubMed Central

    Lupo, Giuseppe; Novorol, Claire; Smith, Joseph R.; Vallier, Ludovic; Miranda, Elena; Alexander, Morgan; Biagioni, Stefano; Pedersen, Roger A.; Harris, William A.

    2013-01-01

    Several studies have successfully produced a variety of neural cell types from human embryonic stem cells (hESCs), but there has been limited systematic analysis of how different regional identities are established using well-defined differentiation conditions. We have used adherent, chemically defined cultures to analyse the roles of Activin/Nodal, bone morphogenetic protein (BMP), fibroblast growth factor (FGF) and Wnt/β-catenin signalling in neural induction, anteroposterior patterning and eye field specification in hESCs. We show that either BMP inhibition or activation of FGF signalling is required for effective neural induction, but these two pathways have distinct outcomes on rostrocaudal patterning. While BMP inhibition leads to specification of forebrain/midbrain positional identities, FGF-dependent neural induction is associated with strong posteriorization towards hindbrain/spinal cord fates. We also demonstrate that Wnt/β-catenin signalling is activated during neural induction and promotes acquisition of neural fates posterior to forebrain. Therefore, inhibition of this pathway is needed for efficient forebrain specification. Finally, we provide evidence that the levels of Activin/Nodal and BMP signalling have a marked influence on further forebrain patterning and that constitutive inhibition of these pathways represses expression of eye field genes. These results show that the key mechanisms controlling neural patterning in model vertebrate species are preserved in adherent, chemically defined hESC cultures and reveal new insights into the signals regulating eye field specification. PMID:23576785

  10. Multiple roles of Activin/Nodal, bone morphogenetic protein, fibroblast growth factor and Wnt/β-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures.

    PubMed

    Lupo, Giuseppe; Novorol, Claire; Smith, Joseph R; Vallier, Ludovic; Miranda, Elena; Alexander, Morgan; Biagioni, Stefano; Pedersen, Roger A; Harris, William A

    2013-04-01

    Several studies have successfully produced a variety of neural cell types from human embryonic stem cells (hESCs), but there has been limited systematic analysis of how different regional identities are established using well-defined differentiation conditions. We have used adherent, chemically defined cultures to analyse the roles of Activin/Nodal, bone morphogenetic protein (BMP), fibroblast growth factor (FGF) and Wnt/β-catenin signalling in neural induction, anteroposterior patterning and eye field specification in hESCs. We show that either BMP inhibition or activation of FGF signalling is required for effective neural induction, but these two pathways have distinct outcomes on rostrocaudal patterning. While BMP inhibition leads to specification of forebrain/midbrain positional identities, FGF-dependent neural induction is associated with strong posteriorization towards hindbrain/spinal cord fates. We also demonstrate that Wnt/β-catenin signalling is activated during neural induction and promotes acquisition of neural fates posterior to forebrain. Therefore, inhibition of this pathway is needed for efficient forebrain specification. Finally, we provide evidence that the levels of Activin/Nodal and BMP signalling have a marked influence on further forebrain patterning and that constitutive inhibition of these pathways represses expression of eye field genes. These results show that the key mechanisms controlling neural patterning in model vertebrate species are preserved in adherent, chemically defined hESC cultures and reveal new insights into the signals regulating eye field specification. PMID:23576785

  11. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line.

    PubMed

    Śmieszek, Agnieszka; Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marędziak, Monika; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  12. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line

    PubMed Central

    Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  13. Cell growth regulation through GM3-enriched microdomain (glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13.

    PubMed

    Toledo, Marcos S; Suzuki, Erika; Handa, Kazuko; Hakomori, Senitiroh

    2004-08-13

    Cell growth control mechanisms were studied based on organization of components in glycosphingolipid-enriched microdomain (GEM) in WI38 cells versus their oncogenic transformant VA13 cells. Levels of fibroblast growth factor receptor (FGFR) and cSrc were 4 times and 2-3 times higher, respectively, in VA13 than in WI38 GEM, whereas the level of tetraspanin CD9/CD81 was 3-5 times higher in WI38 than in VA13 GEM. Csk, the physiological inhibitor of cSrc, was present in WI38 but not in VA13 GEM. Functional association of GEM components in control of cell growth in WI38 is indicated by several lines of evidence. (i) Confluent, growth-inhibited WI38 showed a lower degree of FGF-induced MAPK activation than actively growing cells in sparse culture. (ii) The level of inactive cSrc (with Tyr-527 phosphate) was higher in confluent cells than in actively growing cells. Both processes i and ii were inhibited by GM3 since they were enhanced by GM3 depletion with d-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4). (iii) The high level of inactive cSrc associated with growth-inhibited cells was caused by coexisting Csk in WI38 GEM. (iv) Interaction of GM3 with FGFR was demonstrated by binding of GM3 to FGFR in the GEM fraction, as probed with GM3-coated beads, and by confocal microscopy. In contrast to WI38, both cSrc and MAPK in VA13 were strongly activated regardless of FGF stimulation or GM3 depletion by P4. Continuous, constitutive activation of both cSrc and MAPK was due to (i) a much higher level of cSrc and FGFR in VA13 than in WI38 GEM, (ii) their close association/interaction in VA13 GEM as indicated by clear coimmunoprecipitation between cSrc and FGFR, and (iii) the absence of Csk in VA13 GEM, making GEM incapable of inhibiting cSrc activation. PMID:15143068

  14. Positive Correlation Between the Efficiency of Induced Pluripotent Stem Cells and the Development Rate of Nuclear Transfer Embryos When the Same Porcine Embryonic Fibroblast Lines Are Used As Donor Cells

    PubMed Central

    Xie, Bingteng; Wang, Jianyu; Liu, Shichao; Wang, Jiaqiang; Xue, Binghua; Li, Jingyu; Wei, Renyue; Zhao, Yanhua

    2014-01-01

    Abstract Induced pluripotent stem cells (iPSCs) and nuclear transfer (NT) are two of the primary routes to reprogram differentiated cells back to the pluripotent state. However, it is still unknown whether there is any correlation between the reprogramming efficiency of iPSCs and NT if the same donor cells are employed. In this study, six porcine embryonic fibroblast (PEF) lines from Landrace (L1, L6, L9) or Congjiang local pigs (C4, C5, C6) were used for iPSC induction and NT. Furthermore, the resultant iPSCs from four PEF lines (L1, L6, C4, and C5) were used for NT (iPSC-NT), and the expression of exogenous genes was detected in iPSC-NT embryos by real-time PCR. The results showed that the efficiency of iPSC lines established from different PEF lines were significantly different. When the same PEF lines were used as donor cells for NT, the blastocysts rates were also different among different PEF lines and positively related with iPSCs induction efficiency. When the iPSCs were used as donor cells for NT, compared with the source PEFs, the blastocysts rates were significantly decreased. Real-time PCR results indicated that exogenous genes (Oct4, c-Myc) continued to be expressed in iPSC-NT embryos. In summary, our results demonstrate that there was a positive correlation between iPSCs and NT reprogramming efficiency, although the mechanism of these two routes is different. This may provide a new method to select the appropriate donor cells for inducing iPSCs. PMID:24738969

  15. Connective tissue fibroblasts and Tcf4 regulate myogenesis

    PubMed Central

    Mathew, Sam J.; Hansen, Jody M.; Merrell, Allyson J.; Murphy, Malea M.; Lawson, Jennifer A.; Hutcheson, David A.; Hansen, Mark S.; Angus-Hill, Melinda; Kardon, Gabrielle

    2011-01-01

    Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4GFPCre mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis. PMID:21177349

  16. MicroRNA (miRNA)-mediated Interaction between Leukemia/Lymphoma-related Factor (LRF) and Alternative Splicing Factor/Splicing Factor 2 (ASF/SF2) Affects Mouse Embryonic Fibroblast Senescence and Apoptosis*

    PubMed Central

    Verduci, Lorena; Simili, Marcella; Rizzo, Milena; Mercatanti, Alberto; Evangelista, Monica; Mariani, Laura; Rainaldi, Giuseppe; Pitto, Letizia

    2010-01-01

    Leukemia/lymphoma-related factor (LRF) is a transcriptional repressor, which by recruiting histone deacetylases specifically represses p19/ARF expression, thus behaving as an oncogene. Conversely, in mouse embryonic fibroblasts (MEF), LRF inhibition causes aberrant p19ARF up-regulation resulting in proliferative defects and premature senescence. We have recently shown that LRF is controlled by microRNAs. Here we show that LRF acts on MEF proliferation and senescence/apoptosis by repressing miR-28 and miR-505, revealing a regulatory circuit where microRNAs (miRNAs) work both upstream and downstream of LRF. By analyzing miRNA expression profiles of MEF transfected with LRF-specific short interfering RNAs, we found that miR-28 and miR-505 are modulated by LRF. Both miRNAs are predicted to target alternative splicing factor/splicing factor 2 (ASF/SF2), a serine/arginine protein essential for cell viability. In vertebrates, loss or inactivation of ASF/SF2 may result in genomic instability and induce G2 cell cycle arrest and apoptosis. We showed that miR-28 and miR-505 modulate ASF/SF2 by directly binding ASF/SF2 3′-UTR. Decrease in LRF causes a decrease in ASF/SF2, which depends on up-regulation of miR-28 and miR-505. Alteration of each of the members of the LRF/miR-28/miR-505/ASF/SF2 axis affects MEF proliferation and the number of senescent and apoptotic cells. Consistently, the axis is coordinately modulated as cell senescence increases with passages in MEF culture. In conclusion, we show that LRF-dependent miRNAs miR-28 and miR-505 control MEF proliferation and survival by targeting ASF/SF2 and suggest a central role of LRF-related miRNAs, in addition to the role of LRF-dependent p53 control, in cellular homeostasis. PMID:20923760

  17. Embryonic cerebrospinal fluid collaborates with the isthmic organizer to regulate mesencephalic gene expression.

    PubMed

    Parada, Carolina; Martín, Cristina; Alonso, María I; Moro, José A; Bueno, David; Gato, Angel

    2005-11-01

    Early in development, the behavior of neuroepithelial cells is controlled by several factors acting in a developmentally regulated manner. Recently it has been shown that diffusible factors contained within embryonic cerebrospinal fluid (CSF) promote neuroepithelial cell survival, proliferation, and neurogenesis in mesencephalic explants lacking any known organizing center. In this paper, we show that mesencephalic and mesencephalic+isthmic organizer explants cultured only with basal medium do not express the typically expressed mesencephalic or isthmic organizer genes analyzed (otx2 and fgf8, respectively) and that mesencephalic explants cultured with embryonic CSF-supplemented medium do effect such expression, although they exhibit an altered pattern of gene expression, including ectopic shh expression domains. Other trophic sources that are able to maintain normal neuroepithelial cell behavior, i.e., fibroblast growth factor-2, fail to activate this ectopic shh expression. Conversely, the expression pattern of the analyzed genes in mesencephalic+isthmic organizer explants cultured with embryonic cerebrospinal fluid-supplemented medium mimics the pattern for control embryos developed in ovo. We demonstrate that embryonic CSF collaborates with the isthmic organizer in regulation of the expression pattern of some characteristic neuroectodermal genes during early stages of central nervous system (CNS) development, and we suggest that this collaboration is not restricted to the maintenance of neuroepithelial cell survival. Data reported in this paper corroborate the hypothesis that factors contained within embryonic CSF contribute to the patterning of the CNS during early embryonic development. PMID:16180222

  18. Extinction of Oct-3/4 gene expression in embryonal carcinoma [times] fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region

    SciTech Connect

    Ben-Shushan, E.; Pikarsky, E.; Klar, A.; Bergman, Y. )

    1993-02-01

    The OCT-3/4 gene provides an excellent model system with which to study the extinction phenomenon in somatic cell hybrids. The molecular mechanism that underlies the extinction of a tissue-specific transcription factor in somatic cell hybrides is evaluated and compared with its down-regulation in retinoic acid treated embryonal carcinoma cells. This study draws a connection between the shutdown of OCT-3/4 expression in retinoic acid (RA)-differentiated embryonal carcinoma (EC) cells and its extinction in hybrid cells. This repression of OCT-3/4 expression is achieved through changes in the methylation status, chromatin structure, and transcriptional activity of the OCT-3/4 upstream regulatory region. 59 refs.

  19. A Gene Trap Knockout of the Tiam-1 Protein Results in Malformation of the Early Embryonic Brain

    PubMed Central

    Yoo, Sooyeon; Kim, Yujin; Lee, Haeryung; Park, Sungjeong; Park, Soochul

    2012-01-01

    Tiam-1 has been implicated in the development of the central nervous system. However, the in vivo function of Tiam-1 has not been fully determined in the developing mouse brain. In this study, we generated Tiam-1 knockout mice using a Tiam-1 gene-trapped embryonic stem cell line. Insertion of a gene trap vector into a genomic site downstream of exon 5 resulted in a mutant allele encoding a truncated protein fused with the β-geo LacZ gene. Primary mouse embryonic fibroblasts lacking Tiam-1 revealed a significant decrease in Rac activity and cell proliferation. In addition, whole-mount embryonic LacZ expression analysis demonstrated that Tiam-1 is specifically expressed in regions of the developing brain, such as the caudal telencephalon and rostral diencephalon. More importantly, mouse embryos deficient in Tiam-1 gene expression displayed a severe defect in embryonic brain development, including neural tube closure defects or a dramatic decrease in brain size. These findings suggest that embryonic Tiam-1 expression plays a critical role during early brain development in mice. PMID:22661025

  20. Direct Induction of Trophoblast Stem Cells from Murine Fibroblasts.

    PubMed

    Kubaczka, Caroline; Senner, Claire E; Cierlitza, Monika; Araúzo-Bravo, Marcos J; Kuckenberg, Peter; Peitz, Michael; Hemberger, Myriam; Schorle, Hubert

    2015-11-01

    Trophoblast stem cells (TSCs) arise from the first cell fate decision in the developing embryo and generate extra-embryonic lineages, giving rise to the fetal portion of the placenta. Mouse embryonic and extra-embryonic lineages are strictly separated by a distinct epigenetic barrier, which is not fully overcome following expression of TSC-determining factors in embryonic stem cells. Here, we show that transient expression of Tfap2c, Gata3, Eomes, and Ets2 is sufficient to reprogram mouse embryonic fibroblasts and post-natal tail-tip-derived fibroblasts into induced TSCs (iTSCs) and surmount the epigenetic barrier separating somatic from extra-embryonic lineages. iTSCs share nearly identical morphological characteristics, gene expression profiles, and DNA methylation patterns with blastocyst-derived TSCs. Furthermore, iTSCs display transgene-independent self-renewal, differentiate along extra-embryonic lineages, and chimerize host placentas following blastocyst injection. These findings provide insights into the transcription factor networks governing TSC identity and opportunities for studying the epigenetic barriers underlying embryonic and extra-embryonic lineage segregation. PMID:26412560

  1. Embryonic hematopoiesis.

    PubMed

    Golub, Rachel; Cumano, Ana

    2013-12-01

    Blood cells are continually produced from a pool of progenitors that derive from hematopoietic stem cells (HSCs). In vertebrates, the hematopoietic system develops from two distinct waves or generation of precursors. The first wave occurs in the yolk sac, in mammals or equivalent embryonic structure, and produces nucleated primitive erythrocytes that provide the embryo with the first oxygen transporter and are, therefore, essential for the viability of the embryo. The yolk sac also produces myeloid cells that migrate to the central nervous system and to the skin to form the microglia and skin specific macrophages, the Langerhans cells. The second wave occurs in the dorsal aorta and produces multipotential hematopoietic progenitors. These cells are generated once in the lifetime from mesoderm derivatives closely related to endothelial cells, during a short period of embryonic development. Newly generated cells do not reconstitute the hematopoietic compartment of conventional recipients; therefore, they are designated as immature or pre-HSCs. They undergo maturation into adult HSCs in the aorta or in the fetal liver accompanied by the expression of MHC class I, CD45, CD150, Sca-1 and the absence of CD48. Differentiation of HSCs first occurs in the fetal liver, giving rise to mature blood cells. HSCs also expand in the fetal liver, and in a short time period (four days in the mouse embryo), they increase over 40-fold. HSCs and progenitor cells exit the fetal liver and colonize the spleen, where differentiation to the myeloid lineage and particular lymphoid subsets is favored. PMID:24041595

  2. The expression profiles of fibroblast growth factor 9 and its receptors in developing mice testes.

    PubMed

    Lai, Meng-Shao; Wang, Chia-Yih; Yang, Shang-Hsun; Wu, Chia-Ching; Sun, H Sunny; Tsai, Shaw-Jenq; Chuang, Jih-Ing; Chen, Yung-Chia; Huang, Bu-Miin

    2016-04-01

    An expressional lack of fibroblast growth factor 9 (FGF9) would cause male-to-female sex reversal in the mouse, implying the essential role of FGF9 in testicular organogenesis and maturation. However, the temporal expression of FGF9 and its receptors during testicular development remains elusive. In this study, immunohistochemistry was used to identify the localization of FGF9 and its receptors at different embryonic and postnatal stages in mice testes. Results showed that FGF9 continuously expressed in the testis during development. FGF9 had highest expression in the interstitial region at 17-18 d post coitum (dpc) and in the spermatocytes, spermatids and Leydig cell on postnatal days (pnd) 35-65. Regarding receptor expression, FGFR1 and FGFR4 were evenly expressed in the whole testis during the embryonic and postnatal stages. However, FGFR2 and FGFR3 were widely expressed during the embryonic testis development with higher FGFR2 expression in seminiferous tubules at 16-18 dpc and higher FGFR3 expression in interstitial region at 17-18 dpc. In postnatal stage, FGFR2 extensively expressed with higher expression at spermatids and Leydig cells on 35-65 pnd and FGFR3 widely expressed in the whole testis. Taken together, these results strongly suggest that FGF9 is correlated with the temporal expression profiles of FGFR2 and FGFR3 and possibly associated with testis development. PMID:27078042

  3. Improved Oocyte Isolation and Embryonic Development of Outbred Deer Mice

    PubMed Central

    Kyu Choi, Jung; He, Xiaoming

    2015-01-01

    In this study, we improved the protocol for isolating cumulus-oocyte complexes (COCs) from the outbred deer mice by using only one hormone (instead of the widely used combination of two hormones) with reduced dose. Moreover, we identified that significantly more metaphase II (MII) oocytes could be obtained by supplementing epidermal growth factor (EGF) and leukemia inhibition factor (LIF) into the previously established medium for in vitro maturation (IVM) of the COCs. Furthermore, we overcame the major challenge of two-cell block during embryonic development of deer mice after either in vitro fertilization (IVF) or parthenogenetic activation (PA) of the MII oocytes, by culturing the two-cell stage embryos on the feeder layer of inactivated mouse embryonic fibroblasts (MEFs) in the medium of mouse embryonic stem cells. Collectively, this work represents a major step forward in using deer mice as an outbred animal model for biomedical research on reproduction and early embryonic development. PMID:26184014

  4. Lacking "Lack": A Reply to Joldersma

    ERIC Educational Resources Information Center

    Marshall, James D.

    2007-01-01

    First I would like to thank Clarence Joldersma for his review of our "Poststructuralism, Philosophy, Pedagogy" (Marshall, 2004-PPP). In particular, I would thank him for his opening sentence: "[t]his book is a response to a lack." It is the notion of a lack, noted again later in his review, which I wish to take up mainly in this response. Rather…

  5. Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes

    PubMed Central

    2015-01-01

    Background Recently fibroblasts of many mammalian species have been reprogrammed to pluripotent state using overexpression of several transcription factors. This technology allows production of induced pluripotent stem (iPS) cells with properties similar to embryonic stem (ES) cells. The completeness of reprogramming process is well studied in such species as mouse and human but there is not enough data on other species. We produced American mink (Neovison vison) ES and iPS cells and compared these cells using transcriptome analysis. Results We report the generation of 10 mink ES and 22 iPS cell lines. The majority of the analyzed cell lines had normal diploid chromosome number. The only ES cell line with XX chromosome set had both X-chromosomes in active state that is characteristic of pluripotent cells. The pluripotency of ES and iPS cell lines was confirmed by formation of teratomas with cell types representing all three germ layers. Transcriptome analysis of mink embryonic fibroblasts (EF), two ES and two iPS cell lines allowed us to identify 11831 assembled contigs which were annotated. These led to a number of 6891 unique genes. Of these 3201 were differentially expressed between mink EF and ES cells. We analyzed expression levels of these genes in iPS cell lines. This allowed us to show that 80% of genes were correctly reprogrammed in iPS cells, whereas approximately 6% had an intermediate expression pattern, about 7% were not reprogrammed and about 5% had a "novel" expression pattern. We observed expression of pluripotency marker genes such as Oct4, Sox2 and Rex1 in ES and iPS cell lines with notable exception of Nanog. Conclusions We had produced and characterized American mink ES and iPS cells. These cells were pluripotent by a number of criteria and iPS cells exhibited effective reprogramming. Interestingly, we had showed lack of Nanog expression and consider it as a species-specific feature. PMID:26694224

  6. Induced pluripotent stem cells from goat fibroblasts.

    PubMed

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng

    2013-12-01

    Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo. PMID:24123501

  7. Fibroblast biology in pterygia.

    PubMed

    Kim, Kyoung Woo; Park, Soo Hyun; Kim, Jae Chan

    2016-01-01

    Activation of fibroblasts is a vital process during wound healing. However, if prolonged and exaggerated, profibrotic pathways lead to tissue fibrosis or scarring and further organ malfunction. Although the pathogenesis of pterygium is known to be multi-factorial, additional studies are needed to better understand the pathways initiated by fibroblast activation for the purpose of therapeutic translation. Regarding pterygium as a possible systemic disorder, we discuss the different cell types that pterygium fibroblasts originate from. These may include bone marrow-derived progenitor cells, cells undergoing epithelial-mesenchymal transition (EMT), and local resident stromal cells. We also describe how pterygium fibroblasts can be activated and perpetuate profibrotic signaling elicited by various proliferative drivers, immune-inflammation, and novel factors such as stromal cell-derived factor-1 (SDF-1) as well as a known key fibrotic factor, transforming growth factor-beta (TGF-β). Finally, epigenetic modification is discussed to explain inherited susceptibility to pterygium. PMID:26675401

  8. Autophagy is required for IL-2-mediated fibroblast growth

    SciTech Connect

    Kang, Rui; Tang, Daolin; Lotze, Michael T.; Zeh III, Herbert J.

    2013-02-15

    Autophagy is an evolutionarily conserved pathway responsible for delivery of cytoplasmic material into the lysosomal degradation pathway to enable vesicular exocytosis. Interleukin (IL)-2 is produced by T-cells and its activity is important for immunoregulation. Fibroblasts are an immune competent cell type, playing a critical role in wound healing, chronic inflammation, and tumor development. Although autophagy plays an important role in each of these processes, whether it regulates IL-2 activity in fibroblasts is unknown. Here, we show that autophagy is required for IL-2-induced cell growth in fibroblasts. IL-2 significantly induced autophagy in mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts. Autophagy inhibitors (e.g., 3-methylamphetamine and bafilomycin A1) or knockdown of ATG5 and beclin 1 blocked clinical grade IL-2-induced autophagy. Moreover, IL-2 induced HMGB1 cytoplasmic translocation in MEFs and promoted interaction between HMGB1 and beclin1, which is required for autophagy induction. Pharmacological and genetic inhibition of autophagy inhibited IL-2-induced cell proliferation and enhanced IL-2-induced apoptosis. These findings suggest that autophagy is an important pro-survival regulator for IL-2-induced cell growth in fibroblasts.

  9. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts

    PubMed Central

    Parrinello, Simona; Samper, Enrique; Krtolica, Ana; Goldstein, Joshua; Melov, Simon; Campisi, Judith

    2016-01-01

    Most mammalian cells do not divide indefinitely, owing to a process termed replicative senescence. In human cells, replicative senescence is caused by telomere shortening, but murine cells senesce despite having long stable telomeres1. Here, we show that the phenotypes of senescent human fibroblasts and mouse embryonic fibroblasts (MEFs) differ under standard culture conditions, which include 20% oxygen. MEFs did not senesce in physiological (3%) oxygen levels, but underwent a spontaneous event that allowed indefinite proliferation in 20% oxygen. The proliferation and cytogenetic profiles of DNA repair-deficient MEFs suggested that DNA damage limits MEF proliferation in 20% oxygen. Indeed, MEFs accumulated more DNA damage in 20% oxygen than 3% oxygen, and more damage than human fibroblasts in 20% oxygen. Our results identify oxygen sensitivity as a critical difference between mouse and human cells, explaining their proliferative differences in culture, and possibly their different rates of cancer and ageing. PMID:12855956

  10. Neurofibromin-deficient fibroblasts fail to form perineurium in vitro

    PubMed Central

    Rosenbaum, Thorsten; Boissy, Ying L.; Kombrinck, Keith; Brannan, Camilynn I.; Jenkins, Nancy A.; Copeland, Neal G.

    2010-01-01

    SUMMARY To identify cell type(s) that might contribute to nerve sheath tumors (neurofibromas) in patients with neurofibromatosis type 1, we generated cell cultures containing neurons, Schwann cells and fibroblasts from transgenic mouse embryos in which the type 1 neurofibromatosis gene was disrupted by homologous recombination (Brannan et al. (1994) Genes Development, 8,1019–1029). Normal fascicle formation by perineurial cells failed to occur in the absence of neurofibromin. Fascicles were reduced in number and showed abnormal morphology when normal neurons and Schwann cells were cultured up to 37 days with fibroblasts lacking neurofibromin. Proliferation was increased in a majority of fibroblast cell strains analyzed from embryos lacking neurofibromin. These observations suggest that mutations in the neurofibromatosis type 1 gene affect fibroblast behavior that might contribute to neurofibroma formation in patients with neurofibromatosis type 1. PMID:8582272

  11. Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro☆

    PubMed Central

    Lu, Jiang; Lu, Kehuan; Li, Dongsheng

    2012-01-01

    In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. PMID:25624789

  12. Dupuytren's Contracture: Fibroblast Contraction?

    PubMed Central

    Gabbiani, Giulio; Majno, Guido

    1972-01-01

    In 6 cases of Dupuytren's disease and 1 of Ledderhose's disease, the nodules of the palmar and plantar aponeurosis were examined by light and electron microscopy. The cells composing these nodules, presumably fibroblasts, showed three significant ultrastructural features: (1) a fibrillar system similar to that of smooth muscle cells; (2) nuclear deformations such as are found in contracted cells, the severest being recognizable by light microscopy (cross-banded nuclei); (3) cell-to-cell and cell-to-stroma attachments. Based on these data and on recent information about the biology of the fibroblasts, it is suggested that these cells are fibroblasts that have modulated into contractile cells (myofibroblasts), and that their contraction plays a role in the pathogenesis of the contracture observed clinically. ImagesFig 10Fig 5Fig 11Fig 6 and 7Fig 8Fig 1Fig 2Fig 9Fig 3Fig 4 PMID:5009249

  13. Differential programming of p53-deficient embryonic cells during rotenone block

    EPA Science Inventory

    Mitochondrial dysfunction has been implicated in chemical toxicities. The present study used an in vitro model to investigate the differential expression of metabolic pathways during cellular stress in p53- efficient embryonic fibroblasts compared to p53-deficient cells. These c...

  14. Smg6/Est1 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay

    PubMed Central

    Li, Tangliang; Shi, Yue; Wang, Pei; Guachalla, Luis Miguel; Sun, Baofa; Joerss, Tjard; Chen, Yu-Sheng; Groth, Marco; Krueger, Anja; Platzer, Matthias; Yang, Yun-Gui; Rudolph, Karl Lenhard; Wang, Zhao-Qi

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is a post-transcriptional mechanism that targets aberrant transcripts and regulates the cellular RNA reservoir. Genetic modulation in vertebrates suggests that NMD is critical for cellular and tissue homeostasis, although the underlying mechanism remains elusive. Here, we generate knockout mice lacking Smg6/Est1, a key nuclease in NMD and a telomerase cofactor. While the complete loss of Smg6 causes mouse lethality at the blastocyst stage, inducible deletion of Smg6 is compatible with embryonic stem cell (ESC) proliferation despite the absence of telomere maintenance and functional NMD. Differentiation of Smg6-deficient ESCs is blocked due to sustained expression of pluripotency genes, normally repressed by NMD, and forced down-regulation of one such target, c-Myc, relieves the differentiation block. Smg6-null embryonic fibroblasts are viable as well, but are refractory to cellular reprograming into induced pluripotent stem cells (iPSCs). Finally, depletion of all major NMD factors compromises ESC differentiation, thus identifying NMD as a licensing factor for the switch of cell identity in the process of stem cell differentiation and somatic cell reprograming. PMID:25770585

  15. Folate Deficiency Induces Neurodegeneration and Brain Dysfunction in Mice Lacking Uracil DNA Glycosylase

    PubMed Central

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W.; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B.; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H.; Jaenisch, Rudolf

    2008-01-01

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung−/−) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung−/− embryonic fibroblasts, and conferred death of cultured Ung−/− hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung−/− but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung−/− mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency. PMID:18614692

  16. Premature aging with impaired oxidative stress defense in mice lacking TR4

    PubMed Central

    Lee, Yi-Fen; Liu, Su; Liu, Ning-Chun; Wang, Ruey-Sheng; Chen, Lu-Min; Lin, Wen-Jye; Ting, Huei-Ju; Ho, Hsin-Chiu; Li, Gonghui; Puzas, Edward J.; Wu, Qiao

    2011-01-01

    Early studies suggest that TR4 nuclear receptor is a key transcriptional factor regulating various biological activities, including reproduction, cerebella development, and metabolism. Here we report that mice lacking TR4 (TR4−/−) exhibited increasing genome instability and defective oxidative stress defense, which are associated with premature aging phenotypes. At the cellular level, we observed rapid cellular growth arrest and less resistance to oxidative stress and DNA damage in TR4−/− mouse embryonic fibroblasts (MEFs) in vitro. Restoring TR4 or supplying the antioxidant N-acetyl-l-cysteine (NAC) to TR4−/− MEFs reduced the DNA damage and slowed down cellular growth arrest. Focused qPCR array revealed alteration of gene profiles in the DNA damage response (DDR) and anti-reactive oxygen species (ROS) pathways in TR4−/− MEFs, which further supports the hypothesis that the premature aging in TR4−/− mice might stem from oxidative DNA damage caused by increased oxidative stress or compromised genome integrity. Together, our finding identifies a novel role of TR4 in mediating the interplay between oxidative stress defense and aging. PMID:21521714

  17. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    PubMed

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  18. Salmonella enterica Serovar Typhimurium Invades Fibroblasts by Multiple Routes Differing from the Entry into Epithelial Cells▿

    PubMed Central

    Aiastui, Ana; Pucciarelli, M. Graciela; García-del Portillo, Francisco

    2010-01-01

    Fibroblasts are ubiquitous cells essential to tissue homeostasis. Despite their nonphagocytic nature, fibroblasts restrain replication of intracellular bacterial pathogens such as Salmonella enterica serovar Typhimurium. The extent to which the entry route of the pathogen determines this intracellular response is unknown. Here, we analyzed S. Typhimurium invasion in fibroblasts obtained from diverse origins, including primary cultures and stable nontransformed cell lines derived from normal tissues. Features distinct to the invasion of epithelial cells were found in all fibroblasts tested. In some fibroblasts, bacteria lacking the type III secretion system encoded in the Salmonella pathogenicity island 1 displayed significant invasion rates and induced the formation of lamellipodia and filopodia at the fibroblast-bacteria contact site. Other bacterial invasion traits observed in fibroblasts were the requirement of phosphatidylinositol 3-kinase, mitogen-activated protein kinase MEK1, and both actin filaments and microtubules. RNA interference studies showed that different Rho family GTPases are targeted by S. Typhimurium to enter into distinct fibroblasts. Rac1 and Cdc42 knockdown affected invasion of normal rat kidney fibroblasts, whereas none of the GTPases tested (Rac1, Cdc42, RhoA, or RhoG) was essential for invasion of immortalized human foreskin fibroblasts. Collectively, these data reveal a marked diversity in the modes used by S. Typhimurium to enter into fibroblasts. PMID:20368348

  19. Dyskeratosis Congenita Dermal Fibroblasts are Defective in Supporting the Clonogenic Growth of Epidermal Keratinocytes

    PubMed Central

    Buckingham, Erin M.; Goldman, Frederick D.; Klingelhutz, Aloysius J.

    2012-01-01

    Telomere shortening is associated with cellular senescence and aging. Dyskeratosis congenita (DC) is a premature aging syndrome caused by mutations in genes for telomerase components or telomere proteins. DC patients have very short telomeres and exhibit aging-associated pathologies including epidermal abnormalities and bone marrow failure. Here, we show that DC skin fibroblasts are defective in their ability to support the clonogenic growth of epidermal keratinocytes. Conditioned media transfer experiments demonstrated that this defect was largely due to lack of a factor or factors secreted from the DC fibroblasts. Compared to early passage normal fibroblasts, DC fibroblasts express significantly lower transcript levels of several genes that code for secreted proteins, including Insulin-like Growth Factor 1 (IGF1) and Hepatocyte Growth Factor (HGF). Aged normal fibroblasts with short telomeres also had reduced levels of IGF1 and HGF, similar to early passage DC fibroblasts. Knockdown of IGF1 or HGF in normal fibroblasts caused a reduction in the capacity of conditioned media from these fibroblasts to support keratinocyte clonogenic growth. Surprisingly, reconstitution of telomerase in DC fibroblasts did not significantly increase transcript levels of IGF1 or HGF or substantially increase the ability of the fibroblasts to support keratinocyte growth, indicating that the gene expression defect is not readily reversible. Our results suggest that telomere shortening in dermal fibroblasts leads to reduction in expression of genes such as IGF1 and HGF and that this may cause a defect in supporting normal epidermal proliferation. PMID:23251848

  20. Embryonic myogenesis pathways in muscle regeneration.

    PubMed

    Zhao, Po; Hoffman, Eric P

    2004-02-01

    Embryonic myogenesis involves the staged induction of myogenic regulatory factors and positional cues that dictate cell determination, proliferation, and differentiation into adult muscle. Muscle is able to regenerate after damage, and muscle regeneration is generally thought to recapitulate myogenesis during embryogenesis. There has been considerable progress in the delineation of myogenesis pathways during embryogenesis, but it is not known whether the same signaling pathways are relevant to muscle regeneration in adults. Here, we defined the subset of embryogenesis pathways induced in muscle regeneration using a 27 time-point in vivo muscle regeneration series. The embryonic Wnt (Wnt1, 3a, 7a, 11), Shh pathway, and the BMP (BMP2, 4, 7) pathway were not induced during muscle regeneration. Moreover, antagonists of Wnt signaling, sFRP1, sFRP2, and sFRP4 (secreted frizzled-related proteins) were significantly up-regulated, suggesting active inhibition of the Wnt pathway. The pro-differentiation FGFR4 pathway was transiently expressed at day 3, commensurate with expression of MyoD, Myogenin, Myf5, and Pax7. Protein verification studies showed fibroblast growth factor receptor 4 (FGFR4) protein to be strongly expressed in differentiating myoblasts and newly formed myotubes. We present evidence that FGF6 is likely the key ligand for FGFR4 during muscle regeneration, and further suggest that FGF6 is released from necrotic myofibers where it is then sequestered by basal laminae. We also confirmed activation of Notch1 in the regenerating muscle. Finally, known MyoD coactivators (MEF2A, p/CIP, TCF12) and repressors (Twist, Id2) were strongly induced at appropriate time points. Taken together, our results suggest that embryonic positional signals (Wnt, Shh, and BMP) are not induced in postnatal muscle regeneration, whereas cell-autonomous factors (Pax7, MRFs, FGFR4) involving muscle precursor proliferation and differentiation are recapitulated by muscle regeneration. PMID

  1. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

    PubMed

    Wallace, Julie A; Li, Fu; Balakrishnan, Subhasree; Cantemir-Stone, Carmen Z; Pecot, Thierry; Martin, Chelsea; Kladney, Raleigh D; Sharma, Sudarshana M; Trimboli, Anthony J; Fernandez, Soledad A; Yu, Lianbo; Rosol, Thomas J; Stromberg, Paul C; Lesurf, Robert; Hallett, Michael; Park, Morag; Leone, Gustavo; Ostrowski, Michael C

    2013-01-01

    Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies. PMID:23977064

  2. Globin synthesis in hybrid cells constructed by transplantation of dormant avian erythrocyte nuclei into enucleated fibroblasts.

    PubMed Central

    Bruno, J; Reich, N; Lucas, J J

    1981-01-01

    The polypeptides synthesized by mature embryonic erythrocytes prepared from the peripheral blood of 14- to 15-day-old chicken embryos were analyzed by two-dimensional gel electrophoresis. Fewer than 200 species of polypeptides were detected; the major polypeptides made at this time were identified as the alpha A-, alpha D-, and beta-globin chains. The dormant erythrocyte nuclei were next reactivated to transcriptional competence by transplantation into enucleated mouse or chicken embryo fibroblasts, with frequencies of cytoplast renucleation of about 50 and 90%, respectively. Since large numbers of hybrid cells could be constructed, a biochemical analysis was possible. Electrophoretic analysis of the [35S]methionine-labeled polypeptides made in the hybrid cell types showed that polypeptides having the mobilities of only two (alpha A and alpha D) of the three major adult globin chains were made as major constituents of the hybrid cells. However, analysis of 14C-amino acid-labeled polypeptides revealed that a beta-like polypeptide that lacked methionine was also synthesized in large amounts. This polypeptide was tentatively identified as the early embryonic globin species rho. Globin synthesis was detected as early as 3 h after nuclear transplantation and as late as 18 h, the last time measured in these experiments. It appeared that globin polypeptides made at very early times were translated at least partially from chicken messenger ribonucleic acid introduced into the hybrid cells during fusion, whereas those made at later times were translated primarily from newly synthesized globin messenger ribonucleic acid. The potential usefulness of this hybrid cell system in analyzing mechanisms regulating globin gene expression is discussed. Images PMID:7346715

  3. [Effects of different culture system of isolating and passage of sheep embryonic stem-like cells].

    PubMed

    Bai, Changming; Liu, Chousheng; Wang, Zhigang; Wang, Xinzhuang

    2008-07-01

    In this research, we use mouse embryonic fibroblasts as feeder layers. To eliminate the influence of serum and mouse embryonic stem cells (ESCs) conditioned medium (ESCCM) on self-renewal of sheep embryonic stem-like cells, knockout serum replacement (KSR) was used to replace serum, then supplanted with ESCCM for the isolation and cloning of sheep embryonic stem-like cells. We found when inner cell masses (ICMs) cultured in the control group with medium supplanted with fetal bovine serum (FBS), sheep ES-like cells could not survive for more than 3 passages. However, sheep embryonic stem-like cells could remain undifferentiated for 5 passages when cultured in the medium that FBS was substituted by KSR. The result indicates that KSR culture system was more suitable for the isolation and cloning of sheep embryonic stem-like cells compared to FBS culture system. Finally we applied medium with 15% KSR as basic medium supplanted with 40% ESCCM as a new culture system to isolate sheep embryonic stem-like cells, we found one embryonic stem-like cell line still maintained undifferentiating for 8 passages, which characterized with a normal and stable karyotype and high expression of alkaline phosphatase. These results suggest that it is suitable to culture sheep ICM in the new culture system with 15% KSR as basic medium and supplanted with 40% ESCCM, which indicated that mouse ES cells might secrete factors playing important roles in promoting sheep ES-like cells' self-renewal. PMID:18837407

  4. Gravity and embryonic development

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1976-01-01

    The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.

  5. An expandable, inducible hemangioblast state regulated by fibroblast growth factor.

    PubMed

    Vereide, David T; Vickerman, Vernella; Swanson, Scott A; Chu, Li-Fang; McIntosh, Brian E; Thomson, James A

    2014-12-01

    During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that "trap" murine cells in a proliferative state and endow them with a hemangioblast potential. These "expandable" hemangioblasts (eHBs) are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines. PMID:25458896

  6. Genome-wide nucleosome positioning during embryonic stem cell development.

    PubMed

    Teif, Vladimir B; Vainshtein, Yevhen; Caudron-Herger, Maïwen; Mallm, Jan-Philipp; Marth, Caroline; Höfer, Thomas; Rippe, Karsten

    2012-11-01

    We determined genome-wide nucleosome occupancies in mouse embryonic stem cells and their neural progenitor and embryonic fibroblast counterparts to assess features associated with nucleosome positioning during lineage commitment. Cell-type- and protein-specific binding preferences of transcription factors to sites with either low (Myc, Klf4 and Zfx) or high (Nanog, Oct4 and Sox2) nucleosome occupancy as well as complex patterns for CTCF were identified. Nucleosome-depleted regions around transcription start and transcription termination sites were broad and more pronounced for active genes, with distinct patterns for promoters classified according to CpG content or histone methylation marks. Throughout the genome, nucleosome occupancy was correlated with certain histone methylation or acetylation modifications. In addition, the average nucleosome repeat length increased during differentiation by 5-7 base pairs, with local variations for specific regions. Our results reveal regulatory mechanisms of cell differentiation that involve nucleosome repositioning. PMID:23085715

  7. Directed Differentiation of Dopaminergic Neuronal Subtypes from Human Embryonic Stem Cells

    PubMed Central

    Yan, Yiping; Yang, Dali; Zarnowska, Ewa D.; Du, Zhongwei; Werbel, Brian; Valliere, Chuck; Pearce, Robert A.; Thomson, James A.; Zhang, Su-Chun

    2009-01-01

    How dopamine (DA) neuronal subtypes are specified remains unknown. In this study we show a robust generation of functional DA neurons from human embryonic stem cells (hESCs) through a specific sequence of application of fibroblast growth factor 8 (FGF8) and sonic hedgehog (SHH). Treatment of hESC-derived Sox1+ neuroepithelial cells with FGF8 and SHH resulted in production of tyrosine hydroxylase (TH)–positive neurons that were mostly bipolar cells, coexpression with γ-aminobutyric acid, and lack of midbrain marker engrailed 1 (En1) expression. However, FGF8 treatment of precursor cells before Sox1 expression led to the generation of a similar proportion of TH+ neurons characteristic of midbrain projection DA neurons with large cell bodies and complex processes and coexpression of En1. This suggests that one mechanism of generating neuronal subtypes is temporal availability of morphogens to a specific group of precursors. The in vitro–generated DA neurons were electrophysiologically active and released DA in an activity-dependent manner. They may thus provide a renewable source of functional human DA neurons for drug screening and development of sustainable therapeutics for disorders affecting the DA system. PMID:15917474

  8. Chemically induced bidirectional differentiation of embryonal carcinoma cells in vitro.

    PubMed Central

    Speers, W. C.; Birdwell, C. R.; Dixon, F. J.

    1979-01-01

    N,N-dimethylacetamide, hexamethylene bisacetamide, and Polybrene induced rapid and extensive differentiation in vitro in an otherwise slowly differentiating subline of embryonal carcinoma cells. The type of differentiated cell induced was dependent on the spatial organization of the stem cells during drug treatment. In monalayer culture "epithelial" cells were produced exclusively. However, treatment of aggregated suspension cultures yielded predominantly "fibroblast-like" cells. The undifferentiated embryonal carcinoma cells and the two differentiated cell types were morphologically distinct when examined by light microscopy, scanning electron microscopy, and transmission electron microscopy; and they had differences in cell surface antigens. Both differential cell types produced large amounts of fibronectin, whereas the embryonal carcinoma cells produced only minimal amounts. This system provides a convenient way to induce relatively synchronous differentiation of embryonal carcinoma cells into specific differentiated cell types. Images Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 PMID:507191

  9. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures

    PubMed Central

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-01-01

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. PMID:24920580

  10. Magnesium and Embryonic Development

    PubMed Central

    Komiya, Yuko; Su, Li-Ting; Chen, Hsiang-Chin; Habas, Raymond; Runnels, Loren W.

    2014-01-01

    Important for energy metabolism, neurotransmission, bone stability, and other cellular functions, Mg2+ has well-established and undisputedly critical roles in adult tissues. Its contributions to early embryonic development are less clearly understood. For decades it has been known that gestational Mg2+ deficiency in rodents produces teratogenic effects. More recent studies have linked deficiency in this vital cation to birth defects in humans, including spina bifida, a neural fold closure defect in humans that occurs at an average rate of 1 per 1000 pregnancies. The first suggestion that Mg2+ may be playing a more specific role in early development arose from studies of the TRPM7 and TRPM6 ion channels. TRPM7 and TRPM6 are divalent-selective ion channels in possession of their own kinase domains that have been implicated in the control of Mg2+ homeostasis in vertebrates. Disruption of the functions of these ion channels in mice as well as in frogs interferes with gastrulation, a pivotal process during early embryonic development that executes the emergence of the body plan and closure of the neural tube. Surprisingly, gastrulation defects produced by depletion of TRPM7 can be prevented by Mg2+ supplementation, indicating an essential role for Mg2+ in gastrulation and neural fold closure. The aim of this review is to summarize the data emerging from molecular genetic, biochemical and electrophysiological studies of TRPM6 and TRPM7 and provide a model of how Mg2+, through these unique channel-kinases, may be impacting early embryonic development. PMID:24721994

  11. Cyclostomes Lack Clustered Protocadherins.

    PubMed

    Ravi, Vydianathan; Yu, Wei-Ping; Pillai, Nisha E; Lian, Michelle M; Tay, Boon-Hui; Tohari, Sumanty; Brenner, Sydney; Venkatesh, Byrappa

    2016-02-01

    The brain, comprising billions of neurons and intricate neural networks, is arguably the most complex organ in vertebrates. The diversity of individual neurons is fundamental to the neuronal network complexity and the overall function of the vertebrate brain. In jawed vertebrates, clustered protocadherins provide the molecular basis for this neuronal diversity, through stochastic and combinatorial expression of their various isoforms in individual neurons. Based on analyses of transcriptomes from the Japanese lamprey brain and sea lamprey embryos, genome assemblies of the two lampreys, and brain expressed sequence tags of the inshore hagfish, we show that extant jawless vertebrates (cyclostomes) lack the clustered protocadherins. Our findings indicate that the clustered protocadherins originated from a nonclustered protocadherin in the jawed vertebrate ancestor, after the two rounds of whole-genome duplication. In the absence of clustered protocadherins, cyclostomes might have evolved novel molecules or mechanisms for generating neuronal diversity which remains to be discovered. PMID:26545918

  12. VAN method lacks validity

    NASA Astrophysics Data System (ADS)

    Jackson, David D.; Kagan, Yan Y.

    Varotsos and colleagues (the VAN group) claim to have successfully predicted many earthquakes in Greece. Several authors have refuted these claims, as reported in the May 27,1996, special issue of Geophysical Research Letters and a recent book, A Critical Review of VAN [Lighthill 1996]. Nevertheless, the myth persists. Here we summarize why the VAN group's claims lack validity.The VAN group observes electrical potential differences that they call “seismic electric signals” (SES) weeks before and hundreds of kilometers away from some earthquakes, claiming that SES are somehow premonitory. This would require that increases in stress or decreases in strength cause the electrical variations, or that some regional process first causes the electrical signals and then helps trigger the earthquakes. Here we adopt their notation SES to refer to the electrical variations, without accepting any link to the quakes.

  13. Comparative Development of Embryonic Age by Organogenesis in Domestic Dogs and Cats.

    PubMed

    Pieri, Ncg; Souza, A F; Casals, J B; Roballo, Kcs; Ambrósio, C E; Martins, D S

    2015-08-01

    The precise determination of the embryonic chronology is very important in reproductive biotechnologies, especially in estimating embryonic age. Thus, there is a need for greater knowledge and standardization for determining the chronology of embryonic development and functional morphology. We describe aspects of embryonic development in two domestic carnivores to add knowledge about organ peculiarities and for application in veterinary practice, in prenatal development and in the biotechnology fields. We found that the development of differential characteristics of embryonic organs occurs in the first trimester of pregnancy for both species. Thus, using the combination of the crown-rump length, macroscopic analysis and optical microscopy, it is possible to predict gestational age more precisely in animals that lack a defined breed and establish an embryonic pattern. PMID:25990819

  14. Optical stimulation enables paced electrophysiological studies in embryonic hearts

    PubMed Central

    Wang, Yves T.; Gu, Shi; Ma, Pei; Watanabe, Michiko; Rollins, Andrew M.; Jenkins, Michael W.

    2014-01-01

    Cardiac electrophysiology plays a critical role in the development and function of the heart. Studies of early embryonic electrical activity have lacked a viable point stimulation technique to pace in vitro samples. Here, optical pacing by high-precision infrared stimulation is used to pace excised embryonic hearts, allowing electrophysiological parameters to be quantified during pacing at varying rates with optical mapping. Combined optical pacing and optical mapping enables electrophysiological studies in embryos under more physiological conditions and at varying heart rates, allowing detection of abnormal conduction and comparisons between normal and pathological electrical activity during development in various models. PMID:24761284

  15. Stromal Fibroblasts in Digestive Cancer

    PubMed Central

    Worthley, Daniel L.; Giraud, Andrew S.

    2010-01-01

    The normal gastrointestinal stroma consists of extra-cellular matrix and a community of stromal cells including fibroblasts, myofibroblasts, smooth muscle cells, pericytes, endothelium and inflammatory cells. α-smooth muscle actin (α-SMA) positive stromal fibroblasts, often referred to as myofibroblasts or activated fibroblasts, are critical in the development of digestive cancer and help to create an environment that is permissive of tumor growth, angiogenesis and invasion. This review focusses on the contribution of activated fibroblasts in carcinogenesis and where possible directly applies this to, and draws on examples from, gastrointestinal cancer. In particular, the review expands on the definition, types and origins of activated fibroblasts. It examines the molecular biology of stromal fibroblasts and their contribution to the peritumoral microenvironment and concludes by exploring some of the potential clinical applications of this exciting branch of cancer research. Understanding the origin and biology of activated fibroblasts will help in the development of an integrated epithelial-stromal sequence to cancer that will ultimately inform cancer pathogenesis, natural history and future therapeutics. PMID:21209778

  16. Generation of KCL031 clinical grade human embryonic stem cell line

    PubMed Central

    Jacquet, Laureen; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Hobbs, Carl; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL031 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro and in vivo assays.

  17. Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility.

    PubMed

    Theocharidis, Georgios; Drymoussi, Zoe; Kao, Alexander P; Barber, Asa H; Lee, David A; Braun, Kristin M; Connelly, John T

    2016-01-01

    Type VI collagen is a nonfibrillar collagen expressed in many connective tissues and implicated in extracellular matrix (ECM) organization. We hypothesized that type VI collagen regulates matrix assembly and cell function within the dermis of the skin. In the present study we examined the expression pattern of type VI collagen in normal and wounded skin and investigated its specific function in new matrix deposition by human dermal fibroblasts. Type VI collagen was expressed throughout the dermis of intact human skin, at the expanding margins of human keloid samples, and in the granulation tissue of newly deposited ECM in a mouse model of wound healing. Generation of cell-derived matrices (CDMs) by human dermal fibroblasts with stable knockdown of COL6A1 revealed that type VI collagen-deficient matrices were significantly thinner and contained more aligned, thicker, and widely spaced fibers than CDMs produced by normal fibroblasts. In addition, there was significantly less total collagen and sulfated proteoglycans present in the type VI collagen-depleted matrices. Normal fibroblasts cultured on de-cellularized CDMs lacking type VI collagen displayed increased cell spreading, migration speed, and persistence. Taken together, these findings indicate that type VI collagen is a key regulator of dermal matrix assembly, composition, and fibroblast behavior and may play an important role in wound healing and tissue regeneration. PMID:26763426

  18. Cadherin-11 Promotes Invasive Behavior of Fibroblast-like Synoviocytes

    PubMed Central

    Kiener, Hans P.; Niederreiter, Birgit; Lee, David M.; Jimenez-Boj, Esther; Smolen, Josef S.; Brenner, Michael B.

    2009-01-01

    Objective To define the expression pattern of cadherin-11 in destructive pannus tissue of patients with rheumatoid arthritis and to determine if cadherin-11 expression in fibroblast-like synoviocytes controls their invasive capacity. Methods Cadherin-11 expression in rheumatoid synovial tissue was evaluated using immunohistochemistry. To examine the role of cadherin-11 in regulating the invasive behavior of fibroblast-like synoviocytes, we generated L-cell clones expressing wild-type cadherin-11, mutant cadherin-11, and empty vector transfected controls. The invasive capacity of L-cell transfectants and cultured fibroblast-like synoviocytes treated with a blocking cadherin-11-Fc protein or control immunoglobulin was determined in Matrigel invasion assays. Results Immunohistochemistry revealed that cadherin-11 is abundantly expressed in cells at the cartilage-pannus junction in rheumatoid synovitis. Invasion assays demonstrate a twofold increased invasive capacity of cadherin-11 transfected L-cells compared to L-cells transfected with E-cadherin or control vector. The invasive behavior of the L-cells stably transfected with a cadherin-11 construct that lacked the juxta-membrane cytoplasmic domain (cadherin-11 ΔJMD) was diminished to the level of vector control L-cells. Further, treatment with the cadherin-11-Fc fusion protein diminished the invasive capacity of fibroblast-like synoviocytes. Conclusion These in vitro studies implicate a role for cadherin-11 in promoting cell invasion and contribute insight into the invasive nature of fibroblast-like synoviocytes in chronic synovitis and rheumatoid arthritis. PMID:19404963

  19. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  20. PDZ-RhoGEF and LARG Are Essential for Embryonic Development and Provide a Link between Thrombin and LPA Receptors and Rho Activation*

    PubMed Central

    Mikelis, Constantinos M.; Palmby, Todd R.; Simaan, May; Li, Wenling; Szabo, Roman; Lyons, Ruth; Martin, Daniel; Yagi, Hiroshi; Fukuhara, Shigetomo; Chikumi, Hiroki; Galisteo, Rebeca; Mukouyama, Yoh-suke; Bugge, Thomas H.; Gutkind, J. Silvio

    2013-01-01

    G protein-coupled receptors (GPCRs) linked to both members of the Gα12 family of heterotrimeric G proteins α subunits, Gα12 and Gα13, regulate the activation of Rho GTPases, thereby contributing to many key biological processes. Multiple Rho GEFs have been proposed to link Gα12/13 GPCRs to Rho activation, including PDZ-RhoGEF (PRG), leukemia-associated Rho GEF (LARG), p115-RhoGEF (p115), lymphoid blast crisis (Lbc), and Dbl. PRG, LARG, and p115 share the presence of a regulator of G protein signaling homology (RGS) domain. There is limited information on the biological roles of this RGS-containing family of RhoGEFs in vivo. p115-deficient mice are viable with some defects in the immune system and gastrointestinal motor dysfunctions, whereas in an initial study we showed that mice deficient for Larg are viable and resistant to salt-induced hypertension. Here, we generated knock-out mice for Prg and observed that these mice do not display any overt phenotype. However, deficiency in Prg and Larg leads to complex developmental defects and early embryonic lethality. Signaling from Gα11/q-linked GPCRs to Rho was not impaired in mouse embryonic fibroblasts defective in all three RGS-containing RhoGEFs. However, a combined lack of Prg, Larg, and p115 expression abolished signaling through Gα12/13 to Rho and thrombin-induced cell proliferation, directional migration, and nuclear signaling through JNK and p38. These findings provide evidence of an essential role for the RGS-containing RhoGEF family in signaling to Rho by Gα12/13-coupled GPCRs, which may likely play a critical role during embryonic development. PMID:23467409

  1. Mitochondrial permeabilization without caspase activation mediates the increase of basal apoptosis in cells lacking Nrf2.

    PubMed

    Ariza, Julia; González-Reyes, José A; Jódar, Laura; Díaz-Ruiz, Alberto; de Cabo, Rafael; Villalba, José Manuel

    2016-06-01

    Nuclear factor E2-related factor-2 (Nrf2) is a cap'n'collar/basic leucine zipper (b-ZIP) transcription factor which acts as sensor of oxidative and electrophilic stress. Low levels of Nrf2 predispose cells to chemical carcinogenesis but a dark side of Nrf2 function also exists because its unrestrained activation may allow the survival of potentially dangerous damaged cells. Since Nrf2 inhibition may be of therapeutic interest in cancer, and a decrease of Nrf2 activity may be related with degenerative changes associated with aging, it is important to investigate how the lack of Nrf2 function activates molecular mechanisms mediating cell death. Murine Embryonic Fibroblasts (MEFs) bearing a Nrf2 deletion (Nrf2KO) displayed diminished cellular growth rate and shortened lifespan compared with wild-type MEFs. Basal rates of DNA fragmentation and histone H2A.X phosphorylation were higher in Nrf2KO MEFs, although steady-state levels of reactive oxygen species were not significantly increased. Enhanced rates of apoptotic DNA fragmentation were confirmed in liver and lung tissues from Nrf2KO mice. Apoptosis in Nrf2KO MEFs was associated with a decrease of Bcl-2 but not Bax levels, and with the release of the mitochondrial pro-apoptotic factors cytochrome c and AIF. Procaspase-9 and Apaf-1 were also increased in Nrf2KO MEFs but caspase-3 was not activated. Inhibition of XIAP increased death in Nrf2KO but not in wild-type MEFs. Mitochondrial ultrastructure was also altered in Nrf2KO MEFs. Our results support that Nrf2 deletion produces mitochondrial dysfunction associated with mitochondrial permeabilization, increasing basal apoptosis through a caspase-independent and AIF-dependent pathway. PMID:27016073

  2. Generation of Sheffield (Shef) human embryonic stem cell lines using a microdrop culture system.

    PubMed

    Aflatoonian, Behrouz; Ruban, Ludmila; Shamsuddin, Shamsul; Baker, Duncan; Andrews, Peter; Moore, Harry

    2010-04-01

    The conventional method for the derivation of human embryonic stem cells (hESCs) involves inner cell mass (ICM) co-culture with a feeder layer of inactivated mouse or human embryonic fibroblasts in an in vitro fertilisation culture dish. Growth factors potentially involved in primary derivation of hESCs may be lost or diluted in such a system. We established a microdrop method which maintained feeder cells and efficiently generated hESCs. Embryos were donated for stem cell research after fully informed patient consent. A feeder cell layer was made by incubating inactivated mouse embryonic fibroblasts (MEFs) feeder cells in a 50 microl drop of medium (DMEM/10% foetal calf serum) under mineral oil in a small tissue culture dish. MEFs formed a confluent layer and medium was replaced with human embryonic stem medium supplemented with 10% Plasmanate (Bayer) and incubated overnight. Cryopreserved embryos were thawed and cultured until the blastocyst stage and the zona pellucida removed with pronase (2 mg/ml; Calbiochem). A zona-free intact blastocyst was placed in the feeder microdrop and monitored for ES derivation with medium changed every 2-3 d. Proliferating hESCs were passaged into other feeder drops and standard feeder preparation by manual dissection until a stable cell line was established. Six hESC lines (Shef 3-8) were derived. From a total of 46 blastocysts (early to expanded), five hESC lines were generated (Shef 3-7). Shef 3-6 were generated on MEFs from 25 blastocysts. Shef7 was generated on human foetal gonadal embryonic fibroblasts from a further 21 blastocysts. From our experience, microdrop technique is more efficient than conventional method for derivation of hESCs and it is much easier to monitor early hESC derivation. The microdrop method lends itself to good manufacturing practice derivation of hESCs. PMID:20224972

  3. Differential effects on cell motility, embryonic stem cell self-renewal and senescence by diverse Src kinase family inhibitors

    SciTech Connect

    Tamm, Christoffer Galito, Sara Pijuan Anneren, Cecilia

    2012-02-15

    The Src family of non-receptor tyrosine kinases (SFKs) has been shown to play an intricate role in embryonic stem (ES) cell maintenance. In the present study we have focused on the underlying molecular mechanisms responsible for the vastly different effects induced by various commonly used SFK inhibitors. We show that several diverse cell types, including fibroblasts completely lacking SFKs, cannot undergo mitosis in response to SU6656 and that this is caused by an unselective inhibition of Aurora kinases. In contrast, PP2 and PD173952 block motility immediately upon exposure and forces cells to grow in dense colonies. The subsequent halt in proliferation of fibroblast and epithelial cells in the center of the colonies approximately 24 h post-treatment appears to be caused by cell-to-cell contact inhibition rather than a direct effect of SFK kinase inhibition. Interestingly, in addition to generating more homogenous and dense ES cell cultures, without any diverse effect on proliferation, PP2 and PD173652 also promote ES cell self-renewal by reducing the small amount of spontaneous differentiation typically observed under standard ES cell culture conditions. These effects could not be mirrored by the use of Gleevec, a potent inhibitor of c-Abl and PDGFR kinases that are also inhibited by PP2. -- Highlights: Black-Right-Pointing-Pointer SFK inhibitor SU6656 induces senescence in mouse ES cells. Black-Right-Pointing-Pointer SU6656 inhibits mitosis in a SFK-independent manner via cross-selectivity for Aurora kinases. Black-Right-Pointing-Pointer SFK inhibitor PP2 impairs cell motility in various cell lines, including mouse ES cells. Black-Right-Pointing-Pointer Ensuing impeded motility, PP2 inhibits proliferation of various cells lines except for mouse ES cells. Black-Right-Pointing-Pointer SFK inhibitors PP2 and PD173952 impede spontaneous differentiation in standard mouse ES culture maintenance.

  4. Direct Conversion of Fibroblasts into Functional Astrocytes by Defined Transcription Factors

    PubMed Central

    Caiazzo, Massimiliano; Giannelli, Serena; Valente, Pierluigi; Lignani, Gabriele; Carissimo, Annamaria; Sessa, Alessandro; Colasante, Gaia; Bartolomeo, Rosa; Massimino, Luca; Ferroni, Stefano; Settembre, Carmine; Benfenati, Fabio; Broccoli, Vania

    2014-01-01

    Summary Direct cell reprogramming enables direct conversion of fibroblasts into functional neurons and oligodendrocytes using a minimal set of cell-lineage-specific transcription factors. This approach is rapid and simple, generating the cell types of interest in one step. However, it remains unknown whether this technology can be applied to convert fibroblasts into astrocytes, the third neural lineage. Astrocytes play crucial roles in neuronal homeostasis, and their dysfunctions contribute to the origin and progression of multiple human diseases. Herein, we carried out a screening using several transcription factors involved in defining the astroglial cell fate and identified NFIA, NFIB, and SOX9 to be sufficient to convert with high efficiency embryonic and postnatal mouse fibroblasts into astrocytes (iAstrocytes). We proved both by gene-expression profiling and functional tests that iAstrocytes are comparable to native brain astrocytes. This protocol can be then employed to generate functional iAstrocytes for a wide range of experimental applications. PMID:25556566

  5. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors.

    PubMed

    Islas, Jose Francisco; Liu, Yu; Weng, Kuo-Chan; Robertson, Matthew J; Zhang, Shuxing; Prejusa, Allan; Harger, John; Tikhomirova, Dariya; Chopra, Mani; Iyer, Dinakar; Mercola, Mark; Oshima, Robert G; Willerson, James T; Potaman, Vladimir N; Schwartz, Robert J

    2012-08-01

    Unique insights for the reprograming of cell lineages have come from embryonic development in the ascidian Ciona, which is dependent upon the transcription factors Ci-ets1/2 and Ci-mesp to generate cardiac progenitors. We tested the idea that mammalian v-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) and mesoderm posterior (MESP) homolog may be used to convert human dermal fibroblasts into cardiac progenitors. Here we show that murine ETS2 has a critical role in directing cardiac progenitors during cardiopoiesis in embryonic stem cells. We then use lentivirus-mediated forced expression of human ETS2 to convert normal human dermal fibroblasts into replicative cells expressing the cardiac mesoderm marker KDR(+). However, although neither ETS2 nor the purported cardiac master regulator MESP1 can by themselves generate cardiac progenitors de novo from fibroblasts, forced coexpression of ETS2 and MESP1 or cell treatment with purified proteins reprograms fibroblasts into cardiac progenitors, as shown by the de novo appearance of core cardiac transcription factors, Ca(2+) transients, and sarcomeres. Our data indicate that ETS2 and MESP1 play important roles in a genetic network that governs cardiopoiesis. PMID:22826236

  6. Magnetic field-magnetic nanoparticle culture system used to grow in vitro murine embryonic stem cells.

    PubMed

    de Freitas, Erika Regina Leal; Soares, Paula Roberta Otaviano; de Santos, Rachel Paula; dos Santos, Regiane Lopes; Porfírio, Elaine Paulucio; Báo, Sônia N; Lima, Emília Celma Oliveira; Guillo, Lídia Andreu

    2011-01-01

    The in vitro growth of embryonic stem cells (ESCs) is usually obtained in the presence of murine embryonic fibroblasts (MEF), but new methods for in vitro expansion of ESCs should be developed due to their potential clinical use. This study aims to establish a culture system to expand and maintain ESCs in the absence of MEF by using murine embryonic stem cells (mECS) as a model of embryonic stem cell. Magnetic nanoparticles (MNPs) were used for growing mESCs in the presence of an external magnetic field, creating the magnetic field-magnetic nanoparticle (MF-MNP) culture system. The growth characteristics were evaluated showing a doubling time slightly higher for mESCs cultivated in the presence of the system than in the presence of the MEF. The undifferentiated state was characterized by RT-PCR, immunofluorescence, alkaline phosphatase activity and electron microscopy. Murine embryonic stem cells cultivated in presence of the MF-MNP culture system exhibited Oct-4 and Nanog expression and high alkaline phosphatase activity. Ultrastructural morphology showed that the MF-MNP culture system did not interfere with processes that cause structural changes in the cytoplasm or nucleus. The MF-MNP culture system provides a tool for in vitro expansion of mESCs and could contribute to studies that aim the therapeutic use of embryonic stem cells. PMID:21446404

  7. Identification and quantitation of morphological cell types in electrophoretically separated human embryonic kidney cell cultures

    NASA Technical Reports Server (NTRS)

    Williams, K. B.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Four major cell types were identified by phase microscopy in early passage human embryonic kidney cell cultures. They are small and large epithelioid, domed, and fenestrated cells. Fibroblasts are also present in some explants. The percent of each cell type changes with passage number as any given culture grows. As a general rule, the fraction of small epithelioid cells increases, while the fraction of fenestrated cells, always small, decreases further. When fibroblasts are present, they always increase in percentage of the total cell population. Electrophoretic separation of early passage cells showed that the domed cells have the highest electrophoretic mobility, fibroblasts have an intermediate high mobility, small epithelioid cells have a low mobility, broadly distributed, and fenestrated cells have the lowest mobility. All cell types were broadly distributed among electrophoretic subfractions, which were never pure but only enriched with respect to a given cell type.

  8. Ultraviolet radiation triggers apoptosis of fibroblasts and skin keratinocytes mainly via the BH3-only protein Noxa.

    PubMed

    Naik, Edwina; Michalak, Ewa M; Villunger, Andreas; Adams, Jerry M; Strasser, Andreas

    2007-02-12

    To identify the mechanisms of ultraviolet radiation (UVR)-induced cell death, for which the tumor suppressor p53 is essential, we have analyzed mouse embryonic fibroblasts (MEFs) and keratinocytes in mouse skin that have specific apoptotic pathways blocked genetically. Blocking the death receptor pathway provided no protection to MEFs, whereas UVR-induced apoptosis was potently inhibited by Bcl-2 overexpression, implicating the mitochondrial pathway. Indeed, Bcl-2 overexpression boosted cell survival more than p53 loss, revealing a p53-independent pathway controlled by the Bcl-2 family. Analysis of primary MEFs lacking individual members of its BH3-only subfamily identified major initiating roles for the p53 targets Noxa and Puma. In the transformed derivatives, where Puma, unexpectedly, was not induced by UVR, Noxa had the dominant role and Bim a minor role. Furthermore, loss of Noxa suppressed the formation of apoptotic keratinocytes in the skin of UV-irradiated mice. Collectively, these results demonstrate that UVR activates the Bcl-2-regulated apoptotic pathway predominantly through activation of Noxa and, depending on cellular context, Puma. PMID:17283183

  9. Tumor-associated fibroblasts predominantly come from local and not circulating precursors.

    PubMed

    Arina, Ainhoa; Idel, Christian; Hyjek, Elizabeth M; Alegre, Maria-Luisa; Wang, Ying; Bindokas, Vytautas P; Weichselbaum, Ralph R; Schreiber, Hans

    2016-07-01

    Fibroblasts are common cell types in cancer stroma and lay down collagen required for survival and growth of cancer cells. Although some cancer therapy strategies target tumor fibroblasts, their origin remains controversial. Multiple publications suggest circulating mesenchymal precursors as a source of tumor-associated fibroblasts. However, we show by three independent approaches that tumor fibroblasts derive primarily from local, sessile precursors. First, transplantable tumors developing in a mouse expressing green fluorescent reporter protein (EGFP) under control of the type I collagen (Col-I) promoter (COL-EGFP) had green stroma, whereas we could not find COL-EGFP(+) cells in tumors developing in the parabiotic partner lacking the fluorescent reporter. Lack of incorporation of COL-EGFP(+) cells from the circulation into tumors was confirmed in parabiotic pairs of COL-EGFP mice and transgenic mice developing autochthonous intestinal adenomas. Second, transplantable tumors developing in chimeric mice reconstituted with bone marrow cells from COL-EGFP mice very rarely showed stromal fibroblasts expressing EGFP. Finally, cancer cells injected under full-thickness COL-EGFP skin grafts transplanted in nonreporter mice developed into tumors containing green stromal cells. Using multicolor in vivo confocal microscopy, we found that Col-I-expressing fibroblasts constituted approximately one-third of the stromal mass and formed a continuous sheet wrapping the tumor vessels. In summary, tumors form their fibroblastic stroma predominantly from precursors present in the local tumor microenvironment, whereas the contribution of bone marrow-derived circulating precursors is rare. PMID:27317748

  10. Maturation of human gingival keratinocytes cultured with fibroblasts from keratinizing and non-keratinizing epithelia.

    PubMed

    Taichman, L; Sciubba, J; Cho, M I

    1982-01-01

    When keratinocytes from epidermis, gingiva and buccal mucosa are cultured in vitro they form a stratified squamous epithelium that lacks evidence of orthokeratinization or parakeratinization. We attempted to induce orthokeratinization or parakeratinization in cultured gingival keratinocytes by co-cultivation with fibroblasts from human skin, gingiva and buccal mucosa. Keratinization was defined by the morphological appearance of the cultured cells and by the presence of large molecular weight keratin proteins (63,000 and 67,000 mol. wt). Using these criteria, the chosen fibroblasts failed to induce any alteration in the pattern of keratinization. We conclude that under our present culture conditions, fibroblasts alone cannot induce keratinization in cultured keratinocytes. PMID:6180716

  11. A Panel of Embryonic Stem Cell Lines Reveals the Variety and Dynamic of Pluripotent States in Rabbits.

    PubMed

    Osteil, Pierre; Moulin, Anaïs; Santamaria, Claire; Joly, Thierry; Jouneau, Luc; Aubry, Maxime; Tapponnier, Yann; Archilla, Catherine; Schmaltz-Panneau, Barbara; Lecardonnel, Jérôme; Barasc, Harmonie; Mouney-Bonnet, Nathalie; Genthon, Clémence; Roulet, Alain; Donnadieu, Cécile; Acloque, Hervé; Gocza, Elen; Duranthon, Véronique; Afanassieff, Marielle; Savatier, Pierre

    2016-09-13

    Conventional rabbit embryonic stem cell (ESC) lines are derived from the inner cell mass (ICM) of pre-implantation embryos using methods and culture conditions that are established for primate ESCs. In this study, we explored the capacity of the rabbit ICM to give rise to ESC lines using conditions similar to those utilized to generate naive ESCs in mice. On single-cell dissociation and culture in fibroblast growth factor 2 (FGF2)-free, serum-supplemented medium, rabbit ICMs gave rise to ESC lines lacking the DNA-damage checkpoint in the G1 phase like mouse ESCs, and with a pluripotency gene expression profile closer to the rabbit ICM/epiblast profiles. These cell lines can be converted to FGF2-dependent ESCs after culture in conventional conditions. They can also colonize the rabbit pre-implantation embryo. These results indicate that rabbit epiblast cells can be coaxed toward different types of pluripotent stem cells and reveal the dynamics of pluripotent states in rabbit ESCs. PMID:27594588

  12. Fibroblasts-a diverse population at the center of it all.

    PubMed

    Sorrell, J Michael; Caplan, Arnold I

    2009-01-01

    The capacity of fibroblasts to produce and organize the extracellular matrix and to communicate with other cells makes them a central component of tissue biology. Even so, fibroblasts remain a somewhat enigmatic population. Our inability to fully comprehend these cells is in large part due to the paucity of unique cellular markers and to their pervasive diversity. Much of our understanding of fibroblast diversity has evolved from studies where subpopulations of these cells have been produced without resorting to cell surface markers. In this regard, cloning and mechanical separation of tissues prior to establishing cultures has provided multiple subpopulations. Nonetheless, in isolated situations, the expression or lack of expression of Thy-1/CD90 has been used to separate fibroblast subsets. The role of fibroblasts in intercellular communication is emerging through the implementation of organotypic studies in which three-dimensional fibroblast culture are combined with other populations of cells. Such studies have revealed critical paracrine loops that are essential for organ development and for wound repair. These studies also provide a backdrop for the emerging field of tissue engineering. The participation of fibroblasts in the regulation of tissue homeostasis and their contribution to the aging process are emerging issues that require better understanding. In short, fibroblasts represent a multifaceted, complex group of cells. PMID:19584013

  13. When Lack of Evidence Is Evidence of Lack.

    PubMed

    Pickering, Neil

    2015-12-01

    In their recent article "A Gentle Ethical Defence of Homeopathy," Levy, Gadd, Kerridge, and Komesaroff use the claim that "lack of evidence is not equivalent to evidence of lack" as a component of their ethical defence of homeopathy. In response, this article argues that they cannot use this claim to shore up their ethical arguments. This is because it is false. PMID:26631232

  14. Mechanotransduction in Embryonic Vascular Development

    PubMed Central

    Roman, Beth L.; Pekkan, Kerem

    2015-01-01

    A plethora of biochemical signals provides spatial and temporal cues that carefully orchestrate the complex process of vertebrate embryonic development. The embryonic vasculature develops not only in the context of these biochemical cues, but also in the context of the biomechanical forces imparted by blood flow. In the mature vasculature, different blood flow regimes induce distinct genetic programs, and significant progress has been made toward understanding how these forces are perceived by endothelial cells and transduced into biochemical signals. However, it cannot be assumed that paradigms that govern the mature vasculature are pertinent to the developing embryonic vasculature. The embryonic vasculature can respond to the mechanical forces of blood flow, and these responses are critical in vascular remodeling, certain aspects of sprouting angiogenesis, and maintenance of arterial-venous identity. Here, we review data regarding mechanistic aspects of endothelial cell mechanotransduction, with a focus on the response to shear stress, and elaborate upon the multifarious effects of shear stress on the embryonic vasculature. In addition, we discuss emerging predictive vascular growth models and highlight the prospect of combining signaling pathway information with computational modeling. We assert that correlation of precise measurements of hemodynamic parameters with effects on endothelial cell gene expression and cell behavior is required for fully understanding how blood flow-induced loading governs normal vascular development and shapes congenital cardiovascular abnormalities. PMID:22744845

  15. Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts.

    PubMed

    Questa, María; Romorini, Leonardo; Blüguermann, Carolina; Solari, Claudia María; Neiman, Gabriel; Luzzani, Carlos; Scassa, María Élida; Sevlever, Gustavo Emilio; Guberman, Alejandra Sonia; Miriuka, Santiago Gabriel

    2016-03-01

    Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC) line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls. PMID:27345989

  16. Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos.

    PubMed

    Hou, Dao-Rong; Jin, Yong; Nie, Xiao-Wei; Zhang, Man-Ling; Ta, Na; Zhao, Li-Hua; Yang, Ning; Chen, Yuan; Wu, Zhao-Qiang; Jiang, Hai-Bin; Li, Yan-Ru; Sun, Qing-Yuan; Dai, Yi-Fan; Li, Rong-Feng

    2016-01-01

    Efficient isolation of embryonic stem (ES) cells from pre-implantation porcine embryos has remained a challenge. Here, we describe the derivation of porcine embryonic stem-like cells (pESLCs) by seeding the isolated inner cell mass (ICM) from in vitro-produced porcine blastocyst into α-MEM with basic fibroblast growth factor (bFGF). The pESL cells kept the normal karyotype and displayed flatten clones, similar in phenotype to human embryonic stem cells (hES cells) and rodent epiblast stem cells. These cells exhibited alkaline phosphatase (AP) activity and expressed pluripotency markers such as OCT4, NANOG, SOX2, SSEA-4, TRA-1-60, and TRA-1-81 as determined by both immunofluorescence and RT-PCR. Additionally, these cells formed embryoid body (EB), teratomas and also differentiated into 3 germ layers in vitro and in vivo. Microarray analysis showed the expression of the pluripotency markers, PODXL, REX1, SOX2, KLF5 and NR6A1, was significantly higher compared with porcine embryonic fibroblasts (PEF), but expression of OCT4, TBX3, REX1, LIN28A and DPPA5, was lower compared to the whole blastocysts or ICM of blastocyst. Our results showed that porcine embryonic stem-like cells can be established from in vitro-produced blastocyst-stage embryos, which promote porcine naive ES cells to be established. PMID:27173828

  17. Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos

    PubMed Central

    Hou, Dao-Rong; Jin, Yong; Nie, Xiao-Wei; Zhang, Man-Ling; Ta, Na; Zhao, Li-Hua; Yang, Ning; Chen, Yuan; Wu, Zhao-Qiang; Jiang, Hai-Bin; Li, Yan-Ru; Sun, Qing-Yuan; Dai, Yi-Fan; Li, Rong-Feng

    2016-01-01

    Efficient isolation of embryonic stem (ES) cells from pre-implantation porcine embryos has remained a challenge. Here, we describe the derivation of porcine embryonic stem-like cells (pESLCs) by seeding the isolated inner cell mass (ICM) from in vitro-produced porcine blastocyst into α-MEM with basic fibroblast growth factor (bFGF). The pESL cells kept the normal karyotype and displayed flatten clones, similar in phenotype to human embryonic stem cells (hES cells) and rodent epiblast stem cells. These cells exhibited alkaline phosphatase (AP) activity and expressed pluripotency markers such as OCT4, NANOG, SOX2, SSEA-4, TRA-1-60, and TRA-1-81 as determined by both immunofluorescence and RT-PCR. Additionally, these cells formed embryoid body (EB), teratomas and also differentiated into 3 germ layers in vitro and in vivo. Microarray analysis showed the expression of the pluripotency markers, PODXL, REX1, SOX2, KLF5 and NR6A1, was significantly higher compared with porcine embryonic fibroblasts (PEF), but expression of OCT4, TBX3, REX1, LIN28A and DPPA5, was lower compared to the whole blastocysts or ICM of blastocyst. Our results showed that porcine embryonic stem-like cells can be established from in vitro-produced blastocyst-stage embryos, which promote porcine naive ES cells to be established. PMID:27173828

  18. Genome-wide identification and analysis of mRNA expression in fibroblasts, ES cells, and iPS cells.

    PubMed

    Hirai, Hiroyuki; Kikyo, Nobuaki

    2016-03-01

    Genome-wide expression patterns of mRNA were compared between mouse embryonic fibroblasts (MEFs), embryonic stem cells (ESCs), and various types of induced pluripotent stem cells (iPSCs). iPSCs were established and maintained using modified Oct4 with or without exogenous leukemia inhibitory factor (LIF) and used to identify mRNAs that were potentially involved in the LIF-independence. The data have been deposited in the NCBI's Gene Expression Omnibus (GEO) database with the accession number GSE65563. PMID:26981399

  19. Genome-wide identification and analysis of mRNA expression in fibroblasts, ES cells, and iPS cells

    PubMed Central

    Hirai, Hiroyuki; Kikyo, Nobuaki

    2015-01-01

    Genome-wide expression patterns of mRNA were compared between mouse embryonic fibroblasts (MEFs), embryonic stem cells (ESCs), and various types of induced pluripotent stem cells (iPSCs). iPSCs were established and maintained using modified Oct4 with or without exogenous leukemia inhibitory factor (LIF) and used to identify mRNAs that were potentially involved in the LIF-independence. The data have been deposited in the NCBI's Gene Expression Omnibus (GEO) database with the accession number GSE65563. PMID:26981399

  20. Potentiation of fibroblast growth by nodular sclerosing Hodgkin's disease cell cultures.

    PubMed

    Newcom, S R; O'Rourke, L

    1982-07-01

    Cell cultures were established from 8 lymph nodes replaced by nodular sclerosing Hodgkin's disease. Serum-containing and serum-free conditioned media from these cultures potentiated fibroblast growth and were found to be consistently more potent than fibroblast growth factor, 100 ng/ml, every other day. Both a proliferative response and transformation-like growth were observed using BALB/c 3T3 cells, human diploid fibroblasts, and human embryonic fibroblasts as target cells. The Hodgkin's disease growth factor(s) was not produced by fibroblasts or lymphocytes in the Hodgkin's cultures and was most potent when the Hodgkin's cultures had been enriched with Hodgkin's giant cells. Removal of normal macrophages decreased the proliferative activity but did not eliminate it or nonadherent growth of 3T3 cells in agar. Control cultures of 6 nonmalignant lymph nodes, a Lennert's lymphoma, a mixed cellularity Hodgkin's disease lymph node, and a malignant histiocytosis cell line suggested that among lymph node disorders, this feature may be relatively specific for nodular sclerosing Hodgkin's disease. PMID:6211204

  1. Generation of Induced Pluripotent Stem Cells from Diabetic Foot Ulcer Fibroblasts Using a Nonintegrative Sendai Virus.

    PubMed

    Gerami-Naini, Behzad; Smith, Avi; Maione, Anna G; Kashpur, Olga; Carpinito, Gianpaolo; Veves, Aristides; Mooney, David J; Garlick, Jonathan A

    2016-08-01

    Diabetic foot ulcers (DFUs) are nonhealing chronic wounds that are a serious complication of diabetes. Since induced pluripotent stem cells (iPSCs) may offer a potent source of autologous cells to heal these wounds, we studied if repair-deficient fibroblasts, derived from DFU patients and age- and site-matched control fibroblasts, could be reprogrammed to iPSCs. To establish this, we used Sendai virus to successfully reprogram six primary fibroblast cell lines derived from ulcerated skin of two DFU patients (DFU8, DFU25), nonulcerated foot skin from two diabetic patients (DFF24, DFF9), and healthy foot skin from two nondiabetic patients (NFF12, NFF14). We confirmed reprogramming to a pluripotent state through three independent criteria: immunofluorescent staining for SSEA-4 and TRA-1-81, formation of embryoid bodies with differentiation potential to all three embryonic germ layers in vitro, and formation of teratomas in vivo. All iPSC lines showed normal karyotypes and typical, nonmethylated CpG sites for OCT4 and NANOG. iPSCs derived from DFUs were similar to those derived from site-matched nonulcerated skin from both diabetic and nondiabetic patients. These results have established for the first time that multiple, DFU-derived fibroblast cell lines can be reprogrammed with efficiencies similar to control fibroblasts, thus demonstrating their utility for future regenerative therapy of DFUs. PMID:27328415

  2. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors.

    PubMed

    Beningo, Karen A; Dembo, Micah; Wang, Yu-li

    2004-12-28

    Fibroblasts in 2D cultures differ dramatically in behavior from those in the 3D environment of a multicellular organism. However, the basis of this disparity is unknown. A key difference is the spatial arrangement of anchored extracellular matrix (ECM) receptors to the ventral surface in 2D cultures and throughout the entire surface in 3D cultures. Therefore, we asked whether changing the topography of ECM receptor anchorage alone could invoke a morphological response. By using polyacrylamide-based substrates to present anchored fibronectin or collagen on dorsal cell surfaces, we found that well spread fibroblasts in 2D cultures quickly changed into a bipolar or stellate morphology similar to fibroblasts in vivo. Cells in this environment lacked lamellipodia and large actin bundles and formed small focal adhesions only near focused sites of protrusion. These responses depend on substrate rigidity, calcium ion, and, likely, the calcium-dependent protease calpain. We suggest that fibroblasts respond to both spatial distribution and mechanical input of anchored ECM receptors. Changes in cell shape may in turn affect diverse cellular activities, including gene expression, growth, and differentiation, as shown in numerous previous studies. PMID:15601776

  3. Modulation of phospholipase A2 activity in human fibroblasts.

    PubMed Central

    Solito, E.; Parente, L.

    1989-01-01

    1. Human embryonic skin fibroblasts (HSF) incubated overnight with either human recombinant interleukin-1 alpha (rIL-1 alpha) or interleukin-1 beta (rIL-1 beta) released large amounts of prostaglandin E2 (PGE2). 2. rIL-1 beta, bradykinin (Bk) and arachidonic acid (AA) significantly stimulated PGE2 release from HSF incubated overnight in the presence of either interleukin. 3. Hydrocortisone inhibited the PGE2 release induced by rIL-1 beta and Bk, but not by AA. 4. The steroid inhibitory effect was reversed by actinomycin D as well as by an anti-lipocortin monoclonal antibody. 5. The results suggest that in HSF, rIL-1 beta is able to stimulate both cyclo-oxygenase and phospholipase A2 (PLA2) activity. 6. The stimulation of PLA2 activity by rIL-1 beta is inhibited by hydrocortisone, probably via induction of lipocortin-like proteins. PMID:2785834

  4. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos.

    PubMed

    Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián

    2015-09-01

    Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers. PMID:26246271

  5. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins

    PubMed Central

    Janmaat, C. J.; de Rooij, K. E; Locher, H; de Groot, S. C.; de Groot, J. C. M. J.; Frijns, J. H. M.; Huisman, M. A.

    2015-01-01

    In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality. PMID:26678612

  6. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration

    PubMed Central

    Murphy, Malea M.; Lawson, Jennifer A.; Mathew, Sam J.; Hutcheson, David A.; Kardon, Gabrielle

    2011-01-01

    Muscle regeneration requires the coordinated interaction of multiple cell types. Satellite cells have been implicated as the primary stem cell responsible for regenerating muscle, yet the necessity of these cells for regeneration has not been tested. Connective tissue fibroblasts also are likely to play a role in regeneration, as connective tissue fibrosis is a hallmark of regenerating muscle. However, the lack of molecular markers for these fibroblasts has precluded an investigation of their role. Using Tcf4, a newly identified fibroblast marker, and Pax7, a satellite cell marker, we found that after injury satellite cells and fibroblasts rapidly proliferate in close proximity to one another. To test the role of satellite cells and fibroblasts in muscle regeneration in vivo, we created Pax7CreERT2 and Tcf4CreERT2 mice and crossed these to R26RDTA mice to genetically ablate satellite cells and fibroblasts. Ablation of satellite cells resulted in a complete loss of regenerated muscle, as well as misregulation of fibroblasts and a dramatic increase in connective tissue. Ablation of fibroblasts altered the dynamics of satellite cells, leading to premature satellite cell differentiation, depletion of the early pool of satellite cells, and smaller regenerated myofibers. Thus, we provide direct, genetic evidence that satellite cells are required for muscle regeneration and also identify resident fibroblasts as a novel and vital component of the niche regulating satellite cell expansion during regeneration. Furthermore, we demonstrate that reciprocal interactions between fibroblasts and satellite cells contribute significantly to efficient, effective muscle regeneration. PMID:21828091

  7. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins.

    PubMed

    Janmaat, C J; de Rooij, K E; Locher, H; de Groot, S C; de Groot, J C M J; Frijns, J H M; Huisman, M A

    2015-01-01

    In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality. PMID:26678612

  8. S100A13-C2A binary complex structure-a key component in the acidic fibroblast growth factor for the non-classical pathway

    SciTech Connect

    Mohan, Sepuru K.; Rani, Sandhya G.; Kumar, Sriramoju M.; Yu Chin

    2009-03-13

    Fibroblast growth factors (FGFs) are key regulators of cell proliferation, differentiation, tumor-induced angiogenesis and migration. FGFs are essential for early embryonic development, organ formation and angiogenesis. They play important roles in tumor formation, inflammation, wound healing and restenosis. The biological effects of FGFs are mediated through the activation of the four transmembrane phosphotyrosine kinase receptors (FGFRs) in the presence of heparin sulfate proteoglycans (HSPGs) and therefore require the release of FGFs into the extracellular space. However, FGF-1 lacks the signal peptide required for the releasing of these proteins through the classical endoplasmic reticulum (ER)-Golgi secretary pathway. Maciag et al. demonstrated that FGF-1 is exported through a non-classical release pathway involving the formation of a specific multiprotein complex [M. Landriscina, R. Soldi, C. Bagala, I. Micucci, S. Bellum, F. Tarantini, I. Prudovsky, T. Maciag, S100A13 participates in the release of fibroblast growth factor 1 in response to heat shock in vitro, J. Biol. Chem. 276 (2001) 22544-22552; C.M. Carreira, T.M. LaVallee, F. Tarantini, A. Jackson, J.T. Lathrop, B. Hampton, W.H. Burgess, T. Maciag, S100A13 is involved in the regulation of fibroblast growth factor-1 and p40 synaptotagmin-1 release in vitro, J. Biol. Chem. 273 (1998) 22224-22231; T.M. LaValle, F. Tarantini, S. Gamble, C.M. Carreira, A. Jackson, T. Maciag, Synaptotagmin-1 is required for fibroblast growth factor-1 release, J. Biol. Chem. 273 (1998) 22217-22223; C. Bagala, V. Kolev, A. Mandinova, R. Soldi, C. Mouta, I. Graziani, I, Prudovsky, T. Maciag, The alternative translation of synaptotagmin 1 mediates the non-classical release of FGF1, Biochem. Biophys. Res. Commun. 310 (2003) 1041-1047]. The protein constituents of this complex include FGF-1, S100A13 (a Ca{sup 2+}-binding protein), and the p40 form of synaptotagmin 1 (Syt1). To understand the molecular events in the FGF-1 releasing

  9. Endogenous microglia regulate development of embryonic cortical precursor cells.

    PubMed

    Antony, Joseph M; Paquin, Annie; Nutt, Stephen L; Kaplan, David R; Miller, Freda D

    2011-03-01

    Microglia play important roles in the damaged or degenerating adult nervous system. However, the role of microglia in embryonic brain development is still largely uncharacterized. Here we show that microglia are present in regions of the developing brain that contain neural precursors from E11 onward. To determine whether these microglia are important for neural precursor maintenance or self-renewal, we cultured embryonic neural precursors from the cortex of PU.1(-/-) mice, which we show lack resident microglia during embryogenesis. Cell survival and neurogenesis were similar in cultures from PU.1(-/-) vs. PU.1(+/+) mice, but precursor proliferation and astrogenesis were both reduced. Cortical precursors depleted of microglia also displayed decreased precursor proliferation and astrogenesis, and these deficits could be rescued when microglia were added back to the cultures. Moreover, when the number of microglia present in cortical precursor cultures was increased above normal levels, astrogenesis but not neurogenesis was increased. Together these results demonstrate that microglia present within the embryonic neural precursor niche can regulate neural precursor development and suggest that alterations in microglial number as a consequence of genetic or pathological events could perturb neural development by directly affecting embryonic neural precursors. PMID:21259316

  10. Distinct fibroblast lineages determine dermal architecture in skin development and repair

    PubMed Central

    Driskell, Ryan R.; Simons, Ben D.; Charalambous, Marika; Ferron, Sacri R.; Herault, Yann; Pavlovic, Guillaume; Ferguson-Smith, Anne C.; Watt, Fiona M.

    2013-01-01

    Fibroblasts are the major mesenchymal cell type in connective tissue and deposit the collagen and elastic fibers of the extracellular matrix (ECM)1. Even within a single tissue fibroblasts exhibit remarkable functional diversity, but it is not known whether this reflects the existence of a differentiation hierarchy or is a response to different environmental factors. Here we show, using transplantation assays and lineage tracing, that the fibroblasts of skin connective tissue arise from two distinct lineages. One forms the upper dermis, including the dermal papilla that regulates hair growth and the arrector pili muscle (APM), which controls piloerection. The other forms the lower dermis, including the reticular fibroblasts that synthesise the bulk of the fibrillar ECM, and the pre-adipocytes and adipocytes of the hypodermis. The upper lineage is required for hair follicle formation. In wounded adult skin, the initial wave of dermal repair is mediated by the lower lineage and upper dermal fibroblasts are recruited only during re-epithelialisation. Epidermal beta-catenin activation stimulates expansion of the upper dermal lineage, rendering wounds permissive for hair follicle formation. Our findings explain why wounding is linked to formation of ECM-rich scar tissue that lacks hair follicles2-4. They also form a platform for discovering fibroblast lineages in other tissues and for examining fibroblast changes in ageing and disease. PMID:24336287

  11. Apoptosis-Like Cell Death Induction and Aberrant Fibroblast Properties in Human Incisional Hernia Fascia

    PubMed Central

    Diaz, Ramon; Quiles, Maria T.; Guillem-Marti, Jordi; Lopez-Cano, Manuel; Huguet, Pere; Ramon-y-Cajal, Santiago; Reventos, Jaume; Armengol, Manel; Arbos, Maria A.

    2011-01-01

    Incisional hernia often occurs following laparotomy and can be a source of serious problems. Although there is evidence that a biological cause may underlie its development, the mechanistic link between the local tissue microenvironment and tissue rupture is lacking. In this study, we used matched tissue-based and in vitro primary cell culture systems to examine the possible involvement of fascia fibroblasts in incisional hernia pathogenesis. Fascia biopsies were collected at surgery from incisional hernia patients and non-incisional hernia controls. Tissue samples were analyzed by histology and immunoblotting methods. Fascia primary fibroblast cultures were assessed at morphological, ultrastructural, and functional levels. We document tissue and fibroblast loss coupled to caspase-3 activation and induction of apoptosis-like cell-death mechanisms in incisional hernia fascia. Alterations in cytoskeleton organization and solubility were also observed. Incisional hernia fibroblasts showed a consistent phenotype throughout early passages in vitro, which was characterized by significantly enhanced cell proliferation and migration, reduced adhesion, and altered cytoskeleton properties, as compared to non-incisional hernia fibroblasts. Moreover, incisional hernia fibroblasts displayed morphological and ultrastructural alterations compatible with autophagic processes or lysosomal dysfunction, together with enhanced sensitivity to proapoptotic challenges. Overall, these data suggest an ongoing complex interplay of cell death induction, aberrant fibroblast function, and tissue loss in incisional hernia fascia, which may significantly contribute to altered matrix maintenance and tissue rupture in vivo. PMID:21641387

  12. FSP1+ fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells

    PubMed Central

    Sun, Lina; Sun, Chenming; Liang, Zhanfeng; Li, Hongran; Chen, Lin; Luo, Haiying; Zhang, Hongmei; Ding, Pengbo; Sun, Xiaoning; Qin, Zhihai; Zhao, Yong

    2015-01-01

    Thymic epithelial cells (TECs) form a 3-dimentional network supporting thymocyte development and maturation. Besides epithelium and thymocytes, heterogeneous fibroblasts are essential components in maintaining thymic microenvironments. However, thymic fibroblast characteristics, development and function remain to be determined. We herein found that thymic non-hematopoietic CD45-FSP1+ cells represent a unique Fibroblast specific protein 1 (FSP1)—fibroblast-derived cell subset. Deletion of these cells in FSP1-TK transgenic mice caused thymus atrophy due to the loss of TECs, especially mature medullary TECs (MHCIIhigh, CD80+ and Aire+). In a cyclophosphamide-induced thymus injury and regeneration model, lack of non-hematopoietic CD45-FSP1+ fibroblast subpopulation significantly delayed thymus regeneration. In fact, thymic FSP1+ fibroblasts released more IL-6, FGF7 and FSP1 in the culture medium than their FSP1- counterparts. Further experiments showed that the FSP1 protein could directly enhance the proliferation and maturation of TECs in the in vitro culture systems. FSP1 knockout mice had significantly smaller thymus size and less TECs than their control. Collectively, our studies reveal that thymic CD45-FSP1+ cells are a subpopulation of fibroblasts, which is crucial for the maintenance and regeneration of TECs especially medullary TECs through providing IL-6, FGF7 and FSP1. PMID:26445893

  13. Role of fibroblast growth factors in organ regeneration and repair.

    PubMed

    El Agha, Elie; Kosanovic, Djuro; Schermuly, Ralph T; Bellusci, Saverio

    2016-05-01

    In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases. PMID:26459973

  14. Ectopic overexpression of Nanog induces tumorigenesis in non-tumorous fibroblasts.

    PubMed

    Park, Yo Seph; Nemeño, Judee Grace E; Choi, Na Young; Lee, Jeong Ik; Ko, Kisung; Choi, Seung-Cheol; Kim, Wan Seop; Han, Dong Wook; Tapia, Natalia; Ko, Kinarm

    2016-03-01

    Key regulatory genes in pluripotent stem cells are of interest not only as reprogramming factors but also as regulators driving tumorigenesis. Nanog is a transcription factor involved in the maintenance of embryonic stem cells and is one of the reprogramming factors along with Oct4, Sox2, and Lin28. Nanog expression has been detected in different types of tumors, and its expression is a poor prognosis for cancer patients. However, there is no clear evidence that Nanog is functionally involved in tumorigenesis. In this study, we induced overexpression of Nanog in mouse embryonic fibroblast cells and subsequently assessed their morphological changes, proliferation rate, and tumor formation ability. We found that Nanog overexpression induced immortalization of mouse embryonic fibroblast cells (MEFs) and increased their proliferation rate in vitro. We also found that formation of tumors after subcutaneous injection of retroviral-Nanog infected MEFs (N-MEFs) into athymic mouse. Cancer-related genes such as Bmi1 were expressed at high levels in N-MEFs. Hence, our results demonstrate that Nanog is able to transform normal somatic cells into tumor cells. PMID:26733157

  15. Identification of a distinct subpopulation of fibroblasts from murine dermis: CD73(-) CD105(+) as potential marker of dermal fibroblasts subset with multipotency.

    PubMed

    Lee, Seung Bum; Shim, Sehwan; Kim, Min-Jung; Shin, Hye-Yun; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Park, Sunhoo

    2016-09-01

    Skin dermis includes various types of multipotent stromal cells (MSCs) and a subpopulation of dermal fibroblasts that exhibit the ability to differentiate. However, characterization of this dermal fibroblast subtype remains less understood. In this study, we isolated dermal cells from the skin of newborn C57/B6 mice and investigated their characteristics. Isolated murine dermal cells exhibited a fibroblast phenotype as judged by accepted criteria including a lack of MSC-related antigens and the differentiation potential of MSCs, and the positive expression of fibroblast markers. A comparative analysis demonstrated that CD73(-) CD105(+) but not CD73(-) CD105(-) dermal fibroblasts exhibited some of the functional properties of MSCs. Furthermore, the multipotent phenotype of CD73(-) CD105(+) cells was diminished by treatment of CD105 siRNA and shRNA, indicating that CD105 expression was critical for the retention of differentiation potential of those cells. Overall, these results suggest that CD73(-) CD105(+) cells are a distinct subset of dermal fibroblasts with multipotency and that their surface antigens could help to classify this subpopulation. These cells may contribute to the regeneration of damaged tissue. PMID:27170595

  16. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    PubMed

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+)). Here, we investigated if the FN EDA(+) isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-)), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705

  17. Vascular endothelial growth factor from embryonic status to cardiovascular pathology

    PubMed Central

    Azimi-Nezhad, Mohsen

    2014-01-01

    Vascular endothelial growth factor (VEGF) is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T lymphocytes and macrophages. Six VEGF isoforms are generated as a result of alternative splicing from a single VEGF gene, consisting of 121, 145, 165, 183, 189, or 206 amino acids. VEGF121, VEGF145, and VEGF165 are secreted whereas VEGF183, VEGF189, and VEGF206 are cell membrane-bound. VEGF145 has a key role during the vascularization of the human ovarian follicle and corpus luteum, in the placentation and embryonic periods, and in bone and wound healing, while VEGF165 is the most abundant and biologically active isoform. VEGF has been linked with a number of vascular pathologies including cardiovascular diseases such ischemic heart disease, heart failure, stroke, and diabetes and its related complications. In this review we aimed to present some important roles of VEGF in a number of clinical issues and indicate its involvement in several phenomena from the initial steps of the embryonic period to cardiovascular diseases. PMID:26989723

  18. EDA-Containing Fibronectin Increases Proliferation of Embryonic Stem Cells

    PubMed Central

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F.; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA+). Here, we investigated if the FN EDA+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA-), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC’s proliferation rate. Here we showed for the first time that this FN isoform enhances ESC’s proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705

  19. Retinoic acid-induced neural differentiation of embryonal carcinoma cells.

    PubMed Central

    Jones-Villeneuve, E M; Rudnicki, M A; Harris, J F; McBurney, M W

    1983-01-01

    We have previously shown that the P19 line of embryonal carcinoma cells develops into neurons, astroglia, and fibroblasts after aggregation and exposure to retinoic acid. The neurons were initially identified by their morphology and by the presence of neurofilaments within their cytoplasm. We have more fully documented the neuronal nature of these cells by showing that their cell surfaces display tetanus toxin receptors, a neuronal cell marker, and that choline acetyl-transferase and acetyl cholinesterase activities appear coordinately in neuron-containing cultures. Several days before the appearance of neurons, there is a marked decrease in the amount of an embryonal carcinoma surface antigen, and at the same time there is a substantial decrease in the volumes of individual cells. Various retinoids were able to induce the development of neurons in cultures of aggregated P19 cells, but it did not appear that polyamine metabolism was involved in the effect. We have isolated a mutant clone which does not differentiate in the presence of any of the drugs which are normally effective in inducing differentiation of P19 cells. This mutant and others may help to elucidate the chain of events triggered by retinoic acid and other differentiation-inducing drugs. Images PMID:6656766

  20. Angiogenesis is repressed by ethanol exposure during chick embryonic development.

    PubMed

    Wang, Guang; Zhong, Shan; Zhang, Shi-yao; Ma, Zheng-lai; Chen, Jian-long; Lu, Wen-hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-xiang; Yang, Xuesong

    2016-05-01

    It is now known that excess alcohol consumption during pregnancy can cause fetal alcohol syndrome to develop. However, it is not known whether excess ethanol exposure could directly affect angiogenesis in the embryo or angiogenesis being indirectly affected because of ethanol-induced fetal alcohol syndrome. Using the chick yolk sac membrane (YSM) model, we demonstrated that ethanol exposure dramatically inhibited angiogenesis in the YSM of 9-day-old chick embryos, in a dose-dependent manner. Likewise, the anti-angiogenesis effect of ethanol could be seen in the developing vessel plexus (at the same extra-embryonic regions) during earlier stages of embryo development. The anti-angiogenic effect of ethanol was found associated with excess reactive oxygen species (ROS) production; as glutathione peroxidase activity increased while superoxide dismutase 1 and 2 activities decreased in the YSMs. We further validated this observation by exposing chick embryos to 2,2'-azobis-amidinopropane dihydrochloride (a ROS inducer) and obtained a similar anti-angiogenesis effect as ethanol treatment. Semiquantitative reverse transcription-polymerase chain reaction analysis of the experimental YSMs revealed that expression of angiogenesis-related genes, vascular endothelial growth factor and its receptor, fibroblast growth factor 2 and hypoxia-inducible factor, were all repressed following ethanol and 2,2'-azobis-amidinopropane dihydrochloride treatment. In summary, our results suggest that excess ethanol exposure inhibits embryonic angiogenesis through promoting superfluous ROS production during embryo development. PMID:26177723

  1. Generation of KCL035 research grade human embryonic stem cell line carrying a mutation in HBB gene.

    PubMed

    Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-03-01

    The KCL035 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the HBB gene, which is linked to the β-thalassemia syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345970

  2. Transcriptional Coactivator Cited2 Induces Bmi1 and Mel18 and Controls Fibroblast Proliferation via Ink4a/ARF

    PubMed Central

    Kranc, Kamil R.; Bamforth, Simon D.; Bragança, José; Norbury, Chris; van Lohuizen, Maarten; Bhattacharya, Shoumo

    2003-01-01

    Cited2 (CBP/p300 interacting transactivator with ED-rich tail 2) is required for embryonic development, coactivation of transcription factor AP-2, and inhibition of hypoxia-inducible factor 1 transactivation. Cited2 is induced by multiple growth factors and cytokines and oncogenically transforms cells. Here, we show that the proliferation of Cited2−/− mouse embryonic fibroblasts ceases prematurely. This is associated with a reduction in growth fraction, senescent cellular morphology, and increased expression of the cell proliferation inhibitors p16INK4a, p19ARF, and p15INK4b. Deletion of INK4a/ARF (encoding p16INK4a and p19ARF) completely rescued the defective proliferation of Cited2−/− fibroblasts. However, the deletion of INK4a/ARF did not rescue the embryonic malformations observed in Cited2−/− mice, indicating that INK4a/ARF-independent pathways are likely to be involved here. We found that Cited2−/− fibroblasts had reduced expression of the polycomb-group genes Bmi1 and Mel18, which function as INK4a/ARF and Hox repressors. Complementation with CITED2-expressing retrovirus enhanced proliferation, induced Bmi1/Mel18 expression, and decreased INK4a/ARF expression. Bmi1- and Mel18-expressing retroviruses enhanced the proliferation of Cited2−/− fibroblasts, indicating that they function downstream of Cited2. Our results provide genetic evidence that Cited2 controls the expression of INK4a/ARF and fibroblast proliferation, at least in part via the polycomb-group genes Bmi1 and Mel18. PMID:14560011

  3. Akt inactivation induces endoplasmic reticulum stress-independent autophagy in fibroblasts from patients with Pompe disease.

    PubMed

    Nishiyama, Yurika; Shimada, Yohta; Yokoi, Takayuki; Kobayashi, Hiroshi; Higuchi, Takashi; Eto, Yoshikatsu; Ida, Hiroyuki; Ohashi, Toya

    2012-11-01

    Pompe disease (glycogen storage disease type II) is an autosomal recessive neuromuscular disorder arising from a deficiency of lysosomal acid α-glucosidase (GAA). Accumulation of autophagosomes is a key pathological change in skeletal muscle fibers and fibroblasts from patients with Pompe disease and is implicated in the poor response to enzyme replacement therapy (ERT). We previously found that mutant GAA-induced endoplasmic reticulum (ER) stress initiated autophagy in patient fibroblasts. However, the mechanism of induction of autophagy in fibroblasts from Pompe disease patients lacking ER stress remains unclear. In this study, we show that inactivated Akt induces ER stress-independent autophagy via mTOR suppression in patient fibroblasts. Activated autophagy as evidenced by increased levels of LC3-II and autophagic vesicles was observed in patient fibroblasts, whereas PERK phosphorylation reflecting the presence of ER stress was not observed in them. These patient fibroblasts showed decreased levels of not only phosphorylated Akt, but also phosphorylated p70 S6 kinase. Treatment with insulin, which acts as an activator of the Akt signaling pathway, resulted in increased phosphorylation of both Akt and p70 S6 kinase and suppression of autophagy in patient fibroblasts. In addition, following combination treatment with recombinant human GAA plus insulin, enhanced localization of the enzymes with lysosomes was observed in patient fibroblasts. These findings define a critical role of Akt suppression in the induction of autophagy in fibroblasts from patients with Pompe disease carrying an ER stress non-inducible mutation, and they provide evidence that insulin may potentiate the effect of ERT. PMID:23041259

  4. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.

    PubMed

    Sebe, Attila; Ivics, Zoltán

    2016-01-01

    Human induced pluripotent stem (iPS) cells are a source of patient-specific pluripotent stem cells and resemble human embryonic stem (ES) cells in gene expression profiles, morphology, pluripotency, and in vitro differentiation potential. iPS cells are applied in disease modeling, drug screenings, toxicology screenings, and autologous cell therapy. In this protocol, we describe how to derive human iPS cells from fibroblasts by Sleeping Beauty (SB) transposon-mediated gene transfer of reprogramming factors. First, the components of the non-viral Sleeping Beauty transposon system, namely a transposon vector encoding reprogramming transcription factors and a helper plasmid expressing the SB transposase, are electroporated into human fibroblasts. The reprogramming cassette undergoes transposition from the transfected plasmids into the fibroblast genome, thereby resulting in stable delivery of the reprogramming factors. Reprogramming by using this protocol takes ~4 weeks, after which the iPS cells are isolated and clonally propagated. PMID:26895068

  5. Embryonic development during chronic acceleration

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Abbott, U. K.

    1982-01-01

    Experiments carried out on chicken eggs indicate that the embryo is affected during very early development, especially over the first four days, and during hatching. In the first four days, the brain develops as well as the anlage for all other organs. In addition, the heart commences to function and the extraembryonic membranes that compartmentalize the egg contents form. The latter require an appreciable extension and folding of tissue which may be disrupted by the mechanical load. Observations of embryonic abnormalities that occur during chronic acceleration suggest an inhibition of development of the axial skeleton, which is rarely seen otherwise, a general retardation of embryonic growth, and circulatory problems. The final stages of development (after 18 days) involve the uptake of fluids, the transition to aerial respiration, and the reorientation of the embryo into a normal hatching position. At 4 G mortality is very high during this period, with a majority of embryos failing to reorient into the normal hatching position.

  6. Embryonic Heart Progenitors and Cardiogenesis

    PubMed Central

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  7. Mutations in fibroblast growth factor receptors: Phenotypic consequences during eukaryotic development

    SciTech Connect

    Park, W.J.; Bellus, G.A.; Jabs, E.W.

    1995-10-01

    Recently, a tremendous amount of excitement and interest has been generated by the rapid succession of discoveries in the human fibroblast growth factor receptor (FGFR) field. In less than a year, mutations in three FGFRs (FGFR1-FGFR3) have been associated with three skeletal dysplasias and four craniosynostotic syndromes. FGFRs are members of the receptor tyrosine kinase family that bind fibroblast growth factors (FGFs). The FGF family consists of structurally related polypeptides that play a key role in numerous aspects of embryogenesis, growth, and homeostasis. FGFs have a potent growth stimulatory and/or differentiation-inducing effect on cells such as those derived from the early-embryonic mesoderm or ectoderm. In addition to mitogenesis and differentiation, FGFs also stimulate chemotaxis, cell survival, and angiogenesis. FGFs mediate cellular responses on binding to and activation of FGFRs. 45 refs., 2 figs., 1 tab.

  8. Transcriptional expression profile of cultured human embryonic stem cells in vitro and in vivo.

    PubMed

    Keil, Marlen; Siegert, Antje; Eckert, Klaus; Gerlach, Jörg; Haider, Wolfram; Fichtner, Iduna

    2012-03-01

    The aims of this study were to analyze the spontaneous differentiation of human embryonic stem cells in vitro and in vivo and to investigate the influence of in vitro partial differentiation on in vivo teratoma formation in immunodeficient mice. Standardized methods are needed for long-term cultivation of undifferentiated stem cells and the multilineage cells that spontaneously differentiate from them. Accordingly, SA002 human embryonic stem cells were cultured on irradiated mouse embryonic fibroblasts cells, on irradiated human foreskin fibroblasts, or were cultured feeder-free using matrigel. Expression of marker protein transcripts was analyzed in undifferentiated and differentiated stem cells using real-time PCR, and both types of stem cells were transplanted subcutaneously into immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice to test for teratoma formation. Teratoma histology and expression profiles were subsequently characterized. Cells cultured using different conditions and morphologically undifferentiated cells had comparable marker expression profiles, showing high expression levels of markers for pluripotency and low-to-moderate expression levels of germ layer markers. Cells showing spontaneous differentiation that were cultured in feeder-free conditions in the absence of basic fibroblast growth factor demonstrated slight upregulation of sex determining region Y-box 17, connexin 32, and albumin expression at early time points, as well as expression of octamer-binding transcription factor 4, proteoglycan epitopes on podocalyxin (Trafalgar), and alkaline phosphatase. At later time points, expression of hepatocyte nuclear factor-3-beta, and hepatocyte nuclear factor-4-alpha and alpha fetoprotein was upregulated, whereas beta-3-tubulin, chemokine receptor, nestin, sex-determining region Y-box 17, and connexin 32 were downregulated. Expression of pluripotency markers remained high, and hematopoetic markers were not expressed. SA002 cells that showed

  9. Embryonic lethality after combined inactivation of Fancd2 and Mlh1 in mice

    PubMed Central

    van de Vrugt, Henri J.; Eaton, Laura; Newell, Amy Hanlon; Al-Dhalimy, Mushen; Liskay, R. Michael; Olson, Susan B.; Grompe, Markus

    2009-01-01

    DNA repair defects are frequently encountered in human cancers. These defects are utilized by traditional therapeutics but also offer novel cancer treatment strategies based on synthetic lethality. To determine the consequences of combined Fanconi anemia and mismatch repair pathway inactivation, defects in Fancd2 and Mlh1 were combined in one mouse model. Fancd2/Mlh1 double mutant embryos displayed growth retardation resulting in embryonic lethality and significant under-representation among progeny. Additional inactivation of Trp53 failed to improve the survival of Fancd2/Mlh1 deficient embryos. Mouse fibroblasts were obtained and challenged with crosslinking agents. Fancd2-deficient cells displayed the FA-characteristic growth inhibition after mitomycin C exposure. In primary fibroblasts, absence of Mlh1 did not greatly affect the mitomycin C sensitivity of Fancd2-deficient and proficient cells. However, in Trp53 mutant immortalized fibroblasts Mlh1-deficiency reduced the growth-inhibiting effect of mitomycin C in Fancd2 mutant and complemented cells. Similar data were obtained using psoralen/UVA, signifying that MLH1 influences the cellular sensitivity to DNA interstrand crosslinks. Next, the effect of MLH1-deficiency on the formation of chromosomal aberrations in response to crosslinking agents was determined. Surprisingly, Mlh1 mutant fibroblasts displayed a modest, but noticeable decrease in induced chromosomal breakage and interchange frequencies, suggesting that MLH1 promotes ICL repair catastrophe. In conclusion, the combined inactivation of Fancd2 and Mlh1 did not result in synthetic lethality at the cellular level. Although, absence of Fancd2 sensitized Mlh1 / Trp53 mutant fibroblasts to mitomycin C, the differential survival of primary and immortalized fibroblasts advocates against systemic inactivation of FANCD2 to enhance treatment of MLH1-deficient tumors. PMID:19934329

  10. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts.

    PubMed

    Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes. PMID:16184768

  11. Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation

    SciTech Connect

    Yamano, Noriko; Kimura, Tohru; Watanabe-Kushima, Shoko; Shinohara, Takashi; Nakano, Toru

    2010-02-12

    Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.

  12. Generation of KCL034 clinical grade human embryonic stem cell line

    PubMed Central

    Devito, Liani; Jacquet, Laureen; Petrova, Anastasia; Miere, Cristian; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL034 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro assays. The line was also validated for sterility, specific and non-specific human pathogens.

  13. Generation of KCL033 clinical grade human embryonic stem cell line

    PubMed Central

    Devito, Liani; Petrova, Anastasia; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL033 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro assays. The line was also validated for sterility and specific and non-specific human pathogens. PMID:27345988

  14. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet.

    PubMed

    Vanderperre, Benoît; Herzig, Sébastien; Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-05-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  15. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    PubMed Central

    Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  16. Lineage Tracing Reveals Distinctive Fates for Mesothelial Cells and Submesothelial Fibroblasts during Peritoneal Injury

    PubMed Central

    Chen, Yi-Ting; Chang, Yu-Ting; Pan, Szu-Yu; Chou, Yu-Hsiang; Chang, Fan-Chi; Yeh, Pei-Ying; Liu, Yuan-Hung; Chiang, Wen-Chih; Chen, Yung-Ming; Wu, Kwan-Dun; Tsai, Tun-Jun; Duffield, Jeremy S.

    2014-01-01

    Fibrosis of the peritoneal cavity remains a serious, life-threatening problem in the treatment of kidney failure with peritoneal dialysis. The mechanism of fibrosis remains unclear partly because the fibrogenic cells have not been identified with certainty. Recent studies have proposed mesothelial cells to be an important source of myofibroblasts through the epithelial–mesenchymal transition; however, confirmatory studies in vivo are lacking. Here, we show by inducible genetic fate mapping that type I collagen–producing submesothelial fibroblasts are specific progenitors of α-smooth muscle actin–positive myofibroblasts that accumulate progressively in models of peritoneal fibrosis induced by sodium hypochlorite, hyperglycemic dialysis solutions, or TGF-β1. Similar genetic mapping of Wilms’ tumor-1–positive mesothelial cells indicated that peritoneal membrane disruption is repaired and replaced by surviving mesothelial cells in peritoneal injury, and not by submesothelial fibroblasts. Although primary cultures of mesothelial cells or submesothelial fibroblasts each expressed α-smooth muscle actin under the influence of TGF-β1, only submesothelial fibroblasts expressed α-smooth muscle actin after induction of peritoneal fibrosis in mice. Furthermore, pharmacologic inhibition of the PDGF receptor, which is expressed by submesothelial fibroblasts but not mesothelial cells, attenuated the peritoneal fibrosis but not the remesothelialization induced by hypochlorite. Thus, our data identify distinctive fates for injured mesothelial cells and submesothelial fibroblasts during peritoneal injury and fibrosis. PMID:24854266

  17. An embryonic transcriptome of the pulmonate snail Radix balthica.

    PubMed

    Tills, Oliver; Truebano, Manuela; Rundle, Simon

    2015-12-01

    The pond snail, Radix balthica (Linnaeus 1758), is an emerging model species within ecological developmental biology. While its development has been characterised in detail, genomic resources for embryonic stages are lacking. We applied Illumina MiSeq RNA-seq to RNA isolated from pools of embryos at two points during development. Embryos were cultured in either the presence or absence of predator kariomones to increase the diversity of the transcripts assembled. Sequencing produced 47.2M paired-end reads, assembled into 54,360 contigs of which 73% were successfully annotated. This transcriptome provides an invaluable resource to build a mechanistic understanding of developmental plasticity. PMID:26297600

  18. Culture and Manipulation of Embryonic Cells

    PubMed Central

    Edgar, Lois G.; Goldstein, Bob

    2012-01-01

    The direct manipulation of embryonic cells is an important tool for addressing key questions in cell and developmental biology. C. elegans is relatively unique among genetic model systems in being amenable to manipulation of embryonic cells. Embryonic cell manipulation has allowed the identification of cell interactions by direct means, and it has been an important technique for dissecting mechanisms by which cell fates are specified, cell divisions are oriented, and morphogenesis is accomplished. Here, we present detailed methods for isolating, manipulating and culturing embryonic cells of C. elegans. PMID:22226523

  19. Interferon Regulatory Factor 4 Contributes to Transformation of v-Rel-Expressing Fibroblasts

    PubMed Central

    Hrdličková, Radmila; Nehyba, Jiří; Bose, Henry R.

    2001-01-01

    The avian homologue of the interferon regulatory factor 4 (IRF-4) and a novel splice variant lacking exon 6, IRF-4ΔE6, were isolated and characterized. Chicken IRF-4 is expressed in lymphoid organs, less in small intestine, and lungs. IRF-4ΔE6 mRNA, though less abundant than full-length IRF-4, was detected in lymphoid tissues, with the highest levels observed in thymic cells. IRF-4 is highly expressed in v-Rel-transformed lymphocytes, and the expression of IRF-4 is increased in v-Rel- and c-Rel-transformed fibroblasts relative to control cells. The expression of IRF-4 from retrovirus vectors morphologically transformed primary fibroblasts, increased their saturation density, proliferation, and life span, and promoted their growth in soft agar. IRF-4 and v-Rel cooperated synergistically to transform fibroblasts. The expression of IRF-4 antisense RNA eliminated formation of soft agar colonies by v-Rel and reduced the proliferation of v-Rel-transformed cells. v-Rel-transformed fibroblasts produced interferon 1 (IFN1), which inhibits fibroblast proliferation. Infection of fibroblasts with retroviruses expressing v-Rel resulted in an increase in the mRNA levels of IFN1, the IFN receptor, STAT1, JAK1, and 2′,5′-oligo(A) synthetase. The exogenous expression of IRF-4 in v-Rel-transformed fibroblasts decreased the production of IFN1 and suppressed the expression of several genes in the IFN transduction pathway. These results suggest that induction of IRF-4 expression by v-Rel likely facilitates transformation of fibroblasts by decreasing the induction of this antiproliferative pathway. PMID:11533227

  20. 1alpha,25-dihydroxyvitamin D3 rapidly inhibits fibroblast-induced collagen gel contraction.

    PubMed

    Greiling, D; Thieroff-Ekerdt, R

    1996-06-01

    1alpha,25-Dihydroxyvitamin D3 (1,25-D3) inhibits the proliferation of fibroblasts in vitro in monolayer culture. We investigated the effect of 1,25-D3 on normal murine and human fibroblasts cultured in collagen type I gels, which more closely resembles the in vivo situation in the dermis. In this culture system 1,25-D3 had no effect on fibroblast proliferation; however, the fibroblast-induced collagen gel contraction was inhibited in a time- and concentration-dependent manner in the nanomolar concentration range. 25-Hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 were inactive. 1,25-D3 had no effect in fibroblasts lacking a functional vitamin D receptor. Pretreatment of fibroblasts in monolayer culture for 5 min was sufficient to trigger the inhibition of collagen gel contraction. Nifedipine increased collagen gel contraction and counteracted the effect of 1,25-D3. The inhibition of collagen gel contraction by 1,25-D3 is supposed to be mediated by the vitamin D receptor because a functional vitamin D receptor is required, and vitamin D metabolites with low affinity to the vitamin D receptor were inactive. Brief pretreatment of fibroblasts was sufficient to trigger the inhibitory effect of 1,25-D3, suggesting a nongenomic effect. A genomic mode of action could not be ruled out, however, because the inhibition was first measured after 24 h. The antagonism of the calcium channel antagonist nifedipine probably represents the sum of two opposite effects rather than supporting evidence for a nongenomic mode of action of 1,25-D3. In conclusion, 1,25-D3 has a specific and rapidly triggered inhibitory effect on fibroblast-induced collagen gel contraction. PMID:8752663

  1. Effects of embryonic cyclosporine exposures on brain development and behavior

    PubMed Central

    Clift, Danielle E.; Thorn, Robert J.; Passarelli, Emily A.; Kapoor, Mrinal; LoPiccolo, Mary K.; Richendrfer, Holly A.; Colwill, Ruth M.; Creton, Robbert

    2015-01-01

    Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning, since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate, because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures. PMID:25591474

  2. Effects of embryonic cyclosporine exposures on brain development and behavior.

    PubMed

    Clift, Danielle E; Thorn, Robert J; Passarelli, Emily A; Kapoor, Mrinal; LoPiccolo, Mary K; Richendrfer, Holly A; Colwill, Ruth M; Creton, Robbert

    2015-04-01

    Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures. PMID:25591474

  3. The Effects of Fibroblast Co-Culture and Activin A on in vitro Growth of Mouse Preantral Follicles

    PubMed Central

    Karimpour Malekshah, Abbasali; Heidari, Mahmoud; Parivar, Kazem; Azami, Nasrin Sadat

    2014-01-01

    Background: This study was conducted to evaluate fibroblast co-culture and Activin A on in vitro maturation and fertilization of mouse preantral follicles. Methods: The ovaries from 12-14-day-old mice were dissected, and 120-150 μm preantral follicles were cultured individually in α-MEM as based medium for 12 days. A total number of 456 follicles were cultured in four conditions: (i) base medium as control group (n = 113), (ii) base medium supplemented with 30 ng/ml Activin A (n = 115), (iii) base medium co-cultured with mouse embryonic fibroblast (n = 113), and (iv) base medium supplemented with 30 ng/ml Activin A and co-cultured with fibroblast (n = 115). Rate of growth, survivability, antrum formation, ovulation, embryonic development and steroid production were evaluated. Analysis of Variance and Duncan test were applied for analyzing. Results: Both co-culture and co-culture + Activin A groups showed significant difference (P<0.05) in growth (on days 4, 6, and 8 of culture period) and survival rates. However, there was no significant difference in antrum formation, ovulation rate, and embryonic development of ovulated oocytes. There were significant differences (P<0.05) in the estradiol production on days 8, 10, and 12 between co-culture + Activin A and the control group. Progesterone production also was significant (P<0.05) in co-culture + Activin A group on days 6, 8, 10, and 12 compared to control group. Conclusion: Fibroblast co-culture and Activin A promoted growth and survivability of preantral follicles. However, simultaneous use of them was more efficient. PMID:24375163

  4. Application of a Novel Population of Multipotent Stem Cells Derived from Skin Fibroblasts as Donor Cells in Bovine SCNT

    PubMed Central

    Pan, Shaohui; Chen, Wuju; Liu, Xu; Xiao, Jiajia; Wang, Yanqin; Liu, Jun; Du, Yue; Wang, Yongsheng; Zhang, Yong

    2015-01-01

    Undifferentiated stem cells are better donor cells for somatic cell nuclear transfer (SCNT), resulting in more offspring than more differentiated cells. While various stem cell populations have been confirmed to exist in the skin, progress has been restricted due to the lack of a suitable marker for their prospective isolation. To address this fundamental issue, a marker is required that could unambiguously prove the differentiation state of the donor cells. We therefore utilized magnetic activated cell sorting (MACS) to separate a homogeneous population of small SSEA-4+ cells from a heterogeneous population of bovine embryonic skin fibroblasts (BEF). SSEA-4+ cells were 8-10 μm in diameter and positive for alkaline phosphatase (AP). The percentage of SSEA-4+ cells within the cultured BEF population was low (2-3%). Immunocytochemistry and PCR analyses revealed that SSEA-4+ cells expressed pluripotency-related markers, and could differentiate into cells comprising all three germ layers in vitro. They remained undifferentiated over 20 passages in suspension culture. In addition, cloned embryos derived from SSEA-4 cells showed significant differences in cleavage rate and blastocyst development when compared with those from BEF and SSEA-4− cells. Moreover, blastocysts derived from SSEA-4+ cells showed a higher total cell number and lower apoptotic index as compared to BEF and SSEA-4– derived cells. It is well known that nuclei from pluripotent stem cells yield a higher cloning efficiency than those from adult somatic cells, however, pluripotent stem cells are relatively difficult to obtain from bovine. The SSEA-4+ cells described in the current study provide an attractive candidate for SCNT and a promising platform for the generation of transgenic cattle. PMID:25602959

  5. Cancer-associated fibroblasts and macrophages

    PubMed Central

    Chiarugi, Paola

    2013-01-01

    Inflammation, which is now recognized as an hallmark of cancer, is intimately linked to the reactivity of stromal fibroblasts. Accumulating evidence indicate that cancer-associated fibroblasts not only drive the epithelial-mesenchymal transition and metabolically sustain the growth of cancer cells, but also engage in a reciprocal relationship with M2 macrophages that dramatically boost malignancy. PMID:24319632

  6. Rationale Behind Targeting Fibroblast Activation Protein–Expressing Carcinoma-Associated Fibroblasts as a Novel Chemotherapeutic Strategy

    PubMed Central

    Brennen, W. Nathaniel; Isaacs, John T.; Denmeade, Samuel R.

    2013-01-01

    The tumor microenvironment has emerged as a novel chemotherapeutic strategy in the treatment of cancer. This is most clearly exemplified by the antiangiogenesis class of compounds. Therapeutic strategies that target fibroblasts within the tumor stroma offer another treatment option. However, despite promising data obtained in preclinical models, such strategies have not been widely used in the clinical setting, largely due to a lack of effective treatments that specifically target this population of cells. The identification of fibroblast activation protein α (FAP) as a target selectively expressed on fibroblasts within the tumor stroma or on carcinoma-associated fibroblasts led to intensive efforts to exploit this novel cellular target for clinical benefit. FAP is a membrane-bound serine protease of the prolyl oligopeptidase family with unique post-prolyl endopeptidase activity. Until recently, the majority of FAP-based therapeutic approaches focused on the development of small-molecule inhibitors of enzymatic activity. Evidence suggests, however, that FAP’s pathophysiological role in carcinogenesis may be highly contextual, depending on both the exact nature of the tumor microenvironment present and the cancer type in question to determine its tumor-promoting or tumor-suppressing phenotype. As an alternative strategy, we are taking advantage of FAP’s restricted expression and unique substrate preferences to develop a FAP-activated prodrug to target the activation of a cytotoxic compound within the tumor stroma. Of note, this strategy would be effective independently of FAP’s role in tumor progression because its therapeutic benefit would rely on FAP’s localization and activity within the tumor microenvironment rather than strictly on inhibition of its function. PMID:22323494

  7. Selective control of fibroblast proliferation and its effect on cardiac muscle differentiation in vitro.

    PubMed

    Clark, W A

    1976-09-01

    The stability of the differentiated state of cardiac myocytes in vitro was examined under culture conditions which selectively stimulated or inhibited proliferation of fibroblasts. Regulation of fibroblast proliferation in cultures of myocardial cells from 8-day embryonic chicks was achieved by adjustment of the glutamine (Gln) concentration in the culture medium (Ham's F-12 medium containing 2 x amino acids and 5% fetal calf serum). Myocardial cells, when plated at 80 cells/mm2 in Gln- medium, maintained a stable density of approximately 40% of the plating density for more than 30 days. When Gln was added to the medium (292 micrograms/ml) fibroblast proliferation was stimulated, and by 5-6 days after this addition cell densities had increased to confluency. The selective action of glutamine on fibroblast proliferation was determined by labeling cultures with tritiated thymidine ([3H]TdR) and scoring its incorporation into myocytes and fibroblasts by radioautography. After 2 weeks in Gln- medium, the mitotic index was 0.3% and the [3H]TdR-labeling index (1.5-hr pulse) was 6.4%. In addition, the proportion of myocytes in the population was constant at 64.2% for at least 30 days in vitro, and contractile activity was observed for up to 6 months. After 5 days of Gln replacement, the cells exhibited a labeling index of 25%, the proportion of myocytes decreased to less than 10% and contractile activity was rarely observed. Although the [3H]TdR-labeling index of fibroblasts and myocytes was nearly identical in Gln- medium, the addition of Gln produced a fivefold stimulation in the fibroblast labeling index, but did not affect myocyte proliferation or DNA synthesis. A unique phenomenon of myocyte congregation was observed only in Gln- medium which resulted in the formation of myocyte colonies from which fibroblasts were largely absent. It is suggested that this process with the resultant establishment of a functional electrical syncytium plays a significant role in the

  8. Lacking power impairs executive functions.

    PubMed

    Smith, Pamela K; Jostmann, Nils B; Galinsky, Adam D; van Dijk, Wilco W

    2008-05-01

    Four experiments explored whether lacking power impairs executive functioning, testing the hypothesis that the cognitive presses of powerlessness increase vulnerability to performance decrements during complex executive tasks. In the first three experiments, low power impaired performance on executive-function tasks: The powerless were less effective than the powerful at updating (Experiment 1), inhibiting (Experiment 2), and planning (Experiment 3). Existing research suggests that the powerless have difficulty distinguishing between what is goal relevant and what is goal irrelevant in the environment. A fourth experiment established that the executive-function impairment associated with low power is driven by goal neglect. The current research implies that the cognitive alterations arising from powerlessness may help foster stable social hierarchies and that empowering employees may reduce costly organizational errors. PMID:18466404

  9. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.

    PubMed

    Bonvallet, Paul P; Schultz, Matthew J; Mitchell, Elizabeth H; Bain, Jennifer L; Culpepper, Bonnie K; Thomas, Steven J; Bellis, Susan L

    2015-01-01

    Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone) electrospun scaffold (70:30 col/PCL) containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM), and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344) rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14%) over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold). Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration. Collectively these

  10. Microporous Dermal-Mimetic Electrospun Scaffolds Pre-Seeded with Fibroblasts Promote Tissue Regeneration in Full-Thickness Skin Wounds

    PubMed Central

    Bonvallet, Paul P.; Schultz, Matthew J.; Mitchell, Elizabeth H.; Bain, Jennifer L.; Culpepper, Bonnie K.; Thomas, Steven J.; Bellis, Susan L.

    2015-01-01

    Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone) electrospun scaffold (70:30 col/PCL) containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM), and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344) rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14%) over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold). Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration. Collectively these

  11. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts.

    PubMed

    Muñoz-Félix, José M; Fuentes-Calvo, Isabel; Cuesta, Cristina; Eleno, Nélida; Crespo, Piero; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-10-01

    The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc. PMID:26873620

  12. Virus isolation and propagation in embryonating eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The embryonating egg is one of the most versatile, easy to work with, and widely used host systems for the isolation and propagation of avian viruses. The embryonating chicken egg (ECE) is the most commonly available system that is both specific pathogen free and supports the replication of viruses...

  13. Tensional Homeostasis in Single Fibroblasts

    PubMed Central

    Webster, Kevin D.; Ng, Win Pin; Fletcher, Daniel A.

    2014-01-01

    Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micropatterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This response is influenced by overexpression of the actin crosslinker α-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury. PMID:24988349

  14. Optimization of Buffalo (Bubalus bubalis) Embryonic Stem Cell Culture System

    PubMed Central

    Zandi, Mohammad; Muzaffar, Musharifa; Shah, Syed Mohmad; Kumar Singh, Manoj; Palta, Prabhat; Kumar Singla, Suresh; Manik, Radheysham; Chauhan, Manmohan Singh

    2015-01-01

    Objective In order to retain an undifferentiated pluripotent state, embryonic stem (ES) cells have to be cultured on feeder cell layers. However, use of feeder layers limits stem cell research, since experimental data may result from a combined ES cell and feeder cell response to various stimuli. Materials and Methods In this experimental study, a buffalo ES cell line was established from in vitro derived blastocysts and characterized by the Alkaline phosphatase (AP) and immunoflourescence staining of various pluripotency markers. We examined the effect of various factors like fibroblast growth factor 2 (FGF-2), leukemia inhibitory factor (LIF) and Y-27632 to support the growth and maintenance of bubaline ES cells on gelatin coated dishes, in order to establish feeder free culture systems. We also analyzed the effect of feeder-conditioned media on stem cell growth in gelatin based cultures both in the presence as well as in the absence of the growth factors. Results The results showed that Y-27632, in the presence of FGF-2 and LIF, resulted in higher colony growth and increased expression of Nanog gene. Feeder-Conditioned Medium resulted in a significant increase in growth of buffalo ES cells on gelatin coated plates, however, feeder layer based cultures produced better results than gelatin based cultures. Feeder layers from buffalo fetal fibroblast cells can support buffalo ES cells for more than two years. Conclusion We developed a feeder free culture system that can maintain buffalo ES cells in the short term, as well as feeder layer based culture that can support the long term maintenance of buffalo ES cells. PMID:26199905

  15. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability

    PubMed Central

    Lange, Sabine S.; Tomida, Junya; Boulware, Karen S.; Bhetawal, Sarita; Wood, Richard D.

    2016-01-01

    DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents. PMID:26727495

  16. Hexabrachion proteins in embryonic chicken tissues and human tumors.

    PubMed

    Erickson, H P; Taylor, H C

    1987-09-01

    Cell cultures of chicken embryo and human fibroblasts produce a large extracellular matrix molecule with a six-armed structure that we called a hexabrachion (Erickson, H. P., and J. L. Iglesias, 1984, Nature (Lond.), 311:267-269. In the present work we have determined that the myotendinous (M1) antigen described by M. Chiquet and D. M. Fambrough in chicken tissues (1984, J. Cell Biol., 98:1926-1936), and the glioma mesenchymal extracellular matrix protein described by Bourdon et al. in human tumors (Bourdon, M. A., C. J. Wikstrand, H. Furthmayr, T. J. Matthews, and D. D. Bigner, 1983, Cancer Res. 43:2796-2805) have the structure of hexabrachions. We also demonstrate that the M1 antigen is present in embryonic brain, where it was previously reported absent, and have purified hexabrachions from brain homogenates. The recently described cytotactin (Grumet, M., S. Hoffman, K. L. Crossin, and G. M. Edelman, 1985, Proc. Natl. Acad. Sci. USA, 82:8075-8079) now appears to be identical to the chicken hexabrachion protein. In a search for functional roles, we looked for a possible cell attachment activity. A strong, fibronectin-like attachment activity was present in (NH4)2SO4 precipitates of cell supernatant and sedimented with hexabrachions in glycerol gradients. Hexabrachions purified by antibody adsorption, however, had lost this activity, suggesting that it was due to a separate factor associated with hexabrachions in the gradient fractions. The combined information in the several, previously unrelated studies suggests that hexabrachions may play a role in organizing localized regions of extracellular matrix. The protein is prominently expressed at specific times and locations during embryonic development, is retained in certain adult tissues, and is reexpressed in a variety of tumors. PMID:3654758

  17. Fibroblast sources: Where can we get them?

    PubMed

    Fernandes, I R; Russo, F B; Pignatari, G C; Evangelinellis, M M; Tavolari, S; Muotri, A R; Beltrão-Braga, P C B

    2016-03-01

    Fibroblasts are cells widely used in cell culture, both for transient primary cell culture or permanent as transformed cell lines. Lately, fibroblasts become cell sources for use in disease modeling after cell reprogramming because it is easily accessible in the body. Fibroblasts in patients will maintain all genetic background during reprogramming into induced pluripotent stem cells. In spite of their large use, fibroblasts are obtained after an invasive procedure, a superficial punch skin biopsy, collected under patient's local anesthesia. Taking into consideration the minimum patient's discomfort during and after the biopsy procedure, as well as the aesthetics aspect, it is essential to reflect on the best site of the body for the biopsy procedure combined with the success of getting robust fibroblast cultures in the lab. For this purpose, we compared the efficiency of four biopsy sites of the body (skin from eyelid, back of the ear, abdominal cesarean scar and groin). Cell proliferation assays and viability after cryopreservation were measured. Our results revealed that scar tissue provided fibroblasts with higher proliferative rates. Also, fibroblasts from scar tissues presented a higher viability after the thawing process. PMID:25060709

  18. Transcriptional control of cardiac fibroblast plasticity.

    PubMed

    Lighthouse, Janet K; Small, Eric M

    2016-02-01

    Cardiac fibroblasts help maintain the normal architecture of the healthy heart and are responsible for scar formation and the healing response to pathological insults. Various genetic, biomechanical, or humoral factors stimulate fibroblasts to become contractile smooth muscle-like cells called myofibroblasts that secrete large amounts of extracellular matrix. Unfortunately, unchecked myofibroblast activation in heart disease leads to pathological fibrosis, which is a major risk factor for the development of cardiac arrhythmias and heart failure. A better understanding of the molecular mechanisms that control fibroblast plasticity and myofibroblast activation is essential to develop novel strategies to specifically target pathological cardiac fibrosis without disrupting the adaptive healing response. This review highlights the major transcriptional mediators of fibroblast origin and function in development and disease. The contribution of the fetal epicardial gene program will be discussed in the context of fibroblast origin in development and following injury, primarily focusing on Tcf21 and C/EBP. We will also highlight the major transcriptional regulatory axes that control fibroblast plasticity in the adult heart, including transforming growth factor β (TGFβ)/Smad signaling, the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) axis, and Calcineurin/transient receptor potential channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling. Finally, we will discuss recent strategies to divert the fibroblast transcriptional program in an effort to promote cardiomyocyte regeneration. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling". PMID:26721596

  19. Arousal of cancer-associated stromal fibroblasts

    PubMed Central

    2012-01-01

    Cancer-associated fibroblasts (CAF), comprised of activated fibroblasts or myofibroblasts, are found in stroma surrounding solid tumors; these myofibroblasts promote invasion and metastasis of cancer cells. Activation of stromal fibroblasts into myofibroblasts is induced by expression of cystoskeleton protein, palladin, at early stages in tumorigenesis and increases with neoplastic progression. Expression of palladin in fibroblasts is triggered by paracrine signaling from adjacent k-ras-expressing epithelial cells. Three-dimensional co-cultures of palladin-expressing fibroblasts and pancreatic cancer cells reveals that the activated fibroblasts lead the invasion by creating tunnels through the extracellular matrix through which the cancer cells follow. Invasive tunneling occurs as a result of the development of invadopodia-like cellular protrusions in the palladin-activated fibroblasts and the addition of a wounding/inflammatory trigger. Abrogation of palladin reduces the invasive capacity of these cells. CAF also play a role in cancer resistance and immuno-privilege, making the targeting of activators of these cells of interest for oncologists. PMID:23076142

  20. Cytotoxicity of silver dressings on diabetic fibroblasts.

    PubMed

    Zou, Shi-Bo; Yoon, Won-Young; Han, Seung-Kyu; Jeong, Seong-Ho; Cui, Zheng-Jun; Kim, Woo-Kyung

    2013-06-01

    A large number of silver-based dressings are commonly used in the management of chronic wounds that are at risk of infection, including diabetic foot ulcers. However, there are still controversies regarding the toxicity of silver dressings on wound healing. The purpose of this study was to objectively test the cytotoxicity of silver dressings on human diabetic fibroblasts. Human diabetic fibroblasts were obtained from the foot skin of four diabetic foot ulcer patients and cultured. The effect of five silver-containing dressing products (Aquacel Ag, Acticoat*Absorbent, Medifoam Ag, Biatain Ag and PolyMem Ag) and their comparable silver-free dressing products on morphology, proliferation and collagen synthesis of the cultured human diabetic fibroblasts were compared in vitro. In addition, extracts of each dressing were tested in order to examine the effect of other chemical components found in the dressings on cytotoxicity. The diabetic fibroblasts cultured with each silver-free dressing adopted the typical dendritic and fusiform shape. On the other hand, the diabetic fibroblasts did not adopt this typical morphology when treated with the different silver dressings. All silver dressings tested in the study reduced the viability of the diabetic fibroblasts and collagen synthesis by 54-70 and 48-68%, respectively, when compared to silver-free dressings. Silver dressings significantly changed the cell morphology and decreased cell proliferation and collagen synthesis of diabetic fibroblasts. Therefore, silver dressings should be used with caution when treating diabetic wounds. PMID:22533495

  1. Growth Retardation, DNA Repair Defects, and Lack of Spermatogenesis in BRCA1-Deficient Mice

    PubMed Central

    Cressman, Victoria L.; Backlund, Dana C.; Avrutskaya, Anna V.; Leadon, Steven A.; Godfrey, Virginia; Koller, Beverly H.

    1999-01-01

    BRCA1 is a nuclear phosphoprotein expressed in a broad spectrum of tissues during cell division. The inheritance of a mutant BRCA1 allele dramatically increases a woman’s lifetime risk for developing both breast and ovarian cancers. A number of mouse lines carrying mutations in the Brca1 gene have been generated, and mice homozygous for these mutations generally die before day 10 of embryonic development. We report here the survival of a small number of mice homozygous for mutations in both the p53 and Brca1 genes. The survival of these mice is likely due to additional unknown mutations or epigenetic effects. Analysis of the Brca1−/− p53−/− animals indicates that BRCA1 is not required for the development of most organ systems. However, these mice are growth retarded, males are infertile due to meiotic failure, and the mammary gland of the female mouse is underdeveloped. Growth deficiency due to loss of BRCA1 was more thoroughly examined in an analysis of primary fibroblast lines obtained from these animals. Like p53−/− fibroblasts, Brca1−/− p53−/− cells proliferate more rapidly than wild-type cells; however, a high level of cellular death in these cultures results in reduced overall growth rates in comparison to p53−/− fibroblasts. Brca1−/− p53−/− fibroblasts are also defective in transcription-coupled repair and display increased sensitivity to DNA-damaging agents. We show, however, that after continued culture, and perhaps accelerated by the loss of BRCA1 repair functions, populations of Brca1−/− p53−/− fibroblasts with increased growth rates can be isolated. The increased survival of BRCA1-deficient fibroblasts in the absence of p53, and with the subsequent accumulation of additional growth-promoting changes, may mimic the events that occur during malignant transformation of BRCA1-deficient epithelia. PMID:10490643

  2. The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy

    PubMed Central

    Mohamed, Tamer M. A.; Abou-Leisa, Riham; Stafford, Nicholas; Maqsood, Arfa; Zi, Min; Prehar, Sukhpal; Baudoin-Stanley, Florence; Wang, Xin; Neyses, Ludwig; Cartwright, Elizabeth J.; Oceandy, Delvac

    2016-01-01

    The heart responds to pathological overload through myocyte hypertrophy. Here we show that this response is regulated by cardiac fibroblasts via a paracrine mechanism involving plasma membrane calcium ATPase 4 (PMCA4). Pmca4 deletion in mice, both systemically and specifically in fibroblasts, reduces the hypertrophic response to pressure overload; however, knocking out Pmca4 specifically in cardiomyocytes does not produce this effect. Mechanistically, cardiac fibroblasts lacking PMCA4 produce higher levels of secreted frizzled related protein 2 (sFRP2), which inhibits the hypertrophic response in neighbouring cardiomyocytes. Furthermore, we show that treatment with the PMCA4 inhibitor aurintricarboxylic acid (ATA) inhibits and reverses cardiac hypertrophy induced by pressure overload in mice. Our results reveal that PMCA4 regulates the development of cardiac hypertrophy and provide proof of principle for a therapeutic approach to treat this condition. PMID:27020607

  3. Brief Azacytidine Step Allows The Conversion of Suspension Human Fibroblasts into Neural Progenitor-Like Cells

    PubMed Central

    Mirakhori, Fahimeh; Zeynali, Bahman; Kiani, Sahar; Baharvand, Hossein

    2015-01-01

    In recent years transdifferentiation technology has enabled direct conversion of human fibroblasts to become a valuable, abundant and accessible cell source for patient-specific induced cell generation in biomedical research. The majority of transdifferentiation approaches rely upon viral gene delivery which due to random integration with the host genome can cause genome instability and tumorigenesis upon transplantation. Here, we provide a simple way to induce neural progenitor-like cells from human fibroblasts without genetic manipulation by changing physicochemical culture properties from monolayer culture into a suspension in the presence of a chemical DNA methyltransferase inhibitor agent, Azacytidine. We have demonstrated the expression of neural progenitor-like markers, morphology and the ability to spontaneously differentiate into neural-like cells. This approach is simple, inexpensive, lacks genetic manipulation and could be a foundation for future chemical neural transdifferentiation and a safe induction of neural progenitor cells from human fibroblasts for clinical applications. PMID:25870845

  4. Gingival Fibroblasts as Autologous Feeders for Induced Pluripotent Stem Cells.

    PubMed

    Yu, G; Okawa, H; Okita, K; Kamano, Y; Wang, F; Saeki, M; Yatani, H; Egusa, H

    2016-01-01

    Human gingival fibroblasts (hGFs) present an attractive source of induced pluripotent stem cells (iPSCs), which are expected to be a powerful tool for regenerative dentistry. However, problems to be addressed prior to clinical application include the use of animal-derived feeder cells for cultures. The aim of this study was to establish an autologous hGF-derived iPSC (hGF-iPSC) culture system by evaluating the feeder ability of hGFs. In both serum-containing and serum-free media, hGFs showed higher proliferation than human dermal fibroblasts (hDFs). Three hGF strains were isolated under serum-free conditions, although 2 showed impaired proliferation. When hGF-iPSCs were transferred onto mitomycin C-inactivated hGFs, hDFs, or mouse-derived SNL feeders, hGF and SNL feeders were clearly hGF-iPSC supportive for more than 50 passages, whereas hDF feeders were only able to maintain undifferentiated hGF-iPSC growth for a few passages. After 20 passages on hGF feeders, embryonic stem cell marker expression and CpG methylation at the NANOG and OCT3/4 promoters were similar for hGF-iPSCs cultured on hGF and SNL feeder cells. Long-term cultures of hGF-iPSCs on hGF feeders sustained their normal karyotype and pluripotency. On hGF feeders, hGF-iPSC colonies were surrounded by many colony-derived fibroblast-like cells, and the size of intact colonies at 7 d after passage was significantly larger than that on SNL feeders. Allogeneic hGF strains also maintained hGF-iPSCs for 10 passages. Compared with hDFs, hGFs showed a higher production of laminin-332, laminin α5 chain, and insulin-like growth factor-II, which have been reported to sustain the long-term self-renewal of pluripotent stem cells. These results suggest that hGFs possess an excellent feeder capability and thus can be used as alternatives to conventional mouse-derived SNL and hDF feeders. In addition, our findings suggest that hGF feeders are promising candidates for animal component-free ex vivo expansion of

  5. Developmental angiogenesis: quail embryonic vasculature.

    PubMed

    Poole, T J; Coffin, J D

    1988-03-01

    We have examined the segregation and early morphogenesis of the embryonic vasculature by using a monoclonal antibody for immunofluorescence and by scanning electron microscopy. This antibody labels the presumptive endothelial cells (PECs) as they segregate from mesoderm. Similar embryos prepared for SEM revealed finer details of how these segregated cells interact to form the rudiments of the major blood vessels. Here we concentrate on the development of the dorsal aortae and the posterior cardinal veins. The dorsal aortae form from single PECs which segregate from the lateral mesoderm and aggregate into a loose cord ventral to the somites. These cells become more closely associated and a lumen forms. The posterior cardinal veins form from a loose plexus of cells segregated from the lateral mesoderm on its dorsal surface. These cells become intimately associated with the Wolffian ducts. PMID:3285464

  6. Undifferentiated Embryonal Sarcoma of Liver

    PubMed Central

    Kallam, Avyakta; Krishnamurthy, Jairam; Kozel, Jessica

    2015-01-01

    Undifferentiated embryonal sarcoma of the liver (UESL) is a rare malignant hepatic tumor. A 47 year old male presented with symptoms of sour taste in his mouth, occasional nausea, indigestion and 15-pound weight loss over two months. He had an unremarkable upper gastrointestinal endoscopy. Imaging showed a large liver mass in the left hepatic lobe that was resected and then reported as UESL. He went on to develop lung metastases and was initially treated with doxorubicin and ifosfamide followed by switching of therapy to gemcitabine and docetaxel due to progression of disease. He had a good response after two cycles and went on to receive four more cycles, achieving stable disease. We can therefore conclude that the combination of gemcitabine and docetaxel is a potential therapeutic option for patients with UESL. PMID:26788276

  7. Infrared inhibition of embryonic hearts

    NASA Astrophysics Data System (ADS)

    Wang, Yves T.; Rollins, Andrew M.; Jenkins, Michael W.

    2016-06-01

    Infrared control is a new technique that uses pulsed infrared lasers to thermally alter electrical activity. Originally developed for nerves, we have applied this technology to embryonic hearts using a quail model, previously demonstrating infrared stimulation and, here, infrared inhibition. Infrared inhibition enables repeatable and reversible block, stopping cardiac contractions for several seconds. Normal beating resumes after the laser is turned off. The block can be spatially specific, affecting propagation on the ventricle or initiation on the atrium. Optical mapping showed that the block affects action potentials and not just calcium or contraction. Increased resting intracellular calcium was observed after a 30-s exposure to the inhibition laser, which likely resulted in reduced mechanical function. Further optimization of the laser illumination should reduce potential damage. Stopping cardiac contractions by disrupting electrical activity with infrared inhibition has the potential to be a powerful tool for studying the developing heart.

  8. Undifferentiated Embryonal Sarcoma of Liver.

    PubMed

    Kallam, Avyakta; Krishnamurthy, Jairam; Kozel, Jessica; Shonka, Nicole

    2015-12-29

    Undifferentiated embryonal sarcoma of the liver (UESL) is a rare malignant hepatic tumor. A 47 year old male presented with symptoms of sour taste in his mouth, occasional nausea, indigestion and 15-pound weight loss over two months. He had an unremarkable upper gastrointestinal endoscopy. Imaging showed a large liver mass in the left hepatic lobe that was resected and then reported as UESL. He went on to develop lung metastases and was initially treated with doxorubicin and ifosfamide followed by switching of therapy to gemcitabine and docetaxel due to progression of disease. He had a good response after two cycles and went on to receive four more cycles, achieving stable disease. We can therefore conclude that the combination of gemcitabine and docetaxel is a potential therapeutic option for patients with UESL. PMID:26788276

  9. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts.

    PubMed

    Tsuchiyama, Kenichiro; Wakao, Shohei; Kuroda, Yasumasa; Ogura, Fumitaka; Nojima, Makoto; Sawaya, Natsue; Yamasaki, Kenshi; Aiba, Setsuya; Dezawa, Mari

    2013-10-01

    The induction of melanocytes from easily accessible stem cells has attracted attention for the treatment of melanocyte dysfunctions. We found that multilineage-differentiating stress-enduring (Muse) cells, a distinct stem cell type among human dermal fibroblasts, can be readily reprogrammed into functional melanocytes, whereas the remainder of the fibroblasts do not contribute to melanocyte differentiation. Muse cells can be isolated as cells positive for stage-specific embryonic antigen-3, a marker for undifferentiated human embryonic stem cells, and differentiate into cells representative of all three germ layers from a single cell, while also being nontumorigenic. The use of certain combinations of factors induces Muse cells to express melanocyte markers such as tyrosinase and microphthalmia-associated transcription factor and to show positivity for the 3,4-dihydroxy-L-phenylalanine reaction. When Muse cell-derived melanocytes were incorporated into three-dimensional (3D) cultured skin models, they localized themselves in the basal layer of the epidermis and produced melanin in the same manner as authentic melanocytes. They also maintained their melanin production even after the 3D cultured skin was transplanted to immunodeficient mice. This technique may be applicable to the efficient production of melanocytes from accessible human fibroblasts by using Muse cells, thereby contributing to autologous transplantation for melanocyte dysfunctions, such as vitiligo. PMID:23563197

  10. Fibroblast heterogeneity in the cancer wound

    PubMed Central

    Öhlund, Daniel; Elyada, Ela

    2014-01-01

    Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy. PMID:25071162

  11. Fibroblast heterogeneity in the cancer wound.

    PubMed

    Öhlund, Daniel; Elyada, Ela; Tuveson, David

    2014-07-28

    Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy. PMID:25071162

  12. Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay

    PubMed Central

    2013-01-01

    Background Carbon nanotubes (CNT) can induce lung inflammation and fibrosis in rodents. Several studies have identified the capacity of CNT to stimulate the proliferation of fibroblasts. We developed and validated experimentally here a simple and rapid in vitro assay to evaluate the capacity of a nanomaterial to exert a direct pro-fibrotic effect on fibroblasts. Methods The activity of several multi-wall (MW)CNT samples (NM400, the crushed form of NM400 named NM400c, NM402 and MWCNTg 2400) and asbestos (crocidolite) was investigated in vitro and in vivo. The proliferative response to MWCNT was assessed on mouse primary lung fibroblasts, human fetal lung fibroblasts (HFL-1), mouse embryonic fibroblasts (BALB-3T3) and mouse lung fibroblasts (MLg) by using different assays (cell counting, WST-1 assay and propidium iodide PI staining) and dispersion media (fetal bovine serum, FBS and bovine serum albumin, BSA). C57BL/6 mice were pharyngeally aspirated with the same materials and lung fibrosis was assessed after 2 months by histopathology, quantification of total collagen lung content and pro-fibrotic cytokines in broncho-alveolar lavage fluid (BALF). Results MWCNT (NM400 and NM402) directly stimulated fibroblast proliferation in vitro in a dose-dependent manner and induced lung fibrosis in vivo. NM400 stimulated the proliferation of all tested fibroblast types, independently of FBS- or BSA- dispersion. Results obtained by WST1 cell activity were confirmed with cell counting and cell cycle (PI staining) assays. Crocidolite also stimulated fibroblast proliferation and induced pulmonary fibrosis, although to a lesser extent than NM400 and NM402. In contrast, shorter CNT (NM400c and MWCNTg 2400) did not induce any fibroblast proliferation or collagen accumulation in vivo, supporting the idea that CNT structure is an important parameter for inducing lung fibrosis. Conclusions In this study, an optimized proliferation assay using BSA as a dispersant, MLg cells as targets

  13. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    SciTech Connect

    Yue, Xiao-shan; Fujishiro, Masako; Toyoda, Masashi; Akaike, Toshihiro; Ito, Yoshihiro

    2010-04-16

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  14. Effect of Fibroblast Co-culture on In Vitro Maturation and Fertilization of Mouse Preantral Follicles

    PubMed Central

    Heidari, Mahmoud; Malekshah, Abbasali Karimpour; Parivar, Kazem; Khanbabaei, Ramezan; Rafiei, Alireza

    2011-01-01

    Background The aim of this study was to evaluate fibroblast co-culture on in vitro maturation and fertilization of prepubertal mouse preantral follicles. Materials and Methods The ovaries of 12-14 day old mice were dissected and 120-150 μm intact preantral follicles with one or two layers of granulosa cells, and round oocytes were cultured individually in α-minimal essential medium (α-MEM) supplemented with 5% fetal bovine serum (FBS), 100 mIU/ml recombinant follicle stimulating hormone, 1% insulin, transferrin, selenium mix, 100 μg/ml penicillin and 50 μg/ml streptomycin as base medium for 12 days. A total number of 226 follicules were cultured under two conditions: i) base medium as control group (n=113); ii) base medium co-cultured with mouse embryonic fibroblast (MEF) (n=113). Follicular diameters, alone, in addition to other factors were analyzed by student’s t-test and chi-square test, respectively. Results The co-culture group showed significant differences (p<0.05) in growth rate (days 4, 6 and 8 of the culture period) and survival rate. However, there was no significant difference in antrum formation, ovulation rate and embryonic development of released oocytes. There were significant differences (p<0.05) in the estradiol and progesterone secretion at all days between the co-culture and control groups. Conclusion Fibroblast co-culture increased survival rate and steroid production of preantral follicles by promoting granulosa cell proliferation. PMID:24917917

  15. Role of Lung Pericytes and Resident Fibroblasts in the Pathogenesis of Pulmonary Fibrosis

    PubMed Central

    Hung, Chi; Linn, Geoffrey; Chow, Yu-Hua; Kobayashi, Akio; Mittelsteadt, Kristen; Altemeier, William A.; Gharib, Sina A.

    2013-01-01

    Rationale: The origin of cells that make pathologic fibrillar collagen matrix in lung disease has been controversial. Recent studies suggest mesenchymal cells may contribute directly to fibrosis. Objectives: To characterize discrete populations of mesenchymal cells in the normal mouse lung and to map their fate after bleomycin-induced lung injury. Methods: We mapped the fate of Foxd1-expressing embryonic progenitors and their progeny during lung development, adult homeostasis, and after fibrosing injury in Foxd1-Cre; Rs26-tdTomato-R mice. We studied collagen-I(α)1–producing cells in normal and diseased lungs using Coll-GFPTg mice. Measurements and Main Results: Foxd1-expressing embryonic progenitors enter lung buds before 13.5 days post-conception, expand, and form an extensive lineage of mesenchymal cells that have characteristics of pericytes. A collagen-I(α)1–expressing mesenchymal population of distinct lineage is also found in adult lung, with features of a resident fibroblast. In contrast to resident fibroblasts, Foxd1 progenitor–derived pericytes are enriched in transcripts for innate immunity, vascular development, WNT signaling pathway, and cell migration. Foxd1 progenitor–derived pericytes expand after bleomycin lung injury, and activate expression of collagen-I(α)1 and the myofibroblast marker αSMA in fibrotic foci. In addition, our studies suggest a distinct lineage of collagen-I(α)1–expressing resident fibroblasts that also expands after lung injury is a second major source of myofibroblasts. Conclusions: We conclude that the lung contains an extensive population of Foxd1 progenitor–derived pericytes that are an important lung myofibroblast precursor population. PMID:23924232

  16. 28. Embryonic and adult stem cell therapy.

    PubMed

    Henningson, Carl T; Stanislaus, Marisha A; Gewirtz, Alan M

    2003-02-01

    Stem cells are characterized by the ability to remain undifferentiated and to self-renew. Embryonic stem cells derived from blastocysts are pluripotent (able to differentiate into many cell types). Adult stem cells, which were traditionally thought to be monopotent multipotent, or tissue restricted, have recently also been shown to have pluripotent properties. Adult bone marrow stem cells have been shown to be capable of differentiating into skeletal muscle, brain microglia and astroglia, and hepatocytes. Stem cell lines derived from both embryonic stem and embryonic germ cells (from the embryonic gonadal ridge) are pluripotent and capable of self-renewal for long periods. Therefore embryonic stem and germ cells have been widely investigated for their potential to cure diseases by repairing or replacing damaged cells and tissues. Studies in animal models have shown that transplantation of fetal, embryonic stem, or embryonic germ cells may be able to treat some chronic diseases. In this review, we highlight recent developments in the use of stem cells as therapeutic agents for three such diseases: Diabetes, Parkinson disease, and congestive heart failure. We also discuss the potential use of stem cells as gene therapy delivery cells and the scientific and ethical issues that arise with the use of human stem cells. PMID:12592319

  17. Generation of KCL021 research grade human embryonic stem cell line carrying a ΔF508 mutation in the CFTR gene.

    PubMed

    Miere, Cristian; Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL021 human embryonic stem cell line was derived from an embryo donated for research that carried a ΔF508 mutation affecting the CFTR gene encoding the cystic fibrosis transmembrane conductance regulator. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345808

  18. Distinct function of estrogen receptor α in smooth muscle and fibroblast cells in prostate development.

    PubMed

    Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan

    2013-01-01

    Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development. PMID:23204329

  19. PDGFRβ expression and function in fibroblasts derived from pluripotent cells is linked to DNA demethylation

    PubMed Central

    Hewitt, Kyle J.; Shamis, Yulia; Knight, Elana; Smith, Avi; Maione, Anna; Alt-Holland, Addy; Sheridan, Steven D.; Haggarty, Stephen J.; Garlick, Jonathan A.

    2012-01-01

    Platelet-derived growth factor receptor-beta (PDGFRβ) is required for the development of mesenchymal cell types, and plays a diverse role in the function of fibroblasts in tissue homeostasis and regeneration. In this study, we characterized the expression of PDGFRβ in fibroblasts derived from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), and showed that this expression is important for cellular functions such as migration, extracellular matrix production and assembly in 3D self-assembled tissues. To determine potential regulatory regions predictive of expression of PDGFRβ following differentiation from ESCs and iPSCs, we analyzed the DNA methylation status of a region of the PDGFRB promoter that contains multiple CpG sites, before and after differentiation. We demonstrated that this promoter region is extensively demethylated following differentiation, and represents a developmentally regulated, differentially methylated region linked to PDGFRβ expression. Understanding the epigenetic regulation of genes such as PDGFRB, and identifying sites of active DNA demethylation, is essential for future applications of iPSC-derived fibroblasts for regenerative medicine. PMID:22344267

  20. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state.

    PubMed

    Fu, Ji-Dong; Stone, Nicole R; Liu, Lei; Spencer, C Ian; Qian, Li; Hayashi, Yohei; Delgado-Olguin, Paul; Ding, Sheng; Bruneau, Benoit G; Srivastava, Deepak

    2013-01-01

    Direct reprogramming of adult somatic cells into alternative cell types has been shown for several lineages. We previously showed that GATA4, MEF2C, and TBX5 (GMT) directly reprogrammed nonmyocyte mouse heart cells into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. However, GMT alone appears insufficient in human fibroblasts, at least in vitro. Here, we show that GMT plus ESRRG and MESP1 induced global cardiac gene-expression and phenotypic shifts in human fibroblasts derived from embryonic stem cells, fetal heart, and neonatal skin. Adding Myocardin and ZFPM2 enhanced reprogramming, including sarcomere formation, calcium transients, and action potentials, although the efficiency remained low. Human iCM reprogramming was epigenetically stable. Furthermore, we found that transforming growth factor β signaling was important for, and improved the efficiency of, human iCM reprogramming. These findings demonstrate that human fibroblasts can be directly reprogrammed toward the cardiac lineage, and lay the foundation for future refinements in vitro and in vivo. PMID:24319660

  1. Isolation and characterization of SSEA3(+) stem cells derived from goat skin fibroblasts.

    PubMed

    Yang, Zhongcai; Liu, Jun; Liu, Hongliang; Qiu, Mingning; Liu, Qingqing; Zheng, Liming; Pang, Meijun; Quan, Fusheng; Zhang, Yong

    2013-06-01

    Novel stem cells expressing stage-specific embryonic antigen 3 (SSEA-3) reside among human dermal fibroblasts and are known as multilineage-differentiating stress-enduring (Muse) cells. They enhance the generation efficiency of induced pluripotent stem cells. However, Muse cells have only been found in humans. We aimed to isolate SSEA3-positive cells from terminally differentiated skin fibroblasts of adult goat and determine their pluripotency. Cell clusters from SSEA3(+) populations possessed stem cell-like morphological features and normal karyotypes, were consistently positive for alkaline phosphatase, and expressed stem cell pluripotency markers. These SSEA3(+) cells remained undifferentiated over eight passages in suspension culture and were able to differentiate into cells of all three germ layers in vitro and in vivo. Our combined findings suggest that a subset of adult stem cells expressing SSEA3 also exist among adult goat skin fibroblasts. We are the first to report that multipotent adult goat cells exist among terminally differentiated goat skin in suspension culture. Our results also provide a promising platform for generation of a transgenic goat, because the undifferentiated state of stem cells was thought to be more efficient as donor cells for somatic cell nuclear transfer. PMID:23668861

  2. Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State

    PubMed Central

    Fu, Ji-Dong; Stone, Nicole R.; Liu, Lei; Spencer, C. Ian; Qian, Li; Hayashi, Yohei; Delgado-Olguin, Paul; Ding, Sheng; Bruneau, Benoit G.; Srivastava, Deepak

    2013-01-01

    Summary Direct reprogramming of adult somatic cells into alternative cell types has been shown for several lineages. We previously showed that GATA4, MEF2C, and TBX5 (GMT) directly reprogrammed nonmyocyte mouse heart cells into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. However, GMT alone appears insufficient in human fibroblasts, at least in vitro. Here, we show that GMT plus ESRRG and MESP1 induced global cardiac gene-expression and phenotypic shifts in human fibroblasts derived from embryonic stem cells, fetal heart, and neonatal skin. Adding Myocardin and ZFPM2 enhanced reprogramming, including sarcomere formation, calcium transients, and action potentials, although the efficiency remained low. Human iCM reprogramming was epigenetically stable. Furthermore, we found that transforming growth factor β signaling was important for, and improved the efficiency of, human iCM reprogramming. These findings demonstrate that human fibroblasts can be directly reprogrammed toward the cardiac lineage, and lay the foundation for future refinements in vitro and in vivo. PMID:24319660

  3. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling.

    PubMed

    Zhao, Yuanbiao; Londono, Pilar; Cao, Yingqiong; Sharpe, Emily J; Proenza, Catherine; O'Rourke, Rebecca; Jones, Kenneth L; Jeong, Mark Y; Walker, Lori A; Buttrick, Peter M; McKinsey, Timothy A; Song, Kunhua

    2015-01-01

    Direct reprogramming of fibroblasts into cardiomyocytes by forced expression of cardiomyogenic factors, GMT (GATA4, Mef2C, Tbx5) or GHMT (GATA4, Hand2, Mef2C, Tbx5), has recently been demonstrated, suggesting a novel therapeutic strategy for cardiac repair. However, current approaches are inefficient. Here we demonstrate that pro-fibrotic signalling potently antagonizes cardiac reprogramming. Remarkably, inhibition of pro-fibrotic signalling using small molecules that target the transforming growth factor-β or Rho-associated kinase pathways converts embryonic fibroblasts into functional cardiomyocyte-like cells, with the efficiency up to 60%. Conversely, overactivation of these pro-fibrotic signalling networks attenuates cardiac reprogramming. Furthermore, inhibition of pro-fibrotic signalling dramatically enhances the kinetics of cardiac reprogramming, with spontaneously contracting cardiomyocytes emerging in less than 2 weeks, as opposed to 4 weeks with GHMT alone. These findings provide new insights into the molecular mechanisms underlying cardiac conversion of fibroblasts and would enhance efforts to generate cardiomyocytes for clinical applications. PMID:26354680

  4. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling

    PubMed Central

    Zhao, Yuanbiao; Londono, Pilar; Cao, Yingqiong; Sharpe, Emily J.; Proenza, Catherine; O'Rourke, Rebecca; Jones, Kenneth L.; Jeong, Mark Y.; Walker, Lori A.; Buttrick, Peter M.; McKinsey, Timothy A.; Song, Kunhua

    2015-01-01

    Direct reprogramming of fibroblasts into cardiomyocytes by forced expression of cardiomyogenic factors, GMT (GATA4, Mef2C, Tbx5) or GHMT (GATA4, Hand2, Mef2C, Tbx5), has recently been demonstrated, suggesting a novel therapeutic strategy for cardiac repair. However, current approaches are inefficient. Here we demonstrate that pro-fibrotic signalling potently antagonizes cardiac reprogramming. Remarkably, inhibition of pro-fibrotic signalling using small molecules that target the transforming growth factor-β or Rho-associated kinase pathways converts embryonic fibroblasts into functional cardiomyocyte-like cells, with the efficiency up to 60%. Conversely, overactivation of these pro-fibrotic signalling networks attenuates cardiac reprogramming. Furthermore, inhibition of pro-fibrotic signalling dramatically enhances the kinetics of cardiac reprogramming, with spontaneously contracting cardiomyocytes emerging in less than 2 weeks, as opposed to 4 weeks with GHMT alone. These findings provide new insights into the molecular mechanisms underlying cardiac conversion of fibroblasts and would enhance efforts to generate cardiomyocytes for clinical applications. PMID:26354680

  5. Lactic Acid Bacteria Convert Human Fibroblasts to Multipotent Cells

    PubMed Central

    Ohta, Kunimasa; Kawano, Rie; Ito, Naofumi

    2012-01-01

    The human gastrointestinal tract is colonized by a vast community of symbionts and commensals. Lactic acid bacteria (LAB) form a group of related, low-GC-content, gram-positive bacteria that are considered to offer a number of probiotic benefits to general health. While the role of LAB in gastrointestinal microecology has been the subject of extensive study, little is known about how commensal prokaryotic organisms directly influence eukaryotic cells. Here, we demonstrate the generation of multipotential cells from adult human dermal fibroblast cells by incorporating LAB. LAB-incorporated cell clusters are similar to embryoid bodies derived from embryonic stem cells and can differentiate into endodermal, mesodermal, and ectodermal cells in vivo and in vitro. LAB-incorporated cell clusters express a set of genes associated with multipotency, and microarray analysis indicates a remarkable increase of NANOG, a multipotency marker, and a notable decrease in HOX gene expression in LAB-incorporated cells. During the cell culture, the LAB-incorporated cell clusters stop cell division and start to express early senescence markers without cell death. Thus, LAB-incorporated cell clusters have potentially wide-ranging implications for cell generation, reprogramming, and cell-based therapy. PMID:23300571

  6. Fibroblast growth factors, old kids on the new block.

    PubMed

    Li, Xiaokun; Wang, Cong; Xiao, Jian; McKeehan, Wallace L; Wang, Fen

    2016-05-01

    The fibroblast growth factors (FGFs) are a family of cell intrinsic regulatory peptides that control a broad spectrum of cellular activities. The family includes canonic FGFs that elicit their activities by activating the FGF receptor (FGFR) tyrosine kinase and non-canonic members that elicit their activities intracellularly and via FGFR-independent mechanisms. The FGF signaling axis is highly complex due to the existence of multiple isoforms of both ligands and receptors, as well as cofactors that include the chemically heterogeneous heparan sulfate (HS) cofactors, and in the case of endocrine FGFs, the Klotho coreceptors. Resident FGF signaling controls embryonic development, maintains tissue homeostasis, promotes wound healing and tissue regeneration, and regulates functions of multiple organs. However, ectopic or aberrant FGF signaling is a culprit for various diseases, including congenital birth defects, metabolic disorder, and cancer. The molecular mechanisms by which the specificity of FGF signaling is achieved remain incompletely understood. Since its application as a druggable target has been gradually recognized by pharmaceutical companies and translational researchers, understanding the determinants of FGF signaling specificity has become even more important in order to get into the position to selectively suppress a particular pathway without affecting others to minimize side effects. PMID:26768548

  7. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells.

    PubMed

    Salmenperä, Pertteli; Karhemo, Piia-Riitta; Räsänen, Kati; Laakkonen, Pirjo; Vaheri, Antti

    2016-07-01

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similar secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. PMID:27177832

  8. Essential Roles of BCCIP in Mouse Embryonic Development and Structural Stability of Chromosomes

    PubMed Central

    Lu, Huimei; Huang, Yi-Yuan; Mehrotra, Sonam; Droz-Rosario, Roberto; Liu, Jingmei; Bhaumik, Mantu; White, Eileen; Shen, Zhiyuan

    2011-01-01

    BCCIP is a BRCA2- and CDKN1A(p21)-interacting protein that has been implicated in the maintenance of genomic integrity. To understand the in vivo functions of BCCIP, we generated a conditional BCCIP knockdown transgenic mouse model using Cre-LoxP mediated RNA interference. The BCCIP knockdown embryos displayed impaired cellular proliferation and apoptosis at day E7.5. Consistent with these results, the in vitro proliferation of blastocysts and mouse embryonic fibroblasts (MEFs) of BCCIP knockdown mice were impaired considerably. The BCCIP deficient mouse embryos die before E11.5 day. Deletion of the p53 gene could not rescue the embryonic lethality due to BCCIP deficiency, but partially rescues the growth delay of mouse embryonic fibroblasts in vitro. To further understand the cause of development and proliferation defects in BCCIP-deficient mice, MEFs were subjected to chromosome stability analysis. The BCCIP-deficient MEFs displayed significant spontaneous chromosome structural alterations associated with replication stress, including a 3.5-fold induction of chromatid breaks. Remarkably, the BCCIP-deficient MEFs had a ∼20-fold increase in sister chromatid union (SCU), yet the induction of sister chromatid exchanges (SCE) was modestly at 1.5 fold. SCU is a unique type of chromatid aberration that may give rise to chromatin bridges between daughter nuclei in anaphase. In addition, the BCCIP-deficient MEFs have reduced repair of irradiation-induced DNA damage and reductions of Rad51 protein and nuclear foci. Our data suggest a unique function of BCCIP, not only in repair of DNA damage, but also in resolving stalled replication forks and prevention of replication stress. In addition, BCCIP deficiency causes excessive spontaneous chromatin bridges via the formation of SCU, which can subsequently impair chromosome segregations in mitosis and cell division. PMID:21966279

  9. Fibroblast growth factor 8 organizes the neocortical area map and regulates sensory map topography.

    PubMed

    Assimacopoulos, Stavroula; Kao, Tina; Issa, Naoum P; Grove, Elizabeth A

    2012-05-23

    The concept of an "organizer" is basic to embryology. An organizer is a portion of the embryo producing signals that lead to the creation of a patterned mature structure from an embryonic primordium. Fibroblast growth factor 8 (FGF8) is a morphogen that disperses from a rostromedial source in the neocortical primordium (NP), forms a rostral-to-caudal (R/C) gradient, and regulates embryonic and neonatal R/C patterns of gene expression in neocortex. Whether FGF8 also has organizer activity that generates the postnatal neocortical area map is uncertain. To test this possibility, new sources of FGF8 were introduced into the mouse NP with in utero microelectroporation at embryonic day 10.5, close to the estimated peak of area patterning. Results differed depending on the position of ectopic FGF8. Ectopic FGF8 in the caudalmost NP could duplicate somatosensory cortex (S1) and primary visual cortex (V1). FGF8 delivered to the midlateral NP generated a sulcus separating rostral and caudal portions of the NP, in effect creating duplicate NPs. In the caudal NP, ectopic FGF8 induced a second, inclusive area map, containing frontal cortex, S1, V1, and primary auditory areas. Moreover, duplicate S1 showed plasticity to sensory deprivation, and duplicate V1 responded to visual stimuli. Our findings implicate FGF8 as an organizer signal, and its source in the rostromedial telencephalon as an organizer of the neocortical area map. PMID:22623663

  10. Role of microglia in embryonic neurogenesis

    PubMed Central

    Tong, Chih Kong

    2016-01-01

    Microglia begin colonizing the developing brain as early as embryonic day 9, prior to the emergence of neurons and other glia. Their ontogeny is also distinct from other central nervous system cells, as they derive from yolk sac hematopoietic progenitors and not neural progenitors. In this review, we feature these unique characteristics of microglia and assess the spatiotemporal similarities between microglia colonization of the central nervous system and embryonic neurogenesis. We also infer to existing evidence for microglia function from embryonic through to postnatal neurodevelopment to postulate roles for microglia in neurogenesis. PMID:27555616

  11. Role of microglia in embryonic neurogenesis.

    PubMed

    Tong, Chih Kong; Vidyadaran, Sharmili

    2016-09-01

    Microglia begin colonizing the developing brain as early as embryonic day 9, prior to the emergence of neurons and other glia. Their ontogeny is also distinct from other central nervous system cells, as they derive from yolk sac hematopoietic progenitors and not neural progenitors. In this review, we feature these unique characteristics of microglia and assess the spatiotemporal similarities between microglia colonization of the central nervous system and embryonic neurogenesis. We also infer to existing evidence for microglia function from embryonic through to postnatal neurodevelopment to postulate roles for microglia in neurogenesis. PMID:27555616

  12. Measuring time during early embryonic development.

    PubMed

    Ferree, Patrick L; Deneke, Victoria E; Di Talia, Stefano

    2016-07-01

    In most metazoans, embryonic development is orchestrated by a precise series of cellular behaviors. Understanding how such events are regulated to achieve a stereotypical temporal progression is a fundamental problem in developmental biology. In this review, we argue that studying the regulation of the cell cycle in early embryonic development will reveal novel principles of how embryos accurately measure time. We will discuss the strategies that have emerged from studying early development of Drosophila embryos. By comparing the development of flies to that of other metazoans, we will highlight both conserved and alternative mechanisms to generate precision during embryonic development. PMID:26994526

  13. Localization of tropomyosin in mouse embryo fibroblasts.

    PubMed

    Jorgensen, A O; Subrahmanyan, L; Kalnins, V I

    1975-04-01

    Antiserum to chick skeletal muscle tropomyosin was used to localize tropomyosin in mouse embryo fibroblasts by the indirect fluorescein labeled antibody technique. Specific staining was observed cytoplasmic fibers, which extended out into the cell processes. The staining pattern in these cells is similar to that previously described by others for actin. This observation suggests that in fibroblasts tropomyosin, like actin, is localized in fibers in the cytoplasm. PMID:50726

  14. [Development of human embryonic stem cell platforms for human health-safety evaluation].

    PubMed

    Yu, Guang-yan; Cao, Tong; Zou, Xiao-hui; Zhang, Xue-hui; Fu, Xin; Peng, Shuang-qing; Deng, Xu-liang; Li, Sheng-lin; Liu, He; Xiao, Ran; Ouyang, Hong-wei; Peng, Hui; Chen, Xiao; Zhao, Zeng-ming; Wang, Xiao-ying; Fang, Hai-qin; Lu, Lu; Ren, Yu-lan; Xu, Ming-ming

    2016-02-18

    The human embryonic stem cells (hESCs) serve as a self-renewable, genetically-healthy, pluripotent and single source of all body cells, tissues and organs. Therefore, it is considered as the good standard for all human stem cells by US, Europe and international authorities. In this study, the standard and healthy human mesenchymal progenitors, ligament tissues, cardiomyocytes, keratinocytes, primary neurons, fibroblasts, and salivary serous cells were differentiated from hESCs. The human cellular health-safety of NaF, retinoic acid, 5-fluorouracil, dexamethasone, penicillin G, adriamycin, lead acetate PbAc, bisphenol A-biglycidyl methacrylate (Bis-GMA) were evaluated selectively on the standardized platforms of hESCs, hESCs-derived cardiomyocytes, keratinocytes, primary neurons, and fibroblasts. The evaluations were compared with those on the currently most adopted cellular platforms. Particularly, the sensitivity difference of PM2.5 toxicity on standardized and healthy hESCs derived fibroblasts, currently adopted immortalized human bronchial epithelial cells Beas-2B and human umbilical vein endothelial cells (HUVECs) were evaluated. The RESULTS showed that the standardized hESCs cellular platforms provided more sensitivity and accuracy for human cellular health-safety evaluation. PMID:26885900

  15. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth.

    PubMed

    Cheng, Jonathan D; Valianou, Matthildi; Canutescu, Adrian A; Jaffe, Eileen K; Lee, Hyung-Ok; Wang, Hao; Lai, Jack H; Bachovchin, William W; Weiner, Louis M

    2005-03-01

    Tumor-associated fibroblasts are functionally and phenotypically distinct from normal fibroblasts that are not in the tumor microenvironment. Fibroblast activation protein is a 95 kDa cell surface glycoprotein expressed by tumor stromal fibroblasts, and has been shown to have dipeptidyl peptidase and collagenase activity. Site-directed mutagenesis at the catalytic site of fibroblast activation protein, Ser624 --> Ala624, resulted in an approximately 100,000-fold loss of fibroblast activation protein dipeptidyl peptidase (DPP) activity. HEK293 cells transfected with wild-type fibroblast activation protein, enzymatic mutant (S624A) fibroblast activation protein, or vector alone, were inoculated subcutaneously into immunodeficient mouse to assess the contribution of fibroblast activation protein enzymatic activity to tumor growth. Overexpression of wild-type fibroblast activation protein showed growth potentiation and enhanced tumorigenicity compared with both fibroblast activation protein S624A and vector-transfected HEK293 xenografts. HEK293 cells transfected with fibroblast activation protein S624A showed tumor growth rates and tumorigenicity potential similar only to vector-transfected HEK293. In vivo assessment of fibroblast activation protein DPP activity of these tumors showed enhanced enzymatic activity of wild-type fibroblast activation protein, with only baseline levels of fibroblast activation protein DPP activity in either fibroblast activation protein S624A or vector-only xenografts. These results indicate that the enzymatic activity of fibroblast activation protein is necessary for fibroblast activation protein-driven tumor growth in the HEK293 xenograft model system. This establishes the proof-of-principle that the enzymatic activity of fibroblast activation protein plays an important role in the promotion of tumor growth, and provides an attractive target for therapeutics designed to alter fibroblast activation protein-induced tumor growth by targeting

  16. FIBROBLAST MECHANICS IN 3D COLLAGEN MATRICES

    PubMed Central

    Rhee, Sangmyung; Grinnell, Frederick

    2007-01-01

    Connective tissues provide mechanical support and frameworks for the other tissues of the body. Type 1 collagen is the major protein component of ordinary connective tissue, and fibroblasts are the cell type primarily responsible for its biosynthesis and remodeling. Research on fibroblasts interacting with collagen matrices explores all four quadrants of cell mechanics: pro-migratory vs. pro-contractile growth factor environments on one axis; high tension vs. low tension cell-matrix interactions on the other. The dendritic fibroblast – probably equivalent to the resting tissue fibroblast – can be observed only in the low tension quadrant and generally has not been appreciated from research on cells incubated with planar culture surfaces. Fibroblasts in the low tension quadrant require microtubules for formation of dendritic extensions, whereas fibroblasts in the high tension quadrant require microtubules for polarization but not for spreading. Ruffling of dendritic extensions rather than their overall protrusion or retraction provides the mechanism for remodeling of floating collagen matrices, and floating matrix remodeling likely reflects a model of tissue mechanical homeostasis. PMID:17825456

  17. An Integrated Transcriptome Atlas of Embryonic Hair Follicle Progenitors, Their Niche, and the Developing Skin.

    PubMed

    Sennett, Rachel; Wang, Zichen; Rezza, Amélie; Grisanti, Laura; Roitershtein, Nataly; Sicchio, Cristina; Mok, Ka Wai; Heitman, Nicholas J; Clavel, Carlos; Ma'ayan, Avi; Rendl, Michael

    2015-09-14

    Defining the unique molecular features of progenitors and their niche requires a genome-wide, whole-tissue approach with cellular resolution. Here, we co-isolate embryonic hair follicle (HF) placode and dermal condensate cells, precursors of adult HF stem cells and the dermal papilla/sheath niche, along with lineage-related keratinocytes and fibroblasts, Schwann cells, melanocytes, and a population inclusive of all remaining skin cells. With next-generation RNA sequencing, we define gene expression patterns in the context of the entire embryonic skin, and through transcriptome cross-comparisons, we uncover hundreds of enriched genes in cell-type-specific signatures. Axon guidance signaling and many other pathway genes are enriched in multiple signatures, implicating these factors in driving the large-scale cellular rearrangements necessary for HF formation. Finally, we share all data in an interactive, searchable companion website. Our study provides an overarching view of signaling within the entire embryonic skin and captures a molecular snapshot of HF progenitors and their niche. PMID:26256211

  18. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2

    PubMed Central

    Pellieux, Corinne; Foletti, Alessandro; Peduto, Giovanni; Aubert, Jean-François; Nussberger, Jürg; Beermann, Friedrich; Brunner, Hans-R.; Pedrazzini, Thierry

    2001-01-01

    FGF-2 has been implicated in the cardiac response to hypertrophic stimuli. Angiotensin II (Ang II) contributes to maintain elevated blood pressure in hypertensive individuals and exerts direct trophic effects on cardiac cells. However, the role of FGF-2 in Ang II–induced cardiac hypertrophy has not been established. Therefore, mice deficient in FGF-2 expression were studied using a model of Ang II–dependent hypertension and cardiac hypertrophy. Echocardiographic measurements show the presence of dilated cardiomyopathy in normotensive mice lacking FGF-2. Moreover, hypertensive mice without FGF-2 developed no compensatory cardiac hypertrophy. In wild-type mice, hypertrophy was associated with a stimulation of the c-Jun N-terminal kinase, the extracellular signal regulated kinase, and the p38 kinase pathways. In contrast, mitogen-activated protein kinase (MAPK) activation was markedly attenuated in FGF-2–deficient mice. In vitro, FGF-2 of fibroblast origin was demonstrated to be essential in the paracrine stimulation of MAPK activation in cardiomyocytes. Indeed, fibroblasts lacking FGF-2 expression have a defective capacity for releasing growth factors to induce hypertrophic responses in cardiomyocytes. Therefore, these results identify the cardiac fibroblast population as a primary integrator of hypertrophic stimuli in the heart, and suggest that FGF-2 is a crucial mediator of cardiac hypertrophy via autocrine/paracrine actions on cardiac cells. PMID:11748268

  19. Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts.

    PubMed

    Easley, Charles A; Miki, Toshio; Castro, Carlos A; Ozolek, John A; Minervini, Crescenzio F; Ben-Yehudah, Ahmi; Schatten, Gerald P

    2012-06-01

    Cellular reprogramming from adult somatic cells into an embryonic cell-like state, termed induced pluripotency, has been achieved in several cell types. However, the ability to reprogram human amniotic epithelial cells (hAECs), an abundant cell source derived from discarded placental tissue, has only recently been investigated. Here we show that not only are hAECs easily reprogrammed into induced pluripotent stem cells (AE-iPSCs), but hAECs reprogram faster and more efficiently than adult and neonatal somatic dermal fibroblasts. Furthermore, AE-iPSCs express higher levels of NANOG and OCT4 compared to human foreskin fibroblast iPSCs (HFF1-iPSCs) and express decreased levels of genes associated with differentiation, including NEUROD1 and SOX17, markers of neuronal differentiation. To elucidate the mechanism behind the higher reprogramming efficiency of hAECs, we analyzed global DNA methylation, global histone acetylation, and the mitochondrial DNA A3243G point mutation. Whereas hAECs show no differences in global histone acetylation or mitochondrial point mutation accumulation compared to adult and neonatal dermal fibroblasts, hAECs demonstrate a decreased global DNA methylation compared to dermal fibroblasts. Likewise, quantitative gene expression analyses show that hAECs endogenously express OCT4, SOX2, KLF4, and c-MYC, all four factors used in cellular reprogramming. Thus, hAECs represent an ideal cell type for testing novel approaches for generating clinically viable iPSCs and offer significant advantages over postnatal cells that more likely may be contaminated by environmental exposures and infectious agents. PMID:22686477

  20. Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation

    SciTech Connect

    Mathew, Sherin T.; Bergström, Petra; Hammarsten, Ola

    2014-05-01

    Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA and reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2′-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. - Highlights: • Repeated treatment with sulforaphane protects fibroblasts from ionizing radiation • Repeated sulforaphane treatment attenuates radiation induced ROS and DNA damage • Sulforaphane mediated protection is Nrf2 dependent.

  1. Proliferation of chicken fibroblasts induced by light-emitting diodes: a comparative trial for different wavelengths

    NASA Astrophysics Data System (ADS)

    Vinck, Elke; Cagnie, B.; Declercq, H.; Cornelissen, R.; Cambier, D.

    2003-12-01

    The effectiveness and applicability of a variety of light sources, in the treatment of wounds has thoroughly been investigated, in vitro as well as in vivo. The current commercial availability of Light Emitting Diode (LED) sources therefore also invites research to explore the effect of low power infrared, red and green light on wound healing, e.g. by means of fibroblast proliferation. Therefore a controlled and randomized study on cultured embryonic chicken fibroblasts was conducted. The fibroblasts were irradiated during three consecutive days, at several wavelengths (950 nm, 660 nm and 570 nm) and a respective power output of 160 mW, 80 mW or 10 mW. Treatment duration varied from 1 minute to 3 minutes to obtain a surface energy density of 0.9 J/cm2 (infrared and red light) or 0.2 J/cm2 (green light). Statistical analysis revealed that LED irradiation for all three wavelengths induced a higher rate of proliferation in comparison of the control group. This difference was statistically significant (p < .001). With regard to the amount of proliferation the green probe yielded a significantly higher number of cells, than the red (p < .001) an the infrared probe (p < .001). Furthermore, the red probe provided a higher increase (p < .001) than the IR probe. LED irradiation results in an increased fibroblast proliferation in vitro. This outcome postulates beneficial stimulatory effects of LED at the applied wavelength, energy density and power output on wound healing in vivo. Further investigation is necessary to examine this hypothesis.

  2. Oct4 overexpression facilitates proliferation of porcine fibroblasts and development of cloned embryos.

    PubMed

    Kim, Su Jin; Koo, Ok Jae; Park, Hee Jung; Moon, Joon Ho; da Torre, Bego Roibas; Javaregowda, Palaksha Kanive; Kang, Jung Taek; Park, Sol Ji; Saadeldin, Islam M; Choi, Ji Yei; Lee, Byeong-Chun; Jang, Goo

    2015-10-01

    Octamer-binding transcription factor 4 (Oct4) is a critical molecule for the self-renewal and pluripotency of embryonic stem cells. Recent reports have shown that Oct4 also controls cell-cycle progression and enhances the proliferation of various types of cells. As the high proliferation of donor fibroblasts is critical to the production of transgenic pigs, using the somatic cell nuclear transfer technique, we analysed the effect of Oct4 overexpression on the proliferation of porcine fibroblasts and embryos. Porcine endogenous Oct4 cDNA was cloned, sequenced and inserted into an expression vector. The vector was transfected into porcine fibroblasts, and a stable Oct4-overexpressed cell line was established by antibiotic selection. Oct4 expression was validated by the immunostaining of Oct4. Cell morphology was changed to sharp, and both proliferation and migration abilities were enhanced in Oct4-overexpressed cells. Real-time RT-PCR results showed that p16, Bcl2 and Myc were upregulated in Oct4-overexpressed cells. Somatic cell nuclear transfer was performed using Oct4-overexpressed cells, and the development of Oct4 embryos was compared with that of wild-type cloned embryos. The cleavage and blastocyst formation rates were improved in the Oct4 embryos. Interestingly, blastocyst formation of the Oct4 embryos was observed as early as day 5 in culture, while blastocysts were observed from day 6 in wild-type cloned embryos. In conclusion, the overexpression of Oct4 enhanced the proliferation of both porcine fibroblasts and embryos. PMID:25181424

  3. Hypoxia induces NO-dependent release of heparan sulfate in fibroblasts from the Alzheimer mouse Tg2576 by activation of nitrite reduction.

    PubMed

    Cheng, Fang; Bourseau-Guilmain, Erika; Belting, Mattias; Fransson, Lars-Åke; Mani, Katrin

    2016-06-01

    There is a functional relationship between the heparan sulfate proteoglycan glypican-1 and the amyloid precursor protein (APP) of Alzheimer disease. In wild-type mouse embryonic fibroblasts, expression and processing of the APP is required for endosome-to-nucleus translocation of anhydromannose-containing heparan sulfate released from S-nitrosylated glypican-1 by ascorbate-induced, nitrosothiol-catalyzed deaminative cleavage. In fibroblasts from the transgenic Alzheimer mouse Tg2576, there is increased processing of the APP to amyloid-β peptides. Simultaneously, there is spontaneous formation of anhydromannose-containing heparan sulfate by an unknown mechanism. We have explored the effect of hypoxia on anhydromannose-containing heparan sulfate formation in wild-type and Tg2576 fibroblasts by deconvolution immunofluorescence microscopy and flow cytometry using an anhydromannose-specific monoclonal antibody and by (35)SO4-labeling experiments. Hypoxia prevented ascorbate-induced heparan sulfate release in wild-type fibroblasts, but induced an increased formation of anhydromannose-positive and (35)S-labeled heparan sulfate in Tg2576 fibroblasts. This appeared to be independent of glypican-1 S-nitrosylation as demonstrated by using a monoclonal antibody specific for S-nitrosylated glypican-1. In hypoxic wild-type fibroblasts, addition of nitrite to the medium restored anhydromannose-containing heparan sulfate formation. The increased release of anhydromannose-containing heparan sulfate in hypoxic Tg2576 fibroblasts did not require addition of nitrite. However, it was suppressed by inhibition of the nitrite reductase activity of xanthine oxidoreductase/aldehyde oxidase or by inhibition of p38 mitogen-activated protein kinase or by chelation of iron. We propose that normoxic Tg2576 fibroblasts maintain a high level of anhydromannose-containing heparan sulfate production by a stress-activated generation of nitric oxide from endogenous nitrite. This activation is enhanced

  4. Influence of glycosaminoglycan identity on vocal fold fibroblast behavior.

    PubMed

    Jimenez-Vergara, Andrea Carolina; Munoz-Pinto, Dany J; Becerra-Bayona, Silvia; Wang, Bo; Iacob, Alexandra; Hahn, Mariah S

    2011-11-01

    Poly(ethylene glycol) (PEG) hydrogels have recently begun to be studied for the treatment of scarred vocal fold lamina propria due, in part, to their tunable mechanical properties, resistance to fibroblast-mediated contraction, and ability to be polymerized in situ. However, pure PEG gels lack intrinsic biochemical signals to guide cell behavior and generally fail to mimic the frequency-dependent viscoelastic response critical to normal superficial lamina propria function. Recent results suggest that incorporation of viscoelastic bioactive substances, such as glycosaminoglycans (GAGs), into PEG networks may allow these gels to more closely approach the mechanical responses of normal vocal fold lamina propria while also stimulating desired vocal fold fibroblast behaviors. Although a number of vocal fold studies have examined the influence of hyaluronan (HA) on implant mechanics and vocal fold fibroblast responses, the effects of other GAG types have been relatively unexplored. This is significant, since recent studies have suggested that chondroitin sulfate C (CSC) and heparan sulfate (HS) are substantially altered in scarred lamina propria. The present study was therefore designed to evaluate the effects of CSC and HS incorporation on the mechanical response of PEG gels and vocal fold fibroblast behavior relative to HA. As with PEG-HA, the viscoelasticity of PEG-CSC and PEG-HS gels more closely approached that of the normal vocal fold lamina propria than pure PEG hydrogels. In addition, collagen I deposition and fibronectin production were significantly higher in CSC than in HA gels, and levels of the myofibroblast marker smooth muscle α-actin (SM α-actin) were greater in CSC and HS gels than in HA gels. Since collagen I, fibronectin, and SM α-actin are generally elevated in scarred lamina propria these results suggest that CSC and HS may be undesirable for vocal fold implants relative to HA. Investigation of various signaling intermediates indicated that

  5. Generation of KCL017 research grade human embryonic stem cell line carrying a mutation in VHL gene.

    PubMed

    Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-03-01

    The KCL017 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting splicing site of the VHL gene encoding von Hippel-Lindau tumor suppressor E3 ubiquitin protein ligase (676+3A>T). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345980

  6. Generation of KCL016 research grade human embryonic stem cell line carrying a mutation in VHL gene.

    PubMed

    Miere, Cristian; Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL016 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting splicing site of the VHL gene encoding von Hippel-Lindau tumor suppressor E3 ubiquitin protein ligase (676+3A>T). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays. PMID:27345783

  7. Generation of KCL028 research grade human embryonic stem cell line carrying a mutation in the HTT gene

    PubMed Central

    Jacquet, Laureen; Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Hobbs, Carl; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL028 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (43 trinucleotide repeats; 21 for the normal allele). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro and in vivo assays.

  8. Generation of KCL036 research grade human embryonic stem cell line carrying a mutation in the HTT gene

    PubMed Central

    Jacquet, Laureen; Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Hobbs, Carl; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL036 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (38 trinucleotide repeats; 14 for the normal allele). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro and in vivo assays.

  9. Generation of KCL012 research grade human embryonic stem cell line carrying a mutation in the HTT gene

    PubMed Central

    Jacquet, Laureen; Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Hobbs, Carl; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL012 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (46 trinucleotide repeats; 17 for the normal allele). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro and in vivo assays.

  10. Generation of KCL027 research grade human embryonic stem cell line carrying a mutation in the HTT gene

    PubMed Central

    Jacquet, Laureen; Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Hobbs, Carl; Stephenson, Emma; Ilic, Dusko

    2016-01-01

    The KCL027 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (43 trinucleotide repeats; 21 for the normal allele). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro and in vivo assays.

  11. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    PubMed Central

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  12. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

    PubMed

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  13. Biology of FGFRL1, the fifth fibroblast growth factor receptor.

    PubMed

    Trueb, Beat

    2011-03-01

    FGFRL1 (fibroblast growth factor receptor like 1) is the most recently discovered member of the FGFR family. It contains three extracellular Ig-like domains similar to the classical FGFRs, but it lacks the protein tyrosine kinase domain and instead contains a short intracellular tail with a peculiar histidine-rich motif. The gene for FGFRL1 is found in all metazoans from sea anemone to mammals. FGFRL1 binds to FGF ligands and heparin with high affinity. It exerts a negative effect on cell proliferation, but a positive effect on cell differentiation. Mice with a targeted deletion of the Fgfrl1 gene die perinatally due to alterations in their diaphragm. These mice also show bilateral kidney agenesis, suggesting an essential role for Fgfrl1 in kidney development. A human patient with a frameshift mutation exhibits craniosynostosis, arguing for an additional role of FGFRL1 during bone formation. FGFRL1 contributes to the complexity of the FGF signaling system. PMID:21080029

  14. Collagen matrix as a tool in studying fibroblastic cell behavior.

    PubMed

    Kanta, Jiří

    2015-01-01

    Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes. PMID:25734486

  15. Collagen matrix as a tool in studying fibroblastic cell behavior

    PubMed Central

    Kanta, Jiří

    2015-01-01

    Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes. PMID:25734486

  16. Characterization of Dicer-deficient murine embryonic stem cells.

    PubMed

    Murchison, Elizabeth P; Partridge, Janet F; Tam, Oliver H; Cheloufi, Sihem; Hannon, Gregory J

    2005-08-23

    Dicer is an RNase III-family nuclease that initiates RNA interference (RNAi) and related phenomena by generation of the small RNAs that determine the specificity of these gene silencing pathways. We have previously shown that Dicer is essential for mammalian development, with Dicer-deficient mice dying at embryonic day 7.5 with a lack of detectable multipotent stem cells. To permit a more detailed investigation of the biological roles of Dicer, we have generated embryonic stem cell lines in which their single Dicer gene can be conditionally inactivated. As expected, Dicer loss compromises maturation of microRNAs and leads to a defect in gene silencing triggered by long dsRNAs. However, the absence of Dicer does not affect the ability of small interfering RNAs to repress gene expression. Of interest, Dicer loss does compromise the proliferation of ES cells, possibly rationalizing the phenotype previously observed in Dicer-null animals. Dicer loss also affects the abundance of transcripts from mammalian centromeres but does so without a pronounced affect on histone modification status at pericentric repeats or methylation of centromeric DNA. These studies provide a conditional model of RNAi deficiency in mammals that will permit the dissection of the biological roles of the RNAi machinery in cultured mammalian cells. PMID:16099834

  17. Characterization of Dicer-deficient murine embryonic stem cells

    PubMed Central

    Murchison, Elizabeth P.; Partridge, Janet F.; Tam, Oliver H.; Cheloufi, Sihem; Hannon, Gregory J.

    2005-01-01

    Dicer is an RNase III-family nuclease that initiates RNA interference (RNAi) and related phenomena by generation of the small RNAs that determine the specificity of these gene silencing pathways. We have previously shown that Dicer is essential for mammalian development, with Dicer-deficient mice dying at embryonic day 7.5 with a lack of detectable multipotent stem cells. To permit a more detailed investigation of the biological roles of Dicer, we have generated embryonic stem cell lines in which their single Dicer gene can be conditionally inactivated. As expected, Dicer loss compromises maturation of microRNAs and leads to a defect in gene silencing triggered by long dsRNAs. However, the absence of Dicer does not affect the ability of small interfering RNAs to repress gene expression. Of interest, Dicer loss does compromise the proliferation of ES cells, possibly rationalizing the phenotype previously observed in Dicer-null animals. Dicer loss also affects the abundance of transcripts from mammalian centromeres but does so without a pronounced affect on histone modification status at pericentric repeats or methylation of centromeric DNA. These studies provide a conditional model of RNAi deficiency in mammals that will permit the dissection of the biological roles of the RNAi machinery in cultured mammalian cells. PMID:16099834

  18. Production of proteoglycans by human lung fibroblasts (IMR-90) maintained in a low concentration of serum.

    PubMed Central

    Vogel, K G; Sapién, R E

    1982-01-01

    Maintenance of fibroblasts in 0.5% serum results in viable but non-proliferative cells that may be analogous to fibroblasts in vivo. The synthesis of proteoglycans by human embryo lung fibroblasts in Eagle's minimal essential medium with 0.5% newborn-bovine serum or with 10% serum has been compared. A similar amount of [35S]sulphate-labelled glycosaminoglycan per cell was secreted by fibroblasts in 10% or 0.5% serum. 35SO42-incorporation into sulphated glycosaminoglycans was enhanced in 0.5% serum when expressed per mg of cell protein, but [3H]glucosamine incorporation was decreased. The charge density of these glycosaminoglycans was not changed as determined by ion-exchange chromatography. It was concluded that decreased protein/ cell resulted in an apparent increase in 35S-labelled glycosaminoglycan synthesis/mg of cell protein, whereas decreased uptake of [3H]glucosamine resulted in a decrease in their glucosamine labelling. The proteoglycans secreted by fibroblasts in 0.5% serum were similar in glycosaminoglycan composition, chain length and buoyant density to the dermatan sulphate proteoglycan, which is the major secreted component of cells in 10% serum. Larger heparan sulphate and chondroitin sulphate proteoglycans, which comprise about 40% of the total secreted proteoglycans of cultures in 10% serum, were greatly diminished in the medium of cultures in 0.5% serum. The proteoglycan profile of medium from density-inhibited cultures in 10% serum resembles that of proliferating cultures, indicating that lack of proliferation was not responsible for the alteration. The dermatan sulphate proteoglycan, participating in extracellular matrix structure, may be the primary tissue product of lung fibroblasts in vivo. Images Fig. 1. PMID:7165697

  19. Fibroblast involvement in soft connective tissue calcification

    PubMed Central

    Ronchetti, Ivonne; Boraldi, Federica; Annovi, Giulia; Cianciulli, Paolo; Quaglino, Daniela

    2013-01-01

    Soft connective tissue calcification is not a passive process, but the consequence of metabolic changes of local mesenchymal cells that, depending on both genetic and environmental factors, alter the balance between pro- and anti-calcifying pathways. While the role of smooth muscle cells and pericytes in ectopic calcifications has been widely investigated, the involvement of fibroblasts is still elusive. Fibroblasts isolated from the dermis of pseudoxanthoma elasticum (PXE) patients and of patients exhibiting PXE-like clinical and histopathological findings offer an attractive model to investigate the mechanisms leading to the precipitation of mineral deposits within elastic fibers and to explore the influence of the genetic background and of the extracellular environment on fibroblast-associated calcifications, thus improving the knowledge on the role of mesenchymal cells on pathologic mineralization. PMID:23467434

  20. Embryonic transcriptome of the brackishwater amphipod Gammarus chevreuxi.

    PubMed

    Truebano, Manuela; Tills, Oliver; Spicer, John I

    2016-08-01

    Environmental change can dramatically alter the development of aquatic organisms. While the effect of such change on physiological and morphological ontogenies is becoming clearer, the molecular mechanisms underpinning them are largely unexplored. Characterizing these mechanisms is often limited by the lack of molecular resources. We have applied Illumina HiSeq sequencing to RNA isolated from different developmental stages of the brackishwater amphipod Gammarus chevreuxi. Over 52.6M paired-end reads were assembled de novo into 172,081 contigs, representing 118,812 potential genes. The assembly generated constitutes a reference embryonic transcriptome for an ecologically-important aquatic shredder species. This resource will contribute to our understanding of the mechanisms underpinning the development of physiological function through functional, comparative and quantitative expression studies. It will also allow the identification of candidate biomarkers for assessing the impact of environmental stressors in estuarine systems. PMID:26896099

  1. Testosterone metabolism of fibroblasts grown from prostatic carcinoma, benign prostatic hyperplasia and skin fibroblasts

    SciTech Connect

    Schweikert, H.U.; Hein, H.J.; Romijn, J.C.; Schroeder, F.H.

    1982-02-01

    The metabolism of (1,2,6,7-3H)testosterone was assessed in fibroblast monolayers derived from tissue of 5 prostates with benign hyperplasia (BPH), 4 prostates with carcinoma (PC), and 3 biopsy samples of skin, 2 nongenital skin (NG) and 1 genital skin. The following metabolites could be identified: androstanedione androstenedione, dihydrotestosterone, androsterone, epiandrosterone, androstane-3 alpha, 17 beta-diol and androstane-3 beta, 17 beta-diol. Testosterone was metabolized much more rapidly in fibroblasts originating from prostatic tissue than in fibroblasts derived from NG. A significantly higher formation of 5 alpha-androstanes and 3 alpha-hydroxysteroids could be observed in fibroblasts from BPH as compared to PC. 17-ketosteroid formation exceeded 5 alpha-androstane formation in BPH, whereas 5 alpha-reduction was the predominant pathway in fibroblasts grown from PC and NG. Since testosterone metabolism in fibroblasts of prostatic origin therefore resembles in many aspects that in whole prostatic tissue, fibroblasts grown from prostatic tissues might be a valuable tool for further investigation of the pathogenesis of human BPH and PC.

  2. Quiescent Fibroblasts Exhibit High Metabolic Activity

    PubMed Central

    Lemons, Johanna M. S.; Feng, Xiao-Jiang; Bennett, Bryson D.; Legesse-Miller, Aster; Johnson, Elizabeth L.; Raitman, Irene; Pollina, Elizabeth A.; Rabitz, Herschel A.; Rabinowitz, Joshua D.; Coller, Hilary A.

    2010-01-01

    Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a “backwards” flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole. PMID:21049082

  3. Measuring the micromechanical properties of embryonic tissues.

    PubMed

    Chevalier, Nicolas R; Gazguez, Elodie; Dufour, Sylvie; Fleury, Vincent

    2016-02-01

    Local mechanical properties play an important role in directing embryogenesis, both at the cell (differentiation, migration) and tissue level (force transmission, organ formation, morphogenesis). Measuring them is a challenge as embryonic tissues are small (μm to mm) and soft (0.1-10kPa). We describe here how glass fiber cantilevers can be fabricated, calibrated and used to apply small forces (0.1-10μN), measure contractile activity and assess the bulk tensile elasticity of embryonic tissue. We outline how pressure (hydrostatic or osmotic) can be applied to embryonic tissue to quantify stiffness anisotropy. These techniques can be assembled at low cost and with a minimal amount of equipment. We then present a protocol to prepare tissue sections for local elasticity and adhesion measurements using the atomic force microscope (AFM). We compare AFM nanoindentation maps of native and formaldehyde fixed embryonic tissue sections and discuss how the local elastic modulus obtained by AFM compares to that obtained with other bulk measurement methods. We illustrate all of the techniques presented on the specific example of the chick embryonic digestive tract, emphasizing technical issues and common pitfalls. The main purpose of this report is to make these micromechanical measurement techniques accessible to a wide community of biologists and biophysicists. PMID:26255132

  4. Mutations in PADI6 Cause Female Infertility Characterized by Early Embryonic Arrest.

    PubMed

    Xu, Yao; Shi, Yingli; Fu, Jing; Yu, Min; Feng, Ruizhi; Sang, Qing; Liang, Bo; Chen, Biaobang; Qu, Ronggui; Li, Bin; Yan, Zheng; Mao, Xiaoyan; Kuang, Yanping; Jin, Li; He, Lin; Sun, Xiaoxi; Wang, Lei

    2016-09-01

    Early embryonic arrest is one of the major causes of female infertility. However, because of difficulties in phenotypic evaluation, genetic determinants of human early embryonic arrest are largely unknown. With the development of assisted reproductive technology, the phenotype of early human embryonic arrest can now be carefully evaluated. Here, we describe a consanguineous family with a recessive inheritance pattern of female infertility characterized by recurrent early embryonic arrest in cycles of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). We have identified a homozygous PADI6 nonsense mutation (c.1141C>T [p.Gln381(∗)]) that is responsible for the phenotype. Mutational analysis of PADI6 in a cohort of 36 individuals whose embryos displayed developmental arrest identified two affected individuals with compound-heterozygous mutations (c.2009_2010del [p.Glu670Glyfs(∗)48] and c.633T>A [p.His211Gln]; c.1618G>A [p.Gly540Arg] and c.970C>T [p.Gln324(∗)]). Immunostaining indicated a lack of PADI6 in affected individuals' oocytes. In addition, the amount of phosphorylated RNA polymerase II and expression levels of seven genes involved in zygotic genome activation were reduced in the affected individuals' embryos. This phenotype is consistent with Padi6 knockout mice. These findings deepen our understanding of the genetic basis of human early embryonic arrest, which has been a largely ignored Mendelian phenotype. Our findings lay the foundation for uncovering other genetic causes of infertility resulting from early embryonic arrest. PMID:27545678

  5. The Nf1 Tumor Suppressor Regulates Mouse Skin Wound Healing, Fibroblast Proliferation, and Collagen Deposited by Fibroblasts

    PubMed Central

    Atit, Radhika P.; Crowe, Maria J.; Greenhalgh, David G.; Wenstrup, Richard J.; Ratner, Nancy

    2010-01-01

    Neurofibromatosis type 1 patients develop peripheral nerve tumors (neurofibromas) composed mainly of Schwann cells and fibroblasts, in an abundant collagen matrix produced by fibroblasts. Trauma has been proposed to trigger neurofibroma formation. To test if loss of the neurofibromatosis type 1 gene (Nf1) compromises fibroblast function in vivo following trauma, skin wounding was performed in Nf1 knockout mice. The pattern and amount of collagen-rich granulation bed tissue, manufactured by fibroblasts, was grossly abnormal in 60% of Nf1+/− wounds. Nf1 mutant fibroblasts showed cell autonomous abnormalities in collagen deposition in vitro that were not mimicked by Ras activation in fibroblasts, even though some Nf1 effects are mediated through Ras. Nf1+/− skin wound fibroblasts also proliferated past the normal wound maturation phase; this in vivo effect was potentiated by muscle injury. In vitro, Nf1+/− fibroblasts showed higher proliferation in 10% serum than Nf1+/+ fibroblasts. Macrophage-conditioned media or epidermal growth factor potentiated Nf1+/− fibroblast proliferation in vitro, demonstrating abnormal response of mutant fibroblasts to wound cytokines. Thus Nf1 is a key regulator of fibroblast responses to injury, and Nf1 mutation in mouse fibroblasts causes abnormalities characteristic of human neurofibromas. PMID:10383727

  6. Mouse embryonic stem cells have underdeveloped antiviral mechanisms that can be exploited for the development of mRNA-mediated gene expression strategy.

    PubMed

    Wang, Ruoxing; Teng, Chengwen; Spangler, Joseph; Wang, Jundi; Huang, Faqing; Guo, Yan-Lin

    2014-03-15

    We have recently reported that mouse embryonic stem cells (mESCs) are deficient in expressing type I interferons (IFN) when exposed to viral infection and double-stranded RNA. In this study, we extended our investigation and demonstrated that single-stranded RNA and protein-encoding mRNA can induce strong IFN expression and cytotoxicity in fibroblasts and epithelial cells, but none of the effects associated with these antiviral responses were observed in mESCs. Our results provided additional data to support the conclusion that mESCs are intrinsically deficient in antiviral responses. While our findings represent a novel feature of mESCs that in itself is important for understanding innate immunity development, we exploited this property to develop a novel mRNA-mediated gene expression cell model. Direct introduction of synthetic mRNA to express desired genes has been shown as an effective alternative to DNA/viral vector-based gene expression. However, a major biological challenge is that a synthetic mRNA is detected as a viral RNA analog by the host cell, resulting in a series of adverse effects associated with antiviral responses. We demonstrate that the lack of antiviral responses in mESCs effectively avoids this problem. mESCs can tolerate repeated transfection and effectively express proteins from their synthetic mRNA with expected biological functions, as demonstrated by the expression of green fluorescent protein and the transcription factor Etv2. Therefore, mRNA-based gene expression could be developed into a novel ESC differentiation strategy that avoids safety concerns associated with viral/DNA-based vectors in regenerative medicine. PMID:24219369

  7. Scaffolding for Three-Dimensional Embryonic Vasculogenesis

    NASA Astrophysics Data System (ADS)

    Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.

    Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.

  8. Stromal fibroblasts facilitate cancer cell invasion by a novel invadopodia-independent matrix degradation process.

    PubMed

    Cao, H; Eppinga, R D; Razidlo, G L; Krueger, E W; Chen, J; Qiang, L; McNiven, M A

    2016-03-01

    Metastatic invasion of tumors into peripheral tissues is known to rely upon protease-mediated degradation of the surrounding stroma. This remodeling process uses complex, actin-based, specializations of the plasma membrane termed invadopodia that act both to sequester and release matrix metalloproteinases. Here we report that cells of mesenchymal origin, including tumor-associated fibroblasts, degrade substantial amounts of surrounding matrix by a mechanism independent of conventional invadopodia. These degradative sites lack the punctate shape of conventional invadopodia to spread along the cell base and are reticular and/or fibrous in character. In marked contrast to invadopodia, this degradation does not require the action of Src kinase, Cdc42 or Dyn2. Rather, inhibition of Dyn2 causes a marked upregulation of stromal matrix degradation. Further, expression and activity of matrix metalloproteinases are differentially regulated between tumor cells and stromal fibroblasts. This matrix remodeling by fibroblasts increases the invasive capacity of tumor cells, thereby illustrating how the tumor microenvironment can contribute to metastasis. These findings provide evidence for a novel matrix remodeling process conducted by stromal fibroblasts that is substantially more effective than conventional invadopodia, distinct in structural organization and regulated by disparate molecular mechanisms. PMID:25982272

  9. Distinctive Effects of Cytochalasin B in Chick Primary Myoblasts and Fibroblasts

    PubMed Central

    de Andrade, Ivone Rosa; Costa, Manoel Luis; Mermelstein, Claudia

    2016-01-01

    Actin-based structures play fundamental roles in cellular functions. However it remains controversial how cells cope with the absence of F-actin structures. This report focuses on short- and long-term effects of cytochalasin B (CB) on actin-complexes in fibroblasts and myoblasts. Thirty min of CB treatment dispersed subplasma actin cortices, lamellipodia, ruffled membranes, stress fibers and adhesion plaques into actin patches in fibroblasts and muscle cells. In contrast, 72 hrs CB treatment showed distinct morphological effects. Fibroblasts became giant multinucleated-finger shaped with 5 to 10 protrusions, 3–8 μm in width, and >200 μm in length. They lacked cortical actin, stress fibers, adhesion plaques and ruffled membranes but contained immense lamelliopodia with abnormal adhesion plaque protein complexes. Muscle cells transformed into multinucleated globular-shaped but contained normal I-Z-I and A-bands, indicating that CB did not interfere with the assembly of myofibrils. Within 30 min after CB removal, finger-shaped fibroblasts returned to their original shape and actin-containing structures rapidly reappeared, whereas muscle cells respond slowly to form elongated myotubes following CB washout. The capacity to grow, complete several nuclear cycles, assemble intermediate filaments and microtubules without a morphologically recognizable actin cytoskeleton raises interesting issues related to the role of the actin compartments in eukaryotic cells. PMID:27119825

  10. Alternative Splicing of Fibroblast Growth Factor Receptor IgIII Loops in Cancer

    PubMed Central

    Holzmann, Klaus; Grunt, Thomas; Heinzle, Christine; Sampl, Sandra; Steinhoff, Heinrich; Reichmann, Nicole; Kleiter, Miriam; Hauck, Marlene; Marian, Brigitte

    2012-01-01

    Alternative splicing of the IgIII loop of fibroblast growth factor receptors (FGFRs) 1–3 produces b- and c-variants of the receptors with distinctly different biological impact based on their distinct ligand-binding spectrum. Tissue-specific expression of these splice variants regulates interactions in embryonic development, tissue maintenance and repair, and cancer. Alterations in FGFR2 splicing are involved in epithelial mesenchymal transition that produces invasive, metastatic features during tumor progression. Recent research has elucidated regulatory factors that determine the splice choice both on the level of exogenous signaling events and on the RNA-protein interaction level. Moreover, methodology has been developed that will enable the in depth analysis of splicing events during tumorigenesis and provide further insight on the role of FGFR 1–3 IIIb and IIIc in the pathophysiology of various malignancies. This paper aims to summarize expression patterns in various tumor types and outlines possibilities for further analysis and application. PMID:22203889

  11. The human fibroblast receptor for gp86 of human cytomegalovirus is a phosphorylated glycoprotein.

    PubMed Central

    Keay, S; Baldwin, B

    1992-01-01

    A human embryonic lung (HEL) cell receptor for gp86 of human cytomegalovirus that functions in virus-cell fusion was further characterized. Anti-idiotype antibodies that mimic gp86 were used to immunoprecipitate the 92.5-kDa fibroblast membrane receptor for gp86, which was preincubated with various endoglycosidases. The receptor, which has a pI ranging from 5.3 to 5.6, appears to be a glycoprotein with primarily N-linked sugar residues, some of which have high concentrations of mannose and some of which are complex oligosaccharides. Western blots (immunoblots) of electrophoretically transferred receptor incubated with various biotinylated lectins confirmed the presence of sugar moieties, including N-acetylglucosamine, glucose or mannose, and galactose, but not fucose or N-acetylgalactosamine. This gp86 receptor from uninfected HEL cells also incorporated radiolabeled phosphate from orthophosphoric acid, indicating that it is a constitutively phosphorylated receptor. Images PMID:1321272

  12. The influence of Pyk2 on the mechanical properties in fibroblasts

    SciTech Connect

    Klemm, Anna H.; Kienle, Sandra; Rheinlaender, Johannes; Schaeffer, Tilman E.; Goldmann, Wolfgang H.

    2010-03-19

    The cell surface receptor integrin is involved in signaling mechanical stresses via the focal adhesion complex (FAC) into the cell. Within FAC, the focal adhesion kinase (FAK) and Pyk2 are believed to act as important scaffolding proteins. Based on the knowledge that many signal transducing molecules are transiently immobilized within FAC connecting the cytoskeleton with integrins, we applied magnetic tweezer and atomic force microscopic measurements to determine the influence of FAK and Pyk2 in cells mechanically. Using mouse embryonic fibroblasts (MEF; FAK{sup +/+}, FAK{sup -/-}, and siRNA-Pyk2 treated FAK{sup -/-} cells) provided a unique opportunity to describe the function of FAK and Pyk2 in more detail and to define their influence on FAC and actin distribution.

  13. Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering

    NASA Technical Reports Server (NTRS)

    Martin, Ivan (Inventor); Freed, Lisa E. (Inventor); Langer, Robert (Inventor); Vunjak-Novakovic, Gordana (Inventor)

    2003-01-01

    The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue.

  14. Culture of human limbal epithelial stem cells on tenon's fibroblast feeder-layers: a translational approach.

    PubMed

    Scafetta, Gaia; Siciliano, Camilla; Frati, Giacomo; De Falco, Elena

    2015-01-01

    The coculture technique is the standard method to expand ex vivo limbal stem cells (LSCs) by using inactivated embryonic murine feeder layers (3T3). Although alternative techniques such as amniotic membranes or scaffolds have been proposed, feeder layers are still considered to be the best method, due to their ability to preserve some critical properties of LSCs such as cell growth and viability, stemness phenotype, and clonogenic potential. Furthermore, clinical applications of LSCs cultured on 3T3 have taken place. Nevertheless, for an improved Good Manufacturing Practice (GMP) compliance, the use of human feeder-layers as well as a fine standardization of the process is strictly encouraged. Here, we describe a translational approach in accordance with GMP regulations to culture LSCs onto human Tenon's fibroblasts (TFs). In this chapter, based on our experience we identify and analyze issues that often are encountered by researchers and discuss solutions to common problems. PMID:25063497

  15. ANT2-defective fibroblasts exhibit normal mitochondrial bioenergetics

    PubMed Central

    Prabhu, Dolly; Goldstein, Amy C.; El-Khoury, Riyad; Rak, Malgorzata; Edmunds, Lia; Rustin, Pierre; Vockley, Jerry; Schiff, Manuel

    2015-01-01

    Adenine nucleotide translocase 2 (ANT2) transports glycolytic ATP across the inner mitochondrial membrane. Patients with ANT2 deletion were recently reported. We aimed at characterizing mitochondrial functions in ANT2-defective fibroblasts. In spite of ANT2 expression in fibroblasts, we observed no difference between ANT2-defective and control fibroblasts for mitochondrial respiration, respiratory chain activities, mitochondrial membrane potential and intracellular ATP levels. This indicates that ANT2 insufficiency does not alter fibroblast basal mitochondrial bioenergetics. PMID:26000237

  16. Polar Bodies – more a lack of understanding than a lack of respect

    PubMed Central

    Schmerler, Samuel; Wessel, Gary

    2011-01-01

    Polar bodies are as diverse as the organisms that produce them. Although in many animals these cells often die following meiotic maturation of the oocyte, in other organisms they are an essential and diverse part of embryonic development. Here we highlight some of this diversity and summarize the evolutionary basis for their utility. PMID:21268179

  17. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  18. Biocompatibility of Textile Titanium Nickel Implants with Fibroblast Culture.

    PubMed

    Kokorev, O V; Khodorenko, V N; Anikeev, S G; Gunther, V E

    2015-05-01

    The parameters of biocompatibility of titanium nickel implants of different design with fibroblast culture are studied. Colonization of textile and mesh implants with fibroblasts and tissue development depend on the size of mesh cells and thread diameter. Titanium nickel implants of different constructions do not inhibit the growth of fibroblast culture. PMID:26028231

  19. Behavioral abnormalities in mice lacking mesenchyme-specific Pten.

    PubMed

    Borniger, Jeremy C; Cissé, Yasmine M; Cantemir-Stone, Carmen Z; Bolon, Brad; Nelson, Randy J; Marsh, Clay B

    2016-05-01

    Phosphatase and tensin homolog (Pten) is a negative regulator of cell proliferation and growth. Using a Cre-recombinase approach with Lox sequences flanking the fibroblast-specific protein 1 (Fsp1 aka S100A4; a mesenchymal marker), we probed sites of expression using a β-galactosidase Rosa26(LoxP) reporter allele; the transgene driving deletion of Pten (exons 4-5) was found throughout the brain parenchyma and pituitary, suggesting that deletion of Pten in Fsp1-positive cells may influence behavior. Because CNS-specific deletion of Pten influences social and anxiety-like behaviors and S100A4 is expressed in astrocytes, we predicted that loss of Pten in Fsp1-expressing cells would result in deficits in social interaction and increased anxiety. We further predicted that environmental enrichment would compensate for genetic deficits in these behaviors. We conducted a battery of behavioral assays on Fsp1-Cre;Pten(LoxP/LoxP) male and female homozygous knockouts (Pten(-/-)) and compared their behavior to Pten(LoxP/LoxP) (Pten(+/+)) conspecifics. Despite extensive physical differences (including reduced hippocampal size) and deficits in sensorimotor function, Pten(-/-) mice behaved remarkably similar to control mice on nearly all behavioral tasks. These results suggest that the social and anxiety-like phenotypes observed in CNS-specific Pten(-/-) mice may depend on neuronal Pten, as lack of Pten in Fsp1-expressing cells of the CNS had little effect on these behaviors. PMID:26876012

  20. Stiffening of Human Skin Fibroblasts with Age

    PubMed Central

    Schulze, Christian; Wetzel, Franziska; Kueper, Thomas; Malsen, Anke; Muhr, Gesa; Jaspers, Soeren; Blatt, Thomas; Wittern, Klaus-Peter; Wenck, Horst; Käs, Josef A.

    2010-01-01

    Changes in mechanical properties are an essential characteristic of the aging process of human skin. Previous studies attribute these changes predominantly to the altered collagen and elastin organization and density of the extracellular matrix. Here, we show that individual dermal fibroblasts also exhibit a significant increase in stiffness during aging in vivo. With the laser-based optical cell stretcher we examined the viscoelastic biomechanics of dermal fibroblasts isolated from 14 human donors aged 27 to 80. Increasing age was clearly accompanied by a stiffening of the investigated cells. We found that fibroblasts from old donors exhibited an increase in rigidity of ∼60% with respect to cells of the youngest donors. A FACS analysis of the content of the cytoskeletal polymers shows a shift from monomeric G-actin to polymerized, filamentous F-actin, but no significant changes in the vimentin and microtubule content. The rheological analysis of fibroblast-populated collagen gels demonstrates that cell stiffening directly results in altered viscoelastic properties of the collagen matrix. These results identify a new mechanism that may contribute to the age-related impairment of elastic properties in human skin. The altered mechanical behavior might influence cell functions involving the cytoskeleton, such as contractility, motility, and proliferation, which are essential for reorganization of the extracellular matrix. PMID:20959083

  1. Secretion of inhibin beta A by endoderm cultured from early embryonic chicken.

    PubMed

    Kokan-Moore, N P; Bolender, D L; Lough, J

    1991-07-01

    Although several reports have indicated a role for endoderm in the regulation of heart development, the mechanism remains unknown. To begin characterization of endoderm-secreted proteins, explants from postgastrulation (Hamburger-Hamilton stage 5/6-8) chicken embryos were cultured in defined medium. Fluorography of SDS-PAGE gels revealed a pattern of synthesized, secreted proteins that was independent of time in culture or embryonic stage when explants were removed. Approximately 10 labeled bands were detected, the most prominent of which migrated at 17, 25, and 200 kDa. ELISA analysis revealed that while acidic and basic fibroblast growth factor-like antigens were barely detectable, fibronectin and inhibin beta A were very reactive. Western blot analysis verified the presence of fibronectin and, most remarkably, inhibin beta A, activin dimers of which have recently been implicated in Xenopus mesoderm induction (Smith, Price, Van Nimmen, and Huylebrock (1990). Nature 345, 729.) PMID:2060706

  2. Inner Ear Hair Cell-Like Cells from Human Embryonic Stem Cells

    PubMed Central

    Ronaghi, Mohammad; Nasr, Marjan; Ealy, Megan; Durruthy-Durruthy, Robert; Waldhaus, Joerg; Diaz, Giovanni H.; Joubert, Lydia-Marie; Oshima, Kazuo

    2014-01-01

    In mammals, the permanence of many forms of hearing loss is the result of the inner ear's inability to replace lost sensory hair cells. Here, we apply a differentiation strategy to guide human embryonic stem cells (hESCs) into cells of the otic lineage using chemically defined attached-substrate conditions. The generation of human otic progenitor cells was dependent on fibroblast growth factor (FGF) signaling, and protracted culture led to the upregulation of markers indicative of differentiated inner ear sensory epithelia. Using a transgenic ESC reporter line based on a murine Atoh1 enhancer, we show that differentiated hair cell-like cells express multiple hair cell markers simultaneously. Hair cell-like cells displayed protrusions reminiscent of stereociliary bundles, but failed to fully mature into cells with typical hair cell cytoarchitecture. We conclude that optimized defined conditions can be used in vitro to attain otic progenitor specification and sensory cell differentiation. PMID:24512547

  3. Inner ear hair cell-like cells from human embryonic stem cells.

    PubMed

    Ronaghi, Mohammad; Nasr, Marjan; Ealy, Megan; Durruthy-Durruthy, Robert; Waldhaus, Joerg; Diaz, Giovanni H; Joubert, Lydia-Marie; Oshima, Kazuo; Heller, Stefan

    2014-06-01

    In mammals, the permanence of many forms of hearing loss is the result of the inner ear's inability to replace lost sensory hair cells. Here, we apply a differentiation strategy to guide human embryonic stem cells (hESCs) into cells of the otic lineage using chemically defined attached-substrate conditions. The generation of human otic progenitor cells was dependent on fibroblast growth factor (FGF) signaling, and protracted culture led to the upregulation of markers indicative of differentiated inner ear sensory epithelia. Using a transgenic ESC reporter line based on a murine Atoh1 enhancer, we show that differentiated hair cell-like cells express multiple hair cell markers simultaneously. Hair cell-like cells displayed protrusions reminiscent of stereociliary bundles, but failed to fully mature into cells with typical hair cell cytoarchitecture. We conclude that optimized defined conditions can be used in vitro to attain otic progenitor specification and sensory cell differentiation. PMID:24512547

  4. Direct effects of serotonin and ketanserin on the functional morphology of embryonic chick skin in vitro

    SciTech Connect

    Beele, H.; Thierens, H.; de Ridder, L. )

    1989-10-01

    Different organotypical culture methods are used to test direct effects of serotonin and ketanserin, a S2, alpha 1, and H1 receptor antagonist in vascular tissue, on fibroblasts and epidermal cells of embryonic chick skin in vitro. From light microscopic and electron microscopic analyses, we learn that serotonin enhances keratinization and differentiation, whereas ketanserin reduces differentiation in comparison to the control cultures. Incorporation data of fragments cultured with (3H)thymidine show that ketanserin, within a dose range from 0.05 to 5 micrograms/ml, stimulates proliferation. Serotonin at a concentration of 10 micrograms/ml slightly slows down proliferation, whereas lower doses of 0.1 and 1 microgram/ml result in tritium activities that do not differ from control cultures.

  5. Rho/Rock cross-talks with transforming growth factor-β/Smad pathway participates in lung fibroblast-myofibroblast differentiation.

    PubMed

    Ji, Hong; Tang, Haiying; Lin, Hongli; Mao, Jingwei; Gao, Lili; Liu, Jia; Wu, Taihua

    2014-11-01

    The differentiation of fibroblasts, which are promoted by transforming growth factor-β (TGF-β)/Smad, is involved in the process of pulmonary fibrosis. The Rho/Rho-associated coiled-coil-forming protein kinase (Rock) pathway may regulate the fibroblast differentiation and myofibroblast expression of α-smooth muscle actin (α-SMA), however, the mechanism is not clear. The aim of the present study was to evaluate the role of Rho/Rock and TGF-β/Smad in TGF-β1-induced lung fibroblasts differentiation. Human embryonic lung fibroblasts were stimulated by TGF-β1, Y-27632 (inhibitor of Rho/Rock signaling) and staurosporine (inhibitor of TGF-β/Smad signaling). The α-SMA expression, cell cycle progression, content of the extracellular matrix (ECM) in cell culture supernatants and the expression of RhoA, RhoC, Rock1 and Smad2 were detected. The results demonstrated that α-SMA-positive cells significantly increased following TGF-β1 stimulation. Rho/Rock and TGF-β/Smad inhibitors suppressed TGF-β1-induced lung fibroblast differentiation. The inhibitors increased G0/G1 and decreased S and G2/M percentages. The concentrations of the ECM proteins in the supernatant were significantly increased by TGF-β1 stimulation, whereas they were decreased by inhibitor stimulation. RhoA, RhoC, Rock1, Smad2 and tissue inhibitor of metalloproteinase-1 were upregulated by TGF-β1 stimulation. The Rho/Rock inhibitor downregulated Smad2 expression and the TGF-β/Smad inhibitor downregulated RhoA, RhoC and Rock1 expression. Therefore, the Rho/Rock pathway and Smad signaling were involved in the process of lung fibroblasts transformation, induced by TGF-β1, to myofibroblasts. The two pathways may undergo cross-talk in the lung fibroblasts differentiation in vitro. PMID:25279146

  6. Dnmt2-dependent methylomes lack defined DNA methylation patterns

    PubMed Central

    Raddatz, Günter; Guzzardo, Paloma M.; Olova, Nelly; Fantappié, Marcelo Rosado; Rampp, Markus; Schaefer, Matthias; Reik, Wolf; Hannon, Gregory J.; Lyko, Frank

    2013-01-01

    Several organisms have retained methyltransferase 2 (Dnmt2) as their only candidate DNA methyltransferase gene. However, information about Dnmt2-dependent methylation patterns has been limited to a few isolated loci and the results have been discussed controversially. In addition, recent studies have shown that Dnmt2 functions as a tRNA methyltransferase, which raised the possibility that Dnmt2-only genomes might be unmethylated. We have now used whole-genome bisulfite sequencing to analyze the methylomes of Dnmt2-only organisms at single-base resolution. Our results show that the genomes of Schistosoma mansoni and Drosophila melanogaster lack detectable DNA methylation patterns. Residual unconverted cytosine residues shared many attributes with bisulfite deamination artifacts and were observed at comparable levels in Dnmt2-deficient flies. Furthermore, genetically modified Dnmt2-only mouse embryonic stem cells lost the DNA methylation patterns found in wild-type cells. Our results thus uncover fundamental differences among animal methylomes and suggest that DNA methylation is dispensable for a considerable number of eukaryotic organisms. PMID:23641003

  7. General Information about Childhood Central Nervous System Embryonal Tumors

    MedlinePlus

    ... System Embryonal Tumors Treatment (PDQ®)–Patient Version General Information About Childhood Central Nervous System Embryonal Tumors Go ... in patients with a high-risk tumor. The information from tests and procedures done to detect (find) ...

  8. Lack of Set Theory Relevant Prerequisite Knowledge

    ERIC Educational Resources Information Center

    Dogan-Dunlap, Hamide

    2006-01-01

    Many students struggle with college mathematics topics due to a lack of mastery of prerequisite knowledge. Set theory language is one such prerequisite for linear algebra courses. Many students' mistakes on linear algebra questions reveal a lack of mastery of set theory knowledge. This paper reports the findings of a qualitative analysis of a…

  9. Functional Genetic Targeting of Embryonic Kidney Progenitor Cells Ex Vivo

    PubMed Central

    Junttila, Sanna; Saarela, Ulla; Halt, Kimmo; Manninen, Aki; Pärssinen, Heikki; Lecca, M. Rita; Brändli, André W.; Sims-Lucas, Sunder; Skovorodkin, Ilya

    2015-01-01

    The embryonic mammalian metanephric mesenchyme (MM) is a unique tissue because it is competent to generate the nephrons in response to Wnt signaling. An ex vivo culture in which the MM is separated from the ureteric bud (UB), the natural inducer, can be used as a classic tubule induction model for studying nephrogenesis. However, technological restrictions currently prevent using this model to study the molecular genetic details before or during tubule induction. Using nephron segment-specific markers, we now show that tubule induction in the MM ex vivo also leads to the assembly of highly segmented nephrons. This induction capacity was reconstituted when MM tissue was dissociated into a cell suspension and then reaggregated (drMM) in the presence of human recombinant bone morphogenetic protein 7/human recombinant fibroblast growth factor 2 for 24 hours before induction. Growth factor–treated drMM also recovered the capacity for organogenesis when recombined with the UB. Cell tracking and time-lapse imaging of chimeric drMM cultures indicated that the nephron is not derived from a single progenitor cell. Furthermore, viral vector-mediated transduction of green fluorescent protein was much more efficient in dissociated MM cells than in intact mesenchyme, and the nephrogenic competence of transduced drMM progenitor cells was preserved. Moreover, drMM cells transduced with viral vectors mediating Lhx1 knockdown were excluded from the nephric tubules, whereas cells transduced with control vectors were incorporated. In summary, these techniques allow reproducible cellular and molecular examinations of the mechanisms behind nephrogenesis and kidney organogenesis in an ex vivo organ culture/organoid setting. PMID:25201883

  10. In vivo differentiation potential of buffalo (Bubalus bubalis) embryonic stem cell.

    PubMed

    Verma, Om Prakash; Kumar, Rajesh; Nath, Amar; Sharma, Manjinder; Dubey, Pawan Kumar; Kumar, G Sai; Sharma, G Taru

    2012-06-01

    Embryonic stem cells (ESCs) derived from inner cell mass (ICM) of mammalian blastocyst are having indefinite proliferation and differentiation capability for any type of cell lineages. In the present study, ICMs of in vitro-derived buffalo blastocysts were cultured into two different culture systems using buffalo fetal fibroblast as somatic cell support and Matrigel as synthetic support to obtain pluripotent buffalo embryonic stem cell (buESC) colonies. Pluripotency of the ESCs were characterised through pluripotency markers whereas, their differentiation capability was assessed by teratoma assay using immuno-compromised mice. Cumulus ooccyte complexes from slaughter house-derived ovaries were subjected to in vitro maturation, in vitro fertilization and in vitro culture to generate blastocysts. Total 262 blastocysts were derived through IVEP with 11.83 % (31/262) hatching rate. To generate buESCs, 15 ICMs from hatched blastocysts were cultured on mitomycin-C-treated homologous fetal fibroblast feeder layer, whereas the leftover 16 ICMs were cultured on extra-cellular matrix (Matrigel). No significant differences were observed for primary ESCs colony formation between two culture systems. Primary colonies as well as passaged ESCs were characterised by alkaline phosphatase staining, karyotyping and expression of transcription-based stem cell markers, OCT-4 and cell surface antigens SSEA-4 and TRA-1-60. Batch of ESCs found positive for pluripotency markers and showing normal karyotype after fifteenth passage were inoculated into eight immuno-compromised mice through subcutaneous and intramuscular route. Subcutaneous route of inoculation was found to be better than intramuscular route. Developed teratomas were excised surgically and subjected to histological analysis. Histological findings revealed presence of all the three germinal layer derivatives in teratoma sections. Presence of germinal layer derivatives were further confirmed by reverse transcriptase

  11. The embryonic origin of the ampullate silk glands of the spider Cupiennius salei.

    PubMed

    Hilbrant, Maarten; Damen, Wim G M

    2015-05-01

    Silk production in spiders is considered a key innovation, and to have been vital for the diversification of the clade. The evolutionary origin of the organs involved in spider silk production, however, and in particular of the silk glands, is poorly understood. Homologies have been proposed between these and other glands found in arachnids, but lacking knowledge of the embryonic development of spider silk glands hampers an evaluation of hypotheses. This study focuses on the embryonic origin of the largest silk glands of the spider Cupiennius salei, the major and minor ampullate glands. We show how the ampullate glands originate from ectodermal invaginations on the embryonic spinneret limb buds, in relation to morphogenesis of these buds. Moreover, we visualize the subsequent growth of the ampullate glands in sections of the early postembryonic stages. The invaginations are shown to correlate with expression of the proneural gene CsASH2, which is remarkable since it has been proposed that spider silk glands and their nozzles originate from sensory bristles. Hence, by confirming the ectodermal origin of spider silk glands, and by describing the (post-)embryonic morphogenesis of the ampullate glands, this work provides a starting point for further investigating into the genetic program that underlies their development. PMID:25882741

  12. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality

    PubMed Central

    Koh, David W.; Lawler, Ann M.; Poitras, Marc F.; Sasaki, Masayuki; Wattler, Sigrid; Nehls, Michael C.; Stöger, Tobias; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2004-01-01

    The metabolism of poly(ADP-ribose) (PAR) is critical for genomic stability in multicellular eukaryotes. Here, we show that the failure to degrade PAR by means of disruption of the murine poly(ADP-ribose) glycohydrolase (PARG) gene unexpectedly causes early embryonic lethality and enhanced sensitivity to genotoxic stress. This lethality results from the failure to hydrolyze PAR, because PARG null embryonic day (E) 3.5 blastocysts accumulate PAR and concurrently undergo apoptosis. Moreover, embryonic trophoblast stem cell lines established from early PARG null embryos are viable only when cultured in medium containing the poly(ADP-ribose) polymerase inhibitor benzamide. Cells lacking PARG also show reduced growth, accumulation of PAR, and increased sensitivity to cytotoxicity induced by N-methyl-N′-nitro-N-nitrosoguanidine and menadione after benzamide withdrawal. These results provide compelling evidence that the failure to degrade PAR has deleterious consequences. Further, they define a role for PARG in embryonic development and a protective role in the response to genotoxic stress. PMID:15591342

  13. Regulation of proliferation and histone acetylation in embryonic neural precursors by CREB/CREM signaling

    PubMed Central

    Parlato, Rosanna; Mandl, Claudia; Hölzl-Wenig, Gabriele; Liss, Birgit; Tucker, Kerry L; Ciccolini, Francesca

    2014-01-01

    The transcription factor CREB (cAMP-response element binding protein) regulates differentiation, migration, survival and activity-dependent gene expression in the developing and mature nervous system. However, its specific role in the proliferation of embryonic neural progenitors is still not completely understood. Here we investigated how CREB regulates proliferation of mouse embryonic neural progenitors by a conditional mutant lacking Creb gene in neural progenitors. In parallel, we explored possible compensatory effects by the genetic ablation of another member of the same gene family, the cAMP-responsive element modulator (Crem). We show that CREB loss differentially impaired the proliferation, clonogenic potential and self-renewal of precursors derived from the ganglionic eminence (GE), in comparison to those derived from the cortex. This phenotype was associated with a specific reduction of histone acetylation in the GE of CREB mutant mice, and this reduction was rescued in vivo by inhibition of histone deacetylation. These observations indicate that the impaired proliferation could be caused by a reduced acetyltransferase activity in Creb conditional knock-out mice. These findings support a crucial role of CREB in controlling embryonic neurogenesis and propose a novel mechanism by which CREB regulates embryonic neural development.

  14. Maturation of the angiotensin II cardiovascular response in the embryonic White Leghorn chicken (Gallus gallus)

    PubMed Central

    Jonker, Sonnet S.; Hicks, James W.; Thornburg, Kent L.

    2010-01-01

    Angiotensin II (Ang II) is an important regulator of cardiovascular function in adult vertebrates. Although its role in regulating the adult system has been extensively investigated, the cardiovascular response to Ang II in embryonic vertebrates is relatively unknown. We investigated the potential of Ang II as a regulator of cardiovascular function in embryonic chickens, which lack central nervous system control of cardiovascular function throughout the majority of incubation. The cardiovascular response to Ang II in embryonic chickens was investigated over the final 50% of their development. Ang II produced a dose-dependent increase in arterial pressure on each day of development studied, and the response increased in intensity as development progressed. The Ang II type-1 receptor nonspecific competitive peptide antagonist [Sar1 ile8] Ang II blocked the cardiovascular response to subsequent injections of Ang II on day 21 only. The embryonic pressure response to Ang II (hypertension only) differed from that of adult chickens, in which initial hypotension is followed by hypertension. The constant level of gene expression for the Ang II receptor, in conjunction with an increasing pressure response to the peptide, suggests that two Ang II receptor subtypes are present during chicken development. Collectively, the data indicate that Ang II plays an important role in the cardiovascular development of chickens; however, its role in maintaining basal function requires further study. PMID:20495810

  15. 4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics.

    PubMed

    Goenezen, Sevan; Chivukula, Venkat Keshav; Midgett, Madeline; Phan, Ly; Rugonyi, Sandra

    2016-06-01

    Blood flow plays a critical role in regulating embryonic cardiac growth and development, with altered flow leading to congenital heart disease. Progress in the field, however, is hindered by a lack of quantification of hemodynamic conditions in the developing heart. In this study, we present a methodology to quantify blood flow dynamics in the embryonic heart using subject-specific computational fluid dynamics (CFD) models. While the methodology is general, we focused on a model of the chick embryonic heart outflow tract (OFT), which distally connects the heart to the arterial system, and is the region of origin of many congenital cardiac defects. Using structural and Doppler velocity data collected from optical coherence tomography, we generated 4D ([Formula: see text]) embryo-specific CFD models of the heart OFT. To replicate the blood flow dynamics over time during the cardiac cycle, we developed an iterative inverse-method optimization algorithm, which determines the CFD model boundary conditions such that differences between computed velocities and measured velocities at one point within the OFT lumen are minimized. Results from our developed CFD model agree with previously measured hemodynamics in the OFT. Further, computed velocities and measured velocities differ by [Formula: see text]15 % at locations that were not used in the optimization, validating the model. The presented methodology can be used in quantifications of embryonic cardiac hemodynamics under normal and altered blood flow conditions, enabling an in-depth quantitative study of how blood flow influences cardiac development. PMID:26361767

  16. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development.

    PubMed

    Stumpf, Miriam; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten. PMID:26848951

  17. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development

    PubMed Central

    Stumpf, Miriam; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten. PMID:26848951

  18. Oral fibroblasts produce more HGF and KGF than skin fibroblasts in response to co-culture with keratinocytes.

    PubMed

    Grøn, Birgitte; Stoltze, Kaj; Andersson, Anders; Dabelsteen, Erik

    2002-12-01

    The production of hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) in subepithelial fibroblasts from buccal mucosa, periodontal ligament, and skin was determined after co-culture with keratinocytes. The purpose was to detect differences between the fibroblast subpopulations that could explain regional variation in epithelial growth and wound healing. Normal human fibroblasts were cultured on polystyrene or maintained in collagen matrix and stimulated with keratinocytes cultured on membranes. The amount of HGF and KGF protein in the culture medium was determined every 24 h for 5 days by ELISA. When cultured on polystyrene, the constitutive level of KGF and HGF in periodontal fibroblasts was higher than the level in buccal and skin fibroblasts. In the presence of keratinocytes, all three types of fibroblasts in general increased their HGF and KGF production 2-3 times. When cells were maintained in collagen, the level of HGF and KGF was decreased mainly in skin cultures. However, in oral fibroblasts, induction after stimulation was at a similar level in collagen compared to on polystyrene. Skin fibroblasts maintained in collagen produced almost no HGF whether with or without stimulation. The results demonstrate that the secretion of KGF and HGF in both unstimulated fibroblasts and in fibroblasts co-cultured with keratinocytes is dependent on the type of fibroblasts. In general, the periodontal fibroblasts had the highest level of cytokine production. This high level of growth factor production may influence the proliferation and the migration of junctional epithelium and thereby influence the development of periodontal disease. PMID:12645668

  19. Propagation of Human Embryonic Stem Cells on Human Amniotic Fluid Cells as Feeder Cells in Xeno-Free Culture Conditions

    PubMed Central

    Jung, Juwon; Baek, Jin Ah; Seol, Hye Won; Choi, Young Min

    2016-01-01

    Human embryonic stem cells (hESCs) have been routinely cultured on mouse embryonic fibroblast feederlayers with a medium containing animal materials. For clinical application of hESCs, animal-derived products from the animal feeder cells, animal substrates such as gelatin or Matrigel and animal serum are strictly to be eliminated in the culture system. In this study, we performed that SNUhES32 and H1 were cultured on human amniotic fluid cells (hAFCs) with KOSR XenoFree and a humanized substrate. All of hESCs were relatively well propagated on hAFCs feeders with xeno-free conditions and they expressed pluripotent stem cell markers, alkaline phosphatase, SSEA-4, TRA1-60, TRA1-81, Oct-4, and Nanog like hESCs cultured on STO or human foreskin fibroblast feeders. In addition, we observed the expression of nonhuman N-glycolylneuraminic acid (Neu5GC) molecules by flow cytometry, which was xenotransplantation components of contamination in hESCs cultured on animal feeder conditions, was not detected in this xeno-free condition. In conclusion, SNUhES32 and H1 could be maintained on hAFCs for humanized culture conditions, therefore, we suggested that new xenofree conditions for clinical grade hESCs culture will be useful data in future clinical studies. PMID:27294211

  20. A whole-mechanical method to establish human embryonic stem cell line HN4 from discarded embryos.

    PubMed

    Li, Bin; Xu, Lan; Lu, Wei-Ying; Xu, Wen; Wang, Mei-Hong; Yang, Ke; Dong, Juan; Ding, Xiao-Yan; Huang, Yuan-Hua

    2010-12-01

    Since the first human embryonic stem cell (hESC) line was generated by Thomson et al. (in Science 282:1145-1147, 1998), hundreds of hESC lines have been reported by different labs, providing resources for basic research and regenerative medicine as well. However it has been widely recognized that hESC lines varied on their properties, in terms of gene expression profile, epigenetic modify profile, and differentiation tendency. Generation of more hESC lines will largely enhance our knowledge of hESCs innate character. In this current work, we reported the generation of HN4, a hESC line derived from grade III IVF human embryo by using a mixture of human foreskin fibroblast (HFF) and mouse embryonic fibroblast (MEF) as feeder layers, and a whole-mechanical method in inner cell mass (ICM) isolation. HN4 satisfied the criteria of hESCs pluripotency, with high expression of hESC surface markers (SSEA-3, SSEA-4, TRA-1-60, TRA-1-81), transcription factors (OCT-4, NANOG, REX-1), and alkaline phosphatase. It is able to differentiate to three germ layer derivatives when cultured in vitro, or in teratoma formation. Moreover, it displayed promising potential in neural differentiation under a proper culture condition, suggesting the advantage of HN4 in further investigation. Additionally, the whole-mechanical protocol for ICM isolation facilitates hESC line generation for its ease to handle. PMID:20976554

  1. Disruption of the Mouse mTOR Gene Leads to Early Postimplantation Lethality and Prohibits Embryonic Stem Cell Development

    PubMed Central

    Gangloff, Yann-Gaël; Mueller, Matthias; Dann, Stephen G.; Svoboda, Petr; Sticker, Melanie; Spetz, Jean-Francois; Um, Sung Hee; Brown, Eric J.; Cereghini, Silvia; Thomas, George; Kozma, Sara C.

    2004-01-01

    The mammalian target of rapamycin (mTOR) is a key component of a signaling pathway which integrates inputs from nutrients and growth factors to regulate cell growth. Recent studies demonstrated that mice harboring an ethylnitrosourea-induced mutation in the gene encoding mTOR die at embryonic day 12.5 (E12.5). However, others have shown that the treatment of E4.5 blastocysts with rapamycin blocks trophoblast outgrowth, suggesting that the absence of mTOR should lead to embryonic lethality at an earlier stage. To resolve this discrepancy, we set out to disrupt the mTOR gene and analyze the outcome in both heterozygous and homozygous settings. Heterozygous mTOR (mTOR+/−) mice do not display any overt phenotype, although mouse embryonic fibroblasts derived from these mice show a 50% reduction in mTOR protein levels and phosphorylation of S6 kinase 1 T389, a site whose phosphorylation is directly mediated by mTOR. However, S6 phosphorylation, raptor levels, cell size, and cell cycle transit times are not diminished in these cells. In contrast to the situation in mTOR+/− mice, embryonic development of homozygous mTOR−/− mice appears to be arrested at E5.5; such embryos are severely runted and display an aberrant developmental phenotype. The ability of these embryos to implant corresponds to a limited level of trophoblast outgrowth in vitro, reflecting a maternal mRNA contribution, which has been shown to persist during preimplantation development. Moreover, mTOR−/− embryos display a lesion in inner cell mass proliferation, consistent with the inability to establish embryonic stem cells from mTOR−/− embryos. PMID:15485918

  2. ANALYSIS OF CHICKEN EMBRYONIC GONAD ESTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have sequenced 11,842 cDNA clones from the embryonic gonad cDNA library to generate 10,294 sequences. The EST data described in this paper have been submitted to the NCBI dbEST under accession numbers CV852525 CV862818. The unique sequences of the EST data resulted in a total of 4,384 sequences w...

  3. Gene expression dynamics during embryonic development in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The supply of maternal RNAs in fertilized egg and activation of embryonic genome during maternal-zygotic transition (MZT) are important for normal embryonic development. In order to identify genes and gene products that are essential in the regulation of embryonic development in rainbow trout, RNA-S...

  4. Generation of Dopamine Neurons from Rodent Fibroblasts through the Expandable Neural Precursor Cell Stage*

    PubMed Central

    Lim, Mi-Sun; Chang, Mi-Yoon; Kim, Sang-Mi; Yi, Sang-Hoon; Suh-Kim, Haeyoung; Jung, Sung Jun; Kim, Min Jung; Kim, Jin Hyuk; Lee, Yong-Sung; Lee, Soo Young; Kim, Dong-Wook; Lee, Sang-Hun; Park, Chang-Hwan

    2015-01-01

    Recent groundbreaking work has demonstrated that combined expression of the transcription factors Brn2, Ascl1, and Myt1L (BAM; also known as Wernig factors) convert mouse fibroblasts into postmitotic neuronal cells. However, questions remain regarding whether trans-conversion is achieved directly or involves an intermediary precursor stage. Trans-conversion toward expandable neural precursor cells (NPCs) is more useful than direct one-step neuron formation with respect to yielding a sufficient number of cells and the feasibility of manipulating NPC differentiation toward certain neuron subtypes. Here, we show that co-expression of Wernig factors and Bcl-xL induces fibroblast conversion into NPCs (induced NPCs (iNPCs)) that are highly expandable for >100 passages. Gene expression analyses showed that the iNPCs exhibited high expression of common NPC genes but not genes specific to defined embryonic brain regions. This finding indicated that a regional identity of iNPCs was not established. Upon induction, iNPCs predominantly differentiated into astrocytes. However, the differentiation potential was not fixed and could be efficiently manipulated into general or specific subtypes of neurons by expression of additional genes. Specifically, overexpression of Nurr1 and Foxa2, transcription factors specific for midbrain dopamine neuron development, drove iNPCs to yield mature midbrain dopamine neurons equipped with presynaptic DA neuronal functions. We further assessed the therapeutic potential of iNPCs in Parkinson disease model rats. PMID:26023233

  5. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq.

    PubMed

    Treutlein, Barbara; Lee, Qian Yi; Camp, J Gray; Mall, Moritz; Koh, Winston; Shariati, Seyed Ali Mohammad; Sim, Sopheak; Neff, Norma F; Skotheim, Jan M; Wernig, Marius; Quake, Stephen R

    2016-06-16

    Direct lineage reprogramming represents a remarkable conversion of cellular and transcriptome states. However, the intermediate stages through which individual cells progress during reprogramming are largely undefined. Here we use single-cell RNA sequencing at multiple time points to dissect direct reprogramming from mouse embryonic fibroblasts to induced neuronal cells. By deconstructing heterogeneity at each time point and ordering cells by transcriptome similarity, we find that the molecular reprogramming path is remarkably continuous. Overexpression of the proneural pioneer factor Ascl1 results in a well-defined initialization, causing cells to exit the cell cycle and re-focus gene expression through distinct neural transcription factors. The initial transcriptional response is relatively homogeneous among fibroblasts, suggesting that the early steps are not limiting for productive reprogramming. Instead, the later emergence of a competing myogenic program and variable transgene dynamics over time appear to be the major efficiency limits of direct reprogramming. Moreover, a transcriptional state, distinct from donor and target cell programs, is transiently induced in cells undergoing productive reprogramming. Our data provide a high-resolution approach for understanding transcriptome states during lineage differentiation. PMID:27281220

  6. [Comparison of fibroblastic cell compatibility of type I collagen-immobilized titanium between electrodeposition and immersion].

    PubMed

    Kyuragi, Takeru

    2014-03-01

    Titanium is widely used for medical implants. While many techniques for surface modification have been studied for optimizing its biocompatibility with hard tissues, little work has been undertaken to explore ways of maximizing its biocompatibility with soft tissues. We investigated cell attachment to titanium surfaces modified with bovine Type I collagen immobilized by either electrodeposition or a conventional immersion technique. The apparent thickness and durability of the immobilized collagen layer were evaluated prior to incubation of the collagen-immobilized titanium surfaces with NIH/3T3 mouse embryonic fibroblasts. The initial cell attachment and expression of actin and vinculin were evaluated. We determined that the immobilized collagen layer was much thicker and more durable when placed using the electrodeposition technique than the immersion technique. Both protocols produced materials that promoted better cell attachment, growth and structural protein expression than titanium alone. However, electrodeposition was ultimately superior to immersion because it is quicker to perform and produces a more durable collagen coating. We conclude that electrodeposition is an effective technique for immobilizing type I collagen on titanium surfaces, thus improving their cytocompatibility with fibroblasts. PMID:24812763

  7. Protective effect of resveratrol against caspase 3 activation in primary mouse fibroblasts

    PubMed Central

    Ulakcsai, Zsófia; Bagaméry, Fruzsina; Vincze, István; Szökő, Éva; Tábi, Tamás

    2015-01-01

    Aim To study the effect of resveratrol on survival and caspase 3 activation in non-transformed cells after serum deprivation. Methods Apoptosis was induced by serum deprivation in primary mouse embryonic fibroblasts. Caspase 3 activation and lactate dehydrogenase release were assayed as cell viability measure by using their fluorogenic substrates. The involvement of PI3K, ERK, JNK, p38, and SIRT1 signaling pathways was also examined. Results Serum deprivation of primary fibroblasts induced significant activation of caspase 3 within 3 hours and reduced cell viability after 24 hours. Resveratrol dose-dependently prevented caspase activation and improved cell viability with 50% inhibitory concentration (IC50) = 66.3 ± 13.81 µM. It also reduced the already up-regulated caspase 3 activity when it was added to the cell culture medium after 3 hour serum deprivation, suggesting its rescue effect. Among the major signaling pathways, p38 kinase was critical for the protective effect of resveratrol which was abolished completely in the presence of p38 inhibitor. Conclusion Resveratrol showed protective effect against cell death in a rather high dose. Involvement of p38 kinase in this effect suggests the role of mild stress in its cytoprotective action. Furthermore due to its rescue effect, resveratrol may be used not only for prevention, but also treatment of age-related degenerative diseases, but in the higher dose than consumed in conventional diet. PMID:25891866

  8. Effects of Activin in Embryoid Bodies Expressing Fibroblast Growth Factor 5.

    PubMed

    Shirouzu, Yasumasa; Yanai, Goichi; Yang, Kai-Chiang; Sumi, Shoichiro

    2016-06-01

    Nodal/activin signaling is indispensable for embryonic development. We examined what activin does to the embryoid bodies (EBs) produced from mouse embryonic stem cells (mESCs) expressing an epiblast marker. The EBs were produced by culturing mESCs by the hanging drop method for 24 hours. The resulting EBs were transferred onto gelatin-coated dishes and allowed to further differentiate. The 24-hour EBs showed a stronger expression of fibroblast growth factor (FGF)5 and Brachyury (specific to the epiblast) in comparison with mESCs. Treating the transferred EBs with activin A maintained transcript levels of FGF5 and Oct4, while inhibiting definitive endoderm differentiation. The activin A treatment reversed the endoderm differentiation induced by retinoic acid (RA), while the inhibition of nodal/activin signaling promoted RA-induced endoderm differentiation. Inhibition of nodal/activin signaling in EBs, including epiblast-like cells, promotes differentiation into the endoderm, facilitating the transition from the pluripotent state to specification of the endoderm. PMID:27253628

  9. Differential sorting of lysosomal enzymes in mannose 6-phosphate receptor-deficient fibroblasts.

    PubMed Central

    Ludwig, T; Munier-Lehmann, H; Bauer, U; Hollinshead, M; Ovitt, C; Lobel, P; Hoflack, B

    1994-01-01

    In higher eukaryotes, the transport of soluble lysosomal enzymes involves the recognition of their mannose 6-phosphate signal by two receptors: the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor (CD-MPR). It is not known why these two different proteins are present in most cell types. To investigate their relative function in lysosomal enzyme targeting, we created cell lines that lack either or both MPRs. This was accomplished by mating CD-MPR-deficient mice with Thp mice that carry a CI-MPR deleted allele. Fibroblasts prepared from embryos that lack the two receptors exhibit a massive missorting of multiple lysosomal enzymes and accumulate undigested material in their endocytic compartments. Fibroblasts that lack the CI-MPR, like those lacking the CD-MPR, exhibit a milder phenotype and are only partially impaired in sorting. This demonstrates that both receptors are required for efficient intracellular targeting of lysosomal enzymes. More importantly, comparison of the phosphorylated proteins secreted by the different cell types indicates that the two receptors may interact in vivo with different subgroups of hydrolases. This observation may provide a rational explanation for the existence of two distinct mannose 6-phosphate binding proteins in mammalian cells. Images PMID:8062819

  10. Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse.

    PubMed

    Hopkinson-Woolley, J; Hughes, D; Gordon, S; Martin, P

    1994-05-01

    Macrophages play a pivotal role in the adult inflammatory response to wounding. They are directly responsible for cellular debridement and, by providing a source of growth factors and cytokines, they recruit other inflammatory and fibroblastic cells and influence cell proliferation and tissue remodelling. In this paper we investigate the role of macrophages in clearing areas of programmed cell death in the developing embryo and also their role in embryonic and foetal wound healing. Immunocytochemistry using the monocyte/macrophage-specific monoclonal antibody, F4/80, reveals a close association between areas of programmed cell death in the remodelling interdigital regions of the mouse footplate and of F4/80-positive cells, suggesting that monocyte-derived macrophages, and not locally recruited fibroblastic cells, as previously believed, are responsible for phagocytosing and clearing areas of interdigital apoptosis. Our studies of wound healing reveal that macrophages are not recruited to, and therefore cannot be playing an active role in the healing of, excisional wounds made in the mouse embryo at any stage up until E14.5. Beyond this transition stage we see a significant recruitment of macrophages within 12 hours of wounding. We find that macrophages can be attracted to wounds in earlier embryos if the wound results in significant cell death such as after burning. PMID:7929625

  11. Antisenescence effect of mouse embryonic stem cell conditioned medium through a PDGF/FGF pathway.

    PubMed

    Bae, Yun-Ui; Choi, Joon-Hyuk; Nagy, Andras; Sung, Hoon-Ki; Kim, Jae-Ryong

    2016-03-01

    Cellular senescence, an irreversible state of growth arrest, underlies organismal aging and age-related diseases. Recent evidence suggests that aging intervention based on inhibition of cellular senescence might be a promising strategy for treatment of aging and age-related diseases. Embryonic stem cells (ESCs) and ESC conditioned medium (CM) have been suggested as a desirable source for regenerative medicine. However, effects of ESC-CM on cellular senescence remain to be determined. We found that treatment of senescent human dermal fibroblasts with CM from mouse ESCs (mESCs) decreases senescence phenotypes. We found that platelet-derived growth factor BB in mESC-CM plays a critical role in antisenescence effect of mESC-CM through up-regulation of fibroblast growth factor 2. We confirmed that mESC-CM treatment accelerates the wound-healing process by down-regulating senescence-associated p53 expression in in vivo models. Taken together, our results suggest that mESC-CM has the ability to suppress cellular senescence and maintain proliferative capacity. Therefore, this strategy might emerge as a novel therapeutic strategy for aging and age-related diseases. PMID:26675707

  12. Human Embryonic Stem Cell Lines with Lesions in FOXP3 and NF1

    PubMed Central

    Zhu, Hui; Behr, Barry; Reddy, Vikrant V.; Hughes, Mark; Pan, Yuqiong; Baker, Julie

    2016-01-01

    Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of blastocyst staged embryos. Spare blastocyst staged embryos were obtained by in vitro fertilization (IVF) and donated for research purposes. hESCs carrying specific mutations can be used as a powerful cell system in modeling human genetic disorders. We obtained preimplantation genetic diagnosed (PGD) blastocyst staged embryos with genetic mutations that cause human disorders and derived hESCs from these embryos. We applied laser assisted micromanipulation to isolate the inner cell mass from the blastocysts and plated the ICM onto the mouse embryonic fibroblast cells. Two hESC lines with lesions in FOXP3 and NF1 were established. Both lines maintain a typical undifferentiated hESCs phenotype and present a normal karyotype. The two lines express a panel of pluripotency markers and have the potential to differentiate to the three germ layers in vitro and in vivo. The hESC lines with lesions in FOXP3 and NF1 are available for the scientific community and may serve as an important resource for research into these disease states. PMID:26990425

  13. Transcriptional repression of p27 is essential for murine embryonic development

    PubMed Central

    Teratake, Youichi; Kuga, Chisa; Hasegawa, Yuta; Sato, Yoshiharu; Kitahashi, Masayasu; Fujimura, Lisa; Watanabe-Takano, Haruko; Sakamoto, Akemi; Arima, Masafumi; Tokuhisa, Takeshi; Hatano, Masahiko

    2016-01-01

    The Nczf gene has been identified as one of Ncx target genes and encodes a novel KRAB zinc-finger protein, which functions as a sequence specific transcriptional repressor. In order to elucidate Nczf functions, we generated Nczf knockout (Nczf−/−) mice. Nczf−/− mice died around embryonic day 8.5 (E8.5) with small body size and impairment of axial rotation. Histopathological analysis revealed that the cell number decreased and pyknotic cells were occasionally observed. We examined the expression of cell cycle related genes in Nczf−/− mice. p27 expression was increased in E8.0 Nczf−/− mice compared to that of wild type mice. Nczf knockdown by siRNA resulted in increased expression of p27 in mouse embryonic fibroblasts (MEFs). Furthermore, p27 promoter luciferase reporter gene analysis confirmed the regulation of p27 mRNA expression by Nczf. Nczf−/−; p27−/− double knockout mice survived until E11.5 and the defect of axial rotation was restored. These data suggest that p27 repression by Nczf is essential in the developing embryo. PMID:27196371

  14. Transcriptional repression of p27 is essential for murine embryonic development.

    PubMed

    Teratake, Youichi; Kuga, Chisa; Hasegawa, Yuta; Sato, Yoshiharu; Kitahashi, Masayasu; Fujimura, Lisa; Watanabe-Takano, Haruko; Sakamoto, Akemi; Arima, Masafumi; Tokuhisa, Takeshi; Hatano, Masahiko

    2016-01-01

    The Nczf gene has been identified as one of Ncx target genes and encodes a novel KRAB zinc-finger protein, which functions as a sequence specific transcriptional repressor. In order to elucidate Nczf functions, we generated Nczf knockout (Nczf-/-) mice. Nczf-/- mice died around embryonic day 8.5 (E8.5) with small body size and impairment of axial rotation. Histopathological analysis revealed that the cell number decreased and pyknotic cells were occasionally observed. We examined the expression of cell cycle related genes in Nczf-/- mice. p27 expression was increased in E8.0 Nczf-/- mice compared to that of wild type mice. Nczf knockdown by siRNA resulted in increased expression of p27 in mouse embryonic fibroblasts (MEFs). Furthermore, p27 promoter luciferase reporter gene analysis confirmed the regulation of p27 mRNA expression by Nczf. Nczf-/-; p27-/- double knockout mice survived until E11.5 and the defect of axial rotation was restored. These data suggest that p27 repression by Nczf is essential in the developing embryo. PMID:27196371

  15. Parthenogenetic dopamine neurons from primate embryonic stem cells restore function in experimental Parkinson's disease

    PubMed Central

    Lee, Hyojin; Patterson, Michaela; Reske-Nielsen, Casper; Yoshizaki, Takahito; Sonntag, Kai C.; Studer, Lorenz; Isacson, Ole

    2008-01-01

    The identity and functional potential of dopamine neurons derived in vitro from embryonic stem cells are critical for the development of a stem cell-based replacement therapy for Parkinson's disease. Using a parthenogenetic primate embryonic stem cell line, we have generated dopamine neurons that display persistent expression of midbrain regional and cell-specific transcription factors, which establish their proper identity and allow for their survival. We show here that transplantation of parthenogenetic dopamine neurons restores motor function in hemi-parkinsonian, 6-hydroxy-dopamine-lesioned rats. Exposure to Wnt5a and fibroblast growth factors (FGF) 20 and 2 at the final stage of in vitro differentiation enhanced the survival of dopamine neurons and, correspondingly, the extent of motor recovery of transplanted animals. Importantly for future development of clinical applications, dopamine neurons were post-mitotic at the time of transplantation and there was no tumour formation. These data provide proof for the concept that parthenogenetic stem cells are a suitable source of functional neurons for therapeutic applications. PMID:18669499

  16. Embryonic germ cell lines and their derivation from mouse primordial germ cells.

    PubMed

    Labosky, P A; Barlow, D P; Hogan, B L

    1994-01-01

    When primordial germ cells of the mouse are cultured on feeder layers with the addition of the polypeptide signalling molecules leukaemia inhibitory factor, Steel factor and basic fibroblast growth factor they give rise to cells that resemble undifferentiated blastocyst-derived embryonic stem cells. These primordial germ cell-derived embryonic germ cells (EG cells) can be induced to differentiate extensively in culture and also form teratocarcinomas when injected into nude mice. Additionally, they contribute to chimeras when injected into host blastocysts. We have derived multiple EG cell lines from 8.5 days post coitum (dpc) embryos of C57BL/6 inbred mice. Four independent EG cell lines with normal male karyotypes have formed chimeras (up to 70% coat colour chimerism) when injected into BALB/c host blastocysts. Chimeric mice from all four cell lines are fertile, but only those from one line have transmitted coat colour markers through the germline. Studies have also been carried out to determine whether gonadal primordial germ cells can give rise to pluripotent EG cells. Germ cells from gonads of 15.5 dpc C57BL/6 embryos and newborn mice failed to produce EG cell lines. EG cell lines capable of forming teratocarcinomas and coat colour chimeras have been established from primordial germ cells of 12.5 dpc genital ridges. We are currently testing the genomic imprinting status of the insulin-like growth factor type 2 receptor gene (Igf2r) in our different EG cell lines. PMID:7835148

  17. FGF, TGFβ and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells.

    PubMed

    Cleary, Mairéad A; van Osch, Gerjo J V M; Brama, Pieter A; Hellingman, Catharine A; Narcisi, Roberto

    2015-04-01

    Articular cartilage is easily damaged, yet difficult to repair. Cartilage tissue engineering seems a promising therapeutic solution to restore articular cartilage structure and function, with mesenchymal stem cells (MSCs) receiving increasing attention for their promise to promote cartilage repair. It is known from embryology that members of the fibroblast growth factor (FGF), transforming growth factor-β (TGFβ) and wingless-type (Wnt) protein families are involved in controlling different differentiation stages during chondrogenesis. Individually, these pathways have been extensively studied but so far attempts to recapitulate embryonic development in in vitro MSC chondrogenesis have failed to produce stable and functioning articular cartilage; instead, transient hypertrophic cartilage is obtained. We believe a better understanding of the simultaneous integration of these factors will improve how we relate embryonic chondrogenesis to in vitro MSC chondrogenesis. This narrative review attempts to define current knowledge on the crosstalk between the FGF, TGFβ and Wnt signalling pathways during different stages of mesenchymal chondrogenesis. Connecting embryogenesis and in vitro differentiation of human MSCs might provide insights into how to improve and progress cartilage tissue engineering for the future. PMID:23576364

  18. Effects and possible mechanisms of simulated-microgravity on zebrafish embryonic cell

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Wang, Ruonan

    2016-07-01

    Cellular level studies are helpful for revealing the underlying mechanisms of microgravity effects on living organisms. Many cell types, ranging from bacteria to mammalian cells, are sensitive to the microgravity environment. In this study, zebrafish embryonic cells (ZF4) were exposed to simulated-microgravity (SMG) for different times to investigate the effects and possible mechanisms of microgravity on fibroblasts. A significant arrest in G2/M phase was detected in ZF4 cells after 24 or 48 hour of SMG exposure, respectively. The mRNA levels of G2/M phase regulators cyclinB1 and cdc2 were significantly decreased, while wee1 was significantly increased. Additionally, CEP135, a core centrosome protein throughout the cell cycle, seems to play a key role in modulating this effect. Quantitative analysis showed that cep135 expression was significantly increased, while CEP135 protein expression level was significantly decreased two times after SMG. Further investigation demonstrated the transfection of dre-miR-22a, a miRNA for targeting cep135, also induced G2/M arrest in ZF4 cells. These results suggest that SMG induced G2/M arrest in ZF4 cells may due to the regulation of dre-miR-22a and its target cep135. Key Words: Simulated-microgravity; zebrafish embryonic cell; G2/M arrest; molecular mechanism

  19. Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion.

    PubMed

    Hammad, Moamen; Rao, Wei; Smith, James G W; Anderson, Daniel G; Langer, Robert; Young, Lorraine E; Barrett, David A; Davies, Martyn C; Denning, Chris; Alexander, Morgan R

    2016-08-16

    Improved biomaterials are required for application in regenerative medicine, biosensing, and as medical devices. The response of cells to the chemistry of polymers cultured in media is generally regarded as being dominated by proteins adsorbed to the surface. Here we use mass spectrometry to identify proteins adsorbed from a complex mouse embryonic fibroblast (MEF) conditioned medium found to support pluripotent human embryonic stem cell (hESC) expansion on a plasma etched tissue culture polystyrene surface. A total of 71 proteins were identified, of which 14 uniquely correlated with the surface on which pluripotent stem cell expansion was achieved. We have developed a microarray combinatorial protein spotting approach to test the potential of these 14 proteins to support expansion of a hESC cell line (HUES-7) and a human induced pluripotent stem cell line (ReBl-PAT) on a novel polymer (N-(4-Hydroxyphenyl) methacrylamide). These proteins were spotted to form a primary array yielding several protein mixture 'hits' that enhanced cell attachment to the polymer. A second array was generated to test the function of a refined set of protein mixtures. We found that a combination of heat shock protein 90 and heat shock protein-1 encourage elevated adherence of pluripotent stem cells at a level comparable to fibronectin pre-treatment. PMID:27466628

  20. Electrospun Polyacrylonitrile-Based Nanofibers Maintain Embryonic Stem Cell Stemness via TGF-Beta Signaling.

    PubMed

    Liu, Shih-Ping; Lin, Chen-Huan; Lin, Shao-Ji; Fu, Ru-Huei; Huang, Yu-Chuen; Chen, Shih-Yin; Lin, Shinn-Zong; Hsu, Chung Y; Shyu, Woei-Cherng

    2016-04-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are capable of self-renewal and differentiation into any cell type, thus making them the focus of many clinical application studies. Culturing ESCs on mouse embryonic fibroblast-derived and cell-based feeder layers to maintain pluripotency is a standard laboratory procedure. However, xenogeneic contamination and the large amount of time required for feeder cell preparation are two challenges that encourage the use of a murine-based feeder layer. A novel biomaterial is required to replace the current cell-based feeder system. Toward this goal, we applied a combination of biocompatible polyacrylonitrile (PAN) and electrospinning technology to establish a non-cell-based feeder layer. According to results from stem cell marker staining, scanning electron microscopy, and embryoid body formation tests, optimal ESC stemness and pluripotency were noted in three electrospun groups (2, 4, and 8 minutes), with the longer electrospinning times producing higher feeder-layer densities. KEGG pathway microarray results identified TGF-beta signaling as one of the major deregulatory pathways on electrospun-based feeder layers. Western blot data indicate significant increases in TGF-beta receptor II, phosphorylated Smad3, and Nanog protein levels in the 4- and 8-minute electrospun-based feeder layer groups compared to the non-feeder layer group. Combined, the data suggest that electrospun-based feeder layers are good candidates for maintaining ESC and iPSC pluripotency in clinical applications. PMID:27301199

  1. The culture of human embryonic stem cells in microchannel perfusion bioreactors

    NASA Astrophysics Data System (ADS)

    Korin, Natanel; Bransky, Avishay; Dinnar, Uri; Levenberg, Shulamit

    2007-12-01

    The culture of human Embryonic Stem (ES) cells in microchannel bioreactors can be highly beneficial for ES cell biology studies and ES tissue engineering applications. In the present study we examine the use of Human Foreskin Fibroblasts (HFF) cells as feeder cells for human ES culture in a microchannel perfusion bioreactor. PDMS microchannels (depth:130 micron) were fabricated using conventional soft-lithography techniques. The channels were sterilized, coated with a human fibronectin solution and seeded with cells. Following a period of static incubation, culture medium was perfused through the channels at various flow rates and cell growth was monitored throughout the culture process. Mass transport and fluid mechanics models were used to evaluate the culture conditions (shear stress, oxygen levels within the micro-bioreactor as a function of the medium flow rate. The conditions for successful long-term culture (>7 days) of HFF under flow were established. Experiments with human embryonic stem cells cultured in microchannels show that the conditions essential to co-culture human ES cell on HFF cells under perfusion differ from the conditions necessary for HFF cell culture. Human ES cells were found to be highly sensitive to flow and culture conditions and did not grow under flow rates which were suitable for HFF long-term culture. Successful culture of undifferentiated human ES cell colonies in a perfusion micro-bioreactor is a basic step towards utilizing microfluidic techniques to explore stem cell biology.

  2. Differential expression of TRPM7 in rat hepatoma and embryonic and adult hepatocytes.

    PubMed

    Lam, D Hung; Grant, Caroline E; Hill, Ceredwyn E

    2012-04-01

    TRPM7 channels are implicated in cellular survival, proliferation, and differentiation. However, a profile of TRPM7 activity in a specific cell type has not been determined from embryonic to terminally differentiated state. Here, we characterized TRPM7 expression in a spectrum of rat liver cells at different developmental stages. Using the whole-cell patch clamp technique, TRPM7-like Na(+) currents were identified in RLC-18 cells, a differentiated, proliferating hepatocellular line derived from day 17 embryonic rat liver. Currents were outwardly rectifying, enhanced in divalent-free solutions, and inhibited by intracellular Mg(2+). Reverse transcription - polymerase chain reaction (RT-PCR) revealed that RLC-18 cells express both TRPM6 and TRPM7. However, mean currents were reduced almost 80% by 1 mmol/L 2-aminoethoxyphenylborate (2-APB) and were abolished in RLC-18 cells heterologously expressing a dominant negative TRPM7 construct, suggesting that TRPM7 is the major current carrier in these cells. Functional comparison showed that relative to terminally differentiated adult rat hepatocytes, currents were 1.8 and 3.9 times higher in, respectively, RLC-18 and WIF-B cells, a rat hepatoma - human fibroblast cross. Our results demonstrate that plasma membrane TRPM7 channels are more highly expressed in proliferating cells as compared with terminally differentiated and nondividing rat hepatocytes and suggest that downregulation of this channel is associated with hepatocellular differentiation. PMID:22429021

  3. Differentiation of Mouse Embryonic Stem Cells into Endoderm without Embryoid Body Formation

    PubMed Central

    Kim, Peter T. W.; Hoffman, Brad G.; Plesner, Annette; Helgason, Cheryl D.; Verchere, C. Bruce; Chung, Stephen W.; Warnock, Garth L.; Mui, Alice L. F.; Ong, Christopher J.

    2010-01-01

    Pluripotent embryonic stem cells hold a great promise as an unlimited source of tissue for treatment of chronic diseases such as Type 1 diabetes. Herein, we describe a protocol using all-trans-retinoic acid, basic fibroblast growth factor and dibutyryl cAMP (DBcAMP) in the absence of embryoid body formation, for differentiation of murine embryonic stem cells into definitive endoderm that may serve as pancreatic precursors. The produced cells were analyzed by quantitative PCR, immunohistochemistry and static insulin release assay for markers of trilaminar embryo, and pancreas. Differentiated cells displayed increased Sox17 and Foxa2 expression consistent with definitive endoderm production. There was minimal production of Sox7, an extraembryonic endoderm marker, and Oct4, a marker of pluripotency. There was minimal mesoderm or neuroectoderm formation based on expression levels of the markers brachyury and Sox1, respectively. Various assays revealed that the cell clusters generated by this protocol express markers of the pancreatic lineage including insulin I, insulin II, C-peptide, PDX-1, carboxypeptidase E, pan-cytokeratin, amylase, glucagon, PAX6, Ngn3 and Nkx6.1. This protocol using all-trans-retinoic acid, DBcAMP, in the absence of embryoid bodies, generated cells that have features of definitive endoderm that may serve as pancreatic endocrine precursors. PMID:21152387

  4. Analysis of Cardiomyocyte Development using Immunofluorescence in Embryonic Mouse Heart

    PubMed Central

    Wilsbacher, Lisa D.; Coughlin, Shaun R.

    2015-01-01

    During heart development, the generation of myocardial-specific structural and functional units including sarcomeres, contractile myofibrils, intercalated discs, and costameres requires the coordinated assembly of multiple components in time and space. Disruption in assembly of these components leads to developmental heart defects. Immunofluorescent staining techniques are used commonly in cultured cardiomyocytes to probe myofibril maturation, but this ex vivo approach is limited by the extent to which myocytes will fully differentiate in culture, lack of normal in vivo mechanical inputs, and absence of endocardial cues. Application of immunofluorescence techniques to the study of developing mouse heart is desirable but more technically challenging, and methods often lack sufficient sensitivity and resolution to visualize sarcomeres in the early stages of heart development. Here, we describe a robust and reproducible method to co-immunostain multiple proteins or to co-visualize a fluorescent protein with immunofluorescent staining in the embryonic mouse heart and use this method to analyze developing myofibrils, intercalated discs, and costameres. This method can be further applied to assess cardiomyocyte structural changes caused by mutations that lead to developmental heart defects. PMID:25866997

  5. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice.

    PubMed Central

    Xanthoudakis, S; Smeyne, R J; Wallace, J D; Curran, T

    1996-01-01

    The DNA-binding activity of AP-1 proteins is modulated, in vitro, by a posttranslational mechanism involving reduction oxidation. This mode of regulation has been proposed to control both the transcriptional activity and the oncogenic potential of Fos and Jun. Previous studies revealed that reduction of oxidized Fos and Jun by a cellular protein, Ref-1, stimulates sequence-specific AP-1 DNA-binding activity. Ref-1, a bifunctional protein, is also capable of initiating the repair of apurinic/apyrymidinic sites in damaged DNA. The relationship between the redox and DNA repair activities of Ref-1 is intriguing; both activities have been suggested to play an important role in the cellular response to oxidative stress. To investigate the physiological function of Ref-1, we used a gene targeting strategy to generate mice lacking a functional ref-1 gene. We report here that heterozygous mutant mice develop into adulthood without any apparent abnormalities. In contrast, homozygous mutant mice, lacking a functional ref-1 gene, die during embryonic development. Detailed analysis indicates that death occurs following blastocyst formation, shortly after the time of implantation. Degeneration of the mutant embryos is clearly evident at embryonic day 5.5. These findings demonstrate that Ref-1 is essential for early embryonic development. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8799128

  6. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells

    SciTech Connect

    Sowa, Marianne B.; Goetz, Wilfried; Baulch, Janet E.; Pyles, Dinah N.; Dziegielewski, J.; Yovino, Susannah; Snyder, Andrew R.; de Toledo, S. M.; Azzam, Edouard I.; Morgan, William F.

    2010-02-01

    The conventional paradigm in radiation biology has been that DNA is the primary target for energy deposition following exposure to ionizing radiation. However, studies focusing on the non-target effects of radiation, i.e. effects occurring in cells not directly exposed to radiation, imply that the target of exposure is larger than what has traditionally been assumed and could have significant implications for radiation health risks. We have conducted an extensive study of the low-LET bystander effect including multiple cell lines and endpoints and various radiation sources and exposure scenarios. In no instance do we see evidence of a low-LET induced bystander effect. However, direct comparison for alpha particle exposure showed a statistically significant media transfer bystander effect for high-LET but not for low-LET radiation. From our results it is evident that there are many confounding factors mitigating bystander responses as reported in the literature and for the cell lines we studied that there is a LET dependence for the observed responses. Our observations reflect the inherent variability in biological systems and the difficulties in extrapolating from in vitro models to radiation risks in humans.

  7. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion

    PubMed Central

    Mazur, Anna; Holthoff, Emily; Vadali, Shanthi; Kelly, Thomas; Post, Steven R.

    2016-01-01

    Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages. PMID:26934296

  8. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation.

    PubMed

    Eastham, Angela M; Spencer, Helen; Soncin, Francesca; Ritson, Sarah; Merry, Catherine L R; Stern, Peter L; Ward, Christopher M

    2007-12-01

    Epithelial-mesenchymal transition (EMT) occurs during embryonic development and may also be associated with the metastatic spread of epithelial tumors. During EMT, E-cadherin is down-regulated and this correlates with increased motility and invasion of cells. We show that differentiation of human embryonic stem (ES) cells in monolayer culture is associated with an E- to N-cadherin switch, increased vimentin expression, up-regulation of E-cadherin repressor molecules (Snail and Slug proteins), and increased gelatinase (matrix metalloproteinases; MMP-2 and MMP-9) activity and cellular motility, all characteristic EMT events. The 5T4 oncofetal antigen, previously shown to be associated with early human ES cell differentiation, is also part of this process. Abrogation of E-cadherin-mediated cell-cell contact in undifferentiated ES cells using neutralizing antibody (nAb) SHE78.7 resulted in increased cellular motility, altered actin cytoskeleton arrangement and a mesenchymal phenotype together with presentation of the 5T4 antigen at the cell surface. nAb-treated ES cells remained in an undifferentiated state, as assessed by OCT-4 protein expression, and did not express EMT-associated transcripts. Removal of nAb from ES cells resulted in the restoration of cell-cell contact, absence of cell surface 5T4, decreased mesenchymal cellular morphology and motility, and enabled the differentiation of the cells to the three germ layers upon their removal from the fibroblast feeder layer. We conclude that E-cadherin functions in human ES cells to stabilize the cortical actin cyoskeletal arrangement and this prevents cell surface localization of the 5T4 antigen. Furthermore, human ES cells represent a useful model system with which to study EMT events relevant to embryonic development and tumor cell metastasis. PMID:18056451

  9. Histone demethylase JMJD5 is essential for embryonic development

    SciTech Connect

    Oh, Sangphil; Janknecht, Ralf

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Histone demethylase JMJD5 is essential for embryogenesis. Black-Right-Pointing-Pointer Transcription of tumor suppressor p53 is upregulated in JMJD5 knockout embryos. Black-Right-Pointing-Pointer JMJD5 may antagonize p53-dependent growth inhibition and apoptosis. Black-Right-Pointing-Pointer JMJD5 is overexpressed in leukemias and breast cancer. -- Abstract: Histone lysine methylation is pivotal in regulating chromatin structure and thus profoundly affects the transcriptome. JMJD5 (jumonji C domain-containing 5) is a histone demethylase that specifically removes methyl moieties from dimethylated lysine 36 on histone H3 and exerts a pro-proliferative effect on breast cancer cells. Here, we generated JMJD5 knockout mice in order to study the physiological significance of this enzyme. Whereas heterozygous knockout mice displayed no overt phenotype, homozygous JMJD5 knockouts died around day 10 of embryonal development. JMJD5{sup -/-} embryos showed delayed development already at E8.5 and were actively resorbed at E10.5. While strong JMJD5 expression was observed only in the yolk sac at E8.5, JMJD5 was robustly expressed in E10.5 embryos at several sites, including the heart and eye. Lack of JMJD5 resulted in transcriptional upregulation of the tumor suppressor p53. Concurrently, the cell cycle inhibitor p21 and the pro-apoptotic molecule Noxa, both of which are prominent p53 target genes, became strongly upregulated in JMJD5{sup -/-} embryos. Collectively, our data indicate that JMJD5 is essential during embryonal development and a repressor of p53 expression. The latter suggests that JMJD5 has oncogenic activity and accordingly JMJD5 is upregulated in leukemias and breast cancer.

  10. Inhibition of fibroblast proliferation by Actinobacillus actinomycetemcomitans.

    PubMed Central

    Shenker, B J; Kushner, M E; Tsai, C C

    1982-01-01

    We have examined soluble sonic extracts of Actinobacillus actinomycetemcomitans for their ability to alter human and murine fibroblast proliferation. We found that extracts of all A. actinomycetemcomitans strains examined (both leukotoxic and nonleukotoxic) caused a dose-dependent inhibition of both murine and human fibroblast proliferation as assessed by DNA synthesis ([3H]thymidine incorporation). Addition of sonic extract simultaneously with [3H]thymidine had no effect on incorporation, indicating that suppression was not due to the presence of excessive amounts of cold thymidine. Inhibition of DNA synthesis was also paralleled by decreased RNA synthesis ([3H]uridine incorporation) and by a decrease in cell growth as assessed by direct cell counts; there was no effect on cell viability. The suppressive factor(s) is heat labile; preliminary purification and characterization studies indicate that it is a distinct and separate moiety from other A. actinomycetemcomitans mediators previously reported, including leukotoxin, immune suppressive factor, and endotoxin. Although it is not clear how A. actinomycetemcomitans acts to cause disease, we propose that one aspect of the pathogenicity of this organism rests in its ability to inhibit fibroblast growth, which in turn could contribute to the collagen loss associated with certain forms of periodontal disease, in particular juvenile periodontitis. PMID:7152684

  11. Intracellular Mechanics of Migrating FibroblastsD⃞

    PubMed Central

    Kole, Thomas P.; Tseng, Yiider; Jiang, Ingjye; Katz, Joseph L.; Wirtz, Denis

    2005-01-01

    Cell migration is a highly coordinated process that occurs through the translation of biochemical signals into specific biomechanical events. The biochemical and structural properties of the proteins involved in cell motility, as well as their subcellular localization, have been studied extensively. However, how these proteins work in concert to generate the mechanical properties required to produce global motility is not well understood. Using intracellular microrheology and a fibroblast scratch-wound assay, we show that cytoskeleton reorganization produced by motility results in mechanical stiffening of both the leading lamella and the perinuclear region of motile cells. This effect is significantly more pronounced in the leading edge, suggesting that the mechanical properties of migrating fibroblasts are spatially coordinated. Disruption of the microtubule network by nocodazole treatment results in the arrest of cell migration and a loss of subcellular mechanical polarization; however, the overall mechanical properties of the cell remain mostly unchanged. Furthermore, we find that activation of Rac and Cdc42 in quiescent fibroblasts elicits mechanical behavior similar to that of migrating cells. We conclude that a polarized mechanics of the cytoskelton is essential for directed cell migration and is coordinated through microtubules. PMID:15483053

  12. Cancer exosomes trigger fibroblast to myofibroblast differentiation.

    PubMed

    Webber, Jason; Steadman, Robert; Mason, Malcolm D; Tabi, Zsuzsanna; Clayton, Aled

    2010-12-01

    There is a growing interest in the cell-cell communication roles in cancer mediated by secreted vesicles termed exosomes. In this study, we examined whether exosomes produced by cancer cells could transmit information to normal stromal fibroblasts and trigger a cellular response. We found that some cancer-derived exosomes could trigger elevated α-smooth muscle actin expression and other changes consistent with the process of fibroblast differentiation into myofibroblasts. We show that TGF-β is expressed at the exosome surface in association with the transmembrane proteoglycan betaglycan. Although existing in a latent state, this complex was fully functional in eliciting SMAD-dependent signaling. Inhibiting either signaling or betaglycan expression attenuated differentiation. While the kinetics and overall magnitude of the response were similar to that achieved with soluble TGF-β, we identified important qualitative differences unique to the exosomal route of TGF-β delivery, as exemplified by a significant elevation in fibroblast FGF2 production. This hitherto unknown trigger for instigating cellular differentiation in a distinctive manner has major implications for mechanisms underlying cancer-recruited stroma, fibrotic diseases, and wound-healing responses. PMID:21098712

  13. Hypopigmentation and Maternal-Zygotic Embryonic Lethality Caused by a Hypomorphic Mbtps1 Mutation in Mice

    PubMed Central

    Rutschmann, Sophie; Crozat, Karine; Li, Xiaohong; Du, Xin; Hanselman, Jeffrey C.; Shigeoka, Alana A.; Brandl, Katharina; Popkin, Daniel L.; McKay, Dianne B.; Xia, Yu; Moresco, Eva Marie Y.; Beutler, Bruce

    2012-01-01

    The site 1 protease, encoded by Mbtps1, mediates the initial cleavage of site 2 protease substrates, including sterol regulatory element binding proteins and CREB/ATF transcription factors. We demonstrate that a hypomorphic mutation of Mbtps1 called woodrat (wrt) caused hypocholesterolemia, as well as progressive hypopigmentation of the coat, that appears to be mechanistically unrelated. Hypopigmentation was rescued by transgenic expression of wild-type Mbtps1, and reciprocal grafting studies showed that normal pigmentation depended upon both cell-intrinsic or paracrine factors, as well as factors that act systemically, both of which are lacking in wrt homozygotes. Mbtps1 exhibited a maternal-zygotic effect characterized by fully penetrant embryonic lethality of maternal-zygotic wrt mutant offspring and partial embryonic lethality (~40%) of zygotic wrt mutant offspring. Mbtps1 is one of two maternal-zygotic effect genes identified in mammals to date. It functions nonredundantly in pigmentation and embryogenesis. PMID:22540041

  14. Hypopigmentation and maternal-zygotic embryonic lethality caused by a hypomorphic mbtps1 mutation in mice.

    PubMed

    Rutschmann, Sophie; Crozat, Karine; Li, Xiaohong; Du, Xin; Hanselman, Jeffrey C; Shigeoka, Alana A; Brandl, Katharina; Popkin, Daniel L; McKay, Dianne B; Xia, Yu; Moresco, Eva Marie Y; Beutler, Bruce

    2012-04-01

    The site 1 protease, encoded by Mbtps1, mediates the initial cleavage of site 2 protease substrates, including sterol regulatory element binding proteins and CREB/ATF transcription factors. We demonstrate that a hypomorphic mutation of Mbtps1 called woodrat (wrt) caused hypocholesterolemia, as well as progressive hypopigmentation of the coat, that appears to be mechanistically unrelated. Hypopigmentation was rescued by transgenic expression of wild-type Mbtps1, and reciprocal grafting studies showed that normal pigmentation depended upon both cell-intrinsic or paracrine factors, as well as factors that act systemically, both of which are lacking in wrt homozygotes. Mbtps1 exhibited a maternal-zygotic effect characterized by fully penetrant embryonic lethality of maternal-zygotic wrt mutant offspring and partial embryonic lethality (~40%) of zygotic wrt mutant offspring. Mbtps1 is one of two maternal-zygotic effect genes identified in mammals to date. It functions nonredundantly in pigmentation and embryogenesis. PMID:22540041

  15. Role of Homothorax in region specific regulation of Deformed in embryonic neuroblasts

    PubMed Central

    Kumar, Raviranjan; Chotaliya, Maheshvari; Vuppala, Sruthakeerthi; Auradkar, Ankush; Palasamudrum, Kalyani; Joshi, Rohit

    2015-01-01

    The expression and regulation of Hox genes in developing central nervous system (CNS) lack important details like specific cell types where Hox genes are expressed and the transcriptional regulatory players involved in these cells. In this study we have investigated the expression and regulation of Drosophila Hox gene Deformed (Dfd) in specific cell types of embryonic CNS. Using Dfd neural autoregulatory enhancer we find that Dfd autoregulates itself in cells of mandibular neuromere. We have also investigated the role of a Hox cofactor Homothorax (Hth) for its role in regulating Dfd expression in CNS. We find that Hth exhibits a region specific role in controlling the expression of Dfd, but has no direct role in mandibular Dfd neural autoregulatory circuit. Our results also suggest that homeodomain of Hth is not required for regulating Dfd expression in embryonic CNS. PMID:26409112

  16. Differentiation of embryonic and adult stem cells into insulin producing cells.

    PubMed

    Zulewski, H

    2008-03-01

    Replacement of insulin producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans is successful in experienced centers. The wider application of this therapy, however, is limited by the lack of donor organs. Insulin producing cells generated from stem cells represent an attractive alternative. Stem cells with the potential to differentiate into insulin producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns but research with human ESC may help us to decipher important steps in the differentiation process in vitro since almost all information available on pancreas development are based on animal studies. The present review summarizes the current knowledge on the development of insulin producing cells from embryonic and adult stem cells with special emphasis on pancreatic, hepatic and human mesenchymal stem cells. PMID:18427390

  17. Serum-free primary human fibroblast and keratinocyte coculture.

    PubMed

    Mujaj, Sally; Manton, Kerry; Upton, Zee; Richards, Sean

    2010-04-01

    Research has shown that the inclusion of a fibroblast cell support layer is required for the isolation and expansion of primary keratinocytes. Recent advances have provided keratinocyte culture with fibroblast-free alternatives. However, these technologies are often undefined and rely on the incorporation of purified proteins/components. To address this problem we developed a medium that used recombinant proteins to support the serum-free isolation and expansion of human dermal fibroblasts and keratinocytes. The human dermal fibroblasts were able to be isolated serum free by adding recombinant human albumin to a collagenase solution. These fibroblasts were then expanded using a serum-free medium containing recombinant proteins: epidermal growth factor, basic fibroblast growth factor, chimeric vitronectin:insulin-like growth factor-I protein, and recombinant human albumin. These fibroblasts maintained a typical morphology and expressed fibroblast markers during their serum-free isolation, expansion, and freezing. Moreover, these fibroblasts were able to support the serum-free isolation and expansion of primary keratinocytes using these recombinant proteins. Real-time polymerase chain reaction and immunofluorescence analysis confirmed that there were no differences in expression levels of p63 or keratins 1, 6, and 10 when keratinocytes were grown in either serum-supplemented or serum-free medium. Using a three-dimensional human skin equivalent model we demonstrated that these keratinocytes also maintained their ability to reform an epidermal layer. In summary, the techniques described provide a valuable alternative for culturing fibroblasts and keratinocytes using recombinant proteins. PMID:19929322

  18. Alteration of Skin Properties with Autologous Dermal Fibroblasts

    PubMed Central

    Thangapazham, Rajesh L.; Darling, Thomas N.; Meyerle, Jon

    2014-01-01

    Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA) while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices. PMID:24828202

  19. Programming embryonic stem cells to neuronal subtypes

    PubMed Central

    Peljto, Mirza; Wichterle, Hynek

    2010-01-01

    Richness of neural circuits and specificity of neuronal connectivity depends on the diversification of nerve cells into functionally and molecularly distinct subtypes. While efficient methods for directed differentiation of embryonic stem cells (ESCs) into multiple principal neuronal classes have been established, only a few studies systematically examined the subtype diversity of in vitro derived nerve cells. Here we review evidence based on molecular and in vivo transplantation studies that ESC-derived spinal motor neurons and cortical layer V pyramidal neurons acquire subtype specific functional properties. We discuss similarities and differences in the role of cell intrinsic transcriptional programs, extrinsic signals and cell-cell interactions during subtype diversification of the two classes of nerve cells. We conclude that the high degree of fidelity with which differentiating ESCs recapitulate normal embryonic development provides a unique opportunity to explore developmental processes underlying specification of mammalian neuronal diversity in a simplified and experimentally accessible system. PMID:20970319

  20. Developmental derivation of embryonic and adult macrophages.

    PubMed

    Shepard, J L; Zon, L I

    2000-01-01

    The macrophage cell lineage continually arises from hematopoietic stem cells during embryonic, fetal, and adult life. Previous theories proposed that macrophages are the recent progeny of bone marrow-derived monocytes and that they function primarily in phagocytosis. More recently, however, observations have shown that the ontogeny of macrophages in early mouse and human embryos is different from that occurring during adult development, and that the embryonic macrophages do not follow the monocyte pathway. Fetal macrophages are thought to differentiate from yolk sac-derived primitive macrophages before the development of adult monocytes. Further support for a separate lineage of fetal macrophages has come from studies of several species, including chicken, zebrafish, Xenopus, Drosophila, and C. elegans. The presence of fetal macrophages in PU.1-null mice indicates their independence from monocyte precursors and their existence as an alternative macrophage lineage. PMID:10608497

  1. OCT guided microinjections for mouse embryonic research

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Syed, Saba H.; Coughlin, Andrew J.; Wang, Shang; West, Jennifer L.; Dickinson, Mary E.; Larina, Irina V.

    2013-02-01

    Optical coherence tomography (OCT) is gaining popularity as live imaging tool for embryonic research in animal models. Recently we have demonstrated that OCT can be used for live imaging of cultured early mouse embryos (E7.5-E10) as well as later stage mouse embryos in utero (E12.5 to the end of gestation). Targeted delivery of signaling molecules, drugs, and cells is a powerful approach to study normal and abnormal development, and image guidance is highly important for such manipulations. Here we demonstrate that OCT can be used to guide microinjections of gold nanoshell suspensions in live mouse embryos. This approach can potentially be used for variety of applications such as guided injections of contrast agents, signaling molecules, pharmacological agents, cell transplantation and extraction, as well as other image-guided micromanipulations. Our studies also reveal novel potential for gold nanoshells in embryonic research.

  2. Mechanically patterning the embryonic airway epithelium

    PubMed Central

    Varner, Victor D.; Gleghorn, Jason P.; Miller, Erin; Radisky, Derek C.; Nelson, Celeste M.

    2015-01-01

    Collections of cells must be patterned spatially during embryonic development to generate the intricate architectures of mature tissues. In several cases, including the formation of the branched airways of the lung, reciprocal signaling between an epithelium and its surrounding mesenchyme helps generate these spatial patterns. Several molecular signals are thought to interact via reaction-diffusion kinetics to create distinct biochemical patterns, which act as molecular precursors to actual, physical patterns of biological structure and function. Here, however, we show that purely physical mechanisms can drive spatial patterning within embryonic epithelia. Specifically, we find that a growth-induced physical instability defines the relative locations of branches within the developing murine airway epithelium in the absence of mesenchyme. The dominant wavelength of this instability determines the branching pattern and is controlled by epithelial growth rates. These data suggest that physical mechanisms can create the biological patterns that underlie tissue morphogenesis in the embryo. PMID:26170292

  3. Mechanically patterning the embryonic airway epithelium.

    PubMed

    Varner, Victor D; Gleghorn, Jason P; Miller, Erin; Radisky, Derek C; Nelson, Celeste M

    2015-07-28

    Collections of cells must be patterned spatially during embryonic development to generate the intricate architectures of mature tissues. In several cases, including the formation of the branched airways of the lung, reciprocal signaling between an epithelium and its surrounding mesenchyme helps generate these spatial patterns. Several molecular signals are thought to interact via reaction-diffusion kinetics to create distinct biochemical patterns, which act as molecular precursors to actual, physical patterns of biological structure and function. Here, however, we show that purely physical mechanisms can drive spatial patterning within embryonic epithelia. Specifically, we find that a growth-induced physical instability defines the relative locations of branches within the developing murine airway epithelium in the absence of mesenchyme. The dominant wavelength of this instability determines the branching pattern and is controlled by epithelial growth rates. These data suggest that physical mechanisms can create the biological patterns that underlie tissue morphogenesis in the embryo. PMID:26170292

  4. A trade-off between embryonic development rate and immune function of avian offspring is concealed by embryonic temperature

    USGS Publications Warehouse

    Martin, Thomas E.; Arriero, Elena; Majewska, Ania

    2011-01-01

    Long embryonic periods are assumed to reflect slower intrinsic development that are thought to trade off to allow enhanced physiological systems, such as immune function. Yet, the relatively rare studies of this trade-off in avian offspring have not found the expected trade-off. Theory and tests have not taken into account the strong extrinsic effects of temperature on embryonic periods of birds. Here, we show that length of the embryonic period did not explain variation in two measures of immune function when temperature was ignored, based on studies of 34 Passerine species in tropical Venezuela (23 species) and north temperate Arizona (11 species). Variation in immune function was explained when embryonic periods were corrected for average embryonic temperature, in order to better estimate intrinsic rates of development. Immune function of offspring trades off with intrinsic rates of embryonic development once the extrinsic effects of embryonic temperatures are taken into account.

  5. Metabolic circadian rhythms in embryonic turtles.

    PubMed

    Loudon, Fiona Kay; Spencer, Ricky-John; Strassmeyer, Alana; Harland, Karen

    2013-07-01

    Oviparous species are model organisms for investigating embryonic development of endogenous physiological circadian rhythms without the influence of maternal biorhythms. Recent studies have demonstrated that heart rates and metabolic rates of embryonic turtles are not constant or always maximal and can be altered in response to the presence of embryos at a more advanced stage of development within the nest. A first step in understanding the physiological mechanisms underpinning these responses in embryonic ectothermic organisms is to develop metabolic profiles (e.g., heart rate) at different temperatures throughout incubation. Heart beat and rhythmic patterns or changes in development may represent important signals or cues within a nest and may be vital to coordinate synchronous hatching well in advance of the final stages of incubation. We developed baseline embryonic heart-rate profiles of embryos of the short-necked Murray River turtle (Emydura macquarii) to determine the stage of embryogenesis that metabolic circadian rhythms become established, if at all. Eggs were incubated at constant temperatures (26°C and 30°C) and heart rates were monitored at 6-h intervals over 24 h every 7-11 days until hatching. Circadian heart rate rhythms were detected at the mid-gestation period and were maintained until hatching. Heart rates throughout the day varied by up to 20% over 24 h and were not related to time of day. This study demonstrated that endogenous metabolic circadian rhythms in developing embryos in turtle eggs establish earlier in embryogenesis than those documented in other vertebrate taxa during embryogenesis. Early establishment of circadian rhythms in heart rates may be critical for communication among embryos and synchrony in hatching and emergence from the nest. PMID:23652198

  6. Hedgehog Signalling in the Embryonic Mouse Thymus

    PubMed Central

    Saldaña, José Ignacio; Crompton, Tessa

    2016-01-01

    T cells develop in the thymus, which provides an essential environment for T cell fate specification, and for the differentiation of multipotent progenitor cells into major histocompatibility complex (MHC)-restricted, non-autoreactive T cells. Here we review the role of the Hedgehog signalling pathway in T cell development, thymic epithelial cell (TEC) development, and thymocyte–TEC cross-talk in the embryonic mouse thymus during the last week of gestation. PMID:27504268

  7. Lacking control increases illusory pattern perception.

    PubMed

    Whitson, Jennifer A; Galinsky, Adam D

    2008-10-01

    We present six experiments that tested whether lacking control increases illusory pattern perception, which we define as the identification of a coherent and meaningful interrelationship among a set of random or unrelated stimuli. Participants who lacked control were more likely to perceive a variety of illusory patterns, including seeing images in noise, forming illusory correlations in stock market information, perceiving conspiracies, and developing superstitions. Additionally, we demonstrated that increased pattern perception has a motivational basis by measuring the need for structure directly and showing that the causal link between lack of control and illusory pattern perception is reduced by affirming the self. Although these many disparate forms of pattern perception are typically discussed as separate phenomena, the current results suggest that there is a common motive underlying them. PMID:18832647

  8. Isolation of Murine Embryonic Hemogenic Endothelial Cells.

    PubMed

    Fang, Jennifer S; Gritz, Emily C; Marcelo, Kathrina L; Hirschi, Karen K

    2016-01-01

    The specification of hemogenic endothelial cells from embryonic vascular endothelium occurs during brief developmental periods within distinct tissues, and is necessary for the emergence of definitive HSPC from the murine extra embryonic yolk sac, placenta, umbilical vessels, and the embryonic aorta-gonad-mesonephros (AGM) region. The transient nature and small size of this cell population renders its reproducible isolation for careful quantification and experimental applications technically difficult. We have established a fluorescence-activated cell sorting (FACS)-based protocol for simultaneous isolation of hemogenic endothelial cells and HSPC during their peak generation times in the yolk sac and AGM. We demonstrate methods for dissection of yolk sac and AGM tissues from mouse embryos, and we present optimized tissue digestion and antibody conjugation conditions for maximal cell survival prior to identification and retrieval via FACS. Representative FACS analysis plots are shown that identify the hemogenic endothelial cell and HSPC phenotypes, and describe a methylcellulose-based assay for evaluating their blood forming potential on a clonal level. PMID:27341393

  9. Gene expression analysis of the embryonic subplate

    PubMed Central

    Oeschger, Franziska M.; Wang, Wei-Zhi; Lee, Sheena; García-Moreno, Fernando; Goffinet, André M.; Arbones, Mariona; Rakic, Sonia; Molnár, Zoltán

    2015-01-01

    The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later stages, they are involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared to the cortical plate at this stage. Using quantitative RT-PCR, in situ hybridization and immunohistochemistry, we have confirmed specific expression in the E15.5 subplate for 13 selected genes which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 out of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to the maturation and electrophysiological properties of subplate cells and to axonal growth and guidance. PMID:21862448

  10. Mechanical signaling coordinates the embryonic heartbeat.

    PubMed

    Chiou, Kevin K; Rocks, Jason W; Chen, Christina Yingxian; Cho, Sangkyun; Merkus, Koen E; Rajaratnam, Anjali; Robison, Patrick; Tewari, Manorama; Vogel, Kenneth; Majkut, Stephanie F; Prosser, Benjamin L; Discher, Dennis E; Liu, Andrea J

    2016-08-01

    In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, β-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts-consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats. PMID:27457951

  11. Human embryonic stem cells and lung regeneration

    PubMed Central

    Varanou, A; Page, C P; Minger, S L

    2008-01-01

    Human embryonic stem cells are pluripotent cells derived from the inner cell mass of preimplantation stage embryos. Their unique potential to give rise to all differentiated cell types has generated great interest in stem cell research and the potential that it may have in developmental biology, medicine and pharmacology. The main focus of stem cell research has been on cell therapy for pathological conditions with no current methods of treatment, such as neurodegenerative diseases, cardiac pathology, retinal dysfunction and lung and liver disease. The overall aim is to develop methods of application either of pure cell populations or of whole tissue parts to the diseased organ under investigation. In the field of pulmonary research, studies using human embryonic stem cells have succeeded in generating enriched cultures of type II pneumocytes in vitro. On account of their potential of indefinite proliferation in vitro, embryonic stem cells could be a source of an unlimited supply of cells available for transplantation and for use in gene therapy. Uncovering the ability to generate such cell types will expand our understanding of biological processes to such a degree that disease understanding and management could change dramatically. PMID:18724383

  12. Embryonic development of Pelteobagrus fulvidraco (Richardson, 1846)

    NASA Astrophysics Data System (ADS)

    Wang, Weimin; Abbas, Khalid; Yan, Ansheng

    2006-12-01

    For production enhancement and procedure upgrade, the developmental phases of laboratory-reared eggs of catfish Pelteobagrus fulvidraco were investigated. Twenty mature females and 10 males were collected from Dadongmen wholesale fisheries market in Wuhan City on May 8, 2003. Zygotes were stripped from mature fish after hormone-induced ovulation, fertilized, and incubated through whole embryonic development. The fertilized eggs were stocked in density of 100 eggs/L in white square tanks of 10 L. Incubation water was dechlorinated tap water with continuous aeration. The tanks were lit directly with 60 W fluorescent bulbs with a 12 light: 12 dark photoperiod. Water temperature, dissolved oxygen and pH were 29.0±0.5°C, 6.7±0.4 mg/L and 7.4±2, respectively. The results showed that the eggs of P. fulvidraco were yellow, sticky and contained much yolk. The mean diameter of fertilized eggs was 2.03 mm. At the water temperature of 29.0±0.5°C, the ontogenesis spent about 33 h after fertilization. From fertilization to hatching, the embryonic development can be divided into 30 40 phases, which varies in the emphasis and direction of development. The detailed embryonic movement was also described.

  13. Gene expression analysis of the embryonic subplate.

    PubMed

    Oeschger, Franziska M; Wang, Wei-Zhi; Lee, Sheena; García-Moreno, Fernando; Goffinet, André M; Arbonés, Maria L; Rakic, Sonja; Molnár, Zoltán

    2012-06-01

    The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later developmental stages, they are predominantly involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day (E) 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared with the cortical plate at this stage. Using quantitative reverse transcription-polymerase chain reaction, in situ hybridization (ISH), and immunohistochemistry (IHC), we have confirmed specific expression in the E15.5 subplate for 13 selected genes, which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c, and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to synapse formation and axonal growth and guidance in subplate cells. PMID:21862448

  14. From teratocarcinomas to embryonic stem cells.

    PubMed Central

    Andrews, Peter W

    2002-01-01

    The recent derivation of human embryonic stem (ES) cell lines, together with results suggesting an unexpected degree of plasticity in later, seemingly more restricted, stem cells (so-called adult stem cells), have combined to focus attention on new opportunities for regenerative medicine, as well as for understanding basic aspects of embryonic development and diseases such as cancer. Many of the ideas that are now discussed have a long history and much has been underpinned by the earlier studies of teratocarcinomas, and their embryonal carcinoma (EC) stem cells, which present a malignant surrogate for the normal stem cells of the early embryo. Nevertheless, although the potential of EC and ES cells to differentiate into a wide range of tissues is now well attested, little is understood of the key regulatory mechanisms that control their differentiation. Apart from the intrinsic biological interest in elucidating these mechanisms, a clear understanding of the molecular process involved will be essential if the clinical potential of these cells is to be realized. The recent observations of stem-cell plasticity suggest that perhaps our current concepts about the operation of cell regulatory pathways are inadequate, and that new approaches for analysing complex regulatory networks will be essential. PMID:12028783

  15. Isolation of Murine Embryonic Hemogenic Endothelial Cells

    PubMed Central

    Marcelo, Kathrina L.; Hirschi, Karen K.

    2016-01-01

    The specification of hemogenic endothelial cells from embryonic vascular endothelium occurs during brief developmental periods within distinct tissues, and is necessary for the emergence of definitive HSPC from the murine extra embryonic yolk sac, placenta, umbilical vessels, and the embryonic aorta-gonad-mesonephros (AGM) region. The transient nature and small size of this cell population renders its reproducible isolation for careful quantification and experimental applications technically difficult. We have established a fluorescence-activated cell sorting (FACS)-based protocol for simultaneous isolation of hemogenic endothelial cells and HSPC during their peak generation times in the yolk sac and AGM. We demonstrate methods for dissection of yolk sac and AGM tissues from mouse embryos, and we present optimized tissue digestion and antibody conjugation conditions for maximal cell survival prior to identification and retrieval via FACS. Representative FACS analysis plots are shown that identify the hemogenic endothelial cell and HSPC phenotypes, and describe a methylcellulose-based assay for evaluating their blood forming potential on a clonal level. PMID:27341393

  16. Transgene-free human induced pluripotent stem cell line (HS5-SV.hiPS) generated from cesarean scar-derived fibroblasts.

    PubMed

    Rungsiwiwut, Ruttachuk; Pavarajarn, Wipawee; Numchaisrika, Pranee; Virutamasen, Pramuan; Pruksananonda, Kamthorn

    2016-01-01

    Transgene-free human HS5-SV.hiPS line was generated from human cesarean scar-derived fibroblasts using temperature-sensitive Sendai virus vectors carrying Oct4, Sox2, cMyc and Klf4 exogenous transcriptional factors. The viral constructs were eliminated from HS5-SV.hiPS line through heat treatment. Transgene-free HS5-SV.hiPS cells expressed pluripotent associated transcription factors Oct4, Nanog, Sox2, Rex1 and surface markers SSEA-4, TRA-1-60 and OCT4. HS5-SV.hiPS cells formed embryoid bodies and differentiated into three embryonic germ layers in vivo. HS5-SV.hiPS cells maintained their normal karyotype (46, XX) after culture for extended period. HS5-SV.hiPS displayed the similar pattern of DNA fingerprinting to the parenteral scar-derived fibroblasts. PMID:27345776

  17. Interaction between Leptospiral Lipopolysaccharide and Toll-like Receptor 2 in Pig Fibroblast Cell Line, and Inhibitory Effect of Antibody against Leptospiral Lipopolysaccharide on Interaction

    PubMed Central

    Guo, Yijie; Fukuda, Tomokazu; Nakamura, Shuichi; Bai, Lanlan; Xu, Jun; Kuroda, Kengo; Tomioka, Rintaro; Yoneyama, Hiroshi; Isogai, Emiko

    2015-01-01

    Leptospiral lipopolysaccharide (L-LPS) has shown potency in activating toll-like receptor 2 (TLR2) in pig fibroblasts (PEFs_NCC1), and causes the expression of proinflammatory cytokines. However, the stimulation by L-LPS was weak eliciting the function of TLR2 sufficiently in pig innate immunity responses during Leptospira infection. In this study, the immune response of pig embryonic fibroblast cell line (PEFs_SV40) was investigated and was found to be the high immune response, thus TLR2 is the predominate receptor of L-LPS in pig cells. Further, we found a strategy using the antibody against L-LPS, to prevent L-LPS interaction with TLR2 in pig cells which could impact on immune activation. PMID:25557825

  18. Implications of the lack of desiccation tolerance in recalcitrant seeds.

    PubMed

    Berjak, Patricia; Pammenter, Norman W

    2013-01-01

    A suite of interacting processes and mechanisms enables tolerance of desiccation and storage (conservation) of orthodox seeds in the dry state. While this is a long-term option under optimized conditions, dry orthodox seeds are not immortal, with life spans having been characterized as short, intermediate and long. Factors facilitating desiccation tolerance are metabolic "switch-off" and intracellular dedifferentiation. Recalcitrant seeds lack these mechanisms, contributing significantly to their desiccation sensitivity. Consequently, recalcitrant seeds, which are shed at high water contents, can be stored only in the short-term, under conditions not allowing dehydration. The periods of such hydrated storage are constrained by germination that occurs without the need for extraneous water, and the proliferation of seed-associated fungi. Cryopreservation is viewed as the only option for long-term conservation of the germplasm of recalcitrant-seeded species. This is not easily achieved, as each of the necessary procedures imposes oxidative damage. Intact recalcitrant seeds cannot be cryopreserved, the common practice being to use excised embryos or embryonic axes as explants. Dehydration is a necessary procedure prior to exposure to cryogenic temperatures, but this is associated with metabolism-linked injury mediated by uncontrolled reactive oxygen species generation and failing anti-oxidant systems. While the extent to which this occurs can be curtailed by maximizing drying rate (flash drying) it cannot be completely obviated. Explant cooling for, and rewarming after, cryostorage must necessarily be rapid, to avoid ice crystallization. The ramifications of desiccation sensitivity are discussed, as are problems involved in cryostorage, particularly those accompanying dehydration and damage consequent upon ice crystallization. While desiccation sensitivity is a "fact" of seed recalcitrance, resolutions of the difficulties involved germplasm conservation are possible as

  19. Implications of the lack of desiccation tolerance in recalcitrant seeds

    PubMed Central

    Berjak, Patricia; Pammenter, Norman W.

    2013-01-01

    A suite of interacting processes and mechanisms enables tolerance of desiccation and storage (conservation) of orthodox seeds in the dry state. While this is a long-term option under optimized conditions, dry orthodox seeds are not immortal, with life spans having been characterized as short, intermediate and long. Factors facilitating desiccation tolerance are metabolic “switch-off” and intracellular dedifferentiation. Recalcitrant seeds lack these mechanisms, contributing significantly to their desiccation sensitivity. Consequently, recalcitrant seeds, which are shed at high water contents, can be stored only in the short-term, under conditions not allowing dehydration. The periods of such hydrated storage are constrained by germination that occurs without the need for extraneous water, and the proliferation of seed-associated fungi. Cryopreservation is viewed as the only option for long-term conservation of the germplasm of recalcitrant-seeded species. This is not easily achieved, as each of the necessary procedures imposes oxidative damage. Intact recalcitrant seeds cannot be cryopreserved, the common practice being to use excised embryos or embryonic axes as explants. Dehydration is a necessary procedure prior to exposure to cryogenic temperatures, but this is associated with metabolism-linked injury mediated by uncontrolled reactive oxygen species generation and failing anti-oxidant systems. While the extent to which this occurs can be curtailed by maximizing drying rate (flash drying) it cannot be completely obviated. Explant cooling for, and rewarming after, cryostorage must necessarily be rapid, to avoid ice crystallization. The ramifications of desiccation sensitivity are discussed, as are problems involved in cryostorage, particularly those accompanying dehydration and damage consequent upon ice crystallization. While desiccation sensitivity is a “fact” of seed recalcitrance, resolutions of the difficulties involved germplasm conservation are

  20. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells.

    PubMed

    Zhang, Hui; Kho, Alvin T; Wu, Qing; Halayko, Andrew J; Limbert Rempel, Karen; Chase, Robert P; Sweezey, Neil B; Weiss, Scott T; Kaplan, Feige

    2016-09-01

    Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoid-regulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymal-epithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/- mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymal-epithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)-induced human fetal lung fibroblast line (MRC5). LPS-induced upregulation of the proinflammatory cytokines IL-8 and CCL2 was exacerbated in MRC5-CRISPLD2(knockdown) cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of IL-8, IL-6, CCL2. LPS-stimulated expression of proinflammatory mediators by human lung epithelial HAEo- cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLF-CRISPLD2(knockdown) suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood. PMID:27597766

  1. Expression of microRNAs in fibroblast of pterygium

    PubMed Central

    Lee, Joon H.; Jung, Sun-Ah; Kwon, Young-A; Chung, Jae-Lim; Kim, Ungsoo Samuel

    2016-01-01

    AIM To screen microRNAs (miRNAs) and set up target miRNAs in pterygium. METHODS Primary fibroblasts were isolated from pterygium and Tenon's capsule and cultured. Immunocytochemical analysis and Western blotting were performed to confirm the culture of fibroblasts. In all, 1733 miRNAs were screened in the first step by using GeneChip® miRNA3.0 Array. Specific miRNAs involved in the pathogenesis of pterygium were subsequently determined using the following criteria: 1) high reproducibility in a repetitive test; 2) base log value of >7.0 for both control and pterygial fibroblasts; and 3) log ratio of >1.0 between pterygial fibroblasts and control fibroblasts. RESULTS Primary screening showed that 887/1733 miRNAs were up-regulated and 846/1733 miRNAs were down-regulated in pterygial fibroblasts compared with those in control fibroblasts. Of the 1733 miRNAs screened, 4 miRNAs, namely, miRNA-143a-3p, miRNA-181a-2-3p, miRNA-377-5p and miRNA-411a-5p, met the above-mentioned criteria. Primary screening showed that these 4 miRNAs were up-regulated in pterygial fibroblasts compared with control fibroblasts and that miRNA-143a-3p had the highest mean ratio compared with the miRNAs in control fibroblasts. CONCLUSION miRNA-143a-3p, miRNA-181a-2-3p, miRNA-377-5p and miRNA-411a-5p are up-regulated in pterygial fibroblasts compared with control fibroblasts, suggesting their involvement in the pathogenesis of pterygium. PMID:27500101

  2. Toxicity of silver nanoparticles in mouse embryonic stem cells and chemical based reprogramming of somatic cells to sphere cells

    NASA Astrophysics Data System (ADS)

    Rajanahalli Krishnamurthy, Pavan

    Abstract 1: Silver nanoparticles (Ag Np's) have an interesting surface chemistry and unique plasmonic properties. They are used in a wide variety of applications ranging from consumer products like socks, medical dressing, computer chips and it is also shown to have antimicrobial, anti bacterial activity and wound healing. Ag Np toxicity studies have been limited to date which needs to be critically addressed due to its wide applications. Mouse embryonic stem (MES) cells represent a unique cell population with the ability to undergo both self renewal and differentiation. They exhibit very stringent and tightly regulated mechanisms to circumvent DNA damage and stress response. We used 10 nm coated (polysaccharide) and uncoated Ag Np's to test its toxic effects on MES cells. MES cells and embryoid bodies (EB's) were treated with two concentrations of Ag Np's: 5 microg/ml and 50 ug/ml and exposed for 24, 48 and 72 hours. Increased cell death, ROS production and loss of mitochondrial membrane potential and alkaline phosphatase (AP) occur in a time and a concentration dependant manner. Due to increased cell death, there is a progressive increase in Annexin V (apoptosis) and Propidium Iodide (PI) staining (necrosis). Oct4 and Nanog undergo ubiquitination and dephosphorylation post-translational modifications in MES cells thereby altering gene expression of pluripotency factors and differentiation of EB's into all the three embryonic germ layers with specific growth factors were also inhibited after Ag Np exposure. Flow cytometry analysis revealed Ag Np's treated cells had altered cell cycle phases correlating with altered self renewal capacity. Our results suggest that Ag Np's effect MES cell self renewal, pluripotency and differentiation and serves as a perfect model system for studying toxicity induced by engineered Ag Np's. Abstract 2: The reprogramming of fibroblasts to pluripotent stem cells and the direct conversion of fibroblasts to functional neurons has been

  3. Lack of Comprehensive Outbreak Detection in Hospitals.

    PubMed

    Baker, Meghan A; Huang, Susan S; Letourneau, Alyssa R; Kaganov, Rebecca E; Peeples, Jennifer R; Drees, Marci; Platt, Richard; Yokoe, Deborah S

    2016-04-01

    Timely identification of outbreaks of hospital-associated infections is needed to implement control measures and minimize impact. Survey results from 33 hospitals indicated that most hospitals lacked a formal cluster definition and all targeted a very limited group of prespecified pathogens. Standardized, statistically based outbreak detection could greatly improve current practice. PMID:26996060

  4. INDUCTION OF 6-THIOGUANINE RESISTANCE IN SYNTHRONIZED HUMAN FIBROBLAST CELLS TREATED WITH METHYL METHANESULFONATE, N-ACETOXY-2-ACETHYLAMINOFLUORENE AND N-METHYL-N'-NITRO-N-NITROSOGUANIDINE

    EPA Science Inventory

    Chemical induction of 6-thioguanine resistance was studied in synchronized human fibroblast cells. Cells initially grown in a medium lacking arginine and glutamine for 24 h ceased DNA synthesis and failed to enter the S phase. After introduction of complete medium, the cells prog...

  5. Data from a proteomic analysis of colonic fibroblasts secretomes

    PubMed Central

    Chen, Sun-Xia; Xu, Xiao-En; Wang, Xiao-Qing; Cui, Shu-Jian; Xu, Lei-Lei; Jiang, Ying-Hua; Zhang, Yang; Yan, Hai-Bo; Zhang, Qian; Qiao, Jie; Yang, Peng-Yuan; Liu, Feng

    2014-01-01

    The tumor cell proliferation, migration and invasion were influenced by the interaction between the cancer cells and their microenvironment. In current study, we established two pairs of the primary fibroblast cultures from colorectal adenocarcinoma tissues and the normal counterparts and identified 227 proteins in the colonic fibroblast secretomes; half of these proteins were novel. The mass spectrometry data and analyzed results presented here provide novel insights into the molecular characteristics and modulatory role of colon cancer associated fibroblasts. The data is related to “Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation” by Chen et al. [1]. PMID:26217680

  6. Response of keloid fibroblasts to Vitamin D3 and quercetin treatment - in vitro study.

    PubMed

    Mathangi Ramakrishnan, K; Babu, M; Lakshmi Madhavi, M S

    2015-09-30

    Keloid scars continue to pose a challenge to clinicians as the treatment armamentarium lacks a formidable agent to tackle them. We have undertaken an in vitro study based on the mechanism of action of Vitamin D3 and quercetin on isolated keloid fibroblasts. Dose-dependent action on the reduction of cellular proliferation, collagen synthesis and induction of apoptosis by Vitamin D3 and quercetin are analyzed and probable mechanism of action is elaborated. This study thus opens up newer avenues in tackling keloid scars effectively. PMID:27279805

  7. Response of keloid fibroblasts to Vitamin D3 and quercetin treatment - in vitro study

    PubMed Central

    Mathangi Ramakrishnan, K.; Babu, M.; Lakshmi Madhavi, M.S.

    2015-01-01

    Summary Keloid scars continue to pose a challenge to clinicians as the treatment armamentarium lacks a formidable agent to tackle them. We have undertaken an in vitro study based on the mechanism of action of Vitamin D3 and quercetin on isolated keloid fibroblasts. Dose-dependent action on the reduction of cellular proliferation, collagen synthesis and induction of apoptosis by Vitamin D3 and quercetin are analyzed and probable mechanism of action is elaborated. This study thus opens up newer avenues in tackling keloid scars effectively. PMID:27279805

  8. Suppression of fibroblast proliferation by oral spirochetes.

    PubMed Central

    Boehringer, H; Taichman, N S; Shenker, B J

    1984-01-01

    Soluble sonic extracts of several strains of Treponema denticola and Treponema vincentii were examined for their abilities to alter proliferation of both murine and human fibroblasts. We found that sonic extracts of all tested strains of T. denticola caused a dose-dependent inhibition of murine and human fibroblast proliferation when assessed by both DNA synthesis ([3H]thymidine incorporation) and direct cell counts. T. vincentii had only a minimal inhibitory effect at comparable doses. No inhibition was observed when sonic extracts were added simultaneously with [3H]thymidine, indicating that suppression was not due to the presence of excessive amounts of cold thymidine in the extract, nonspecific effects on thymidine utilization by the cells (transport and incorporation), or degradation of label. RNA ([3H]uridine incorporation) and protein ([3H]leucine incorporation) synthesis were similarly altered after exposure to the T. denticola sonic extracts. There was no effect on cell viability as measured by trypan blue exclusion. Inhibition could be reversed by extensive washing of the cells within the first few hours of exposure to sonic extracts. Preliminary characterization and purification indicated that the inhibitory factor(s) is not endotoxin since it is heat labile, and elutes in a single, well-defined peak on a Sephadex G-150 chromatography column corresponding to a molecular weight of approximately 50,000. Since oral spirochetes have been implicated in the pathogenesis of periodontal disorders, it is possible that they contribute to the disease process by inhibition of fibroblast growth and therefore may, at least in part, account for the loss of collagen seen in diseased tissue. PMID:6735466

  9. Human FGF-21 Is a Substrate of Fibroblast Activation Protein

    PubMed Central

    Coppage, Andrew L.; Heard, Kathryn R.; DiMare, Matthew T.; Liu, Yuxin; Wu, Wengen; Lai, Jack H.; Bachovchin, William W.

    2016-01-01

    FGF-21 is a key regulator of metabolism and potential drug candidate for the treatment of type II diabetes and other metabolic disorders. However, the half-life of active, circulating, human FGF-21 has recently been shown to be limited in mice and monkeys by a proteolytic cleavage between P171 and S172. Here, we show that fibroblast activation protein is the enzyme responsible for this proteolysis by demonstrating that purified FAP cleaves human FGF-21 at this site in vitro, and that an FAP-specific inhibitor, ARI-3099, blocks the activity in mouse, monkey and human plasma and prolongs the half-life of circulating human FGF-21 in mice. Mouse FGF-21, however, lacks the FAP cleavage site and is not cleaved by FAP. These findings indicate FAP may function in the regulation of metabolism and that FAP inhibitors may prove useful in the treatment of diabetes and metabolic disorders in humans, but pre-clinical proof of concept studies in rodents will be problematic. PMID:26962859

  10. Human FGF-21 Is a Substrate of Fibroblast Activation Protein.

    PubMed

    Coppage, Andrew L; Heard, Kathryn R; DiMare, Matthew T; Liu, Yuxin; Wu, Wengen; Lai, Jack H; Bachovchin, William W

    2016-01-01

    FGF-21 is a key regulator of metabolism and potential drug candidate for the treatment of type II diabetes and other metabolic disorders. However, the half-life of active, circulating, human FGF-21 has recently been shown to be limited in mice and monkeys by a proteolytic cleavage between P171 and S172. Here, we show that fibroblast activation protein is the enzyme responsible for this proteolysis by demonstrating that purified FAP cleaves human FGF-21 at this site in vitro, and that an FAP-specific inhibitor, ARI-3099, blocks the activity in mouse, monkey and human plasma and prolongs the half-life of circulating human FGF-21 in mice. Mouse FGF-21, however, lacks the FAP cleavage site and is not cleaved by FAP. These findings indicate FAP may function in the regulation of metabolism and that FAP inhibitors may prove useful in the treatment of diabetes and metabolic disorders in humans, but pre-clinical proof of concept studies in rodents will be problematic. PMID:26962859

  11. Glucocorticoid coordinate regulation of type I procollagen gene expression and procollagen DNA-binding proteins in chick skin fibroblasts

    SciTech Connect

    Cockayne, D.; Cutroneo, K.R.

    1988-04-19

    Nuclei were isolated from control and dexamethasone-treated (2 h) embryonic chick skin fibroblasts and transcribed in vitro. Nuclei isolated from dexamethasone-treated fibroblasts transcribed less pro..cap alpha..1(I) and pro..cap alpha..2(I) mRNAs but not ..beta..-actin mRNA. Fibroblasts receiving dexamethasone and (5,6-/sup 3/H)uridine also demonstrated decreased synthesis of nuclear type I procollagen mRNAs but not ..beta..-actin mRNA. In fibroblasts treated with cycloheximide the newly synthesized nuclear type I procollagen mRNA species were markedly decreased. An enhanced inhibitory effect was observed when fibroblasts were treated with cycloheximide plus dexamethasone. Since the studies above demonstrate that active protein synthesis is required to maintain the constitutive expression of the type I procollagen genes, the authors determined if glucocorticoids regulate DNA-binding proteins with sequence specificity for the ..cap alpha..2(I) procollagen gene. Nuclear protein blots were probed with the /sup 32/P-end-labeled pBR322 vector DNA and /sup 32/P-end-labeled ..cap alpha..2(I) procollagen promoter containing DNA. Nonhistone proteins remained bound to labeled DNA at stringency washes of 0.05 and 0.1 M NaCl. As the ionic strength was increased to 0.2 and 0.3 M NaCl, the nonhistone-protein DNA binding was preferentially lost. Only the low molecular weight proteins remained bound to labeled DNA at the highest ionic strength, indicating nonspecific binding of these nuclear proteins. Dexamethasone treatment resulted in an increase of binding of nonhistone proteins to vector- and promoter-labeled DNAs over that observed in control fibroblasts at stringency washes of 0.05 and 0.1 M NaCl and to a lesser extent at 0.2 M NaCl. The binding specificities of nonhistone proteins for the ..cap alpha..2(I) procollagen promoter containing DNA were calculated.

  12. Immortalization of Werner syndrome and progeria fibroblasts

    SciTech Connect

    Saito, H.; Moses, R.E. )

    1991-02-01

    Human fibroblast cells from two different progeroid syndromes, Werner syndrome (WS) and progeria, were established as immortalized cell lines by transfection with plasmid DNA containing the SV40 early region. The lineage of each immortalized cell line was confirmed by VNTR analysis. Each of the immortalized cell lines maintained its original phenotype of slow growth. DNA repair ability of these cells was also studied by measuring sensitivity to killing by uv or the DNA-damaging drugs methyl methansulfonate, bleomycin, and cis-dichlorodiamine platinum. The results showed that both WS and progeria cells have normal sensitivity to these agents.

  13. Phospholipids accumulation in mucolipidosis IV cultured fibroblasts.

    PubMed

    Bargal, R; Bach, G

    1988-01-01

    Cultured fibroblasts from mucolipidosis IV patients accumulated phospholipids when compared to normal controls or cells from other genotypes. The major stored compounds were identified as phosphatidylcholine, phosphatidylethanolamine and to a larger extent lysophosphatidylcholine and lysobisphosphatidic acid. Pulse chase experiments of 32P-labelled phospholipids showed increased retention of these compounds in the mucolipidosis IV lines throughout the pulse and chase periods. Phospholipase A1, A2, C, D and lysophospholipase showed normal activity in the mucolipidosis IV lines and thus the metabolic cause for this storage remains to be identified. PMID:3139925

  14. Gaining myocytes or losing fibroblasts: Challenges in cardiac fibroblast reprogramming for infarct repair.

    PubMed

    Nagalingam, Raghu S; Safi, Hamza A; Czubryt, Michael P

    2016-04-01

    Unlike most somatic tissues, the heart possesses a very limited inherent ability to repair itself following damage. Attempts to therapeutically salvage the myocardium after infarction, either by sparing surviving myocytes or by injection of exogenous cells of varied provenance, have met with limited success. Cardiac fibroblasts are numerous, resistant to hypoxia, and amenable to phenotype reprogramming to cardiomyocytes - a potential panacea to an intractable problem. However, the long-term effects of mass conversion of fibroblasts are as-yet unknown. Since fibroblasts play key roles in normal cardiac function, treating these cells as a ready source of replacements for myocytes may have the effect of swapping one problem for another. This review briefly examines the roles of cardiac fibroblasts, recaps the strides made so far in their reprogramming to cardiomyocytes both in vitro and in vivo, and discusses the potential ramifications of large-scale cellular identity swapping. While such therapy offers great promise, the potential repercussions require consideration and careful study. PMID:26640115

  15. Gene-Corrected Fibroblast Therapy for Recessive Dystrophic Epidermolysis Bullosa using a Self-Inactivating COL7A1 Retroviral Vector.

    PubMed

    Jacków, Joanna; Titeux, Matthias; Portier, Soizic; Charbonnier, Soëli; Ganier, Clarisse; Gaucher, Sonia; Hovnanian, Alain

    2016-07-01

    Patients with recessive dystrophic epidermolysis bullosa (RDEB) lack type VII collagen and therefore have severely impaired dermal-epidermal stability causing recurrent skin and mucosal blistering. There is currently no specific approved treatment for RDEB. We present preclinical data showing that intradermal injections of genetically corrected patient-derived RDEB fibroblasts using a Good Manufacturing Practices grade self-inactivating COL7A1 retroviral vector reverse the disease phenotype in a xenograft model in nude mice. We obtained 50% transduction efficiency in primary human RDEB fibroblasts with an average low copy number (range = 1-2) of integrated provirus. Transduced fibroblasts showed strong type VII collagen re-expression, improved adhesion properties, normal proliferative capabilities, and viability in vitro. We show that a single intradermal injection of 3 × 10(6) genetically corrected RDEB fibroblasts beneath RDEB skin equivalents grafted onto mice allows type VII collagen deposition, anchoring fibril formation at the dermal-epidermal junction, and improved dermal-epidermal adherence 2 months after treatment, supporting functional correction in vivo. Gene-corrected fibroblasts previously showed no tumorigenicity. These data show the efficacy and safety of gene-corrected fibroblast therapy using a self-inactivating vector that has now been good manufacturing grade-certified and pave the way for clinical translation to treat nonhealing wounds in RDEB patients. PMID:26994967

  16. New mouse xenograft model modulated by tumor-associated fibroblasts for human multi-drug resistance in cancer

    PubMed Central

    MA, YAN; LIN, ZHIQIANG; FALLON, JOHN K.; ZHAO, QIANG; LIU, DAN; WANG, YONGJUN; LIU, FENG

    2015-01-01

    We developed an MDR tumor model that is modulated by tumor-associated fibroblasts. Studies on proliferation of tumor cell lines including paclitaxel-sensitive and resistant cell lines were performed. The expressions of P-gp and α-smooth muscle actin (α-SMA) antigen were evaluated by immunohistochemistry and western blot analysis. Quantitative P-gp analyses of different cell lines were accomplished by nanoUPLC-MS/MS. Tumor cell colony formation assay and established xenograft model was used to investigate the relationship between P-gp expression, fibroblast levels and tumorigenesis. The mouse xenograft model was developed after co-inoculation with MDR tumor cells and NIH/3T3 fibroblast cells. There was no correlation between tumorigenesis in vivo and the growth rate of cells in vitro. The proliferation among different cell lines had no significant differences, but the P-gp expression and tumor growth in the xenograft model were fairly different. P-gp determination and α-SMA immunofluorescence staining clarified the relationship between P-gp expression, fibroblast levels and tumorigenesis. It was more difficult for tumor cells with higher P-gp levels to recruit fibroblasts in vivo, resulting in lower tumorigenesis due to the lack of structural and chemical support during tumor progression. In the established paclitaxel-resistant mouse xenograft model, no obvious antitumor effect was observed after Taxol treatment, but a significant decrease in tumor size for the group treated with gemcitabine sensitive to the model. The results show that the added fibroblasts do not disturb the applicability of the model in MDR. Therefore, this mouse xenograft MDR model could serve as an effective tool for MDR research. PMID:26352907

  17. Developmental defects and male sterility in mice lacking the ubiquitin-like DNA repair gene mHR23B.

    PubMed

    Ng, Jessica M Y; Vrieling, Harry; Sugasawa, Kaoru; Ooms, Marja P; Grootegoed, J Anton; Vreeburg, Jan T M; Visser, Pim; Beems, Rudolph B; Gorgels, Theo G M F; Hanaoka, Fumio; Hoeijmakers, Jan H J; van der Horst, Gijsbertus T J

    2002-02-01

    mHR23B encodes one of the two mammalian homologs of Saccharomyces cerevisiae RAD23, a ubiquitin-like fusion protein involved in nucleotide excision repair (NER). Part of mHR23B is complexed with the XPC protein, and this heterodimer functions as the main damage detector and initiator of global genome NER. While XPC defects exist in humans and mice, mutations for mHR23A and mHR23B are not known. Here, we present a mouse model for mHR23B. Unlike XPC-deficient cells, mHR23B(-/-) mouse embryonic fibroblasts are not UV sensitive and retain the repair characteristics of wild-type cells. In agreement with the results of in vitro repair studies, this indicates that mHR23A can functionally replace mHR23B in NER. Unexpectedly, mHR23B(-/-) mice show impaired embryonic development and a high rate (90%) of intrauterine or neonatal death. Surviving animals display a variety of abnormalities, including retarded growth, facial dysmorphology, and male sterility. Such abnormalities are not observed in XPC and other NER-deficient mouse mutants and point to a separate function of mHR23B in development. This function may involve regulation of protein stability via the ubiquitin/proteasome pathway and is not or only in part compensated for by mHR23A. PMID:11809813

  18. Economic consequences and lack of respite care.

    PubMed

    Abelson, A G

    1999-12-01

    The study examined the influence of a lack of availability of respite care on the careers of 574 parents having children with disabilities. Among these parents, there was a relationship between age of child, severity of disability, and parents missing hours of work or passing up occupational opportunities. These findings have implications for advocating more available and accessible respite services and more in-depth study of the cost effectiveness of respite care on parental income and career progression. PMID:10672749

  19. Relationship between Intrauterine Bacterial Infection and Early Embryonic Developmental Arrest

    PubMed Central

    Yan, Shao-Fei; Liu, Xin-Yan; Cheng, Yun-Fei; Li, Zhi-Yi; Ou, Jie; Wang, Wei; Li, Feng-Qin

    2016-01-01

    Background: Early embryonic developmental arrest is the most commonly understudied adverse outcome of pregnancy. The relevance of intrauterine infection to spontaneous embryonic death is rarely studied and remains unclear. This study aimed to investigate the relationship between intrauterine bacterial infection and early embryonic developmental arrest. Methods: Embryonic chorion tissue and uterine swabs for bacterial detection were obtained from 33 patients who underwent artificial abortion (control group) and from 45 patients who displayed early embryonic developmental arrest (trial group). Results: Intrauterine bacterial infection was discovered in both groups. The infection rate was 24.44% (11/45) in the early embryonic developmental arrest group and 9.09% (3/33) in the artificial abortion group. Classification analysis revealed that the highest detection rate for Micrococcus luteus in the early embryonic developmental arrest group was 13.33% (6/45), and none was detected in the artificial abortion group. M. luteus infection was significantly different between the groups (P < 0.05 as shown by Fisher's exact test). In addition, no correlation was found between intrauterine bacterial infection and history of early embryonic developmental arrest. Conclusions: M. luteus infection is related to early embryonic developmental arrest and might be one of its causative factors. PMID:27270541

  20. Phospholipid mass is increased in fibroblasts bearing the Swedish amyloid precursor mutation.

    PubMed

    Murphy, Eric J; Huang, Hsueh-Meei; Cowburn, Richard F; Lannfelt, Lars; Gibson, Gary E

    2006-03-15

    Phospholipid changes occur in brain regions affected by Alzheimer disease (AD), including a marked reduction in plasmalogens, which could diminish brain function either by directly altering signaling events or by bulk membrane effects. However, model systems for studying the dynamics of lipid biosynthesis in AD are lacking. To determine if fibroblasts bearing the Swedish amyloid precursor protein (swAPP) mutation are a useful model to study the mechanism(s) associated with altered phospholipid biosynthesis in AD, we examined the steady-state phospholipid mass and composition of fibroblasts, including plasmalogens. We found a 15% increase in total phospholipid mass, accounted for by a 24% increase in the combined total of phosphatidylethanolamine and plasmanylethanolamine mass and a 19% increase in the combined total of phosphatidylcholine (PtdCho) and plasmanycholine (PakCho) mass in the swAPP mutant bearing fibroblasts. Cholesterol mass was unchanged in these cells. The changes in phospholipid mass did not alter the cellular molar composition of the phospholipids nor the cholesterol to phospholipid ratio. While plasmalogen mass was not altered, the ratio of choline plasmalogen (PlsCho) mass to PtdCho+PakCho mass was decreased 16% and there was a 14% reduction in the proportion of PlsCho as a percent of total phospholipids in the swAPP mutant bearing fibroblasts. This change in choline plasmalogen is consistent with the reported decreases in plasmalogen proportions in affected regions of AD brain, suggesting that these cells may serve as a useful model to determine the mechanism underlying changes in plasmalogen biosynthesis in AD brain. PMID:16464688

  1. Proliferation in cardiac fibroblasts induced by β1-adrenoceptor autoantibody and the underlying mechanisms.

    PubMed

    Lv, Tingting; Du, Yunhui; Cao, Ning; Zhang, Suli; Gong, Yulin; Bai, Yan; Wang, Wen; Liu, Huirong

    2016-01-01

    Chronic sustained stimulation of β-adrenoceptor is closely related to cardiac fibrosis which is bad for cardiac function. Growing evidence showed that the high prevalence of β1-adrenoceptor autoantibody (β1-AA) in the sera of patients with various types of cardiovascular diseases decreased cardiac function. In the current study, we demonstrated that β1-AA impaired the cardiac function evaluated by echocardiography and that β1-AA triggered cardiac fibrosis in terms of increased expression of α-smooth muscle actin as the marker of myofibroblast and collagen deposition in a passive β1-AA immunized mice model during 16 weeks. Further, we showed that β1-AA activated β1-AR/cAMP/PKA pathway and promoted proliferation in primary cardiac fibroblasts through specific binding to β1-AR but not to β2-AR. Moreover, β1-AA was also likely to promote proliferation in cardiac fibroblasts through activating p38MAPK and ERK1/2 as p38MAPK inhibitor SB203580 and ERK1/2 inhibitor PD98059 partially reversed the proliferative effect. The persistent activating signalling of PKA and P38MAPK in 1 h induced by β1-AA was associated with lacking agonist-induced desensitization phenomena. The conditioned medium from β1-AA-stimulated cardiac fibroblasts induced cardiomyocyte apoptosis, which indicated that β1-AA changed the secretion of cardiac fibroblasts contributing to cardiac injury. These findings will contribute to our understanding of the pathological mechanisms of β1-AA. PMID:27577254

  2. Proliferation in cardiac fibroblasts induced by β1-adrenoceptor autoantibody and the underlying mechanisms

    PubMed Central

    Lv, Tingting; Du, Yunhui; Cao, Ning; Zhang, Suli; Gong, Yulin; Bai, Yan; Wang, Wen; Liu, Huirong

    2016-01-01

    Chronic sustained stimulation of β-adrenoceptor is closely related to cardiac fibrosis which is bad for cardiac function. Growing evidence showed that the high prevalence of β1-adrenoceptor autoantibody (β1-AA) in the sera of patients with various types of cardiovascular diseases decreased cardiac function. In the current study, we demonstrated that β1-AA impaired the cardiac function evaluated by echocardiography and that β1-AA triggered cardiac fibrosis in terms of increased expression of α-smooth muscle actin as the marker of myofibroblast and collagen deposition in a passive β1-AA immunized mice model during 16 weeks. Further, we showed that β1-AA activated β1-AR/cAMP/PKA pathway and promoted proliferation in primary cardiac fibroblasts through specific binding to β1-AR but not to β2-AR. Moreover, β1-AA was also likely to promote proliferation in cardiac fibroblasts through activating p38MAPK and ERK1/2 as p38MAPK inhibitor SB203580 and ERK1/2 inhibitor PD98059 partially reversed the proliferative effect. The persistent activating signalling of PKA and P38MAPK in 1 h induced by β1-AA was associated with lacking agonist-induced desensitization phenomena. The conditioned medium from β1-AA-stimulated cardiac fibroblasts induced cardiomyocyte apoptosis, which indicated that β1-AA changed the secretion of cardiac fibroblasts contributing to cardiac injury. These findings will contribute to our understanding of the pathological mechanisms of β1-AA. PMID:27577254

  3. Matrix-directed differentiation of human adipose-derived mesenchymal stem cells to dermal-like fibroblasts that produce extracellular matrix.

    PubMed

    Sivan, Unnikrishnan; Jayakumar, K; Krishnan, Lissy K

    2014-02-25

    Commercially available skin substitutes lack essential non-immune cells for adequate tissue regeneration of non-healing wounds. A tissue-engineered, patient-specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose-derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal-like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast-conditioned medium and growth factors, were used as a fibroblast-specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast-specific protein-1 (FSP-1) and a panel of ECM molecules specific to the dermis, such as fibrillin-1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal-specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal-like fibroblasts for regenerative medicine, a matrix-directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24616295

  4. Ultraviolet germicidal irradiation and its effects on elemental distributions in mouse embryonic fibroblast cells in x-ray fluorescence microanalysis

    DOE PAGESBeta

    Jin, Qiaoling; Vogt, Stefan; Lai, Barry; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Ward, Jesse; Deng, Junjing; Mak, Rachel; Moonier, Nena; et al

    2015-02-23

    Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologicallymore » important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.« less

  5. Ultraviolet germicidal irradiation and its effects on elemental distributions in mouse embryonic fibroblast cells in x-ray fluorescence microanalysis

    SciTech Connect

    Jin, Qiaoling; Vogt, Stefan; Lai, Barry; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Ward, Jesse; Deng, Junjing; Mak, Rachel; Moonier, Nena; Jacobsen, Chris; Brody, James P.

    2015-02-23

    Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologically important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.

  6. Ultraviolet germicidal irradiation and its effects on elemental distributions in mouse embryonic fibroblast cells in x-ray fluorescence microanalysis.

    PubMed

    Jin, Qiaoling; Vogt, Stefan; Lai, Barry; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Ward, Jesse; Deng, Junjing; Mak, Rachel; Moonier, Nena; Jacobsen, Chris

    2015-01-01

    Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologically important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results. PMID:25706293

  7. Elevated Nuclear Sphingoid Base-1-Phosphates and Decreased Histone Deacetylase Activity after Fumonisin B1 Treatment in Mouse Embryonic Fibroblasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. ...

  8. Urine excretion strategy for stem cell-generated embryonic kidneys

    PubMed Central

    Yokote, Shinya; Matsunari, Hitomi; Iwai, Satomi; Yamanaka, Shuichiro; Uchikura, Ayuko; Fujimoto, Eisuke; Matsumoto, Kei; Nagashima, Hiroshi; Kobayashi, Eiji; Yokoo, Takashi

    2015-01-01

    There have been several recent attempts to generate, de novo, a functional whole kidney from stem cells using the organogenic niche or blastocyst complementation methods. However, none of these attempts succeeded in constructing a urinary excretion pathway for the stem cell-generated embryonic kidney. First, we transplanted metanephroi from cloned pig fetuses into gilts; the metanephroi grew to about 3 cm and produced urine, although hydronephrosis eventually was observed because of the lack of an excretion pathway. Second, we demonstrated the construction of urine excretion pathways in rats. Rat metanephroi or metanephroi with bladders (developed from cloacas) were transplanted into host rats. Histopathologic analysis showed that tubular lumina dilation and interstitial fibrosis were reduced in kidneys developed from cloacal transplants compared with metanephroi transplantation. Then we connected the host animal’s ureter to the cloacal-developed bladder, a technique we called the “stepwise peristaltic ureter” (SWPU) system. The application of the SWPU system avoided hydronephrosis and permitted the cloacas to differentiate well, with cloacal urine being excreted persistently through the recipient ureter. Finally, we demonstrated a viable preclinical application of the SWPU system in cloned pigs. The SWPU system also inhibited hydronephrosis in the pig study. To our knowledge, this is the first report showing that the SWPU system may resolve two important problems in the generation of kidneys from stem cells: construction of a urine excretion pathway and continued growth of the newly generated kidney. PMID:26392557

  9. Potential applications of keratinocytes derived from human embryonic stem cells.

    PubMed

    Movahednia, Mohammad M; Kidwai, Fahad K; Jokhun, Doorgesh S; Squier, Christopher A; Toh, Wei Seong; Cao, Tong

    2016-01-01

    Although skin grafting is one of the most advanced cell therapy technique, wide application of skin substitutes is hampered by the difficulty in securing sufficient amount of epidermal substitute. Additionally, in understanding the progression of skin aging and disease, and in screening the cosmetic and pharmaceutical products, there is lack of a satisfactory human skin-specific in vitro model. Recently, human embryonic stem cells (hESCs) have been proposed as an unlimited and reliable cell source to obtain almost all cell types present in the human body. This review focuses on the potential off-the-shelf use of hESC-derived keratinocytes for future clinical applications as well as a powerful in vitro skin model to study skin function and integrity, host-pathogen interactions and disease pathogenesis. Furthermore, we discuss the industrial applications of hESC-derived keratinized multi-layer epithelium which provides a human-like test platform for understanding disease pathogenesis, evaluation of new therapeutic modalities and assessment of the safety and efficacy of skin cosmetics and therapeutics. Overall, we conclude that the hESC-derived keratinocytes have great potential for clinical, research and industrial applications. PMID:26663861

  10. Urine excretion strategy for stem cell-generated embryonic kidneys.

    PubMed

    Yokote, Shinya; Matsunari, Hitomi; Iwai, Satomi; Yamanaka, Shuichiro; Uchikura, Ayuko; Fujimoto, Eisuke; Matsumoto, Kei; Nagashima, Hiroshi; Kobayashi, Eiji; Yokoo, Takashi

    2015-10-20

    There have been several recent attempts to generate, de novo, a functional whole kidney from stem cells using the organogenic niche or blastocyst complementation methods. However, none of these attempts succeeded in constructing a urinary excretion pathway for the stem cell-generated embryonic kidney. First, we transplanted metanephroi from cloned pig fetuses into gilts; the metanephroi grew to about 3 cm and produced urine, although hydronephrosis eventually was observed because of the lack of an excretion pathway. Second, we demonstrated the construction of urine excretion pathways in rats. Rat metanephroi or metanephroi with bladders (developed from cloacas) were transplanted into host rats. Histopathologic analysis showed that tubular lumina dilation and interstitial fibrosis were reduced in kidneys developed from cloacal transplants compared with metanephroi transplantation. Then we connected the host animal's ureter to the cloacal-developed bladder, a technique we called the "stepwise peristaltic ureter" (SWPU) system. The application of the SWPU system avoided hydronephrosis and permitted the cloacas to differentiate well, with cloacal urine being excreted persistently through the recipient ureter. Finally, we demonstrated a viable preclinical application of the SWPU system in cloned pigs. The SWPU system also inhibited hydronephrosis in the pig study. To our knowledge, this is the first report showing that the SWPU system may resolve two important problems in the generation of kidneys from stem cells: construction of a urine excretion pathway and continued growth of the newly generated kidney. PMID:26392557

  11. Engineering of the Embryonic and Adult Stem Cell Niches

    PubMed Central

    Hosseinkhani, Mohsen; Shirazi, Reza; Rajaei, Farzad; Mahmoudi, Masoud; Mohammadi, Navid; Abbasi, Mahnaz

    2013-01-01

    Context Stem cells have the potential to generate a renewable source of cells for regenerative medicine due to their ability to self-renew and differentiate to various functional cell types of the adult organism. The extracellular microenvironment plays a pivotal role in controlling stem cell fate responses. Therefore, identification of appropriate environmental stimuli that supports cellular proliferation and lineage-specific differentiation is critical for the clinical application of the stem cell therapies. Evidence Acquisition Traditional methods for stem cells culture offer limited manipulation and control of the extracellular microenvironment. Micro engineering approaches are emerging as powerful tools to control stem cell-microenvironment interactions and for performing high-throughput stem cell experiments. Results In this review, we provided an overview of the application of technologies such as surface micropatterning, microfluidics, and engineered biomaterials for directing stem cell behavior and determining the molecular cues that regulate cell fate decisions. Conclusions Stem cells have enormous potential for therapeutic and pharmaceutical applications, because they can give rise to various cell types. Despite their therapeutic potential, many challenges, including the lack of control of the stem cell microenvironment remain. Thus, a greater understanding of stem cell biology that can be used to expand and differentiate embryonic and adult stem cells in a directed manner offers great potential for tissue repair and regenerative medicine. PMID:23682319

  12. Description of Embryonic Development of Spotted Green Pufferfish (Tetraodon nigroviridis)

    PubMed Central

    Zaucker, Andreas; Bodur, Türker; Roest Crollius, Hugues; Hadzhiev, Yavor; Gehrig, Jochen; Loosli, Felix; Watson, Craig

    2014-01-01

    Abstract Pufferfish species of the Tetraodontidae family carry the smallest genomes among vertebrates. Their compressed genomes are thought to be enriched for functional DNA compared to larger vertebrate genomes, and they are important models for comparative genomics. The significance of pufferfish as model organisms in comparative genomics is due to the availability of two sequenced genomes, that of spotted green pufferfish (Tetraodon nigroviridis) and fugu (Takifugu rubripes). However, there is only a very limited utilization of pufferfish as an experimental model organism, due to the lack of established husbandry and developmental genetics protocols. In this study, we provide the first description of the normal embryonic development of Tetraodon nigroviridis. Embryos were obtained by in vitro fertilization of eggs, and subsequent development was monitored by brightfield microscopy at constant temperature. Tetraodon development was divided into distinct stages based on diagnostic morphological features, which were adopted from published literature on normal development of other fish species like medaka (Oryzias latipes), zebrafish (Danio rerio), and fugu. Tetraodon embryos show more similar morphologies to medaka than to zebrafish, reflecting its phylogenetic position. The early developmental stage series described in this study forms the foundation for the utilization of tetraodon as an experimental model organism for comparative developmental studies. PMID:25243591

  13. Lung Extracellular Matrix and Fibroblast Function

    PubMed Central

    2015-01-01

    Extracellular matrix (ECM) is a tissue-specific macromolecular structure that provides physical support to tissues and is essential for normal organ function. In the lung, ECM plays an active role in shaping cell behavior both in health and disease by virtue of the contextual clues it imparts to cells. Qualities including dimensionality, molecular composition, and intrinsic stiffness all promote normal function of the lung ECM. Alterations in composition and/or modulation of stiffness of the focally injured or diseased lung ECM microenvironment plays a part in reparative processes performed by fibroblasts. Under conditions of remodeling or in disease states, inhomogeneous stiffening (or softening) of the pathologic ECM may both precede modifications in cell behavior and be a result of disease progression. The ability of ECM to stimulate further ECM production by fibroblasts and drive disease progression has potentially significant implications for mesenchymal stromal cell–based therapies; in the setting of pathologic ECM stiffness or composition, the therapeutic intent of progenitor cells may be subverted. Taken together, current data suggest that lung ECM actively contributes to health and disease; thus, mediators of cell–ECM signaling or factors that influence ECM stiffness may represent viable therapeutic targets in many lung disorders. PMID:25830832

  14. Tbx18 targets dermal condensates for labeling, isolation, and gene ablation during embryonic hair follicle formation.

    PubMed

    Grisanti, Laura; Clavel, Carlos; Cai, Xiaoqiang; Rezza, Amelie; Tsai, Su-Yi; Sennett, Rachel; Mumau, Melanie; Cai, Chen-Leng; Rendl, Michael

    2013-02-01

    How cell fate decisions of stem and progenitor cells are regulated by their microenvironment or niche is a central question in stem cell and regenerative biology. Although functional analysis of hair follicle epithelial stem cells by gene targeting is well established, the molecular and genetic characterization of the dermal counterpart during embryonic morphogenesis has been lacking because of the absence of cell type-specific drivers. Here, we report that T-box transcription factor Tbx18 specifically marks dermal papilla (DP) precursor cells during embryonic hair follicle morphogenesis. With Tbx18(LacZ), Tbx18(H2BGFP), and Tbx18(Cre) knock-in mouse models, we demonstrate LacZ and H2BGFP (nuclear green fluorescent protein) expression and Cre activity in dermal condensates of nascent first-wave hair follicles at E14.5. As Tbx18 expression becomes more widespread throughout the dermis at later developmental stages, we use tamoxifen-inducible Cre-expressing mice, Tbx18(MerCreMer), to exclusively target DP precursor cells and their progeny. Finally, we ablate Tbx18 in full knockout mice, but find no perturbations in hair follicle formation, suggesting that Tbx18 is dispensable for normal DP function. In summary, our study establishes Tbx18 as a genetic driver to target for the first time embryonic DP precursors for labeling, isolation, and gene ablation that will greatly enhance investigations into their molecular functions during hair follicle morphogenesis. PMID:22992803

  15. Teratogenic effects of pyridoxine on the spinal cord and dorsal root ganglia of embryonic chickens.

    PubMed

    Sharp, A A; Fedorovich, Y

    2015-03-19

    Our understanding of the role of somatosensory feedback in regulating motility during chicken embryogenesis and fetal development in general has been hampered by the lack of an approach to selectively alter specific sensory modalities. In adult mammals, pyridoxine overdose has been shown to cause a peripheral sensory neuropathy characterized by a loss of both muscle and cutaneous afferents, but predominated by a loss of proprioception. We have begun to explore the sensitivity of the nervous system in chicken embryos to the application of pyridoxine on embryonic days 7 and 8, after sensory neurons in the lumbosacral region become post-mitotic. Upon examination of the spinal cord, dorsal root ganglion and peripheral nerves, we find that pyridoxine causes a loss of neurotrophic tyrosine kinase receptor type 3-positive neurons, a decrease in the diameter of the muscle innervating nerve tibialis, and a reduction in the number of large diameter axons in this nerve. However, we found no change in the number of Substance P or calcitonin gene-related peptide-positive neurons, the number of motor neurons or the diameter or axonal composition of the femoral cutaneous nerve. Therefore, pyridoxine causes a peripheral sensory neuropathy in embryonic chickens largely consistent with its effects in adult mammals. However, the lesion may be more restricted to proprioception in the chicken embryo. Therefore, pyridoxine lesion induced during embryogenesis in the chicken embryo can be used to assess how the loss of sensation, largely proprioception, alters spontaneous embryonic motility and subsequent motor development. PMID:25592428

  16. Cell Cycle Regulation and Apoptotic Responses of the Embryonic Chick Retina by Ionizing Radiation

    PubMed Central

    Layer, Paul G.; Frohns, Florian

    2016-01-01

    Ionizing radiation (IR) exerts deleterious effects on the developing brain, since proliferative neuronal progenitor cells are highly sensitive to IR-induced DNA damage. Assuming a radiation response that is comparable to mammals, the chick embryo would represent a lower vertebrate model system that allows analysis of the mechanisms underlying this sensitivity, thereby contributing to the reduction, refinement and replacement of animal experiments. Thus, this study aimed to elucidate the radiation response of the embryonic chick retina in three selected embryonic stages. Our studies reveal a lack in the radiation-induced activation of a G1/S checkpoint, but rapid abrogation of G2/M progression after IR in retinal progenitors throughout development. Unlike cell cycle control, radiation-induced apoptosis (RIA) showed strong variations between its extent, dose dependency and temporal occurrence. Whereas the general sensitivity towards RIA declined with ongoing differentiation, its dose dependency constantly increased with age. For all embryonic stages RIA occurred during comparable periods after irradiation, but in older animals its maximum shifted towards earlier post-irradiation time points. In summary, our results are in good agreement with data from the developing rodent retina, strengthening the suitability of the chick embryo for the analysis of the radiation response in the developing central nervous system. PMID:27163610

  17. Comparison of diploid fibroblast and rabbit kidney tissue cultures and a diploid fibroblast microtiter plate system for the isolation of herpes simplex virus.

    PubMed Central

    Langenberg, A; Zbanyszek, R; Dragavon, J; Ashley, R; Corey, L

    1988-01-01

    We evaluated the relative sensitivities of two cell systems (rabbit kidney [RK] and human diploid fibroblast [DF; human embryonic tonsil]) in standard tube cultures versus DF cells in a 48-well microtiter plate system for the detection of both symptomatic and asymptomatic herpes simplex virus (HSV) infection. At least one system isolated HSV in 111 of 809 specimens (13.7%). HSV was isolated in RK tube cultures from 110 specimens (99%), in DF tube cultures from 91 specimens (82%), and in DF microtiter plates from 95 specimens (86%). The frequency of HSV isolation varied with the anatomic site and the presence or absence of a herpetic lesion. The sensitivities of the three culture systems remained similar whether the specimens were obtained from lesions or whether the specimens were taken to determine if asymptomatic excretion of HSV was present. While RK tube cultures were more sensitive than DF tube cultures, the DF microtiter plate system was as sensitive as DF tube cultures and its use is supported as a cheaper and less labor-intensive method for the detection of HSV. PMID:2846647

  18. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    SciTech Connect

    Nobe, Koji; Nobe, Hiromi; Yoshida, Hiroko; Kolodney, Michael S.; Paul, Richard J.; Honda, Kazuo

    2010-08-20

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibers and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.

  19. Matrix metalloproteinase (MMP)-19-deficient fibroblasts display a profibrotic phenotype.

    PubMed

    Jara, Paul; Calyeca, Jazmin; Romero, Yair; Plácido, Luis; Yu, Guoying; Kaminski, Naftali; Maldonado, Vilma; Cisneros, José; Selman, Moisés; Pardo, Annie

    2015-03-15

    Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal interstitial lung disease of unknown etiology characterized by aberrant activation of epithelial cells that induce the migration, proliferation and activation of fibroblasts. The resulting distinctive fibroblastic/myofibroblastic foci are responsible for the excessive extracellular matrix (ECM) production and abnormal lung remodeling. We have recently found that matrix metalloproteinase 19 (MMP-19)-deficient (Mmp19-/-) mice develop an exaggerated bleomycin-induced lung fibrosis, but the mechanisms are unclear. In this study, we explored the effect of MMP-19 deficiency on fibroblast gene expression and cell behavior. Microarray analysis of Mmp19-/- lung fibroblasts revealed the dysregulation of several profibrotic pathways, including ECM formation, migration, proliferation, and autophagy. Functional studies confirmed these findings. Compared with wild-type mice, Mmp19-/- lung fibroblasts showed increased α1 (I) collagen gene and collagen protein production at baseline and after transforming growth factor-β treatment and increased smooth muscle-α actin expression (P < 0.05). Likewise, Mmp19-deficient lung fibroblasts showed a significant increase in proliferation (P < 0.01) and in transmigration and locomotion over Boyden chambers coated with type I collagen or with Matrigel (P < 0.05). These findings suggest that, in lung fibroblasts, MMP-19 has strong regulatory effects on the synthesis of key ECM components, on fibroblast to myofibroblast differentiation, and in migration and proliferation. PMID:25575513

  20. Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity

    PubMed Central

    Hinz, Boris; Celetta, Giuseppe; Tomasek, James J.; Gabbiani, Giulio; Chaponnier, Christine

    2001-01-01

    To evaluate whether α-smooth muscle actin (α-SMA) plays a role in fibroblast contractility, we first compared the contractile activity of rat subcutaneous fibroblasts (SCFs), expressing low levels of α-SMA, with that of lung fibroblasts (LFs), expressing high levels of α-SMA, with the use of silicone substrates of different stiffness degrees. On medium stiffness substrates the percentage of cells producing wrinkles was similar to that of α-SMA–positive cells in each fibroblast population. On high stiffness substrates, wrinkle production was limited to a subpopulation of LFs very positive for α-SMA. In a second approach, we measured the isotonic contraction of SCF- and LF-populated attached collagen lattices. SCFs exhibited 41% diameter reduction compared with 63% by LFs. TGFβ1 increased α-SMA expression and lattice contraction by SCFs to the levels of LFs; TGFβ-antagonizing agents reduced α-SMA expression and lattice contraction by LFs to the level of SCFs. Finally, 3T3 fibroblasts transiently or permanently transfected with α-SMA cDNA exhibited a significantly higher lattice contraction compared with wild-type 3T3 fibroblasts or to fibroblasts transfected with α-cardiac and β- or γ-cytoplasmic actin. This took place in the absence of any change in smooth muscle or nonmuscle myosin heavy-chain expression. Our results indicate that an increased α-SMA expression is sufficient to enhance fibroblast contractile activity. PMID:11553712

  1. Evidence that fibroblasts derive from epithelium during tissue fibrosis.

    PubMed

    Iwano, Masayuki; Plieth, David; Danoff, Theodore M; Xue, Chengsen; Okada, Hirokazu; Neilson, Eric G

    2002-08-01

    Interstitial fibroblasts are principal effector cells of organ fibrosis in kidneys, lungs, and liver. While some view fibroblasts in adult tissues as nothing more than primitive mesenchymal cells surviving embryologic development, they differ from mesenchymal cells in their unique expression of fibroblast-specific protein-1 (FSP1). This difference raises questions about their origin. Using bone marrow chimeras and transgenic reporter mice, we show here that interstitial kidney fibroblasts derive from two sources. A small number of FSP1(+), CD34(-) fibroblasts migrate to normal interstitial spaces from bone marrow. More surprisingly, however, FSP1(+) fibroblasts also arise in large numbers by local epithelial-mesenchymal transition (EMT) during renal fibrogenesis. Both populations of fibroblasts express collagen type I and expand by cell division during tissue fibrosis. Our findings suggest that a substantial number of organ fibroblasts appear through a novel reversal in the direction of epithelial cell fate. As a general mechanism, this change in fate highlights the potential plasticity of differentiated cells in adult tissues under pathologic conditions. PMID:12163453

  2. Pulp Fibroblasts Control Nerve Regeneration through Complement Activation.

    PubMed

    Chmilewsky, F; About, I; Chung, S-H

    2016-07-01

    Dentin-pulp regeneration is closely linked to the presence of nerve fibers in the pulp and to the healing mechanism by sprouting of the nerve fiber's terminal branches beneath the carious injury site. However, little is known about the initial mechanisms regulating this process in carious teeth. It has been recently demonstrated that the complement system activation, which is one of the first immune responses, contributes to tissue regeneration through the local production of anaphylatoxins such as C5a. While few pulp fibroblasts in intact teeth and in untreated fibroblast cultures express the C5a receptor (C5aR), here we show that all dental pulp fibroblasts, localized beneath the carious injury site, do express this receptor. This observation is consistent with our in vitro results, which showed expression of C5aR in lipoteichoic acid-stimulated pulp fibroblasts. The interaction of C5a, produced after complement synthesis and activation from pulp fibroblasts, with the C5aR of these cells mediated the local brain-derived neurotropic factor (BDNF) secretion. Overall, this activation guided the neuronal growth toward the lipoteichoic acid-stimulated fibroblasts. Thus, our findings highlight a new mechanism in one of the initial steps of the dentin-pulp regeneration process, linking pulp fibroblasts to the nerve sprouting through the complement system activation. This may provide a useful future therapeutic tool in targeting the fibroblasts in the dentin-pulp regeneration process. PMID:27053117

  3. Mesenchymal stem cells induce dermal fibroblast responses to injury

    SciTech Connect

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.

  4. Fetal ACL Fibroblasts Exhibit Enhanced Cellular Properties Compared with Adults

    PubMed Central

    Stalling, Simone S.

    2008-01-01

    Fetal tendons and skin heal regeneratively without scar formation. Cells isolated from these fetal tissues exhibit enhanced cellular migration and collagen production in comparison to cells from adult tissue. We determined whether fetal and adult fibroblasts isolated from the anterior cruciate ligament (ACL), a tissue that does not heal regeneratively, exhibit differences in cell migration rates and collagen elaboration. An in vitro migration assay showed fetal ACL fibroblasts migrated twice as fast as adult ACL fibroblasts at a rate of 38.90 ± 7.69 μm per hour compared with 18.88 ± 4.18 μm per hour, respectively. Quantification of Type I collagen elaboration by enzyme-linked immunosorbent assay showed fetal ACL fibroblasts produced four times the amount of Type I collagen compared with adult ACL fibroblasts after 7 days in culture. We observed no differences in Type III collagen with time for adult or fetal ACL fibroblasts. Our findings indicate fetal ACL fibroblasts are intrinsically different from adult ACL fibroblasts, suggesting the healing potential of the ACL may be age-dependent. PMID:18648900

  5. Mice lacking the Raf-1 kinase inhibitor protein exhibit exaggerated hypoxia-induced pulmonary hypertension

    PubMed Central

    Morecroft, I; Doyle, B; Nilsen, M; Kolch, W; Mair, K; MacLean, MR

    2011-01-01

    BACKGROUND AND PURPOSE Increased pulmonary vascular remodelling, pulmonary arterial pressure and pulmonary vascular resistance characterize the development of pulmonary arterial hypertension (PAH). Activation of the Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)1/2 is thought to play an important role in PAH and Raf-1 kinase inhibitor protein (RKIP), negatively regulates this pathway. This study investigated whether genetic deletion of RKIP (and hence ERK1/2 up-regulation) resulted in a pulmonary hypertensive phenotype in mice and investigated a role for RKIP in mitogen-regulated proliferative responses in lung fibroblasts. EXPERIMENTAL APPROACH Pulmonary vascular haemodynamics and remodelling were assessed in mice genetically deficient in RKIP (RKIP−/−) after 2 weeks of either normoxia or hypoxia. Immunoblotting and immunohistochemistry were used to examine phosphorylation of Raf-1, RKIP and ERK1/2 in mouse pulmonary arteries. In vitro, RKIP inhibition of mitogen signalling was analysed in CCL39 hamster lung fibroblasts. KEY RESULTS RKIP−/− mice demonstrated elevated indices of PAH and ERK1/2 phosphorylation compared with wild-type (WT) mice. Hypoxic RKIP−/− mice exhibited exaggerated PAH indices. Hypoxia increased phosphorylation of Raf-1, RKIP and ERK1/2 in WT mouse pulmonary arteries and Raf-1 phosphorylation in RKIP−/− mouse pulmonary arteries. In CCL39 cells, inhibition of RKIP potentiated mitogen-induced proliferation and phosphorylation of RKIP, and Raf-1. CONCLUSIONS AND IMPLICATIONS The lack of RKIP protein resulted in a pulmonary hypertensive phenotype, exaggerated in hypoxia. Hypoxia induced phosphorylation of RKIP signalling elements in WT pulmonary arteries. RKIP inhibition potentiated mitogen-induced proliferation in lung fibroblasts. These results provide evidence for the involvement of RKIP in suppressing the development of hypoxia-induced PAH in mice. PMID:21385176

  6. Collagen expression in fibroblasts with a novel LMNA mutation

    SciTech Connect

    Nguyen, Desiree; Leistritz, Dru F.; Turner, Lesley; MacGregor, David; Ohson, Kamal; Dancey, Paul; Martin, George M.; Oshima, Junko . E-mail: picard@u.washington.edu

    2007-01-19

    Laminopathies are a group of genetic disorders caused by LMNA mutations; they include muscular dystrophies, lipodystrophies, and progeroid syndromes. We identified a novel heterozygous LMNA mutation, L59R, in a patient with the general appearance of mandibuloacral dysplasia and progeroid features. Examination of the nuclei of dermal fibroblasts revealed the irregular morphology characteristic of LMNA mutant cells. The nuclear morphological abnormalities of LMNA mutant lymphoblastoid cell lines were less prominent compared to those of primary fibroblasts. Since it has been reported that progeroid features are associated with increased extracellular matrix in dermal tissues, we compared a subset of these components in fibroblast cultures from LMNA mutants with those of control fibroblasts. There was no evidence of intracellular accumulation or altered mobility of collagen chains, or altered conversion of procollagen to collagen, suggesting that skin fibroblast-mediated matrix production may not play a significant role in the pathogenesis of this particular laminopathy.

  7. Collagen Expression in Fibroblasts with a Novel LMNA Mutation

    PubMed Central

    Nguyen, Desiree; Leistritz, Dru F.; Turner, Lesley; MacGregor, David; Ohson, Kamal; Dancey, Paul; Martin, George M.; Oshima, Junko

    2007-01-01

    Laminopathies are a group of genetic disorders caused by LMNA mutations; they include muscular dystrophies, lipodystrophies and progeroid syndromes. We identified a novel heterozygous LMNA mutation, L59R, in a patient with the general appearance of mandibuloacral dysplasia and progeroid features. Examination of the nuclei of dermal fibroblasts revealed the irregular morphology characteristic of LMNA mutant cells. The nuclear morphological abnormalities of LMNA mutant lymphoblastoid cell lines were less prominent compared to those of primary fibroblasts. Since it has been reported that progeroid features are associated with increased extracellular matrix in dermal tissues, we compared a subset of these components in fibroblast cultures from LMNA mutants with those of control fibroblasts. There was no evidence of intracellular accumulation or altered mobility of collagen chains, or altered conversion of procollagen to collagen, suggesting that skin fibroblast-mediated matrix production may not play a significant role in the pathogenesis of this particular laminopathy. PMID:17150192

  8. Secondary embryonic axis formation by transplantation of D quadrant micromeres in an oligochaete annelid.

    PubMed

    Nakamoto, Ayaki; Nagy, Lisa M; Shimizu, Takashi

    2011-01-01

    Among spiral cleaving embryos (e.g. mollusks and annelids), it has long been known that one blastomere at the four-cell stage, the D cell, and its direct descendants play an important role in axial pattern formation. Various studies have suggested that the D quadrant acts as the organizer of the embryonic axes in annelids, although this has never been demonstrated directly. Here we show that D quadrant micromeres (2d and 4d) of the oligochaete annelid Tubifex tubifex are essential for embryonic axis formation. When 2d and 4d were ablated the embryo developed into a rounded cell mass covered with an epithelial cell sheet. To examine whether 2d and 4d are sufficient for axis formation they were transplanted to an ectopic position in an otherwise intact embryo. The reconstituted embryo formed a secondary embryonic axis with a duplicated head and/or tail. Cell lineage analyses showed that neuroectoderm and mesoderm along the secondary axis were derived from the transplanted D quadrant micromeres and not from the host embryo. However, endodermal tissue along the secondary axis originated from the host embryo. Interestingly, when either 2d or 4d was transplanted separately to host embryos, the reconstituted embryos failed to form a secondary axis, suggesting that both 2d and 4d are required for secondary axis formation. Thus, the Tubifex D quadrant micromeres have the ability to organize axis formation, but they lack the ability to induce neuroectodermal tissues, a characteristic common to chordate primary embryonic organizers. PMID:21148182

  9. Redeployment of germ layers related TFs shows regionalized expression during two non-embryonic developments.

    PubMed

    Ricci, Lorenzo; Cabrera, Fabien; Lotito, Sonia; Tiozzo, Stefano

    2016-08-01

    In all non-vertebrate metazoan phyla, species that evolved non-embryonic developmental pathways as means of propagation or regeneration can be found. In this context, new bodies arise through asexual reproduction processes (such as budding) or whole body regeneration, that lack the familiar temporal and spatial cues classically associated with embryogenesis, like maternal determinants, or gastrulation. The molecular mechanisms underlying those non-embryonic developments (i.e., regeneration and asexual reproduction), and their relationship to those deployed during embryogenesis are poorly understood. We have addressed this question in the colonial ascidian Botryllus schlosseri, which undergoes an asexual reproductive process via palleal budding (PB), as well as a whole body regeneration by vascular budding (VB). We identified early regenerative structures during VB and then followed the fate of differentiating tissues during both non-embryonic developments (PB and VB) by monitoring the expression of genes known to play key functions in germ layer specification with well conserved expression patterns in solitary ascidian embryogenesis. The expression patterns of FoxA1, GATAa, GATAb, Otx, Bra, Gsc and Tbx2/3 were analysed during both PB and VB. We found that the majority of these transcription factors were expressed during both non-embryonic developmental processes, revealing a regionalization of the palleal and vascular buds. Knockdown of GATAa by siRNA in palleal buds confirmed that preventing the correct development of one of these regions blocks further tissue specification. Our results indicate that during both normal and injury-induced budding, a similar alternative developmental program operates via early commitment of epithelial regions. PMID:27208394

  10. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development.

    PubMed

    Goktas, Selda; Uslu, Fazil E; Kowalski, William J; Ermek, Erhan; Keller, Bradley B; Pekkan, Kerem

    2016-01-01

    The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis. PMID:27552150

  11. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development

    PubMed Central

    Goktas, Selda; Uslu, Fazil E.; Kowalski, William J.; Ermek, Erhan; Keller, Bradley B.

    2016-01-01

    The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis. PMID:27552150

  12. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest

    PubMed Central

    Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph

    2015-01-01

    Background Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. Materials and Methods This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Results Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Conclusion Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting. PMID:26644858

  13. Mechanical signaling coordinates the embryonic heart

    NASA Astrophysics Data System (ADS)

    Chiou, Kevin; Rocks, Jason; Prosser, Benjamin; Discher, Dennis; Liu, Andrea

    The heart is an active material which relies on robust signaling mechanisms between cells in order to produce well-timed, coordinated beats. Heart tissue is composed primarily of active heart muscle cells (cardiomyocytes) embedded in a passive extracellular matrix. During a heartbeat, cardiomyocyte contractions are coordinated across the heart to form a wavefront that propagates through the tissue to pump blood. In the adult heart, this contractile wave is coordinated via intercellular electrical signaling.Here we present theoretical and experimental evidence for mechanical coordination of embryonic heartbeats. We model cardiomyocytes as mechanically excitable Eshelby inclusions embedded in an overdamped elastic-fluid biphasic medium. For physiological parameters, this model replicates recent experimental measurements of the contractile wavefront which are not captured by electrical signaling models. We additionally challenge our model by pharmacologically blocking gap junctions, inhibiting electrical signaling between myocytes. We find that while adult hearts stop beating almost immediately after gap junctions are blocked, embryonic hearts continue beating even at significantly higher concentrations, providing strong support for a mechanical signaling mechanism.

  14. Proteome analysis of chick embryonic cerebrospinal fluid.

    PubMed

    Parada, Carolina; Gato, Angel; Aparicio, Mariano; Bueno, David

    2006-01-01

    During early stages of embryo development, the brain cavity is filled with embryonic cerebrospinal fluid (E-CSF), a complex fluid containing different protein fractions that contributes to the regulation of the survival, proliferation and neurogenesis of the neuroectodermal stem cells. Using 2-DE, protein sequencing and database searches, we identified and analyzed the proteome of the E-CSF from chick embryos (Gallus gallus). We identified 26 different gene products, including proteins related to the extracellular matrix, proteins associated with the regulation of osmotic pressure and metal transport, proteins related to cell survival, MAP kinase activators, proteins involved in the transport of retinol and vitamin D, antioxidant and antimicrobial proteins, intracellular proteins and some unknown proteins. Most of these gene products are involved in the regulation of developmental processes during embryogenesis in systems other than E-CSF. Interestingly, 14 of them are also present in adult human CSF proteome, and it has been reported that they are altered in the CSF of patients suffering neurodegenerative diseases and/or neurological disorders. Understanding these molecules and the mechanisms they control during embryonic neurogenesis is a key contribution to the general understanding of CNS development, and may also contribute to greater knowledge of these human diseases. PMID:16287170

  15. Replacement of α-galactosidase A in Fabry disease: effect on fibroblast cultures compared with biopsied tissues of treated patients

    PubMed Central

    Keslová-Veselíková, Jana; Hůlková, Helena; Dobrovolný, Robert; Asfaw, Befekadu; Poupětová, Helena; Berná, Linda; Sikora, Jakub; Goláň, Lubor

    2008-01-01

    The function and intracellular delivery of enzyme therapeutics for Fabry disease were studied in cultured fibroblasts and in the biopsied tissues of two male patients to show diversity of affected cells in response to treatment. In the mutant fibroblasts cultures, the final cellular level of endocytosed recombinant α-galactosidases A (agalsidases, FabrazymeTM, and ReplagalTM) exceeded, by several fold, the amount in control fibroblasts and led to efficient direct intra-lysosomal hydrolysis of (3H)Gb3Cer. In contrast, in the samples from the heart and some other tissues biopsied after several months of enzyme replacement therapy (ERT) with FabrazymeTM, only the endothelial cells were free of storage. Persistent Gb3Cer storage was found in cardiocytes (accompanied by increase of lipopigment), smooth muscle cells, fibroblasts, sweat glands, and skeletal muscle. Immunohistochemistry of cardiocytes demonstrated, for the first time, the presence of a considerable amount of the active enzyme in intimate contact with the storage compartment. Factors responsible for the limited ERT effectiveness are discussed, namely post-mitotic status of storage cells preventing their replacement by enzyme supplied precursors, modification of the lysosomal system by longstanding storage, and possible relative lack of Sap B. These observations support the strategy of early treatment for prevention of lysosomal storage. PMID:18351385

  16. Patients who lack capacity and lack surrogates: can they enroll in hospice?

    PubMed

    Effiong, Andem; Harman, Stephanie

    2014-10-01

    Patients who lack capacity and lack surrogates are among the most vulnerable patients we care for in palliative care. In the case we present here, we have considered how to make end-of-life decisions for a patient who lacks both capacity and surrogates, who has a terminal illness, and who is not a candidate for disease-modifying treatments. We first define and characterize this population of patients through a review of the literature and then explore some decision-making quandaries that are encountered at the end of life. Finally, we make recommendations on how best to proceed with decision making for this vulnerable population. PMID:24709366

  17. Investigation of the optical properties of normal fibroblasts and fibroblasts cultured with cancer cells in terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Strepitov, E. A.; Liakhov, E. P.; Balbekin, N. S.; Khodzitsky, M. K.; Smolyanskaya, O. A.; Trulyov, A. S.; Serebryakova, M. K.

    2015-07-01

    The optical properties of normal fibroblasts and fibroblasts cultured with cancer cells were studied in the frequency range of 0.2 - 1.0 THz. The results show the possibility to distinguish healthy cells from corrupted ones using their optical parameters.