Sample records for emerging opportunistic pathogen

  1. Stenotrophomonas maltophilia: an Emerging Global Opportunistic Pathogen

    PubMed Central

    2012-01-01

    Summary: Stenotrophomonas maltophilia is an emerging multidrug-resistant global opportunistic pathogen. The increasing incidence of nosocomial and community-acquired S. maltophilia infections is of particular concern for immunocompromised individuals, as this bacterial pathogen is associated with a significant fatality/case ratio. S. maltophilia is an environmental bacterium found in aqueous habitats, including plant rhizospheres, animals, foods, and water sources. Infections of S. maltophilia can occur in a range of organs and tissues; the organism is commonly found in respiratory tract infections. This review summarizes the current literature and presents S. maltophilia as an organism with various molecular mechanisms used for colonization and infection. S. maltophilia can be recovered from polymicrobial infections, most notably from the respiratory tract of cystic fibrosis patients, as a cocolonizer with Pseudomonas aeruginosa. Recent evidence of cell-cell communication between these pathogens has implications for the development of novel pharmacological therapies. Animal models of S. maltophilia infection have provided useful information about the type of host immune response induced by this opportunistic pathogen. Current and emerging treatments for patients infected with S. maltophilia are discussed. PMID:22232370

  2. Draft Genome Sequence of Rhodotorula mucilaginosa, an Emergent Opportunistic Pathogen

    PubMed Central

    Deligios, Massimo; Fraumene, Cristina; Abbondio, Marcello; Mannazzu, Ilaria; Tanca, Alessandro; Addis, Maria Filippa

    2015-01-01

    Rhodotorula mucilaginosa, a yeast with valuable biotechnological features, has also been recorded as an emergent opportunistic pathogen that might cause disease in both immunocompetent and immunocompromised individuals. Here, we report the draft genome sequence of R. mucilaginosa strain C2.5t1, which was isolated from cacao seeds in Cameroon. PMID:25858834

  3. Phylogenetic Analysis and Antimicrobial Profiles of Cultured Emerging Opportunistic Pathogens (Phyla Actinobacteria and Proteobacteria) Identified in Hot Springs

    PubMed Central

    Jardine, Jocelyn Leonie; Mavumengwana, Vuyo

    2017-01-01

    Hot spring water may harbour emerging waterborne opportunistic pathogens that can cause infections in humans. We have investigated the diversity and antimicrobial resistance of culturable emerging and opportunistic bacterial pathogens, in water and sediment of hot springs located in Limpopo, South Africa. Aerobic bacteria were cultured and identified using 16S ribosomal DNA (rDNA) gene sequencing. The presence of Legionella spp. was investigated using real-time polymerase chain reaction. Isolates were tested for resistance to ten antibiotics representing six different classes: β-lactam (carbenicillin), aminoglycosides (gentamycin, kanamycin, streptomycin), tetracycline, amphenicols (chloramphenicol, ceftriaxone), sulphonamides (co-trimoxazole) and quinolones (nalidixic acid, norfloxacin). Gram-positive Kocuria sp. and Arthrobacter sp. and gram-negative Cupriavidus sp., Ralstonia sp., Cronobacter sp., Tepidimonas sp., Hafnia sp. and Sphingomonas sp. were isolated, all recognised as emerging food-borne pathogens. Legionella spp. was not detected throughout the study. Isolates of Kocuria, Arthrobacter and Hafnia and an unknown species of the class Gammaproteobacteria were resistant to two antibiotics in different combinations of carbenicillin, ceftriaxone, nalidixic acid and chloramphenicol. Cronobacter sp. was sensitive to all ten antibiotics. This study suggests that hot springs are potential reservoirs for emerging opportunistic pathogens, including multiple antibiotic resistant strains, and highlights the presence of unknown populations of emerging and potential waterborne opportunistic pathogens in the environment. PMID:28914802

  4. Phylogenetic Analysis and Antimicrobial Profiles of Cultured Emerging Opportunistic Pathogens (Phyla Actinobacteria and Proteobacteria) Identified in Hot Springs.

    PubMed

    Jardine, Jocelyn Leonie; Abia, Akebe Luther King; Mavumengwana, Vuyo; Ubomba-Jaswa, Eunice

    2017-09-15

    Hot spring water may harbour emerging waterborne opportunistic pathogens that can cause infections in humans. We have investigated the diversity and antimicrobial resistance of culturable emerging and opportunistic bacterial pathogens, in water and sediment of hot springs located in Limpopo, South Africa. Aerobic bacteria were cultured and identified using 16S ribosomal DNA (rDNA) gene sequencing. The presence of Legionella spp. was investigated using real-time polymerase chain reaction. Isolates were tested for resistance to ten antibiotics representing six different classes: β-lactam (carbenicillin), aminoglycosides (gentamycin, kanamycin, streptomycin), tetracycline, amphenicols (chloramphenicol, ceftriaxone), sulphonamides (co-trimoxazole) and quinolones (nalidixic acid, norfloxacin). Gram-positive Kocuria sp. and Arthrobacter sp. and gram-negative Cupriavidus sp., Ralstonia sp., Cronobacter sp., Tepidimonas sp., Hafnia sp. and Sphingomonas sp. were isolated, all recognised as emerging food-borne pathogens. Legionella spp. was not detected throughout the study. Isolates of Kocuria , Arthrobacter and Hafnia and an unknown species of the class Gammaproteobacteria were resistant to two antibiotics in different combinations of carbenicillin, ceftriaxone, nalidixic acid and chloramphenicol. Cronobacter sp. was sensitive to all ten antibiotics. This study suggests that hot springs are potential reservoirs for emerging opportunistic pathogens, including multiple antibiotic resistant strains, and highlights the presence of unknown populations of emerging and potential waterborne opportunistic pathogens in the environment.

  5. Candida glabrata: an emerging oral opportunistic pathogen.

    PubMed

    Li, L; Redding, S; Dongari-Bagtzoglou, A

    2007-03-01

    Following the widespread use of immunosuppressive therapy and broad-spectrum antimycotic prophylaxis, C. glabrata has emerged as an important opportunistic pathogen in the oral mucosa. In the past, studies on the virulence factors and host-pathogen interactions of this organism were scarce, but continued to rise in recent years. Denture-wearing, immunosuppression, antibiotic therapy, and aging are risk factors for oral colonization or infection with C. glabrata. Compared with C. albicans, C. glabrata exhibits lower oral keratinocyte-adherence capacity, but higher denture-surface-adherence ability. The role of extracellular hydrolase production in the virulence of this organism does not appear to be as important as it is in C. albicans pathogenesis. Although traditionally thought of as a non-transforming yeast organism, both phenotypic switching and pseudohyphal formation have recently been identified in C. glabrata, but their role in pathogenesis is not known. With the exception of granulocyte monocyte colony-stimulating factor, C. glabrata triggers a lower proinflammatory cytokine response in oral epithelial cells than does C. albicans, in a strain-dependent manner. C. glabrata is less susceptible to killing by human beta-defensins than is C. albicans and exhibits various degrees of resistance to the antifungal activity of salivary histatins and mucins. In addition, C. glabrata possesses both innate and acquired resistance against antifungal drugs, due to its ability to modify ergosterol biosynthesis, mitochondrial function, or antifungal efflux. This resistance allows for its relative overgrowth over other susceptible species and may contribute to the recent emergence of C. glabrata infections in chronically immunocompromised populations. Further investigations on the virulence and host-pathogen interactions of C. glabrata are needed to better define the pathogenesis of oral C. glabrata infection in susceptible hosts.

  6. Opportunistic respiratory pathogens in the oral cavity of the elderly.

    PubMed

    Tada, Akio; Hanada, Nobuhiro

    2010-10-01

    The oral cavity of the hospitalized or bedridden elderly is often a reservoir for opportunistic pathogens associated with respiratory diseases. Commensal flora and the host interact in a balanced fashion and oral infections are considered to appear following an imbalance in the oral resident microbiota, leading to the emergence of potentially pathogenic bacteria. The definition of the process involved in colonization by opportunistic respiratory pathogens needs to elucidate the factors responsible for the transition of the microbiota from commensal to pathogenic flora. The regulatory factors influencing the oral ecosystem can be divided into three major categories: the host defense system, commensal bacteria, and external pathogens. In this article, we review the profile of these categories including the intricate cellular interaction between immune factors and commensal bacteria and the disturbance in homeostasis in the oral cavity of hospitalized or bedridden elderly, which facilitates oral colonization by opportunistic respiratory pathogens. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Opportunistic Pathogenic Yeasts

    NASA Astrophysics Data System (ADS)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  8. Brevundimonas spp: Emerging global opportunistic pathogens

    PubMed Central

    2018-01-01

    ABSTRACT Non-fermenting Gram-negative bacteria are problematic in clinical locations, being one of the most prevalent causes of nosocomial infections. Many of these non-fermenting Gram-negative bacteria are opportunistic pathogens that affect patients that are suffering with underlying medical conditions and diseases. Brevundimonas spp., in particular Brevundimonas diminuta and Brevundimonas vesicularis, are a genus of non-fermenting Gram-negative bacteria considered of minor clinical importance. Forty-nine separate instances of infection relating to Brevundimonas spp were found in the scientific literature along with two pseudo-infections. The majority of these instances were infection with Brevundimonas vesicularis (thirty-five cases – 71%). The major condition associated with Brevundimonas spp infection was bacteraemia with seventeen individual cases/outbreaks (35%). This review identified forty-nine examples of Brevundimonas spp. infections have been discussed in the literature. These findings indicate that infection review programs should consider investigation of possible Brevundimonas spp outbreaks if these bacteria are clinically isolated in more than one patient. PMID:29484917

  9. Environmental Variation Generates Environmental Opportunist Pathogen Outbreaks.

    PubMed

    Anttila, Jani; Kaitala, Veijo; Laakso, Jouni; Ruokolainen, Lasse

    2015-01-01

    Many socio-economically important pathogens persist and grow in the outside host environment and opportunistically invade host individuals. The environmental growth and opportunistic nature of these pathogens has received only little attention in epidemiology. Environmental reservoirs are, however, an important source of novel diseases. Thus, attempts to control these diseases require different approaches than in traditional epidemiology focusing on obligatory parasites. Conditions in the outside-host environment are prone to fluctuate over time. This variation is a potentially important driver of epidemiological dynamics and affect the evolution of novel diseases. Using a modelling approach combining the traditional SIRS models to environmental opportunist pathogens and environmental variability, we show that epidemiological dynamics of opportunist diseases are profoundly driven by the quality of environmental variability, such as the long-term predictability and magnitude of fluctuations. When comparing periodic and stochastic environmental factors, for a given variance, stochastic variation is more likely to cause outbreaks than periodic variation. This is due to the extreme values being further away from the mean. Moreover, the effects of variability depend on the underlying biology of the epidemiological system, and which part of the system is being affected. Variation in host susceptibility leads to more severe pathogen outbreaks than variation in pathogen growth rate in the environment. Positive correlation in variation on both targets can cancel the effect of variation altogether. Moreover, the severity of outbreaks is significantly reduced by increase in the duration of immunity. Uncovering these issues helps in understanding and controlling diseases caused by environmental pathogens.

  10. Opportunistic pathogens enriched in showerhead biofilms

    PubMed Central

    Feazel, Leah M.; Baumgartner, Laura K.; Peterson, Kristen L.; Frank, Daniel N.; Harris, J. Kirk; Pace, Norman R.

    2009-01-01

    The environments we humans encounter daily are sources of exposure to diverse microbial communities, some of potential concern to human health. In this study, we used culture-independent technology to investigate the microbial composition of biofilms inside showerheads as ecological assemblages in the human indoor environment. Showers are an important interface for human interaction with microbes through inhalation of aerosols, and showerhead waters have been implicated in disease. Although opportunistic pathogens commonly are cultured from shower facilities, there is little knowledge of either their prevalence or the nature of other microorganisms that may be delivered during shower usage. To determine the composition of showerhead biofilms and waters, we analyzed rRNA gene sequences from 45 showerhead sites around the United States. We find that variable and complex, but specific, microbial assemblages occur inside showerheads. Particularly striking was the finding that sequences representative of non-tuberculous mycobacteria (NTM) and other opportunistic human pathogens are enriched to high levels in many showerhead biofilms, >100-fold above background water contents. We conclude that showerheads may present a significant potential exposure to aerosolized microbes, including documented opportunistic pathogens. The health risk associated with showerhead microbiota needs investigation in persons with compromised immune or pulmonary systems. PMID:19805310

  11. Common Features of Opportunistic Premise Plumbing Pathogens

    PubMed Central

    Falkinham, Joseph O.

    2015-01-01

    Recently it has been estimated that the annual cost of diseases caused by the waterborne pathogens Legionella pneumonia, Mycobacterium avium, and Pseudomonas aeruginosa is $500 million. For the period 2001–2012, the estimated cost of hospital admissions for nontuberculous mycobacterial pulmonary disease, the majority caused by M. avium, was almost $1 billion. These three waterborne opportunistic pathogens are normal inhabitants of drinking water—not contaminants—that share a number of key characteristics that predispose them to survival, persistence, and growth in drinking water distribution systems and premise plumbing. Herein, I list and describe these shared characteristics that include: disinfectant-resistance, biofilm-formation, growth in amoebae, growth at low organic carbon concentrations (oligotrophic), and growth under conditions of stagnation. This review is intended to increase awareness of OPPPs, identify emerging OPPPs, and challenge the drinking water industry to develop novel approaches toward their control. PMID:25918909

  12. Cronobacter sakazakii: stress survival and virulence potential in an opportunistic foodborne pathogen.

    PubMed

    Feeney, Audrey; Kropp, Kai A; O'Connor, Roxana; Sleator, Roy D

    2014-01-01

    A characteristic feature of the opportunistic foodborne pathogen Cronobacter sakazakii is its ability to survive in extremely arid environments, such as powdered infant formula, making it a dangerous opportunistic pathogen of individuals of all age groups, especially infants and neonates. Herein, we provide a brief overview of the pathogen; clinical manifestations, environmental reservoirs and our current understanding of stress response mechanisms and virulence factors which allow it to cause disease.

  13. Cronobacter sakazakii: stress survival and virulence potential in an opportunistic foodborne pathogen

    PubMed Central

    Feeney, Audrey; Kropp, Kai A; O’Connor, Roxana; Sleator, Roy D

    2014-01-01

    A characteristic feature of the opportunistic foodborne pathogen Cronobacter sakazakii is its ability to survive in extremely arid environments, such as powdered infant formula, making it a dangerous opportunistic pathogen of individuals of all age groups, especially infants and neonates. Herein, we provide a brief overview of the pathogen; clinical manifestations, environmental reservoirs and our current understanding of stress response mechanisms and virulence factors which allow it to cause disease. PMID:25562731

  14. Multiple rare opportunistic and pathogenic fungi in persistent foot skin infection.

    PubMed

    Chan, Giek Far; Sinniah, Sivaranjini; Idris, Tengku Idzzan Nadzirah Tengku; Puad, Mohamad Safwan Ahmad; Abd Rahman, Ahmad Zuhairi

    2013-03-01

    Persistent superficial skin infection caused by multiple fungi is rarely reported. Recently, a number of fungi, both opportunistic and persistent in nature were isolated from the foot skin of a 24-year old male in Malaysia. The fungi were identified as Candida parapsilosis, Rhodotorula mucilaginosa, Phoma spp., Debaryomyces hansenii, Acremonium spp., Aureobasidium pullulans and Aspergillus spp., This is the first report on these opportunistic strains were co-isolated from a healthy individual who suffered from persistent foot skin infection which was diagnosed as athlete's foot for more than 12 years. Among the isolated fungi, C. parapsilosis has been an increasingly common cause of skin infections. R. mucilaginosa and D. hansenii were rarely reported in cases of skin infection. A. pullulans, an emerging fungal pathogen was also being isolated in this case. Interestingly, it was noted that C. parapsilosis, R. mucilaginosa, D. hansenii and A. pullulans are among the common halophiles and this suggests the association of halotolerant fungi in causing persistent superficial skin infection. This discovery will shed light on future research to explore on effective treatment for inhibition of pathogenic halophiles as well as to understand the interaction of multiple fungi in the progress of skin infection.

  15. Nontuberculous mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in The Netherlands.

    PubMed

    van der Wielen, Paul W J J; van der Kooij, Dick

    2013-02-01

    The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter(-1) than in water with AOC levels below 5 μg C liter(-1). Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens.

  16. Nontuberculous Mycobacteria, Fungi, and Opportunistic Pathogens in Unchlorinated Drinking Water in the Netherlands

    PubMed Central

    van der Kooij, Dick

    2013-01-01

    The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter−1 than in water with AOC levels below 5 μg C liter−1. Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens. PMID:23160134

  17. Emergence of a multi host biofilm forming opportunistic pathogen Staphylococcus sciuri D26 in coral Favites abdita.

    PubMed

    Divya, S; Thinesh, T; Seghal Kiran, G; Hassan, Saqib; Selvin, Joseph

    2018-04-23

    Corals are hotspots of ocean microbial diversity and imbalance in the composition of coral associated microbes has been mostly correlated with the emergence of climate change driven diseases which affect the overall stability of the reef ecosystem. Coral sampling was performed by SCUBA diving at Palk Bay (latitude 9.271580, longitude 79.132203) south Indian coast. Among the 54 bacterial isolates, an isolate MGL-D26 showed comparatively high biofilm formation and was identified as Staphylococcus sciuri based on phylogenetic analysis. The production of exopolysaccharide (EPS) confirmed the formation of a slimy EPS matrix associated with the biofilm. The biofilm formation in S. sciuri D26 was induced significantly by UV exposure followed by other stress factors including pollution, agitation, and salinity. The strain inhibited innate immune factors of corals such as melanin synthesis and phenoloxidase. Challenge experiments in a model organism Aiptasia sp. showed pathogenicity of S. sciuri. Histopathological analysis revealed tissue invasion by S. sciuri which was a predisposing factor leading to mortality in challenged Aiptasia sp. However, specific disease condition of corals infected by S. sciuri requires continuous field monitoring and further investigation. Based on the findings, S. sciuri was a first reported multi-host opportunistic pathogen which has emerged in corals under environmental stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Loss of competition in the outside host environment generates outbreaks of environmental opportunist pathogens.

    PubMed

    Anttila, Jani; Ruokolainen, Lasse; Kaitala, Veijo; Laakso, Jouni

    2013-01-01

    Environmentally transmitted pathogens face ecological interactions (e.g., competition, predation, parasitism) in the outside-host environment and host immune system during infection. Despite the ubiquitousness of environmental opportunist pathogens, traditional epidemiology focuses on obligatory pathogens incapable of environmental growth. Here we ask how competitive interactions in the outside-host environment affect the dynamics of an opportunist pathogen. We present a model coupling the classical SI and Lotka-Volterra competition models. In this model we compare a linear infectivity response and a sigmoidal infectivity response. An important assumption is that pathogen virulence is traded off with competitive ability in the environment. Removing this trade-off easily results in host extinction. The sigmoidal response is associated with catastrophic appearances of disease outbreaks when outside-host species richness, or overall competition pressure, decreases. This indicates that alleviating outside-host competition with antibacterial substances that also target the competitors can have unexpected outcomes by providing benefits for opportunist pathogens. These findings may help in developing alternative ways of controlling environmental opportunist pathogens.

  19. Opportunistic pathogens and faecal indicators in drinking water associated biofilms in Cluj, Romania.

    PubMed

    Farkas, A; Drăgan-Bularda, M; Ciatarâş, D; Bocoş, B; Tigan, S

    2012-09-01

    Biofouling occurs without exception in all water systems, with undesirable effects such as biocorrosion and deterioration of water quality. Drinking water associated biofilms represent a potential risk to human health by harbouring pathogenic or toxin-releasing microorganisms. This is the first study investigating the attached microbiota, with potential threat to human health, in a public water system in Romania. The presence and the seasonal variation of viable faecal indicators and opportunistic pathogens were investigated within naturally developed biofilms in a drinking water treatment plant. Bacterial frequencies were correlated with microbial loads in biofilms as well as with physical and chemical characteristics of biofilms and raw water. The biofilms assessed in the current study proved to be extremely active microbial consortia. High bacterial numbers were recovered by cultivation, including Pseudomonas aeruginosa, Escherichia coli, Aeromonas hydrophila, intestinal enterococci and Clostridium perfringens. There were no Legionella spp. detected in any biofilm sample. Emergence of opportunistic pathogens in biofilms was not significantly affected by the surface material, but by the treatment process. Implementation of a water safety plan encompassing measures to prevent microbial contamination and to control biofouling would be appropriate.

  20. RESEARCH NEEDS FOR OPPORTUNISTIC PATHOGENS IN PREMISE PLUMBING

    EPA Science Inventory

    EXECUTIVE SUMMARY OBJECTIVES. The objectives of this project were to: 1.) Host an expert workshop to identify research needs for opportunistic premise (i.e., building) plumbing pathogens (OPPPs); 2.) With the assistance of the workshop participants, prepare this research repor...

  1. Within-host evolution decreases virulence in an opportunistic bacterial pathogen.

    PubMed

    Mikonranta, Lauri; Mappes, Johanna; Laakso, Jouni; Ketola, Tarmo

    2015-08-19

    Pathogens evolve in a close antagonistic relationship with their hosts. The conventional theory proposes that evolution of virulence is highly dependent on the efficiency of direct host-to-host transmission. Many opportunistic pathogens, however, are not strictly dependent on the hosts due to their ability to reproduce in the free-living environment. Therefore it is likely that conflicting selection pressures for growth and survival outside versus within the host, rather than transmission potential, shape the evolution of virulence in opportunists. We tested the role of within-host selection in evolution of virulence by letting a pathogen Serratia marcescens db11 sequentially infect Drosophila melanogaster hosts and then compared the virulence to strains that evolved only in the outside-host environment. We found that the pathogen adapted to both Drosophila melanogaster host and novel outside-host environment, leading to rapid evolutionary changes in the bacterial life-history traits including motility, in vitro growth rate, biomass yield, and secretion of extracellular proteases. Most significantly, selection within the host led to decreased virulence without decreased bacterial load while the selection lines in the outside-host environment maintained the same level of virulence with ancestral bacteria. This experimental evidence supports the idea that increased virulence is not an inevitable consequence of within-host adaptation even when the epidemiological restrictions are removed. Evolution of attenuated virulence could occur because of immune evasion within the host. Alternatively, rapid fluctuation between outside-host and within-host environments, which is typical for the life cycle of opportunistic bacterial pathogens, could lead to trade-offs that lower pathogen virulence.

  2. Sulfadiazine/ciprofloxacin promote opportunistic pathogens occurrence in bulk water of drinking water distribution systems.

    PubMed

    Wang, Haibo; Shen, Yi; Hu, Chun; Xing, Xueci; Zhao, Dan

    2018-03-01

    Effects of sulfadiazine and ciprofloxacin on the occurrence of free-living and particle-associated opportunistic pathogens in bulk water of simulated drinking water distribution systems (DWDSs) were investigated. It was found that sulfadiazine and ciprofloxacin greatly promoted the occurrence of opportunistic pathogens including Pseudomonas aeruginosa, Legionella pneumophila, Mycobacterium avium and its broader genus Mycobacterium spp., as well as the amoebae Acanthamoeba spp. and Hartmanella vermiformis, in bulk water of DWDSs. Moreover, sulfadiazine and ciprofloxacin exhibited much stronger combined effects on the increase of these opportunistic pathogens. Based on the analysis of the antibiotic resistance genes (ARGs) and extracellular polymeric substances (EPS), it was verified that EPS production was increased by the antibiotic resistant bacteria arising from the effects of sulfadiazine/ciprofloxacin. The combined effects of sulfadiazine and ciprofloxacin induced the greatest increase of EPS production in DWDSs. Furthermore, the increased EPS with higher contents of proteins and secondary structure β-sheet led to greater bacterial aggregation and adsorption. Meanwhile, large numbers of suspended particles were formed, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in bulk water of DWDSs with sulfadiazine/ciprofloxacin. Therefore, sulfadiazine and ciprofloxacin promoted the occurrence of particle-associated opportunistic pathogens in bulk water of DWDSs due to the role of EPS produced by the bacteria with ARGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Host specificity in biological control: insights from opportunistic pathogens

    PubMed Central

    Brodeur, Jacques

    2012-01-01

    Host/prey specificity is a significant concern in biological control. It influences the effectiveness of a natural enemy and the risks it might have on non-target organisms. Furthermore, narrow host specificity can be a limiting factor for the commercialization of natural enemies. Given the great diversity in taxonomy and mode of action of natural enemies, host specificity is a highly variable biological trait. This variability can be illustrated by opportunist fungi from the genus Lecanicillium, which have the capacity to exploit a wide range of hosts – from arthropod pests to fungi causing plant diseases – through different modes of action. Processes determining evolutionary trajectories in host specificity are closely linked to the modes of action of the natural enemy. This hypothesis is supported by advances in fungal genomics concerning the identity of genes and biological traits that are required for the evolution of life history strategies and host range. Despite the significance of specificity, we still need to develop a conceptual framework for better understanding of the relationship between specialization and successful biological control. The emergence of opportunistic pathogens and the development of ‘omic’ technologies offer new opportunities to investigate evolutionary principles and applications of the specificity of biocontrol agents. PMID:22949922

  4. New trends in emerging pathogens.

    PubMed

    Skovgaard, Niels

    2007-12-15

    The emergence of pathogens is the result of a number of impact in all parts of the food chain. The emerging technologies in food production explain how new pathogens can establish themselves in the food chain and compromise food safety. The impact of the food technology is analysed for several bacteria, such as Yersinia, Campylobacter, Arcobacter, Helicobacter pullorum, Enterobacter sakazakii, Mycobacterium avium spp. paratuberculosis, prions related to vCJD and others. The importance of the ability of many microbes to form VBNC forms is elaborated on. Research on culture independent methods may address this outstanding issue to the better understanding of emerging pathogens. The "demerging" of pathogens also occur, and examples of this are explained. The reaction of bacteria to stresses and sublethal treatments, and how exposure to one stress factor can confer resistance to other stresses, literally speaking causing contagious resistance, are explained. The implication of this e.g. in modern approaches of food preservation, such as Minimally processed Foods, is considerable. Intestinal colonization of EHEC may be regulated by Quorum sensing, and this ability of microbes plays an important role in the colonization of microbes in food and on food processing equipment, an important factor in the emergence of pathogens. The emergence of Saccharomyces cerevisiae, as an opportunistic human pathogen, used for centuries for food and production of alcoholic beverages, calls for research in molecular tools to distinguish between probiotic and clinical strains. Cyclospora cayetanensis and Norovirus outbreaks can no longer be designated as emerging pathogens, they share however one characteristic in the epidemiology of emerging nature, the importance of the hygiene in the primary production stage, including supply of potable water, and the application of GMP and the HACCP principles in the beginning of the food chain. Hepatitis E virus is a potential emerging food borne

  5. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: a review.

    PubMed

    Williams, Margaret M; Armbruster, Catherine R; Arduino, Matthew J

    2013-01-01

    Several bacterial species that are natural inhabitants of potable water distribution system biofilms are opportunistic pathogens important to sensitive patients in healthcare facilities. Waterborne healthcare-associated infections (HAI) may occur during the many uses of potable water in the healthcare environment. Prevention of infection is made more challenging by lack of data on infection rate and gaps in understanding of the ecology, virulence, and infectious dose of these opportunistic pathogens. Some healthcare facilities have been successful in reducing infections by following current water safety guidelines. This review describes several infections, and remediation steps that have been implemented to reduce waterborne HAIs.

  6. Emerging bacterial pathogens: the past and beyond.

    PubMed

    Vouga, M; Greub, G

    2016-01-01

    Since the 1950s, medical communities have been facing with emerging and reemerging infectious diseases, and emerging pathogens are now considered to be a major microbiologic public health threat. In this review, we focus on bacterial emerging diseases and explore factors involved in their emergence as well as future challenges. We identified 26 major emerging and reemerging infectious diseases of bacterial origin; most of them originated either from an animal and are considered to be zoonoses or from water sources. Major contributing factors in the emergence of these bacterial infections are: (1) development of new diagnostic tools, such as improvements in culture methods, development of molecular techniques and implementation of mass spectrometry in microbiology; (2) increase in human exposure to bacterial pathogens as a result of sociodemographic and environmental changes; and (3) emergence of more virulent bacterial strains and opportunistic infections, especially affecting immunocompromised populations. A precise definition of their implications in human disease is challenging and requires the comprehensive integration of microbiological, clinical and epidemiologic aspects as well as the use of experimental models. It is now urgent to allocate financial resources to gather international data to provide a better understanding of the clinical relevance of these waterborne and zoonotic emerging diseases. Copyright © 2015. Published by Elsevier Ltd.

  7. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis.

    PubMed

    Razzak, Mohammad Sabri A; Al-Charrakh, Alaa H; Al-Greitty, Bara Hamid

    2011-04-01

    Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. The types of antibiotics used to treat vaginitis must be very selective in order not to kill the beneficial bacteria

  8. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis

    PubMed Central

    Razzak, Mohammad Sabri A.; Al-Charrakh, Alaa H.; AL-Greitty, Bara Hamid

    2011-01-01

    Background: Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. Aim: The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. Materials and Methods: In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results: Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. Conclusion: The types of antibiotics used to treat vaginitis must be very

  9. [Opportunistic pathogenic and toxic micro-fungi among synthetic polymer destructors].

    PubMed

    Kurakov, A V; Novikova, N D; Ozerskaia, S M; Deshevaia, E A; Gevorkian, S A; Gogiian, V B

    2007-01-01

    Analysis of species diversity of the micro-fungi typically detected at the sites of biodamage of synthetic polymers on space vehicles exhibited the presence of a broad variety of opportunistic pathogens and toxic species. Thus, 78 species of micromycetes of 300 polymer destructing fungi are associated with biological risk levels BSL-1 and BSL-2 (low and moderate levels, respectively). As many as 56 species are able to produce toxic compounds.

  10. Occurrence of Opportunistic Pathogens Legionella Pneumophilaand Non-tuberculous Mycobacteria in Hospital Plumbing Systems

    EPA Science Inventory

    Opportunistic premise plumbing pathogens (OPPPs) such as Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are frequently detected in the plumbing systems of large buildings. The ability of these organisms to form biofilms and to grow in phagocytic amoeba ar...

  11. Human platelet gel supernatant inactivates opportunistic wound pathogens on skin.

    PubMed

    Edelblute, Chelsea M; Donate, Amy L; Hargrave, Barbara Y; Heller, Loree C

    2015-01-01

    Activation of human platelets produces a gel-like substance referred to as platelet rich plasma or platelet gel. Platelet gel is used clinically to promote wound healing; it also exhibits antimicrobial properties that may aid in the healing of infected wounds. The purpose of this study was to quantify the efficacy of human platelet gel against the opportunistic bacterial wound pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus on skin. These opportunistic pathogens may exhibit extensive antibiotic resistance, necessitating the development of alternative treatment options. The antimicrobial efficacy of platelet gel supernatants was quantified using an in vitro broth dilution assay, an ex vivo inoculated skin assay, and in an in vivo skin decontamination assay. Human platelet gel supernatants were highly bactericidal against A. baumannii and moderately but significantly bactericidal against S. aureus in vitro and in the ex vivo skin model. P. aeruginosa was not inactivated in vitro; a low but significant inactivation level was observed ex vivo. These supernatants were quite effective at inactivating a model organism on skin in vivo. These results suggest application of platelet gel has potential clinical applicability, not only in the acceleration of wound healing, but also against relevant bacteria causing wound infections.

  12. OPPORTUNISTIC ASPERGILLUS PATHOGENS MEASURED IN HOME AND HOSPITAL TAP WATER BY MOLD SPECIFIC QUANTITATIVE PCR (MSQPCR)

    EPA Science Inventory

    Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumiga...

  13. The Opportunistic Pathogen Serratia marcescens Utilizes Type VI Secretion To Target Bacterial Competitors ▿†

    PubMed Central

    Murdoch, Sarah L.; Trunk, Katharina; English, Grant; Fritsch, Maximilian J.; Pourkarimi, Ehsan; Coulthurst, Sarah J.

    2011-01-01

    The type VI secretion system (T6SS) is the most recently described and least understood of the protein secretion systems of Gram-negative bacteria. It is widely distributed and has been implicated in the virulence of various pathogens, but its mechanism and exact mode of action remain to be defined. Additionally there have been several very recent reports that some T6SSs can target bacteria rather than eukaryotic cells. Serratia marcescens is an opportunistic enteric pathogen, a class of bacteria responsible for a significant proportion of hospital-acquired infections. We describe the identification of a functional T6SS in S. marcescens strain Db10, the first report of type VI secretion by an opportunist enteric bacterium. The T6SS of S. marcescens Db10 is active, with secretion of Hcp to the culture medium readily detected, and is expressed constitutively under normal growth conditions from a large transcriptional unit. Expression of the T6SS genes did not appear to be dependent on the integrity of the T6SS. The S. marcescens Db10 T6SS is not required for virulence in three nonmammalian virulence models. It does, however, exhibit dramatic antibacterial killing activity against several other bacterial species and is required for S. marcescens to persist in a mixed culture with another opportunist pathogen, Enterobacter cloacae. Importantly, this antibacterial killing activity is highly strain specific, with the S. marcescens Db10 T6SS being highly effective against another strain of S. marcescens with a very similar and active T6SS. We conclude that type VI secretion plays a crucial role in the competitiveness, and thus indirectly the virulence, of S. marcescens and other opportunistic bacterial pathogens. PMID:21890705

  14. Occurrence of Opportunistic Pathogens Legionella pneumophila and non-tuberculous mycobacteria in hospital plumbing systems

    EPA Science Inventory

    Occurrence of Opportunistic Pathogens Legionella pneumophila and non-tuberculous mycobacteria in hospital plumbing systems Jill Hoelle, Michael Coughlin, Elizabeth Sotkiewicz, Jingrang Lu, Stacy Pfaller, Mark Rodgers, and Hodon Ryu U.S. Environmental Protection Agency, Cincinnati...

  15. Regrowth of potential opportunistic pathogens and algae in reclaimed-water distribution systems.

    PubMed

    Jjemba, Patrick K; Weinrich, Lauren A; Cheng, Wei; Giraldo, Eugenio; Lechevallier, Mark W

    2010-07-01

    A study of the quality of reclaimed water in treated effluent, after storage, and at three points in the distribution system of four plants in California, Florida, Massachusetts, and New York was conducted for 1 year. The plants had different treatment processes (conventional versus membrane bioreactor), production capacities, and methods for storage of the water, and the intended end uses of the water were different. The analysis focused on the occurrence of indicator bacteria (heterotrophic bacteria, coliforms, Escherichia coli, and enterococci) and opportunistic pathogens (Aeromonas spp., enteropathogenic E. coli O157:H7, Legionella spp., Mycobacterium spp., and Pseudomonas spp.), as well as algae. Using immunological methods, E. coli O157:H7 was detected in the effluent of only one system, but it was not detected at the sampling points, suggesting that its survival in the system was poor. Although all of the treatment systems effectively reduced the levels of bacteria in the effluent, bacteria regrew in the reservoir and distribution systems because of the loss of residual disinfectant and high assimilable organic carbon levels. In the systems with open reservoirs, algal growth reduced the water quality by increasing the turbidity and accumulating at the end of the distribution system. Opportunistic pathogens, notably Aeromonas, Legionella, Mycobacterium, and Pseudomonas, occurred more frequently than indicator bacteria (enterococci, coliforms, and E. coli). The Mycobacterium spp. were very diverse and occurred most frequently in membrane bioreactor systems, and Mycobacterium cookii was identified more often than the other species. The public health risk associated with these opportunistic pathogens in reclaimed water is unknown. Collectively, our results show the need to develop best management practices for reclaimed water to control bacterial regrowth and degradation of water before it is utilized at the point of use.

  16. Biofilms and the survival of opportunistic pathogens in recycled water

    NASA Technical Reports Server (NTRS)

    Boyle, M.; Ford, T.; Maki, J. S.; Mitchell, R.

    1991-01-01

    Microorganisms are likely to develop an organic film on pipes, water reservoirs and filters used for waste water reclamation during extended missions in space. These biofilms can serve to protect and concentrate potentially pathogenic microorganisms. Our investigation has emphasized the survival strategy of opportunistic pathogenic bacteria in distilled water. Pseudomonas aeruginosa and Staphylococcus aureus were used as test organisms. Cultures were incubated at 10 degrees, 25 degrees, and 37 degrees C. No viable Staphylococcus cells were detected after the first week of incubation. P. aeruginosa, however, survived in distilled water up to 5 months at all three temperatures tested. The starved cells were able to form a biofilm layer on stainless steel. The cells exhibited a negative surface charge. The charge may be involved in the adhesion of this bacterium to metal substrata. We are currently investigating the importance of adhesion in the survival of this and other potential human pathogens found in water recycling systems.

  17. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    EPA Science Inventory

    BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...

  18. Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans.

    PubMed

    Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K

    2011-09-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host.

  19. The role and regulation of catalase in respiratory tract opportunistic bacterial pathogens.

    PubMed

    Eason, Mia M; Fan, Xin

    2014-09-01

    Respiratory tract bacterial pathogens are the etiologic agents of a variety of illnesses. The ability of these bacteria to cause disease is imparted through survival within the host and avoidance of pathogen clearance by the immune system. Respiratory tract pathogens are continually bombarded by reactive oxygen species (ROS), which may be produced by competing bacteria, normal metabolic function, or host immunological responses. In order to survive and proliferate, bacteria have adapted defense mechanisms to circumvent the effects of ROS. Bacteria employ the use of anti-oxidant enzymes, catalases and catalase-peroxidases, to relieve the effects of the oxidative stressors to which they are continually exposed. The decomposition of ROS has been shown to provide favorable conditions in which respiratory tract opportunistic bacterial pathogens such as Haemophilus influenzae, Mycobacterium tuberculosis, Legionella pneumophila, and Neisseria meningitidis are able to withstand exposure to highly reactive molecules and yet survive. Bacteria possessing mutations in the catalase gene have a decreased survival rate, yet may be able to compensate for the lack of catalatic activity if peroxidatic activity is present. An incomplete knowledge of the mechanisms by which catalase and catalase-peroxidases are regulated still persists, however, in some bacterial species, a regulatory factor known as OxyR has been shown to either up-regulate or down-regulate catalase gene expression. Yet, more research is still needed to increase the knowledge base in relation to this enzyme class. As with this review, we focus on major respiratory tract opportunistic bacterial pathogens in order to elucidate the function and regulation of catalases. The importance of the research could lead to the development of novel treatments against respiratory bacterial infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Regrowth of Potential Opportunistic Pathogens and Algae in Reclaimed-Water Distribution Systems ▿

    PubMed Central

    Jjemba, Patrick K.; Weinrich, Lauren A.; Cheng, Wei; Giraldo, Eugenio; LeChevallier, Mark W.

    2010-01-01

    A study of the quality of reclaimed water in treated effluent, after storage, and at three points in the distribution system of four plants in California, Florida, Massachusetts, and New York was conducted for 1 year. The plants had different treatment processes (conventional versus membrane bioreactor), production capacities, and methods for storage of the water, and the intended end uses of the water were different. The analysis focused on the occurrence of indicator bacteria (heterotrophic bacteria, coliforms, Escherichia coli, and enterococci) and opportunistic pathogens (Aeromonas spp., enteropathogenic E. coli O157:H7, Legionella spp., Mycobacterium spp., and Pseudomonas spp.), as well as algae. Using immunological methods, E. coli O157:H7 was detected in the effluent of only one system, but it was not detected at the sampling points, suggesting that its survival in the system was poor. Although all of the treatment systems effectively reduced the levels of bacteria in the effluent, bacteria regrew in the reservoir and distribution systems because of the loss of residual disinfectant and high assimilable organic carbon levels. In the systems with open reservoirs, algal growth reduced the water quality by increasing the turbidity and accumulating at the end of the distribution system. Opportunistic pathogens, notably Aeromonas, Legionella, Mycobacterium, and Pseudomonas, occurred more frequently than indicator bacteria (enterococci, coliforms, and E. coli). The Mycobacterium spp. were very diverse and occurred most frequently in membrane bioreactor systems, and Mycobacterium cookii was identified more often than the other species. The public health risk associated with these opportunistic pathogens in reclaimed water is unknown. Collectively, our results show the need to develop best management practices for reclaimed water to control bacterial regrowth and degradation of water before it is utilized at the point of use. PMID:20453149

  1. The presence of opportunistic pathogens, Legionella spp., L. pneumophila and Mycobacterium avium complex, in South Australian reuse water distribution pipelines.

    PubMed

    Whiley, H; Keegan, A; Fallowfield, H; Bentham, R

    2015-06-01

    Water reuse has become increasingly important for sustainable water management. Currently, its application is primarily constrained by the potential health risks. Presently there is limited knowledge regarding the presence and fate of opportunistic pathogens along reuse water distribution pipelines. In this study opportunistic human pathogens Legionella spp., L. pneumophila and Mycobacterium avium complex were detected using real-time polymerase chain reaction along two South Australian reuse water distribution pipelines at maximum concentrations of 10⁵, 10³ and 10⁵ copies/mL, respectively. During the summer period of sampling the concentration of all three organisms significantly increased (P < 0.05) along the pipeline, suggesting multiplication and hence viability. No seasonality in the decrease in chlorine residual along the pipelines was observed. This suggests that the combination of reduced chlorine residual and increased water temperature promoted the presence of these opportunistic pathogens.

  2. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers.

    PubMed

    Li, Huan; Li, Shang; Tang, Wei; Yang, Yang; Zhao, Jianfu; Xia, Siqing; Zhang, Weixian; Wang, Hong

    2018-06-01

    Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P < 0.05). In residential buildings, genes of L. pneumomhila, Acanthamoeba and Vermamoeba vermiformis were primarily detected in tanks and taps compared to the mains. Long water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Hiding in Fresh Fruits and Vegetables: Opportunistic Pathogens May Cross Geographical Barriers

    PubMed Central

    Al-Kharousi, Zahra S.; Al-Sadi, Abdullah M.; Al-Bulushi, Ismail M.; Shaharoona, Baby

    2016-01-01

    Different microbial groups of the microbiome of fresh produce can have diverse effects on human health. This study was aimed at identifying some microbial communities of fresh produce by analyzing 105 samples of imported fresh fruits and vegetables originated from different countries in the world including local samples (Oman) for aerobic plate count and the counts of Enterobacteriaceae, Enterococcus, and Staphylococcus aureus. The isolated bacteria were identified by molecular (PCR) and biochemical methods (VITEK 2). Enterobacteriaceae occurred in 60% of fruits and 91% of vegetables. Enterococcus was isolated from 20% of fruits and 42% of vegetables. E. coli and S. aureus were isolated from 22% and 7% of vegetables, respectively. Ninety-seven bacteria comprising 21 species were similarly identified by VITEK 2 and PCR to species level. E. coli, Klebsiella pneumoniae, Enterococcus casseliflavus, and Enterobacter cloacae were the most abundant species; many are known as opportunistic pathogens which may raise concern to improve the microbial quality of fresh produce. Phylogenetic trees showed no relationship between clustering of the isolates based on the 16S rRNA gene and the original countries of fresh produce. Intercountry passage of opportunistic pathogens in fresh produce cannot be ruled out, which requires better management. PMID:26989419

  4. Draft Genome Sequence of the Serratia rubidaea CIP 103234T Reference Strain, a Human-Opportunistic Pathogen.

    PubMed

    Bonnin, Rémy A; Girlich, Delphine; Imanci, Dilek; Dortet, Laurent; Naas, Thierry

    2015-11-19

    We provide here the first genome sequence of a Serratia rubidaea isolate, a human-opportunistic pathogen. This reference sequence will permit a comparison of this species with others of the Serratia genus. Copyright © 2015 Bonnin et al.

  5. Cell Wall Chitosan Is Necessary for Virulence in the Opportunistic Pathogen Cryptococcus neoformans ▿

    PubMed Central

    Baker, Lorina G.; Specht, Charles A.; Lodge, Jennifer K.

    2011-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host. PMID:21784998

  6. Epidemiology of Rhodotorula: An Emerging Pathogen

    PubMed Central

    Wirth, Fernanda; Goldani, Luciano Z.

    2012-01-01

    This is an updated paper focusing on the general epidemiological aspects of Rhodotorula in humans, animals, and the environment. Previously considered nonpathogenic, Rhodotorula species have emerged as opportunistic pathogens that have the ability to colonise and infect susceptible patients. Rhodotorula species are ubiquitous saprophytic yeasts that can be recovered from many environmental sources. Several authors describe the isolation of this fungus from different ecosystems, including sites with unfavourable conditions. Compared to R. mucilaginosa, R. glutinis and R. minuta are less frequently isolated from natural environments. Among the few references to the pathogenicity of Rhodotorula spp. in animals, there are several reports of an outbreak of skin infections in chickens and sea animals and lung infections and otitis in sheep and cattle. Most of the cases of infection due to Rhodotorula in humans were fungemia associated with central venous catheter (CVC) use. The most common underlying diseases included solid and haematologic malignancies in patients who were receiving corticosteroids and cytotoxic drugs, the presence of CVC, and the use of broad-spectrum antibiotics. Unlike fungemia, some of the other localised infections caused by Rhodotorula, including meningeal, skin, ocular, peritoneal, and prosthetic joint infections, are not necessarily linked to the use of CVCs or immunosuppression. PMID:23091485

  7. Opportunistic pathogens and elements of the resistome that are common in bottled mineral water support the need for continuous surveillance.

    PubMed

    Falcone-Dias, Maria Fernanda; Centrón, Daniela; Pavan, Fernando; Moura, Adriana Candido da Silva; Naveca, Felipe Gomes; de Souza, Victor Costa; Farache Filho, Adalberto; Leite, Clarice Queico Fujimura

    2015-01-01

    Several differences concerning bacterial species, opportunistic pathogens, elements of the resistome as well as variations concerning the CFU/mL counts were identified in some of the five most marketed bottled mineral water from Araraquara city, São Paulo, Brazil. Two out of five brands tested were confirmed as potential source of opportunistic pathogens, including Mycobacterium gordonae, Ralstonia picketti and Burkholderia cepacia complex (Bcc). A total of one hundred and six isolates were recovered from four of these bottled mineral water brands. Betaproteobacteria was predominant followed by Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Ninety percent of the bacteria isolated demonstrated resistance to seventeen of the nineteen antimicrobials tested. These antimicrobials included eight different classes, including 3rd and 4th generation cephalosporins, carbapenems and fluoroquinolones. Multidrug resistant bacteria were detected for fifty-nine percent of isolates in three water brands at counts up to 103 CFU/ml. Of major concern, the two bottled mineral water harboring opportunistic pathogens were also source of elements of the resistome that could be directly transferred to humans. All these differences found among brands highlight the need for continuous bacteriological surveillance of bottled mineral water.

  8. Opportunistic Pathogens and Elements of the Resistome that Are Common in Bottled Mineral Water Support the Need for Continuous Surveillance

    PubMed Central

    Falcone-Dias, Maria Fernanda; Centrón, Daniela; Pavan, Fernando; Moura, Adriana Candido da Silva; Naveca, Felipe Gomes; de Souza, Victor Costa; Farache Filho, Adalberto; Leite, Clarice Queico Fujimura

    2015-01-01

    Several differences concerning bacterial species, opportunistic pathogens, elements of the resistome as well as variations concerning the CFU/mL counts were identified in some of the five most marketed bottled mineral water from Araraquara city, São Paulo, Brazil. Two out of five brands tested were confirmed as potential source of opportunistic pathogens, including Mycobacterium gordonae, Ralstonia picketti and Burkholderia cepacia complex (Bcc). A total of one hundred and six isolates were recovered from four of these bottled mineral water brands. Betaproteobacteria was predominant followed by Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Ninety percent of the bacteria isolated demonstrated resistance to seventeen of the nineteen antimicrobials tested. These antimicrobials included eight different classes, including 3rd and 4th generation cephalosporins, carbapenems and fluoroquinolones. Multidrug resistant bacteria were detected for fifty-nine percent of isolates in three water brands at counts up to 103 CFU/ml. Of major concern, the two bottled mineral water harboring opportunistic pathogens were also source of elements of the resistome that could be directly transferred to humans. All these differences found among brands highlight the need for continuous bacteriological surveillance of bottled mineral water. PMID:25803794

  9. The 12th International Workshops on Opportunistic Protists (IWOP-12)

    PubMed Central

    Weiss, Louis M.; Cushion, Melanie T.; Didier, Elizabeth; Xiao, Lihua; Marciano-Cabral, Francine; Sinai, Anthony P.; Matos, Olga; Calderon, Enrique J.; Kaneshiro, Edna S.

    2013-01-01

    The 12th International Workshops on Opportunistic Protists (IWOP-12) was held in August 2012 in Tarrytown, New York. The objectives of the IWOP meetings are to: (1) serve as a forum for exchange of new information among active researchers concerning the basic biology, molecular genetics, immunology, biochemistry, pathogenesis, drug development, therapy, and epidemiology of these immunodeficiency-associated pathogenic eukaryotic microorganisms that are seen in patients with AIDS and (2) foster the entry of new and young investigators into these underserved research areas. The IWOP meeting focuses on opportunistic protists, e.g. the free-living amoebae, Pneumocystis, Cryptosporidium, Toxoplasma, the Microsporidia, and kinetoplastid flagellates. This conference represents the major conference that brings together research groups working on these opportunistic pathogens. Slow but steady progress is being achieved on understanding the biology of these pathogenic organisms, their involvement in disease causation in both immune-deficient and immune-competent hosts, and is providing critical insights into these emerging and reemerging pathogens. This IWOP meeting demonstrated the importance of newly developed genomic level information for many of these pathogens and how analysis of such large data sets is providing key insights into the basic biology of these organisms. A great concern is the loss of scientific expertise and diversity in the research community due to the ongoing decline in research funding. This loss of researchers is due to the small size of many of these research communities and a lack of appreciation by the larger scientific community concerning the state of art and challenges faced by researchers working on these organisms. PMID:23560871

  10. Bacterial genomics reveal the complex epidemiology of an emerging pathogen in arctic and boreal ungulates

    USGS Publications Warehouse

    Forde, Taya L.; Orsel, Karin; Zadoks, Ruth N.; Biek, Roman; Adams, Layne G.; Checkley, Sylvia L.; Davison, Tracy; De Buck, Jeroen; Dumond, Mathieu; Elkin, Brett T.; Finnegan, Laura; Macbeth, Bryan J.; Nelson, Cait; Niptanatiak, Amanda; Sather, Shane; Schwantje, Helen M.; van der Meer, Frank; Kutz, Susan J.

    2016-01-01

    Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.

  11. The 13th International Workshops on Opportunistic Protists (IWOP13).

    PubMed

    Calderon, Enrique J; Cushion, Melanie T; Xiao, Lihua; Lorenzo-Morales, Jacob; Matos, Olga; Kaneshiro, Edna S; Weiss, Louis M

    2015-01-01

    The 13th International Workshops on Opportunistic Protists (IWOP-13) was held November 13-15, 2014 in Seville, Spain. The objectives of the IWOP meetings are to: (1) serve as a forum for exchange of new information among active researchers concerning the basic biology, molecular genetics, immunology, biochemistry, pathogenesis, drug development, therapy, and epidemiology of these immunodeficiency-associated pathogenic eukaryotic microorganisms that are seen in patients with AIDS and; (2) to foster the entry of new and young investigators into these underserved research areas. The IWOP meeting focuses on opportunistic protists; e.g. the free-living amoebae, Pneumocystis, Cryptosporidium, Toxoplasma, the Microsporidia, and kinetoplastid flagellates. This conference represents the major conference which brings together research groups working on these opportunistic pathogens. Progress has been achieved on understanding the biology of these pathogenic organisms, their involvement in disease causation in both immune deficient and immune competent hosts and is providing important insights into these emerging and reemerging pathogens. A continuing concern of the participants is the ongoing loss of scientific expertise and diversity in this research community. This decline is due to the small size of these research communities and an ongoing lack of understanding by the broader scientific community of the challenges and limitations faced by researchers working on these organisms, which makes these research communities very sensitive to declines in research funding. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  12. Draft Genome Sequences of Biosafety Level 2 Opportunistic Pathogens Isolated from the Environmental Surfaces of the International Space Station.

    PubMed

    Checinska Sielaff, Aleksandra; Singh, Nitin K; Allen, Jonathan E; Thissen, James; Jaing, Crystal; Venkateswaran, Kasthuri

    2016-12-29

    The draft genome sequences of 20 biosafety level 2 (BSL-2) opportunistic pathogens isolated from the environmental surfaces of the International Space Station (ISS) were presented. These genomic sequences will help in understanding the influence of microgravity on the pathogenicity and virulence of these strains when compared with Earth strains. Copyright © 2016 Checinska Sielaff et al.

  13. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata.

    PubMed

    Briones-Martin-Del-Campo, Marcela; Orta-Zavalza, Emmanuel; Juarez-Cepeda, Jacqueline; Gutierrez-Escobedo, Guadalupe; Cañas-Villamar, Israel; Castaño, Irene; De Las Peñas, Alejandro

    2014-01-01

    Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  14. The 12th International Workshops on Opportunistic Protists (IWOP-12).

    PubMed

    Weiss, Louis M; Cushion, Melanie T; Didier, Elizabeth; Xiao, Lihua; Marciano-Cabral, Francine; Sinai, Anthony P; Matos, Olga; Calderon, Enrique J; Kaneshiro, Edna S

    2013-01-01

    The 12th International Workshops on Opportunistic Protists (IWOP-12) was held in August 2012 in Tarrytown, New York. The objectives of the IWOP meetings are to: (1) serve as a forum for exchange of new information among active researchers concerning the basic biology, molecular genetics, immunology, biochemistry, pathogenesis, drug development, therapy, and epidemiology of these immunodeficiency-associated pathogenic eukaryotic microorganisms that are seen in patients with AIDS and (2) foster the entry of new and young investigators into these underserved research areas. The IWOP meeting focuses on opportunistic protists, e.g. the free-living amoebae, Pneumocystis, Cryptosporidium, Toxoplasma, the Microsporidia, and kinetoplastid flagellates. This conference represents the major conference that brings together research groups working on these opportunistic pathogens. Slow but steady progress is being achieved on understanding the biology of these pathogenic organisms, their involvement in disease causation in both immune-deficient and immune-competent hosts, and is providing critical insights into these emerging and reemerging pathogens. This IWOP meeting demonstrated the importance of newly developed genomic level information for many of these pathogens and how analysis of such large data sets is providing key insights into the basic biology of these organisms. A great concern is the loss of scientific expertise and diversity in the research community due to the ongoing decline in research funding. This loss of researchers is due to the small size of many of these research communities and a lack of appreciation by the larger scientific community concerning the state of art and challenges faced by researchers working on these organisms. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  15. The 14-3-3 homolog, ArtA, regulates development and secondary metabolism in the opportunistic plant pathogen Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    The opportunistic plant pathogenic fungus Aspergillus flavus produces carcinogenic mycotoxins denominated aflatoxins (AFs). Aflatoxin contamination of agriculturally important crops such as maize, peanut, sorghum and tree nuts is responsible for serious adverse health and economic impacts worldwide....

  16. Bacterial size matters: Multiple mechanisms controlling septum cleavage and diplococcus formation are critical for the virulence of the opportunistic pathogen Enterococcus faecalis

    PubMed Central

    Salamaga, Bartłomiej; Prajsnar, Tomasz K.; Willemse, Joost; Bewley, Martin A.; Chau, Françoise

    2017-01-01

    Enterococcus faecalis is an opportunistic pathogen frequently isolated in clinical settings. This organism is intrinsically resistant to several clinically relevant antibiotics and can transfer resistance to other pathogens. Although E. faecalis has emerged as a major nosocomial pathogen, the mechanisms underlying the virulence of this organism remain elusive. We studied the regulation of daughter cell separation during growth and explored the impact of this process on pathogenesis. We demonstrate that the activity of the AtlA peptidoglycan hydrolase, an enzyme dedicated to septum cleavage, is controlled by several mechanisms, including glycosylation and recognition of the peptidoglycan substrate. We show that the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and are no longer able to cause lethality in the zebrafish model of infection. Altogether, this work indicates that control of cell separation during division underpins the pathogenesis of E. faecalis infections and represents a novel enterococcal virulence factor. We propose that inhibition of septum cleavage during division represents an attractive therapeutic strategy to control infections. PMID:28742152

  17. Water quality and antifungal susceptibility of opportunistic yeast pathogens from rivers.

    PubMed

    Monapathi, M E; Bezuidenhout, C C; Rhode, O H J

    2017-03-01

    Yeasts from water sources have been associated with diseases ranging from superficial mucosal infections to life threatening diseases. The aim of this study was to determine the water quality as well as diversity and antifungal susceptibility of yeasts from two rivers. Yeast levels and physico-chemical parameter data were analyzed by principal component analysis to determine correlations between physico-chemical data and yeast levels. Yeast morphotypes were identified by biochemical tests and 26S rRNA gene sequencing. Disk diffusion antifungal susceptibility tests were conducted. Physico-chemical parameters of the water were within target water quality range (TWQR) for livestock farming. For irrigational use, total dissolved solids and nitrates were not within the TWQR. Yeast levels ranged between 27 ± 10 and 2,573 ± 306 cfu/L. Only non-pigmented, ascomycetous yeasts were isolated. Saccharomyces cerevisiae and Candida glabrata were most frequently isolated. Several other opportunistic pathogens were also isolated. A large number of isolates were resistant to azoles, especially fluconazole, but also to other antifungal classes. Candida species were resistant to almost all the antifungal classes. These water sources are used for recreation and religious as well as for watering livestock and irrigation. Of particular concern is the direct contact of individuals with opportunistic yeast, especially the immune-compromised. Resistance of these yeast species to antifungal agents is a further health concern.

  18. Emerging foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    The emergence of new foodborne pathogens is due to a number of factors. An important factor is the globalization of the food supply with the possibility of the introduction of foodborne pathogens from other countries. Animal husbandry, food production, food processing, and food distribution system...

  19. Special issue Oceans and Humans Health: the ecology of marine opportunists.

    PubMed

    Burge, Colleen A; Kim, Catherine J S; Lyles, Jillian M; Harvell, C Drew

    2013-05-01

    Opportunistic marine pathogens, like opportunistic terrestrial pathogens, are ubiquitous in the environment (waters, sediments, and organisms) and only cause disease in immune-compromised or stressed hosts. In this review, we discuss four host-pathogen interactions within the marine environment that are typically considered opportunistic: sea fan coral-fungus, eelgrass-Labyrinthula zosterae, sea fan-Labyrinthulomycetes, and hard clam-Quahog Parasite Unknown with particular focus on disease ecology, parasite pathology, host response, and known associated environmental conditions. Disease is a natural part of all ecosystems; however, in some cases, a shift in the balance between the host, pathogen, and the environment may lead to epizootics in natural or cultured populations. In marine systems, host-microbe interactions are less understood than their terrestrial counterparts. The biological and physical changes to the world's oceans, coupled with other anthropogenic influences, will likely lead to more opportunistic diseases in the marine environment.

  20. Microbial Diversity and Putative Opportunistic Pathogens in Dishwasher Biofilm Communities

    PubMed Central

    2018-01-01

    ABSTRACT Extreme habitats are not only limited to natural environments, but also exist in manmade systems, for instance, household appliances such as dishwashers. Limiting factors, such as high temperatures, high and low pHs, high NaCl concentrations, presence of detergents, and shear force from water during washing cycles, define microbial survival in this extreme system. Fungal and bacterial diversity in biofilms isolated from rubber seals of 24 different household dishwashers was investigated using next-generation sequencing. Bacterial genera such as Pseudomonas, Escherichia, and Acinetobacter, known to include opportunistic pathogens, were represented in most samples. The most frequently encountered fungal genera in these samples belonged to Candida, Cryptococcus, and Rhodotorula, also known to include opportunistic pathogenic representatives. This study showed how specific conditions of the dishwashers impact the abundance of microbial groups and investigated the interkingdom and intrakingdom interactions that shape these biofilms. The age, usage frequency, and hardness of incoming tap water of dishwashers had significant impact on bacterial and fungal community compositions. Representatives of Candida spp. were found at the highest prevalence (100%) in all dishwashers and are assumed to be one of the first colonizers in recently purchased dishwashers. Pairwise correlations in tested microbiomes showed that certain bacterial groups cooccur, as did the fungal groups. In mixed bacterial-fungal biofilms, early adhesion, contact, and interactions were vital in the process of biofilm formation, where mixed complexes of bacteria and fungi could provide a preliminary biogenic structure for the establishment of these biofilms. IMPORTANCE Worldwide demand for household appliances, such as dishwashers and washing machines, is increasing, as is the number of immunocompromised individuals. The harsh conditions in household dishwashers should prevent the growth of most

  1. Transient virulence of emerging pathogens.

    PubMed

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  2. Transient virulence of emerging pathogens

    PubMed Central

    Bolker, Benjamin M.; Nanda, Arjun; Shah, Dharmini

    2010-01-01

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution. PMID:19864267

  3. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments.

    PubMed

    Qin, Ke; Struewing, Ian; Domingo, Jorge Santo; Lytle, Darren; Lu, Jingrang

    2017-10-26

    The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L . pneumophila , Mycobacterium spp., P. aeruginosa , V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank

  4. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments

    PubMed Central

    Qin, Ke; Struewing, Ian; Domingo, Jorge Santo; Lytle, Darren

    2017-01-01

    The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L. pneumophila, Mycobacterium spp., P. aeruginosa, V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management

  5. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening

    PubMed Central

    Kurz, C.Léopold; Chauvet, Sophie; Andrès, Emmanuel; Aurouze, Marianne; Vallet, Isabelle; Michel, Gérard P.F.; Uh, Mitch; Celli, Jean; Filloux, Alain; de Bentzmann, Sophie; Steinmetz, Ivo; Hoffmann, Jules A.; Finlay, B.Brett; Gorvel, Jean-Pierre; Ferrandon, Dominique; Ewbank, Jonathan J.

    2003-01-01

    The human opportunistic pathogen Serratia marcescens is a bacterium with a broad host range, and represents a growing problem for public health. Serratia marcescens kills Caenorhabditis elegans after colonizing the nematode’s intestine. We used C.elegans to screen a bank of transposon-induced S.marcescens mutants and isolated 23 clones with an attenuated virulence. Nine of the selected bacterial clones also showed a reduced virulence in an insect model of infection. Of these, three exhibited a reduced cytotoxicity in vitro, and among them one was also markedly attenuated in its virulence in a murine lung infection model. For 21 of the 23 mutants, the transposon insertion site was identified. This revealed that among the genes necessary for full in vivo virulence are those that function in lipopolysaccharide (LPS) biosynthesis, iron uptake and hemolysin produc tion. Using this system we also identified novel conserved virulence factors required for Pseudomonas aeruginosa pathogenicity. This study extends the utility of C.elegans as an in vivo model for the study of bacterial virulence and advances the molecular understanding of S.marcescens pathogenicity. PMID:12660152

  6. Mitochondrial Telomeres as Molecular Markers for Identification of the Opportunistic Yeast Pathogen Candida parapsilosis

    PubMed Central

    Nosek, Jozef; Tomáška, L'ubomír; Ryčovská, Adriana; Fukuhara, Hiroshi

    2002-01-01

    Recent studies have demonstrated that a large number of organisms carry linear mitochondrial DNA molecules possessing specialized telomeric structures at their ends. Based on this specific structural feature of linear mitochondrial genomes, we have developed an approach for identification of the opportunistic yeast pathogen Candida parapsilosis. The strategy for identification of C. parapsilosis strains is based on PCR amplification of specific DNA sequences derived from the mitochondrial telomere region. This assay is complemented by immunodetection of a protein component of mitochondrial telomeres. The results demonstrate that mitochondrial telomeres represent specific molecular markers with potential applications in yeast diagnostics and taxonomy. PMID:11923346

  7. Comprehensive analysis of phospholipids and glycolipids in the opportunistic pathogen Enterococcus faecalis

    PubMed Central

    Gao, Iris H.; Nair, Zeus J.; Kumar, Jaspal K.; Gao, Liang; Kline, Kimberly A.; Wenk, Markus R.

    2017-01-01

    Enterococcus faecalis is a Gram-positive, opportunistic, pathogenic bacterium that causes a significant number of antibiotic-resistant infections in hospitalized patients. The development of antibiotic resistance in hospital-associated pathogens is a formidable public health threat. In E. faecalis and other Gram-positive pathogens, correlations exist between lipid composition and antibiotic resistance. Resistance to the last-resort antibiotic daptomycin is accompanied by a decrease in phosphatidylglycerol (PG) levels, whereas multiple peptide resistance factor (MprF) converts anionic PG into cationic lysyl-PG via a trans-esterification reaction, providing resistance to cationic antimicrobial peptides. Unlike previous studies that relied on thin layer chromatography and spectrophotometry, we have performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) directly on lipids extracted from E. faecalis, and quantified the phospholipids through multiple reaction monitoring (MRM). In the daptomycin-sensitive E. faecalis strain OG1RF, we have identified 17 PGs, 8 lysyl-PGs (LPGs), 23 cardiolipins (CL), 3 glycerophospho-diglucosyl-diacylglycerols (GPDGDAG), 5 diglucosyl-diacylglycerols (DGDAG), 3 diacylglycerols (DAGs), and 4 triacylglycerols (TAGs). We have quantified PG and shown that PG levels vary during growth of E. faecalis in vitro. We also show that two daptomycin-resistant (DapR) strains of E. faecalis have substantially lower levels of PG and LPG levels. Since LPG levels in these strains are lower, daptomycin resistance is likely due to the reduction in PG. This lipidome map is the first comprehensive analysis of membrane phospholipids and glycolipids in the important human pathogen E. faecalis, for which antimicrobial resistance and altered lipid homeostasis have been intimately linked. PMID:28423018

  8. Differential Microbial Diversity in Drosophila melanogaster: Are Fruit Flies Potential Vectors of Opportunistic Pathogens?

    PubMed Central

    Maldonado-Morales, Génesis; Bayman, Paul

    2017-01-01

    Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet many aspects regarding its microbial community and interactions with pathogens remain unclear. In this study wild D. melanogaster were collected from tropical fruits in Puerto Rico to test how the microbiota is distributed and to compare the culturable diversity of fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria. The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum candidum, Klebsiella oxytoca, Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D. melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health. PMID:29234354

  9. The Black Yeast Exophiala dermatitidis and Other Selected Opportunistic Human Fungal Pathogens Spread from Dishwashers to Kitchens

    PubMed Central

    Zupančič, Jerneja; Novak Babič, Monika; Zalar, Polona; Gunde-Cimerman, Nina

    2016-01-01

    We investigated the diversity and distribution of fungi in nine different sites inside 30 residential dishwashers. In total, 503 fungal strains were isolated, which belong to 10 genera and 84 species. Irrespective of the sampled site, 83% of the dishwashers were positive for fungi. The most frequent opportunistic pathogenic species were Exophiala dermatitidis, Candida parapsilosis sensu stricto, Exophiala phaeomuriformis, Fusarium dimerum, and the Saprochaete/Magnusiomyces clade. The black yeast E. dermatitidis was detected in 47% of the dishwashers, primarily at the dishwasher rubber seals, at up to 106 CFU/cm2; the other fungi detected were in the range of 102 to 105 CFU/cm2. The other most heavily contaminated dishwasher sites were side nozzles, doors and drains. Only F. dimerum was isolated from washed dishes, while dishwasher waste water contained E. dermatitidis, Exophiala oligosperma and Sarocladium killiense. Plumbing systems supplying water to household appliances represent the most probable route for contamination of dishwashers, as the fungi that represented the core dishwasher mycobiota were also detected in the tap water. Hot aerosols from dishwashers contained the human opportunistic yeast C. parapsilosis, Rhodotorula mucilaginosa and E. dermatitidis (as well as common air-borne genera such as Aspergillus, Penicillium, Trichoderma and Cladosporium). Comparison of fungal contamination of kitchens without and with dishwashers revealed that virtually all were contaminated with fungi. In both cases, the most contaminated sites were the kitchen drain and the dish drying rack. The most important difference was higher prevalence of black yeasts (E. dermatitidis in particular) in kitchens with dishwashers. In kitchens without dishwashers, C. parapsilosis strongly prevailed with negligible occurrence of E. dermatitidis. F. dimerum was isolated only from kitchens with dishwashers, while Saprochaete/Magnusiomyces isolates were only found within dishwashers. We

  10. Impact of untreated urban waste on the prevalence and antibiotic resistance profiles of human opportunistic pathogens in agricultural soils from Burkina Faso.

    PubMed

    Youenou, Benjamin; Hien, Edmond; Deredjian, Amélie; Brothier, Elisabeth; Favre-Bonté, Sabine; Nazaret, Sylvie

    2016-12-01

    This study examined the long-term effects of the landfill disposal of untreated urban waste for soil fertilization on the prevalence and antibiotic resistance profiles of various human opportunistic pathogens in soils from Burkina Faso. Samples were collected at three sites in the periphery of Ouagadougou during two campaigns in 2008 and 2011. At each site, amendment led to changes in physico-chemical characteristics as shown by the increase in pH, CEC, total C, total N, and metal contents. Similarly, the numbers of total heterotrophic bacteria were higher in the amended fields than in the control ones. No sanitation indicators, i.e., coliforms, Staphylococci, and Enterococci, were detected. Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) were detected at a low level in one amended field. Stenotrophomonas maltophilia was detected from both campaigns at the three sites in the amended fields and only once in an unamended field. Diversity analysis showed some opportunistic pathogen isolates to be closely related to reference clinical strains responsible for nosocomial- or community-acquired infections in Northern countries. Antibiotic resistance tests showed that P. aeruginosa and Bcc isolates had a wild-type phenotype and that most S. maltophilia isolates had a multi-drug resistance profile with resistance to 7 to 15 antibiotics. Then we were able to show that amendment led to an increase of some human opportunistic pathogens including multi-drug resistant isolates. Although the application of untreated urban waste increases both soil organic matter content and therefore soil fertility, the consequences of this practice on human health should be considered.

  11. Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2017-01-01

    It is generally thought that mucosal fluids protect underlying epithelial surfaces against opportunistic infection via their antimicrobial activity. However, our published data show that human tear fluid can protect against the major opportunistic pathogen Pseudomonas aeruginosa independently of bacteriostatic activity. Here, we explored the mechanisms for tear protection, focusing on impacts of tear fluid on bacterial virulence factor expression. Results showed that tear fluid suppressed twitching motility, a type of surface-associated movement conferred by pili. Previously, we showed that twitching is critical for P. aeruginosa traversal of corneal epithelia, exit from epithelial cells after internalization, and corneal virulence. Inhibition of twitching by tear fluid was dose-dependent with dilutions to 6.25% retaining activity. Purified lactoferrin, lysozyme, and contrived tears containing these, and many other, tear components lacked the activity. Systematic protein fractionation, mass spectrometry, and immunoprecipitation identified the glycoprotein DMBT1 (Deleted in Malignant Brain Tumors 1) in tear fluid as required. DMBT1 purified from human saliva also inhibited twitching, as well as P. aeruginosa traversal of human corneal epithelial cells in vitro, and reduced disease pathology in a murine model of corneal infection. DMBT1 did not affect PilA expression, nor bacterial intracellular cyclicAMP levels, and suppressed twitching motility of P. aeruginosa chemotaxis mutants (chpB, pilK), and an adenylate cyclase mutant (cyaB). However, dot-immunoblot assays showed purified DMBT1 binding of pili extracted from PAO1 suggesting that twitching inhibition may involve a direct interaction with pili. The latter could affect extension or retraction of pili, their interactions with biotic or abiotic surfaces, or cause their aggregation. Together, the data suggest that DMBT1 inhibition of twitching motility contributes to the mechanisms by which mucosal fluids protect

  12. Opportunistic Screening for Exposure to Bullying in the Pediatric Emergency Department

    PubMed Central

    Seltzer, Marlene; Menoch, Margaret; Chen, Charity

    2017-01-01

    To assess opportunistic screening for exposure to bullying in the pediatric emergency department (ED), an anonymous survey inquiring about exposure to physical, verbal, social, and cyber bullying behaviors was given to ED patients 5 to 18 years old. The survey asked about being the recipient, perpetrator, and/or witness of bullying; the frequency of exposure; liking school; missing school; and presenting complaint. Either the child or parent could complete the survey. A total of 909 surveys were analyzed. Exposure was 78.7%. A greater proportion of females reported being victims and witnesses. Youth who reported being both victims and witnesses represented the largest group, with witness-only the second largest. Parents reported less cyber-bullying and witness status to all types of bullying. For children who did not like school, there was a significant difference in exposure versus nonexposure. There was no association with presenting complaint. Opportunistic screening for bullying exposure in pediatric ED patients warrants consideration as it may increase detection of preclinical status and clinical sequelae. PMID:28680945

  13. Multidrug-resistant opportunistic pathogens challenging veterinary infection control.

    PubMed

    Walther, Birgit; Tedin, Karsten; Lübke-Becker, Antina

    2017-02-01

    Although the problems associated with healthcare-associated infections (HAI) and the emergence of zoonotic and multidrug-resistant pathogens in companion animal (dogs, cats and horses) medicine have been well-known for decades, current progress with respect to practical implementation of infection control programs in veterinary clinics has been limited. Clinical outbreak events reported for methicillin-resistant Staphylooccus aureus (MRSA) and Staphylococcus pseudintermedius (MRSP), extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and multidrug-resistant (MDR) Salmonella Serovars indicate the necessity of infection control strategies for protecting animal patients at risk as well as veterinary personnel. The close bond between humans and their companion animals provides opportunities for exchange of microorganisms, including MDR pathogens. This particular aspect of the "One Health" idea requires more representative surveillance efforts and infection control strategies with respect to animal-species specific characters. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Opportunistic immunisation in the emergency department: a survey of staff knowledge, opinion and practices.

    PubMed

    Philips, Leanne; Young, Jeanine; Williams, Lesley A; Cooke, Marie; Rickard, Claire

    2014-05-01

    The aim of this study was to identify (a) emergency department staff knowledge, opinion and practices in relation to childhood vaccines and opportunistic immunisation in the emergency department and (b) differences between nursing and medical staff knowledge, opinion and self reported practices. A self-administered, cross-sectional survey was offered to a convenience sample of medical and nursing staff (n=86) working in a tertiary paediatric emergency department. Variables of interest were described using frequencies and odds ratios to report differences between medical and nursing staff responses. An 87% survey response was achieved. The majority of staff agreed that childhood vaccines were safe (96%), effective (99%) and necessary (97%). Less than half (45%) of the staff correctly identified that there is no association between measles, mumps and rubella (MMR) vaccine and autism. Medical staff were more likely than nurses to disagree that giving multiple vaccines overloads the immune system (p<0.01), or that complementary therapies reduced the need for a child to be vaccinated (p<0.006). These knowledge deficits exist despite a reported awareness of immunisation resources. The majority (96%) of those surveyed reported that the Australian Immunisation Handbook was as a useful resource. Overall, the majority of staff agreed vaccines are safe, effective and necessary. This study highlighted that staff knowledge deficits and misconceptions about vaccines and vaccine management may be barriers to promoting opportunistic immunisation practices in ED. Copyright © 2014 College of Emergency Nursing Australasia Ltd. All rights reserved.

  15. Comparative systems analysis of the secretome of the opportunistic pathogen Aspergillus fumigatus and other Aspergillus species.

    PubMed

    Vivek-Ananth, R P; Mohanraj, Karthikeyan; Vandanashree, Muralidharan; Jhingran, Anupam; Craig, James P; Samal, Areejit

    2018-04-26

    Aspergillus fumigatus and multiple other Aspergillus species cause a wide range of lung infections, collectively termed aspergillosis. Aspergilli are ubiquitous in environment with healthy immune systems routinely eliminating inhaled conidia, however, Aspergilli can become an opportunistic pathogen in immune-compromised patients. The aspergillosis mortality rate and emergence of drug-resistance reveals an urgent need to identify novel targets. Secreted and cell membrane proteins play a critical role in fungal-host interactions and pathogenesis. Using a computational pipeline integrating data from high-throughput experiments and bioinformatic predictions, we have identified secreted and cell membrane proteins in ten Aspergillus species known to cause aspergillosis. Small secreted and effector-like proteins similar to agents of fungal-plant pathogenesis were also identified within each secretome. A comparison with humans revealed that at least 70% of Aspergillus secretomes have no sequence similarity with the human proteome. An analysis of antigenic qualities of Aspergillus proteins revealed that the secretome is significantly more antigenic than cell membrane proteins or the complete proteome. Finally, overlaying an expression dataset, four A. fumigatus proteins upregulated during infection and with available structures, were found to be structurally similar to known drug target proteins in other organisms, and were able to dock in silico with the respective drug.

  16. Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes

    PubMed Central

    Jakobsen, Tim Holm; Hansen, Martin Asser; Jensen, Peter Østrup; Hansen, Lars; Riber, Leise; Cockburn, April; Kolpen, Mette; Rønne Hansen, Christine; Ridderberg, Winnie; Eickhardt, Steffen; Hansen, Marlene; Kerpedjiev, Peter; Alhede, Morten; Qvortrup, Klaus; Burmølle, Mette; Moser, Claus; Kühl, Michael; Ciofu, Oana; Givskov, Michael; Sørensen, Søren J.; Høiby, Niels; Bjarnsholt, Thomas

    2013-01-01

    Achromobacter xylosoxidans is an environmental opportunistic pathogen, which infects an increasing number of immunocompromised patients. In this study we combined genomic analysis of a clinical isolated A. xylosoxidans strain with phenotypic investigations of its important pathogenic features. We present a complete assembly of the genome of A. xylosoxidans NH44784-1996, an isolate from a cystic fibrosis patient obtained in 1996. The genome of A. xylosoxidans NH44784-1996 contains approximately 7 million base pairs with 6390 potential protein-coding sequences. We identified several features that render it an opportunistic human pathogen, We found genes involved in anaerobic growth and the pgaABCD operon encoding the biofilm adhesin poly-β-1,6-N-acetyl-D-glucosamin. Furthermore, the genome contains a range of antibiotic resistance genes coding efflux pump systems and antibiotic modifying enzymes. In vitro studies of A. xylosoxidans NH44784-1996 confirmed the genomic evidence for its ability to form biofilms, anaerobic growth via denitrification, and resistance to a broad range of antibiotics. Our investigation enables further studies of the functionality of important identified genes contributing to the pathogenicity of A. xylosoxidans and thereby improves our understanding and ability to treat this emerging pathogen. PMID:23894309

  17. Preventing and treating biologic-associated opportunistic infections.

    PubMed

    Winthrop, Kevin L; Chiller, Tom

    2009-07-01

    A variety of opportunistic pathogens have been reported to infect patients receiving tumor necrosis factor (TNF) antagonists for the treatment of autoimmune diseases. These pathogens are numerous, and include coccidioides, histoplasma, nontuberculous mycobacteria, Mycobacteria tuberculosis, and others of public health concern. Accordingly, TNF antagonists should be used with caution in patients at risk for tuberculosis, and screening for latent tuberculosis infection should be undertaken before anti-TNF therapy is initiated. Although screening and prevention efforts have decreased the risk of tuberculosis in this setting, optimal screening methods represent an area of evolving controversy. This article discusses the latest developments in screening methodologies for latent tuberculosis infection, as well as potential preventive and therapeutic considerations for opportunistic infections associated with anti-TNF agents and other biologic therapies.

  18. Methodological Approaches for Monitoring Opportunistic Pathogens in Premise Plumbing: A Review

    PubMed Central

    Wang, Hong; Bedard, Emilie; Prevost, Michele; Camper, Anne K.; Hill, Vincent R.; Pruden, Amy

    2017-01-01

    Opportunistic pathogens inhabiting premise (i.e., building) plumbing (OPPPs, e.g., L. pneumophila, M. avium complex, P. aeruginosa, Acanthamoeba, and N. fowleri) are a significant and growing source of disease. Because OPPPs establish and grow as part of the native drinking water microbiota, they do not correspond to fecal indicators, presenting a significant challenge to common and effective monitoring strategies. Further, different OPPPs present distinct requirements for sampling, preservation, and analysis, creating a significant impediment to their parallel detection. The aim of this critical review is to synthesize the state of the science of monitoring OPPPs and to identify a path forward for their simultaneous detection and quantification in a manner commensurate with the need for reliable data to inform risk assessment and mitigation. Water and biofilm sampling procedures, as well as factors influencing sample representativeness and detection sensitivity, are critically evaluated with respect to the five representative bacterial and amoebal OPPPs noted above. Available culturing and molecular approaches are discussed in terms of their advantages, limitations, and applicability. Knowledge gaps and research needs are identified. PMID:28390237

  19. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce.

    PubMed

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-10-05

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10(-4). However, the annual risk arising from P. aeruginosa was 9.55 × 10(-4), slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  20. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    PubMed Central

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-01-01

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  1. Phaeohyphomycoses, Emerging Opportunistic Diseases in Animals

    PubMed Central

    Seyedmousavi, S.; Guillot, J.

    2013-01-01

    Emerging fungal diseases due to black yeasts and relatives in domestic or wild animals and in invertebrates or cold- and warm-blooded vertebrates are continually being reported, either as novel pathogens or as familiar pathogens affecting new species of hosts. Different epidemiological situations can be distinguished, i.e., occurrence as single infections or as zoonoses, and infection may occur sporadically in otherwise healthy hosts. Such infections are found mostly in mammals but also in cold-blooded animals, are frequently subcutaneous or cerebral, and bear much similarity to human primary disorders. Infections of the nervous system are mostly fatal, and the source and route of infection are currently unknown. A third epidemiological situation corresponds to pseudoepidemics, i.e., infection of a large host population due to a common source. It is often observed and generally hypothesized that the susceptible animals are under stress, e.g., due to poor housing conditions of mammals or to a change of basins in the case of fishes. The descriptions in this article represent an overview of the more commonly reported and recurring black fungi and the corresponding diseases in different types of animals. PMID:23297257

  2. Destruction of Opportunistic Pathogens via Polymer Nanoparticle-Mediated Release of Plant-Based Antimicrobial Payloads

    PubMed Central

    Amato, Dahlia N.; Amato, Douglas V.; Mavrodi, Olga V.; Braasch, Dwaine A.; Walley, Susan E.; Douglas, Jessica R.

    2017-01-01

    The synthesis of antimicrobial thymol/carvacrol-loaded polythioether nanoparticles (NPs) via a one-pot, solvent-free miniemulsion thiol-ene photopolymerization process is reported. The active antimicrobial agents, thymol and carvacrol, are employed as “solvents” for the thiol-ene monomer phase in the miniemulsion to enable facile high capacity loading (≈50% w/w), excellent encapsulation efficiencies (>95%), and elimination of all postpolymerization purification processes. The NPs serve as high capacity reservoirs for slow-release and delivery of thymol/carvacrol-combination payloads that exhibit inhibitory and bactericidal activity (>99.9% kill efficiency at 24 h) against gram-positive and gram-negative bacteria, including both saprophytic (Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 25922) and pathogenic species (E. coli ATCC 43895, Staphylococcus aureus RN6390, and Burkholderia cenocepacia K56-2). This report is among the first to demonstrate antimicrobial efficacy of essential oil-loaded nanoparticles against B. cenocepacia – an innately resistant opportunistic pathogen commonly associated with debilitating respiratory infections in cystic fibrosis. Although a model platform, these results point to promising pathways to particle-based delivery of plant-derived extracts for a range of antimicrobial applications, including active packaging materials, topical antiseptics, and innovative therapeutics. PMID:26946055

  3. [New approaches to oral cavity opportunistic microbiota study].

    PubMed

    Tets, G V; Vikina, D S; Vecherkovskaia, M F; Domorad, A A; Kharlamova, V V; Tets, V V

    2013-01-01

    Identification of some bacteria of the oral microbiota in humans including opportunistic pathogens capable of causing infections of various locations is a challenging problem for dentistry. Lack of knowledge on oral microbiota is the result of the absence of appropriate culture technique for isolation of pure cultures of those bacteria. The paper presents the study on mixed oral microbial biofilms with isolation and identification of insufficiently explored or still unknown aerobic opportunistic bacteria.

  4. Strategies for the Identification and Tracking of Cronobacter Species: An Opportunistic Pathogen of Concern to Neonatal Health

    PubMed Central

    Yan, Qiongqiong; Fanning, Séamus

    2015-01-01

    Cronobacter species are emerging opportunistic food-borne pathogens, which consists of seven species, including C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, C. universalis, and C. condimenti. The organism can cause severe clinical infections, including necrotizing enterocolitis, septicemia, and meningitis, predominately among neonates <4 weeks of age. Cronobacter species can be isolated from various foods and their surrounding environments; however, powdered infant formula (PIF) is the most frequently implicated food source linked with Cronobacter infection. This review aims to provide a summary of laboratory-based strategies that can be used to identify and trace Cronobacter species. The identification of Cronobacter species using conventional culture method and immuno-based detection protocols were first presented. The molecular detection and identification at genus-, and species-level along with molecular-based serogroup approaches are also described, followed by the molecular sub-typing methods, in particular pulsed-field gel electrophoresis and multi-locus sequence typing. Next generation sequence approaches, including whole genome sequencing, DNA microarray, and high-throughput whole-transcriptome sequencing, are also highlighted. Appropriate application of these strategies would contribute to reduce the risk of Cronobacter contamination in PIF and production environments, thereby improving food safety and protecting public health. PMID:26000266

  5. REAL-TIME PCR DETECTION OF THREE HUMAN-PATHOGENIC SPECIES FROM THE MICROSPORIDIAL GENUS ENCEPHALITOZOON

    EPA Science Inventory

    Three microsporidial species from the genus Encephalitozoon, E. hellem, E. cuniculi and E. intestinalis, have emerged as important opportunistic pathogens of humans affecting organ transplant recipients, AIDS patients, and other immunocompromised patients. Even though these thre...

  6. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review.

    PubMed

    Wang, Hong; Bédard, Emilie; Prévost, Michèle; Camper, Anne K; Hill, Vincent R; Pruden, Amy

    2017-06-15

    Opportunistic premise (i.e., building) plumbing pathogens (OPPPs, e.g., Legionella pneumophila, Mycobacterium avium complex, Pseudomonas aeruginosa, Acanthamoeba, and Naegleria fowleri) are a significant and growing source of disease. Because OPPPs establish and grow as part of the native drinking water microbiota, they do not correspond to fecal indicators, presenting a major challenge to standard drinking water monitoring practices. Further, different OPPPs present distinct requirements for sampling, preservation, and analysis, creating an impediment to their parallel detection. The aim of this critical review is to evaluate the state of the science of monitoring OPPPs and identify a path forward for their parallel detection and quantification in a manner commensurate with the need for reliable data that is informative to risk assessment and mitigation. Water and biofilm sampling procedures, as well as factors influencing sample representativeness and detection sensitivity, are critically evaluated with respect to the five representative bacterial and amoebal OPPPs noted above. Available culturing and molecular approaches are discussed in terms of their advantages, limitations, and applicability. Knowledge gaps and research needs towards standardized approaches are identified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Annual variations and effects of temperature on Legionella spp. and other potential opportunistic pathogens in a bathroom.

    PubMed

    Lu, Jingrang; Buse, Helen; Struewing, Ian; Zhao, Amy; Lytle, Darren; Ashbolt, Nicholas

    2017-01-01

    Opportunistic pathogens (OPs) in drinking water, like Legionella spp., mycobacteria, Pseudomonas aeruginosa, and free-living amobae (FLA) are a risk to human health, due to their post-treatment growth in water systems. To assess and manage these risks, it is necessary to understand their variations and environmental conditions for the water routinely used. We sampled premise tap (N cold  = 26, N hot  = 26) and shower (N shower  = 26) waters in a bathroom and compared water temperatures to levels of OPs via qPCR and identified Legionella spp. by 16S ribosomal RNA (rRNA) gene sequencing. The overall occurrence and cell equivalent quantities (CE L -1 ) of Mycobacterium spp. were highest (100 %, 1.4 × 10 5 ), followed by Vermamoeba vermiformis (91 %, 493), Legionella spp. (59 %, 146), P. aeruginosa (14 %, 10), and Acanthamoeba spp. (5 %, 6). There were significant variations of OP's occurrence and quantities, and water temperatures were associated with their variations, especially for Mycobacterium spp., Legionella spp., and V. vermiformis. The peaks observed for Legionella, mainly consisted of Legionella pneumophila sg1 or Legionella anisa, occurred in the temperature ranged from 19 to 49 °C, while Mycobacterium spp. and V. vermiformis not only co-occurred with Legionella spp. but also trended to increase with increasing temperatures. There were higher densities of Mycobacterium in first than second draw water samples, indicating their release from faucet/showerhead biofilm. Legionella spp. were mostly at detectable levels and mainly consisted of L. pneumophila, L. anisa, Legionella donaldsonii, Legionella tunisiensis, and an unknown drinking water isolate based on sequence analysis. Results from this study suggested potential health risks caused by opportunistic pathogens when exposed to warm shower water with low chlorine residue and the use of Mycobacterium spp. as an indicator of premise pipe biofilm and the control management of those potential

  8. Agent-based modeling approach of immune defense against spores of opportunistic human pathogenic fungi.

    PubMed

    Tokarski, Christian; Hummert, Sabine; Mech, Franziska; Figge, Marc Thilo; Germerodt, Sebastian; Schroeter, Anja; Schuster, Stefan

    2012-01-01

    Opportunistic human pathogenic fungi like the ubiquitous fungus Aspergillus fumigatus are a major threat to immunocompromised patients. An impaired immune system renders the body vulnerable to invasive mycoses that often lead to the death of the patient. While the number of immunocompromised patients is rising with medical progress, the process, and dynamics of defense against invaded and ready to germinate fungal conidia are still insufficiently understood. Besides macrophages, neutrophil granulocytes form an important line of defense in that they clear conidia. Live imaging shows the interaction of those phagocytes and conidia as a dynamic process of touching, dragging, and phagocytosis. To unravel strategies of phagocytes on the hunt for conidia an agent-based modeling approach is used, implemented in NetLogo. Different modes of movement of phagocytes are tested regarding their clearing efficiency: random walk, short-term persistence in their recent direction, chemotaxis of chemokines excreted by conidia, and communication between phagocytes. While the short-term persistence hunting strategy turned out to be superior to the simple random walk, following a gradient of chemokines released by conidial agents is even better. The advantage of communication between neutrophilic agents showed a strong dependency on the spatial scale of the focused area and the distribution of the pathogens.

  9. Destruction of Opportunistic Pathogens via Polymer Nanoparticle-Mediated Release of Plant-Based Antimicrobial Payloads.

    PubMed

    Amato, Dahlia N; Amato, Douglas V; Mavrodi, Olga V; Braasch, Dwaine A; Walley, Susan E; Douglas, Jessica R; Mavrodi, Dmitri V; Patton, Derek L

    2016-05-01

    The synthesis of antimicrobial thymol/carvacrol-loaded polythioether nanoparticles (NPs) via a one-pot, solvent-free miniemulsion thiol-ene photopolymerization process is reported. The active antimicrobial agents, thymol and carvacrol, are employed as "solvents" for the thiol-ene monomer phase in the miniemulsion to enable facile high capacity loading (≈50% w/w), excellent encapsulation efficiencies (>95%), and elimination of all postpolymerization purification processes. The NPs serve as high capacity reservoirs for slow-release and delivery of thymol/carvacrol-combination payloads that exhibit inhibitory and bactericidal activity (>99.9% kill efficiency at 24 h) against gram-positive and gram-negative bacteria, including both saprophytic (Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 25922) and pathogenic species (E. coli ATCC 43895, Staphylococcus aureus RN6390, and Burkholderia cenocepacia K56-2). This report is among the first to demonstrate antimicrobial efficacy of essential oil-loaded nanoparticles against B. cenocepacia - an innately resistant opportunistic pathogen commonly associated with debilitating respiratory infections in cystic fibrosis. Although a model platform, these results point to promising pathways to particle-based delivery of plant-derived extracts for a range of antimicrobial applications, including active packaging materials, topical antiseptics, and innovative therapeutics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Propionibacterium acnes: from Commensal to Opportunistic Biofilm-Associated Implant Pathogen

    PubMed Central

    Achermann, Yvonne; Goldstein, Ellie J. C.; Coenye, Tom

    2014-01-01

    SUMMARY Propionibacterium acnes is known primarily as a skin commensal. However, it can present as an opportunistic pathogen via bacterial seeding to cause invasive infections such as implant-associated infections. These infections have gained more attention due to improved diagnostic procedures, such as sonication of explanted foreign materials and prolonged cultivation time of up to 14 days for periprosthetic biopsy specimens, and improved molecular methods, such as broad-range 16S rRNA gene PCR. Implantassociated infections caused by P. acnes are most often described for shoulder prosthetic joint infections as well as cerebrovascular shunt infections, fibrosis of breast implants, and infections of cardiovascular devices. P. acnes causes disease through a number of virulence factors, such as biofilm formation. P. acnes is highly susceptible to a wide range of antibiotics, including beta-lactams, quinolones, clindamycin, and rifampin, although resistance to clindamycin is increasing. Treatment requires a combination of surgery and a prolonged antibiotic treatment regimen to successfully eliminate the remaining bacteria. Most authors suggest a course of 3 to 6 months of antibiotic treatment, including 2 to 6 weeks of intravenous treatment with a beta-lactam. While recently reported data showed a good efficacy of rifampin against P. acnes biofilms, prospective, randomized, controlled studies are needed to confirm evidence for combination treatment with rifampin, as has been performed for staphylococcal implant-associated infections. PMID:24982315

  11. Emerging pathogens in the fish farming industry and sequencing-based pathogen discovery.

    PubMed

    Tengs, Torstein; Rimstad, Espen

    2017-10-01

    The use of large scale DNA/RNA sequencing has become an integral part of biomedical research. Reduced sequencing costs and the availability of efficient computational resources has led to a revolution in how problems concerning genomics and transcriptomics are addressed. Sequencing-based pathogen discovery represents one example of how genetic data can now be used in ways that were previously considered infeasible. Emerging pathogens affect both human and animal health due to a multitude of factors, including globalization, a shifting environment and an increasing human population. Fish farming represents a relevant, interesting and challenging system to study emerging pathogens. This review summarizes recent progress in pathogen discovery using sequence data, with particular emphasis on viruses in Atlantic salmon (Salmo salar). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evolutionary genomics of yeast pathogens in the Saccharomycotina

    PubMed Central

    Naranjo-Ortíz, Miguel A.; Marcet-Houben, Marina

    2016-01-01

    Saccharomycotina comprises a diverse group of yeasts that includes numerous species of industrial or clinical relevance. Opportunistic pathogens within this clade are often assigned to the genus Candida but belong to phylogenetically distant lineages that also comprise non-pathogenic species. This indicates that the ability to infect humans has evolved independently several times among Saccharomycotina. Although the mechanisms of infection of the main groups of Candida pathogens are starting to be unveiled, we still lack sufficient understanding of the evolutionary paths that led to a virulent phenotype in each of the pathogenic lineages. Deciphering what genomic changes underlie the evolutionary emergence of a virulence trait will not only aid the discovery of novel virulence mechanisms but it will also provide valuable information to understand how new pathogens emerge, and what clades may pose a future danger. Here we review recent comparative genomics efforts that have revealed possible evolutionary paths to pathogenesis in different lineages, focusing on the main three agents of candidiasis worldwide: Candida albicans, C. parapsilosis and C. glabrata. We will discuss what genomic traits may facilitate the emergence of virulence, and focus on two different genome evolution mechanisms able to generate drastic phenotypic changes and which have been associated to the emergence of virulence: gene family expansion and interspecies hybridization. PMID:27493146

  13. Uncommon opportunistic fungal infections of oral cavity: A review

    PubMed Central

    Deepa, AG; Nair, Bindu J; Sivakumar, TT; Joseph, Anna P

    2014-01-01

    The majority of opportunistic oral mucosal fungal infections are due to Candida albicans and Aspergillus fumigatus species. Mucor and Cryptococcus also have a major role in causing oral infections, whereas Geotrichum, Fusarium, Rhodotorula, Saccharomyces and Penicillium marneffei are uncommon pathogens in the oral cavity. The broad spectrum of clinical presentation includes pseudo-membranes, abscesses, ulcers, pustules and extensive tissue necrosis involving bone. This review discusses various uncommon opportunistic fungal infections affecting the oral cavity including their morphology, clinical features and diagnostic methods. PMID:25328305

  14. Diversity and antifungal resistance patterns of prevalent opportunistic pathogenic yeasts colonizing the oral cavities of asymptomatic human immunodeficiency virus-infected individuals, and their relation to CD4+ counts

    PubMed Central

    Kumar, Deepa Anil; Muralidhar, Sumathi; Banerjee, Uma; Basir, Seemi Farhat; Mathur, Purva; Khan, Luqman Ahmad

    2015-01-01

    Background: Yeasts are important opportunistic pathogens, in individuals infected with human immunodeficiency virus (HIV). Yeast species inhabiting the oral mucosa of HIV-infected persons can act as source of oral lesions, especially as the individual progresses towards immunocompromised state. Present study was conducted to evaluate the diversity of yeasts in oral cavities of asymptomatic HIV-infected persons and their association with CD4+ cell counts. Materials and Methods: 100 HIV seropositive subjects and 100 healthy controls were screened for oral yeast carriage using standard procedures. Results: Of the 100 HIV-seropositive persons screened, 48 were colonized by different yeasts, either alone or in association with another species. Candida albicans was the most common species (56.90%) while non C. albicans Candida (NCAC) accounted for 39.65%. Among NCAC, Candida tropicalis and Candida krusei were most common. One isolate each of rare opportunistic pathogenic yeasts, Geotrichum candidum and Saccharomyces cereviseae, was recovered. The control group had an oral candidal carriage rate of 23%; C. albicans was the predominant species, followed by Candida glabrata, C. tropicalis and Candida parapsilosis. Antifungal susceptibility testing revealed no resistance in C. albicans, to the commonly used antifungal agents, whereas resistance or dose dependent susceptibility to fluconazole was observed in some of the NCAC species. Conclusion: Oral carriage of opportunistic pathogenic yeasts was greater in HIV-seropositive persons heading towards immunocompromised state, as evidenced by their CD4+ cell count. The predominant yeast isolated in this study (C. albicans), was found to be susceptible to commonly used antifungals. PMID:26392655

  15. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    PubMed Central

    Hilborn, Elizabeth D.; Arduino, Matthew J.; Pruden, Amy; Edwards, Marc A.

    2015-01-01

    Background Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexisting risk factors and frequently require hospitalization. Objectives The objectives of this report are to alert professionals of the impact of OPPPs, the fact that 30% of the population may be exposed to OPPPs, and the need to develop means to reduce OPPP exposure. We herein present a review of the epidemiology and ecology of these three bacterial OPPPs, specifically to identify common and unique features. Methods A Water Research Foundation–sponsored workshop gathered experts from across the United States to review the characteristics of OPPPs, identify problems, and develop a list of research priorities to address critical knowledge gaps with respect to increasing OPPP-associated disease. Discussion OPPPs share the common characteristics of disinfectant resistance and growth in biofilms in water distribution systems or premise plumbing. Thus, they share a number of habitats with humans (e.g., showers) that can lead to exposure and infection. The frequency of OPPP-infected individuals is rising and will likely continue to rise as the number of at-risk individuals is increasing. Improved reporting of OPPP disease and increased understanding of the genetic, physiologic, and structural characteristics governing the persistence and growth of OPPPs in drinking water distribution systems and premise plumbing is needed. Conclusions Because broadly effective community-level engineering interventions for the control of OPPPs have yet to be identified, and because the number of at-risk individuals will continue to rise, it is likely that OPPP-related infections will continue to increase. However, it is possible that individuals can take measures (e.g., raise hot water heater temperatures and filter

  16. Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus

    PubMed Central

    Sheridan, Kevin J.; Lechner, Beatrix Elisabeth; Keeffe, Grainne O’; Keller, Markus A.; Werner, Ernst R.; Lindner, Herbert; Jones, Gary W.; Haas, Hubertus; Doyle, Sean

    2016-01-01

    Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis. PMID:27748436

  17. Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus.

    PubMed

    Sheridan, Kevin J; Lechner, Beatrix Elisabeth; Keeffe, Grainne O'; Keller, Markus A; Werner, Ernst R; Lindner, Herbert; Jones, Gary W; Haas, Hubertus; Doyle, Sean

    2016-10-17

    Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H 2 O 2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H 2 O 2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H 2 O 2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis.

  18. Microsporidia: emerging pathogenic protists.

    PubMed

    Weiss, L M

    2001-02-23

    Microsporidia are eukaryotic spore forming obligate intracellular protozoan parasites first recognized over 100 years ago. These organisms infect all of the major animal groups and are now recognized as opportunistic pathogens of humans. Microsporidian spores are common in the environment and microsporidia pathogenic to humans have been found in water supplies. The genera Nosema, Vittaforma, Brachiola, Pleistophora, Encephalitozoon, Enterocytozoon, Septata (reclassified to Encephalitozoon) and Trachipleistophora have been found in human infections. These organisms have the smallest known eukaryotic genomes. Microsporidian ribosomal RNA sequences have proven useful as diagnostic tools as well as for phylogenetic analysis. Recent phylogenetic analysis suggests that Microsporidia are related to the fungi. These organisms are defined by the presence of a unique invasion organelle consisting of a single polar tube that coils around the interior of the spore. All microsporidia exhibit the same response to stimuli, that is, the polar tube discharges from the anterior pole of the spore in an explosive reaction. If the polar tube is discharged next to a cell, it can pierce the cell and transfer its sporoplasm into the cell. A technique was developed for the purification of polar tube proteins (PTPs) using differential extraction followed by reverse phase HPLC. This method was used to purify the PTPs from Glugea americanus, Encephalitozoon cuniculi, Enc. hellem and Enc. intestinalis. These PTPs demonstrate conserved characteristics such as solubility, hydrophobicity, mass, proline content and immunologic epitopes. The major PTP gene from Enc. cuniculi and Enc. hellem has been cloned and expressed in vitro. The gene sequences support the importance of ER and in the formation of the polar tube as suggested by morphologic studies. Analysis of the cloned proteins also indicates that secondary structural characteristics are conserved. These characteristics are probably important

  19. Tracking the emerging human pathogen Pseudallescheria boydii by using highly specific monoclonal antibodies.

    PubMed

    Thornton, Christopher R

    2009-05-01

    Pseudallescheria boydii has long been known to cause white grain mycetoma in immunocompetent humans, but it has recently emerged as an opportunistic pathogen of humans, causing potentially fatal invasive infections in immunocompromised individuals and evacuees of natural disasters, such as tsunamis and hurricanes. The diagnosis of P. boydii is problematic since it exhibits morphological characteristics similar to those of other hyaline fungi that cause infectious diseases, such as Aspergillus fumigatus and Scedosporium prolificans. This paper describes the development of immunoglobulin M (IgM) and IgG1 kappa-light chain monoclonal antibodies (MAbs) specific to P. boydii and certain closely related fungi. The MAbs bind to an immunodominant carbohydrate epitope on an extracellular 120-kDa antigen present in the spore and hyphal cell walls of P. boydii and Scedosporium apiospermum. The MAbs do not react with S. prolificans, Scedosporium dehoogii, or a large number of clinically relevant fungi, including A. fumigatus, Candida albicans, Cryptococcus neoformans, Fusarium solani, and Rhizopus oryzae. The MAbs were used in immunofluorescence and double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) to accurately differentiate P. boydii from other infectious fungi and to track the pathogen in environmental samples. Specificity of the DAS-ELISA was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of environmental isolates.

  20. Insights into the Emergent Bacterial Pathogen Cronobacter spp., Generated by Multilocus Sequence Typing and Analysis

    PubMed Central

    Joseph, Susan; Forsythe, Stephen J.

    2012-01-01

    Cronobacter spp. (previously known as Enterobacter sakazakii) is a bacterial pathogen affecting all age groups, with particularly severe clinical complications in neonates and infants. One recognized route of infection being the consumption of contaminated infant formula. As a recently recognized bacterial pathogen of considerable importance and regulatory control, appropriate detection, and identification schemes are required. The application of multilocus sequence typing (MLST) and analysis (MLSA) of the seven alleles atpD, fusA, glnS, gltB, gyrB, infB, and ppsA (concatenated length 3036 base pairs) has led to considerable advances in our understanding of the genus. This approach is supported by both the reliability of DNA sequencing over subjective phenotyping and the establishment of a MLST database which has open access and is also curated; http://www.pubMLST.org/cronobacter. MLST has been used to describe the diversity of the newly recognized genus, instrumental in the formal recognition of new Cronobacter species (C. universalis and C. condimenti) and revealed the high clonality of strains and the association of clonal complex 4 with neonatal meningitis cases. Clearly the MLST approach has considerable benefits over the use of non-DNA sequence based methods of analysis for newly emergent bacterial pathogens. The application of MLST and MLSA has dramatically enabled us to better understand this opportunistic bacterium which can cause irreparable damage to a newborn baby’s brain, and has contributed to improved control measures to protect neonatal health. PMID:23189075

  1. Onychomycosis due to opportunistic molds*

    PubMed Central

    Martínez-Herrera, Erick Obed; Arroyo-Camarena, Stefanie; Tejada-García, Diana Luz; Porras-López, Carlos Francisco; Arenas, Roberto

    2015-01-01

    BACKGROUND: Onychomycosis are caused by dermatophytes and Candida, but rarely by non- dermatophyte molds. These opportunistic agents are filamentous fungi found as soil and plant pathogens. OBJECTIVES: To determine the frequency of opportunistic molds in onychomycosis. METHODS: A retrospective analysis of 4,220 cases with onychomycosis, diagnosed in a 39-month period at the Institute of Dermatology and Skin surgery "Prof. Dr. Fernando A. Cordero C." in Guatemala City, and confirmed with a positive KOH test and culture. RESULTS: 32 cases (0.76%) of onychomycosis caused by opportunistic molds were confirmed. The most affected age group ranged from 41 to 65 years (15 patients, 46.9%) and females were more commonly affected (21 cases, 65.6%) than males. Lateral and distal subungual onychomycosis (OSD-L) was detected in 20 cases (62.5%). The microscopic examination with KOH showed filaments in 19 cases (59.4%), dermatophytoma in 9 cases (28.1%), spores in 2 cases (6.25%), and filaments and spores in 2 cases (6.25%). Etiologic agents: Aspergillus sp., 11 cases (34.4%); Scopulariopsis brevicaulis, 8 cases (25.0%); Cladosporium sp., 3 cases (9.4%); Acremonium sp., 2 cases (6.25%); Paecilomyces sp., 2 cases (6.25%); Tritirachium oryzae, 2 cases (6.25%); Fusarium sp., Phialophora sp., Rhizopus sp. and Alternaria alternate, 1 case (3.1%) each. CONCLUSIONS: We found onychomycosis by opportunistic molds in 0.76% of the cases and DLSO was present in 62.5%. The most frequent isolated etiological agents were: Aspergillus sp. and Scopulariopsis brevicaulis. PMID:26131862

  2. RARE OCCURRENCE OF HETEROTROPHIC BACTERIA WITH PATHOGENIC POTENTIAL IN POTABLE WATER

    EPA Science Inventory

    Since the discovery of Legionella pneumophila, an opportunistic pathogen that is indigenous to water, microbiologists have speculated that there may be other opportunistic pathogens among the numerous heterotrophic bacteria found in potable water. The USEPA developed a series of...

  3. Pathogen evolution and disease emergence in carnivores.

    PubMed

    McCarthy, Alex J; Shaw, Marie-Anne; Goodman, Simon J

    2007-12-22

    Emerging infectious diseases constitute some of the most pressing problems for both human and domestic animal health, and biodiversity conservation. Currently it is not clear whether the removal of past constraints on geographical distribution and transmission possibilities for pathogens alone are sufficient to give rise to novel host-pathogen combinations, or whether pathogen evolution is also generally required for establishment in novel hosts. Canine distemper virus (CDV) is a morbillivirus that is prevalent in the world dog population and poses an important conservation threat to a diverse range of carnivores. We performed an extensive phylogenetic and molecular evolution analysis on complete sequences of all CDV genes to assess the role of selection and recombination in shaping viral genetic diversity and driving the emergence of CDV in non-dog hosts. We tested the specific hypothesis that molecular adaptation at known receptor-binding sites of the haemagglutinin gene is associated with independent instances of the spread of CDV to novel non-dog hosts in the wild. This hypothesis was upheld, providing compelling evidence that repeated evolution at known functional sites (in this case residues 530 and 549 of the haemagglutinin molecule) is associated with multiple independent occurrences of disease emergence in a range of novel host species.

  4. Spontaneous bacterial and fungal infections in genetically engineered mice: Is Escherichia coli an emerging pathogen in laboratory mouse?

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Sager, Martin

    2015-01-01

    The impact of particular microbes on genetically engineered mice depends on the genotype and the environment. Infections resulting in clinical disease have an obvious impact on animal welfare and experimentation. In this study, we investigated the bacterial and fungal aetiology of spontaneous clinical disease of infectious origin among the genetically engineered mice from our institution in relation to their genotype. A total of 63 mice belonging to 33 different mice strains, from severe immunodeficient to wild-type, were found to display infections as the primary cause leading to their euthanasia. The necropsies revealed abscesses localized subcutaneously as well as in the kidney, preputial glands, seminal vesicles, in the uterus, umbilicus or in the lung. In addition, pneumonia, endometritis and septicaemia cases were recorded. Escherichia coli was involved in 21 of 44 (47.72%) of the lesions of bacterial origin, whereas [Pasteurella] pneumotropica was isolated from 19 of 44 (43.18%) cases. The infections with the two agents mentioned above included three cases of mixed infection with both pathogens. Staphylococcus aureus was considered responsible for five of 44 (11.36%) cases whereas Enterobacter cloacae was found to cause lesions in two of 44 (4.54%) mice. Overall, 16 of the 44 (36.36%) cases of bacterial aetiology affected genetically engineered mice without any explicit immunodeficiency or wild-type strains. The remaining 19 cases of interstitial pneumonia were caused by Pneumocystis murina. In conclusion, the susceptibility of genetically modified mice to opportunistic infections has to be regarded with precaution, regardless of the type of genetic modification performed. Beside the classical opportunists, such as [Pasteurella] pneumotropica and Staphylococcus aureus, Escherichia coli should as well be closely monitored to evaluate whether it represents an emerging pathogen in the laboratory mouse.

  5. Structure of a novel exopolysaccharide produced by Burkholderia vietnamiensis, a cystic fibrosis opportunistic pathogen.

    PubMed

    Cescutti, Paola; Cuzzi, Bruno; Herasimenka, Yury; Rizzo, Roberto

    2013-04-15

    Burkholderia vietnamiensis belongs to the Burkholderia cepacia complex and is an opportunistic pathogen for cystic fibrosis patients. As many other Burkholderia species, it has a mucoide phenotype, producing abundant exopolysaccharide. In general, polysaccharides contribute to bacterial survival in a hostile environment, are recognised as virulence factors and as important components in biofilm formation. The primary structure of the exopolysaccharide produced by B. vietnamiensis LMG 10929 was determined mainly by use of 1D and 2D NMR spectroscopy and ESI mass spectrometry. The polymer consists of the trisaccharidic backbone 3)-β-D-Glcp-(1→4)-α-D-Glcp-(1→3)-α-L-Fucp-(1→ with the side chain α-D-Glcp-(1→4)-α-D-GlcAp-(1→3)-α-L-Fucp-(1→ linked to C-3 of the α-D-Glcp residue. The polysaccharide also bears acetyl substituents on about 20% of its repeating units and on at least two different positions. The presence of fucose residues is a novel structural feature among the exopolysaccharides produced by species of the B. cepacia complex. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Characterization and genome analysis of novel bacteriophages infecting the opportunistic human pathogens Klebsiella oxytoca and K. pneumoniae.

    PubMed

    Park, Eun-Ah; Kim, You-Tae; Cho, Jae-Hyun; Ryu, Sangryeol; Lee, Ju-Hoon

    2017-04-01

    Klebsiella is a genus of well-known opportunistic human pathogens that are associated with diabetes mellitus and chronic pulmonary obstruction; however, this pathogen is often resistant to multiple drugs. To control this pathogen, two Klebsiella-infecting phages, K. oxytoca phage PKO111 and K. pneumoniae phage PKP126, were isolated from a sewage sample. Analysis of their host range revealed that they infect K. pneumoniae and K. oxytoca, suggesting host specificity for members of the genus Klebsiella. Stability tests confirmed that the phages are stable under various temperature (4 to 60 °C) and pH (3 to 11) conditions. A challenge assay showed that PKO111 and PKP126 inhibit growth of their host strains by 2 log and 4 log, respectively. Complete genome sequencing of the phages revealed that their genome sizes are quite different (168,758 bp for PKO111 and 50,934 bp for PKP126). Their genome annotation results showed that they have no human virulence-related genes, an important safety consideration. In addition, no lysogen-formation gene cluster was detected in either phage genome, suggesting that they are both virulent phages in their bacterial hosts. Based on these results, PKO111 and PKP126 may be good candidates for development of biocontrol agents against members of the genus Klebsiella for therapeutic purposes. A comparative analysis of tail-associated gene clusters of PKO111 and PKP126 revealed relatively low homology, suggesting that they might differ in the way they recognize and infect their specific hosts.

  7. Understanding the Pathogenicity of Burkholderia contaminans, an Emerging Pathogen in Cystic Fibrosis.

    PubMed

    Nunvar, Jaroslav; Kalferstova, Lucie; Bloodworth, Ruhi A M; Kolar, Michal; Degrossi, Jose; Lubovich, Silvina; Cardona, Silvia T; Drevinek, Pavel

    2016-01-01

    Several bacterial species from the Burkholderia cepacia complex (Bcc) are feared opportunistic pathogens that lead to debilitating lung infections with a high risk of developing fatal septicemia in cystic fibrosis (CF) patients. However, the pathogenic potential of other Bcc species is yet unknown. To elucidate clinical relevance of Burkholderia contaminans, a species frequently isolated from CF respiratory samples in Ibero-American countries, we aimed to identify its key virulence factors possibly linked with an unfavorable clinical outcome. We performed a genome-wide comparative analysis of two isolates of B. contaminans ST872 from sputum and blood culture of a female CF patient in Argentina. RNA-seq data showed significant changes in expression for quorum sensing-regulated virulence factors and motility and chemotaxis. Furthermore, we detected expression changes in a recently described low-oxygen-activated (lxa) locus which encodes stress-related proteins, and for two clusters responsible for the biosynthesis of antifungal and hemolytic compounds pyrrolnitrin and occidiofungin. Based on phenotypic assays that confirmed changes in motility and in proteolytic, hemolytic and antifungal activities, we were able to distinguish two phenotypes of B. contaminans that coexisted in the host and entered her bloodstream. Whole genome sequencing revealed that the sputum and bloodstream isolates (each representing a distinct phenotype) differed by over 1,400 mutations as a result of a mismatch repair-deficient hypermutable state of the sputum isolate. The inferred lack of purifying selection against nonsynonymous mutations and the high rate of pseudogenization in the derived isolate indicated limited evolutionary pressure during evolution in the nutrient-rich, stable CF sputum environment. The present study is the first to examine the genomic and transcriptomic differences between longitudinal isolates of B. contaminans. Detected activity of a number of putative virulence

  8. Disease ecology and the global emergence of zoonotic pathogens.

    PubMed

    Wilcox, Bruce A; Gubler, Duane J

    2005-09-01

    The incidence and frequency of epidemic transmission of zoonotic diseases, both known and newly recognized, has increased dramatically in the past 30 years. It is thought that this dramatic disease emergence is primarily the result of the social, demographic, and environmental transformation that has occurred globally since World War II. However, the causal linkages have not been elucidated. Investigating emerging zoonotic pathogens as an ecological phenomenon can provide significant insights as to why some of these pathogens have jumped species and caused major epidemics in humans. A review of concepts and theory from biological ecology and of causal factors in disease emergence previously described suggests a general model of global zoonotic disease emergence. The model links demographic and societal factors to land use and land cover change whose associated ecological factors help explain disease emergence. The scale and magnitude of these changes are more significant than those associated with climate change, the effects of which are largely not yet understood. Unfortunately, the complex character and non-linear behavior of the human-natural systems in which host-pathogen systems are embedded makes specific incidences of disease emergence or epidemics inherently difficult to predict. Employing a complex systems analytical approach, however, may show how a few key ecological variables and system properties, including the adaptive capacity of institutions, explains the emergence of infectious diseases and how an integrated, multi-level approach to zoonotic disease control can reduce risk.

  9. Emerging Pathogens: Challenges and Successes of Molecular Diagnostics

    PubMed Central

    Dong, Jianli; Olano, Juan P.; McBride, Jere W.; Walker, David H.

    2008-01-01

    More than 50 emerging and reemerging pathogens have been identified during the last 40 years. Until 1992 when the Institute of Medicine issued a report that defined emerging infectious diseases, medicine had been complacent about such infectious diseases despite the alarm bells of infections with human immunodeficiency virus. Molecular tools have proven useful in discovering and characterizing emerging viruses and bacteria such as Sin Nombre virus (hantaviral pulmonary syndrome), hepatitis C virus, Bartonella henselae (cat scratch disease, bacillary angiomatosis), and Anaplasma phagocytophilum (human granulocytotropic anaplasmosis). The feasibility of applying molecular diagnostics to dangerous, fastidious, and uncultivated agents for which conventional tests do not yield timely diagnoses has achieved proof of concept for many agents, but widespread use of cost-effective, validated commercial assays has yet to occur. This review presents representative emerging viral respiratory infections, hemorrhagic fevers, and hepatitides, as well as bacterial and parasitic zoonotic, gastrointestinal, and pulmonary infections. Agent characteristics, epidemiology, clinical manifestations, and diagnostic methods are tabulated for another 22 emerging viruses and five emerging bacteria. The ongoing challenge to the field of molecular diagnostics is to apply contemporary knowledge to facilitate agent diagnosis as well as to further discoveries of novel pathogens. PMID:18403608

  10. Development of an aquatic pathogen database (AquaPathogen X) and its utilization in tracking emerging fish virus pathogens in North America

    USGS Publications Warehouse

    Emmenegger, E.J.; Kentop, E.; Thompson, T.M.; Pittam, S.; Ryan, A.; Keon, D.; Carlino, J.A.; Ranson, J.; Life, R.B.; Troyer, R.M.; Garver, K.A.; Kurath, G.

    2011-01-01

    The AquaPathogen X database is a template for recording information on individual isolates of aquatic pathogens and is freely available for download (http://wfrc.usgs.gov). This database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (e.g. viruses, parasites and bacteria) from multiple aquatic animal host species (e.g. fish, shellfish and shrimp). The cataloguing of isolates from different aquatic pathogens simultaneously is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and elucidation of key risk factors associated with pathogen incursions into new water systems. An application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak, was also developed. Exported records for two aquatic rhabdovirus species emerging in North America were used in the implementation of two separate web-accessible databases: the Molecular Epidemiology of Aquatic Pathogens infectious haematopoietic necrosis virus (MEAP-IHNV) database (http://gis.nacse.org/ihnv/) released in 2006 and the MEAP- viral haemorrhagic septicaemia virus (http://gis.nacse.org/vhsv/) database released in 2010.

  11. Pathogens in drinking water: Are there any new ones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reasoner, D.J.

    1993-01-01

    Since 1976 three newly recognized human pathogens have become familiar to the drinking water industry as waterborne disease agents. These are: the legionnaires disease agent, Legionella pneumophila and related species; and two protozoan pathogens, Giardia lamblia and Cryptosporidium parvum, both of which form highly disinfectant resistant cysts that are shed in the feces of infected individuals. The question frequently arises - are there other emerging waterborne pathogens that may pose a human health problem that the drinking water industry will have to deal with. The paper will review the current state of knowledge of the occurrence and incidence of pathogensmore » and opportunistic pathogens other than Legionella, Giardia and Cryptosporidium in treated and untreated drinking water. Bacterial agents that will be reviewed include Aeromonas, Pseudomonas, Campylobacter, Mycobacterium, Yersinia and Plesiomonas. Aspects of detection of these agents including detection methods and feasibility of monitoring will be addressed.« less

  12. HIV/AIDS-Associated Opportunistic Protozoal Diarrhea

    PubMed Central

    Agholi, Mahmoud; Motazedian, Mohammad Hossein

    2013-01-01

    Abstract Human immunodeficiency virus (HIV) infection has altered both the epidemiology and outcome of enteric opportunistic parasitic infections. This study was done to determine the prevalence and species/genotypes of intestinal coccidian and microsporidial infections among HIV/AIDS patients with diarrhea and/or a history of diarrhea alternately with an asymptomatic interval, and their association with CD4 T cell count. This cross-sectional study was done from May 2010 to May 2011 in Shiraz University of Medical Sciences, South of Iran. A blood sample was obtained from HIV-positive patients for a CD4 T cell count upon enrollment. Sociodemographic data and a history of diarrhea were collected by interviewing 356 consecutive participants (273 males and 83 females). Whenever possible more than a fecal sample was collected from all the participants and examined for parasites using direct, physiological saline solution ethyl acetate, an acid-fast trichrome stain, nested polymerase chain reaction, and sequencing techniques for the detection, confirmation, and genotyping of Cryptosporidium spp., Cyclospora cayetanensis, Isospora belli, and intestinal microsporidia (Enterocytozoon bieneusi). The most common opportunistic and nonopportunistic pathogens were Cryptosporidium spp. (C. parvum and C. andersoni), E. bieneusi, Giardia lamblia, Sarcocystis spp., and Blastocystis homonis affecting 34, 8, 23, 1, and 14 patients, respectively. C. cayetanensis, I. belli, Enterobius vermicularis, and Hymenolepis nana were observed in few patients. A CD4 count <200 cells/μl was significantly associated with the presence of opportunistic parasites and diarrhea (p<0.05). Opportunistic intestinal parasites should be suspected in any HIV/AIDS patient with chronic diarrhea. Tropical epidemic nonopportunistic enteric parasitic infections among such patients should not be neglected in Iran. PMID:22873400

  13. Evaluation of two novel barcodes for species recognition of opportunistic pathogens in Fusarium.

    PubMed

    Al-Hatmi, Abdullah M S; Van Den Ende, A H G Gerrits; Stielow, J Benjamin; Van Diepeningen, Anne D; Seifert, Keith A; McCormick, Wayne; Assabgui, Rafik; Gräfenhan, Tom; De Hoog, G Sybren; Levesque, C André

    2016-02-01

    The genus Fusarium includes more than 200 species of which 73 have been isolated from human infections. Fusarium species are opportunistic human pathogens with variable aetiology. Species determination is best made with the combined phylogeny of protein-coding genes such as elongation factor (TEF1), RNA polymerase (RPB2) and the partial β-tubulin (BT2) gene. The internal transcribed spacers 1, 2 and 5.8S rRNA gene (ITS) have also been used, however, ITS cannot discriminate several closely related species and has nonorthologous copies in Fusarium. Currently, morphological approaches and tree-building methods are in use to define species and to discover hitherto undescribed species. Aftter a species is defined, DNA barcoding approaches can be used to identify species by the presence or absence of discrete nucleotide characters. We demonstrate the potential of two recently discovered DNA barcode loci, topoisomerase I (TOP1) and phosphoglycerate kinase (PGK), in combination with other routinely used markers such as TEF1, in an analysis of 144 Fusarium strains belonging to 52 species. Our barcoding study using TOP1 and PKG provided concordance of molecular data with TEF1. The currently accepted Fusarium species sampled were well supported in phylogenetic trees of both new markers. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Group X hybrid histidine kinase Chk1 is dispensable for stress adaptation, host-pathogen interactions and virulence in the opportunistic yeast Candida guilliermondii.

    PubMed

    Navarro-Arias, María J; Dementhon, Karine; Defosse, Tatiana A; Foureau, Emilien; Courdavault, Vincent; Clastre, Marc; Le Gal, Solène; Nevez, Gilles; Le Govic, Yohann; Bouchara, Jean-Philippe; Giglioli-Guivarc'h, Nathalie; Noël, Thierry; Mora-Montes, Hector M; Papon, Nicolas

    2017-09-01

    Hybrid histidine kinases (HHKs) progressively emerge as prominent sensing proteins in the fungal kingdom and as ideal targets for future therapeutics. The group X HHK is of major interest, since it was demonstrated to play an important role in stress adaptation, host-pathogen interactions and virulence in some yeast and mold models, and particularly Chk1, that corresponds to the sole group X HHK in Candida albicans. In the present work, we investigated the role of Chk1 in the low-virulence species Candida guilliermondii, in order to gain insight into putative conservation of the role of group X HHK in opportunistic yeasts. We demonstrated that disruption of the corresponding gene CHK1 does not influence growth, stress tolerance, drug susceptibility, protein glycosylation or cell wall composition in C. guilliermondii. In addition, we showed that loss of CHK1 does not affect C. guilliermondii ability to interact with macrophages and to stimulate cytokine production by human peripheral blood mononuclear cells. Finally, the C. guilliermondii chk1 null mutant was found to be as virulent as the wild-type strain in the experimental model Galleria mellonella. Taken together, our results demonstrate that group X HHK function is not conserved in Candida species. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Task 1.5 Genomic Shift and Drift Trends of Emerging Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borucki, M

    2010-01-05

    The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to conduct analyses of genomic shift and drift trends of emerging pathogens, with a focused eye on select agent pathogens, as well as antibiotic and virulence markers. Most emerging human pathogens are zoonotic viruses with a genome composed of RNA. The high mutation rate of the replication enzymes of RNA viruses contributes to sequence drift andmore » provides one mechanism for these viruses to adapt to diverse hosts (interspecies transmission events) and cause new human and zoonotic diseases. Additionally, new viral pathogens frequently emerge due to genetic shift (recombination and segment reassortment) which allows for dramatic genotypic and phenotypic changes to occur rapidly. Bacterial pathogens also evolve via genetic drift and shift, although sequence drift generally occurs at a much slower rate for bacteria as compared to RNA viruses. However, genetic shift such as lateral gene transfer and inter- and intragenomic recombination enables bacteria to rapidly acquire new mechanisms of survival and antibiotic resistance. New technologies such as rapid whole genome sequencing of bacterial genomes, ultra-deep sequencing of RNA virus populations, metagenomic studies of environments rich in antibiotic resistance genes, and the use of microarrays for the detection and characterization of emerging pathogens provide mechanisms to address the challenges posed by the rapid emergence of pathogens. Bioinformatic algorithms that enable efficient analysis of the massive amounts of data generated by these technologies as well computational modeling of protein structures and evolutionary processes need to be developed to allow the technology to fulfill its potential.« less

  16. Colonic aberrant crypt formation accompanies an increase of opportunistic pathogenic bacteria in C57BL/6 mice fed a high-fat diet.

    PubMed

    Zeng, Huawei; Ishaq, Suzanne L; Liu, Zhenhua; Bukowski, Michael R

    2018-04-01

    The increasing worldwide incidence of colon cancer has been linked to obesity and consumption of a high-fat Western diet. To test the hypothesis that a high-fat diet (HFD) promotes colonic aberrant crypt (AC) formation in a manner associated with gut bacterial dysbiosis, we examined the susceptibility to azoxymethane (AOM)-induced colonic AC and microbiome composition in C57/BL6 mice fed a modified AIN93G diet (AIN, 16% fat, energy) or an HFD (45% fat, energy) for 14 weeks. Mice receiving the HFD exhibited increased plasma leptin, body weight, body fat composition and inflammatory cell infiltration in the ileum compared with those in the AIN group. Consistent with the gut inflammatory phenotype, we observed an increase in colonic AC, plasma interleukin-6, tumor necrosis factor-α, monocyte chemoattractant protein-1 and inducible nitric oxide synthase in the ileum of the HFD-AOM group compared with the AIN-AOM group. Although the HFD and AIN groups did not differ in bacterial species number, the HFD and AIN diets resulted in different bacterial community structures in the colon. The abundance of certain short-chain fatty acid (SCFA) producing bacteria (e.g., Barnesiella) and fecal SCFA (e.g., acetic acid) content were lower in the HFD-AOM group compared with the AIN and AIN-AOM groups. Furthermore, we identified a high abundance of Anaeroplasma bacteria, an opportunistic pathogen in the HFD-AOM group. Collectively, we demonstrate that an HFD promotes AC formation concurrent with an increase of opportunistic pathogenic bacteria in the colon of C57BL/6 mice. Published by Elsevier Inc.

  17. Mycoplasmas and their host: emerging and re-emerging minimal pathogens.

    PubMed

    Citti, Christine; Blanchard, Alain

    2013-04-01

    Commonly known as mycoplasmas, bacteria of the class Mollicutes include the smallest and simplest life forms capable of self replication outside of a host. Yet, this minimalism hides major human and animal pathogens whose prevalence and occurrence have long been underestimated. Owing to advances in sequencing methods, large data sets have become available for a number of mycoplasma species and strains, providing new diagnostic approaches, typing strategies, and means for comprehensive studies. A broader picture is thus emerging in which mycoplasmas are successful pathogens having evolved a number of mechanisms and strategies for surviving hostile environments and adapting to new niches or hosts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Bactericidal assessment of nano-silver on emerging and re-emerging human pathogens.

    PubMed

    Anuj, Samir A; Gajera, Harsukh P; Hirpara, Darshna G; Golakiya, Baljibhai A

    2018-04-24

    With the threat of the growing number of bacteria resistant to antibiotics, the re-emergence of previously deadly infections and the emergence of new infections, there is an urgent need for novel therapeutic agent. Silver in the nano form, which is being used increasingly as antibacterial agents, may extend its antibacterial application to emerging and re-emerging multidrug-resistant pathogens, the main cause of nosocomial diseases worldwide. In the present study, a completely bottom up method to prepare green nano-silver was used. To explore the action of nano-silver on emerging Bacillus megaterium MTCC 7192 and re-emerging Pseudomonas aeruginosa MTCC 741 pathogenic bacteria, the study includes an analysis of the bacterial membrane damage through Scanning Electron Microscope (SEM) as well as alternation of zeta potential and intracellular leakages. In this work, we observed genuine bactericidal property of nano-silver as compare to broad spectrum antibiotics against emerging and re-emerging mode. After being exposed to nano-silver, the membrane becomes scattered from their original ordered arrangement based on SEM observation. Moreover, our results also suggested that alternation of zeta potential enhanced membrane permeability, and beyond a critical point, it leads to cell death. The leakages of intracellular constituents were confirmed by Gas Chromatography-Mass Spectrometry (GC-MS). In conclusion, the combine results suggested that at a specific dose, nano-silver may destroy the structure of bacterial membrane and depress its activity, which causes bacteria to die eventually. Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters.

    PubMed

    Williams, Krista; Pruden, Amy; Falkinham, Joseph O; Edwards, Marc; Williams, Krista; Pruden, Amy; Falkinham, Joseph O; Edwards, Marc

    2015-06-09

    Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs). Here, the relationships between influent organic carbon (0-15,000 µg ozonated fulvic acid /L) and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs)] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium) were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs). The SGWHs were operated at 32-37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate) conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC) and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89). Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points) and over a limited TOC range (0-1000 µg/L), no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches.

  20. Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters

    PubMed Central

    Williams, Krista; Pruden, Amy; Falkinham, Joseph O.; Edwards, Marc

    2015-01-01

    Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs). Here, the relationships between influent organic carbon (0–15,000 µg ozonated fulvic acid /L) and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs)] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium) were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs). The SGWHs were operated at 32–37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate) conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC) and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89). Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points) and over a limited TOC range (0–1000 µg/L), no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches. PMID:26066310

  1. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Bolstad, D; Bolstad, E

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison ofmore » the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.« less

  2. Lung Infections in Systemic Rheumatic Disease: Focus on Opportunistic Infections.

    PubMed

    Di Franco, Manuela; Lucchino, Bruno; Spaziante, Martina; Iannuccelli, Cristina; Valesini, Guido; Iaiani, Giancarlo

    2017-01-29

    Systemic rheumatic diseases have significant morbidity and mortality, due in large part to concurrent infections. The lung has been reported among the most frequent sites of infection in patients with rheumatic disease, who are susceptible to developing pneumonia sustained both by common pathogens and by opportunistic microorganisms. Patients with rheumatic disease show a peculiar vulnerability to infectious complications. This is due in part to intrinsic disease-related immune dysregulation and in part to the immunosuppressive treatments. Several therapeutic agents have been associated to a wide spectrum of infections, complicating the management of rheumatic diseases. This review discusses the most frequent pulmonary infections encountered in rheumatic diseases, focusing on opportunistic agents, consequent diagnostic challenges and appropriate therapeutic strategies.

  3. Scabies mites alter the skin microbiome and promote growth of opportunistic pathogens in a porcine model.

    PubMed

    Swe, Pearl M; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja

    2014-01-01

    The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. This is the first experimental in vivo evidence supporting previous assumptions that

  4. Scabies Mites Alter the Skin Microbiome and Promote Growth of Opportunistic Pathogens in a Porcine Model

    PubMed Central

    Swe, Pearl M.; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja

    2014-01-01

    Background The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. Methodology/Principal Findings In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. Conclusions/Significance This is the first

  5. Emergence of the sudden oak death pathogen Phytophthora ramorum

    Treesearch

    Niklaus J. Grunwald; Matteo Garbelotto; Erica M. Goss; Kurt Huengens; Simone Prospero

    2012-01-01

    The recently emerged plant pathogen Phytophthora ramorum is responsible for causing the sudden oak death epidemic. This review documents the emergence of P. ramorum based on evolutionary and population genetic analyses. Currently infection by P. ramorum occurs only in Europe and North America and three...

  6. Vibrio vulnificus: new insights into a deadly opportunistic pathogen.

    PubMed

    Baker-Austin, Craig; Oliver, James D

    2018-02-01

    Vibrio vulnificus is a Gram-negative aquatic bacterium first isolated by the United States (US) Centers for Disease Control and Prevention (CDC) in 1964. This bacterium is part of the normal microbiota of estuarine waters and occurs in high numbers in molluscan shellfish around the world, particularly in warmer months. Infections in humans are derived from consumption of seafood produce and from water exposure. Vibrio vulnificus is a striking and enigmatic human pathogen, yet many aspects related to its biology, genomics, virulence capabilities and epidemiology remain elusive and poorly understood. This pathogen is responsible for over 95% of seafood-related deaths in the United States, and carries the highest fatality rate of any food-borne pathogen. Indeed, infections associated with this pathogen that progress to primary septicaemia have a similar case fatality rate to category BSL 3 and 4 pathogens, such as anthrax, bubonic plague, Ebola and Marburg fever. Interestingly, V. vulnificus infections disproportionately affect males (∼85% of cases) and older patients (> 40 years), especially those with underlying conditions such as liver diseases, diabetes and immune disorders. New insights from molecular studies and comparative genomic approaches have offered tantalising insights into this pathogen. A recent increase and geographical spread in reported infections, in particular wound cases, underlines the growing international importance of V. vulnificus, particularly in the context of coastal warming. We outline and explore here a range of current data gaps regarding this important pathogen, and provide some current thoughts on approaches to elucidate key aspects associated with this bacterium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Comparison of the h-Index Scores Among Pathogens Identified as Emerging Hazards in North America.

    PubMed

    Cox, R; McIntyre, K M; Sanchez, J; Setzkorn, C; Baylis, M; Revie, C W

    2016-02-01

    Disease surveillance must assess the relative importance of pathogen hazards. Here, we use the Hirsch index (h-index) as a novel method to identify and rank infectious pathogens that are likely to be a hazard to human health in the North American region. This bibliometric index was developed to quantify an individual's scientific research output and was recently used as a proxy measure for pathogen impact. Analysis of more than 3000 infectious organisms indicated that 651 were human pathogen species that had been recorded in the North American region. The h-index of these pathogens ranged from 0 to 584. The h-index of emerging pathogens was greater than non-emerging pathogens as was the h-index of frequently pathogenic pathogens when compared to non-pathogenic pathogens. As expected, the h-index of pathogens varied over time between 1960 and 2011. We discuss how the h-index can contribute to pathogen prioritization and as an indicator of pathogen emergence. © 2014 Blackwell Verlag GmbH.

  8. Label-free molecular imaging of bacterial communities of the opportunistic pathogen Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Baig, Nameera; Polisetti, Sneha; Morales-Soto, Nydia; Dunham, Sage J. B.; Sweedler, Jonathan V.; Shrout, Joshua D.; Bohn, Paul W.

    2016-09-01

    Biofilms, such as those formed by the opportunistic human pathogen Pseudomonas aeruginosa are complex, matrix enclosed, and surface-associated communities of cells. Bacteria that are part of a biofilm community are much more resistant to antibiotics and the host immune response than their free-floating counterparts. P. aeruginosa biofilms are associated with persistent and chronic infections in diseases such as cystic fibrosis and HIV-AIDS. P. aeruginosa synthesizes and secretes signaling molecules such as the Pseudomonas quinolone signal (PQS) which are implicated in quorum sensing (QS), where bacteria regulate gene expression based on population density. Processes such as biofilms formation and virulence are regulated by QS. This manuscript describes the powerful molecular imaging capabilities of confocal Raman microscopy (CRM) and surface enhanced Raman spectroscopy (SERS) in conjunction with multivariate statistical tools such as principal component analysis (PCA) for studying the spatiotemporal distribution of signaling molecules, secondary metabolites and virulence factors in biofilm communities of P. aeruginosa. Our observations reveal that the laboratory strain PAO1C synthesizes and secretes 2-alkyl-4-hydroxyquinoline N-oxides and 2-alkyl-4-hydroxyquinolones in high abundance, while the isogenic acyl homoserine lactone QS-deficient mutant (ΔlasIΔrhlI) strain produces predominantly 2-alkyl-quinolones during biofilm formation. This study underscores the use of CRM, along with traditional biological tools such as genetics, for studying the behavior of microbial communities at the molecular level.

  9. Novel Insights into Cell Entry of Emerging Human Pathogenic Arenaviruses.

    PubMed

    Fedeli, Chiara; Moreno, Héctor; Kunz, Stefan

    2018-06-22

    Viral hemorrhagic fevers caused by emerging RNA viruses of the Arenavirus family are among the most devastating human diseases. Climate change, global trade, and increasing urbanization promote the emergence and re-emergence of these human pathogenic viruses. Emerging pathogenic arenaviruses are of zoonotic origin and reservoir-to-human transmission is crucial for spillover into human populations. Host cell attachment and entry are the first and most fundamental steps of every virus infection and represent major barriers for zoonotic transmission. During host cell invasion, viruses critically depend on cellular factors, including receptors, co-receptors, and regulatory proteins of endocytosis. An in-depth understanding of the complex interaction of a virus with cellular factors implicated in host cell entry is therefore crucial to predict the risk of zoonotic transmission, define the tissue tropism, and assess disease potential. Over the past years, investigation of the molecular and cellular mechanisms underlying host cell invasion of human pathogenic arenaviruses uncovered remarkable viral strategies and provided novel insights into viral adaptation and virus-host co-evolution that will be covered in the present review. Copyright © 2018. Published by Elsevier Ltd.

  10. Multiplex Touchdown PCR for Rapid Typing of the Opportunistic Pathogen Propionibacterium acnes

    PubMed Central

    Barnard, Emma; Nagy, István; Hunyadkürti, Judit; Patrick, Sheila

    2015-01-01

    The opportunistic human pathogen Propionibacterium acnes is composed of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II, and III, which vary in their production of putative virulence factors, their inflammatory potential, and their biochemical, aggregative, and morphological characteristics. Although multilocus sequence typing (MLST) currently represents the gold standard for unambiguous phylogroup classification and individual strain identification, it is a labor-intensive and time-consuming technique. As a consequence, we developed a multiplex touchdown PCR assay that in a single reaction can confirm the species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA gene (all isolates), ATPase (types IA1, IA2, and IC), sodA (types IA2 and IB), atpD (type II), and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterized by MLST and representing types IA1 (n = 145), IA2 (n = 20), IB (n = 65), IC (n = 7), II (n = 45), and III (n = 30), the multiplex displayed 100% sensitivity and 100% specificity for detecting isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. This multiplex assay will provide researchers with a rapid, high-throughput, and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, and it will serve as a prescreening tool to maximize the number of genetically diverse isolates selected for downstream higher-resolution sequence-based analyses. PMID:25631794

  11. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security.

    PubMed

    McDonald, Bruce A; Stukenbrock, Eva H

    2016-12-05

    Agricultural ecosystems are composed of genetically depauperate populations of crop plants grown at a high density and over large spatial scales, with the regional composition of crop species changing little from year to year. These environments are highly conducive for the emergence and dissemination of pathogens. The uniform host populations facilitate the specialization of pathogens to particular crop cultivars and allow the build-up of large population sizes. Population genetic and genomic studies have shed light on the evolutionary mechanisms underlying speciation processes, adaptive evolution and long-distance dispersal of highly damaging pathogens in agro-ecosystems. These studies document the speed with which pathogens evolve to overcome crop resistance genes and pesticides. They also show that crop pathogens can be disseminated very quickly across and among continents through human activities. In this review, we discuss how the peculiar architecture of agro-ecosystems facilitates pathogen emergence, evolution and dispersal. We present four example pathosystems that illustrate both pathogen specialization and pathogen speciation, including different time frames for emergence and different mechanisms underlying the emergence process. Lastly, we argue for a re-design of agro-ecosystems that embraces the concept of dynamic diversity to improve their resilience to pathogens. This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  12. Global molecular epidemiology and genetic diversity of Fusarium, a significant emerging group of human opportunists from 1958 to 2015.

    PubMed

    Al-Hatmi, Abdullah Ms; Hagen, Ferry; Menken, Steph Bj; Meis, Jacques F; de Hoog, G Sybren

    2016-12-07

    Fusarium is a rapidly emerging, multidrug-resistant genus of fungal opportunists that was first identified in 1958 and is presently recognized in numerous cases of fusariosis each year. The authors examined trends in global Fusarium distribution, clinical presentation and prevalence since 1958 with the assumption that their distributions in each region had remained unaltered. The phylogeny and epidemiology of 127 geographically diverse isolates, representing 26 Fusarium species, were evaluated using partial sequences of the RPB2 and TEF1 genes, and compared with AFLP fingerprinting data. The molecular data of the Fusarium species were compared with archived data, which enabled the interpretation of hundreds of cases published in the literature. Our findings indicate that fusariosis is globally distributed with a focus in (sub)tropical areas. Considerable species diversity has been observed; genotypic features did not reveal any clustering with either the clinical data or environmental origins. This study suggests that infections with Fusarium species might be truly opportunistic. The three most common species are F. falciforme and F. keratoplasticum (members of F. solani species complex), followed by F. oxysporum (F. oxysporum species complex).

  13. Comparative analyses of nonpathogenic, opportunistic, and totally pathogenic mycobacteria reveal genomic and biochemical variabilities and highlight the survival attributes of Mycobacterium tuberculosis.

    PubMed

    Rahman, Syed Asad; Singh, Yadvir; Kohli, Sakshi; Ahmad, Javeed; Ehtesham, Nasreen Z; Tyagi, Anil K; Hasnain, Seyed E

    2014-11-04

    Mycobacterial evolution involves various processes, such as genome reduction, gene cooption, and critical gene acquisition. Our comparative genome size analysis of 44 mycobacterial genomes revealed that the nonpathogenic (NP) genomes were bigger than those of opportunistic (OP) or totally pathogenic (TP) mycobacteria, with the TP genomes being smaller yet variable in size--their genomic plasticity reflected their ability to evolve and survive under various environmental conditions. From the 44 mycobacterial species, 13 species, representing TP, OP, and NP, were selected for genomic-relatedness analyses. Analysis of homologous protein-coding genes shared between Mycobacterium indicus pranii (NP), Mycobacterium intracellulare ATCC 13950 (OP), and Mycobacterium tuberculosis H37Rv (TP) revealed that 4,995 (i.e., ~95%) M. indicaus pranii proteins have homology with M. intracellulare, whereas the homologies among M. indicus pranii, M. intracellulare ATCC 13950, and M. tuberculosis H37Rv were significantly lower. A total of 4,153 (~79%) M. indicus pranii proteins and 4,093 (~79%) M. intracellulare ATCC 13950 proteins exhibited homology with the M. tuberculosis H37Rv proteome, while 3,301 (~82%) and 3,295 (~82%) M. tuberculosis H37Rv proteins showed homology with M. indicus pranii and M. intracellulare ATCC 13950 proteomes, respectively. Comparative metabolic pathway analyses of TP/OP/NP mycobacteria showed enzymatic plasticity between M. indicus pranii (NP) and M. intracellulare ATCC 13950 (OP), Mycobacterium avium 104 (OP), and M. tuberculosis H37Rv (TP). Mycobacterium tuberculosis seems to have acquired novel alternate pathways with possible roles in metabolism, host-pathogen interactions, virulence, and intracellular survival, and by implication some of these could be potential drug targets. The complete sequence analysis of Mycobacterium indicus pranii, a novel species of Mycobacterium shown earlier to have strong immunomodulatory properties and currently in use for

  14. CE-BLAST makes it possible to compute antigenic similarity for newly emerging pathogens.

    PubMed

    Qiu, Tianyi; Yang, Yiyan; Qiu, Jingxuan; Huang, Yang; Xu, Tianlei; Xiao, Han; Wu, Dingfeng; Zhang, Qingchen; Zhou, Chen; Zhang, Xiaoyan; Tang, Kailin; Xu, Jianqing; Cao, Zhiwei

    2018-05-02

    Major challenges in vaccine development include rapidly selecting or designing immunogens for raising cross-protective immunity against different intra- or inter-subtypic pathogens, especially for the newly emerging varieties. Here we propose a computational method, Conformational Epitope (CE)-BLAST, for calculating the antigenic similarity among different pathogens with stable and high performance, which is independent of the prior binding-assay information, unlike the currently available models that heavily rely on the historical experimental data. Tool validation incorporates influenza-related experimental data sufficient for stability and reliability determination. Application to dengue-related data demonstrates high harmonization between the computed clusters and the experimental serological data, undetectable by classical grouping. CE-BLAST identifies the potential cross-reactive epitope between the recent zika pathogen and the dengue virus, precisely corroborated by experimental data. The high performance of the pathogens without the experimental binding data suggests the potential utility of CE-BLAST to rapidly design cross-protective vaccines or promptly determine the efficacy of the currently marketed vaccine against emerging pathogens, which are the critical factors for containing emerging disease outbreaks.

  15. Role of India's wildlife in the emergence and re-emergence of zoonotic pathogens, risk factors and public health implications.

    PubMed

    Singh, B B; Gajadhar, A A

    2014-10-01

    Evolving land use practices have led to an increase in interactions at the human/wildlife interface. The presence and poor knowledge of zoonotic pathogens in India's wildlife and the occurrence of enormous human populations interfacing with, and critically linked to, forest ecosystems warrant attention. Factors such as diverse migratory bird populations, climate change, expanding human population and shrinking wildlife habitats play a significant role in the emergence and re-emergence of zoonotic pathogens from India's wildlife. The introduction of a novel Kyasanur forest disease virus (family flaviviridae) into human populations in 1957 and subsequent occurrence of seasonal outbreaks illustrate the key role that India's wild animals play in the emergence and reemergence of zoonotic pathogens. Other high priority zoonotic diseases of wildlife origin which could affect both livestock and humans include influenza, Nipah, Japanese encephalitis, rabies, plague, leptospirosis, anthrax and leishmaniasis. Continuous monitoring of India's extensively diverse and dispersed wildlife is challenging, but their use as indicators should facilitate efficient and rapid disease-outbreak response across the region and occasionally the globe. Defining and prioritizing research on zoonotic pathogens in wildlife are essential, particularly in a multidisciplinary one-world one-health approach which includes human and veterinary medical studies at the wildlife-livestock-human interfaces. This review indicates that wild animals play an important role in the emergence and re-emergence of zoonotic pathogens and provides brief summaries of the zoonotic diseases that have occurred in wild animals in India. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers.

    PubMed

    Zupančič, Jerneja; Raghupathi, Prem K; Houf, Kurt; Burmølle, Mette; Sørensen, Søren J; Gunde-Cimerman, Nina

    2018-01-01

    Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis , the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health.

  17. Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers

    PubMed Central

    Zupančič, Jerneja; Raghupathi, Prem K.; Houf, Kurt; Burmølle, Mette; Sørensen, Søren J.; Gunde-Cimerman, Nina

    2018-01-01

    Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis, the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health. PMID:29441043

  18. Novel organisms: comparing invasive species, GMOs, and emerging pathogens.

    PubMed

    Jeschke, Jonathan M; Keesing, Felicia; Ostfeld, Richard S

    2013-09-01

    Invasive species, range-expanding species, genetically modified organisms (GMOs), synthetic organisms, and emerging pathogens increasingly affect the human environment. We propose a framework that allows comparison of consecutive stages that such novel organisms go through. The framework provides a common terminology for novel organisms, facilitating knowledge exchange among researchers, managers, and policy makers that work on, or have to make effective decisions about, novel organisms. The framework also indicates that knowledge about the causes and consequences of stage transitions for the better studied novel organisms, such as invasive species, can be transferred to more poorly studied ones, such as GMOs and emerging pathogens. Finally, the framework advances understanding of how climate change can affect the establishment, spread, and impacts of novel organisms, and how biodiversity affects, and is affected by, novel organisms.

  19. Mechanistic Insights into Elastin Degradation by Pseudolysin, the Major Virulence Factor of the Opportunistic Pathogen Pseudomonas aeruginosa

    PubMed Central

    Yang, Jie; Zhao, Hui-Lin; Ran, Li-Yuan; Li, Chun-Yang; Zhang, Xi-Ying; Su, Hai-Nan; Shi, Mei; Zhou, Bai-Cheng; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2015-01-01

    Pseudolysin is the most abundant protease secreted by Pseudomonas aeruginosa and is the major extracellular virulence factor of this opportunistic human pathogen. Pseudolysin destroys human tissues by solubilizing elastin. However, the mechanisms by which pseudolysin binds to and degrades elastin remain elusive. In this study, we investigated the mechanism of action of pseudolysin on elastin binding and degradation by biochemical assay, microscopy and site-directed mutagenesis. Pseudolysin bound to bovine elastin fibers and preferred to attack peptide bonds with hydrophobic residues at the P1 and P1’ positions in the hydrophobic domains of elastin. The time-course degradation processes of both bovine elastin fibers and cross-linked human tropoelastin by pseudolysin were further investigated by microscopy. Altogether, the results indicate that elastin degradation by pseudolysin began with the hydrophobic domains on the fiber surface, followed by the progressive disassembly of macroscopic elastin fibers into primary structural elements. Moreover, our site-directed mutational results indicate that five hydrophobic residues in the S1-S1’ sub-sites played key roles in the binding of pseudolysin to elastin. This study sheds lights on the pathogenesis of P. aeruginosa infection. PMID:25905792

  20. A multigene family related to chitin synthase genes of yeast in the opportunistic pathogen Aspergillus fumigatus.

    PubMed

    Mellado, E; Aufauvre-Brown, A; Specht, C A; Robbins, P W; Holden, D W

    1995-02-06

    Two approaches were used to isolate fragments of chitin synthase genes from the opportunistic human pathogen Aspergillus fumigatus. Firstly, regions of amino acid conservation in chitin synthases of Saccharomyces cerevisiae were used to design degenerate primers for amplification of portions of related genes, and secondly, a segment of the S. cerevisiae CSD2 gene was used to screen an A. fumigatus lambda genomic DNA library. the polymerase chain reaction (PCR)-based approach led to the identification of five different genes, designated chsA, chsB, chsC, chsD and chsE. chsA, chsB, and chsC fall into Classes I, II and III of the 'zymogen type' chitin synthases, respectively. The chsD fragment has approximately 35% amino acid sequence identity to both the zymogen type genes and the non-zymogen type CSD2 gene. chsF appears to be a homologue of CSD2, being 80% identical to CSD2 over 100 amino acids. An unexpected finding was the isolation by heterologous hybridization of another gene (chsE), which also has strong sequence similarity (54% identity at the amino acid level over the same region as chsF) to CSD2. Reverse transcriptase-PCR was used to show that each gene is expressed during hyphal growth in submerged cultures.

  1. Zika Virus as an Emerging Global Pathogen

    PubMed Central

    Beckham, J. David; Pastula, Daniel M.; Massey, Aaron; Tyler, Kenneth L.

    2016-01-01

    IMPORTANCE Zika virus (ZIKV) is an emerging arthropod-borne virus (arbovirus) in the genus Flavivirus that has caused a widespread outbreak of febrile illness, is associated with neurological disease, and has spread across the Pacific to the Americas in a short period. OBSERVATIONS In this review, we discuss what is currently known about ZIKV, neuroimmunologic complications, and the impact on global human health. Zika virus spread across Africa and Asia in part owing to unique genomic evolutionary conditions and pressures resulting in specific human disease manifestations, complications, and pathogenesis. Recent data suggest that acute ZIKV infection in pregnant women may result in acute infection of fetal tissue and brain tissue, causing microcephaly and potentially severe debilitation of the infant or even death of the fetus. Cases of acute ZIKV are also associated with Guillain-Barré syndrome. With the increased number of cases, new complications such as ocular involvement and sexual transmission have been reported. CONCLUSIONS AND RELEVANCE Zika virus is an emerging viral pathogen with significant consequences on human health throughout the world. Ongoing research into this pathogen is urgently needed to produce viable vaccine and therapeutic options. PMID:27183312

  2. Global molecular epidemiology and genetic diversity of Fusarium, a significant emerging group of human opportunists from 1958 to 2015

    PubMed Central

    Al-Hatmi, Abdullah MS; Hagen, Ferry; Menken, Steph BJ; Meis, Jacques F; de Hoog, G Sybren

    2016-01-01

    Fusarium is a rapidly emerging, multidrug-resistant genus of fungal opportunists that was first identified in 1958 and is presently recognized in numerous cases of fusariosis each year. The authors examined trends in global Fusarium distribution, clinical presentation and prevalence since 1958 with the assumption that their distributions in each region had remained unaltered. The phylogeny and epidemiology of 127 geographically diverse isolates, representing 26 Fusarium species, were evaluated using partial sequences of the RPB2 and TEF1 genes, and compared with AFLP fingerprinting data. The molecular data of the Fusarium species were compared with archived data, which enabled the interpretation of hundreds of cases published in the literature. Our findings indicate that fusariosis is globally distributed with a focus in (sub)tropical areas. Considerable species diversity has been observed; genotypic features did not reveal any clustering with either the clinical data or environmental origins. This study suggests that infections with Fusarium species might be truly opportunistic. The three most common species are F. falciforme and F. keratoplasticum (members of F. solani species complex), followed by F. oxysporum (F. oxysporum species complex). PMID:27924809

  3. Genome Sequences for Five Strains of the Emerging Pathogen Haemophilus haemolyticus

    PubMed Central

    Jordan, I. King; Conley, Andrew B.; Antonov, Ivan V.; Arthur, Robert A.; Cook, Erin D.; Cooper, Guy P.; Jones, Bernard L.; Knipe, Kristen M.; Lee, Kevin J.; Liu, Xing; Mitchell, Gabriel J.; Pande, Pushkar R.; Petit, Robert A.; Qin, Shaopu; Rajan, Vani N.; Sarda, Shruti; Sebastian, Aswathy; Tang, Shiyuyun; Thapliyal, Racchit; Varghese, Neha J.; Ye, Tianjun; Katz, Lee S.; Wang, Xin; Rowe, Lori; Frace, Michael; Mayer, Leonard W.

    2011-01-01

    We report the first whole-genome sequences for five strains, two carried and three pathogenic, of the emerging pathogen Haemophilus haemolyticus. Preliminary analyses indicate that these genome sequences encode markers that distinguish H. haemolyticus from its closest Haemophilus relatives and provide clues to the identity of its virulence factors. PMID:21952546

  4. Selected Pathogens of Concern to Industrial Food Processors: Infectious, Toxigenic, Toxico-Infectious, Selected Emerging Pathogenic Bacteria

    NASA Astrophysics Data System (ADS)

    Behling, Robert G.; Eifert, Joseph; Erickson, Marilyn C.; Gurtler, Joshua B.; Kornacki, Jeffrey L.; Line, Erick; Radcliff, Roy; Ryser, Elliot T.; Stawick, Bradley; Yan, Zhinong

    This chapter, written by several contributing authors, is devoted to discussing selected microbes of contemporary importance. Microbes from three categories are described by the following: (1) infectious invasive agents like Salmonella, Listeria monocytogenes, and Campylobacter; (2) toxigenic pathogens such as Staphylococcus aureus, Bacillus cereus, and Clostridium botulinum; and (3) toxico-infectious agents like enterohemorrhagic Escherichia coli and Clostridium perfringens. In addition, emerging pathogens, like Cronobacter (Enterobacter) sakazakii, Arcobacter spp., and Mycobacterium avium subspecies paratuberculosis are also described.

  5. The Promise of Whole Genome Pathogen Sequencing for the Molecular Epidemiology of Emerging Aquaculture Pathogens

    PubMed Central

    Bayliss, Sion C.; Verner-Jeffreys, David W.; Bartie, Kerry L.; Aanensen, David M.; Sheppard, Samuel K.; Adams, Alexandra; Feil, Edward J.

    2017-01-01

    Aquaculture is the fastest growing food-producing sector, and the sustainability of this industry is critical both for global food security and economic welfare. The management of infectious disease represents a key challenge. Here, we discuss the opportunities afforded by whole genome sequencing of bacterial and viral pathogens of aquaculture to mitigate disease emergence and spread. We outline, by way of comparison, how sequencing technology is transforming the molecular epidemiology of pathogens of public health importance, emphasizing the importance of community-oriented databases and analysis tools. PMID:28217117

  6. Detecting the emergence of novel, zoonotic viruses pathogenic to humans.

    PubMed

    Rosenberg, Ronald

    2015-03-01

    RNA viruses, with their high potential for mutation and epidemic spread, are the most common class of pathogens found as new causes of human illness. Despite great advances made in diagnostic technology since the 1950s, the annual rate at which novel virulent viruses have been found has remained at 2-3. Most emerging viruses are zoonoses; they have jumped from mammal or bird hosts to humans. An analysis of virus discovery indicates that the small number of novel viruses discovered annually is an artifact of inadequate surveillance in tropical and subtropical countries, where even established endemic pathogens are often misdiagnosed. Many of the emerging viruses of the future are already infecting humans but remain to be uncovered by a strategy of disease surveillance in selected populations.

  7. Molecular Diagnostics of Arthroconidial Yeasts, Frequent Pulmonary Opportunists.

    PubMed

    Kaplan, Engin; Al-Hatmi, Abdullah M S; Ilkit, Macit; Gerrits van den Ende, A H G; Hagen, Ferry; Meis, Jacques F; de Hoog, G Sybren

    2018-01-01

    Magnusiomyces capitatus and Saprochaete clavata are members of the clade of arthroconidial yeasts that represent emerging opportunistic pulmonary pathogens in immunocompromised patients. Given that standard ribosomal DNA (rDNA) identification often provides confusing results, in this study, we analyzed 34 isolates with the goal of finding new genetic markers for classification using multilocus sequencing and amplified fragment length polymorphism (AFLP). The interspecific similarity obtained using rDNA markers (the internal transcribed spacer [ITS] and large subunit regions) was in the range of 96 to 99%, whereas that obtained using protein-coding loci ( Rbp2 , Act , and Tef1α ) was lower at 89.4 to 95.2%. Ultimately, Rbp2 was selected as the best marker for species distinction. On the basis of cloned ITS data, some strains proved to be misidentified in comparison with the identities obtained with phenotypic characters, protein sequences, and AFLP profiles, indicating that different copies of the ribosomal operon were present in a single species. Antifungal susceptibility testing revealed that voriconazole had the lowest MIC against M. capitatus , while amphotericin B had the lowest MIC against S. clavata Both species exhibited in vitro resistance to fluconazole and micafungin. Copyright © 2017 American Society for Microbiology.

  8. Enteroaggregative Escherichia coli: An Emerging Enteric Food Borne Pathogen

    PubMed Central

    Kaur, P.; Chakraborti, A.; Asea, A.

    2010-01-01

    Enteroaggregative Escherichia coli (EAEC) are quite heterogeneous category of an emerging enteric pathogen associated with cases of acute or persistent diarrhea worldwide in children and adults, and over the past decade has received increasing attention as a cause of watery diarrhea, which is often persistent. EAEC infection is an important cause of diarrhea in outbreak and non-outbreak settings in developing and developed countries. Recently, EAEC has been implicated in the development of irritable bowel syndrome, but this remains to be confirmed. EAEC is defined as a diarrheal pathogen based on its characteristic aggregative adherence (AA) to HEp-2 cells in culture and its biofilm formation on the intestinal mucosa with a “stacked-brick” adherence phenotype, which is related to the presence of a 60 MDa plasmid (pAA). At the molecular level, strains demonstrating the aggregative phenotype are quite heterogeneous; several virulence factors are detected by polymerase chain reaction; however, none exhibited 100% specificity. Although several studies have identified specific virulence factor(s) unique to EAEC, the mechanism by which EAEC exerts its pathogenesis is, thus, far unknown. The present review updates the current knowledge on the epidemiology, chronic complications, detection, virulence factors, and treatment of EAEC, an emerging enteric food borne pathogen. PMID:20300577

  9. Enteroaggregative Escherichia coli: An Emerging Enteric Food Borne Pathogen.

    PubMed

    Kaur, P; Chakraborti, A; Asea, A

    2010-01-01

    Enteroaggregative Escherichia coli (EAEC) are quite heterogeneous category of an emerging enteric pathogen associated with cases of acute or persistent diarrhea worldwide in children and adults, and over the past decade has received increasing attention as a cause of watery diarrhea, which is often persistent. EAEC infection is an important cause of diarrhea in outbreak and non-outbreak settings in developing and developed countries. Recently, EAEC has been implicated in the development of irritable bowel syndrome, but this remains to be confirmed. EAEC is defined as a diarrheal pathogen based on its characteristic aggregative adherence (AA) to HEp-2 cells in culture and its biofilm formation on the intestinal mucosa with a "stacked-brick" adherence phenotype, which is related to the presence of a 60 MDa plasmid (pAA). At the molecular level, strains demonstrating the aggregative phenotype are quite heterogeneous; several virulence factors are detected by polymerase chain reaction; however, none exhibited 100% specificity. Although several studies have identified specific virulence factor(s) unique to EAEC, the mechanism by which EAEC exerts its pathogenesis is, thus, far unknown. The present review updates the current knowledge on the epidemiology, chronic complications, detection, virulence factors, and treatment of EAEC, an emerging enteric food borne pathogen.

  10. Growth promotion of the opportunistic human pathogen, Staphylococcus lugdunensis, by heme, hemoglobin, and coculture with Staphylococcus aureus

    PubMed Central

    Brozyna, Jeremy R; Sheldon, Jessica R; Heinrichs, David E

    2014-01-01

    Staphylococcus lugdunensis is both a commensal of humans and an opportunistic pathogen. Little is currently known about the molecular mechanisms underpinning the virulence of this bacterium. Here, we demonstrate that in contrast to S. aureus,S. lugdunensis makes neither staphyloferrin A (SA) nor staphyloferrin B (SB) in response to iron deprivation, owing to the absence of the SB gene cluster, and a large deletion in the SA biosynthetic gene cluster. As a result, the species grows poorly in serum-containing media, and this defect was complemented by introduction of the S. aureusSA gene cluster into S. lugdunensis. S. lugdunensis expresses the HtsABC and SirABC transporters for SA and SB, respectively; the latter gene set is found within the isd (heme acquisition) gene cluster. An isd deletion strain was significantly debilitated for iron acquisition from both heme and hemoglobin, and was also incapable of utilizing ferric-SB as an iron source, while an hts mutant could not grow on ferric-SA as an iron source. In iron-restricted coculture experiments, S. aureus significantly enhanced the growth of S. lugdunensis, in a manner dependent on staphyloferrin production by S. aureus, and the expression of the cognate transporters by S. lugdunensis. PMID:24515974

  11. Disseminated cytomegalovirus infection complicating active treatment of systemic lupus erythematosus: an emerging problem.

    PubMed

    Berman, N; Belmont, H M

    2017-04-01

    Patients with systemic lupus erythematosus (SLE) often require immunosuppression to induce remission of active disease exacerbations. Over the past two decades, treatment modalities for this condition have emerged leading to improved morbidity from disease related outcomes. However, as a result, infection risks and patterns have changed, leading to higher rates of opportunistic infections among this population. We report four cases of cytomegalovirus (CMV) in patients with SLE who received immunosuppressive therapy, including pulse steroids, antimetabolites such as mycophenolate mofetil, and alkylating agents such as cyclophosphamide. We propose that given the rise in prevalence of CMV, there is a need for appropriate screening for this opportunistic pathogen and studies to determine the risks and benefits of prophylactic or preemptive treatment for this virus.

  12. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens

    PubMed Central

    Monteil, Caroline L.; Yahara, Koji; Studholme, David J.; Mageiros, Leonardos; Méric, Guillaume; Swingle, Bryan; Morris, Cindy E.

    2016-01-01

    Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1, to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae. PMID:28348830

  13. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens.

    PubMed

    Monteil, Caroline L; Yahara, Koji; Studholme, David J; Mageiros, Leonardos; Méric, Guillaume; Swingle, Bryan; Morris, Cindy E; Vinatzer, Boris A; Sheppard, Samuel K

    2016-10-01

    Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1 , to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae .

  14. Draft Genome Sequence of the Human-Pathogenic Fungus Scedosporium boydii

    PubMed Central

    Duvaux, Ludovic; Shiller, Jason; Vandeputte, Patrick; Dugé de Bernonville, Thomas; Thornton, Christopher; Papon, Nicolas; Le Cam, Bruno; Bouchara, Jean-Philippe

    2017-01-01

    ABSTRACT The opportunistic fungal pathogen Scedosporium boydii is the most common Scedosporium species in French patients with cystic fibrosis. Here we present the first genome report for S. boydii, providing a resource which may enable the elucidation of the pathogenic mechanisms in this species. PMID:28912311

  15. Alternative Opportunistic Alert Diffusion to Support Infrastructure Failure during Disasters

    PubMed Central

    Mezghani, Farouk; Mitton, Nathalie

    2017-01-01

    Opportunistic communications present a promising solution for disaster network recovery in emergency situations such as hurricanes, earthquakes, and floods, where infrastructure might be destroyed. Some recent works in the literature have proposed opportunistic-based disaster recovery solutions, but they have omitted the consideration of mobile devices that come with different network technologies and various initial energy levels. This work presents COPE, an energy-aware Cooperative OPportunistic alErt diffusion scheme for trapped survivors to use during disaster scenarios to report their position and ease their rescue operation. It aims to maintain mobile devices functional for as long as possible for maximum network coverage until reaching proximate rescuers. COPE deals with mobile devices that come with an assortment of networks and aims to perform systematic network interface selection. Furthermore, it considers mobile devices with various energy levels and allows low-energy nodes to hold their charge for longer time with the support of high-energy nodes. A proof-of-concept implementation has been performed to study the doability and efficiency of COPE, and to highlight the lessons learned. PMID:29039770

  16. The Wisconsin State Laboratory of Hygiene and emerging enteric pathogens.

    PubMed

    Warshauer, David; Monson, Tim; Kurzynski, Terry

    2003-01-01

    At the turn of the 20th century, typhoid fever was common in Wisconsin, and was a major impetus for the establishment of the Wisconsin State Laboratory of Hygiene (WSLH) in 1903. By the 1940s, typhoid was virtually eliminated in the United States due to public health measures such as disinfection of drinking water, sewage treatment, pasteurization, and shellfish bed sanitation. However, new food and waterborne pathogens have emerged to take the place of Salmonella Typhi. Infections with non-typhoidal Salmonella strains in the United States have increased almost 10-fold since the 1950s. In the last 20 years, the emergence of foodborne pathogens, such as Escherichia coli O157:H7, Cyclospora cayetanensis, Noroviruses (Norwalk-like viruses), Cryptosporidium parvum, Campylobacter jejuni, Yersinia enterocolitica, and multi-drug-resistant Salmonella, has identified a need for accurate laboratory diagnosis of enteric disease and outbreaks.

  17. Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes.

    PubMed

    Rónavári, Andrea; Igaz, Nóra; Gopisetty, Mohana Krishna; Szerencsés, Bettina; Kovács, Dávid; Papp, Csaba; Vágvölgyi, Csaba; Boros, Imre Miklós; Kónya, Zoltán; Kiricsi, Mónika; Pfeiffer, Ilona

    2018-01-01

    Epidemiologic observations indicate that the number of systemic fungal infections has increased significantly during the past decades, however in human mycosis, mainly cutaneous infections predominate, generating major public health concerns and providing much of the impetus for current attempts to develop novel and efficient agents against cutaneous mycosis causing species. Innovative, environmentally benign and economic nanotechnology-based approaches have recently emerged utilizing principally biological sources to produce nano-sized structures with unique antimicrobial properties. In line with this, our aim was to generate silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) by biological synthesis and to study the effect of the obtained nanoparticles on cutaneous mycosis causing fungi and on human keratinocytes. Cell-free extract of the red yeast Phaffia rhodozyma proved to be suitable for nanoparticle preparation and the generated AgNPs and AuNPs were characterized by transmission electron microscopy, dynamic light scattering and X-ray powder diffraction. Antifungal studies demonstrated that the biosynthesized silver particles were able to inhibit the growth of several opportunistic Candida or Cryptococcus species and were highly potent against filamentous Microsporum and Trichophyton dermatophytes. Among the tested species only Cryptococcus neoformans was susceptible to both AgNPs and AuNPs. Neither AgNPs nor AuNPs exerted toxicity on human keratinocytes. Our results emphasize the therapeutic potential of such biosynthesized nanoparticles, since their biocompatibility to skin cells and their outstanding antifungal performance can be exploited for topical treatment and prophylaxis of superficial cutaneous mycosis.

  18. Molecular detection of emerging tick-borne pathogens in Vojvodina, Serbia.

    PubMed

    Potkonjak, Aleksandar; Gutiérrez, Ricardo; Savić, Sara; Vračar, Vuk; Nachum-Biala, Yaarit; Jurišić, Aleksandar; Kleinerman, Gabriela; Rojas, Alicia; Petrović, Aleksandra; Baneth, Gad; Harrus, Shimon

    2016-02-01

    Ticks play an important role in disease transmission globally due to their capability to serve as vectors for human and animal pathogens. The Republic of Serbia is an endemic area for a large number of tick-borne diseases. However, current knowledge on these diseases in Serbia is limited. The aim of this study was to investigate the presence of new emerging tick-borne pathogens in ticks collected from dogs and the vegetation from different parts of Vojvodina, Serbia. A total of 187 ticks, including 124 Rhipicephalus sanguineus, 45 Ixodes ricinus and 18 Dermacentor reticulatus were collected from dogs. In addition, 26 questing I. ricinus ticks were collected from the vegetation, using the flagging method, from 4 different localities in Vojvodina, Serbia. DNA was extracted from each tick individually and samples were tested by either conventional or real-time PCR assays for the presence of Rickettsia spp.-DNA (gltA and ompA gene fragments), Ehrlichia/Anaplasma spp.-DNA (16S rRNA gene fragment) and Hepatozoon spp./Babesia spp.-DNA (18S rRNA gene fragment). In addition, all I. ricinus DNA samples were tested for Bartonella spp.-DNA (ITS locus) by real-time PCR. In this study, the presence of novel emerging tick-borne pathogens including Rickettsia raoultii, Rickettsia massiliae, Babesia venatorum, Babesia microti, Hepatozoon canis and Candidatus Neoehrlichia mikurensis was identified for the first time in Serbia. Our findings also confirmed the presence of Rickettsia monacensis, Babesia canis and Anaplasma phagocytophilum in ticks from Serbia. The findings of the current study highlight the great diversity of tick-borne pathogens of human and animal importance in Serbia. Physicians, public health workers and veterinarians should increase alertness to the presence of these tick-borne pathogens in this country. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Conservation of Erwinia amylovora pathogenicity-relevant genes among Erwinia genomes.

    PubMed

    Borruso, Luigimaria; Salomone-Stagni, Marco; Polsinelli, Ivan; Schmitt, Armin Otto; Benini, Stefano

    2017-12-01

    The Erwinia genus comprises species that are plant pathogens, non-pathogen, epiphytes, and opportunistic human pathogens. Within the genus, Erwinia amylovora ranks among the top 10 plant pathogenic bacteria. It causes the fire blight disease and is a global threat to commercial apple and pear production. We analyzed the presence/absence of the E. amylovora genes reported to be important for pathogenicity towards Rosaceae within various Erwinia strains genomes. This simple bottom-up approach, allowed us to correlate the analyzed genes to pathogenicity, host specificity, and make useful considerations to drive targeted studies.

  20. AsrR Is an Oxidative Stress Sensing Regulator Modulating Enterococcus faecium Opportunistic Traits, Antimicrobial Resistance, and Pathogenicity

    PubMed Central

    Lebreton, François; van Schaik, Willem; Sanguinetti, Maurizio; Posteraro, Brunella; Torelli, Riccardo; Le Bras, Florian; Verneuil, Nicolas; Zhang, Xinglin; Giard, Jean-Christophe; Dhalluin, Anne; Willems, Rob J. L.; Leclercq, Roland; Cattoir, Vincent

    2012-01-01

    Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator). The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to β-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial resistance and

  1. Case Study of Airborne Pathogen Dispersion Patterns in Emergency Departments with Different Ventilation and Partition Conditions

    PubMed Central

    Cheong, Chang Heon; Lee, Seonhye

    2018-01-01

    The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system’s inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens. PMID:29534043

  2. Case Study of Airborne Pathogen Dispersion Patterns in Emergency Departments with Different Ventilation and Partition Conditions.

    PubMed

    Cheong, Chang Heon; Lee, Seonhye

    2018-03-13

    The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system's inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens.

  3. Gram-positive anaerobic cocci--commensals and opportunistic pathogens.

    PubMed

    Murphy, Elizabeth Carmel; Frick, Inga-Maria

    2013-07-01

    Among the Gram-positive anaerobic bacteria associated with clinical infections, the Gram-positive anaerobic cocci (GPAC) are the most prominent and account for approximately 25-30% of all isolated anaerobic bacteria from clinical specimens. Still, routine culture and identification of these slowly growing anaerobes to the species level has been limited in the diagnostic laboratory, mainly due to the requirement of prolonged incubation times and time-consuming phenotypic identification. In addition, GPAC are mostly isolated from polymicrobial infections with known pathogens and therefore their relevance has often been overlooked. However, through improvements in diagnostic and in particular molecular techniques, the isolation and identification of individual genera and species of GPAC associated with specific infections have been enhanced. Furthermore, the taxonomy of GPAC has undergone considerable changes over the years, mainly due to the development of molecular identification methods. Existing species have been renamed and novel species have been added, resulting in changes of the nomenclature. As the abundance and significance of GPAC in clinical infections grow, knowledge of virulence factors and antibiotic resistance patterns of different species becomes more important. The present review describes recent advances of GPAC and what is known of the biology and pathogenic effects of Anaerococcus, Finegoldia, Parvimonas, Peptoniphilus and Peptostreptococcus, the most important GPAC genera isolated from human infections. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Identifying the emerging human pathogen Scedosporium prolificans by using a species-specific monoclonal antibody that binds to the melanin biosynthetic enzyme tetrahydroxynaphthalene reductase.

    PubMed

    Thornton, Christopher R; Ryder, Lauren S; Le Cocq, Kate; Soanes, Darren M

    2015-04-01

    The dematiaceous (melanized) fungus Scedosporium prolificans is an emerging and frequently fatal pathogen of immunocompromised humans and which, along with the closely related fungi Pseudallescheria boydii, Scedosporium apiospermum and S. aurantiacum in the Pseudallescheria-Scedosporium complex, is a contributing aetiology to tsunami lung and central nervous system infections in near-drowning victims who have aspirated water laden with spores. At present, the natural habitat of the fungus is largely unknown, and accurate detection methods are needed to identify environmental reservoirs of infectious propagules. In this study, we report the development of a monoclonal antibody (mAb) (CA4) specific to S. prolificans, which does not cross-react with closely related fungi in the Pseudallescheria-Scedosporium complex or with a wide range of mould and yeast species pathogenic to humans. Using genome sequencing of a soil isolate and targeted gene disruption of the CA4 antigen-encoding gene, we show that mAb CA4 binds to the melanin-biosynthetic enzyme tetrahydroxynaphthalene reductase. Enzyme-deficient mutants produce orange-brown or green-brown spore suspensions compared with the black spore suspension of the wild-type strain. Using mAb CA4 and a mAb (HG12) specific to the related fungi P. boydii, P. apiosperma, S. apiospermum and S. aurantiacum, we demonstrate how the mAbs can be used in combination with a semiselective isolation procedure to track these opportunistic pathogens in environmental samples containing mixed populations of human pathogenic fungi. Specificity of mAb CA4 was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of fungi isolated from estuarine muds. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Insights on the Emergence of Mycobacterium tuberculosis from the Analysis of Mycobacterium kansasii

    PubMed Central

    Wang, Joyce; McIntosh, Fiona; Radomski, Nicolas; Dewar, Ken; Simeone, Roxane; Enninga, Jost; Brosch, Roland; Rocha, Eduardo P.; Veyrier, Frédéric J.; Behr, Marcel A.

    2015-01-01

    By phylogenetic analysis, Mycobacterium kansasii is closely related to Mycobacterium tuberculosis. Yet, although both organisms cause pulmonary disease, M. tuberculosis is a global health menace, whereas M. kansasii is an opportunistic pathogen. To illuminate the differences between these organisms, we have sequenced the genome of M. kansasii ATCC 12478 and its plasmid (pMK12478) and conducted side-by-side in vitro and in vivo investigations of these two organisms. The M. kansasii genome is 6,432,277 bp, more than 2 Mb longer than that of M. tuberculosis H37Rv, and the plasmid contains 144,951 bp. Pairwise comparisons reveal conserved and discordant genes and genomic regions. A notable example of genomic conservation is the virulence locus ESX-1, which is intact and functional in the low-virulence M. kansasii, potentially mediating phagosomal disruption. Differences between these organisms include a decreased predicted metabolic capacity, an increased proportion of toxin–antitoxin genes, and the acquisition of M. tuberculosis-specific genes in the pathogen since their common ancestor. Consistent with their distinct epidemiologic profiles, following infection of C57BL/6 mice, M. kansasii counts increased by less than 10-fold over 6 weeks, whereas M. tuberculosis counts increased by over 10,000-fold in just 3 weeks. Together, these data suggest that M. kansasii can serve as an image of the environmental ancestor of M. tuberculosis before its emergence as a professional pathogen, and can be used as a model organism to study the switch from an environmental opportunistic pathogen to a professional host-restricted pathogen. PMID:25716827

  6. Human primary myeloid dendritic cells interact with the opportunistic fungal pathogen Aspergillus fumigatus via the C-type lectin receptor Dectin-1.

    PubMed

    Hefter, Maike; Lother, Jasmin; Weiß, Esther; Schmitt, Anna Lena; Fliesser, Mirjam; Einsele, Hermann; Loeffler, Juergen

    2017-07-01

    Aspergillus fumigatus is an opportunistic fungal pathogen causing detrimental infections in immunocompromised individuals. Dendritic cells (DCs) are potent antigen-presenting cells and recognize the A. fumigatus cell wall component β-1,3 glucan via Dectin-1, followed by DC maturation and cytokine release. Here, we demonstrate that human primary myeloid DCs (mDCs) interact with different morphotypes of A. fumigatus. Dectin-1 is expressed on mDCs and is down-regulated after contact with A. fumigatus, indicating that mDCs recognize A. fumigatus via this receptor. Blocking of Dectin-1, followed by stimulation with depleted zymosan diminished the up-regulation of the T-cell co-stimulatory molecules CD40, CD80, HLA-DR and CCR7 on mDCs and led to decreased release of the cytokines TNF-α, IL-8, IL-1β and IL-10. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Experimental single-strain mobilomics reveals events that shape pathogen emergence

    DOE PAGES

    Schoeniger, Joseph S.; Hudson, Corey M.; Bent, Zachary W.; ...

    2016-07-04

    Virulence and resistance genes carried on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. An early step in the mobilization of GIs is their excision, which produces both a circular form of the GI and a deletion site in the chromosome; circular forms have also been described for some bacterial insertion sequences (ISs). We demonstrate that the recombinant sequence produced at the junction of such circles, and their corresponding deletion sites, can be detected sensitively in high throughput sequencing data, using new computational methods that enable empirical discovery of new mobile DNAs. Applied to themore » rich mobilome of a single strain (Kpn2146) of the emerging multidrug-resistant pathogen Klebsiella pneumoniae, our approach detected circular junctions for six GIs and seven IS types (several of the latter not previously known to circularize). Our methods further revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21. Exonuclease was used to enrich for circular dsDNA molecules, and internal calibration with the native Kpn2146 plasmids showed that not all molecules bearing GI and IS circular junctions were circular dsDNAs. Transposition events were also detected, revealing replicon preference (ISKpn18 preferring a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis), and left-right IS end swapping. Efficient discovery and global characterization of numerous mobile elements per experiment will allow detailed accounting of bacterial evolution, explaining the new gene combinations that arise in emerging pathogens.« less

  8. Ralstonia solanacearum and R. pseudosolanacearum on Eucalyptus: Opportunists or Primary Pathogens?

    PubMed Central

    Coutinho, Teresa A.; Wingfield, Michael J.

    2017-01-01

    Ralstonia solanacearum and R. pseudosolanacearum are well known primary pathogens of herbaceous crops. Reports of wilt caused by these pathogens in tree species are limited other than on Eucalyptus species. Despite the widespread occurrence of so-called bacterial wilt on eucalypts in tropical and sub-tropical parts of Africa, Asia, and the Americas, there remain many contradictions relating to the disease. Our field observations over many years in most regions where the disease occurs on Eucalyptus show that it is always associated with trees that have been subjected to severe stress. The disease is typically diagnosed by immersing cut stems in water and observing bacterial streaming, but the identity of the bacteria within this suspension is seldom considered. To add to the confusion, pathogenicity tests on susceptible species or clones are rarely successful. When they do work, they are on small plants in greenhouse trials. It has become all to easy to attribute Eucalyptus death exclusively to Ralstonia infection. Our data strongly suggest that Ralstonia species and probably other bacteria are latent colonists commonly occurring in healthy and particularly clonally propagated eucalypts. The onset of stress factors provide the bacteria with an opportunity to develop. We believe that the resulting stress weakens the defense systems of the trees allowing Ralstonia and bacterial endophytes to proliferate. Overall our research suggests that R. solanacearum and R. pseudosolanacearum are not primary pathogens of Eucalyptus. Short of clear evidence that they are primary pathogens of Eucalyptus it is inappropriate to attribute this disease solely to infection by Ralstonia species. PMID:28553301

  9. Opportunistic Behavior in Motivated Learning Agents.

    PubMed

    Graham, James; Starzyk, Janusz A; Jachyra, Daniel

    2015-08-01

    This paper focuses on the novel motivated learning (ML) scheme and opportunistic behavior of an intelligent agent. It extends previously developed ML to opportunistic behavior in a multitask situation. Our paper describes the virtual world implementation of autonomous opportunistic agents learning in a dynamically changing environment, creating abstract goals, and taking advantage of arising opportunities to improve their performance. An opportunistic agent achieves better results than an agent based on ML only. It does so by minimizing the average value of all need signals rather than a dominating need. This paper applies to the design of autonomous embodied systems (robots) learning in real-time how to operate in a complex environment.

  10. Detection of the emerging amphibian pathogens Batrachochytrium dendrobatidis and ranavirus in Russia.

    PubMed

    Reshetnikov, Andrey N; Chestnut, Tara; Brunner, Jesse L; Charles, Kaylene; Nebergall, Emily E; Olson, Deanna H

    2014-08-11

    In a population of the European common toad Bufo bufo from a rural pond in the region of Lake Glubokoe Regional Reserve in Moscow province, Russia, unexplained mass mortality events involving larvae and metamorphs have been observed over a monitoring period of >20 yr. We tested toads from this and a nearby site for the emerging amphibian pathogens Batrachochytrium dendrobatidis (Bd) and ranavirus (Rv). Both pathogens were detected, and at the rural pond site, with the above-noted losses and decline in toad breeding success, 40% of B. bufo metamorphs were Bd positive, 46% were Rv positive and 20% were co-infected with both pathogens. Toad metamorphs from a neighbouring water body were also Bd and Rv positive (25 and 55%, respectively). This is the first confirmation of these pathogens in Russia. Questions remain as to the origins of these pathogens in Russia and their roles in documented mass mortality events.

  11. Opportunistic pathology-based screening for diabetes

    PubMed Central

    Simpson, Aaron J; Krowka, Renata; Kerrigan, Jennifer L; Southcott, Emma K; Wilson, J Dennis; Potter, Julia M; Nolan, Christopher J; Hickman, Peter E

    2013-01-01

    Objective To determine the potential of opportunistic glycated haemoglobin (HbA1c) testing of pathology samples to detect previously unknown diabetes. Design Pathology samples from participants collected for other reasons and suitable for HbA1c testing were utilised for opportunistic diabetes screening. HbA1c was measured with a Biorad Variant II turbo analyser and HbA1c levels of ≥6.5% (48 mmol/mol) were considered diagnostic for diabetes. Confirmation of previously unknown diabetes status was obtained by a review of hospital medical records and phone calls to general practitioners. Setting Hospital pathology laboratory receiving samples from hospital-based and community-based (CB) settings. Participants Participants were identified based on the blood sample collection location in the CB, emergency department (ED) and inpatient (IP) groups. Exclusions pretesting were made based on the electronic patient history of: age <18 years, previous diabetes diagnosis, query for diabetes status in the past 12 months, evidence of pregnancy and sample collected postsurgery or transfusion. Only one sample per individual participant was tested. Results Of the 22 396 blood samples collected, 4505 (1142 CB, 1113 ED, 2250 IP) were tested of which 327 (7.3%) had HbA1c levels ≥6.5% (48 mmol/mol). Of these 120 (2.7%) were determined to have previously unknown diabetes (11 (1%) CB, 21 (1.9%) ED, 88 (3.9%) IP). The prevalence of previously unknown diabetes was substantially higher (5.4%) in hospital-based (ED and IP) participants aged over 54 years. Conclusions Opportunistic testing of referred pathology samples can be an effective method of screening for diabetes, especially in hospital-based and older persons. PMID:24065696

  12. Opportunistic Infections

    MedlinePlus

    ... Related Opportunistic Infections and Coinfections HIV.gov on Twitter 22 hours 41 min ago. HIV.gov @HIVGov # ... routine. #HIVTestingDay Reply Retweet Favorite HIV.gov on Twitter Search Find HIV Testing Sites & Care Services Connect ...

  13. Population genomic insights into the emergence, crop-adaptation and dissemination of Pseudomonas syringae pathogens

    USDA-ARS?s Scientific Manuscript database

    Although pathogen strains that cause disease outbreaks are often well characterized, relatively little is known about the reservoir populations from which they emerge. Genomic comparison of outbreak strains with isolates of reservoir populations can give new insight into mechanisms of disease emerge...

  14. The Emerging British Verticillium longisporum Population Consists of Aggressive Brassica Pathogens.

    PubMed

    Depotter, Jasper R L; Rodriguez-Moreno, Luis; Thomma, Bart P H J; Wood, Thomas A

    2017-11-01

    Verticillium longisporum is an economically important fungal pathogen of brassicaceous crops that originated from at least three hybridization events between different Verticillium spp., leading to the hybrid lineages A1/D1, A1/D2, and A1/D3. Isolates of lineage A1/D1 generally cause stem striping on oilseed rape (Brassica napus), which has recently been reported for the first time to occur in the United Kingdom. Intriguingly, the emerging U.K. population is distinct from the north-central European stem striping population. Little is known about the pathogenicity of the newly emerged U.K. population; hence, pathogenicity tests were executed to compare British isolates to previously characterized reference strains. In addition to the model plant Arabidopsis thaliana, the pathogenicity of four British isolates was assessed on four cultivars of three Brassica crop species: oilseed rape (Quartz and Incentive), cauliflower (Clapton), and Chinese cabbage (Hilton). To this end, vascular discoloration of the roots, plant biomass accumulations, and fungal stem colonization upon isolate infection were evaluated. The British isolates appeared to be remarkably aggressive, because plant biomass was significantly affected and severe vascular discoloration was observed. The British isolates were successful stem colonizers and the extent of fungal colonization negatively correlated with plant biomass of cauliflower and Quartz oilseed rape. However, in Quartz, the fungal colonization of A1/D1 isolates was significantly lower than that of the virulent reference isolate from lineage A1/D3, PD589. Moreover, despite levels of stem colonization similar to those of A1/D1 strains, PD589 did not cause significant disease on Incentive. Thus, A1/D1 isolates, including British isolates, are aggressive oilseed rape pathogens despite limited colonization levels in comparison with a virulent A1/D3 isolate.

  15. Genome of the opportunistic pathogen Streptococcus sanguinis.

    PubMed

    Xu, Ping; Alves, Joao M; Kitten, Todd; Brown, Arunsri; Chen, Zhenming; Ozaki, Luiz S; Manque, Patricio; Ge, Xiuchun; Serrano, Myrna G; Puiu, Daniela; Hendricks, Stephanie; Wang, Yingping; Chaplin, Michael D; Akan, Doruk; Paik, Sehmi; Peterson, Darrell L; Macrina, Francis L; Buck, Gregory A

    2007-04-01

    The genome of Streptococcus sanguinis is a circular DNA molecule consisting of 2,388,435 bp and is 177 to 590 kb larger than the other 21 streptococcal genomes that have been sequenced. The G+C content of the S. sanguinis genome is 43.4%, which is considerably higher than the G+C contents of other streptococci. The genome encodes 2,274 predicted proteins, 61 tRNAs, and four rRNA operons. A 70-kb region encoding pathways for vitamin B(12) biosynthesis and degradation of ethanolamine and propanediol was apparently acquired by horizontal gene transfer. The gene complement suggests new hypotheses for the pathogenesis and virulence of S. sanguinis and differs from the gene complements of other pathogenic and nonpathogenic streptococci. In particular, S. sanguinis possesses a remarkable abundance of putative surface proteins, which may permit it to be a primary colonizer of the oral cavity and agent of streptococcal endocarditis and infection in neutropenic patients.

  16. Detection of the emerging amphibian pathogens Batrachochytrium dendrobatidis and ranavirus in Russia

    USGS Publications Warehouse

    Reshetnikov, Andrey N.; Chestnut, Tara E.; Brunner, Jesse L.; Charles, Kaylene M.; Nebergall, Emily E.; Olson, Deanna H.

    2014-01-01

    In a population of the European common toad Bufo bufo from a rural pond in the region of Lake Glubokoe Regional Reserve in Moscow province, Russia, unexplained mass mortality events involving larvae and metamorphs have been observed over a monitoring period of >20 yr. We tested toads from this and a nearby site for the emerging amphibian pathogens Batrachochytrium dendrobatidis (Bd) and ranavirus (Rv). Both pathogens were detected, and at the rural pond site, with the above-noted losses and decline in toad breeding success, 40% of B. bufo metamorphs were Bd positive, 46% were Rv positive and 20% were co-infected with both pathogens. Toad metamorphs from a neighbouring water body were also Bd and Rv positive (25 and 55%, respectively). This is the first confirmation of these pathogens in Russia. Questions remain as to the origins of these pathogens in Russia and their roles in documented mass mortality events.

  17. Emerging tuberculosis pathogen hijacks social communication behavior in the group-living banded mongoose (Mungos mungo)

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium mungi, a novel M. tuberculosis complex pathogen (MtbC), has emerged in wild banded mongoose (Mungos mungo) in Northern Botswana, causing significant mortality. Unlike other members of the MtbC, M. mungi is not transmitted through a primary aerosol route. Rather, pathogen invasion occur...

  18. A social activity and physical contact-based routing algorithm in mobile opportunistic networks for emergency response to sudden disasters

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Lin, Yaguang; Zhang, Shanshan; Cai, Zhipeng

    2017-05-01

    Sudden disasters such as earthquake, flood and hurricane necessitate the employment of communication networks to carry out emergency response activities. Routing has a significant impact on the functionality, performance and flexibility of communication networks. In this article, the routing problem is studied considering the delivery ratio of messages, the overhead ratio of messages and the average delay of messages in mobile opportunistic networks (MONs) for enterprise-level emergency response communications in sudden disaster scenarios. Unlike the traditional routing methods for MONS, this article presents a new two-stage spreading and forwarding dynamic routing algorithm based on the proposed social activity degree and physical contact factor for mobile customers. A new modelling method for describing a dynamic evolving process of the topology structure of a MON is first proposed. Then a multi-copy spreading strategy based on the social activity degree of nodes and a single-copy forwarding strategy based on the physical contact factor between nodes are designed. Compared with the most relevant routing algorithms such as Epidemic, Prophet, Labelled-sim, Dlife-comm and Distribute-sim, the proposed routing algorithm can significantly increase the delivery ratio of messages, and decrease the overhead ratio and average delay of messages.

  19. Mycobacterium genavense in the Netherlands: an opportunistic pathogen in HIV and non-HIV immunocompromised patients. An observational study in 14 cases.

    PubMed

    Hoefsloot, W; van Ingen, J; Peters, E J G; Magis-Escurra, C; Dekhuijzen, P N R; Boeree, M J; van Soolingen, D

    2013-05-01

    Mycobacterium genavense is an opportunistic non-tuberculous mycobacterium previously mostly associated with HIV-infected patients with CD4 counts below 100/μL. In this retrospective observational study of medical charts we studied all Dutch patients in whom M. genavense was detected between January 2002 and January 2010. Of the 14 patients identified, 13 (93%) showed clinically relevant M. genavense disease. All patients with M. genavense disease were severely immunocompromised, including HIV-infected patients, solid organ transplant recipients, those with chronic steroid use in combination with other immune modulating drugs, recipients of chemotherapy for non-Hodgkin lymphoma, and those with immunodeficiency syndromes. Two patients had non-disseminated pulmonary M. genavense disease. Of the 12 patients treated, eight (75%) showed a favourable outcome. Four patients died in this study, three despite treatment for M. genavense disease. We conclude that M. genavense is a clinically relevant pathogen in severely immunocompromised patients that causes predominantly disseminated disease with serious morbidity and mortality. M. genavense is increasingly seen among non-HIV immunocompromised patients. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  20. Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens

    PubMed Central

    Fan, Yuchen; Moon, James J.

    2016-01-01

    Bioterrorism agents that can be easily transmitted with high mortality rates and cause debilitating diseases pose major threats to national security and public health. The recent Ebola virus outbreak in West Africa and ongoing Zika virus outbreak in Brazil, now spreading throughout Latin America, are case examples of emerging infectious pathogens that have incited widespread fear and economic and social disruption on a global scale. Prophylactic vaccines would provide effective countermeasures against infectious pathogens and biological warfare agents. However, traditional approaches relying on attenuated or inactivated vaccines have been hampered by their unacceptable levels of reactogenicity and safety issues, whereas subunit antigen-based vaccines suffer from suboptimal immunogenicity and efficacy. In contrast, particulate vaccine delivery systems offer key advantages, including efficient and stable delivery of subunit antigens, co-delivery of adjuvant molecules to bolster immune responses, low reactogenicity due to the use of biocompatible biomaterials, and robust efficiency to elicit humoral and cellular immunity in systemic and mucosal tissues. Thus, vaccine nanoparticles and microparticles are promising platforms for clinical development of biodefense vaccines. In this review, we summarize the current status of research efforts to develop particulate vaccine delivery systems against bioterrorism agents and emerging infectious pathogens. PMID:27038091

  1. Multiresistant opportunistic pathogenic bacteria isolated from polluted rivers and first detection of nontuberculous mycobacteria in the Algerian aquatic environment.

    PubMed

    Djouadi, Lydia Neïla; Selama, Okba; Abderrahmani, Ahmed; Bouanane-Darenfed, Amel; Abdellaziz, Lamia; Amziane, Meriam; Fardeau, Marie-Laure; Nateche, Farida

    2017-08-01

    Opportunistic infections constitute a major challenge for modern medicine mainly because the involved bacteria are usually multiresistant to antibiotics. Most of these bacteria possess remarkable ability to adapt to various ecosystems, including those exposed to anthropogenic activities. This study isolated and identified 21 multiresistant opportunistic bacteria from two polluted rivers, located in Algiers. Cadmium, lead, and copper concentrations were determined for both water samples to evaluate heavy metal pollution. High prevalence of Enterobacteria and non-fermentative Gram-negative rods was found and a nontuberculous Mycobacterium (NTM) strain was isolated. To the best of our knowledge, this is the first detection of NTM in the Algerian environment. The strains were tested for their resistance against 34 antibiotics and 8 heavy metals. Multiple antibiotics and heavy metals resistance was observed in all isolates. The two most resistant strains, identified as Acinetobacter sp. and Citrobacter freundii, were submitted to plasmid curing to determine if resistance genes were plasmid or chromosome encoded. Citrobacter freundii strain P18 showed a high molecular weight plasmid which seems to code for resistance to zinc, lead, and tetracycline, at the same time. These findings strongly suggest that anthropized environments constitute a reservoir for multiresistant opportunistic bacteria and for circulating resistance genes.

  2. Review of current methods for characterizing virulence and pathogenicity potential of industrial Saccharomyces cerevisiae strains towards humans.

    PubMed

    Anoop, Valar; Rotaru, Sever; Shwed, Philip S; Tayabali, Azam F; Arvanitakis, George

    2015-09-01

    Most industrial Saccharomyces cerevisiae strains used in food or biotechnology processes are benign. However, reports of S. cerevisiae infections have emerged and novel strains continue to be developed. In order to develop recommendations for the human health risk assessment of S. cerevisiae strains, we conducted a literature review of current methods used to characterize their pathogenic potential and evaluated their relevance towards risk assessment. These studies revealed that expression of virulence traits in S. cerevisiae is complex and depends on many factors. Given the opportunistic nature of this organism, an approach using multiple lines of evidence is likely necessary for the reasonable prediction of the pathogenic potential of a particular strain. Risk assessment of S. cerevisiae strains would benefit from more research towards the comparison of virulent and non-virulent strains in order to better understand those genotypic and phenotypic traits most likely to be associated with pathogenicity. © Her Majesty the Queen in Right of Canada 2015. Reproduced with the permission of the Minister of Health.

  3. Prevalence of opportunistic intestinal parasitic infection among HIV infected patients who are taking antiretroviral treatment at Jimma Health Center, Jimma, Ethiopia.

    PubMed

    Zeynudin, A; Hemalatha, K; Kannan, S

    2013-02-01

    One of the major health problems among HIV sero-positive patients are superimposed infections due to the deficient immunity. Furthermore, intestinal parasitic (IP) infections, which are also one of the basic health problems in tropical regions, are common in these patients. Infection by opportunistic pathogens, including various forms of intestinal parasites has been the hall mark of HIV since the beginning of the epidemic. To study the prevalence of opportunistic intestinal parasitic infection among HIV patients who are taking antiretroviral treatment (ART) in Jimma, Ethiopia. Patient samples were diagnosed by examination of single stool specimen which was examined as fresh wet mounts, formal-ether concentration technique and modified Ziehl-Neelsen staining technique. Data was obtained from 91 study subjects selected by convenience sampling method. The overall prevalence of intestinal parasitic infections was found to be 39.56%. Eight types of intestinal parasites was identified, the most dominant being, Ascaris lumbricoides, 21.67%, Entamoeba histolytica, 15% and Cryptosporidium parvum 13.33%. The prevalence of opportunistic parasite was 15.38%, the prevalence of non-opportunistic parasite was 20.87% and the prevalence of both opportunistic and non opportunistic was 3.29%. The study indicated that intestinal parasites were still a problem in the study area. Data also showed that among the predisposing factors, habit of hand washing before meal, usage of latrine and duration after treatment was statistically associated with intestinal parasitic infections.

  4. Pseudozyma and other non-Candida opportunistic yeast bloodstream infections in a large stem cell transplant center.

    PubMed

    Pande, Anupam; Non, Lemuel R; Romee, Rizwan; Santos, Carlos A Q

    2017-04-01

    Non-Candida opportunistic yeasts are emerging causes of bloodstream infection (BSI) in immunocompromised hosts. However, their clinical presentation, management, and outcomes in stem cell transplant (SCT) recipients are not well described. We report the first case to our knowledge of Pseudozyma BSI in a SCT recipient. He had evidence of cutaneous involvement, which has not been previously described in the literature. He became infected while neutropenic and receiving empiric micafungin, which is notable because Pseudozyma is reported to be resistant to echinocandins. He was successfully treated with the sequential use of liposomal amphotericin B and voriconazole. A review of the literature revealed nine reported instances of Pseudozyma fungemia. We performed a retrospective review of 3557 SCT recipients at our institution from January 2000 to June 2015 and identified four additional cases of non-Candida yeast BSIs. These include two with Cryptococcus, one with Trichosporon, and one with Saccharomyces. Pseudozyma and other non-Candida yeasts are emerging pathogens that can cause severe and disseminated infections in SCT recipients and other immunocompromised hosts. Clinicians should have a high degree of suspicion for echinocandin-resistant yeasts, if patients develop breakthrough yeast BSIs while receiving echinocandin therapy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The Opportunistic Pathogen Vibrio vulnificus Produces Outer Membrane Vesicles in a Spatially Distinct Manner Related to Capsular Polysaccharide

    PubMed Central

    Hampton, Cheri M.; Guerrero-Ferreira, Ricardo C.; Storms, Rachel E.; Taylor, Jeannette V.; Yi, Hong; Gulig, Paul A.; Wright, Elizabeth R.

    2017-01-01

    Vibrio vulnificus, a bacterial species that inhabits brackish waters, is an opportunistic pathogen of humans. V. vulnificus infections can cause acute gastroenteritis, invasive septicemia, tissue necrosis, and potentially death. Virulence factors associated with V. vulnificus include the capsular polysaccharide (CPS), lipopolysaccharide, flagellum, pili, and outer membrane vesicles (OMVs). The aims of this study were to characterize the morphology of V. vulnificus cells and the formation and arrangement of OMVs using cryo-electron microscopy (cryo-EM). cryo-EM and cryo-electron tomography imaging of V. vulnificus strains grown in liquid cultures revealed the presence of OMVs (diameters of ∼45 nm for wild-type, ∼30 nm for the unencapsulated mutant, and ∼50 nm for the non-motile mutant) in log-phase growth. Production of OMVs in the stationary growth phase was limited and irregular. The spacing of the OMVs around the wild-type cells was in regular, concentric rings. In wild-type cells and a non-motile mutant, the spacing between the cell envelope and the first ring of OMVs was ∼200 nm; this spacing was maintained between subsequent OMV layers. The size, arrangement, and spacing of OMVs in an unencapsulated mutant was irregular and indicated that the polysaccharide chains of the capsule regulate aspects of OMV production and order. Together, our results revealed the distinctive organization of V. vulnificus OMVs that is affected by expression of the CPS. PMID:29163452

  6. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen.

    PubMed

    Awad, Milena M; Johanesen, Priscilla A; Carter, Glen P; Rose, Edward; Lyras, Dena

    2014-01-01

    The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions.

  7. Opportunistic Resource Usage in CMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreuzer, Peter; Hufnagel, Dirk; Dykstra, D.

    2014-01-01

    CMS is using a tiered setup of dedicated computing resources provided by sites distributed over the world and organized in WLCG. These sites pledge resources to CMS and are preparing them especially for CMS to run the experiment's applications. But there are more resources available opportunistically both on the GRID and in local university and research clusters which can be used for CMS applications. We will present CMS' strategy to use opportunistic resources and prepare them dynamically to run CMS applications. CMS is able to run its applications on resources that can be reached through the GRID, through EC2 compliantmore » cloud interfaces. Even resources that can be used through ssh login nodes can be harnessed. All of these usage modes are integrated transparently into the GlideIn WMS submission infrastructure, which is the basis of CMS' opportunistic resource usage strategy. Technologies like Parrot to mount the software distribution via CVMFS and xrootd for access to data and simulation samples via the WAN are used and will be described. We will summarize the experience with opportunistic resource usage and give an outlook for the restart of LHC data taking in 2015.« less

  8. Opportunistic Resource Usage in CMS

    NASA Astrophysics Data System (ADS)

    Kreuzer, Peter; Hufnagel, Dirk; Dykstra, D.; Gutsche, O.; Tadel, M.; Sfiligoi, I.; Letts, J.; Wuerthwein, F.; McCrea, A.; Bockelman, B.; Fajardo, E.; Linares, L.; Wagner, R.; Konstantinov, P.; Blumenfeld, B.; Bradley, D.; Cms Collaboration

    2014-06-01

    CMS is using a tiered setup of dedicated computing resources provided by sites distributed over the world and organized in WLCG. These sites pledge resources to CMS and are preparing them especially for CMS to run the experiment's applications. But there are more resources available opportunistically both on the GRID and in local university and research clusters which can be used for CMS applications. We will present CMS' strategy to use opportunistic resources and prepare them dynamically to run CMS applications. CMS is able to run its applications on resources that can be reached through the GRID, through EC2 compliant cloud interfaces. Even resources that can be used through ssh login nodes can be harnessed. All of these usage modes are integrated transparently into the GlideIn WMS submission infrastructure, which is the basis of CMS' opportunistic resource usage strategy. Technologies like Parrot to mount the software distribution via CVMFS and xrootd for access to data and simulation samples via the WAN are used and will be described. We will summarize the experience with opportunistic resource usage and give an outlook for the restart of LHC data taking in 2015.

  9. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati

    PubMed Central

    Frisvad, Jens C.; Larsen, Thomas O.

    2016-01-01

    Aspergillus fumigatus is an important opportunistic human pathogen known for its production of a large array of extrolites. Up to 63 species have been described in Aspergillus section Fumigati, some of which have also been reliably reported to be pathogenic, including A. felis, A. fischeri, A. fumigatiaffinis, A. fumisynnematus, A. hiratsukae, A. laciniosus, A. lentulus, A. novofumigatus, A. parafelis, A. pseudofelis, A. pseudoviridinutans, A. spinosus, A. thermomutatus, and A. udagawae. These species share the production of hydrophobins, melanins, and siderophores and ability to grow well at 37°C, but they only share some small molecule extrolites, that could be important factors in pathogenicity. According to the literature gliotoxin and other exometabolites can be contributing factors to pathogenicity, but these exometabolites are apparently not produced by all pathogenic species. It is our hypothesis that species unable to produce some of these metabolites can produce proxy-exometabolites that may serve the same function. We tabulate all exometabolites reported from species in Aspergillus section Fumigati and by comparing the profile of those extrolites, suggest that those producing many different kinds of exometabolites are potential opportunistic pathogens. The exometabolite data also suggest that the profile of exometabolites are highly specific and can be used for identification of these closely related species. PMID:26779142

  10. Exploitation of microbial forensics and nanotechnology for the monitoring of emerging pathogens.

    PubMed

    Bokhari, Habib

    2018-03-07

    Emerging infectious diseases remain among the leading causes of global mortality. Traditional laboratory diagnostic approaches designed to detect and track infectious disease agents provide a framework for surveillance of bio threats. However, surveillance and outbreak investigations using such time-consuming approaches for early detection of pathogens remain the major pitfall. Hence, reasonable real-time surveillance systems to anticipate threats to public health and environment are critical for identifying specific aetiologies and preventing the global spread of infectious disease. The current review discusses the growing need for monitoring and surveillance of pathogens with the same zeal and approach as adopted by microbial forensics laboratories, and further strengthening it by integrating with the innovative nanotechnology for rapid detection of microbial pathogens. Such innovative diagnostics platforms will help to track pathogens from high risk areas and environment by pre-emptive approach that will minimize damages. The various scenarios with the examples are discussed where the high risk associated human pathogens in particular were successfully detected using various nanotechnology approaches with potential future prospects in the field of microbial forensics.

  11. Subinhibitory Concentrations of Ciprofloxacin Enhance Antimicrobial Resistance and Pathogenicity of Enterococcus faecium

    PubMed Central

    Sinel, Clara; Cacaci, Margherita; Meignen, Pierrick; Guérin, François; Davies, Bryan W.; Sanguinetti, Maurizio; Giard, Jean-Christophe

    2017-01-01

    ABSTRACT Enterococcus faecium has emerged as a major opportunistic pathogen for 2 decades with the spread of hospital-adapted multidrug-resistant clones. As members of the intestinal microbiota, they are subjected to numerous bacterial stresses, including antibiotics at subinhibitory concentrations (SICs). Since fluoroquinolones are extensively prescribed, SICs are very likely to occur in vivo, with potential effects on bacterial metabolism with subsequent modulation of opportunistic traits. The aim of this study was to evaluate globally the impact of SICs of ciprofloxacin on antimicrobial resistance and pathogenicity of E. faecium. Transcriptomic analysis was performed by RNA sequencing (RNA-seq) (HiSeq 2500; Illumina) using the vanB-positive reference strain E. faecium Aus0004 in the absence or presence of ciprofloxacin SIC (0.38 mg/liter, i.e., 1/8 of the MIC). Several genetic and phenotypic tests were used for validation. In the presence of ciprofloxacin SIC, 196 genes were significantly induced, whereas 286 genes were significantly repressed, meaning that 16.8% of the E. faecium genome was altered. Among upregulated genes, EFAU004_02294 (fold change, 14.3) encoded a protein (Qnr of E. faecium [EfmQnr]) homologue of Qnr proteins involved in quinolone resistance in Gram-negative bacilli. Its implication in intrinsic and adaptive fluoroquinolone (FQ) resistance in E. faecium was experimentally ascertained. Moreover, EFAU004_02292, coding for the collagen adhesin Acm, was also induced by the SIC of ciprofloxacin (fold change, 8.2), and higher adhesion capabilities were demonstrated phenotypically. Both EfmQnr and Acm determinants may play an important role in the transition from a commensal to a pathogenic state of E. faecium that resides in the gut of patients receiving fluoroquinolone therapy. PMID:28193670

  12. Subinhibitory Concentrations of Ciprofloxacin Enhance Antimicrobial Resistance and Pathogenicity of Enterococcus faecium.

    PubMed

    Sinel, Clara; Cacaci, Margherita; Meignen, Pierrick; Guérin, François; Davies, Bryan W; Sanguinetti, Maurizio; Giard, Jean-Christophe; Cattoir, Vincent

    2017-05-01

    Enterococcus faecium has emerged as a major opportunistic pathogen for 2 decades with the spread of hospital-adapted multidrug-resistant clones. As members of the intestinal microbiota, they are subjected to numerous bacterial stresses, including antibiotics at subinhibitory concentrations (SICs). Since fluoroquinolones are extensively prescribed, SICs are very likely to occur in vivo , with potential effects on bacterial metabolism with subsequent modulation of opportunistic traits. The aim of this study was to evaluate globally the impact of SICs of ciprofloxacin on antimicrobial resistance and pathogenicity of E. faecium Transcriptomic analysis was performed by RNA sequencing (RNA-seq) (HiSeq 2500; Illumina) using the vanB -positive reference strain E. faecium Aus0004 in the absence or presence of ciprofloxacin SIC (0.38 mg/liter, i.e., 1/8 of the MIC). Several genetic and phenotypic tests were used for validation. In the presence of ciprofloxacin SIC, 196 genes were significantly induced, whereas 286 genes were significantly repressed, meaning that 16.8% of the E. faecium genome was altered. Among upregulated genes, EFAU004_02294 (fold change, 14.3) encoded a protein (Qnr of E. faecium [EfmQnr]) homologue of Qnr proteins involved in quinolone resistance in Gram-negative bacilli. Its implication in intrinsic and adaptive fluoroquinolone (FQ) resistance in E. faecium was experimentally ascertained. Moreover, EFAU004_02292, coding for the collagen adhesin Acm, was also induced by the SIC of ciprofloxacin (fold change, 8.2), and higher adhesion capabilities were demonstrated phenotypically. Both EfmQnr and Acm determinants may play an important role in the transition from a commensal to a pathogenic state of E. faecium that resides in the gut of patients receiving fluoroquinolone therapy. Copyright © 2017 American Society for Microbiology.

  13. Emerging Concepts of Data Integration in Pathogen Phylodynamics.

    PubMed

    Baele, Guy; Suchard, Marc A; Rambaut, Andrew; Lemey, Philippe

    2017-01-01

    Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth

  14. Emerging Concepts of Data Integration in Pathogen Phylodynamics

    PubMed Central

    Baele, Guy; Suchard, Marc A.; Rambaut, Andrew; Lemey, Philippe

    2017-01-01

    Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth

  15. Guidance to Registrants: Process for Making Claims Against Emerging Viral Pathogens not on EPA-Registered Disinfectant Labels

    EPA Pesticide Factsheets

    This guidance proposes to use an organism hierarchy to identify effective products for use with emerging pathogens and to permit registrants to make limited statements against such pathogens. It provides general guidance to interested parties.

  16. Hospitalizations due to selected infections caused by opportunistic premise plumbing pathogens (OPPP) and reported drug resistance in the United States older adult population in 1991-2006.

    PubMed

    Naumova, Elena N; Liss, Alexander; Jagai, Jyotsna S; Behlau, Irmgard; Griffiths, Jeffrey K

    2016-12-01

    The Flint Water Crisis-due to changes of water source and treatment procedures-has revealed many unsolved social, environmental, and public health problems for US drinking water, including opportunistic premise plumbing pathogens (OPPP). The true health impact of OPPP, especially in vulnerable populations such as the elderly, is largely unknown. We explored 10 8 claims in the largest US national uniformly collected data repository to determine rates and costs of OPPP-related hospitalizations. In 1991-2006, 617,291 cases of three selected OPPP infections resulted in the elderly alone of $0.6 billion USD per year of payments. Antibiotic resistance significantly increased OPPP illness costs that are likely to be underreported. More precise estimates for OPPP burdens could be obtained if better clinical, microbiological, administrative, and environmental monitoring data were cross-linked. An urgent dialog across governmental and disciplinary divides, and studies on preventing OPPP through drinking water exposure, are warranted.

  17. Impact of Vector Dispersal and Host-Plant Fidelity on the Dissemination of an Emerging Plant Pathogen

    PubMed Central

    Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael

    2012-01-01

    Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector. PMID:23284774

  18. Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen.

    PubMed

    Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael

    2012-01-01

    Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.

  19. Comparative Analyses of Nonpathogenic, Opportunistic, and Totally Pathogenic Mycobacteria Reveal Genomic and Biochemical Variabilities and Highlight the Survival Attributes of Mycobacterium tuberculosis

    PubMed Central

    Singh, Yadvir; Kohli, Sakshi; Ahmad, Javeed; Ehtesham, Nasreen Z.; Tyagi, Anil K.

    2014-01-01

    ABSTRACT Mycobacterial evolution involves various processes, such as genome reduction, gene cooption, and critical gene acquisition. Our comparative genome size analysis of 44 mycobacterial genomes revealed that the nonpathogenic (NP) genomes were bigger than those of opportunistic (OP) or totally pathogenic (TP) mycobacteria, with the TP genomes being smaller yet variable in size—their genomic plasticity reflected their ability to evolve and survive under various environmental conditions. From the 44 mycobacterial species, 13 species, representing TP, OP, and NP, were selected for genomic-relatedness analyses. Analysis of homologous protein-coding genes shared between Mycobacterium indicus pranii (NP), Mycobacterium intracellulare ATCC 13950 (OP), and Mycobacterium tuberculosis H37Rv (TP) revealed that 4,995 (i.e., ~95%) M. indicaus pranii proteins have homology with M. intracellulare, whereas the homologies among M. indicus pranii, M. intracellulare ATCC 13950, and M. tuberculosis H37Rv were significantly lower. A total of 4,153 (~79%) M. indicus pranii proteins and 4,093 (~79%) M. intracellulare ATCC 13950 proteins exhibited homology with the M. tuberculosis H37Rv proteome, while 3,301 (~82%) and 3,295 (~82%) M. tuberculosis H37Rv proteins showed homology with M. indicus pranii and M. intracellulare ATCC 13950 proteomes, respectively. Comparative metabolic pathway analyses of TP/OP/NP mycobacteria showed enzymatic plasticity between M. indicus pranii (NP) and M. intracellulare ATCC 13950 (OP), Mycobacterium avium 104 (OP), and M. tuberculosis H37Rv (TP). Mycobacterium tuberculosis seems to have acquired novel alternate pathways with possible roles in metabolism, host-pathogen interactions, virulence, and intracellular survival, and by implication some of these could be potential drug targets. PMID:25370496

  20. Opportunistic Infections in Biological Therapy, Risk and Prevention.

    PubMed

    Bryant, Paul A; Baddley, John W

    2017-02-01

    Patients being treated with biological therapies are at increased risk for serious infections, including opportunistic infections. Although more is known about opportunistic infection risk with older biologics, such as antitumor necrosis factor drugs, there is less knowledge of opportunistic infection risk with newer biological therapies. The incidence of certain opportunistic infections (tuberculosis, herpes zoster, pneumocystosis) has been rigorously evaluated in large observational studies. However, data are more limited for other infections (histoplasmosis, nontuberculous mycobacteria). Infectious morbidity and mortality may be preventable with screening and prophylaxis in select populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Environmental Transport of Emerging Human-Pathogenic Cryptosporidium Species and Subtypes through Combined Sewer Overflow and Wastewater

    PubMed Central

    Huang, Chengchen; Hu, Yue; Wang, Lin; Wang, Yuanfei; Li, Na; Guo, Yaqiong; Xiao, Lihua

    2017-01-01

    ABSTRACT The environmental transport of Cryptosporidium spp. through combined sewer overflow (CSO) and the occurrence of several emerging human-pathogenic Cryptosporidium species in developing countries remain unclear. In this study, we collected 40 CSO samples and 40 raw wastewater samples from Shanghai, China, and examined them by PCR and DNA sequencing for Cryptosporidium species (targeting the small subunit rRNA gene) and Giardia duodenalis (targeting the triosephosphate isomerase, β-giardin, and glutamate dehydrogenase genes) and Enterocytozoon bieneusi (targeting the ribosomal internal transcribed spacer) genotypes. Human-pathogenic Cryptosporidium species were further subtyped by sequence analysis of the 60-kDa glycoprotein gene, with additional multilocus sequence typing on the emerging zoonotic pathogen Cryptosporidium ubiquitum. Cryptosporidium spp., G. duodenalis, and E. bieneusi were detected in 12 and 15, 33 and 32, and 37 and 40 CSO and wastewater samples, respectively, including 10 Cryptosporidium species, 3 G. duodenalis assemblages, and 8 E. bieneusi genotypes. In addition to Cryptosporidium hominis and Cryptosporidium parvum, two new pathogens identified in industrialized nations, C. ubiquitum and Cryptosporidium viatorum, were frequently detected. The two novel C. ubiquitum subtype families identified appeared to be genetic recombinants of known subtype families. Similarly, the dominant group 1 E. bieneusi genotypes and G. duodenalis subassemblage AII are known human pathogens. The similar distribution of human-pathogenic Cryptosporidium species and E. bieneusi and G. duodenalis genotypes between wastewater and CSO samples reaffirms that storm overflow is potentially a significant contamination source of pathogens in surface water. The frequent identification of C. ubiquitum and C. viatorum in urban wastewater suggests that these newly identified human pathogens may be endemic in China. IMPORTANCE Cryptosporidium spp., Giardia duodenalis, and

  2. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools.

    PubMed

    Bittar, Fadi; Keita, Mamadou B; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier

    2014-11-24

    Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence.

  3. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools

    PubMed Central

    Bittar, Fadi; Keita, Mamadou B.; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier

    2014-01-01

    Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence. PMID:25417711

  4. Distance-Based Opportunistic Mobile Data Offloading

    PubMed Central

    Lu, Xiaofeng; Lio, Pietro; Hui, Pan

    2016-01-01

    Cellular network data traffic can be offload onto opportunistic networks. This paper proposes a Distance-based Opportunistic Publish/Subscribe (DOPS) content dissemination model, which is composed of three layers: application layer, decision-making layer and network layer. When a user wants new content, he/she subscribes on a subscribing server. Users having the contents decide whether to deliver the contents to the subscriber based on the distance information. If in the meantime a content owner has traveled further in the immediate past time than the distance between the owner and the subscriber, the content owner will send the content to the subscriber through opportunistic routing. Simulations provide an evaluation of the data traffic offloading efficiency of DOPS. PMID:27314361

  5. Distance-Based Opportunistic Mobile Data Offloading.

    PubMed

    Lu, Xiaofeng; Lio, Pietro; Hui, Pan

    2016-06-15

    Cellular network data traffic can be offload onto opportunistic networks. This paper proposes a Distance-based Opportunistic Publish/Subscribe (DOPS) content dissemination model, which is composed of three layers: application layer, decision-making layer and network layer. When a user wants new content, he/she subscribes on a subscribing server. Users having the contents decide whether to deliver the contents to the subscriber based on the distance information. If in the meantime a content owner has traveled further in the immediate past time than the distance between the owner and the subscriber, the content owner will send the content to the subscriber through opportunistic routing. Simulations provide an evaluation of the data traffic offloading efficiency of DOPS.

  6. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen

    PubMed Central

    Awad, Milena M; Johanesen, Priscilla A; Carter, Glen P; Rose, Edward; Lyras, Dena

    2014-01-01

    The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions. PMID:25483328

  7. A distributed national network for label-free rapid identification of emerging pathogens

    NASA Astrophysics Data System (ADS)

    Robinson, J. Paul; Rajwa, Bartek P.; Dundar, M. Murat; Bae, Euiwon; Patsekin, Valery; Hirleman, E. Daniel; Roumani, Ali; Bhunia, Arun K.; Dietz, J. Eric; Davisson, V. Jo; Thomas, John G.

    2011-05-01

    Typical bioterrorism prevention scenarios assume well-known and well-characterized pathogens like anthrax or tularemia, which are serious public concerns if released into food and/or water supplies or distributed using other vectors. Common governmental contingencies include rapid response to these biological threats with predefined treatments and management operations. However, bioterrorist attacks may follow a far more sophisticated route. With the widely known and immense progress in genetics and the availability of molecular biology tools worldwide, the potential for malicious modification of pathogenic genomes is very high. Common non-pathogenic microorganisms could be transformed into dangerous, debilitating pathogens. Known pathogens could also be modified to avoid detection, because organisms are traditionally identified on the basis of their known physiological or genetic properties. In the absence of defined primers a laboratory using genetic biodetection methods such as PCR might be unable to quickly identify a modified microorganism. Our concept includes developing a nationwide database of signatures based on biophysical (such as elastic light scattering (ELS) properties and/or Raman spectra) rather than genetic properties of bacteria. When paired with a machine-learning system for emerging pathogen detection these data become an effective detection system. The approach emphasizes ease of implementation using a standardized collection of phenotypic information and extraction of biophysical features of pathogens. Owing to the label-free nature of the detection modalities ELS is significantly less costly than any genotypic or mass spectrometry approach.

  8. Making vaccines "on demand": a potential solution for emerging pathogens and biodefense?

    PubMed

    De Groot, Anne S; Einck, Leo; Moise, Leonard; Chambers, Michael; Ballantyne, John; Malone, Robert W; Ardito, Matthew; Martin, William

    2013-09-01

    The integrated US Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) has made great strides in strategic preparedness and response capabilities. There have been numerous advances in planning, biothreat countermeasure development, licensure, manufacturing, stockpiling and deployment. Increased biodefense surveillance capability has dramatically improved, while new tools and increased awareness have fostered rapid identification of new potential public health pathogens. Unfortunately, structural delays in vaccine design, development, manufacture, clinical testing and licensure processes remain significant obstacles to an effective national biodefense rapid response capability. This is particularly true for the very real threat of "novel pathogens" such as the avian-origin influenzas H7N9 and H5N1, and new coronaviruses such as hCoV-EMC. Conventional approaches to vaccine development, production, clinical testing and licensure are incompatible with the prompt deployment needed for an effective public health response. An alternative approach, proposed here, is to apply computational vaccine design tools and rapid production technologies that now make it possible to engineer vaccines for novel emerging pathogen and WMD biowarfare agent countermeasures in record time. These new tools have the potential to significantly reduce the time needed to design string-of-epitope vaccines for previously unknown pathogens. The design process-from genome to gene sequence, ready to insert in a DNA plasmid-can now be accomplished in less than 24 h. While these vaccines are by no means "standard," the need for innovation in the vaccine design and production process is great. Should such vaccines be developed, their 60-d start-to-finish timeline would represent a 2-fold faster response than the current standard.

  9. Tracking the establishment of local endemic populations of an emergent enteric pathogen

    PubMed Central

    Holt, Kathryn E.; Thieu Nga, Tran Vu; Thanh, Duy Pham; Vinh, Ha; Kim, Dong Wook; Vu Tra, My Phan; Campbell, James I.; Hoang, Nguyen Van Minh; Vinh, Nguyen Thanh; Minh, Pham Van; Thuy, Cao Thu; Nga, Tran Thi Thu; Thompson, Corinne; Dung, Tran Thi Ngoc; Nhu, Nguyen Thi Khanh; Vinh, Phat Voong; Tuyet, Pham Thi Ngoc; Phuc, Hoang Le; Lien, Nguyen Thi Nam; Phu, Bui Duc; Ai, Nguyen Thi Thuy; Tien, Nguyen Manh; Dong, Nguyen; Parry, Christopher M.; Hien, Tran Tinh; Farrar, Jeremy J.; Parkhill, Julian; Dougan, Gordon; Thomson, Nicholas R.; Baker, Stephen

    2013-01-01

    Shigella sonnei is a human-adapted pathogen that is emerging globally as the dominant agent of bacterial dysentery. To investigate local establishment, we sequenced the genomes of 263 Vietnamese S. sonnei isolated over 15 y. Our data show that S. sonnei was introduced into Vietnam in the 1980s and has undergone localized clonal expansion, punctuated by genomic fixation events through periodic selective sweeps. We uncover geographical spread, spatially restricted frontier populations, and convergent evolution through local gene pool sampling. This work provides a unique, high-resolution insight into the microevolution of a pioneering human pathogen during its establishment in a new host population. PMID:24082120

  10. Opportunistic quantum network coding based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Du, Gang; Liu, Jian-wei

    2016-04-01

    It seems impossible to endow opportunistic characteristic to quantum network on the basis that quantum channel cannot be overheard without disturbance. In this paper, we propose an opportunistic quantum network coding scheme by taking full advantage of channel characteristic of quantum teleportation. Concretely, it utilizes quantum channel for secure transmission of quantum states and can detect eavesdroppers by means of quantum channel verification. What is more, it utilizes classical channel for both opportunistic listening to neighbor states and opportunistic coding by broadcasting measurement outcome. Analysis results show that our scheme can reduce the times of transmissions over classical channels for relay nodes and can effectively defend against classical passive attack and quantum active attack.

  11. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels.

    PubMed

    Chua, Song Lin; Ding, Yichen; Liu, Yang; Cai, Zhao; Zhou, Jianuan; Swarup, Sanjay; Drautz-Moses, Daniela I; Schuster, Stephan Christoph; Kjelleberg, Staffan; Givskov, Michael; Yang, Liang

    2016-11-01

    The host immune system offers a hostile environment with antimicrobials and reactive oxygen species (ROS) that are detrimental to bacterial pathogens, forcing them to adapt and evolve for survival. However, the contribution of oxidative stress to pathogen evolution remains elusive. Using an experimental evolution strategy, we show that exposure of the opportunistic pathogen Pseudomonas aeruginosa to sub-lethal hydrogen peroxide (H 2 O 2 ) levels over 120 generations led to the emergence of pro-biofilm rough small colony variants (RSCVs), which could be abrogated by l-glutathione antioxidants. Comparative genomic analysis of the RSCVs revealed that mutations in the wspF gene, which encodes for a repressor of WspR diguanylate cyclase (DGC), were responsible for increased intracellular cyclic-di-GMP content and production of Psl exopolysaccharide. Psl provides the first line of defence against ROS and macrophages, ensuring the survival fitness of RSCVs over wild-type P. aeruginosa Our study demonstrated that ROS is an essential driving force for the selection of pro-biofilm forming pathogenic variants. Understanding the fundamental mechanism of these genotypic and phenotypic adaptations will improve treatment strategies for combating chronic infections. © 2016 The Authors.

  12. Experimental single-strain mobilomics reveals events that shape pathogen emergence.

    PubMed

    Schoeniger, Joseph S; Hudson, Corey M; Bent, Zachary W; Sinha, Anupama; Williams, Kelly P

    2016-08-19

    Virulence genes on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. Excision is an early step in GI mobilization, producing a circular GI and a deletion site in the chromosome; circular forms are also known for some bacterial insertion sequences (ISs). The recombinant sequence at the junctions of such circles and deletions can be detected sensitively in high-throughput sequencing data, using new computational methods that enable empirical discovery of mobile DNAs. For the rich mobilome of a hospital Klebsiella pneumoniae strain, circularization junctions (CJs) were detected for six GIs and seven IS types. Our methods revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21 Using the resistance of circular dsDNA molecules to exonuclease, internally calibrated with the native plasmids, showed that not all molecules bearing GI CJs were circular. Transpositions were also detected, revealing replicon preference (ISKpn18 prefers a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis) and IS polarity inversion. Efficient discovery and global characterization of numerous mobile elements per experiment improves accounting for the new gene combinations that arise in emerging pathogens. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Lipotropes Protect against Pathogen-Aggravated Stress and Mortality in Low Dose Pesticide-Exposed Fish

    PubMed Central

    Kumar, Neeraj; Gupta, Subodh; Chandan, Nitish Kumar; Aklakur, Md.; Pal, Asim Kumar; Jadhao, Sanjay Balkrishna

    2014-01-01

    The decline of freshwater fish biodiversity corroborates the trends of unsustainable pesticide usage and increase of disease incidence in the last few decades. Little is known about the role of nonlethal exposure to pesticide, which is not uncommon, and concurrent infection of opportunistic pathogens in species decline. Moreover, preventative measures based on current knowledge of stress biology and an emerging role for epigenetic (especially methylation) dysregulation in toxicity in fish are lacking. We herein report the protective role of lipotropes/methyl donors (like choline, betaine and lecithin) in eliciting primary (endocrine), secondary (cellular and hemato-immunological and histoarchitectural changes) and tertiary (whole animal) stress responses including mortality (50%) in pesticide-exposed (nonlethal dose) and pathogen-challenged fish. The relative survival with betaine and lecithin was 10 and 20 percent higher. This proof of cause-and-effect relation and physiological basis under simulated controlled conditions indicate that sustained stress even due to nonlethal exposure to single pollutant enhances pathogenic infectivity in already nutritionally-stressed fish, which may be a driver for freshwater aquatic species decline in nature. Dietary lipotropes can be used as one of the tools in resurrecting the aquatic species decline. PMID:24690771

  14. Lipotropes protect against pathogen-aggravated stress and mortality in low dose pesticide-exposed fish.

    PubMed

    Kumar, Neeraj; Gupta, Subodh; Chandan, Nitish Kumar; Aklakur, Md; Pal, Asim Kumar; Jadhao, Sanjay Balkrishna

    2014-01-01

    The decline of freshwater fish biodiversity corroborates the trends of unsustainable pesticide usage and increase of disease incidence in the last few decades. Little is known about the role of nonlethal exposure to pesticide, which is not uncommon, and concurrent infection of opportunistic pathogens in species decline. Moreover, preventative measures based on current knowledge of stress biology and an emerging role for epigenetic (especially methylation) dysregulation in toxicity in fish are lacking. We herein report the protective role of lipotropes/methyl donors (like choline, betaine and lecithin) in eliciting primary (endocrine), secondary (cellular and hemato-immunological and histoarchitectural changes) and tertiary (whole animal) stress responses including mortality (50%) in pesticide-exposed (nonlethal dose) and pathogen-challenged fish. The relative survival with betaine and lecithin was 10 and 20 percent higher. This proof of cause-and-effect relation and physiological basis under simulated controlled conditions indicate that sustained stress even due to nonlethal exposure to single pollutant enhances pathogenic infectivity in already nutritionally-stressed fish, which may be a driver for freshwater aquatic species decline in nature. Dietary lipotropes can be used as one of the tools in resurrecting the aquatic species decline.

  15. Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings

    PubMed Central

    Soltani, Maryam; Bayat, Mansour; Hashemi, Seyed J.; Zia, Mohammadali; Pestechian, Nader

    2013-01-01

    Background: Invasive fungal infections cause considerable morbidity and mortality in immunocompromised hosts. Pigeon droppings could especially be a potential carrier in the spread of pathogenic yeasts and mold fungi into the environment. The objective of this study was to isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. Materials and Methods: One hundred twenty samples of pigeon droppings were suspended 1:10 in saline solution and then cultured. Identification of C. neoformans was performed on bird seed agar, presence of a capsule on India ink preparation, urease production on urea agar medium and RapID yeast plus system. The identification of candida species was based on micro-morphological analysis on corn meal-Tween 80 agar, RapID yeast plus system and growth in CHROMagar candida. The identification of other fungi was based on macromorphologic, microscopic, biochemical and physiological characteristics. Results: The highest frequency of yeasts and mold fungi were observed in Candida albicans 6.6% and Penicillium spp. 25%. The frequency rate of C. neoformans isolation was 2.5%. Conclusion: Several types of fungi are present in pigeon droppings that can spread in environment and transmit to children and elderly as well as immunocompromised patients who are at increased risk of contracting opportunistic diseases. PMID:23901339

  16. Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings.

    PubMed

    Soltani, Maryam; Bayat, Mansour; Hashemi, Seyed J; Zia, Mohammadali; Pestechian, Nader

    2013-01-01

    Invasive fungal infections cause considerable morbidity and mortality in immunocompromised hosts. Pigeon droppings could especially be a potential carrier in the spread of pathogenic yeasts and mold fungi into the environment. The objective of this study was to isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. One hundred twenty samples of pigeon droppings were suspended 1:10 in saline solution and then cultured. Identification of C. neoformans was performed on bird seed agar, presence of a capsule on India ink preparation, urease production on urea agar medium and RapID yeast plus system. The identification of candida species was based on micro-morphological analysis on corn meal-Tween 80 agar, RapID yeast plus system and growth in CHROMagar candida. The identification of other fungi was based on macromorphologic, microscopic, biochemical and physiological characteristics. The highest frequency of yeasts and mold fungi were observed in Candida albicans 6.6% and Penicillium spp. 25%. The frequency rate of C. neoformans isolation was 2.5%. Several types of fungi are present in pigeon droppings that can spread in environment and transmit to children and elderly as well as immunocompromised patients who are at increased risk of contracting opportunistic diseases.

  17. Opportunistic infection of HIV/AIDS patients in West Papua

    NASA Astrophysics Data System (ADS)

    Witaningrum, A. M.; Khairunisa, S. Q.; Yunifiar, M. Q.; Bramanthi, R.; Rachman, B. E.; Nasronudin

    2018-03-01

    Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) had a major impact on health problemin Indonesia. HIV type 1 (HIV-1) epidemic is currently infected with HIV viruses developing rapidly in Indonesia.Papua provinces have the highest prevalence rate of human immunodeficiency virus type 1 (HIV-1) infection in Indonesia; however, data on opportunistic infection of HIV-1 are limited. The study using medical records as a research sample was conducted among HIV patients from January 2013 - December 2014 in Sele be Solu hospital among 49 patients. Opportunistic infections commonly occur in HIV-infected patients. The aim of the study was to know theprevalence of opportunistic infection among HIV positive patients in West Papua. Forty-nine HIV-1 patients were collected in Sele be Solu Hospital, West Papua.Opportunistic infection was identified such as tuberculosis, tuberculosis Pulmo, tuberculosis and candidiasis, candidiasis and diarrhea. The clinical sign appeared in HIV infected patients such as itchy, cough and loss weight. The prevalence of opportunistic infection indicated the necessity of monitoring the opportunistic infection of HIV/AIDS patients in Indonesia.

  18. Conjugative type IVb pilus recognizes lipopolysaccharide of recipient cells to initiate PAPI-1 pathogenicity island transfer in Pseudomonas aeruginosa

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas aeruginosa pathogenicity island 1 (PAPI-1) is one of the largest genomic islands of this important opportunistic human pathogen. Previous studies have shown that PAPI-1 encodes several putative virulence factors, a major regulator of biofilm formation, and antibiotic-resistance traits, a...

  19. Scedosporium inflatum, an emerging pathogen.

    PubMed Central

    Salkin, I F; McGinnis, M R; Dykstra, M J; Rinaldi, M G

    1988-01-01

    The salient morphologic and physiologic characteristics of 18 isolates of Scedosporium inflatum, a newly reported human pathogen, were compared with those of the morphologically similar fungi Scedosporium apiospermum, Scopulariopsis brevicaulis, and Scopulariopsis brumptii. The formation by S. inflatum of annelloconidia in wet clumps at the apices of annellides with swollen bases was found to be the most useful characteristic in differentiating this potential pathogen. Images PMID:3356789

  20. Opportunistic biases: Their origins, effects, and an integrated solution.

    PubMed

    DeCoster, Jamie; Sparks, Erin A; Sparks, Jordan C; Sparks, Glenn G; Sparks, Cheri W

    2015-09-01

    Researchers commonly explore their data in multiple ways before deciding which analyses they will include in the final versions of their papers. While this improves the chances of researchers finding publishable results, it introduces an "opportunistic bias," such that the reported relations are stronger or otherwise more supportive of the researcher's theories than they would be without the exploratory process. The magnitudes of opportunistic biases can often be stronger than those of the effects being investigated, leading to invalid conclusions and a lack of clarity in research results. Authors typically do not report their exploratory procedures, so opportunistic biases are very difficult to detect just by reading the final version of a research report. In this article, we explain how a number of accepted research practices can lead to opportunistic biases, discuss the prevalence of these practices in psychology, consider the different effects that opportunistic biases have on psychological science, evaluate the strategies that methodologists have proposed to prevent or correct for the effects of these biases, and introduce an integrated solution to reduce the prevalence and influence of opportunistic biases. The recent prominence of articles discussing questionable research practices both in scientific journals and in the public media underscores the importance of understanding how opportunistic biases are created and how we might undo their effects. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  1. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    PubMed

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  2. Within-host evolution of bacterial pathogens

    PubMed Central

    Didelot, Xavier; Walker, A. Sarah; Peto, Tim E.; Crook, Derrick W.; Wilson, Daniel J.

    2016-01-01

    Whole genome sequencing has opened the way to investigating the dynamics and genomic evolution of bacterial pathogens during colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in the infected host — in particular, the evolution of drug resistance and host adaptation in patients chronically infected with opportunistic pathogens — has revealed remarkable patterns of convergent evolution, pointing to an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections, and to suggest the best treatment option. PMID:26806595

  3. Within-host evolution of bacterial pathogens.

    PubMed

    Didelot, Xavier; Walker, A Sarah; Peto, Tim E; Crook, Derrick W; Wilson, Daniel J

    2016-03-01

    Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host--in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens--has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.

  4. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens.

    PubMed

    Elshikh, Mohamed; Funston, Scott; Chebbi, Alif; Ahmed, Syed; Marchant, Roger; Banat, Ibrahim M

    2017-05-25

    Biosurfactants are naturally occurring surface active compounds that have mainly been exploited for environmental applications and consumer products, with their biomedical efficacy an emerging area of research. Rhamnolipids area major group of biosurfactants that have been reported for their antimicrobial and antibiofilm efficacy. One of the main limiting factors for scaled up production and downstream applications of rhamnolipids is the fact that they are predominantly produced from the opportunistic pathogen Pseudomonas aeruginosa. In this article, we have reported the production and characterisation of long chain rhamnolipids from non-pathogenic Burkholderia thailandensis E264 (ATCC 700388). We have also investigated the antibacterial and antibiofilm properties of these rhamnolipids against some oral pathogens (Streptococcus oralis, Actinomyces naeslundii, Neisseria mucosa and Streptococcus sanguinis), important for oral health and hygiene. Treating these bacteria with different concentrations of long chain rhamnolipids resulted in a reduction of 3-4 log of bacterial viability, placing these rhamnolipids close to being classified as biocidal. Investigating long chain rhamnolipid efficacy as antibiofilm agents for prospective oral-related applications revealed good potency against oral-bacteria biofilms in a co-incubation experiments, in a pre-coated surface format, in disrupting immature biofilms and has shown excellent combination effect with Lauryl Sodium Sulphate which resulted in a drastic decrease in its minimal inhibitory concentration against different bacteria. Investigating the rhamnolipid permeabilization effect along with their ability to induce the formation of reactive oxygen species has shed light on the mechanism through which inhibition/killing of bacteria may occur. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Chronic Azithromycin Use in Cystic Fibrosis and Risk of Treatment-Emergent Respiratory Pathogens.

    PubMed

    Cogen, Jonathan D; Onchiri, Frankline; Emerson, Julia; Gibson, Ronald L; Hoffman, Lucas R; Nichols, David P; Rosenfeld, Margaret

    2018-02-23

    Azithromycin has been shown to improve lung function and reduce the number of pulmonary exacerbations in cystic fibrosis patients. Concerns remain, however, regarding the potential emergence of treatment-related respiratory pathogens. To determine if chronic azithromycin use (defined as thrice weekly administration) is associated with increased rates of detection of eight specific respiratory pathogens. We performed a new-user, propensity-score matched retrospective cohort study utilizing data from the Cystic Fibrosis Foundation Patient Registry. Incident azithromycin users were propensity-score matched 1:1 with contemporaneous non-users. Kaplan-Meier curves and Cox proportional hazards regression were used to evaluate the association between chronic azithromycin use and incident respiratory pathogen detection. Analyses were performed separately for each pathogen, limited to patients among whom that pathogen had not been isolated in the two years prior to cohort entry. After propensity score matching, mean age of the cohorts was ~12 years. Chronic azithromycin users had a significantly lower risk of detection of new methicillin-resistant Staphylococcus aureus, non-tuberculous mycobacteria, and Burkholderia cepacia complex compared to non-users. The risk of acquiring the remaining five pathogens was not significantly different between users and non-users. Using an innovative new-user, propensity-score matched study design to minimize indication and selection biases, we found in a predominantly pediatric cohort that chronic azithromycin users had a lower risk of acquiring several cystic fibrosis-related respiratory pathogens. These results may ease concerns that chronic azithromycin exposure increases the risk of acquiring new respiratory pathogens among pediatric cystic fibrosis patients.

  6. Community ecology of fungal pathogens on Bromus tectorum [Chapter 7

    Treesearch

    Susan E. Meyer; Julie Beckstead; JanaLynn Pearce

    2016-01-01

    Bromus tectorum L. (cheatgrass or downy brome) presents a rich resource for soil microorganisms because of its abundant production of biomass, seeds, and surface litter. Many of these organisms are opportunistic saprophytes, but several fungal species regularly found in B. tectorum stands function as facultative or obligate pathogens. These organisms interact...

  7. PATHOGENICITY OF DRINKING WATER ISOLATES OF HETEROTROPHIC BACTERIA WITH PUTATIVE VIRULENCE FACTORS

    EPA Science Inventory

    Although the heterotrophic plate count (HPC) bacteria normally found in potable water are not a threat to the healthy population, some of them may be opportunistic pathogens that could cause adverse health effects in individuals with impaired immune systems. Earlier studies of t...

  8. Genome sequence of E. coli O104:H4 leads to rapid development of a targeted antimicrobial agent against this emerging pathogen.

    USDA-ARS?s Scientific Manuscript database

    A recent widespread outbreak of Escherichia coli O104:H4 in Germany demonstrates the dynamic nature of emerging and re-emerging food-borne pathogens, particularly STECs and related pathogenic E. coli. Rapid genomic sequencing and public availability of these data from the German outbreak strain allo...

  9. The Trophic Life Cycle Stage of the Opportunistic Fungal Pathogen Pneumocystis murina Hinders the Ability of Dendritic Cells To Stimulate CD4+ T Cell Responses

    PubMed Central

    Evans, Heather M.; Simpson, Andrew; Shen, Shu; Stromberg, Arnold J.; Pickett, Carol L.

    2017-01-01

    ABSTRACT The life cycle of the opportunistic fungal pathogen Pneumocystis murina consists of a trophic stage and an ascus-like cystic stage. Infection with the cyst stage induces proinflammatory immune responses, while trophic forms suppress the cytokine response to multiple pathogen-associated molecular patterns (PAMPs), including β-glucan. A targeted gene expression assay was used to evaluate the dendritic cell response following stimulation with trophic forms alone, with a normal mixture of trophic forms and cysts, or with β-glucan. We demonstrate that stimulation with trophic forms downregulated the expression of multiple genes normally associated with the response to infection, including genes encoding transcription factors. Trophic forms also suppressed the expression of genes related to antigen processing and presentation, including the gene encoding the major histocompatibility complex (MHC) class II transactivator, CIITA. Stimulation of dendritic cells with trophic forms, but not a mixture of trophic forms and cysts, reduced the expression of MHC class II and the costimulatory molecule CD40 on the surface of the cells. These defects in the expression of MHC class II and costimulatory molecules corresponded with a reduced capacity for trophic form-loaded dendritic cells to stimulate CD4+ T cell proliferation and polarization. These data are consistent with the delayed innate and adaptive responses previously observed in immunocompetent mice inoculated with trophic forms compared to responses in mice inoculated with a mixture of trophic forms and cysts. We propose that trophic forms broadly inhibit the ability of dendritic cells to fulfill their role as antigen-presenting cells. PMID:28694293

  10. Moraxella osloensis, an emerging pathogen of endocarditis in immunocompromised patients?

    PubMed

    Gagnard, Jean-Charles; Hidri, Nadia; Grillon, Antoine; Jesel, Laurence; Denes, Eric

    2015-01-01

    We report two cases of endocarditis due to Moraxella osloensis. Only one previous case of such infection has been described. These infections occurred in immunocompromised patients (B-cell chronic lymphocytic leukaemia and kidney graft associated with Hodgkin's disease) and both patients had a favourable outcome with a complete cure of their infectious endocarditis. This bacterium could be an emerging pathogen revealed by MALDI-TOF. Indeed, its characterisation within the Moraxella group by use of biochemistry-based methods is difficult. Moreover, this strain could be particularly involved in immunocompromised patients.

  11. The Effect of Polyherbal Medicines Used for the Treatment of Tuberculosis on Other Opportunistic Organisms of Humans Infected with Tuberculosis.

    PubMed

    Famewo, Elizabeth Bosede; Clarke, Anna Maria; Afolayan, Anthony Jide

    2017-10-01

    In many immunocompromised patients, opportunistic bacterial and fungal infections are common. Polyherbal medicines examined in this study are used by the indigenous people of South Africa for the treatment of tuberculosis (TB) and other opportunistic infections associated with TB. To evaluate the antibacterial and antifungal activity of nine polyherbal remedies against four Gram-positive and Gram-negative bacteria respectively and three fungi. Agar dilution method was used to determine the minimum inhibitory concentration (MIC) of the remedies against the organisms. The inhibitory activity of the polyherbal medicines based on the overall MIC revealed that HBfs and FB remedies were the most active remedies against the bacterial isolates at the concentration of 2.5 mg/mL, followed by HBts remedy at 5.0 mg/mL. However, the MIC valves of KWTa, KWTb, KWTc, HBss, EL and AL remedies were higher than 5.0 mg/mL which was the highest concentration used. Only KWTa remedy showed activity against Aspergillus niger and Aspergillus fumigatus with the MIC value of 2.5 mg/mL. While KWTc and HBts had the highest activity at 1.25 mg/mL against Candida albicans , the remaining remedies were active at 2.5 mg/mL. This study revealed that some of these polyherbal formulations have activities against some of the opportunistic bacterial and fungal isolates associated with TB patients. The capability of these remedies to inhibit the organisms is an indication that they are a potential broad-spectrum antimicrobial agent. However, the remedies that are inactive might contain stimulant effects on the immune system. In the Eastern Cape Province of South Africa, no study has been reported on the effect of polyherbal remedies used for the treatment of TB on the opportunistic pathogen. This study therefore revealed that some of the polyherbal medicines possess activity against bacterial and fungal pathogens. Abbreviations used: TB: Tuberculosis; MIC: Minimum Inhibitory Concentration; CFU

  12. Occurrence of infected amoebae in cooling towers compared with natural aquatic environments: implications for emerging pathogens.

    PubMed

    Berk, S G; Gunderson, J H; Newsome, A L; Farone, A L; Hayes, B J; Redding, K S; Uddin, N; Williams, E L; Johnson, R A; Farsian, M; Reid, A; Skimmyhorn, J; Farone, M B

    2006-12-01

    Many species of bacteria pathogenic to humans, such as Legionella, are thought to have evolved in association with amoebal hosts. Several novel unculturable bacteria related to Legionella have also been found in amoebae, a few of which have been thought to be causes of nosocomial infections in humans. Because amoebae can be found in cooling towers, we wanted to know whether cooling tower environments might enhance the association between amoebae and bacterial pathogens of amoebae in order to identify potential "hot spots" for emerging human pathogens. To compare occurrence of infected amoebae in natural environments with those in cooling towers, 40 natural aquatic environments and 40 cooling tower samples were examined. Logistic regression analysis determined variables that were significant predictors of the occurrence of infected amoebae, which were found in 22 of 40 cooling tower samples but in only 3 of the 40 natural samples. An odds ratio showed that it is over 16 times more likely to encounter infected amoebae in cooling towers than in natural environments. Environmental data from cooling towers and natural habitats combined revealed dissolved organic carbon (DOC) and pH were predictors of the occurrence of the pathogens, however, when cooling tower data alone were analyzed, no variables accounted for the occurrence. Several bacteria have novel rRNA sequences, and most strains were not culturable outside of amoebae. Such pathogens of amoebae may spread to the environment via aerosols from cooling towers. Studies of emerging infectious diseases should strongly consider cooling towers as a source of amoeba-associated pathogens.

  13. The Effect of the Acetone Extract of Arctotis arctotoides (Asteraceae) on the Growth and Ultrastructure of Some Opportunistic Fungi Associated with HIV/AIDS

    PubMed Central

    Otang, Wilfred M.; Grierson, Donald S.; Ndip, Roland N.

    2011-01-01

    In this study, the effect of the acetone extract of Arctotis arctotoides (L.f.) O. Hoffm. (Asteraceae) on the growth and ultrastructure of some opportunistic fungi associated with HIV/AIDS was analyzed by means of scanning electron microscope (SEM). Remarkable morphological alterations in the fungal mycelia which were attributed to the loss of cell wall strength ranged from loss of turgidity and uniformity, collapse of entire hyphae to evident destruction of the hyphae. The elements responsible for giving the fungi their characteristic virulence were detected and quantified by energy dispersive X-ray microanalysis techniques. X-ray microanalysis showed the specific spectra of sodium, potassium and sulfur as the principal intersection of the four pathogenic fungi studied. Since these ions have the potential of fostering fungal invasion by altering the permeability of hosts’ membranes, their presence was considered inherent to the pathogenicity of the opportunistic fungi. Hence, these findings indicate the potential of the crude extract of A. arctotoides in preventing fungal invasion and subsequent infection of host’s membranes. PMID:22272130

  14. Urban Breeding Corvids as Disseminators of Ticks and Emerging Tick-Borne Pathogens.

    PubMed

    Sándor, Attila D; Kalmár, Zsuzsa; Matei, Ioana; Ionică, Angela Monica; Mărcuţan, Ioan-Daniel

    2017-02-01

    Crows (Corvidae) are common city dwellers worldwide and are increasingly important subjects of epidemiology studies. Although their importance as hosts and transmitters of a number of zoonotic parasites and pathogens is well known, there are no studies on their importance as tick hosts. After mosquitoes, ticks are the most important vectors of zoonotic pathogens, especially for those causing emerging zoonotic diseases. Pathogenic bacteria, especially Borrelia spp., Rickettsia spp., and Anaplasma spp., vectored by ticks, are the cause for most vector-borne diseases in Europe. Here we report on ticks and tick-borne pathogens harbored by urban breeding crows. A total of 36 birds (33.33%, n = 108) hosted ticks, with 91 individual ticks belonging to 6 species (Haemaphysalis concinna, Haemaphysalis parva, Haemaphysalis punctata, Hyalomma marginatum, Ixodes arboricola, and Ixodes ricinus). Rickettsia spp. DNA was found in 6.6% of ticks and 1.9% of bird tissues, whereas Anaplasma phagocytophilum was found in 5.9% of ticks and 0.9% of birds. Two rickettsial genospecies were located, Rickettsia helvetica and Rickettsia monacensis. This is the first study to determine such a diverse tick spectrum feeding on urban corvids, while highlighting their importance as tick hosts and raising concerns about their potential risk to human health.

  15. Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum

    PubMed Central

    Kautto, Liisa; Nevalainen, Helena

    2017-01-01

    Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482) and an environmental strain (WM 10.136) grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5–75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases. PMID:28060882

  16. Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum.

    PubMed

    Han, Zhiping; Kautto, Liisa; Nevalainen, Helena

    2017-01-01

    Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482) and an environmental strain (WM 10.136) grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5-75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases.

  17. Effectiveness of traveller screening for emerging pathogens is shaped by epidemiology and natural history of infection

    PubMed Central

    Gostic, Katelyn M; Kucharski, Adam J; Lloyd-Smith, James O

    2015-01-01

    During outbreaks of high-consequence pathogens, airport screening programs have been deployed to curtail geographic spread of infection. The effectiveness of screening depends on several factors, including pathogen natural history and epidemiology, human behavior, and characteristics of the source epidemic. We developed a mathematical model to understand how these factors combine to influence screening outcomes. We analyzed screening programs for six emerging pathogens in the early and late stages of an epidemic. We show that the effectiveness of different screening tools depends strongly on pathogen natural history and epidemiological features, as well as human factors in implementation and compliance. For pathogens with longer incubation periods, exposure risk detection dominates in growing epidemics, while fever becomes a better target in stable or declining epidemics. For pathogens with short incubation, fever screening drives detection in any epidemic stage. However, even in the most optimistic scenario arrival screening will miss the majority of cases. DOI: http://dx.doi.org/10.7554/eLife.05564.001 PMID:25695520

  18. Biomimicry of volatile-based microbial control for managing emerging fungal pathogens.

    PubMed

    Gabriel, K T; Joseph Sexton, D; Cornelison, C T

    2018-05-01

    Volatile organic compounds (VOCs) are known to be produced by a wide range of micro-organisms and for a number of purposes. Volatile-based microbial inhibition in environments such as soil is well-founded, with numerous antimicrobial VOCs having been identified. Inhibitory VOCs are of interest as microbial control agents, as low concentrations of gaseous VOCs can elicit significant antimicrobial effects. Volatile organic compounds are organic chemicals typically characterized as having low molecular weight, low solubility in water, and high vapour pressure. Consequently, VOCs readily evaporate to the gaseous phase at standard temperature and pressure. This contact-independent antagonism presents unique advantages over traditional, contact-dependent microbial control methods, including increased surface exposure and reduced environmental persistence. This approach has been the focus of our recent research, with positive results suggesting it may be particularly promising for the management of emerging fungal pathogens, such as the causative agents of white-nose syndrome of bats and snake fungal disease, which are difficult or impossible to treat using traditional approaches. Here, we review the history of volatile-based microbial control, discuss recent progress in formulations that mimic naturally antagonistic VOCs, outline the development of a novel treatment device, and highlight areas where further work is needed to successfully deploy VOCs against existing and emerging fungal pathogens. © 2017 The Society for Applied Microbiology.

  19. DISINFECTION OF EMERGING PATHOGENS

    EPA Science Inventory

    There is a growing awareness of the need to control waterborne microbial pathogens. This presentation will concentate on the role of chemical inactivation, using chlorine, chloramines and ozone as a means of controlling bacterial and protozoan species. Information will be present...

  20. Origin and invasion of the emerging infectious pathogen Sphaerothecum destruens

    PubMed Central

    Sana, Salma; Hardouin, Emilie A; Gozlan, Rodolphe E; Ercan, Didem; Tarkan, Ali Serhan; Zhang, Tiantian; Andreou, Demetra

    2017-01-01

    Non-native species are often linked to the introduction of novel pathogens with detrimental effects on native biodiversity. Since Sphaerothecum destruens was first discovered as a fish pathogen in the United Kingdom, it has been identified as a potential threat to European fish biodiversity. Despite this parasite’s emergence and associated disease risk, there is still a poor understanding of its origin in Europe. Here, we provide the first evidence to support the hypothesis that S. destruens was accidentally introduced to Europe from China along with its reservoir host Pseudorasbora parva via the aquaculture trade. This is the first study to confirm the presence of S. destruens in China, and it has expanded the confirmed range of S. destruens to additional locations in Europe. The demographic analysis of S. destruens and its host P. parva in their native and invasive range further supported the close association of both species. This research has direct significance and management implications for S. destruens in Europe as a non-native parasite. PMID:28831194

  1. Molecular surveillance of traditional and emerging pathogens associated with canine infectious respiratory disease.

    PubMed

    Decaro, Nicola; Mari, Viviana; Larocca, Vittorio; Losurdo, Michele; Lanave, Gianvito; Lucente, Maria Stella; Corrente, Marialaura; Catella, Cristiana; Bo, Stefano; Elia, Gabriella; Torre, Giorgio; Grandolfo, Erika; Martella, Vito; Buonavoglia, Canio

    2016-08-30

    A molecular survey for traditional and emerging pathogens associated with canine infectious respiratory disease (CIRD) was conducted in Italy between 2011 and 2013 on a total of 138 dogs, including 78 early acute clinically ill CIRD animals, 22 non-clinical but exposed to clinically ill CIRD dogs and 38 CIRD convalescent dogs. The results showed that canine parainfluenza virus (CPIV) was the most commonly detected CIRD pathogen, followed by canine respiratory coronavirus (CRCoV), Bordetella bronchiseptica, Mycoplasma cynos, Mycoplasma canis and canine pneumovirus (CnPnV). Some classical CIRD agents, such as canine adenoviruses, canine distemper virus and canid herpesvirus 1, were not detected at all, as were not other emerging respiratory viruses (canine influenza virus, canine hepacivirus) and bacteria (Streptococcus equi subsp. zooepidemicus). Most severe forms of respiratory disease were observed in the presence of CPIV, CRCoV and M. cynos alone or in combination with other pathogens, whereas single CnPnV or M. canis infections were detected in dogs with no or very mild respiratory signs. Interestingly, only the association of M. cynos (alone or in combination with either CRCoV or M. canis) with severe clinical forms was statistically significant. The study, while confirming CPIV as the main responsible for CIRD occurrence, highlights the increasing role of recently discovered viruses, such as CRCoV and CnPnV, for which effective vaccines are not available in the market. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Alterations in Hemagglutinin Receptor-Binding Specificity Accompany the Emergence of Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Mochalova, Larisa; Harder, Timm; Tuzikov, Alexander; Bovin, Nicolai; Wolff, Thorsten; Matrosovich, Mikhail; Schweiger, Brunhilde

    2015-01-01

    ABSTRACT Highly pathogenic avian influenza viruses (HPAIVs) of hemagglutinin H5 and H7 subtypes emerge after introduction of low-pathogenic avian influenza viruses (LPAIVs) from wild birds into poultry flocks, followed by subsequent circulation and evolution. The acquisition of multiple basic amino acids at the endoproteolytical cleavage site of the hemagglutinin (HA) is a molecular indicator for high pathogenicity, at least for infections of gallinaceous poultry. Apart from the well-studied significance of the multibasic HA cleavage site, there is only limited knowledge on other alterations in the HA and neuraminidase (NA) molecules associated with changes in tropism during the emergence of HPAIVs from LPAIVs. We hypothesized that changes in tropism may require alterations of the sialyloligosaccharide specificities of HA and NA. To test this hypothesis, we compared a number of LPAIVs and HPAIVs for their HA-mediated binding and NA-mediated desialylation of a set of synthetic receptor analogs, namely, α2-3-sialylated oligosaccharides. NA substrate specificity correlated with structural groups of NAs and did not correlate with pathogenic potential of the virus. In contrast, all HPAIVs differed from LPAIVs by a higher HA receptor-binding affinity toward the trisaccharides Neu5Acα2-3Galβ1-4GlcNAcβ (3′SLN) and Neu5Acα2-3Galβ1-3GlcNAcβ (SiaLec) and by the ability to discriminate between the nonfucosylated and fucosylated sialyloligosaccharides 3′SLN and Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ (SiaLex), respectively. These results suggest that alteration of the receptor-binding specificity accompanies emergence of the HPAIVs from their low-pathogenic precursors. IMPORTANCE Here, we have found for the first time correlations of receptor-binding properties of the HA with a highly pathogenic phenotype of poultry viruses. Our study suggests that enhanced receptor-binding affinity of HPAIVs for a typical “poultry-like” receptor, 3′SLN, is provided by

  3. Volatile Compounds Emitted by Pseudomonas aeruginosa Stimulate Growth of the Fungal Pathogen Aspergillus fumigatus.

    PubMed

    Briard, Benoit; Heddergott, Christoph; Latgé, Jean-Paul

    2016-03-15

    Chronic lung infections with opportunistic bacterial and fungal pathogens are a major cause of morbidity and mortality especially in patients with cystic fibrosis. Pseudomonas aeruginosa is the most frequently colonizing bacterium in these patients, and it is often found in association with the filamentous fungus Aspergillus fumigatus. P. aeruginosa is known to inhibit the growth of A. fumigatus in situations of direct contact, suggesting the existence of interspecies communication that may influence disease outcome. Our study shows that the lung pathogens P. aeruginosa and A. fumigatus can interact at a distance via volatile-mediated communication and expands our understanding of interspecific signaling in microbial communities. Microbiota studies have shown that pathogens cannot be studied individually anymore and that the establishment and progression of a specific disease are due not to a single microbial species but are the result of the activity of many species living together. To date, the interaction between members of the human microbiota has been analyzed in situations of direct contact or liquid-mediated contact between organisms. This study showed unexpectedly that human opportunistic pathogens can interact at a distance after sensing volatiles emitted by another microbial species. This finding will open a new research avenue for the understanding of microbial communities. Copyright © 2016 Briard et al.

  4. Use of Bioclimatic Factors to Determine Potential Niche of Vaccinia Virus, an Emerging and Zoonotic Pathogen

    NASA Astrophysics Data System (ADS)

    Quiner, C. A.; Nakazawa, Y.

    2017-12-01

    Emerging and understudied pathogens often lack information that most commonly used analytical tools require, such as negative controls or baseline data making public health control of emerging pathogens challenging. In lieu of opportunities to collect more data from larger outbreaks or formal epidemiological studies, new analytical strategies, merging case data with publically available datasets, can be used to understand transmission patterns and drivers of disease emergence. Zoonotic infections with Vaccinia virus (VACV) were first reported in Brazil in 1999, VACV is an emerging zoonotic Orthopoxvirus, which primarily infects dairy cattle and farmers in close contact with infected cows. Prospective studies of emerging pathogens could provide critical data that would inform public health planning and response to outbreaks. By using the location of 87-recorded outbreaks and publicly available bioclimatic data we demonstrate one such approach. Using an Ecological Niche Model (ENM), we identify the environmental conditions under which VACV outbreaks have occurred, and determine additional locations in two affected South American countries that may be susceptible to transmission. Further, we show how suitability for the virus responds to different levels of various environmental factors and highlight the most important climatic factors in determining its transmission. The final ENM predicted all areas where Brazilian outbreaks occurred, two out of five Colombian outbreaks and identified new regions within Brazil that are suitable for transmission based on bioclimatic factors. Further, the most important factors in determining transmission suitability are precipitation of the wettest quarter, annual precipitation, mean temperature of the coldest quarter and mean diurnal range. The analyses here provide a means by which to study patterns of an emerging infectious disease, and regions that are potentially at risk for it, in spite of the paucity of critical data. Policy

  5. An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data.

    PubMed

    Zhang, C; Crasta, O; Cammer, S; Will, R; Kenyon, R; Sullivan, D; Yu, Q; Sun, W; Jha, R; Liu, D; Xue, T; Zhang, Y; Moore, M; McGarvey, P; Huang, H; Chen, Y; Zhang, J; Mazumder, R; Wu, C; Sobral, B

    2008-01-01

    The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host-pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/.

  6. Novel Rickettsia and emergent tick-borne pathogens: A molecular survey of ticks and tick-borne pathogens in Shimba Hills National Reserve, Kenya.

    PubMed

    Mwamuye, Micky M; Kariuki, Edward; Omondi, David; Kabii, James; Odongo, David; Masiga, Daniel; Villinger, Jandouwe

    2017-02-01

    Ticks are important vectors of emerging and re-emerging zoonoses, the majority of which originate from wildlife. In recent times, this has become a global public health concern that necessitates surveillance of both known and unknown tick-borne pathogens likely to be future disease threats, as well as their tick vectors. We carried out a survey of the diversity of ticks and tick-borne pathogens in Kenya's Shimba Hills National Reserve (SHNR), an area with intensified human-livestock-wildlife interactions, where we collected 4297 questing ticks (209 adult ticks, 586 nymphs and 3502 larvae). We identified four tick species of two genera (Amblyomma eburneum, Amblyomma tholloni, Rhipicephalus maculatus and a novel Rhipicephalus sp.) based on both morphological characteristics and molecular analysis of 16S rRNA, internal transcribed spacer 2 (ITS 2) and cytochrome oxidase subunit 1 (CO1) genes. We pooled the ticks (3-8 adults, 8-15 nymphs or 30 larvae) depending on species and life-cycle stages, and screened for bacterial, arboviral and protozoal pathogens using PCR with high-resolution melting analysis and sequencing of unique melt profiles. We report the first molecular detection of Anaplasma phagocytophilum, a novel Rickettsia-like and Ehrlichia-like species, in Rh. maculatus ticks. We also detected Ehrlichia chaffeensis, Coxiella sp., Rickettsia africae and Theileria velifera in Am. eburneum ticks for the first time. Our findings demonstrate previously unidentified tick-pathogen relationships and a unique tick diversity in the SHNR that may contribute to livestock, and possibly human, morbidity in the region. This study highlights the importance of routine surveillance in similar areas to elucidate disease transmission dynamics, as a critical component to inform the development of better tick-borne disease diagnosis, prevention and control measures. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Rapid Detection and Characterization of Emerging Foreign Animal Disease Pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C.

    To best safeguard human and animal health requires early detection and characterization of disease events. This must include effective surveillance for emerging infectious diseases. Both deliberate and natural outbreaks have enormous economic and public health impacts, and can present serious threats to national security. In this project, we developed novel next generation detection technologies to protect the agricultural economy and biosecurity. The first technology is a multiplexed assay to simultaneously detection 10 swine viral and bacterial pathogens. The second one is the Lawrence Livermore Microbial Detection Array (LLMDA) which can detect more than 10,000 microbial species including 4219 viruses, 5367more » bacteria, 265 fungi, 117 protozoa and 293 archaea. We analyzed a series of swine clinical samples from past disease events to demonstrate the utility of the assays for faster and cheaper detection of emerging and foreign animal disease pathogens, and their utility as s routine diagnosis and surveillance tool. A second goal of the study is to better understand mechanisms of African swine fever virus (ASFV) infection in pigs to aid the development of countermeasures and diagnostics. There is no vaccine available for ASF. ASF outbreak is on the rise on several European countries. Though ASF is not currently in the U.S., a potential outbreak in the U.S. would be detrimental to the swine industry and the US agricultural economy. We pursued a genome-wide approach to characterize the pig immune responses after ASFV infection. We used RNA sequencing and bioinformatics methods to identify genes and pathways that are affected during ASF infection. We have identified a list of most differentially expressed genes that are in the immune response pathways.« less

  8. Environmental interactions that influence secondary metabolism and development in the saprophytic crop pathogen Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a pathogenic and opportunistic fungus that can infect several crops of agricultural importance and has the potential to produce carcinogenic mycotoxins such as aflatoxin. Predicted changes in global temperatures, precipitation patterns and carbon dioxide levels are expected to ...

  9. Neurologic emergencies in HIV-negative immunosuppressed patients.

    PubMed

    Guzmán-De-Villoria, J A; Fernández-García, P; Borrego-Ruiz, P J

    HIV-negative immunosuppressed patients comprise a heterogeneous group including transplant patients, patients undergoing treatment with immunosuppressors, uremic patients, alcoholics, undernourished patients, diabetics, patients on dialysis, elderly patients, and those diagnosed with severe or neoplastic processes. Epileptic seizures, focal neurologic signs, and meningoencephalitis are neurologic syndromes that require urgent action. In most of these situations, neuroimaging tests are necessary, but the findings can be different from those observed in immunocompetent patients in function of the inflammatory response. Infectious disease is the first diagnostic suspicion, and the identification of an opportunistic pathogen should be oriented in function of the type and degree of immunosuppression. Other neurologic emergencies include ischemic stroke, cerebral hemorrhage, neoplastic processes, and pharmacological neurotoxicity. This article reviews the role of neuroimaging in HIV-negative immunodepressed patients with a neurologic complication that requires urgent management. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Pattern of co-infection by enteric pathogenic parasites among HIV sero-positive individuals in a Tertiary Care Hospital, Mumbai, India.

    PubMed

    Ahmed, Nishat Hussain; Chowdhary, Abhay

    2015-01-01

    One of the major medical concerns in people living with HIV/AIDS (PLHA) is management of diarrhea that can lead to severe morbidity and mortality. Such clinical scenario warrants an analysis of intestinal parasites, which are important opportunistic pathogens in PLHA. Owing to the scarcity of recent pattern of intestinal opportunistic infections from this region, the study was designed to determine the opportunistic parasites causing diarrhea in PLHA; and to find out whether there is any significant difference in the enteric parasitic pathogens in patients with different immunological status and in those on highly active anti retro-viral therapy (HAART). Analysis of the spectrum of intestinal parasites was carried out with 192 subjects in two groups (142 HIV sero-positive patients having diarrhea and 50 HIV sero-negative patients having diarrhea). The routine light microscopic examination was carried out to determine the infection and CD4+ T-Lymphocyte count was estimated using flow cytometry. Enteric parasites were detected in 35.9% of HIV sero-positive patients having diarrhea and 18% of HIV sero-negative patients having diarrhea. Most common opportunistic enteric parasite was Isospora belli (11.5%); others were Entamoeba histolytica (4.7%), Cryptosporidium sp. (3.6%), Strongyloides stercoralis (3.1%), Giardia intestinalis (3.1%) and Cyclospora cayatanenesis (1.6%). Opportunistic enteric parasites were detected in significantly low numbers in patients with CD4+ T-Lymphocyte counts >500 cells/ml; and in those taking HAART.

  11. Human Primary Epithelial Cells Acquire an Epithelial-Mesenchymal-Transition Phenotype during Long-Term Infection by the Oral Opportunistic Pathogen, Porphyromonas gingivalis

    PubMed Central

    Lee, Jungnam; Roberts, JoAnn S.; Atanasova, Kalina R.; Chowdhury, Nityananda; Han, Kyudong; Yilmaz, Özlem

    2017-01-01

    inhibitor, Mitomycin C. The cellular movement was determined by microscopy. Results displayed P. gingivalis infection promoted cell migration which was slightly enhanced by co-infection with Fusobacterium nucleatum, another oral opportunistic pathogen. Therefore, this study demonstrates human primary OECs acquire initial molecular/cellular changes that are consistent with EMT induction during long-term infection by P. gingivalis and provides a critically novel framework for future mechanistic studies. PMID:29250491

  12. DEVELOPMENT OF A MOLECULAR METHOD TO IDENTIFY THE EMERGING PATHOGEN HEPATITIS E IN WATER SAMPLES

    EPA Science Inventory

    Hepatitis E virus (HEV) is an emerging pathogen that causes significant illness in the developing world. Like the hepatitis A virus, it is transmitted via the fecal-oral route and can cause short-term, acute hepatitis. In addition, hepatitis E has been found to cause a signific...

  13. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    PubMed

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  14. Bioaerosol Sampling in Modern Agriculture: A Novel Approach for Emerging Pathogen Surveillance?

    PubMed Central

    Anderson, Benjamin D.; Ma, Mengmeng; Xia, Yao; Wang, Tao; Shu, Bo; Lednicky, John A.; Ma, Mai-Juan; Lu, Jiahai; Gray, Gregory C.

    2016-01-01

    Background. Modern agricultural practices create environmental conditions conducive to the emergence of novel pathogens. Current surveillance efforts to assess the burden of emerging pathogens in animal production facilities in China are sparse. In Guangdong Province pig farms, we compared bioaerosol surveillance for influenza A virus to surveillance in oral pig secretions and environmental swab specimens. Methods. During the 2014 summer and fall/winter seasons, we used 3 sampling techniques to study 5 swine farms weekly for influenza A virus. Samples were molecularly tested for influenza A virus, and positive specimens were further characterized with culture. Risk factors for influenza A virus positivity for each sample type were assessed. Results. Seventy-one of 354 samples (20.1%) were positive for influenza A virus RNA by real-time reverse-transcription polymerase chain reaction analysis. Influenza A virus positivity in bioaerosol samples was a statistically significant predictor for influenza A virus positivity in pig oral secretion and environmental swab samples. Temperature of <20°C was a significant predictor of influenza A virus positivity in bioaerosol samples. Discussions. Climatic factors and routine animal husbandry practices may increase the risk of human exposure to aerosolized influenza A viruses in swine farms. Data suggest that bioaerosol sampling in pig barns may be a noninvasive and efficient means to conduct surveillance for novel influenza viruses. PMID:27190187

  15. Pathogenic agents in freshwater resources

    NASA Astrophysics Data System (ADS)

    Geldreich, Edwin E.

    1996-02-01

    Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.

  16. On investigating social dynamics in tactical opportunistic mobile networks

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Li, Yong

    2014-06-01

    The efficiency of military mobile network operations at the tactical edge is challenging due to the practical Disconnected, Intermittent, and Limited (DIL) environments at the tactical edge which make it hard to maintain persistent end-to-end wireless network connectivity. Opportunistic mobile networks are hence devised to depict such tactical networking scenarios. Social relations among warfighters in tactical opportunistic mobile networks are implicitly represented by their opportunistic contacts via short-range radios, but were inappropriately considered as stationary over time by the conventional wisdom. In this paper, we develop analytical models to probabilistically investigate the temporal dynamics of this social relationship, which is critical to efficient mobile communication in the battlespace. We propose to formulate such dynamics by developing various sociological metrics, including centrality and community, with respect to the opportunistic mobile network contexts. These metrics investigate social dynamics based on the experimentally validated skewness of users' transient contact distributions over time.

  17. Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes

    USGS Publications Warehouse

    Franklinos, Lydia H. V.; Lorch, Jeffrey M.; Bohuski, Elizabeth A.; Rodriguez-Ramos Fernandez, Julia; Wright, Owen; Fitzpatrick, Liam; Petrovan, Silviu; Durrant, Chris; Linton, Chris; Baláž, Vojtech; Cunningham, Andrew A; Lawson, Becki

    2017-01-01

    Snake fungal disease (SFD) is an emerging disease of conservation concern in eastern North America. Ophidiomyces ophiodiicola, the causative agent of SFD, has been isolated from over 30 species of wild snakes from six families in North America. Whilst O. ophiodiicola has been isolated from captive snakes outside North America, the pathogen has not been reported from wild snakes elsewhere. We screened 33 carcasses and 303 moulted skins from wild snakes collected from 2010–2016 in Great Britain and the Czech Republic for the presence of macroscopic skin lesions and O. ophiodiicola. The fungus was detected using real-time PCR in 26 (8.6%) specimens across the period of collection. Follow up culture and histopathologic analyses confirmed that both O. ophiodiicola and SFD occur in wild European snakes. Although skin lesions were mild in most cases, in some snakes they were severe and were considered likely to have contributed to mortality. Culture characterisations demonstrated that European isolates grew more slowly than those from the United States, and phylogenetic analyses indicated that isolates from European wild snakes reside in a clade distinct from the North American isolates examined. These genetic and phenotypic differences indicate that the European isolates represent novel strains of O. ophiodiicola. Further work is required to understand the individual and population level impact of this pathogen in Europe.

  18. Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes.

    PubMed

    Franklinos, Lydia H V; Lorch, Jeffrey M; Bohuski, Elizabeth; Rodriguez-Ramos Fernandez, Julia; Wright, Owen N; Fitzpatrick, Liam; Petrovan, Silviu; Durrant, Chris; Linton, Chris; Baláž, Vojtech; Cunningham, Andrew A; Lawson, Becki

    2017-06-19

    Snake fungal disease (SFD) is an emerging disease of conservation concern in eastern North America. Ophidiomyces ophiodiicola, the causative agent of SFD, has been isolated from over 30 species of wild snakes from six families in North America. Whilst O. ophiodiicola has been isolated from captive snakes outside North America, the pathogen has not been reported from wild snakes elsewhere. We screened 33 carcasses and 303 moulted skins from wild snakes collected from 2010-2016 in Great Britain and the Czech Republic for the presence of macroscopic skin lesions and O. ophiodiicola. The fungus was detected using real-time PCR in 26 (8.6%) specimens across the period of collection. Follow up culture and histopathologic analyses confirmed that both O. ophiodiicola and SFD occur in wild European snakes. Although skin lesions were mild in most cases, in some snakes they were severe and were considered likely to have contributed to mortality. Culture characterisations demonstrated that European isolates grew more slowly than those from the United States, and phylogenetic analyses indicated that isolates from European wild snakes reside in a clade distinct from the North American isolates examined. These genetic and phenotypic differences indicate that the European isolates represent novel strains of O. ophiodiicola. Further work is required to understand the individual and population level impact of this pathogen in Europe.

  19. Genomic Evidence for the Emergence and Evolution of Pathogenicity and Niche Preferences in the Genus Campylobacter

    PubMed Central

    Iraola, Gregorio; Pérez, Ruben; Naya, Hugo; Paolicchi, Fernando; Pastor, Eugenia; Valenzuela, Sebastián; Calleros, Lucía; Velilla, Alejandra; Hernández, Martín; Morsella, Claudia

    2014-01-01

    The genus Campylobacter includes some of the most relevant pathogens for human and animal health; the continuous effort in their characterization has also revealed new species putatively involved in different kind of infections. Nowadays, the available genomic data for the genus comprise a wide variety of species with different pathogenic potential and niche preferences. In this work, we contribute to enlarge this available information presenting the first genome for the species Campylobacter sputorum bv. sputorum and use this and the already sequenced organisms to analyze the emergence and evolution of pathogenicity and niche preferences among Campylobacter species. We found that campylobacters can be unequivocally distinguished in established and putative pathogens depending on their repertory of virulence genes, which have been horizontally acquired from other bacteria because the nonpathogenic Campylobacter ancestor emerged, and posteriorly interchanged between some members of the genus. Additionally, we demonstrated the role of both horizontal gene transfers and diversifying evolution in niche preferences, being able to distinguish genetic features associated to the tropism for oral, genital, and gastrointestinal tissues. In particular, we highlight the role of nonsynonymous evolution of disulphide bond proteins, the invasion antigen B (CiaB), and other secreted proteins in the determination of niche preferences. Our results arise from assessing the previously unmet goal of considering the whole available Campylobacter diversity for genome comparisons, unveiling notorious genetic features that could explain particular phenotypes and set the basis for future research in Campylobacter biology. PMID:25193310

  20. European surveillance of emerging pathogens associated with canine infectious respiratory disease.

    PubMed

    Mitchell, Judy A; Cardwell, Jacqueline M; Leach, Heather; Walker, Caray A; Le Poder, Sophie; Decaro, Nicola; Rusvai, Miklos; Egberink, Herman; Rottier, Peter; Fernandez, Mireia; Fragkiadaki, Eirini; Shields, Shelly; Brownlie, Joe

    2017-12-01

    Canine infectious respiratory disease (CIRD) is a major cause of morbidity in dogs worldwide, and is associated with a number of new and emerging pathogens. In a large multi-centre European study the prevalences of four key emerging CIRD pathogens; canine respiratory coronavirus (CRCoV), canine pneumovirus (CnPnV), influenza A, and Mycoplasma cynos (M. cynos); were estimated, and risk factors for exposure, infection and clinical disease were investigated. CIRD affected 66% (381/572) of the dogs studied, including both pet and kennelled dogs. Disease occurrence and severity were significantly reduced in dogs vaccinated against classic CIRD agents, canine distemper virus (CDV), canine adenovirus 2 (CAV-2) and canine parainfluenza virus (CPIV), but substantial proportions (65.7%; 201/306) of vaccinated dogs remained affected. CRCoV and CnPnV were highly prevalent across the different dog populations, with overall seropositivity and detection rates of 47% and 7.7% for CRCoV, and 41.7% and 23.4% for CnPnV, respectively, and their presence was associated with increased occurrence and severity of clinical disease. Antibodies to CRCoV had a protective effect against CRCoV infection and more severe clinical signs of CIRD but antibodies to CnPnV did not. Involvement of M. cynos and influenza A in CIRD was less apparent. Despite 45% of dogs being seropositive for M. cynos, only 0.9% were PCR positive for M. cynos. Only 2.7% of dogs were seropositive for Influenza A, and none were positive by PCR. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Functional Diversity as a New Framework for Understanding the Ecology of an Emerging Generalist Pathogen.

    PubMed

    Morris, Aaron; Guégan, Jean-François; Benbow, M Eric; Williamson, Heather; Small, Pamela L C; Quaye, Charles; Boakye, Daniel; Merritt, Richard W; Gozlan, Rodolphe E

    2016-09-01

    Emerging infectious disease outbreaks are increasingly suspected to be a consequence of human pressures exerted on natural ecosystems. Previously, host taxonomic communities have been used as indicators of infectious disease emergence, and the loss of their diversity has been implicated as a driver of increased presence. The mechanistic details in how such pathogen-host systems function, however, may not always be explained by taxonomic variation or loss. Here we used machine learning and methods based on Gower's dissimilarity to quantify metrics of invertebrate functional diversity, in addition to functional groups and their taxonomic diversity at sites endemic and non-endemic for the model generalist pathogen Mycobacterium ulcerans, the causative agent of Buruli ulcer. Changes in these metrics allowed the rapid categorisation of the ecological niche of the mycobacterium's hosts and the ability to relate specific host traits to its presence in aquatic ecosystems. We found that taxonomic diversity of hosts and overall functional diversity loss and evenness had no bearing on the mycobacterium's presence, or whether the site was in an endemic area. These findings, however, provide strong evidence that generalist environmentally persistent bacteria such as M. ulcerans can be associated with specific functional traits rather than taxonomic groups of organisms, increasing our understanding of emerging disease ecology and origin.

  2. Increase in detectable opportunistic bacteria in the oral cavity of orthodontic patients.

    PubMed

    Kitada, K; de Toledo, A; Oho, T

    2009-05-01

    This study was performed to detect the opportunistic bacteria and fungi from the oral cavities of orthodontic patients and examine the ability of the organisms to adhere to saliva-coated metallic brackets. Opportunistic bacteria and fungi were isolated from 58 patients (orthodontic group: 42; non-orthodontic group: 16) using culture methods and were identified based on their biochemical and enzymatic profiles. Seven opportunistic and four streptococcal strains were tested for their ability to adhere to saliva-coated metallic brackets. More opportunistic bacteria and fungi were detected in the orthodontic group than in the non-orthodontic group (P < 0.05). Opportunistic bacteria adhered to saliva-coated metallic brackets to the same degree as oral streptococci. The isolation frequencies of opportunistic bacteria and fungi increase during orthodontic treatment, suggesting the importance of paying special attention to oral hygiene in orthodontic patients to prevent periodontal disease and the aggravation of systemic disease in immunocompromised conditions.

  3. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    PubMed Central

    2012-01-01

    Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus

  4. Emergence of pathogenic and multiple-antibiotic-resistant Macrococcus caseolyticus in commercial broiler chickens.

    PubMed

    Li, Gen; Du, Xusheng; Zhou, Defang; Li, Chengui; Huang, Libo; Zheng, Qiankun; Cheng, Ziqiang

    2018-05-25

    Macrococcus caseolyticus is generally considered to be a non-pathogenic bacterium that does not cause human or animal diseases. However, recently, a strain of M. caseolyticus (SDLY strain) that causes high mortality rates was isolated from commercial broiler chickens in China. The main pathological changes caused by SDLY included caseous exudation in cranial cavities, inflammatory infiltration, haemorrhages and multifocal necrosis in various organs. The whole genome of the SDLY strain was sequenced and was compared with that of the non-pathogenic JCSC5402 strain of M. caseolyticus. The results showed that the SDLY strain harboured a large quantity of mutations, antibiotic resistance genes and numerous insertions and deletions of virulence genes. In particular, among the inserted genes, there is a cluster of eight connected genes associated with the synthesis of capsular polysaccharide. This cluster encodes a transferase and capsular polysaccharide synthase, promotes the formation of capsules and causes changes in pathogenicity. Electron microscopy revealed a distinct capsule surrounding the SDLY strain. The pathogenicity test showed that the SDLY strain could cause significant clinical symptoms and pathological changes in both SPF chickens and mice. In addition, these clinical symptoms and pathological changes were the same as those observed in field cases. Furthermore, the anti-microbial susceptibility test demonstrated that the SDLY strain exhibits multiple-antibiotic resistance. The emergence of pathogenic M. caseolyticus indicates that more attention should be paid to the effects of this micro-organism on both poultry and public health. © 2018 Blackwell Verlag GmbH.

  5. Global research trends of World Health Organization's top eight emerging pathogens.

    PubMed

    Sweileh, Waleed M

    2017-02-08

    On December 8 th , 2015, World Health Organization published a priority list of eight pathogens expected to cause severe outbreaks in the near future. To better understand global research trends and characteristics of publications on these emerging pathogens, we carried out this bibliometric study hoping to contribute to global awareness and preparedness toward this topic. Scopus database was searched for the following pathogens/infectious diseases: Ebola, Marburg, Lassa, Rift valley, Crimean-Congo, Nipah, Middle Eastern Respiratory Syndrome (MERS), and Severe Respiratory Acute Syndrome (SARS). Retrieved articles were analyzed to obtain standard bibliometric indicators. A total of 8619 journal articles were retrieved. Authors from 154 different countries contributed to publishing these articles. Two peaks of publications, an early one for SARS and a late one for Ebola, were observed. Retrieved articles received a total of 221,606 citations with a mean ± standard deviation of 25.7 ± 65.4 citations per article and an h-index of 173. International collaboration was as high as 86.9%. The Centers for Disease Control and Prevention had the highest share (344; 5.0%) followed by the University of Hong Kong with 305 (4.5%). The top leading journal was Journal of Virology with 572 (6.6%) articles while Feldmann, Heinz R. was the most productive researcher with 197 (2.3%) articles. China ranked first on SARS, Turkey ranked first on Crimean-Congo fever, while the United States of America ranked first on the remaining six diseases. Of retrieved articles, 472 (5.5%) were on vaccine - related research with Ebola vaccine being most studied. Number of publications on studied pathogens showed sudden dramatic rise in the past two decades representing severe global outbreaks. Contribution of a large number of different countries and the relatively high h-index are indicative of how international collaboration can create common health agenda among distant different countries.

  6. Opportunistic infection manifestation of HIV-AIDS patients in Airlangga university hospital Surabaya

    NASA Astrophysics Data System (ADS)

    Asmarawati, T. P.; Putranti, A.; Rachman, B. E.; Hadi, U.; Nasronudin

    2018-03-01

    Opportunistic infections are common in HIV-infected patients especially those who progress to acquired immunodeficiency syndrome. There are many factors involved in the prevalence of opportunistic infections. We investigated the patterns of opportunistic infection in HIV-infected patients admitted to Airlangga University Hospital Surabaya. This study was an observational study, conducted in adults patients with HIV infection from January 2016 to September 2017. Data collected from the medical records of the patients. The number of samples in this study was 58. The mean age was 42.9 years, mostly male. Most patients admitted were in clinical stadium III or IV. Heterosexual transmission is a common risk factor in patients. The most prevalent opportunistic infections found in patients were oral candidiasis (58.6%), followed by pulmonary tuberculosis (41.4%) and pneumonia/PCP (41.4%). Other infections found were toxoplasmosis, chronic diarrhea, cytomegalovirus, meningitis TB, hepatitis C, amoebiasis, and cerebritis. Opportunistic infections occurred more often in age≥40 years and increased as clinical stadium get worse. From the results, we conclude that oral candidiasis and pulmonary tuberculosis were the most common opportunistic infections found in Airlangga University Hospital. The pattern of opportunistic infections in this study could help the hospital to set priorities related to the management of patients.

  7. Evidence for the Convergence Model: The Emergence of Highly Pathogenic Avian Influenza (H5N1) in Viet Nam

    PubMed Central

    Saksena, Sumeet; Fox, Jefferson; Epprecht, Michael; Tran, Chinh C.; Nong, Duong H.; Spencer, James H.; Nguyen, Lam; Finucane, Melissa L.; Tran, Vien D.; Wilcox, Bruce A.

    2015-01-01

    Building on a series of ground breaking reviews that first defined and drew attention to emerging infectious diseases (EID), the ‘convergence model’ was proposed to explain the multifactorial causality of disease emergence. The model broadly hypothesizes disease emergence is driven by the co-incidence of genetic, physical environmental, ecological, and social factors. We developed and tested a model of the emergence of highly pathogenic avian influenza (HPAI) H5N1 based on suspected convergence factors that are mainly associated with land-use change. Building on previous geospatial statistical studies that identified natural and human risk factors associated with urbanization, we added new factors to test whether causal mechanisms and pathogenic landscapes could be more specifically identified. Our findings suggest that urbanization spatially combines risk factors to produce particular types of peri-urban landscapes with significantly higher HPAI H5N1 emergence risk. The work highlights that peri-urban areas of Viet Nam have higher levels of chicken densities, duck and geese flock size diversities, and fraction of land under rice or aquaculture than rural and urban areas. We also found that land-use diversity, a surrogate measure for potential mixing of host populations and other factors that likely influence viral transmission, significantly improves the model’s predictability. Similarly, landscapes where intensive and extensive forms of poultry production overlap were found at greater risk. These results support the convergence hypothesis in general and demonstrate the potential to improve EID prevention and control by combing geospatial monitoring of these factors along with pathogen surveillance programs. PMID:26398118

  8. The Burkholderia cepacia rpoE gene is not involved in exopolysaccharide production and onion pathogenicity.

    PubMed

    Devescovi, Giulia; Venturi, Vittorio

    2006-03-01

    Burkholderia cepacia was originally described as the causative agent of bacterial rot of onions, and it has now emerged as an important opportunistic pathogen causing severe chronic lung infections in patients having cystic fibrosis. Burkholderia cepacia is now classified into nine very closely related species (previously designated as genomovars), all of which have been isolated from both environmental and clinical sources and are collectively known as the B. cepacia complex. The alternative extracytoplasmic function sigma factor, sigmaE, has been determined in several bacterial species as making substantial contributions to bacterial survival under stress conditions. Here, we report the identification and characterization of the rpoE gene, encoding sigmaE, of B. cepacia. It is highly similar to sigmaE of other bacteria, including Escherichia coli and Pseudomonas aeruginosa. Studies using an rpoE knockout mutant of B. cepacia revealed that many stress adaptations, including osmotic, oxidative, desiccation, carbon, and nitrogen stress, were independent of sigmaE. Similarly, biofilm formation; production of exopolysaccharides, N-acyl homoserine lactones, and several exoenzymes; and onion pathogenicity were not affected by the absence of sigmaE. In contrast, sigmaE contributed to the adaptation to heat stress and phosphate starvation.

  9. Genomic evidence for the emergence and evolution of pathogenicity and niche preferences in the genus Campylobacter.

    PubMed

    Iraola, Gregorio; Pérez, Ruben; Naya, Hugo; Paolicchi, Fernando; Pastor, Eugenia; Valenzuela, Sebastián; Calleros, Lucía; Velilla, Alejandra; Hernández, Martín; Morsella, Claudia

    2014-09-04

    The genus Campylobacter includes some of the most relevant pathogens for human and animal health; the continuous effort in their characterization has also revealed new species putatively involved in different kind of infections. Nowadays, the available genomic data for the genus comprise a wide variety of species with different pathogenic potential and niche preferences. In this work, we contribute to enlarge this available information presenting the first genome for the species Campylobacter sputorum bv. sputorum and use this and the already sequenced organisms to analyze the emergence and evolution of pathogenicity and niche preferences among Campylobacter species. We found that campylobacters can be unequivocally distinguished in established and putative pathogens depending on their repertory of virulence genes, which have been horizontally acquired from other bacteria because the nonpathogenic Campylobacter ancestor emerged, and posteriorly interchanged between some members of the genus. Additionally, we demonstrated the role of both horizontal gene transfers and diversifying evolution in niche preferences, being able to distinguish genetic features associated to the tropism for oral, genital, and gastrointestinal tissues. In particular, we highlight the role of nonsynonymous evolution of disulphide bond proteins, the invasion antigen B (CiaB), and other secreted proteins in the determination of niche preferences. Our results arise from assessing the previously unmet goal of considering the whole available Campylobacter diversity for genome comparisons, unveiling notorious genetic features that could explain particular phenotypes and set the basis for future research in Campylobacter biology. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Xylella fastidiosa: an examination of a re-emerging plant pathogen.

    PubMed

    Rapicavoli, Jeannette; Ingel, Brian; Blanco-Ulate, Barbara; Cantu, Dario; Roper, Caroline

    2018-04-01

    Xylella fastidiosa is a Gram-negative bacterial plant pathogen with an extremely wide host range. This species has recently been resolved into subspecies that correlate with host specificity. This review focuses on the status of X. fastidiosa pathogenic associations in plant hosts in which the bacterium is either endemic or has been recently introduced. Plant diseases associated with X. fastidiosa have been documented for over a century, and much about what is known in the context of host-pathogen interactions is based on these hosts, such as grape and citrus, in which this pathogen has been well described. Recent attention has focused on newly emerging X. fastidiosa diseases, such as in olives. Bacteria; Gammaproteobacteria; family Xanthomonadaceae; genus Xylella; species fastidiosa. Gram-negative rod (0.25-0.35 × 0.9-3.5 μm), non-flagellate, motile via Type IV pili-mediated twitching, fastidious. Xylella fastidiosa has a broad host range that includes ornamental, ecological and agricultural plants belonging to over 300 different species in 63 different families. To date, X. fastidiosa has been found to be pathogenic in over 100 plant species. In addition, it can establish non-symptomatic associations with many plants as a commensal endophyte. Here, we list the four distinct subspecies of X. fastidiosa and some of the agriculturally relevant diseases caused by them: X. fastidiosa ssp. fastidiosa causes Pierce's disease (PD) of grapevine (Vitis vinifera); X. fastidiosa ssp. multiplex causes almond leaf scorch (ALS) and diseases on other nut and shade tree crops; X. fastidiosa ssp. pauca causes citrus variegated chlorosis (CVC) (Citrus spp.), coffee leaf scorch and olive quick decline syndrome (OQDS) (Olea europaea); X. fastidiosa ssp. sandyi causes oleander leaf scorch (OLS) (Nerium oleander). Significant host specificity seemingly exists for some of the subspecies, although this could be a result of technical biases based on the limited number of

  11. Polymorphic SSR Markers for Plasmopara obducens (Peronosporaceae), the Newly Emergent Downy Mildew Pathogen of Impatiens (Balsaminaceae)

    DOE PAGES

    Salgado-Salazar, Catalina; Rivera, Yazmín; Veltri, Daniel; ...

    2015-11-10

    Premise of the study: Simple sequence repeat (SSR) markers were developed for Plasmopara obducens, the causal agent of the newly emergent downy mildew disease of Impatiens walleriana. Methods and Results: A 202-Mb draft genome assembly was generated from P. obducens using Illumina technology and mined to identify 13,483 SSR motifs. Primers were synthesized for 62 marker candidates, of which 37 generated reliable PCR products. Testing of the 37 markers using 96 P. obducens samples showed 96% of the markers were polymorphic, with 2-6 alleles observed. Observed and expected heterozygosity ranged from 0.000-0.892 and 0.023-0.746, respectively. Just 17 markers were sufficientmore » to identify all multilocus genotypes. Conclusions: These are the first SSR markers available for this pathogen, and one of the first molecular resources. These markers will be useful in assessing variation in pathogen populations and determining the factors contributing to the emergence of destructive impatiens downy mildew disease.« less

  12. Quantifying known and emerging uterine pathogens, and evaluating their association with metritis and fever in dairy cows.

    PubMed

    Cunha, Federico; Jeon, Soo Jin; Daetz, Rodolfo; Vieira-Neto, Achilles; Laporta, Jimena; Jeong, K Casey; Barbet, Anthony F; Risco, Carlos A; Galvão, Klibs N

    2018-07-01

    Metritis is caused by polymicrobial infection; however, recent metagenomic work challenges the importance of known pathogens such as Escherichia coli and Trueperella pyogenes while identifying potential new pathogens such as Bacteroides pyogenes, Porphyromonas levii and Helcococcus ovis. This study aims to quantify known and emerging uterine pathogens, and to evaluate their association with metritis and fever in dairy cows. Metritis was diagnosed at 6 ± 2 days postpartum, a uterine swab was collected and rectal temperature was measured. 39 cows were classified into three groups: Healthy (n = 14), Metritis without fever (MNoFever; n = 12), and Metritis with fever (MFever; n = 13). Absolute copy number was determined for total bacteria and for 8 potentially pathogenic bacteria using droplet digital PCR. Both MNoFever and MFever cows had higher copy number of total bacteria, Fusobacterium necrophorum, Prevotella melaninogenica, Bacteroides pyogenes, Porphyromonas levii, and Helcococcus ovis than Healthy cows. MNoFever and MFever groups were similar. There was no difference among groups in copy number of Escherichia coli, Trueperella pyogenes, and Bacteroides heparinolyticus, and they all had low copy numbers. Our work confirms the importance of some bacteria identified by culture-based studies in the pathogenesis of metritis such as Fusobacterium necrophorum and Prevotella melaninogenica; however, it challenges the importance of others such as Escherichia coli and Trueperella pyogenes at the time of metritis diagnosis. Additionally, Bacteroides pyogenes, Porphyromonas levii, and Helcococcus ovis were recognized as emerging pathogens involved in the etiology of metritis. Furthermore, fever was not associated with the total bacterial load or specific bacteria. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Phylogenetic analysis reveals two genotypes of the emerging fungus Mucor indicus, an opportunistic human pathogen in immunocompromised patients.

    PubMed

    Taj-Aldeen, Saad J; Almaslamani, Muna; Theelen, Bart; Boekhout, Teun

    2017-07-12

    Mucormycosis is a rare fungal infection caused by Mucor indicus. Phylogenetic analysis of many M. indicus isolates, mainly sampled from different clinical and environmental specimens collected worldwide, revealed two genotypes, I and II, based on ITS and D1/D2 LSU rDNA sequences. A retrospective review of the literature revealed 13 cases. Eight (76.9%) patients had disseminated infections, and the overall mortality rate was 30.7%. A pulmonary infection caused by M. indicus genotype I in a liver transplant recipient was disseminated to include the skin and was successfully treated with liposomal amphotericin B and aggressive surgery. M. indicus can infect a wide variety of patients with no real preference for the site of infection. We concluded that M. indicus has emerged as a significant cause of invasive mycosis in severely immunocompromised patients worldwide. Early diagnosis and initiation of appropriate therapy could enhance survival in these immunocompromised patient populations.

  14. Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies.

    PubMed

    Ijaz, M Khalid; Zargar, Bahram; Wright, Kathryn E; Rubino, Joseph R; Sattar, Syed A

    2016-09-02

    Indoor air can be an important vehicle for a variety of human pathogens. This review provides examples of airborne transmission of infectious agents from experimental and field studies and discusses how airborne pathogens can contaminate other parts of the environment to give rise to secondary vehicles leading air-surface-air nexus with possible transmission to susceptible hosts. The following groups of human pathogens are covered because of their known or potential airborne spread: vegetative bacteria (staphylococci and legionellae), fungi (Aspergillus, Penicillium, and Cladosporium spp and Stachybotrys chartarum), enteric viruses (noro- and rotaviruses), respiratory viruses (influenza and coronaviruses), mycobacteria (tuberculous and nontuberculous), and bacterial spore formers (Clostridium difficile and Bacillus anthracis). An overview of methods for experimentally generating and recovering airborne human pathogens is included, along with a discussion of factors that influence microbial survival in indoor air. Available guidelines from the U.S. Environmental Protection Agency and other global regulatory bodies for the study of airborne pathogens are critically reviewed with particular reference to microbial surrogates that are recommended. Recent developments in experimental facilities to contaminate indoor air with microbial aerosols are presented, along with emerging technologies to decontaminate indoor air under field-relevant conditions. Furthermore, the role that air decontamination may play in reducing the contamination of environmental surfaces and its combined impact on interrupting the risk of pathogen spread in both domestic and institutional settings is discussed. Copyright © 2016. Published by Elsevier Inc.

  15. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection.

    PubMed

    Sabaté Brescó, Marina; Harris, Llinos G; Thompson, Keith; Stanic, Barbara; Morgenstern, Mario; O'Mahony, Liam; Richards, R Geoff; Moriarty, T Fintan

    2017-01-01

    Staphylococcus epidermidis is a permanent member of the normal human microbiota, commonly found on skin and mucous membranes. By adhering to tissue surface moieties of the host via specific adhesins, S. epidermidis is capable of establishing a lifelong commensal relationship with humans that begins early in life. In its role as a commensal organism, S. epidermidis is thought to provide benefits to human host, including out-competing more virulent pathogens. However, largely due to its capacity to form biofilm on implanted foreign bodies, S. epidermidis has emerged as an important opportunistic pathogen in patients receiving medical devices. S. epidermidis causes approximately 20% of all orthopedic device-related infections (ODRIs), increasing up to 50% in late-developing infections. Despite this prevalence, it remains underrepresented in the scientific literature, in particular lagging behind the study of the S. aureus . This review aims to provide an overview of the interactions of S. epidermidis with the human host, both as a commensal and as a pathogen. The mechanisms retained by S. epidermidis that enable colonization of human skin as well as invasive infection, will be described, with a particular focus upon biofilm formation. The host immune responses to these infections are also described, including how S. epidermidis seems to trigger low levels of pro-inflammatory cytokines and high levels of interleukin-10, which may contribute to the sub-acute and persistent nature often associated with these infections. The adaptive immune response to S. epidermidis remains poorly described, and represents an area which may provide significant new discoveries in the coming years.

  16. Opportunistic and other intestinal parasitic infections in AIDS patients, HIV seropositive healthy carriers and HIV seronegative individuals in southwest Ethiopia.

    PubMed

    Mariam, Zelalem T; Abebe, Gemeda; Mulu, Andargachew

    2008-12-01

    Human Immunodeficiency Virus (HIV) infection leads to acquired immunodeficiency syndrome (AIDS) and major causes of morbidity and mortality of such patients are opportunistic infections caused by viral, bacterial, fungal and parasitic pathogens. To determine the magnitude of opportunistic and non-opportunistic intestinal parasitic infections among AIDS patients and HIV positive carrier individuals. Cross-sectional study was conducted among AIDS patients, HIV positive healthy carriers and HIV negative individuals in Jimma University Hospital, Mother Theresa Missionary Charity Centre, Medan Acts Projects and Mekdim HIV positive persons and AIDS orphans' national association from January to May, 2004. Convenient sampling technique was employed to identify the study subjects and hence a total of 160 subjects were included. A pre-tested structured questionnaire was used to collect socio-demographic data of the patients. Stool samples were examined by direct saline, iodine wet mount, formol-ether sedimentation concentration, oocyst concentration and modified Ziehl-Neelsen staining technique. Out of 160 persons enrolled in this study 100 (62.5%) (i.e. 65 male and 35 female) were infected with one or more intestinal parasites. The highest rate 36 (69.2%) of intestinal parasites were observed among HIV/AIDS patients, followed by HIV positive healthy carriers 35 (61.4%) of and HIV negative individuals (29 (56.9%). Isospora belli 2 (3.9%), Cryptosporidum parvum 8 (15.4%), Strongyloides stercoralis 6 (11.5%) and Blastocystis 2 (3.9%) were found only in HIV/AIDS groups I. belli, C. parvum, S. stercoralis and Blastocystis are the major opportunistic intestinal parasites observed in HIV/AIDS patients. Therefore, early detection and treatment of these parasites are important to improve the quality of life of HIV/AIDS patients with diarrhoea.

  17. Survival of pathogenic bacteria under nutrient starvation conditions. [aboard orbiting space stations

    NASA Technical Reports Server (NTRS)

    Boyle, Michael; Ford, Tim; Mitchell, Ralph; Maki, James

    1990-01-01

    The survival of opportunistic pathogenic microorganisms in water, under nutrient-limiting conditions, has been investigated in order to ascertain whether human pathogens can survive within a water-distribution system of the kind proposed for the NASA Space Station. Cultures of a strain of pseudomonas aeruginosa and two strains of staphylococcus aureus were incubated at 10, 25, or 37 C, and samples at 1 day, 1 week, 1 month, and six weeks. While neither of the staphylococcus strains tested were detected after 1 week of starvation, the pseudomonas strain can survive in deionized water at all three temperatures.

  18. Pathogens and host immunity in the ancient human oral cavity

    PubMed Central

    Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico

    2014-01-01

    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188

  19. Insights into virulence factors determining the pathogenicity of Cronobacter sakazakii.

    PubMed

    Singh, Niharika; Goel, Gunjan; Raghav, Mamta

    2015-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with outbreaks of life-threatening necrotizing enterocolitis, meningitis and sepsis in neonates and infants. The pathogen possesses an array of virulence factors which aid in tissue adhesion, invasion and host cell injury. Although the identification and validation of C. sakazakii virulence factors has been hindered by availability of suitable neonatal animal model, various studies has reported outer membrane protein A (ompA) as a potential virulence marker. Various other plasmid associated genes such as filamentous hemagglutinin (fhaBC), Cronobacter plasminogen activator (cpa) and genes responsible for iron acquisition (eitCBAD and iucABD/iutA) have been reported in different strains of C. sakazakii. Besides these proposed virulence factors, several biophysical growth factors such as formation of biofilms and resistance to various environmental stresses also contributes to the pathogenic potential of this pathogen. This review provides an update on virulence determinants associated with the pathogenesis of C. sakazakii. The potential reservoirs of the pathogen, mode of transmission and epidemiology are also discussed.

  20. Insights into virulence factors determining the pathogenicity of Cronobacter sakazakii

    PubMed Central

    Singh, Niharika; Goel, Gunjan; Raghav, Mamta

    2015-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with outbreaks of life-threatening necrotizing enterocolitis, meningitis and sepsis in neonates and infants. The pathogen possesses an array of virulence factors which aid in tissue adhesion, invasion and host cell injury. Although the identification and validation of C. sakazakii virulence factors has been hindered by availability of suitable neonatal animal model, various studies has reported outer membrane protein A (ompA) as a potential virulence marker. Various other plasmid associated genes such as filamentous hemagglutinin (fhaBC), Cronobacter plasminogen activator (cpa) and genes responsible for iron acquisition (eitCBAD and iucABD/iutA) have been reported in different strains of C. sakazakii. Besides these proposed virulence factors, several biophysical growth factors such as formation of biofilms and resistance to various environmental stresses also contributes to the pathogenic potential of this pathogen. This review provides an update on virulence determinants associated with the pathogenesis of C. sakazakii. The potential reservoirs of the pathogen, mode of transmission and epidemiology are also discussed. PMID:25950947

  1. Copper Resistance of the Emerging Pathogen Acinetobacter baumannii

    PubMed Central

    Williams, Caitlin L.; Neu, Heather M.; Gilbreath, Jeremy J.; Michel, Sarah L. J.; Zurawski, Daniel V.

    2016-01-01

    ABSTRACT Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa. Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. IMPORTANCE Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic

  2. Hyphal Growth in Human Fungal Pathogens and Its Role in Virulence

    PubMed Central

    Brand, Alexandra

    2012-01-01

    Most of the fungal species that infect humans can grow in more than one morphological form but only a subset of pathogens produce filamentous hyphae during the infection process. This subset is phylogenetically unrelated and includes the commonly carried yeasts, Candida albicans, C. dubliniensis, and Malassezia spp., and the acquired pathogens, Aspergillus fumigatus and dermatophytes such as Trichophyton rubrum and T. mentagrophytes. The primary function of hypha formation in these opportunistic pathogens is to invade the substrate they are adhered to, whether biotic or abiotic, but other functions include the directional translocation between host environments, consolidation of the colony, nutrient acquisition and the formation of 3-dimensional matrices. To support these functions, polarised hyphal growth is co-regulated with other factors that are essential for normal hypha function in vivo. PMID:22121367

  3. Molecular diagnosis of central nervous system opportunistic infections and mortality in HIV-infected adults in Central China.

    PubMed

    Yang, Rongrong; Zhang, Hong; Xiong, Yong; Gui, Xien; Zhang, Yongxi; Deng, Liping; Gao, Shicheng; Luo, Mingqi; Hou, Wei; Guo, Deyin

    2017-01-01

    CSF PCR is the standard diagnostic technique used in resource-rich settings to detect pathogens of the CNS infection. However, it is not currently used for routine CSF testing in China. Knowledge of CNS opportunistic infections among people living with HIV in China is limited. Intensive cerebrospiral fluid (CSF) testing was performed to evaluate for bacterial, viral and fungal etiologies. Pathogen-specific primers were used to detect DNA from cytomegalovirus (CMV), herpes simplex virus (HSV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6) and John Cunningham virus (JCV) via real-time polymerase chain reaction (PCR). Cryptococcal meningitis accounted for 63.0% (34 of 54) of all causes of meningitis, 13.0% (7/54) for TB, 9.3% (5/54) for Toxoplasma gondii. Of 54 samples sent for viral PCR, 31.5% (17/54) were positive, 12 (22.2%) for CMV, 2 (3.7%) for VZV, 1 (1.9%) for EBV, 1 (1.9%) for HHV-6 and 1 (1.9%) for JCV. No patient was positive for HSV. Pathogen-based treatment and high GCS score tended to have a lower mortality rate, whereas patients with multiple pathogens infection, seizures or intracranial hypertension showed higher odds of death. CNS OIs are frequent and multiple pathogens often coexist in CSF. Cryptococcal meningitis is the most prevalent CNS disorders among AIDS. The utility of molecular diagnostics for pathogen identification combined with the knowledge provided by the investigation may improve the diagnosis of AIDS related OIs in resource-limited developing countries, but the cost-efficacy remains to be further evaluated.

  4. In Vitro Emergence of High Persistence upon Periodic Aminoglycoside Challenge in the ESKAPE Pathogens.

    PubMed

    Michiels, Joran Elie; Van den Bergh, Bram; Verstraeten, Natalie; Fauvart, Maarten; Michiels, Jan

    2016-08-01

    Health care-associated infections present a major threat to modern medical care. Six worrisome nosocomial pathogens-Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.-are collectively referred to as the "ESKAPE bugs." They are notorious for extensive multidrug resistance, yet persistence, or the phenotypic tolerance displayed by a variant subpopulation, remains underappreciated in these pathogens. Importantly, persistence can prevent eradication of antibiotic-sensitive bacterial populations and is thought to act as a catalyst for the development of genetic resistance. Concentration- and time-dependent aminoglycoside killing experiments were used to investigate persistence in the ESKAPE pathogens. Additionally, a recently developed method for the experimental evolution of persistence was employed to investigate adaptation to high-dose, extended-interval aminoglycoside therapy in vitro We show that ESKAPE pathogens exhibit biphasic killing kinetics, indicative of persister formation. In vitro cycling between aminoglycoside killing and persister cell regrowth, evocative of clinical high-dose extended-interval therapy, caused a 37- to 213-fold increase in persistence without the emergence of resistance. Increased persistence also manifested in biofilms and provided cross-tolerance to different clinically important antibiotics. Together, our results highlight a possible drawback of intermittent, high-dose antibiotic therapy and suggest that clinical diagnostics might benefit from taking into account persistence. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Ureaplasma Transmitted From Donor Lungs Is Pathogenic After Lung Transplantation.

    PubMed

    Fernandez, Ramiro; Ratliff, Amy; Crabb, Donna; Waites, Ken B; Bharat, Ankit

    2017-02-01

    Hyperammonemia is a highly fatal syndrome in lung recipients that is usually refractory to medical therapy. We recently reported that infection by a Mollicute, Ureaplasma, is causative for hyperammonemia and can be successfully treated with antimicrobial agents. However, it remains unknown whether the pathogenic strain of Ureaplasma is donor or recipient derived. Here we provide evidence that donor-derived Ureaplasma infection can be pathogenic. As such, we uncover a previously unknown lethal donor-derived opportunistic infection in lung recipients. Given the high mortality associated with hyperammonemia, strategies for routine donor screening or prophylaxis should be further evaluated in prospective studies. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  6. [A sepsis case caused by a rare opportunistic pathogen: Bacillus pumilus].

    PubMed

    Borsa, Barış Ata; Aldağ, Mehmet Ersoy; Tunalı, Birsen; Dinç, Uğur; Güngördü Dalar, Zeynep; Özalp, Veli Cengiz

    2016-07-01

    The high prevalence of Bacillus species in nature and the detection of these bacteria as contaminant in cultures may lead diagnostic dilemma, however they should still be considered as a pathogen particularly in case of repeated positive cultures from patients with risk factors. Bacillus pumilus is a bacteria, though rarely, been reported as the causative agent of various infections such as sepsis, endocarditis, skin infections and food poisoning in human. In this report, a sepsis case in an immunocompetent patient caused by B.pumilus was presented. A 38-year-old female patient was admitted to emergency service of our hospital with the complaints of headache, dizziness and diarrhea. She had not any risk factors except a history of heart valve replacement operation two years ago. In physical examination, she had abdominal retention, high fever and hypotension, together with the high levels of sedimentation rate (ESR) and C-reactive protein (CRP). The patient was hospitalized with the preliminary diagnosis of sepsis. Three sets of blood samples at two different periods were taken for the culture. All blood culture vials had a positive signal at the second day of incubation in BD BACTEC™ 9050 system, therefore subcultures were performed in sheep blood agar, chocolate agar and MacConkey agar, and incubated in aerobic and anaerobic conditions. Beta-haemolytic, gray-colored large colonies were isolated from anaerobic culture at the end of 18-24 hours incubation, and Gram staining from colonies showed gram-positive rods. The isolate was identified as B.pumilus with 99% accuracy rate by using BD Phoenix™ 100 identification system. This result was also confirmed by MALDI-TOF based VITEK® MS system and 16S rRNA sequencing by Illumina MiSeq® platform. Antibiotic susceptibility test performed by BD Phoenix™ 100 system and the isolate was found to be resistant against penicillin, while it was susceptible to vancomycin, erythromycin, clindamycin, levofloxacin, and

  7. Multicenter outbreak of infections by Saprochaete clavata, an unrecognized opportunistic fungal pathogen.

    PubMed

    Vaux, Sophie; Criscuolo, Alexis; Desnos-Ollivier, Marie; Diancourt, Laure; Tarnaud, Chloé; Vandenbogaert, Matthias; Brisse, Sylvain; Coignard, Bruno; Dromer, Françoise

    2014-12-16

    Rapidly fatal cases of invasive fungal infections due to a fungus later identified as Saprochaete clavata were reported in France in May 2012. The objectives of this study were to determine the clonal relatedness of the isolates and to investigate possible sources of contamination. A nationwide alert was launched to collect cases. Molecular identification methods, whole-genome sequencing (WGS), and clone-specific genotyping were used to analyze recent and historical isolates, and a case-case study was performed. Isolates from thirty cases (26 fungemias, 22 associated deaths at day 30) were collected between September 2011 and October 2012. Eighteen cases occurred within 8 weeks (outbreak) in 10 health care facilities, suggesting a common source of contamination, with potential secondary cases. Phylogenetic analysis identified one clade (clade A), which accounted for 16/18 outbreak cases. Results of microbiological investigations of environmental, drug, or food sources were negative. Analysis of exposures pointed to a medical device used for storage and infusion of blood products, but no fungal contamination was detected in the unused devices. Molecular identification of isolates from previous studies demonstrated that S. clavata can be found in dairy products and has already been involved in monocentric outbreaks in hematology wards. The possibility that S. clavata may transmit through contaminated medical devices or can be associated with dairy products as seen in previous European outbreaks is highly relevant for the management of future outbreaks due to this newly recognized pathogen. This report also underlines further the potential of WGS for investigation of outbreaks due to uncommon fungal pathogens. Several cases of rapidly fatal infections due to the fungus Saprochaete clavata were reported in France within a short period of time in three health care facilities, suggesting a common source of contamination. A nationwide alert collected 30 cases over 1 year

  8. Virulent and pathogenic features on the Cronobacter sakazakii polymyxin resistant pmr mutant strain s-3.

    PubMed

    Bao, Xuerui; Yang, Ling; Chen, Lequn; Li, Bing; Li, Lin; Li, Yanyan; Xu, Zhenbo

    2017-09-01

    Cronobacter sakazakii is a well-known opportunistic pathogen responsible for necrotizing enterocolitis, meningitis and septicaemia in the premature, immunocompromised infants and neonates. This pathogen possesses various virulence factors and regulatory systems, and pmrA/pmrB regulatory system has been identified in a variety of bacterial species. The current study aims to investigate role of pmrA gene in the pathogenicity and virulence characteristics of Cronobacter sakazakii using whole genome sequencing and RNA-seq. Results demonstrated that the absence of pmrA has the potential to affect Cronobacter sakazakii on its pathogenicity, virulence and resistance abilities by regulating expression of numerous related genes, including CusB, CusC, CusR and ESA_pESA3p05434. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A framework for the study of zoonotic disease emergence and its drivers: spillover of bat pathogens as a case study

    PubMed Central

    Wood, James L. N.; Leach, Melissa; Waldman, Linda; MacGregor, Hayley; Fooks, Anthony R.; Jones, Kate E.; Restif, Olivier; Dechmann, Dina; Hayman, David T. S.; Baker, Kate S.; Peel, Alison J.; Kamins, Alexandra O.; Fahr, Jakob; Ntiamoa-Baidu, Yaa; Suu-Ire, Richard; Breiman, Robert F.; Epstein, Jonathan H.; Field, Hume E.; Cunningham, Andrew A.

    2012-01-01

    Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation. PMID:22966143

  10. Looking at protists as a source of pathogenic viruses.

    PubMed

    La Scola, Bernard

    2014-12-01

    In the environment, protozoa are predators of bacteria and feed on them. The possibility that some protozoa could be a source of human pathogens is consistent with the discovery that free-living amoebae were the reservoir of Legionella pneumophila, the agent of Legionnaires' disease. Later, while searching for Legionella in the environment using amoeba co-culture, the first giant virus, Acanthamoeba polyphaga mimivirus, was discovered. Since then, many other giant viruses have been isolated, including Marseilleviridae, Pithovirus sibericum, Cafeteria roenbergensis virus and Pandoravirus spp. The methods used to isolate all of these viruses are herein reviewed. By analogy to Legionella, it was originally suspected that these viruses could be human pathogens. After showing by indirect evidence, such as sero-epidemiologic studies, that it was possible for these viruses to be human pathogens, the recent isolation of some of these viruses (belonging to the Mimiviridae and Marseilleviridae families) in humans in the context of pathologic conditions shows that they are opportunistic human pathogens in some instances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Retinitis due to opportunistic infections in Iranian HIV infected patients.

    PubMed

    Abdollahi, Ali; Mohraz, Minoo; Rasoulinejad, Mehrnaz; Shariati, Mona; Kheirandish, Parastou; Abdollahi, Maryam; Soori, Tahereh

    2013-01-01

    We tried to evaluate prevalence and characteristics of Iranian HIV infected patients with retinitis due to opportunistic infections. In this cross sectional study, we evaluated 106 HIV infected patients via indirect ophthalmoscopy and slit lamp examination by 90 lens to find retinitis cases. General information and results of ophthalmologic examination were analyzed. Prevalence of retinitis due to opportunistic infections was 6.6%: cytomegalovirus (CMV) retinitis 1.88%, toxoplasmosis retinochoroiditis 1.88% and tuberculosis chorioretinitis 2.83%. CD4 count was higher than 50 cell/µlit in both cases with CMV retinitis. Along with increasing survival in the HIV infected patients, the prevalence of complications such as ocular manifestation due to opportunistic infections are increasing and must be more considered.

  12. Effects of phosphate-enhanced ozone/biofiltration on formation of disinfection byproducts and occurrence of opportunistic pathogens in drinking water distribution systems.

    PubMed

    Xing, Xueci; Wang, Haibo; Hu, Chun; Liu, Lizhong

    2018-08-01

    The effects of ozone-biologically activated carbon (O 3 -BAC) treatment with various phosphate doses (0, 0.3 or 0.6 mg/L) were investigated on the formation of disinfection by-products (DBPs) and occurrence of opportunistic pathogens (OPs) in drinking water distribution systems (DWDSs) simulated by annular reactors (ARs). It was found that the lowest DBPs and the highest inactivation of OPs such as Mycobacterium spp., Mycobacterium avium, Aeromonas spp., Pseudomonas aeruginosa and Hartmanella vermiformis, occurred in the effluent of the AR with 0.6 mg/L phosphate addition. Based on the results of different characterization techniques, for the AR with 0.6 mg/L phosphate-enhanced O 3 -BAC treatment, dissolved organic carbon in the influent exhibited the lowest concentration and most stable fraction due to the improved biodegradation effect. Moreover, the total amount of suspended extracellular polymeric substances (EPS) in the bulk water of the AR decreased greatly, resulting in the lowest chlorine consumption and DBPs formation in the AR. In Fourier transform infrared spectra of the suspended EPS, the amide II band (1600-1500 cm -1 ) disappeared and the protein/polysaccharide ratio decreased remarkably, indicating the destruction of protein and a decrease in hydrophobicity. Moreover, β-sheets and α-helices in the protein secondary structures were degraded while the random coils increased sharply as phosphate addition increased to 0.6 mg/L, inhibiting microbial aggregation and hence weakening the chlorine-resistance capability. Thus, most of the OPs in suspended biofilms were more easily inactivated by residual chlorine, resulting in the lowest OPs occurrence in the effluent of the AR. Our findings indicated that enhancing the efficiency of the BAC filter by adding phosphate is a promising method for improving water quality in DWDSs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus.

    PubMed

    Vergara-Alert, Júlia; Vidal, Enric; Bensaid, Albert; Segalés, Joaquim

    2017-06-01

    Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013-2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV), which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV), associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.

  14. Projecting the global distribution of the emerging amphibian fungal pathogen, batrachochytrium dendrobatidis, based on IPCC climate futures

    Treesearch

    Gisselle Yang Xie; Deanna H. Olson; Andrew R. Blaustein

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate...

  15. Multicenter Outbreak of Infections by Saprochaete clavata, an Unrecognized Opportunistic Fungal Pathogen

    PubMed Central

    Vaux, Sophie; Criscuolo, Alexis; Desnos-Ollivier, Marie; Diancourt, Laure; Tarnaud, Chloé; Vandenbogaert, Matthias; Brisse, Sylvain; Coignard, Bruno; Garcia-Hermoso, Dea; Blanc, Catherine; Hoinard, Damien; Lortholary, Olivier; Bretagne, Stéphane; Thiolet, Jean-Michel; de Valk, Henriette; Courbil, Rémi; Chabanel, Anne; Simonet, Marion; Maire, Francoise; Jbilou, Saadia; Tiberghien, Pierre; Blanchard, Hervé; Venier, Anne-Gaëlle; Bernet, Claude; Simon, Loïc; Sénéchal, Hélène; Pouchol, Elodie; Angot, Christiane; Ribaud, Patricia; Socié, G.; Flèche, M.; Brieu, Nathalie; Lagier, Evelyne; Chartier, Vanessa; Allegre, Thierry; Maulin, Laurence; Lanic, Hélène; Tilly, Hervé; Bouchara, Jean-Philippe; Pihet, Marc; Schmidt, Aline; Kouatchet, Achille; Vandamme, Yves-Marie; Ifrah, Norbert; Mercat, Alain; Accoceberry, Isabelle; Albert, Olivier; Leguay, Thibaut; Rogues, Anne-Marie; Bonhomme, Julie; Reman, Oumédaly; Lesteven, Claire; Poirier, Philippe; Chabrot, Cécile Molucon; Calvet, Laure; Baud, Olivier; Cambon, Monique; Farkas, Jean Chistophe; Lafon, Bruno; Dalle, Frédéric; Caillot, Denis; Lazzarotti, Aline; Aho, Serge; Combret, Sandrine; Facon, Thierry; Sendid, Boualem; Loridant, Séverine; Louis, Terriou; Cazin, Bruno; Grandbastien, Bruno; Bourgeois, Nathalie; Lotthé, Anne; Cartron, Guillaume; Ravel, Christophe; Colson, Pascal; Gaudard, Philippe; Bonmati, Caroline; Simon, Loic; Rabaud, Christian; Machouart, Marie; Poisson, Didier; Carp, Diana; Meunier, Jérôme; Gaschet, Anne; Miquel, Chantal; Sanhes, Laurence; Ferreyra, Milagros; Leibinger, Franck; Geudet, Philippe; Toubas, Dominique; Himberlin, Chantal; Bureau-Chalot, Florence; Delmer, Alain; Favennec, Loïc; Gargala, Gilles; Michot, Jean-Baptiste; Girault, Christophe; David, Marion; Leprêtre, Stéphane; Jardin, Fabrice; Honderlick, Pierre; Caille, Vincent; Cerf, Charles; Cassaing, Sophie; Recher, Christian; Picard, Muriel; Protin, Caroline; Huguet, Françoise; Huynh, Anne; Ruiz, Jean; Riu-Poulenc, Béatrice; Letocart, Philippe; Marchou, Bruno; Verdeil, Xavier; Cavalié, Laurent; Chauvin, Pamela; Iriart, Xavier; Valentin, Alexis; Bouvet, Emmanuelle; Delmas-Marsalet, Béatrice; Jeblaoui, Asma; Kassis-Chikhani, Najiby; Mühlethaler, Konrad; Zimmerli, Stefan; Zalar, Polona; Sánchez-Reus, Ferran; Gurgui, Merce

    2014-01-01

    ABSTRACT Rapidly fatal cases of invasive fungal infections due to a fungus later identified as Saprochaete clavata were reported in France in May 2012. The objectives of this study were to determine the clonal relatedness of the isolates and to investigate possible sources of contamination. A nationwide alert was launched to collect cases. Molecular identification methods, whole-genome sequencing (WGS), and clone-specific genotyping were used to analyze recent and historical isolates, and a case-case study was performed. Isolates from thirty cases (26 fungemias, 22 associated deaths at day 30) were collected between September 2011 and October 2012. Eighteen cases occurred within 8 weeks (outbreak) in 10 health care facilities, suggesting a common source of contamination, with potential secondary cases. Phylogenetic analysis identified one clade (clade A), which accounted for 16/18 outbreak cases. Results of microbiological investigations of environmental, drug, or food sources were negative. Analysis of exposures pointed to a medical device used for storage and infusion of blood products, but no fungal contamination was detected in the unused devices. Molecular identification of isolates from previous studies demonstrated that S. clavata can be found in dairy products and has already been involved in monocentric outbreaks in hematology wards. The possibility that S. clavata may transmit through contaminated medical devices or can be associated with dairy products as seen in previous European outbreaks is highly relevant for the management of future outbreaks due to this newly recognized pathogen. This report also underlines further the potential of WGS for investigation of outbreaks due to uncommon fungal pathogens. PMID:25516620

  16. Ecological theory as a foundation to control pathogenic invasion in aquaculture

    PubMed Central

    De Schryver, Peter; Vadstein, Olav

    2014-01-01

    Detrimental host–pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on ‘join them' and not the traditional ‘beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture. PMID:24892581

  17. Manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen Candida albicans

    USDA-ARS?s Scientific Manuscript database

    Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal ...

  18. Non-cytomegalovirus ocular opportunistic infections in patients with AIDS

    PubMed Central

    Gangaputra, Sapna; Drye, Lea; Vaidya, Vijay; Thorne, Jennifer E.; Jabs, Douglas A; Lyon, Alice T.

    2014-01-01

    Purpose To report the incidence and clinical outcomes of non-cytomegalovirus (non-CMV) ocular opportunistic infections in patients with AIDS in the era of highly active antiretroviral therapy (HAART). Design Multicenter, prospective, observational study of patients with AIDS Methods Medical history, ophthalmologic examination, and laboratory tests were performed at enrollment and every 6 months subsequently. Once an ocular opportunistic infection was diagnosed, patients were seen every 3 months for outcomes. Results At enrollment, 37 non-CMV ocular opportunistic infections were diagnosed: 16 patients, herpetic retinitis; 11 patients, toxoplasmic retinitis; and 10 patients, choroiditis. During the follow-up period, the estimated incidences (and 95% confidence intervals [CI]) of these were: herpetic retinitis, 0.007/100 person-years (PY) (95% CI 0.0004, 0.039); toxoplasmic retinitis, 0.007/100 PY (95% CI 0.004, 0.039); and choroiditis 0.014/100 PY (95% CI 0.0025, 0.050). The mortality rates appeared higher among those patients with newly diagnosed or incident herpetic retinitis and choroiditis (rates=21.7 deaths/100 PY [P=0.02] and 12.8 deaths/100 PY [P=0.04]) respectively, than that for patients with AIDS without an ocular opportunistic infection (4.1 deaths/100 PY); Toxoplasmic retinitis did not appear to be associated with greater mortality (6.4/100 PY, P=0.47). Eyes with newly-diagnosed herpetic retinitis appeared to have a poor visual prognosis with high rates of visual impairment (37.9/100 PY) and blindness (17.5/100 PY), whereas those outcomes in eyes with choroiditis appeared to be lower (2.3/100 PY and 0/100 PY, respectively). Conclusions Although uncommon, non-CMV ocular opportunistic infections may be associated with high rates of visual loss and/or mortality. PMID:23068916

  19. Scaling up ATLAS Event Service to production levels on opportunistic computing platforms

    NASA Astrophysics Data System (ADS)

    Benjamin, D.; Caballero, J.; Ernst, M.; Guan, W.; Hover, J.; Lesny, D.; Maeno, T.; Nilsson, P.; Tsulaia, V.; van Gemmeren, P.; Vaniachine, A.; Wang, F.; Wenaus, T.; ATLAS Collaboration

    2016-10-01

    Continued growth in public cloud and HPC resources is on track to exceed the dedicated resources available for ATLAS on the WLCG. Examples of such platforms are Amazon AWS EC2 Spot Instances, Edison Cray XC30 supercomputer, backfill at Tier 2 and Tier 3 sites, opportunistic resources at the Open Science Grid (OSG), and ATLAS High Level Trigger farm between the data taking periods. Because of specific aspects of opportunistic resources such as preemptive job scheduling and data I/O, their efficient usage requires workflow innovations provided by the ATLAS Event Service. Thanks to the finer granularity of the Event Service data processing workflow, the opportunistic resources are used more efficiently. We report on our progress in scaling opportunistic resource usage to double-digit levels in ATLAS production.

  20. Emerging human pathogen Acinetobacter baumannii in the natural aquatic environment: a public health risk?

    PubMed

    Dekić, Svjetlana; Klobučar, Göran; Ivanković, Tomislav; Zanella, Davor; Vucić, Matej; Bourdineaud, Jean-Paul; Hrenović, Jasna

    2018-05-08

    Bacterium Acinetobacter baumannii is an emerging human pathogen whose presence in the aquatic environment raises the issue of public health risk. Fish colonization represents the potential route of pathogen transmission to humans. The aim was to examine the colonization of A. baumannii to freshwater fish Poecilia reticulata. An extensively drug-resistant A. baumannii was tested at three concentrations in natural spring water. Additionally, 70 fish from the Sava River (Croatia) were screened for the presence of A. baumannii, which was not found in gill swabs or analysed gut. The colonization potential of A. baumannii in freshwater fish is dependent upon its concentration in surrounding water. The low concentration of A. baumannii in natural waters represents low colonization potential of freshwater fish. The risk for public health exists in closed water bodies where there is constant inflow of water polluted by A. baumannii in concentrations above 3 log CFU mL -1 .

  1. Surveillance programs for detection and characterization of emergent pathogens and antimicrobial resistance: results from the Division of Infectious Diseases, UNIFESP.

    PubMed

    Colombo, Arnaldo L; Janini, Mario; Salomão, Reinaldo; Medeiros, Eduardo A S; Wey, Sergio B; Pignatari, Antonio C C

    2009-09-01

    Several epidemiological changes have occurred in the pattern of nosocomial and community acquired infectious diseases during the past 25 years. Social and demographic changes possibly related to this phenomenon include a rapid population growth, the increase in urban migration and movement across international borders by tourists and immigrants, alterations in the habitats of animals and arthropods that transmit disease, as well as the raise of patients with impaired host defense abilities. Continuous surveillance programs of emergent pathogens and antimicrobial resistance are warranted for detecting in real time new pathogens, as well as to characterize molecular mechanisms of resistance. In order to become more effective, surveillance programs of emergent pathogens should be organized as a multicenter laboratory network connected to the main public and private infection control centers. Microbiological data should be integrated to guide therapy, adapting therapy to local ecology and resistance patterns. This paper presents an overview of data generated by the Division of Infectious Diseases, Federal University of São Paulo, along with its participation in different surveillance programs of nosocomial and community acquired infectious diseases.

  2. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research.

    PubMed

    James, Timothy Y; Toledo, L Felipe; Rödder, Dennis; da Silva Leite, Domingos; Belasen, Anat M; Betancourt-Román, Clarisse M; Jenkinson, Thomas S; Soto-Azat, Claudio; Lambertini, Carolina; Longo, Ana V; Ruggeri, Joice; Collins, James P; Burrowes, Patricia A; Lips, Karen R; Zamudio, Kelly R; Longcore, Joyce E

    2015-09-01

    The amphibian fungal disease chytridiomycosis, which affects species across all continents, recently emerged as one of the greatest threats to biodiversity. Yet, many aspects of the basic biology and epidemiology of the pathogen, Batrachochytrium dendrobatidis (Bd), are still unknown, such as when and from where did Bd emerge and what is its true ecological niche? Here, we review the ecology and evolution of Bd in the Americas and highlight controversies that make this disease so enigmatic. We explore factors associated with variance in severity of epizootics focusing on the disease triangle of host susceptibility, pathogen virulence, and environment. Reevaluating the causes of the panzootic is timely given the wealth of data on Bd prevalence across hosts and communities and the recent discoveries suggesting co-evolutionary potential of hosts and Bd. We generate a new species distribution model for Bd in the Americas based on over 30,000 records and suggest a novel future research agenda. Instead of focusing on pathogen "hot spots," we need to identify pathogen "cold spots" so that we can better understand what limits the pathogen's distribution. Finally, we introduce the concept of "the Ghost of Epizootics Past" to discuss expected patterns in postepizootic host communities.

  3. Infections and Coinfections of Questing Ixodes ricinus Ticks by Emerging Zoonotic Pathogens in Western Switzerland

    PubMed Central

    Lommano, Elena; Bertaiola, Luce; Dupasquier, Christèle

    2012-01-01

    In Europe, Ixodes ricinus is the vector of many pathogens of medical and veterinary relevance, among them Borrelia burgdorferi sensu lato and tick-borne encephalitis virus, which have been the subject of numerous investigations. Less is known about the occurrence of emerging tick-borne pathogens like Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and Anaplasma phagocytophilum in questing ticks. In this study, questing nymph and adult I. ricinus ticks were collected at 11 sites located in Western Switzerland. A total of 1,476 ticks were analyzed individually for the simultaneous presence of B. burgdorferi sensu lato, Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and A. phagocytophilum. B. burgdorferi sensu lato, Rickettsia spp., and “Candidatus Neoehrlichia mikurensis” were detected in ticks at all sites with global prevalences of 22.5%, 10.2%, and 6.4%, respectively. Babesia- and A. phagocytophilum-infected ticks showed a more restricted geographic distribution, and their prevalences were lower (1.9% and 1.5%, respectively). Species rarely reported in Switzerland, like Borrelia spielmanii, Borrelia lusitaniae, and Rickettsia monacensis, were identified. Infections with more than one pathogenic species, involving mostly Borrelia spp. and Rickettsia helvetica, were detected in 19.6% of infected ticks. Globally, 34.2% of ticks were infected with at least one pathogen. The diversity of tick-borne pathogens detected in I. ricinus in this study and the frequency of coinfections underline the need to take them seriously into consideration when evaluating the risks of infection following a tick bite. PMID:22522688

  4. Isolation and molecular characterization of potentially pathogenic Acanthamoeba genotypes from diverse water resources including household drinking water from Khyber Pakhtunkhwa, Pakistan.

    PubMed

    Tanveer, Tania; Hameed, Abdul; Muazzam, Ambreen Gul; Jung, Suk-Yul; Gul, Asma; Matin, Abdul

    2013-08-01

    Acanthamoeba, an opportunistic protozoan pathogen, is ubiquitous in nature, and therefore plays a predatory role and helps control microbial communities in the ecosystem. These Acanthamoeba species are recognized as opportunistic human pathogens that may cause blinding keratitis and rare but fatal granulomatous encephalitis. To date, there is not a single report demonstrating Acanthamoeba isolation and identification from environmental sources in Pakistan, and that is the aim of this study. Acanthamoeba were identified by morphological characteristics of their cysts on non-nutrient agar plates seeded with Escherichia coli. Additionally, the polymerase chain reaction (PCR) was performed with genus-specific primers followed by direct sequencing of the PCR product for molecular identification. Furthermore, our PCR and sequencing results confirmed seven different pathogenic and nonpathogenic genotypes, including T2-T10, T4, T5, T7, T15, T16, and T17. To the best of our knowledge, we have identified and isolated Acanthamoeba sp., for the first time, from water resources of Khyber Pakhtunkhwa, Pakistan. There is an urgent need to address (1) the pathogenic potential of the identified genotypes and (2) explore other environmental sources from the country to examine the water quality and the current status of Acanthamoeba species in Pakistan, which may be a potential threat for public health across the country.

  5. In Vitro Emergence of High Persistence upon Periodic Aminoglycoside Challenge in the ESKAPE Pathogens

    PubMed Central

    Verstraeten, Natalie; Fauvart, Maarten

    2016-01-01

    Health care-associated infections present a major threat to modern medical care. Six worrisome nosocomial pathogens—Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.—are collectively referred to as the “ESKAPE bugs.” They are notorious for extensive multidrug resistance, yet persistence, or the phenotypic tolerance displayed by a variant subpopulation, remains underappreciated in these pathogens. Importantly, persistence can prevent eradication of antibiotic-sensitive bacterial populations and is thought to act as a catalyst for the development of genetic resistance. Concentration- and time-dependent aminoglycoside killing experiments were used to investigate persistence in the ESKAPE pathogens. Additionally, a recently developed method for the experimental evolution of persistence was employed to investigate adaptation to high-dose, extended-interval aminoglycoside therapy in vitro. We show that ESKAPE pathogens exhibit biphasic killing kinetics, indicative of persister formation. In vitro cycling between aminoglycoside killing and persister cell regrowth, evocative of clinical high-dose extended-interval therapy, caused a 37- to 213-fold increase in persistence without the emergence of resistance. Increased persistence also manifested in biofilms and provided cross-tolerance to different clinically important antibiotics. Together, our results highlight a possible drawback of intermittent, high-dose antibiotic therapy and suggest that clinical diagnostics might benefit from taking into account persistence. PMID:27185802

  6. Occurrence of Corynebacterium striatum as an emerging antibiotic-resistant nosocomial pathogen in a Tunisian hospital.

    PubMed

    Alibi, Sana; Ferjani, Asma; Boukadida, Jalel; Cano, María Eliecer; Fernández-Martínez, Marta; Martínez-Martínez, Luis; Navas, Jesús

    2017-08-28

    Corynebacterium striatum is a nosocomial opportunistic pathogen increasingly associated with a wide range of human infections and is often resistant to several antibiotics. We investigated the susceptibility of 63 C. striatum isolated at the Farhat-Hached hospital, Sousse (Tunisia), during the period 2011-2014, to a panel of 16 compounds belonging to the main clinically relevant classes of antimicrobial agents. All strains were susceptible to vancomycin, linezolid, and daptomycin. Amikacin and gentamicin also showed good activity (MICs 90  = 1 and 2 mg/L, respectively). High rates of resistance to penicillin (82.5%), clindamycin (79.4%), cefotaxime (60.3%), erythromycin (47.6%), ciprofloxacin (36.5%), moxifloxacin (34.9%), and rifampicin (25.4%) were observed. Fifty-nine (93.7%) out of the 63 isolates showed resistance to at least one compound and 31 (49.2%) were multidrug-resistant. Twenty-nine resistance profiles were distinguished among the 59 resistant C. striatum. Most of the strains resistant to fluoroquinolones showed a double mutation leading to an amino acid change in positions 87 and 91 in the quinolone resistance-determining region of the gyrA gene. The 52 strains resistant to penicillin were positive for the gene bla, encoding a class A β-lactamase. Twenty-two PFGE patterns were identified among the 63 C. striatum, indicating that some clones have spread within the hospital.

  7. Non Diphtheritic Corynebacteria: An Emerging Nosocomial Pathogen in Skin and Soft Tissue Infection.

    PubMed

    Rudresh, Shoorashetty Manohar; Ravi, G S; Alex, Ann Mary; Mamatha, K R; Sunitha, L; Ramya, K Thangam

    2015-12-01

    Non-diphtheritic corynebacteria are normal inhabitants of skin and mucous membrane. When isolated from clinical specimens they are often considered as contaminants. Recent reports suggest their role as emerging nosocomial pathogens. To speciate non-diphtheritic corynebacteria isolated from wound specimens, to correlate their clinical significance and to determine their invitro antimicrobial susceptibilities to 9 antimicrobial agents. Twenty five non-diphtheritic corynebacteria from skin and soft tissue infections were selected for study. Isolates were identified by battery of tests and minimum inhibitory concentration (MIC) was detected by Clinical & Laboratory Standards Institute (CLSI) described broth microdilution method. MIC was interpreted according CLSI and British Society for Antimicrobial Chemotherapy (BSAC) guidelines. C. amycolatum was the predominant species (20%) followed by C. striatum (16%). Penicillin was least effective invitro followed by clindamycin and ciprofloxacin. Excellent activities were shown by vancomycin, linezolid and imipenem. Multidrug resistance was found in all the species. Non-diphtheritic corynebacteria are potential nosocomial pathogens among acute/chronic complicated skin and soft tissue infection. Vancomycin or linezolid can be used empirically to treat such infections until the invitro susceptibility results are available.

  8. Cyclopiazonic acid is a pathogenicity factor for Aspergillus flavus and a promising target for screening germplasm for ear rot resistance

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus, an opportunistic pathogen, contaminates maize and other key crops with carcinogenic aflatoxins (AF). Besides AF, A. flavus makes many more secondary metabolites (SMs), whose toxicity in insects or vertebrates has been studied. However, the role of SMs in the invasion of plant hos...

  9. Resequencing Pathogen Microarray (RPM) for prospective detection and identification of emergent pathogen strains and variants

    NASA Astrophysics Data System (ADS)

    Tibbetts, Clark; Lichanska, Agnieszka M.; Borsuk, Lisa A.; Weslowski, Brian; Morris, Leah M.; Lorence, Matthew C.; Schafer, Klaus O.; Campos, Joseph; Sene, Mohamadou; Myers, Christopher A.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Metzgar, David

    2010-04-01

    High-density resequencing microarrays support simultaneous detection and identification of multiple viral and bacterial pathogens. Because detection and identification using RPM is based upon multiple specimen-specific target pathogen gene sequences generated in the individual test, the test results enable both a differential diagnostic analysis and epidemiological tracking of detected pathogen strains and variants from one specimen to the next. The RPM assay enables detection and identification of pathogen sequences that share as little as 80% sequence similarity to prototype target gene sequences represented as detector tiles on the array. This capability enables the RPM to detect and identify previously unknown strains and variants of a detected pathogen, as in sentinel cases associated with an infectious disease outbreak. We illustrate this capability using assay results from testing influenza A virus vaccines configured with strains that were first defined years after the design of the RPM microarray. Results are also presented from RPM-Flu testing of three specimens independently confirmed to the positive for the 2009 Novel H1N1 outbreak strain of influenza virus.

  10. Unusual coexistence of opportunistic lung infections in a human immunodeficiency virus positive patient suffering from persistent Pneumocystis jirovecii pneumonia: a case report.

    PubMed

    Ponces Bento, D; Esteves, F; Matos, O; Miranda, A C; Ventura, F; Araújo, C; Mansinho, K

    2013-01-01

    It is well established that HIV patients are at high risk of opportunistic infections (OI), like the ones caused by Pneumocystis jirovecii, a worldwide pathogen implicated in interstitial pneumonia (PcP). We present a case of a newly diagnosed HIV-1 patient with multiple OI, including a persistent form of PcP, an invasive aspergillosis (IA), cytomegalovirus and Mycobacterium xenopi lung infection. We describe the combination of laboratorial screening, surgery and antimicrobial therapy that were crucial for patient recovery. Copyright © 2012 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  11. Latest developments on Streptococcus suis: an emerging zoonotic pathogen: part 2.

    PubMed

    Segura, Mariela; Zheng, Han; de Greeff, Astrid; Gao, George F; Grenier, Daniel; Jiang, Yongqiang; Lu, Chengping; Maskell, Duncan; Oishi, Kazunori; Okura, Masatoshi; Osawa, Ro; Schultsz, Constance; Schwerk, Christian; Sekizaki, Tsutomu; Smith, Hilde; Srimanote, Potjanee; Takamatsu, Daisuke; Tang, Jiaqi; Tenenbaum, Tobias; Tharavichitkul, Prasit; Hoa, Ngo Thi; Valentin-Weigand, Peter; Wells, Jerry M; Wertheim, Heiman; Zhu, Baoli; Xu, Jianguo; Gottschalk, Marcelo

    2014-01-01

    First International Workshop on Streptococcus suis, Beijing, China, 12-13 August 2013. This second and final chapter of the report on the First International Workshop on Streptococcus suis follows on from Part 1, published in the April 2014, volume 9, issue 4 of Future Microbiology. S. suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Although sporadic cases of human infections had been reported worldwide, deadly S. suis outbreaks emerged in Asia. The severity of the disease underscores the lack of knowledge on the virulence and zoonotic evolution of this human-infecting agent. The pathogenesis of the infection, interactions with host cells and new avenues for treatments were among the topics discussed during the First International Workshop on S. suis (China 2013).

  12. Detection of human pathogenic Fusarium species in hospital and communal sink biofilms by using a highly specific monoclonal antibody.

    PubMed

    Al-Maqtoofi, Marwan; Thornton, Christopher R

    2016-11-01

    The fungus Fusarium is well known as a plant pathogen, but has recently emerged as an opportunistic pathogen of humans. Habitats providing direct human exposure to infectious propagules are largely unknown, but there is growing evidence that plumbing systems are sources of human pathogenic strains in the Fusarium solani species complex (FSSC) and Fusarium oxysporum species complex (FOSC), the most common groups infecting humans. Here, a newly developed Fusarium-specific monoclonal antibody (mAb ED7) was used to track FSSC and FOSC strains in sink drain biofilms by detecting its target antigen, an extracellular 200 kDa carbohydrate, in saline swabs. The antigen was detectable in 52% of swab samples collected from sinks across a University campus and a tertiary care hospital. The mAb was 100% accurate in detecting FSSC, FOSC, and F. dimerum species complex (FDSC) strains that were present, as mixed fungal communities, in 83% of sink drain biofilms. Specificity of the ELISA was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of culturable yeasts and molds that were recovered using mycological culture, while translation elongation factor (TEF)-1α analysis of Fusarium isolates included FSSC 1-a, FOSC 33, and FDSC ET-gr, the most common clinical pathotypes in each group. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. ANIMAL RESERVOIRS, VECTORS, AND TRANSMISSION OF MICROSPORIDIA

    EPA Science Inventory

    Fourteen species of microsporidia have been identified as opportunistic or emerging pathogens of humans. Several genotypes of Enterocytozoon bieneusi, the most frequently diagnosed species in humans, have been identified in Europe in farm and companion animals including pigs, cat...

  14. Xenopus laevis and Emerging Amphibian Pathogens in Chile.

    PubMed

    Soto-Azat, Claudio; Peñafiel-Ricaurte, Alexandra; Price, Stephen J; Sallaberry-Pincheira, Nicole; García, María Pía; Alvarado-Rybak, Mario; Cunningham, Andrew A

    2016-12-01

    Amphibians face an extinction crisis with no precedence. Two emerging infectious diseases, ranaviral disease caused by viruses within the genus Ranavirus and chytridiomycosis due to Batrachochytrium dendrobatidis (Bd), have been linked with amphibian mass mortalities and population declines in many regions of the globe. The African clawed frog (Xenopus laevis) has been indicated as a vector for the spread of these pathogens. Since the 1970s, this species has been invasive in central Chile. We collected X. laevis and dead native amphibians in Chile between 2011 and 2013. We conducted post-mortem examinations and molecular tests for Ranavirus and Bd. Eight of 187 individuals (4.3 %) tested positive for Ranavirus: seven X. laevis and a giant Chilean frog (Calyptocephallela gayi). All positive cases were from the original area of X. laevis invasion. Bd was found to be more prevalent (14.4 %) and widespread than Ranavirus, and all X. laevis Bd-positive animals presented low to moderate levels of infection. Sequencing of a partial Ranavirus gene revealed 100 % sequence identity with Frog Virus 3. This is the first report of Ranavirus in Chile, and these preliminary results are consistent with a role for X. laevis as an infection reservoir for both Ranavirus and Bd.

  15. Microbiology and foodborne pathogens in honey.

    PubMed

    Grabowski, N T; Klein, G

    2017-06-13

    Honey has been considered a relatively safe foodstuff due to its compositional properties, with infant botulism caused by Clostridium botulinum being the most prominent health risk associated with it. Our review is focused on the honey microflora along the food chain and evaluates the pathogenic potential of those microorganisms found in honey. This product may contain a great variety of bacteria and, particularly, fungi that eventually entered the food chain at an early stage (e.g., via pollen). For many of these microorganisms, opportunistic infections in humans have been recorded (e.g., infections by Staphylococcus spp., Citrobacter spp., Escherichia coli, Hafnia alvei, Aspergillus spp., Fusarium spp., Trichoderma spp., Chaetomium spp.), although direct infections via honey were not registered.

  16. Enabling opportunistic resources for CMS Computing Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hufnagel, Dirk

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enablemore » access and bring the CMS environment into these non CMS resources. Finally, we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less

  17. Enabling opportunistic resources for CMS Computing Operations

    DOE PAGES

    Hufnagel, Dirk

    2015-12-23

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enablemore » access and bring the CMS environment into these non CMS resources. Finally, we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less

  18. Tick-borne pathogens in ticks collected from birds in Taiwan.

    PubMed

    Kuo, Chi-Chien; Lin, Yi-Fu; Yao, Cheng-Te; Shih, Han-Chun; Chung, Lo-Hsuan; Liao, Hsien-Chun; Hsu, Yu-Cheng; Wang, Hsi-Chieh

    2017-11-25

    A variety of human diseases transmitted by arthropod vectors, including ticks, are emerging around the globe. Birds are known to be hosts of ticks and can disperse exotic ticks and tick-borne pathogens. In Taiwan, previous studies have focused predominantly on mammals, leaving the role of birds in the maintenance of ticks and dissemination of tick-borne pathogens undetermined. Ticks were collected opportunistically when birds were studied from 1995 to 2013. Furthermore, to improve knowledge on the prevalence and mean load of tick infestation on birds in Taiwan, ticks were thoroughly searched for when birds were mist-netted at seven sites between September 2014 and April 2016 in eastern Taiwan. Ticks were identified based on both morphological and molecular information and were screened for potential tick-borne pathogens, including the genera Anaplasma, Babesia, Borrelia, Ehrlichia and Rickettsia. Finally, a list of hard tick species collected from birds in Taiwan was compiled based on past work and the current study. Nineteen ticks (all larvae) were recovered from four of the 3096 unique mist-netted bird individuals, yielding a mean load of 0.006 ticks/individual and an overall prevalence of 0.13%. A total of 139 ticks from birds, comprising 48 larvae, 35 nymphs, 55 adults and one individual of unknown life stage, were collected from 1995 to 2016, and 11 species of four genera were identified, including three newly recorded species (Haemaphysalis wellingtoni, Ixodes columnae and Ixodes turdus). A total of eight tick-borne pathogens were detected, with five species (Borrelia turdi, Anaplasma sp. clone BJ01, Ehrlichia sp. BL157-9, Rickettsia helvetica and Rickettsia monacensis) not previously isolated in Taiwan. Overall, 16 tick species of five genera have been recorded feeding on birds, including nine species first discovered in this study. Our study demonstrates the paucity of information on ticks of birds and emphasizes the need for more research on ticks of birds

  19. THE OPPORTUNISTIC PATHOGEN TOXOPLASMA GONDII DEPLOYS A DIVERSE LEGION OF INVASION AND SURVIVAL PROTEINS

    PubMed Central

    Zhou, Xing W.; Kafsack, Björn F. C.; Cole, Robert N.; Beckett, Phil; Shen, Rong F.; Carruthers, Vern B.

    2006-01-01

    Host cell invasion is an essential step during infection by Toxoplasma gondii, an intracellular protozoan that causes the severe opportunistic disease toxoplasmosis in humans. Recent evidence strongly suggests that proteins discharged from Toxoplasma apical secretory organelles (micronemes, dense granules, and rhoptries) play key roles in host cell invasion and survival during infection. However, to date, only a limited number of secretory proteins have been discovered and the full spectrum of effector molecules involved in parasite invasion and survival remains unknown. To address these issues, we analyzed a large cohort of freely released Toxoplasma secretory proteins using two complementary methodologies, 2-DE/MS and LC/ESI-MS-MS (MudPIT, shotgun proteomics). Visualization of Toxoplasma secretory products by 2-DE revealed ∼100 spots, most of which were successfully identified by protein microsequencing or MALDI-MS analysis. Many proteins were present in multiple species suggesting they are subjected to substantial posttranslational modification. Shotgun proteomic analysis of the secretory fraction revealed several additional products including novel putative adhesive proteins, proteases, and hypothetical secretory proteins similar to products expressed by other related parasites including Plasmodium, the etiologic agent of malaria. A subset of novel proteins were re-expressed as fusions to yellow fluorescent protein and this initial screen revealed shared and distinct localizations within secretory compartments of T. gondii tachyzoites. The findings provide a uniquely broad view of Toxoplasma secretory proteins that participate in parasite survival and pathogenesis during infection. PMID:16002397

  20. Emerging and re-emerging infections.

    PubMed

    Lim, V K

    1999-06-01

    An emerging infection is defined as an infection which has newly appeared in a population while a re-emerging infection is one which has existed in the past but its incidence is rapidly increasing. The reasons for the emergence and re-emergence of infections are not well understood but appear to be associated with factors that involve the pathogen, the host and the environment. These factors are often inter-related and act together in a complex manner to bring about changes in patterns of infection. Pathogens are extremely resourceful and possess mechanisms to adapt to new hosts and environments as well as to acquire new virulence traits. Host factors include herd immunity, social behaviour and demographics. Environmental factors like the climate, deforestation and new technologies have an impact on the emergence of infections. The challenge is to contain an infection when it emerges but more importantly to prevent its emergence in the first place. As the emergence of an infection is complex and multifactorial, a multidisciplinary approach is required. Health based strategies alone are insufficient. Social, economic and environmental measures and the political will to implement appropriate policies are equally important.

  1. Bartonella: emerging pathogen or emerging awareness?

    PubMed

    Mogollon-Pasapera, Elin; Otvos, Laszlo; Giordano, Antonio; Cassone, Marco

    2009-01-01

    The number of known Bartonella species is rapidly growing. Some of them are responsible for distinct infectious diseases and show different prevalence and antibiotic susceptibility profiles. Not only have some vectors of Bartonella not been fully characterized, but also intermediate hosts are actually much more numerous and diverse than previously thought. Among these, dogs differ from cats because they tend to suffer an overt disease similar to humans, thus providing the base for a useful animal indicator and research model. Among the debilitating conditions with an unclear impact on the course of these infections, specific conditions (e.g., homelessness, alcoholism) have been linked to a much higher prevalence and to high risk of unfavorable outcome. Due to the limited arsenal of antibiotics effective in vivo on this peculiar intracellular pathogen, the risk/benefit balance of antibiotic therapy is sometimes difficult to draw. In this evolving picture, the recent discoveries of new species highlights the importance of basic molecular biology resources that would bring major public health benefits if available in endemic areas, and specifically in many areas of Peru and Bolivia.

  2. Emergence of H5N1 high pathogenicity avian influenza strains in Indonesia that are resistant to vaccines

    USDA-ARS?s Scientific Manuscript database

    Vaccines have been used to protect poultry in Asia against H5N1 high pathogenicity avian influenza (HPAI) since 2002. Reports of vaccine “failures” began to emerge in 2006 in Indonesia, with identification of clinical disease consistent with HPAI or isolation of H5N1 HPAIV in vaccinated flocks or in...

  3. Non Diphtheritic Corynebacteria: An Emerging Nosocomial Pathogen in Skin and Soft Tissue Infection

    PubMed Central

    Ravi, GS; Alex, Ann Mary; Mamatha, KR; Sunitha, L; Ramya, K Thangam

    2015-01-01

    Introduction Non-diphtheritic corynebacteria are normal inhabitants of skin and mucous membrane. When isolated from clinical specimens they are often considered as contaminants. Recent reports suggest their role as emerging nosocomial pathogens. Aim To speciate non-diphtheritic corynebacteria isolated from wound specimens, to correlate their clinical significance and to determine their invitro antimicrobial susceptibilities to 9 antimicrobial agents. Materials and Methods Twenty five non-diphtheritic corynebacteria from skin and soft tissue infections were selected for study. Isolates were identified by battery of tests and minimum inhibitory concentration (MIC) was detected by Clinical & Laboratory Standards Institute (CLSI) described broth microdilution method. MIC was interpreted according CLSI and British Society for Antimicrobial Chemotherapy (BSAC) guidelines. Results C. amycolatum was the predominant species (20%) followed by C. striatum (16%). Penicillin was least effective invitro followed by clindamycin and ciprofloxacin. Excellent activities were shown by vancomycin, linezolid and imipenem. Multidrug resistance was found in all the species. Conclusion Non-diphtheritic corynebacteria are potential nosocomial pathogens among acute/chronic complicated skin and soft tissue infection. Vancomycin or linezolid can be used empirically to treat such infections until the invitro susceptibility results are available. PMID:26816891

  4. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    PubMed

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  5. Nanomedicine as an emerging approach against intracellular pathogens

    PubMed Central

    Armstead, Andrea L; Li, Bingyun

    2011-01-01

    Diseases such as tuberculosis, hepatitis, and HIV/AIDS are caused by intracellular pathogens and are a major burden to the global medical community. Conventional treatments for these diseases typically consist of long-term therapy with a combination of drugs, which may lead to side effects and contribute to low patient compliance. The pathogens reside within intracellular compartments of the cell, which provide additional barriers to effective treatment. Therefore, there is a need for improved and more effective therapies for such intracellular diseases. This review will summarize, for the first time, the intracellular compartments in which pathogens can reside and discuss how nanomedicine has the potential to improve intracellular disease therapy by offering properties such as targeting, sustained drug release, and drug delivery to the pathogen’s intracellular location. The characteristics of nanomedicine may prove advantageous in developing improved or alternative therapies for intracellular diseases. PMID:22228996

  6. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens.

    PubMed

    Tiwari, Vishvanath; Roy, Ranita; Tiwari, Monalisa

    2015-01-01

    Bacterial pathogens cause a number of lethal diseases. Opportunistic bacterial pathogens grouped into ESKAPE pathogens that are linked to the high degree of morbidity, mortality and increased costs as described by Infectious Disease Society of America. Acinetobacter baumannii is one of the ESKAPE pathogens which cause respiratory infection, pneumonia and urinary tract infections. The prevalence of this pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source and resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. The high level of acquired and intrinsic carbapenem resistance mechanisms acquired by these bacteria makes their eradication difficult. The pharmaceutical industry has no solution to this problem. Hence, it is an urgent requirement to find a suitable alternative to carbapenem, a commonly prescribed drug for Acinetobacter infection. In order to do this, here we have made an effort to review the active compounds of plants that have potent antibacterial activity against many bacteria including carbapenem resistant strain of A. baumannii. We have also briefly highlighted the separation and identification methods used for these active compounds. This review will help researchers involved in the screening of herbal active compounds that might act as a replacement for carbapenem.

  7. Recognizing and Conducting Opportunistic Experiments in Education: A Guide for Policymakers and Researchers. REL 2014-037

    ERIC Educational Resources Information Center

    Resch, Alexandra; Berk, Jillian; Akers, Lauren

    2014-01-01

    An opportunistic experiment is a type of randomized controlled trial that studies the effects of a planned intervention or policy change with minimal added disruption and cost. This guide defines opportunistic experiments and provides examples, discusses issues to consider when identifying potential opportunistic experiments, and outlines the…

  8. Emergence of Pathogenic Coronaviruses in Cats by Homologous Recombination between Feline and Canine Coronaviruses

    PubMed Central

    Terada, Yutaka; Matsui, Nobutaka; Noguchi, Keita; Kuwata, Ryusei; Shimoda, Hiroshi; Soma, Takehisa; Mochizuki, Masami; Maeda, Ken

    2014-01-01

    Type II feline coronavirus (FCoV) emerged via double recombination between type I FCoV and type II canine coronavirus (CCoV). In this study, two type I FCoVs, three type II FCoVs and ten type II CCoVs were genetically compared. The results showed that three Japanese type II FCoVs, M91-267, KUK-H/L and Tokyo/cat/130627, also emerged by homologous recombination between type I FCoV and type II CCoV and their parent viruses were genetically different from one another. In addition, the 3′-terminal recombination sites of M91-267, KUK-H/L and Tokyo/cat/130627 were different from one another within the genes encoding membrane and spike proteins, and the 5′-terminal recombination sites were also located at different regions of ORF1. These results indicate that at least three Japanese type II FCoVs emerged independently. Sera from a cat experimentally infected with type I FCoV was unable to neutralize type II CCoV infection, indicating that cats persistently infected with type I FCoV may be superinfected with type II CCoV. Our previous study reported that few Japanese cats have antibody against type II FCoV. All of these observations suggest that type II FCoV emerged inside the cat body and is unable to readily spread among cats, indicating that these recombination events for emergence of pathogenic coronaviruses occur frequently. PMID:25180686

  9. Genetic mechanisms of multidrug resistance among Klebsiella pneumoniae isolates from food-producing animals and humans in Lagos, Nigeria

    USDA-ARS?s Scientific Manuscript database

    Klebsiella pneumoniae is an opportunistic pathogen that commonly causes hospital and community acquired bacterial infections in humans. The emergence and rapid spread of multi- drug resistant (MDR) K. pneumoniae is causing drug therapy failure amid patients leading to poor antibiotic management glob...

  10. USEPA PATHOGEN EQUIVALENCY COMMITTEE RETREAT

    EPA Science Inventory

    The Pathogen Equivalency Committee held its retreat from September 20-21, 2005 at Hueston Woods State Park in College Corner, Ohio. This presentation will update the PEC’s membership on emerging pathogens, analytical methods, disinfection techniques, risk analysis, preparat...

  11. New relationships among the sudden oak death pathogen, bark and ambrosia beetles, and fungi colonizing coast live oaks

    Treesearch

    Nadir Erbilgin; Brice A. McPherson; Pierluigi Bonello; David L. Wood; Andrew J. Nelson

    2008-01-01

    Sudden oak death (SOD) has had devastating effects on several oak species in many California coastal forests. Phytophthora ramorum has been identified as the primary causal agent of sudden oak death. While the pathogen may be capable of killing mature trees, it is likely that in nature opportunistic organisms play significant roles in the decline and...

  12. Emerging Preservation Techniques for Controlling Spoilage and Pathogenic Microorganisms in Fruit Juices

    PubMed Central

    Aneja, Kamal Rai; Dhiman, Romika; Aggarwal, Neeraj Kumar; Aneja, Ashish

    2014-01-01

    Fruit juices are important commodities in the global market providing vast possibilities for new value added products to meet consumer demand for convenience, nutrition, and health. Fruit juices are spoiled primarily due to proliferation of acid tolerant and osmophilic microflora. There is also risk of food borne microbial infections which is associated with the consumption of fruit juices. In order to reduce the incidence of outbreaks, fruit juices are preserved by various techniques. Thermal pasteurization is used commercially by fruit juice industries for the preservation of fruit juices but results in losses of essential nutrients and changes in physicochemical and organoleptic properties. Nonthermal pasteurization methods such as high hydrostatic pressure, pulsed electric field, and ultrasound and irradiations have also been employed in fruit juices to overcome the negative effects of thermal pasteurization. Some of these techniques have already been commercialized. Some are still in research or pilot scale. Apart from these emerging techniques, preservatives from natural sources have also shown considerable promise for use in some food products. In this review article, spoilage, pathogenic microflora, and food borne outbreaks associated with fruit juices of last two decades are given in one section. In other sections various prevention methods to control the growth of spoilage and pathogenic microflora to increase the shelf life of fruit juices are discussed. PMID:25332721

  13. Role of pathogen-associated molecular patterns (PAMPS) in immune responses to fungal infections.

    PubMed

    Taghavi, Mehdi; Khosravi, Alireza; Mortaz, Esmaeil; Nikaein, Donya; Athari, Seyyed Shamsadin

    2017-08-05

    Recent years have seen the rise of invasive fungal infections, which are mostly due to the increase in patients. Three major opportunistic fungal species in human are Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans that pose the biggest concern for these immunocompromised patients' mortality. The growing occurrence of opportunistic fungal infections has sparked the interest to understand defense mechanisms against pathogenic fungi. Toll-like receptors (TLRs), as a part of innate immune system, play an important role for recognizing the invading microorganisms and initiating sufficient immune responses. Recent studies have revealed an integrated role for TLR, signaling inactivating immune defense mechanisms against exact fungi. Among TLRs, TLR2 and TLR4 are the major participants in fungi recognition. The present paper highlights the role of TLR participants in fungal recognition as well as their mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Weak support for disappearance and restricted emergence/persistence of highly pathogenic influenza A in North American waterfowl

    USGS Publications Warehouse

    Ramey, Andy M.; Spackman, Erica; Kim Torchetti, Mia; DeLiberto, Thomas J.

    2016-01-01

    Krauss et al. (1) use lack of detection of highly pathogenic (HP) H5 clade 2.3.4.4 (henceforth "H5") influenza A viruses (IAVs) from >22,000 wild bird samples collected in North America in 2014–2015 to argue that HP H5 IAVs disappeared from waterfowl and that unresolved mechanisms restrict emergence and perpetuation of HP IAVs in natural reservoir species. Here we offer an alternative interpretation.

  15. Emerging Tuberculosis Pathogen Hijacks Social Communication Behavior in the Group-Living Banded Mongoose (Mungos mungo).

    PubMed

    Alexander, Kathleen A; Sanderson, Claire E; Larsen, Michelle H; Robbe-Austerman, Suelee; Williams, Mark C; Palmer, Mitchell V

    2016-05-10

    An emerging Mycobacterium tuberculosis complex (MTC) pathogen, M. mungi, infects wild banded mongooses (Mungos mungo) in Northern Botswana, causing significant mortality. This MTC pathogen did not appear to be transmitted through a primary aerosol or oral route. We utilized histopathology, spoligotyping, mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR), quantitative PCR (qPCR), and molecular markers (regions of difference [RDs] from various MTC members, including region of difference 1 [RD1] from M. bovis BCG [RD1(BCG)], M. microti [RD1(mic)], and M. pinnipedii [RD1(seal)], genes Rv1510 [RD4], Rv1970 [RD7], Rv3877/8 [RD1], and Rv3120 [RD12], insertion element IS1561, the 16S RNA gene, and gene Rv0577 [cfp32]), including the newly characterized mongoose-specific deletion in RD1 (RD1(mon)), in order to demonstrate the presence of M. mungi DNA in infected mongooses and investigate pathogen invasion and exposure mechanisms. M. mungi DNA was identified in 29% of nasal planum samples (n = 52), 56% of nasal rinses and swabs (n = 9), 53% of oral swabs (n = 19), 22% of urine samples (n = 23), 33% of anal gland tissue (n = 18), and 39% of anal gland secretions (n = 44). The occurrence of extremely low cycle threshold values obtained with qPCR in anal gland and nasal planum samples indicates that high levels of M. mungi can be found in these tissue types. Histological data were consistent with these results, suggesting that pathogen invasion occurs through breaks in the nasal planum and/or skin of the mongoose host, which are in frequent contact with anal gland secretions and urine during olfactory communication behavior. Lesions in the lung, when present, occurred only with disseminated disease. No environmental sources of M. mungi DNA could be found. We report primary environmental transmission of an MTC pathogen that occurs in association with social communication behavior. Organisms causing infectious disease evolve modes of

  16. When Outgroups Fail; Phylogenomics of Rooting the Emerging Pathogen, Coxiella burnetii

    PubMed Central

    Pearson, Talima; Hornstra, Heidie M.; Sahl, Jason W.; Schaack, Sarah; Schupp, James M.; Beckstrom-Sternberg, Stephen M.; O'Neill, Matthew W.; Priestley, Rachael A.; Champion, Mia D.; Beckstrom-Sternberg, James S.; Kersh, Gilbert J.; Samuel, James E.; Massung, Robert F.; Keim, Paul

    2013-01-01

    Rooting phylogenies is critical for understanding evolution, yet the importance, intricacies and difficulties of rooting are often overlooked. For rooting, polymorphic characters among the group of interest (ingroup) must be compared to those of a relative (outgroup) that diverged before the last common ancestor (LCA) of the ingroup. Problems arise if an outgroup does not exist, is unknown, or is so distant that few characters are shared, in which case duplicated genes originating before the LCA can be used as proxy outgroups to root diverse phylogenies. Here, we describe a genome-wide expansion of this technique that can be used to solve problems at the other end of the evolutionary scale: where ingroup individuals are all very closely related to each other, but the next closest relative is very distant. We used shared orthologous single nucleotide polymorphisms (SNPs) from 10 whole genome sequences of Coxiella burnetii, the causative agent of Q fever in humans, to create a robust, but unrooted phylogeny. To maximize the number of characters informative about the rooting, we searched entire genomes for polymorphic duplicated regions where orthologs of each paralog could be identified so that the paralogs could be used to root the tree. Recent radiations, such as those of emerging pathogens, often pose rooting challenges due to a lack of ingroup variation and large genomic differences with known outgroups. Using a phylogenomic approach, we created a robust, rooted phylogeny for C. burnetii. [Coxiella burnetii; paralog SNPs; pathogen evolution; phylogeny; recent radiation; root; rooting using duplicated genes.] PMID:23736103

  17. When outgroups fail; phylogenomics of rooting the emerging pathogen, Coxiella burnetii.

    PubMed

    Pearson, Talima; Hornstra, Heidie M; Sahl, Jason W; Schaack, Sarah; Schupp, James M; Beckstrom-Sternberg, Stephen M; O'Neill, Matthew W; Priestley, Rachael A; Champion, Mia D; Beckstrom-Sternberg, James S; Kersh, Gilbert J; Samuel, James E; Massung, Robert F; Keim, Paul

    2013-09-01

    Rooting phylogenies is critical for understanding evolution, yet the importance, intricacies and difficulties of rooting are often overlooked. For rooting, polymorphic characters among the group of interest (ingroup) must be compared to those of a relative (outgroup) that diverged before the last common ancestor (LCA) of the ingroup. Problems arise if an outgroup does not exist, is unknown, or is so distant that few characters are shared, in which case duplicated genes originating before the LCA can be used as proxy outgroups to root diverse phylogenies. Here, we describe a genome-wide expansion of this technique that can be used to solve problems at the other end of the evolutionary scale: where ingroup individuals are all very closely related to each other, but the next closest relative is very distant. We used shared orthologous single nucleotide polymorphisms (SNPs) from 10 whole genome sequences of Coxiella burnetii, the causative agent of Q fever in humans, to create a robust, but unrooted phylogeny. To maximize the number of characters informative about the rooting, we searched entire genomes for polymorphic duplicated regions where orthologs of each paralog could be identified so that the paralogs could be used to root the tree. Recent radiations, such as those of emerging pathogens, often pose rooting challenges due to a lack of ingroup variation and large genomic differences with known outgroups. Using a phylogenomic approach, we created a robust, rooted phylogeny for C. burnetii. [Coxiella burnetii; paralog SNPs; pathogen evolution; phylogeny; recent radiation; root; rooting using duplicated genes.].

  18. Cost effectiveness of prophylaxis for opportunistic infections in AIDS. An overview and methodological discussion.

    PubMed

    Freedberg, K A; Paltiel, A D

    1998-08-01

    Dramatic progress has recently been made in defining the pathogenesis and treatment of HIV infection. For the first time in the history of the AIDS epidemic, clinicians have at their disposal an understanding of the replication kinetics of HIV, reliable assays to measure viral load, an increasing number of effective agents to suppress viral replication and to reverse the process of immune system destruction, and a range of options for the treatment and prophylaxis of most of the major opportunistic infections in HIV disease. These remarkable advances are not without their costs, however. New antiretroviral therapies and opportunistic infection prophylaxis regimens impose considerable financial strain on public and private budgets for HIV patient care. They force decision-makers to confront a variety of competing considerations, including issues of length and quality of life, the risks of adverse effects and toxicities, and the dangers of promoting resistance. Questions regarding the continued appropriateness and efficiency of opportunistic infection prevention have prompted increased interest in studies of the cost effectiveness of HIV patient care. In this article, we reviewed the literature on the economic evaluation of prophylaxis for HIV-related complications. Section 1 provides background on recent scientific and clinical advances. Section 2 reviews the state-of-the-art understanding of the cost effectiveness of prophylaxis against specific opportunistic infections. Section 3 broadens the discussion to consider the more general question of optimal allocation of prophylaxis resources across competing opportunistic infections. In Section 4, we briefly examined the influence of cost-effectiveness evaluations on the development and refinement of clinical guidelines for HIV-related opportunistic infection prevention in the US. Section 5 presents some of the methodological challenges that arise in applying the methods of cost-effectiveness analysis to the particular

  19. Non-cytomegalovirus ocular opportunistic infections in patients with acquired immunodeficiency syndrome.

    PubMed

    Gangaputra, Sapna; Drye, Lea; Vaidya, Vijay; Thorne, Jennifer E; Jabs, Douglas A; Lyon, Alice T

    2013-02-01

    To report the incidence and clinical outcomes of non-cytomegalovirus (non-CMV) ocular opportunistic infections in patients with acquired immunodeficiency syndrome (AIDS) in the era of highly active antiretroviral therapy. Multicenter, prospective, observational study of patients with AIDS. Medical history, ophthalmologic examination, and laboratory tests were performed at enrollment and every 6 months subsequently. Once an ocular opportunistic infection was diagnosed, patients were seen every 3 months for outcomes. At enrollment, 37 non-CMV ocular opportunistic infections were diagnosed: 16 patients, herpetic retinitis; 11 patients, toxoplasmic retinitis; and 10 patients, choroiditis. During the follow-up period, the estimated incidences (and 95% confidence intervals [CI]) of these were: herpetic retinitis, 0.007/100 person-years (PY) (95% CI 0.0004, 0.039); toxoplasmic retinitis, 0.007/100 PY (95% CI 0.004, 0.039); and choroiditis, 0.014/ 100 PY (95% CI 0.0025, 0.050). The mortality rates appeared higher among those patients with newly diagnosed or incident herpetic retinitis and choroiditis (rates = 21.7 deaths/100 PY [P = .02] and 12.8 deaths/100 PY [P = .04]), respectively, than those for patients with AIDS without an ocular opportunistic infection (4.1 deaths/100 PY); toxoplasmic retinitis did not appear to be associated with greater mortality (6.4/100 PY, P = .47). Eyes with newly diagnosed herpetic retinitis appeared to have a poor visual prognosis, with high rates of visual impairment (37.9/100 PY) and blindness (17.5/100 PY), whereas those outcomes in eyes with choroiditis appeared to be lower (2.3/100 PY and 0/100 PY, respectively). Although uncommon, non-CMV ocular opportunistic infections may be associated with high rates of visual loss and/or mortality. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Exploiting opportunistic resources for ATLAS with ARC CE and the Event Service

    NASA Astrophysics Data System (ADS)

    Cameron, D.; Filipčič, A.; Guan, W.; Tsulaia, V.; Walker, R.; Wenaus, T.; ATLAS Collaboration

    2017-10-01

    With ever-greater computing needs and fixed budgets, big scientific experiments are turning to opportunistic resources as a means to add much-needed extra computing power. These resources can be very different in design from those that comprise the Grid computing of most experiments, therefore exploiting them requires a change in strategy for the experiment. They may be highly restrictive in what can be run or in connections to the outside world, or tolerate opportunistic usage only on condition that tasks may be terminated without warning. The Advanced Resource Connector Computing Element (ARC CE) with its nonintrusive architecture is designed to integrate resources such as High Performance Computing (HPC) systems into a computing Grid. The ATLAS experiment developed the ATLAS Event Service (AES) primarily to address the issue of jobs that can be terminated at any point when opportunistic computing capacity is needed by someone else. This paper describes the integration of these two systems in order to exploit opportunistic resources for ATLAS in a restrictive environment. In addition to the technical details, results from deployment of this solution in the SuperMUC HPC centre in Munich are shown.

  1. The Sugarcane Defense Protein SUGARWIN2 Causes Cell Death in Colletotrichum falcatum but Not in Non-Pathogenic Fungi

    PubMed Central

    Franco, Flávia P.; Santiago, Adelita C.; Henrique-Silva, Flávio; de Castro, Patrícia Alves; Goldman, Gustavo H.; Moura, Daniel S.; Silva-Filho, Marcio C.

    2014-01-01

    Plants respond to pathogens and insect attacks by inducing and accumulating a large set of defense-related proteins. Two homologues of a barley wound-inducible protein (BARWIN) have been characterized in sugarcane, SUGARWIN1 and SUGARWIN2 (sugarcane wound-inducible proteins). Induction of SUGARWINs occurs in response to Diatraea saccharalis damage but not to pathogen infection. In addition, the protein itself does not show any effect on insect development; instead, it has antimicrobial activities toward Fusarium verticillioides, an opportunistic fungus that usually occurs after D. saccharalis borer attacks on sugarcane. In this study, we sought to evaluate the specificity of SUGARWIN2 to better understand its mechanism of action against phytopathogens and the associations between fungi and insects that affect plants. We used Colletotrichum falcatum, a fungus that causes red rot disease in sugarcane fields infested by D. saccharalis, and Ceratocystis paradoxa, which causes pineapple disease in sugarcane. We also tested whether SUGARWIN2 is able to cause cell death in Aspergillus nidulans, a fungus that does not infect sugarcane, and in the model yeast Saccharomyces cerevisiae, which is used for bioethanol production. Recombinant SUGARWIN2 altered C. falcatum morphology by increasing vacuolization, points of fractures and a leak of intracellular material, leading to germling apoptosis. In C. paradoxa, SUGARWIN2 showed increased vacuolization in hyphae but did not kill the fungi. Neither the non-pathogenic fungus A. nidulans nor the yeast S. cerevisiae was affected by recombinant SUGARWIN2, suggesting that the protein is specific to sugarcane opportunistic fungal pathogens. PMID:24608349

  2. The opportunistic transmission of wireless worms between mobile devices

    NASA Astrophysics Data System (ADS)

    Rhodes, C. J.; Nekovee, M.

    2008-12-01

    The ubiquity of portable wireless-enabled computing and communications devices has stimulated the emergence of malicious codes (wireless worms) that are capable of spreading between spatially proximal devices. The potential exists for worms to be opportunistically transmitted between devices as they move around, so human mobility patterns will have an impact on epidemic spread. The scenario we address in this paper is proximity attacks from fleetingly in-contact wireless devices with short-range communication range, such as Bluetooth-enabled smart phones. An individual-based model of mobile devices is introduced and the effect of population characteristics and device behaviour on the outbreak dynamics is investigated. The model uses straight-line motion to achieve population, though it is recognised that this is a highly simplified representation of human mobility patterns. We show that the contact rate can be derived from the underlying mobility model and, through extensive simulation, that mass-action epidemic models remain applicable to worm spreading in the low density regime studied here. The model gives useful analytical expressions against which more refined simulations of worm spread can be developed and tested.

  3. Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks

    PubMed Central

    Wang, Haiyan; He, Ke

    2018-01-01

    The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay. PMID:29690621

  4. Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks.

    PubMed

    Bai, Weigang; Wang, Haiyan; He, Ke; Zhao, Ruiqin

    2018-04-23

    The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay.

  5. Body lice of homeless people reveal the presence of several emerging bacterial pathogens in northern Algeria.

    PubMed

    Louni, Meriem; Mana, Nassima; Bitam, Idir; Dahmani, Mustapha; Parola, Philippe; Fenollar, Florence; Raoult, Didier; Mediannikov, Oleg

    2018-04-01

    Human lice, Pediculus humanus, are obligate blood-sucking parasites. Body lice, Pediculus h. humanus, occur in two divergent mitochondrial clades (A and D) each exhibiting a particular geographic distribution. Currently, the body louse is recognized as the only vector for louse-borne diseases. In this study, we aimed to study the genetic diversity of body lice collected from homeless populations in three localities of northern Algeria, and to investigate louse-borne pathogens in these lice. In this study, 524 body lice specimens were collected from 44 homeless people in three localities: Algiers, Tizi Ouzou and Boumerdès located in northern Algeria. Duplex clade specific real-time PCRs (qPCR) and Cytochrome b (cytb) mitochondrial DNA (mtDNA) analysis were performed in order to identify the mitochondrial clade. Screening of louse-borne pathogens bacteria was based on targeting specific genes for each pathogen using qPCR supplemented by sequencing. All body lice belong to clade A. Through amplification and sequencing of the cytb gene we confirmed the presence of three haplotypes: A5, A9 and A63, which is novel. The molecular investigation of the 524 body lice samples revealed the presence of four human pathogens: Bartonella quintana (13.35%), Coxiella burnetii (10.52%), Anaplasma phagocytophilum (0.76%) and Acinetobacter species (A. baumannii, A. johnsonii, A. berezeniae, A. nosocomialis and A. variabilis, in total 46.94%). To the best of our knowledge, our study is the first to show the genetic diversity and presence of several emerging pathogenic bacteria in homeless' body lice from Algeria. We also report for the first time, the presence of several species of Acinetobacter in human body lice. Our results highlight the fact that body lice may be suspected as being a much broader vector of several pathogenic agents than previously thought. Nevertheless, other studies are needed to encourage epidemiological investigations and surveys of louse-associated infections.

  6. Body lice of homeless people reveal the presence of several emerging bacterial pathogens in northern Algeria

    PubMed Central

    Louni, Meriem; Mana, Nassima; Bitam, Idir; Dahmani, Mustapha; Parola, Philippe; Fenollar, Florence; Raoult, Didier

    2018-01-01

    Background Human lice, Pediculus humanus, are obligate blood-sucking parasites. Body lice, Pediculus h. humanus, occur in two divergent mitochondrial clades (A and D) each exhibiting a particular geographic distribution. Currently, the body louse is recognized as the only vector for louse-borne diseases. In this study, we aimed to study the genetic diversity of body lice collected from homeless populations in three localities of northern Algeria, and to investigate louse-borne pathogens in these lice. Methodology/Principal findings In this study, 524 body lice specimens were collected from 44 homeless people in three localities: Algiers, Tizi Ouzou and Boumerdès located in northern Algeria. Duplex clade specific real-time PCRs (qPCR) and Cytochrome b (cytb) mitochondrial DNA (mtDNA) analysis were performed in order to identify the mitochondrial clade. Screening of louse-borne pathogens bacteria was based on targeting specific genes for each pathogen using qPCR supplemented by sequencing. All body lice belong to clade A. Through amplification and sequencing of the cytb gene we confirmed the presence of three haplotypes: A5, A9 and A63, which is novel. The molecular investigation of the 524 body lice samples revealed the presence of four human pathogens: Bartonella quintana (13.35%), Coxiella burnetii (10.52%), Anaplasma phagocytophilum (0.76%) and Acinetobacter species (A. baumannii, A. johnsonii, A. berezeniae, A. nosocomialis and A. variabilis, in total 46.94%). Conclusions/Significance To the best of our knowledge, our study is the first to show the genetic diversity and presence of several emerging pathogenic bacteria in homeless’ body lice from Algeria. We also report for the first time, the presence of several species of Acinetobacter in human body lice. Our results highlight the fact that body lice may be suspected as being a much broader vector of several pathogenic agents than previously thought. Nevertheless, other studies are needed to encourage

  7. Parallels in amphibian and bat declines from pathogenic fungi.

    PubMed

    Eskew, Evan A; Todd, Brian D

    2013-03-01

    Pathogenic fungi have substantial effects on global biodiversity, and 2 emerging pathogenic species-the chytridiomycete Batrachochytrium dendrobatidis, which causes chytridiomycosis in amphibians, and the ascomycete Geomyces destructans, which causes white-nose syndrome in hibernating bats-are implicated in the widespread decline of their vertebrate hosts. We synthesized current knowledge for chytridiomycosis and white-nose syndrome regarding disease emergence, environmental reservoirs, life history characteristics of the host, and host-pathogen interactions. We found striking similarities between these aspects of chytridiomycosis and white-nose syndrome, and the research that we review and propose should help guide management of future emerging fungal diseases.

  8. Emerging Tuberculosis Pathogen Hijacks Social Communication Behavior in the Group-Living Banded Mongoose (Mungos mungo)

    PubMed Central

    Sanderson, Claire E.; Larsen, Michelle H.; Robbe-Austerman, Suelee; Williams, Mark C.; Palmer, Mitchell V.

    2016-01-01

    ABSTRACT An emerging Mycobacterium tuberculosis complex (MTC) pathogen, M. mungi, infects wild banded mongooses (Mungos mungo) in Northern Botswana, causing significant mortality. This MTC pathogen did not appear to be transmitted through a primary aerosol or oral route. We utilized histopathology, spoligotyping, mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR), quantitative PCR (qPCR), and molecular markers (regions of difference [RDs] from various MTC members, including region of difference 1 [RD1] from M. bovis BCG [RD1BCG], M. microti [RD1mic], and M. pinnipedii [RD1seal], genes Rv1510 [RD4], Rv1970 [RD7], Rv3877/8 [RD1], and Rv3120 [RD12], insertion element IS1561, the 16S RNA gene, and gene Rv0577 [cfp32]), including the newly characterized mongoose-specific deletion in RD1 (RD1mon), in order to demonstrate the presence of M. mungi DNA in infected mongooses and investigate pathogen invasion and exposure mechanisms. M. mungi DNA was identified in 29% of nasal planum samples (n = 52), 56% of nasal rinses and swabs (n = 9), 53% of oral swabs (n = 19), 22% of urine samples (n = 23), 33% of anal gland tissue (n = 18), and 39% of anal gland secretions (n = 44). The occurrence of extremely low cycle threshold values obtained with qPCR in anal gland and nasal planum samples indicates that high levels of M. mungi can be found in these tissue types. Histological data were consistent with these results, suggesting that pathogen invasion occurs through breaks in the nasal planum and/or skin of the mongoose host, which are in frequent contact with anal gland secretions and urine during olfactory communication behavior. Lesions in the lung, when present, occurred only with disseminated disease. No environmental sources of M. mungi DNA could be found. We report primary environmental transmission of an MTC pathogen that occurs in association with social communication behavior. PMID:27165798

  9. [Evaluation of Fusarium spp. pathogenicity in plant and murine models].

    PubMed

    Forero-Reyes, Consuelo M; Alvarado-Fernández, Angela M; Ceballos-Rojas, Ana M; González-Carmona, Lady C; Linares-Linares, Melva Y; Castañeda-Salazar, Rubiela; Pulido-Villamarín, Adriana; Góngora-Medina, Manuel E; Cortés-Vecino, Jesús A; Rodríguez-Bocanegra, María X

    The genus Fusarium is widely recognized for its phytopathogenic capacity. However, it has been reported as an opportunistic pathogen in immunocompetent and immunocompromised patients. Thus, it can be considered a microorganism of interest in pathogenicity studies on different hosts. Therefore, this work evaluated the pathogenicity of Fusarium spp. isolates from different origins in plants and animals (murine hosts). Twelve isolates of Fusarium spp. from plants, animal superficial mycoses, and human superficial and systemic mycoses were inoculated in tomato, passion fruit and carnation plants, and in immunocompetent and immunosuppressed BALB/c mice. Pathogenicity tests in plants did not show all the symptoms associated with vascular wilt in the three plant models; however, colonization and necrosis of the vascular bundles, regardless of the species and origin of the isolates, showed the infective potential of Fusarium spp. in different plant species. Moreover, the pathogenicity tests in the murine model revealed behavioral changes. It was noteworthy that only five isolates (different origin and species) caused mortality. Additionally, it was observed that all isolates infected and colonized different organs, regardless of the species and origin of the isolates or host immune status. In contrast, the superficial inoculation test showed no evidence of epidermal injury or colonization. The observed results in plant and murine models suggest the pathogenic potential of Fusarium spp. isolates in different types of hosts. However, further studies on pathogenicity are needed to confirm the multihost capacity of this genus. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network

    PubMed Central

    Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A.; Othman, Mohamed

    2018-01-01

    Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26

  11. Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network.

    PubMed

    Rahman, Ziaur; Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A; Othman, Mohamed

    2018-01-01

    Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26

  12. Cryptococcus interactions with macrophages: evasion and manipulation of the phagosome by a fungal pathogen.

    PubMed

    Johnston, Simon A; May, Robin C

    2013-03-01

    Cryptococcus is a potentially fatal fungal pathogen and a leading cause of death in immunocompromised patients. As an opportunistic and facultative intracellular pathogen of humans, Cryptococcus exhibits a complex set of interactions with the host immune system in general, and macrophages in particular. Cryptococcus is resistant to phagocytosis but is also able to survive and proliferate within the mature phagolysosome. It can cause the lysis of host cells, can be transferred between macrophages or exit non-lytically via vomocytosis. Efficient phagocytosis is reliant on opsonization and Cryptococcus has a number of anti-phagocytic strategies including formation of titan cells and a thick polysaccharide capsule. Following uptake, phagosome maturation appears to occur normally, but the internalized pathogen is able to survive and replicate. Here we review the interactions and host manipulation processes that occur within cryptococcal-infected macrophages and highlight areas for future research. © 2012 Blackwell Publishing Ltd.

  13. Multiple major disease-associated clones of Legionella pneumophila have emerged recently and independently

    PubMed Central

    David, Sophia; Rusniok, Christophe; Mentasti, Massimo; Gomez-Valero, Laura; Harris, Simon R.; Lechat, Pierre; Lees, John; Ginevra, Christophe; Glaser, Philippe; Ma, Laurence; Bouchier, Christiane; Underwood, Anthony; Jarraud, Sophie; Harrison, Timothy G.; Parkhill, Julian; Buchrieser, Carmen

    2016-01-01

    Legionella pneumophila is an environmental bacterium and the leading cause of Legionnaires’ disease. Just five sequence types (ST), from more than 2000 currently described, cause nearly half of disease cases in northwest Europe. Here, we report the sequence and analyses of 364 L. pneumophila genomes, including 337 from the five disease-associated STs and 27 representative of the species diversity. Phylogenetic analyses revealed that the five STs have independent origins within a highly diverse species. The number of de novo mutations is extremely low with maximum pairwise single-nucleotide polymorphisms (SNPs) ranging from 19 (ST47) to 127 (ST1), which suggests emergences within the last century. Isolates sampled geographically far apart differ by only a few SNPs, demonstrating rapid dissemination. These five STs have been recombining recently, leading to a shared pool of allelic variants potentially contributing to their increased disease propensity. The oldest clone, ST1, has spread globally; between 1940 and 2000, four new clones have emerged in Europe, which show long-distance, rapid dispersal. That a large proportion of clinical cases is caused by recently emerged and internationally dispersed clones, linked by convergent evolution, is surprising for an environmental bacterium traditionally considered to be an opportunistic pathogen. To simultaneously explain recent emergence, rapid spread and increased disease association, we hypothesize that these STs have adapted to new man-made environmental niches, which may be linked by human infection and transmission. PMID:27662900

  14. Multiple major disease-associated clones of Legionella pneumophila have emerged recently and independently.

    PubMed

    David, Sophia; Rusniok, Christophe; Mentasti, Massimo; Gomez-Valero, Laura; Harris, Simon R; Lechat, Pierre; Lees, John; Ginevra, Christophe; Glaser, Philippe; Ma, Laurence; Bouchier, Christiane; Underwood, Anthony; Jarraud, Sophie; Harrison, Timothy G; Parkhill, Julian; Buchrieser, Carmen

    2016-11-01

    Legionella pneumophila is an environmental bacterium and the leading cause of Legionnaires' disease. Just five sequence types (ST), from more than 2000 currently described, cause nearly half of disease cases in northwest Europe. Here, we report the sequence and analyses of 364 L. pneumophila genomes, including 337 from the five disease-associated STs and 27 representative of the species diversity. Phylogenetic analyses revealed that the five STs have independent origins within a highly diverse species. The number of de novo mutations is extremely low with maximum pairwise single-nucleotide polymorphisms (SNPs) ranging from 19 (ST47) to 127 (ST1), which suggests emergences within the last century. Isolates sampled geographically far apart differ by only a few SNPs, demonstrating rapid dissemination. These five STs have been recombining recently, leading to a shared pool of allelic variants potentially contributing to their increased disease propensity. The oldest clone, ST1, has spread globally; between 1940 and 2000, four new clones have emerged in Europe, which show long-distance, rapid dispersal. That a large proportion of clinical cases is caused by recently emerged and internationally dispersed clones, linked by convergent evolution, is surprising for an environmental bacterium traditionally considered to be an opportunistic pathogen. To simultaneously explain recent emergence, rapid spread and increased disease association, we hypothesize that these STs have adapted to new man-made environmental niches, which may be linked by human infection and transmission. © 2016 David et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Predation on multiple trophic levels shapes the evolution of pathogen virulence.

    PubMed

    Friman, Ville-Petri; Lindstedt, Carita; Hiltunen, Teppo; Laakso, Jouni; Mappes, Johanna

    2009-08-25

    The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded off with bacterial virulence factors, such as motility or resource use efficiency. However, the host survival depended also on its allocation to warning signal that is used against avian predation. When infected with most virulent ancestral bacterial strain, host larvae with a small warning signal survived better than those with an effective large signal. This suggests that larval immune defence could be traded off with effective defence against bird predators. However, the signal size had no effect on larval survival when less virulent control or evolved strains were used for infection suggesting that anti-predatory defence against avian predators, might be less constrained when the invading pathogen is rather low in virulence. Our results demonstrate that predation can be important indirect driver of the evolution of both pathogen virulence and host immunity in communities with multiple species interactions. Thus, the pathogen virulence should be viewed as a result of both past evolutionary history, and current ecological interactions.

  16. Microbial diversities (16S and 18S rDNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper

    EPA Science Inventory

    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, e.g. Legionella pneumophila, via parasitization of free-living amoebae such as Acanthamoebae. Yet knowledge about the microbial composition of DW biofilms developed on common in-premise pl...

  17. Redefining disease emergence to improve prioritization and macro-ecological analyses.

    PubMed

    Rosenthal, Samantha R; Ostfeld, Richard S; McGarvey, Stephen T; Lurie, Mark N; Smith, Katherine F

    2015-12-01

    Microbial infections are as old as the hosts they sicken, but interest in the emergence of pathogens and the diseases they cause has been accelerating rapidly. The term 'emerging infectious disease' was coined in the mid-1900s to describe changes in disease dynamics in the modern era. Both the term and the phenomena it is meant to characterize have evolved and diversified over time, leading to inconsistencies and confusion. Here, we review the evolution of the term 'emerging infectious disease' (EID) in the literature as applied to human hosts. We examine the pathways (e.g., speciation or strain differentiation in the causative agent vs. rapid geographic expansion of an existing pathogen) by which diseases emerge. We propose a new framework for disease and pathogen emergence to improve prioritization. And we illustrate how the operational definition of an EID affects conclusions concerning the pathways by which diseases emerge and the ecological and socioeconomic drivers that elicit emergence. As EIDs appear to be increasing globally, and resources for science level off or decline, the research community is pushed to prioritize its focus on the most threatening diseases, riskiest potential pathogens, and the places they occur. The working definition of emerging infectious diseases and pathogens plays a crucial role in prioritization, but we argue that the current definitions may be impeding these efforts. We propose a new framework for classifying pathogens and diseases as "emerging" that distinguishes EIDs from emerging pathogens and novel potential pathogens. We suggest prioritization of: 1) EIDs for adaptation and mitigation, 2) emerging pathogens for preventive measures, and 3) novel potential pathogens for intensive surveillance.

  18. Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant.

    PubMed

    de Vries, Erik; Guo, Hongbo; Dai, Meiling; Rottier, Peter J M; van Kuppeveld, Frank J M; de Haan, Cornelis A M

    2015-05-01

    In 2014, novel highly pathogenic avian influenza A H5N2, H5N5, H5N6, and H5N8 viruses caused outbreaks in Asia, Europe, and North America. The H5 genes of these viruses form a monophyletic group that evolved from a clade 2.3.4 H5N1 variant. This rapid emergence of new H5Nx combinations is unprecedented in the H5N1 evolutionary history.

  19. Endocarditis caused by Rhodotorula infection.

    PubMed

    Simon, Matthew S; Somersan, Selin; Singh, Harjot K; Hartman, Barry; Wickes, Brian L; Jenkins, Stephen G; Walsh, Thomas J; Schuetz, Audrey N

    2014-01-01

    Rhodotorula is an emerging opportunistic fungal pathogen that is rarely reported to cause endocarditis. We describe a case involving a patient who developed endocarditis due to Rhodotorula mucilaginosa and Staphylococcus epidermidis, proven by culture and histopathology. The case illustrates the unique diagnostic and therapeutic challenges relevant to Rhodotorula spp.

  20. Rothia mucilaginosa Prosthetic Device Infections: a Case of Prosthetic Valve Endocarditis

    PubMed Central

    Tokarczyk, Mindy J.; Jungkind, Donald; DeSimone, Joseph A.

    2013-01-01

    Rothia mucilaginosa is increasingly recognized as an emerging opportunistic pathogen associated with prosthetic device infections. Infective endocarditis is one of the most common clinical presentations. We report a case of R. mucilaginosa prosthetic valve endocarditis and review the literature of prosthetic device infections caused by this organism. PMID:23467598

  1. Toward Decentralized Agrigenomic Surveillance? A Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Approach for Adaptable and Rapid Detection of User-Defined Fungal Pathogens in Potato Crops.

    PubMed

    Kambouris, Manousos E; Manoussopoulos, Yiannis; Kritikou, Stavroula; Milioni, Aphroditi; Mantzoukas, Spyridon; Velegraki, Aristea

    2018-04-01

    Agrigenomics is one of the emerging focus areas for omics sciences. Yet, agrigenomics differs from medical omics applications such as pharmacogenomics and precision medicine, by virtue of vastly distributed geography of applications at the intersection of agriculture, nutrition, and genomics research streams. Crucially, agrigenomics can address diagnostics and safety surveillance needs in remote and rural farming communities or decentralized food, crop, and environmental monitoring programs for prompt, selective, and differential identification of pathogens. A case in point is the potato crop that serves as a fundamental nutritional source worldwide. Decentralized potato crop and plant protection facilities are pivotal to minimize unnecessary, preemptive use of broad-spectrum fungicides, thus helping to curtail the costs, environmental burden, and the development of resistance in opportunistic human pathogenic fungi. We report here a polymerase chain reaction-restriction fragment length polymorphism approach that is sensitive and adaptable in detection and broad identification of fungal pathogens in potato crops, with a view to future decentralized agrigenomic surveillance programs. Notably, the fingerprinting patterns obtained by the method fully differentiated 12 fungal species examined in silico, with 10 of them also tested in vitro. The method can be scaled up through improvements in electrophoresis and enzyme panel for adaption to other crops and/or pathogens. We suggest that decentralized and integrated agrosurveillance programs and translational agrigenomic programs can inform future innovations in multidomain biosecurity, particularly across omics applications from agriculture and nutrition to clinical medicine and environmental biosafety.

  2. First report of a cross-kingdom pathogenic bacterium, Achromobacter xylosoxidans isolated from stipe-rot Coprinus comatus.

    PubMed

    Ye, Luona; Guo, Mengpei; Ren, Pengfei; Wang, Gangzheng; Bian, Yinbing; Xiao, Yang; Zhou, Yan

    2018-03-01

    Coprinus comatus is an edible mushroom widely cultivated in China as a delicious food. Various diseases have occurred on C. comatus with the cultivated area increasing. In this study, the pathogenic bacterium JTG-B1, identified as Achromobacter xylosoxidans by 16S rDNA and nrdA gene sequencing, was isolated from edible mushroom Coprinus comatus with serious rot disease on its stipe. A. xylosoxidans has been confirmed as an important opportunistic human pathogenic bacterium and has been isolated from respiratory samples from cystic fibrosis. It is widely distributed in the environment. Here, we first report that fungi can also serve as a host for A. xylosoxidans. We confirmed that it can cross-kingdom infect between animals (mice) and fungi (C. comatus). The results of pathogenicity tests, physiological, biochemical and genotyping analysis of A. xylosoxidans from different hosts suggested that different strain of A. xylosoxidans may have pathogenicity differentiation. A. xylosoxidans not only is pathogenic to C. comatus but also may threaten human health. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen

    Treesearch

    C.L. Searle; S.S. Gervasi; J. Hua; J.I. Hammond; R.A. Relyea; D.H. Olson; A.R. Blaustein

    2011-01-01

    The amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) has received considerable attention due to its role in amphibian population declines worldwide. Although many amphibian species appear to be affected by Bd, there is little information on species-specific differences in susceptibility to this pathogen. We used a comparative...

  4. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus.

    PubMed

    O'Hanlon, Karen A; Margison, Geoffrey P; Hatch, Amy; Fitzpatrick, David A; Owens, Rebecca A; Doyle, Sean; Jones, Gary W

    2012-09-01

    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O(6)-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O(6)-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system.

  5. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus

    PubMed Central

    O’Hanlon, Karen A.; Margison, Geoffrey P.; Hatch, Amy; Fitzpatrick, David A.; Owens, Rebecca A.; Doyle, Sean; Jones, Gary W.

    2012-01-01

    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O6-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O6-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system. PMID:22669901

  6. Manipulation of Host Diet To Reduce Gastrointestinal Colonization by the Opportunistic Pathogen Candida albicans

    PubMed Central

    Tornberg-Belanger, Stephanie N.; Matthan, Nirupa R.; Lichtenstein, Alice H.

    2015-01-01

    ABSTRACT Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal drugs prevents C. albicans-associated mortalities. C. albicans provides a clinically relevant system for studying the relationship between diet and the microbiota as it relates to commensalism and pathogenicity. As a first step toward a dietary intervention to reduce C. albicans GI colonization, we investigated the impact of dietary lipids on murine colonization by C. albicans. Coconut oil and its constituent fatty acids have antifungal activity in vitro; we hypothesized that dietary coconut oil would reduce GI colonization by C. albicans. Colonization was lower in mice fed a coconut oil-rich diet than in mice fed diets rich in beef tallow or soybean oil. Switching beef tallow-fed mice to a coconut oil diet reduced preexisting colonization. Coconut oil reduced colonization even when the diet also contained beef tallow. Dietary coconut oil also altered the metabolic program of colonizing C. albicans cells. Long-chain fatty acids were less abundant in the cecal contents of coconut oil-fed mice than in the cecal contents of beef tallow-fed mice; the expression of genes involved in fatty acid utilization was lower in C. albicans from coconut oil-fed mice than in C. albicans from beef tallow-fed mice. Extrapolating to humans, these findings suggest that coconut oil could become the first dietary intervention to reduce C. albicans GI colonization. IMPORTANCE Candida albicans, the most common human fungal pathogen, can cause infections with a mortality rate of ~40%. C. albicans is part of the normal gut flora, but when a patient’s immune system is compromised, it can leave the gut and cause infections. By reducing the amount of C. albicans in the gut of

  7. Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance

    PubMed Central

    Novak Babič, Monika; Gunde-Cimerman, Nina; Vargha, Márta; Tischner, Zsófia; Magyar, Donát; Veríssimo, Cristina; Sabino, Raquel; Viegas, Carla; Meyer, Wieland; Brandão, João

    2017-01-01

    Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.

  8. Chimpanzee adenoviral vectors as vaccines for outbreak pathogens

    PubMed Central

    2017-01-01

    ABSTRACT The 2014–15 Ebola outbreak in West Africa highlighted the potential for large disease outbreaks caused by emerging pathogens and has generated considerable focus on preparedness for future epidemics. Here we discuss drivers, strategies and practical considerations for developing vaccines against outbreak pathogens. Chimpanzee adenoviral (ChAd) vectors have been developed as vaccine candidates for multiple infectious diseases and prostate cancer. ChAd vectors are safe and induce antigen-specific cellular and humoral immunity in all age groups, as well as circumventing the problem of pre-existing immunity encountered with human Ad vectors. For these reasons, such viral vectors provide an attractive platform for stockpiling vaccines for emergency deployment in response to a threatened outbreak of an emerging pathogen. Work is already underway to develop vaccines against a number of other outbreak pathogens and we will also review progress on these approaches here, particularly for Lassa fever, Nipah and MERS. PMID:29083948

  9. Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp.

    PubMed

    Zhang, Yucheng; Bignell, Dawn R D; Zuo, Ran; Fan, Qiurong; Huguet-Tapia, Jose C; Ding, Yousong; Loria, Rosemary

    2016-08-01

    Approximately 10 Streptomyces species cause disease on underground plant structures. The most economically important of these is potato scab, and the most studied of these pathogens is Streptomyces scabiei (syn. S. scabies). The main pathogenicity determinant of scab-causing Streptomyces species is a nitrated diketopiperazine, known as thaxtomin A (ThxA). In the pathogenic species Streptomyces turgidiscabies, ThxA biosynthetic genes reside on a mobile pathogenicity island (PAI). However, the mobilization of PAIs in other Streptomyces species remains uncharacterized. Here, we investigated the mobilization of the PAI of S. scabiei 87-22. Based on whole genome sequences, we inferred the evolutionary relationships of pathogenic Streptomyces species and discovered that Streptomyces sp. strain 96-12, a novel pathogenic species isolated from potatoes in Egypt, was phylogenetically grouped with nonpathogenic species rather than with known pathogenic species. We also found that Streptomyces sp. strain 96-12 contains a PAI that is almost identical to the PAI in S. scabiei 87-22, despite significant differences in their genome sequences. This suggested direct or indirect in vivo mobilization of the PAI between S. scabiei and nonpathogenic Streptomyces species. To test whether the S. scabiei 87-22 PAI could, indeed, be mobilized, S. scabiei 87-22 deletion mutants containing antibiotic resistance markers in the PAI were mated with Streptomyces diastatochromogenes, a nonpathogenic species. The PAI of S. scabiei was site-specifically inserted into the aviX1 gene of S. diastatochromogenes and conferred pathogenicity in radish seedling assays. Our results demonstrated that S. scabiei, the earliest described Streptomyces pathogen, could be the source of a PAI responsible for the emergence of novel pathogenic species.

  10. Opportunistic salpingectomy in women undergoing hysterectomy: Results from the HYSTUB randomised controlled trial.

    PubMed

    Van Lieshout, L A M; Pijlman, B; Vos, M C; de Groot, M J M; Houterman, S; Coppus, S F P J; Harmsen, M G; Vandenput, I; Piek, J M J

    2018-01-01

    To evaluate whether opportunistic salpingectomy in premenopausal women undergoing hysterectomy for benign indications is both hormonally and surgically safe, compared with hysterectomy without salpingectomy. In this multicentre randomised controlled trial, women were randomised to undergo either hysterectomy with opportunistic bilateral salpingectomy (intervention group) or standard hysterectomy with preservation of the Fallopian tubes (control group). The primary outcome was the difference in serum anti-Müllerian hormone concentration (ΔAMH), measured pre-surgery and 6 months post-surgery. Secondary outcomes were surgical outcomes and duration of hospital stay. The sample size was powered at 50 participants per group (n=100) to compare ΔAMH after hysterectomy with salpingectomy to ΔAMH after standard hysterectomy. Between March 2013 and December 2016, 104 women, aged 30-55 years, were randomly allocated to hysterectomy with opportunistic bilateral salpingectomy (n=52) or standard hysterectomy (n=52). The baseline characteristics did not differ between the two groups. The median ΔAMH was -0.14pmol/L (IQR -1.47-0.95) in the intervention group and 0.00pmol/L (IQR -1.05-0.80) in the control group (p=0.49). The addition of salpingectomy did not impair surgical results and it did not affect duration of hospital stay. Addition of opportunistic bilateral salpingectomy during hysterectomy did not result in a larger effect on ovarian reserve when compared with hysterectomy alone, neither did it affect surgical outcomes. Therefore, opportunistic salpingectomy seems to be a safe procedure in premenopausal women undergoing hysterectomy for benign gynaecological conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus.

    PubMed

    Xu, Yifei; Ramey, Andrew M; Bowman, Andrew S; DeLiberto, Thomas J; Killian, Mary L; Krauss, Scott; Nolting, Jacqueline M; Torchetti, Mia Kim; Reeves, Andrew B; Webby, Richard J; Stallknecht, David E; Wan, Xiu-Feng

    2017-05-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir. IMPORTANCE In January 2016, a novel H7N8 HPAI virus caused a disease outbreak in turkeys in Indiana, USA. To determine the origin of this virus, we sequenced and analyzed 441 wild-bird origin influenza virus strains isolated from wild birds inhabiting North America. We found that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Our results suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore

  12. Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus

    PubMed Central

    Xu, Yifei; Bowman, Andrew S.; DeLiberto, Thomas J.; Killian, Mary L.; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.

    2017-01-01

    ABSTRACT Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir. IMPORTANCE In January 2016, a novel H7N8 HPAI virus caused a disease outbreak in turkeys in Indiana, USA. To determine the origin of this virus, we sequenced and analyzed 441 wild-bird origin influenza virus strains isolated from wild birds inhabiting North America. We found that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Our results suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry

  13. Candida Parapsilosis and Candida Guillermondii: Emerging Pathogens in Nail Candidiasis

    PubMed Central

    Fich, Felix; Abarzúa-Araya, Alvaro; Pérez, Mario; Nauhm, Yalile; León, Eugenia

    2014-01-01

    Background: Onychomycosis of the fingernails and toenails is generally caused by dermatophytes and yeasts. Toenail mycoses involve mainly dermatophytes but when Candida is also involved, the strain most commonly isolated worldwide is C. albicans. Aims: To determine Candida strains prevailing in onychomycosis. Materials and Methods: A retrospective, observational and descriptive study of fungal cultures retrieved from the registry of the microbiology laboratory of the Pontificia Universidad Católica was performed. Specimens obtained from patients attending the healthcare network between December 2007 and December 2010 was analyzed. Statistical Analysis: A descriptive statistical analysis was performed. Results: Candida was retrieved from 467 of 8443 specimens (52% fingernails and 48% toenails). Cultures were negative in 5320 specimens (63.6%). Among Candida-positive cultures, parapsilosis was the most commonly isolated strain with 202 cases (43.3%). While isolates of Candida guillermondii were 113 (24.2%), those of Candida albicans were 110 (23.6%), those of spp. were 20 (4.3%) and there were 22 cases of other isolates (4.71%). Among the 467 patients with positive cultures for Candida, 136 (29,1%) were men and 331 (70,9%) were women. All patients were older than 18 years old. Clinical files were available for only 169 of the 467 patients with positive cultures for Candida. For those, age, gender, underlying illnesses and use of immunossupresive agents during the trial was reviewed. Conclusions: The present study shows that both C. parapsilosis as well as C. guillermondii appear as emerging pathogens that would be in fact taking the place of C. albicans as the most commonly isolated pathogen in patients with Candida onychomycosis. The relative percentage of C parapsilosis increases every year. Identification of Candida strains as etiological agents of nail candidiasis becomes relevant to the management both nail as well as systemic candidiasis, in view of the

  14. Endocarditis Caused by Rhodotorula Infection

    PubMed Central

    Simon, Matthew S.; Somersan, Selin; Singh, Harjot K.; Hartman, Barry; Wickes, Brian L.; Jenkins, Stephen G.; Walsh, Thomas J.

    2014-01-01

    Rhodotorula is an emerging opportunistic fungal pathogen that is rarely reported to cause endocarditis. We describe a case involving a patient who developed endocarditis due to Rhodotorula mucilaginosa and Staphylococcus epidermidis, proven by culture and histopathology. The case illustrates the unique diagnostic and therapeutic challenges relevant to Rhodotorula spp. PMID:24197888

  15. Streptococcus suis: a new emerging or an old neglected zoonotic pathogen?

    PubMed

    Gottschalk, Marcelo; Xu, Jianguo; Calzas, Cynthia; Segura, Mariela

    2010-03-01

    Infections caused by Streptococcus suis are considered a global and an economical problem in the swine industry. Moreover, S. suis is an agent of zoonosis that afflicts people in close contact with infected pigs or pork-derived products. Although sporadic cases of S. suis infections in humans (mainly meningitis) have been reported during the last 40 years, a large outbreak due to this pathogen emerged in the summer of 2005 in China. The severity of the infection in humans during the outbreak, such as a shorter incubation time, more rapid disease progression and higher rate of mortality, attracted a lot of attention from the scientific community and the general press. In fact, the number of publications on S. suis (including the number of reported human cases) has significantly increased during recent years. In this article we critically review the present knowledge on S. suis infection in humans, we discuss the hypotheses that may explain the 2005 outbreak and the repercussion of such an episode on the scientific community.

  16. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk.

    PubMed

    Hosseini, Parviez R; Mills, James N; Prieur-Richard, Anne-Hélène; Ezenwa, Vanessa O; Bailly, Xavier; Rizzoli, Annapaola; Suzán, Gerardo; Vittecoq, Marion; García-Peña, Gabriel E; Daszak, Peter; Guégan, Jean-François; Roche, Benjamin

    2017-06-05

    Biodiversity is of critical value to human societies, but recent evidence that biodiversity may mitigate infectious-disease risk has sparked controversy among researchers. The majority of work on this topic has focused on direct assessments of the relationship between biodiversity and endemic-pathogen prevalence, without disentangling intervening mechanisms; thus study outcomes often differ, fuelling more debate. Here, we suggest two critical changes to the approach researchers take to understanding relationships between infectious disease, both endemic and emerging, and biodiversity that may help clarify sources of controversy. First, the distinct concepts of hazards versus risks need to be separated to determine how biodiversity and its drivers may act differently on each. This distinction is particularly important since it illustrates that disease emergence drivers in humans could be quite different to the general relationship between biodiversity and transmission of endemic pathogens. Second, the interactive relationship among biodiversity, anthropogenic change and zoonotic disease risk, including both direct and indirect effects, needs to be recognized and accounted for. By carefully disentangling these interactions between humans' activities and pathogen circulation in wildlife, we suggest that conservation efforts could mitigate disease risks and hazards in novel ways that complement more typical disease control efforts.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Author(s).

  17. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk

    PubMed Central

    Hosseini, Parviez R.; Mills, James N.; Prieur-Richard, Anne-Hélène; Bailly, Xavier; Rizzoli, Annapaola; Suzán, Gerardo; Vittecoq, Marion; Daszak, Peter; Guégan, Jean-François

    2017-01-01

    Biodiversity is of critical value to human societies, but recent evidence that biodiversity may mitigate infectious-disease risk has sparked controversy among researchers. The majority of work on this topic has focused on direct assessments of the relationship between biodiversity and endemic-pathogen prevalence, without disentangling intervening mechanisms; thus study outcomes often differ, fuelling more debate. Here, we suggest two critical changes to the approach researchers take to understanding relationships between infectious disease, both endemic and emerging, and biodiversity that may help clarify sources of controversy. First, the distinct concepts of hazards versus risks need to be separated to determine how biodiversity and its drivers may act differently on each. This distinction is particularly important since it illustrates that disease emergence drivers in humans could be quite different to the general relationship between biodiversity and transmission of endemic pathogens. Second, the interactive relationship among biodiversity, anthropogenic change and zoonotic disease risk, including both direct and indirect effects, needs to be recognized and accounted for. By carefully disentangling these interactions between humans' activities and pathogen circulation in wildlife, we suggest that conservation efforts could mitigate disease risks and hazards in novel ways that complement more typical disease control efforts. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’. PMID:28438918

  18. Evolution of pathogenicity and sexual reproduction in eight Candida genomes

    PubMed Central

    Butler, Geraldine; Rasmussen, Matthew D.; Lin, Michael F.; Santos, Manuel A.S.; Sakthikumar, Sharadha; Munro, Carol A.; Rheinbay, Esther; Grabherr, Manfred; Forche, Anja; Reedy, Jennifer L.; Agrafioti, Ino; Arnaud, Martha B.; Bates, Steven; Brown, Alistair J.P.; Brunke, Sascha; Costanzo, Maria C.; Fitzpatrick, David A.; de Groot, Piet W. J.; Harris, David; Hoyer, Lois L.; Hube, Bernhard; Klis, Frans M.; Kodira, Chinnappa; Lennard, Nicola; Logue, Mary E.; Martin, Ronny; Neiman, Aaron M.; Nikolaou, Elissavet; Quail, Michael A.; Quinn, Janet; Santos, Maria C.; Schmitzberger, Florian F.; Sherlock, Gavin; Shah, Prachi; Silverstein, Kevin; Skrzypek, Marek S.; Soll, David; Staggs, Rodney; Stansfield, Ian; Stumpf, Michael P H; Sudbery, Peter E.; Thyagarajan, Srikantha; Zeng, Qiandong; Berman, Judith; Berriman, Matthew; Heitman, Joseph; Gow, Neil A. R.; Lorenz, Michael C.; Birren, Bruce W.; Kellis, Manolis; Cuomo, Christina A.

    2009-01-01

    Candida species are the most common cause of opportunistic fungal infection worldwide. We report the genome sequences of six Candida species and compare these and related pathogens and nonpathogens. There are significant expansions of cell wall, secreted, and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the Mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/alpha2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine to serine genetic code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the C. albicans gene catalog, identifying many new genes. PMID:19465905

  19. Plancton: an opportunistic distributed computing project based on Docker containers

    NASA Astrophysics Data System (ADS)

    Concas, Matteo; Berzano, Dario; Bagnasco, Stefano; Lusso, Stefano; Masera, Massimo; Puccio, Maximiliano; Vallero, Sara

    2017-10-01

    The computing power of most modern commodity computers is far from being fully exploited by standard usage patterns. In this work we describe the development and setup of a virtual computing cluster based on Docker containers used as worker nodes. The facility is based on Plancton: a lightweight fire-and-forget background service. Plancton spawns and controls a local pool of Docker containers on a host with free resources, by constantly monitoring its CPU utilisation. It is designed to release the resources allocated opportunistically, whenever another demanding task is run by the host user, according to configurable policies. This is attained by killing a number of running containers. One of the advantages of a thin virtualization layer such as Linux containers is that they can be started almost instantly upon request. We will show how fast the start-up and disposal of containers eventually enables us to implement an opportunistic cluster based on Plancton daemons without a central control node, where the spawned Docker containers behave as job pilots. Finally, we will show how Plancton was configured to run up to 10 000 concurrent opportunistic jobs on the ALICE High-Level Trigger facility, by giving a considerable advantage in terms of management compared to virtual machines.

  20. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research.

    PubMed

    Soroye, Peter; Ahmed, Najeeba; Kerr, Jeremy T

    2018-06-19

    Opportunistic citizen science (CS) programs allow volunteers to report species observations from anywhere, at any time, and can assemble large volumes of historic and current data at faster rates than more coordinated programs with standardized data collection. This can quickly provide large amounts of species distributional data, but whether this focus on participation comes at a cost in data quality is not clear. While automated and expert vetting can increase data reliability, there is no guarantee that opportunistic data will do anything more than confirm information from professional surveys. Here, we use eButterfly, an opportunistic CS program, and a comparable dataset of professionally collected observations, to measure the amount of new distributional species information that opportunistic CS generates. We also test how well opportunistic CS can estimate regional species richness for a large group of taxa (>300 butterfly species) across a broad area. We find that eButterfly contributes new distributional information for >80% of species, and that opportunistically submitting observations allowed volunteers to spot species ~35 days earlier than professionals. While eButterfly did a relatively poor job at predicting regional species richness by itself (detecting only about 35-57% of species per region), it significantly contributed to regional species richness when used with the professional dataset (adding ~3 species that had gone undetected in professional surveys per region). Overall, we find that the opportunistic CS model can provide substantial complementary species information when used alongside professional survey data. Our results suggest that data from opportunistic CS programs in conjunction with professional datasets can strongly increase the capacity of researchers to estimate species richness, and provide unique information on species distributions and phenologies that are relevant to the detection of the biological consequences of global change

  1. Hide, Keep Quiet, and Keep Low: Properties That Make Aspergillus fumigatus a Successful Lung Pathogen

    PubMed Central

    Escobar, Natalia; Ordonez, Soledad R.; Wösten, Han A. B.; Haas, Pieter-Jan A.; de Cock, Hans; Haagsman, Henk P.

    2016-01-01

    Representatives of the genus Aspergillus are opportunistic fungal pathogens. Their conidia can reach the alveoli by inhalation and can give rise to infections in immunocompromised individuals. Aspergillus fumigatus is the causal agent of invasive aspergillosis in nearly 90% of the cases. It is not yet well-established what makes this fungus more pathogenic than other aspergilli such as A. niger. Here, we show that A. fumigatus and A. niger conidia adhere with similar efficiency to lung epithelial A549 cells but A. fumigatus conidia internalized 17% more efficiently. Conidia of both aspergilli were taken up in phagolysosomes 8 h after the challenge. These organelles only acidified in the case of A. niger, which is probably due to the type of melanin coating of the conidia. Viability of both types of conidia was not affected after uptake in the phagolysosomes. Germination of A. fumigatus and A. niger conidia in the presence of epithelial cells was delayed when compared to conidia in the medium. However, germination of A. niger conidia was still higher than that of A. fumigatus 10 h after exposure to A549 cells. Remarkably, A. fumigatus hyphae grew mainly parallel to the epithelium, while growth direction of A. niger hyphae was predominantly perpendicular to the plane of the cells. Neutrophils reduced germination and hyphal growth of A. niger, but not of A fumigatus, in presence of epithelial cells. Taken together, efficient internalization, delayed germination, and hyphal growth parallel to the epithelium gives a new insight into what could be the causes for the success of A. fumigatus compared to A. niger as an opportunistic pathogen in the lung. PMID:27092115

  2. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor.

    PubMed

    Qi, Wenbao; Jia, Weixin; Liu, Di; Li, Jing; Bi, Yuhai; Xie, Shumin; Li, Bo; Hu, Tao; Du, Yingying; Xing, Li; Zhang, Jiahao; Zhang, Fuchun; Wei, Xiaoman; Eden, John-Sebastian; Li, Huanan; Tian, Huaiyu; Li, Wei; Su, Guanming; Lao, Guangjie; Xu, Chenggang; Xu, Bing; Liu, Wenjun; Zhang, Guihong; Ren, Tao; Holmes, Edward C; Cui, Jie; Shi, Weifeng; Gao, George F; Liao, Ming

    2018-01-15

    Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant. IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed

  3. Epidemiology of nontuberculous mycobacteria, an emerging environmental pathogen

    EPA Science Inventory

    Nontuberculous mycobacteria (NTM) is an environmentally transmitted pathogen primarily associated with water and soil exposure. It is increasingly recognized in the developed world and may manifest as infection or colonization of multiple anatomic sites. Nontuberculous mycobacter...

  4. Viral pathogen discovery

    PubMed Central

    Chiu, Charles Y

    2015-01-01

    Viral pathogen discovery is of critical importance to clinical microbiology, infectious diseases, and public health. Genomic approaches for pathogen discovery, including consensus polymerase chain reaction (PCR), microarrays, and unbiased next-generation sequencing (NGS), have the capacity to comprehensively identify novel microbes present in clinical samples. Although numerous challenges remain to be addressed, including the bioinformatics analysis and interpretation of large datasets, these technologies have been successful in rapidly identifying emerging outbreak threats, screening vaccines and other biological products for microbial contamination, and discovering novel viruses associated with both acute and chronic illnesses. Downstream studies such as genome assembly, epidemiologic screening, and a culture system or animal model of infection are necessary to establish an association of a candidate pathogen with disease. PMID:23725672

  5. Parallel independent evolution of pathogenicity within the genus Yersinia

    PubMed Central

    Reuter, Sandra; Connor, Thomas R.; Barquist, Lars; Walker, Danielle; Feltwell, Theresa; Harris, Simon R.; Fookes, Maria; Hall, Miquette E.; Petty, Nicola K.; Fuchs, Thilo M.; Corander, Jukka; Dufour, Muriel; Ringwood, Tamara; Savin, Cyril; Bouchier, Christiane; Martin, Liliane; Miettinen, Minna; Shubin, Mikhail; Riehm, Julia M.; Laukkanen-Ninios, Riikka; Sihvonen, Leila M.; Siitonen, Anja; Skurnik, Mikael; Falcão, Juliana Pfrimer; Fukushima, Hiroshi; Scholz, Holger C.; Prentice, Michael B.; Wren, Brendan W.; Parkhill, Julian; Carniel, Elisabeth; Achtman, Mark; McNally, Alan; Thomson, Nicholas R.

    2014-01-01

    The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens. PMID:24753568

  6. Cost-effectiveness of organized versus opportunistic cervical cytology screening in Hong Kong.

    PubMed

    Kim, Jane J; Leung, Gabriel M; Woo, Pauline P S; Goldie, Sue J

    2004-06-01

    To assess the cost-effectiveness of alternative cervical cancer screening strategies to inform the design and implementation of a government-sponsored population-based screening programme in Hong Kong. Cost-effectiveness analysis using a computer-based model of cervical carcinogenesis was performed. Strategies included no screening, opportunistic screening (status quo), organized screening using either conventional or liquid-based cytology conducted at different frequencies. The main outcome measures were cancer incidence reduction, years of life saved (YLS), lifetime costs and incremental cost-effectiveness ratios. Data were from local hospitals and laboratories, clinical trials, prospective studies and other published literature. Compared with no screening, a simulation of the current situation of opportunistic screening using cervical cytology produced a nearly 40 per cent reduction in the lifetime risk of cervical cancer. However, with organized screening every 3, 4 and 5 years, corresponding reductions with conventional (and liquid-based) cytology were 90.4 (92.9), 86.8 (90.2) and 83.2 per cent (87.3 per cent) compared with no screening. For all cytology-based screening strategies, opportunistic screening was more costly and less effective than an organized programme of screening every 3, 4 and 5 years. Every 3-, 4- and 5-year screening cost $12,300, $7100 and $800 per YLS, each compared with the next best alternative. Compared with the status quo of opportunistic screening, adopting a policy of organized, mass cervical screening in Hong Kong can substantially increase benefits and reduce costs.

  7. New and emerging pathogens in canine infectious respiratory disease.

    PubMed

    Priestnall, S L; Mitchell, J A; Walker, C A; Erles, K; Brownlie, J

    2014-03-01

    Canine infectious respiratory disease is a common, worldwide disease syndrome of multifactorial etiology. This review presents a summary of 6 viruses (canine respiratory coronavirus, canine pneumovirus, canine influenza virus, pantropic canine coronavirus, canine bocavirus, and canine hepacivirus) and 2 bacteria (Streptococcus zooepidemicus and Mycoplasma cynos) that have been associated with respiratory disease in dogs. For some pathogens a causal role is clear, whereas for others, ongoing research aims to uncover their pathogenesis and contribution to this complex syndrome. Etiology, clinical disease, pathogenesis, and epidemiology are described for each pathogen, with an emphasis on recent discoveries or novel findings.

  8. Emerging Public Health Challenges of Shiga Toxin-Producing Escherichia coli Related to Changes in the Pathogen, the Population, and the Environment.

    PubMed

    Karmali, Mohamed A

    2017-02-01

    Emerging public health challenges of Shiga toxin (stx)-producing Escherichia coli (STEC) include the occurrence of more frequent or severe disease and risk factors shifts associated with changes, often interconnected, in the pathogen, the population, and the environment. In 3 outbreaks with heightened severity attributed to enhanced pathogen virulence, including the acquisition of an stx2 phage in 1 outbreak, population and environmental factors likely contributed significantly to disease outcomes. Evolving population risk factors that are associated with more severe disease include consumption of fresh produce, contact with STEC-contaminated environments, demographics, socioeconomic status, and immunity. Risks of increasing STEC environmental pollution are related to continued intensification of agriculture and super-shedder cattle. Mitigation strategies include surveillance and research on emerging STEC, development of effective communications and public education strategies, and improved policies and interventions to mitigate risks, including those related to the contamination of produce and the environment, using a "One Health" approach. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. The trans-kingdom identification of negative regulators of pathogen hypervirulence.

    PubMed

    Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E

    2016-01-01

    Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. © FEMS 2015.

  10. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans

    PubMed Central

    Conti, Heather R.; Gaffen, Sarah L.

    2015-01-01

    IL-17 (IL-17A) has emerged as a key mediator of protection against extracellular microbes, but this cytokine also drives pathology in various autoimmune diseases. Overwhelming data in both humans and mice reveal a clear and surprisingly specific role for IL-17 in protection against the fungus Candida albicans, a commensal of the human oral cavity, gastrointestinal tract and reproductive mucosa. The IL-17 pathway regulates antifungal immunity through upregulation of pro-inflammatory cytokines including IL-6, neutrophil-recruiting chemokines such as CXCL1 and CXCL5 and antimicrobial peptides such as the defensins, which act in concert to limit fungal overgrowth. This review will focus on diseases caused by C. albicans, the role of IL-17-mediated immunity in candidiasis, and the implications for clinical therapies for both autoimmune conditions and fungal infections. PMID:26188072

  11. Historic emergence, impact and current status of shrimp pathogens in the Americas.

    PubMed

    Lightner, D V; Redman, R M; Pantoja, C R; Tang, K F J; Noble, B L; Schofield, P; Mohney, L L; Nunan, L M; Navarro, S A

    2012-06-01

    Shrimp farming in the Americas began to develop in the late 1970s into a significant industry. In its first decade of development, the technology used was simple and postlarvae (PLs) produced from wild adults and wild caught PLs were used for stocking farms. Prior to 1990, there were no World Animal Health Organization (OIE) listed diseases, but that changed rapidly commensurate with the phenomenal growth of the global shrimp farming industry. There was relatively little international trade of live or frozen commodity shrimp between Asia and the Americas in those early years, and with a few exceptions, most of the diseases known before 1980 were due to disease agents that were opportunistic or part of the shrimps' local environment. Tetrahedral baculovirosis, caused by Baculovirus penaei (BP), and necrotizing hepatopancreatitis (NHP) and its bacterial agent Hepatobacterium penaei, were among the "American" diseases that eventually became OIE listed and have not become established outside of the Americas. As the industry grew after 1980, a number of new diseases that soon became OIE listed, emerged in the Americas or were introduced from Asia. Spherical baculovirus, caused by MBV, although discovered in the Americas in imported live Penaeus monodon, was subsequently found to be common in wild and farmed Asian, Australian and African penaeids. Infectious hypodermal and hematopoietic necrosis virus (IHHNV) was introduced from the Philippines in the mid 1970s with live P. monodon and was eventually found throughout the Americas and subsequently in much of the shrimp farming industry in the eastern hemisphere. Taura syndrome emerged in Penaeus vannamei farms in 1991-1992 in Ecuador and was transferred to SE Asia with live shrimp by 1999 where it also caused severe losses. White Spot Disease (WSD) caused by White spot syndrome virus (WSSV) emerged in East Asia in ∼1992, and spread throughout most of the Asian shrimp farming industry by 1994. By 1995, WSSV reached the

  12. Distinct Campylobacter fetus lineages adapted as livestock pathogens and human pathobionts in the intestinal microbiota.

    PubMed

    Iraola, Gregorio; Forster, Samuel C; Kumar, Nitin; Lehours, Philippe; Bekal, Sadjia; García-Peña, Francisco J; Paolicchi, Fernando; Morsella, Claudia; Hotzel, Helmut; Hsueh, Po-Ren; Vidal, Ana; Lévesque, Simon; Yamazaki, Wataru; Balzan, Claudia; Vargas, Agueda; Piccirillo, Alessandra; Chaban, Bonnie; Hill, Janet E; Betancor, Laura; Collado, Luis; Truyers, Isabelle; Midwinter, Anne C; Dagi, Hatice T; Mégraud, Francis; Calleros, Lucía; Pérez, Ruben; Naya, Hugo; Lawley, Trevor D

    2017-11-08

    Campylobacter fetus is a venereal pathogen of cattle and sheep, and an opportunistic human pathogen. It is often assumed that C. fetus infection occurs in humans as a zoonosis through food chain transmission. Here we show that mammalian C. fetus consists of distinct evolutionary lineages, primarily associated with either human or bovine hosts. We use whole-genome phylogenetics on 182 strains from 17 countries to provide evidence that C. fetus may have originated in humans around 10,500 years ago and may have "jumped" into cattle during the livestock domestication period. We detect C. fetus genomes in 8% of healthy human fecal metagenomes, where the human-associated lineages are the dominant type (78%). Thus, our work suggests that C. fetus is an unappreciated human intestinal pathobiont likely spread by human to human transmission. This genome-based evolutionary framework will facilitate C. fetus epidemiology research and the development of improved molecular diagnostics and prevention schemes for this neglected pathogen.

  13. Comparative genomics of Burkholderia multivorans, a ubiquitous pathogen with a highly conserved genomic structure

    PubMed Central

    Cooper, Vaughn S.; Hatcher, Philip J.; Verheyde, Bart; Carlier, Aurélien; Vandamme, Peter

    2017-01-01

    The natural environment serves as a reservoir of opportunistic pathogens. A well-established method for studying the epidemiology of such opportunists is multilocus sequence typing, which in many cases has defined strains predisposed to causing infection. Burkholderia multivorans is an important pathogen in people with cystic fibrosis (CF) and its epidemiology suggests that strains are acquired from non-human sources such as the natural environment. This raises the central question of whether the isolation source (CF or environment) or the multilocus sequence type (ST) of B. multivorans better predicts their genomic content and functionality. We identified four pairs of B. multivorans isolates, representing distinct STs and consisting of one CF and one environmental isolate each. All genomes were sequenced using the PacBio SMRT sequencing technology, which resulted in eight high-quality B. multivorans genome assemblies. The present study demonstrated that the genomic structure of the examined B. multivorans STs is highly conserved and that the B. multivorans genomic lineages are defined by their ST. Orthologous protein families were not uniformly distributed among chromosomes, with core orthologs being enriched on the primary chromosome and ST-specific orthologs being enriched on the second and third chromosome. The ST-specific orthologs were enriched in genes involved in defense mechanisms and secondary metabolism, corroborating the strain-specificity of these virulence characteristics. Finally, the same B. multivorans genomic lineages occur in both CF and environmental samples and on different continents, demonstrating their ubiquity and evolutionary persistence. PMID:28430818

  14. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks.

    PubMed

    Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif

    2017-03-19

    In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast.

  15. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks

    PubMed Central

    Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif

    2017-01-01

    In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast. PMID:28335494

  16. Mechanical Stability of a High-Affinity Toxin Anchor from the Pathogen Clostridium perfringens.

    PubMed

    Milles, Lukas F; Bayer, Edward A; Nash, Michael A; Gaub, Hermann E

    2017-04-20

    The opportunistic pathogen Clostridium perfringens assembles its toxins and carbohydrate-active enzymes by the high-affinity cohesin-dockerin (Coh-Doc) interaction. Coh-Doc interactions characterized previously have shown considerable resilience toward mechanical stress. Here, we aimed to determine the mechanics of this interaction from C. perfringens in the context of a pathogen. Using atomic force microscopy based single-molecule force spectroscopy (AFM-SMFS) we probed the mechanical properties of the interaction of a dockerin from the μ-toxin with the GH84C X82 cohesin domain of C. perfringens. Most probable complex rupture forces were found to be approximately 60 pN and an estimate of the binding potential width was performed. The dockerin was expressed with its adjacent FIVAR (found in various architectures) domain, whose mechanostability we determined to be very similar to the complex. Additionally, fast refolding of this domain was observed. The Coh-Doc interaction from C. perfringens is the mechanically weakest observed to date. Our results establish the relevant force range of toxin assembly mechanics in pathogenic Clostridia.

  17. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment

    PubMed Central

    Berjeaud, Jean-Marc; Chevalier, Sylvie; Schlusselhuber, Margot; Portier, Emilie; Loiseau, Clémence; Aucher, Willy; Lesouhaitier, Olivier; Verdon, Julien

    2016-01-01

    Legionella pneumophila, the major causative agent of Legionnaires’ disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing. PMID:27092135

  18. Field evaluation of a new point-of-use faucet filter for preventing exposure to Legionella and other waterborne pathogens in health care facilities.

    PubMed

    Baron, Julianne L; Peters, Tammy; Shafer, Raymond; MacMurray, Brian; Stout, Janet E

    2014-11-01

    Opportunistic waterborne pathogens (eg, Legionella, Pseudomonas) may persist in water distribution systems despite municipal chlorination and secondary disinfection and can cause health care-acquired infections. Point-of-use (POU) filtration can limit exposure to pathogens; however, their short maximum lifetime and membrane clogging have limited their use. A new faucet filter rated at 62 days was evaluated at a cancer center in Northwestern Pennsylvania. Five sinks were equipped with filters, and 5 sinks served as controls. Hot water was collected weekly for 17 weeks and cultured for Legionella, Pseudomonas, and total bacteria. Legionella was removed from all filtered samples for 12 weeks. One colony was recovered from 1 site at 13 weeks; however, subsequent tests were negative through 17 weeks of testing. Total bacteria were excluded for the first 2 weeks, followed by an average of 1.86 log reduction in total bacteria compared with controls. No Pseudomonas was recovered from filtered or control faucets. This next generation faucet filter eliminated Legionella beyond the 62 day manufacturers' recommended maximum duration of use. These new POU filters will require fewer change-outs than standard filters and could be a cost-effective method for preventing exposure to Legionella and other opportunistic waterborne pathogens in hospitals with high-risk patients. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Is methicillin-resistant Staphylococcus aureus an emerging community pathogen? A review of the literature

    PubMed Central

    Gardam, Michael A

    2000-01-01

    OBJECTIVES: To discuss the historical epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) and review the literature suggesting that MRSA has become a community pathogen. DATA SOURCES: A search of the MEDLINE database was performed, encompassing all English or French language citations from 1966 to 1999 and containing the subjects and/or text words: 'Staphylococcus aureus', 'methicillin resistance', 'endocarditis', 'cellulites', 'pneumonia' and 'community-acquired'. Articles published in other languages that provided English or French abstracts were included. All relevant references cited in articles obtained from the MEDLINE database and book chapters were also included. DATA EXTRACTION: All articles obtained from the above sources were examined and were included in the review if a laboratory or epidemiological study of community-acquired MRSA was presented. DATA SYNTHESIS AND CONCLUSIONS: MRSA has emerged over the past 30 years to become a worldwide nosocomial pathogen and has recently been reported as a cause of community-acquired infections. The changing epidemiology of MRSA is likely because of two mechanisms: the movement of nosocomial MRSA strains into the community and the de novo appearance of community strains resulting from the transfer of genetic material from methicillin-resistant Gram-positive organisms to sensitive S aureus strains. The emergence of MRSA as a community pathogen has occurred at a slower rate than it did for penicillin-resistant S aureus (PRSA) in the 1950s and 1960s, possibly because the mechanism of methicillin resistance does not exhibit the same ease of transferability as that of penicillin resistance. Four case reports, seven case series, 10 case-control studies and two cohort studies on community-acquired MRSA were analyzed. Determining whether these reports involve new community-acquired strains rather than previously acquired nosocomial strains can be problematic. It appears, however, that MRSA strains of both

  20. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases

    PubMed Central

    Kilpatrick, A. Marm; Randolph, Sarah E.

    2013-01-01

    Emerging vector-borne diseases represent an important issue for global health. Many vector-borne pathogens have appeared in new regions in the past two decades, and many endemic diseases have increased in incidence. Although introductions and local emergence are frequently considered distinct processes, many emerging endemic pathogens are in fact invading at a local scale coincident with habitat change. We highlight key differences in the dynamics and disease burden that result from increased pathogen transmission following habitat change compared with the introduction of pathogens to new regions. Truly in situ emergence is commonly driven by changes in human factors as much as by enhanced enzootic cycles whereas pathogen invasion results from anthropogenic trade and travel and suitable conditions for a pathogen, including hosts, vectors, and climate. Once established, ecological factors related to vector characteristics shape the evolutionary selective pressure on pathogens that may result in increased use of humans as transmission hosts. We describe challenges inherent in the control of vector-borne zoonotic diseases and some emerging non-traditional strategies that may be more effective in the long term. PMID:23200503

  1. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis

    PubMed Central

    Cheng, Tina L.; Rovito, Sean M.; Wake, David B.; Vredenburg, Vance T.

    2011-01-01

    Amphibians highlight the global biodiversity crisis because ∼40% of all amphibian species are currently in decline. Species have disappeared even in protected habitats (e.g., the enigmatic extinction of the golden toad, Bufo periglenes, from Costa Rica). The emergence of a fungal pathogen, Batrachochytrium dendrobatidis (Bd), has been implicated in a number of declines that have occurred in the last decade, but few studies have been able to test retroactively whether Bd emergence was linked to earlier declines and extinctions. We describe a noninvasive PCR sampling technique that detects Bd in formalin-preserved museum specimens. We detected Bd by PCR in 83–90% (n = 38) of samples that were identified as positive by histology. We examined specimens collected before, during, and after major amphibian decline events at established study sites in southern Mexico, Guatemala, and Costa Rica. A pattern of Bd emergence coincident with decline at these localities is revealed—the absence of Bd over multiple years at all localities followed by the concurrent emergence of Bd in various species at each locality during a period of population decline. The geographical and chronological emergence of Bd at these localities also indicates a southbound spread from southern Mexico in the early 1970s to western Guatemala in the 1980s/1990s and to Monteverde, Costa Rica by 1987. We find evidence of a historical “Bd epidemic wave” that began in Mexico and subsequently spread to Central America. We describe a technique that can be used to screen museum specimens from other amphibian decline sites around the world. PMID:21543713

  2. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis.

    PubMed

    Cheng, Tina L; Rovito, Sean M; Wake, David B; Vredenburg, Vance T

    2011-06-07

    Amphibians highlight the global biodiversity crisis because ∼40% of all amphibian species are currently in decline. Species have disappeared even in protected habitats (e.g., the enigmatic extinction of the golden toad, Bufo periglenes, from Costa Rica). The emergence of a fungal pathogen, Batrachochytrium dendrobatidis (Bd), has been implicated in a number of declines that have occurred in the last decade, but few studies have been able to test retroactively whether Bd emergence was linked to earlier declines and extinctions. We describe a noninvasive PCR sampling technique that detects Bd in formalin-preserved museum specimens. We detected Bd by PCR in 83-90% (n = 38) of samples that were identified as positive by histology. We examined specimens collected before, during, and after major amphibian decline events at established study sites in southern Mexico, Guatemala, and Costa Rica. A pattern of Bd emergence coincident with decline at these localities is revealed-the absence of Bd over multiple years at all localities followed by the concurrent emergence of Bd in various species at each locality during a period of population decline. The geographical and chronological emergence of Bd at these localities also indicates a southbound spread from southern Mexico in the early 1970s to western Guatemala in the 1980s/1990s and to Monteverde, Costa Rica by 1987. We find evidence of a historical "Bd epidemic wave" that began in Mexico and subsequently spread to Central America. We describe a technique that can be used to screen museum specimens from other amphibian decline sites around the world.

  3. Low-pathogenic influenza A viruses in North American diving ducks contribute to the emergence of a novel highly pathogenic influenza A(H7N8) virus

    USGS Publications Warehouse

    Xu, Yifei; Ramey, Andrew M.; Bowman, Andrew S; DeLiberto, Thomas J.; Killian, Mary Lea; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.; Wan, Xiu-Feng

    2017-01-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.

  4. AquaPathogen X--A template database for tracking field isolates of aquatic pathogens

    USGS Publications Warehouse

    Emmenegger, Evi; Kurath, Gael

    2012-01-01

    AquaPathogen X is a template database for recording information on individual isolates of aquatic pathogens and is available for download from the U.S. Geological Survey (USGS) Western Fisheries Research Center (WFRC) website (http://wfrc.usgs.gov). This template database can accommodate the nucleotide sequence data generated in molecular epidemiological studies along with the myriad of abiotic and biotic traits associated with isolates of various pathogens (for example, viruses, parasites, or bacteria) from multiple aquatic animal host species (for example, fish, shellfish, or shrimp). The simultaneous cataloging of isolates from different aquatic pathogens is a unique feature to the AquaPathogen X database, which can be used in surveillance of emerging aquatic animal diseases and clarification of main risk factors associated with pathogen incursions into new water systems. As a template database, the data fields are empty upon download and can be modified to user specifications. For example, an application of the template database that stores the epidemiological profiles of fish virus isolates, called Fish ViroTrak (fig. 1), was also developed (Emmenegger and others, 2011).

  5. Diagnosis, treatment, and prevention of selected common HIV-related opportunistic infections in the Caribbean region.

    PubMed

    Kaplan, Jonathan E

    The Caribbean region, like other resource-limited areas, lacks many of the diagnostic and treatment modalities taken for granted in richer areas of the world. The Caribbean Guidelines for the Treatment of Opportunistic Infections in Adults and Adolescents Infected With the Human Immunodeficiency Virus provides guidelines for the region for preventing and treating more than 20 opportunistic diseases reflecting the variable availability of diagnostic and treatment resources. Elements of diagnosis and prevention of tuberculosis, Pneumocystis jiroveci pneumonia, and other common opportunistic conditions in this resource-limited setting were discussed by Jonathan E. Kaplan, MD, at the first CHART Caribbean Conference on the Clinical Management of HIV/AIDS in Montego Bay, Jamaica, in June 2004.

  6. Photobacterium damselae subsp. damselae, an Emerging Fish Pathogen in the Black Sea: Evidence of a Multiclonal Origin

    PubMed Central

    Terceti, Mateus S.; Ogut, Hamdi

    2016-01-01

    ABSTRACT Photobacterium damselae subsp. damselae is considered to be an emerging pathogen of marine fish of importance in aquaculture, with a notable increase in its geographical distribution during the last several years. In this study, we carried out for the first time to our knowledge a genetic and pathobiological characterization of 14 strains isolated from sea bass (Dicentrarchus labrax) reared in the Southeastern Black Sea, where high mortalities were observed at two aquaculture farms during the summer and autumn of 2011. Heterogeneity was evidenced among strains in phenotypical traits, such as sucrose fermentation, motility, and hemolysis. Although 11 of 14 isolates were hemolytic, we found that all of the isolates lacked the pPHDD1 virulence plasmid that encodes the phospholipase-D damselysin (Dly) and the pore-forming toxin PhlyP, two hemolysins previously reported to constitute major virulence factors for turbot. Subsequent PCR and sequencing analyses demonstrated that the 11 hemolytic isolates harbored a complete hlyAch gene, a chromosome I-borne gene that encodes HlyAch hemolysin, whereas the three nonhemolytic isolates contained hlyAch pseudogenes caused by insertion sequence elements. Virulence challenges with two representative strains revealed that, albeit less virulent than the pPHDD1-harboring strain RM-71, the plasmidless hlyAch-positive and hlyAch-negative Black Sea isolates were pathogenic for sea bass. A phylogenetic analysis based on the toxR gene sequence uncovered a greater diversity in the isolates, indicating that the presence of this pathogen in the Black Sea was not caused by the introduction and spread of a single virulent clone but by the proliferation of different clones. IMPORTANCE The geographical distribution of marine bacterial pathogens is undergoing a worldwide increase. In particular, bacteria of the group vibrios are increasingly being isolated as the causative agents of disease in novel species of cultivated fish in areas

  7. Control of extraintestinal foodborne pathogens using intervention technologies

    USDA-ARS?s Scientific Manuscript database

    In recent years it has become apparent that emerging foodborne pathogens including Extraintestinal Pathogenic Escherichia coli (ExPEC), Staphylococcus saprophyticus, and Klebsiella pneumoniae are associated with human health conditions such as inflammatory bowel disease (IBD), ulcerative colitis (UC...

  8. The trans-kingdom identification of negative regulators of pathogen hypervirulence

    PubMed Central

    Brown, Neil A.; Urban, Martin; Hammond-Kosack, Kim E.

    2015-01-01

    Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen–host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. PMID:26468211

  9. Opportunistic Infections and Complications in Human Immunodeficiency Virus-1-Infected Children

    PubMed Central

    Yadav, Jaivinder; Nanda, Sanjeev; Sharma, Deepak

    2014-01-01

    Objectives: The aim of this study was to ascertain the correlation between various opportunistic infections and complications in human immunodeficiency virus (HIV)-1-infected children and the immune status of these patients, evaluated by absolute cluster of differentiation 4 (CD4) count and CD4 percentage. Methods: This study was conducted from January 2009 to June 2010 at the Antiretroviral Treatment Centre of the Pt. B.D. Sharma Post Graduate Institute of Medical Sciences, a tertiary care hospital in Rohtak, Haryana, in northern India. A total of 20 HIV-1-infected children aged 4–57 months were studied. Demographic and baseline investigations were performed prior to the start of highly active antiretroviral therapy (HAART). A fixed-dose combination of HAART was given based on the patient’s weight. Baseline investigations were repeated after six months of HAART. Results: There was a significant increase in the patients’ haemoglobin, weight, height and CD4 count after six months of HAART. Significant improvements (P <0.05) were also noted in the patients’ immune status, graded according to the World Health Organization. Conclusion: This study observed that the severity and frequency of opportunistic complications in paediatric patients with HIV-1 increased with a fall in the CD4 count. The treatment of opportunistic infections, along with antiretroviral therapy, may lead to both clinical and immunological recovery as well as a decreased incidence of future opportunistic infections. The CD4 count may give treating physicians an initial idea about the immune status of each child and could also be used as a biological marker of HAART efficacy. Patient compliance must be ensured during HAART as this is a key factor in improving outcomes. PMID:25364555

  10. Miniaturized and High-Throughput Assays for Analysis of T-Cell Immunity Specific for Opportunistic Pathogens and HIV

    PubMed Central

    Ivaldi, Federico; Starc, Nadia; Landi, Fabiola; Locatelli, Franco; Rutella, Sergio; Tripodi, Gino; Manca, Fabrizio

    2014-01-01

    Monitoring of antigen-specific T-cell responses is valuable in numerous conditions that include infectious diseases, vaccinations, and opportunistic infections associated with acquired or congenital immune defects. A variety of assays that make use of peripheral lymphocytes to test activation markers, T-cell receptor expression, or functional responses are currently available. The last group of assays calls for large numbers of functional lymphocytes. The number of cells increases with the number of antigens to be tested. Consequently, cells may be the limiting factor, particularly in lymphopenic subjects and in children, the groups that more often require immune monitoring. We have developed immunochemical assays that measure secreted cytokines in the same wells in which peripheral blood mononuclear cells (PBMC) are cultured. This procedure lent itself to miniaturization and automation. Lymphoproliferation and the enzyme-linked immunosorbent spot (ELISPOT) assay have been adapted to a miniaturized format. Here we provide examples of immune profiles and describe a comparison between miniaturized assays based on cytokine secretion or proliferation. We also demonstrate that these assays are convenient for use in testing antigen specificity in established T-cell lines, in addition to analysis of PBMC. In summary, the applicabilities of miniaturization to save cells and reagents and of automation to save time and increase accuracy were demonstrated in this study using different methodological approaches valuable in the clinical immunology laboratory. PMID:24477854

  11. Pathogen reduction in human plasma using an ultrashort pulsed laser

    USDA-ARS?s Scientific Manuscript database

    Pathogen reduction is an ideal approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses, and they introduce chemicals with concerns of side effects which prevent...

  12. An emerging cyberinfrastructure for biodefense pathogen and pathogen–host data

    PubMed Central

    Zhang, C.; Crasta, O.; Cammer, S.; Will, R.; Kenyon, R.; Sullivan, D.; Yu, Q.; Sun, W.; Jha, R.; Liu, D.; Xue, T.; Zhang, Y.; Moore, M.; McGarvey, P.; Huang, H.; Chen, Y.; Zhang, J.; Mazumder, R.; Wu, C.; Sobral, B.

    2008-01-01

    The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host–pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/. PMID:17984082

  13. The Emerging Microbe Project: Developing Clinical Care Plans Based on Pathogen Identification and Clinical Case Studies †

    PubMed Central

    O’Donnell, Lauren A.; Perry, Michael W.; Doup, Dane’t R.

    2015-01-01

    For many students in the health sciences, including doctor of pharmacy (PharmD) students, basic and clinical sciences often appear detached from each other. In the infectious disease field, PharmD students additionally struggle with mastering the diversity of microorganisms and the corresponding therapies. The objective of this study was to design an interdisciplinary project that integrates fundamental microbiology with clinical research and decision-making skills. The Emerging Microbe Project guided students through the identification of a microorganism via genetic sequence analysis. The unknown microbe provided the basis for a patient case that asked the student to design a therapeutic treatment strategy for an infected patient. Outside of lecture, students had two weeks to identify the pathogen using nucleotide sequences, compose a microbiology report on the pathogen, and recommend an appropriate therapeutic treatment plan for the corresponding clinical case. We hypothesized that the students would develop a better understanding of the interplay between basic microbiology and infectious disease clinical practice, and that they would gain confidence and skill in independently selecting appropriate antimicrobial therapies for a new disease state. The exercise was conducted with PharmD students in their second professional year of pharmacy school in a required infectious disease course. Here, we demonstrate that the Emerging Microbe Project significantly improved student learning through two assessment strategies (assignment grades and exam questions), and increased student confidence in clinical infectious disease practice. This exercise could be modified for other health sciences students or undergraduates depending upon the level of clinical focus required of the course. PMID:26753029

  14. Bacterial Pathogen Emergence Requires More than Direct Contact with a Novel Passerine Host

    PubMed Central

    Hill, Geoffrey E.; Josefson, Chloe C.; Armbruster, Jonathan W.

    2018-01-01

    ABSTRACT While direct contact may sometimes be sufficient to allow a pathogen to jump into a new host species, in other cases, fortuitously adaptive mutations that arise in the original donor host are also necessary. Viruses have been the focus of most host shift studies, so less is known about the importance of ecological versus evolutionary processes to successful bacterial host shifts. Here we tested whether direct contact with the novel host was sufficient to enable the mid-1990s jump of the bacterium Mycoplasma gallisepticum from domestic poultry to house finches (Haemorhous mexicanus). We experimentally inoculated house finches with two genetically distinct M. gallisepticum strains obtained either from poultry (Rlow) or from house finches (HF1995) during an epizootic outbreak. All 15 house finches inoculated with HF1995 became infected, whereas Rlow successfully infected 12 of 15 (80%) inoculated house finches. Comparisons among infected birds showed that, relative to HF1995, Rlow achieved substantially lower bacterial loads in the host respiratory mucosa and was cleared faster. Furthermore, Rlow-infected finches were less likely to develop clinical symptoms than HF1995-infected birds and, when they did, displayed milder conjunctivitis. The lower infection success of Rlow relative to HF1995 was not, however, due to a heightened host antibody response to Rlow. Taken together, our results indicate that contact between infected poultry and house finches was not, by itself, sufficient to explain the jump of M. gallisepticum to house finches. Instead, mutations arising in the original poultry host would have been necessary for successful pathogen emergence in the novel finch host. PMID:29311238

  15. [Opportunistic pathogen Candida glabrata and the mechanisms of its resistance to antifungal drugs].

    PubMed

    Berila, N; Subík, J

    2010-04-01

    Treatment of not only bacterial but also fungal infections is currently a growing concern. A major reason is the acquisition of multidrug resistance in both prokaryotic and human cells. The multidrug resistance phenotype is a cellular response to the presence of cytotoxic substances in the environment. The basic mechanism of multidrug resistance is overexpression of the membrane proteins involved in the extrusion of toxic substances outside the cell. The resistance mechanism based on the efflux of inhibitors as a result of the overproduction of transport proteins was also observed in some plant and animal pathogens and human tumour cells. The phenomenon of multidrug resistance associated with an excessive and long-term use of antifungals, in particular of azole derivatives, was also confirmed in the yeast Candida glabrata which is becoming a growing concern for health care professionals. Reduced susceptibility to azole derivatives in particular, a high potential for adapting to stressors, and multiple mechanisms of resistance to structurally and functionally unrelated antifungal drugs make the species C. glabrata a potential threat to hospital patients.

  16. Guidelines for the naming of genes, gene products, and mutants in the opportunistic protists.

    PubMed

    Limper, Andrew H; Weiss, Louis M

    2011-01-01

    The opportunistic protists encompass a wide diversity of organisms including Pneumocystis, Toxoplasma, cryptosporidia, microsporidia, and related genera. Recent advances in the molecular biology and cellular biochemistry of these organisms have led to the identification of an ever growing numbers of key genes and their cognate proteins. Until now, these molecules have not been designated using any consistent nomenclature system, leading to considerable confusion. The participants of the 11th International Workshop on Opportunistic Protists met on August 3, 2010 to reach consensus of a nomenclature system for genes, gene products, and mutants in the opportunistic protists. The following summary reports the consensus agreement to move toward a unified nomenclature system for these organisms. The system is adapted from that used for Saccharomyces cerevisiae. © 2011 The Author(s). Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  17. Chromobacterium violaceum Pathogenicity: Updates and Insights from Genome Sequencing of Novel Chromobacterium Species.

    PubMed

    Batista, Juliana H; da Silva Neto, José F

    2017-01-01

    Chromobacterium violaceum is an abundant component of the soil and water microbiota in tropical and subtropical regions around the world. For many years, it was mainly known as a producer of violacein and as a reporter for the discovery of quorum sensing molecules. However, C. violaceum has recently emerged as an important model of an environmental opportunistic pathogen. Its high virulence in human infections and a mouse infection model involves the possession of several predicted virulence traits, including two type III secretion systems (T3SSs). In this article, in addition to providing an update on the new clinical cases of human C. violaceum infections, we will focus on recent advances in understanding the molecular mechanisms regarding C. violaceum pathogenesis. It has been demonstrated that the C. violaceum Cpi-1 T3SS plays a pivotal role in interaction with host cells. It is required for the secretion of effector proteins and is the agonist recognized by the Nod-like receptor CARD domain-containing protein 4 (NLRC4) inflammasome from innate immune cells. Pyroptosis and its release of hepatocytes for killing by neutrophils are key events required for the clearance of C. violaceum . Given the prominent role of T3SSs in C. violaceum virulence, we examine their occurrence in the Chromobacterium genus, taking advantage of several draft genome sequences of Chromobacterium species that have recently become available. Our finding that the Cpi-1 T3SS is widespread among Chromobacterium species points toward the pathogenic potential of this genus for humans or to novel roles of the T3SS in the interaction of Chromobacterium species with other organisms.

  18. Chromobacterium violaceum Pathogenicity: Updates and Insights from Genome Sequencing of Novel Chromobacterium Species

    PubMed Central

    Batista, Juliana H.; da Silva Neto, José F.

    2017-01-01

    Chromobacterium violaceum is an abundant component of the soil and water microbiota in tropical and subtropical regions around the world. For many years, it was mainly known as a producer of violacein and as a reporter for the discovery of quorum sensing molecules. However, C. violaceum has recently emerged as an important model of an environmental opportunistic pathogen. Its high virulence in human infections and a mouse infection model involves the possession of several predicted virulence traits, including two type III secretion systems (T3SSs). In this article, in addition to providing an update on the new clinical cases of human C. violaceum infections, we will focus on recent advances in understanding the molecular mechanisms regarding C. violaceum pathogenesis. It has been demonstrated that the C. violaceum Cpi-1 T3SS plays a pivotal role in interaction with host cells. It is required for the secretion of effector proteins and is the agonist recognized by the Nod-like receptor CARD domain-containing protein 4 (NLRC4) inflammasome from innate immune cells. Pyroptosis and its release of hepatocytes for killing by neutrophils are key events required for the clearance of C. violaceum. Given the prominent role of T3SSs in C. violaceum virulence, we examine their occurrence in the Chromobacterium genus, taking advantage of several draft genome sequences of Chromobacterium species that have recently become available. Our finding that the Cpi-1 T3SS is widespread among Chromobacterium species points toward the pathogenic potential of this genus for humans or to novel roles of the T3SS in the interaction of Chromobacterium species with other organisms. PMID:29176969

  19. Brevibacterium casei as a cause of brain abscess in an immunocompetent patient.

    PubMed

    Kumar, V Anil; Augustine, Deepthi; Panikar, Dilip; Nandakumar, Aswathy; Dinesh, Kavitha R; Karim, Shamsul; Philip, Rosamma

    2011-12-01

    Coryneform bacteria belonging to the genus Brevibacterium have emerged as opportunistic pathogens. Of the nine known species of Brevibacterium isolated from human clinical samples, Brevibacterium casei is the most frequently reported species from clinical specimens. We report the first case of B. casei brain abscess in an immunocompetent patient successfully treated by surgery and antimicrobial therapy.

  20. Short term memory of Caenorhabditis elegans against bacterial pathogens involves CREB transcription factor.

    PubMed

    Prithika, Udayakumar; Vikneswari, Ramaraj; Balamurugan, Krishnaswamy

    2017-04-01

    One of the key issues pertaining to the control of memory is to respond to a consistently changing environment or microbial niche present in it. Human cyclic AMP response element binding protein (CREB) transcription factor which plays a crucial role in memory has a homolog in C. elegans, crh-1. crh-1 appears to influence memory processes to certain extent by habituation of the host to a particular environment. The discrimination between the pathogen and a non-pathogen is essential for C. elegans in a microbial niche which determines its survival. Training the nematodes in the presence of a virulent pathogen (S. aureus) and an opportunistic pathogen (P. mirabilis) separately exhibits a different behavioural paradigm. This appears to be dependent on the CREB transcription factor. Here we show that C. elegans homolog crh-1 helps in memory response for a short term against the interacting pathogens. Following conditioning of the nematodes to S. aureus and P. mirabilis, the wild type nematodes exhibited a positive response towards the respective pathogens which diminished slowly after 2h. By contrast, the crh-1 deficient nematodes had a defective memory post conditioning. The molecular data reinforces the importance of crh-1 gene in retaining the memory of nematode. Our results also suggest that involvement of neurotransmitters play a crucial role in modulating the memory of the nematode with the assistance of CREB. Therefore, we elucidate that CREB is responsible for the short term memory response in C. elegans against bacterial pathogens. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Emerging microbial biocontrol strategies for plant pathogens.

    PubMed

    Syed Ab Rahman, Sharifah Farhana; Singh, Eugenie; Pieterse, Corné M J; Schenk, Peer M

    2018-02-01

    To address food security, agricultural yields must increase to match the growing human population in the near future. There is now a strong push to develop low-input and more sustainable agricultural practices that include alternatives to chemicals for controlling pests and diseases, a major factor of heavy losses in agricultural production. Based on the adverse effects of some chemicals on human health, the environment and living organisms, researchers are focusing on potential biological control microbes as viable alternatives for the management of pests and plant pathogens. There is a growing body of evidence that demonstrates the potential of leaf and root-associated microbiomes to increase plant efficiency and yield in cropping systems. It is important to understand the role of these microbes in promoting growth and controlling diseases, and their application as biofertilizers and biopesticides whose success in the field is still inconsistent. This review focusses on how biocontrol microbes modulate plant defense mechanisms, deploy biocontrol actions in plants and offer new strategies to control plant pathogens. Apart from simply applying individual biocontrol microbes, there are now efforts to improve, facilitate and maintain long-term plant colonization. In particular, great hopes are associated with the new approaches of using "plant-optimized microbiomes" (microbiome engineering) and establishing the genetic basis of beneficial plant-microbe interactions to enable breeding of "microbe-optimized crops". Copyright © 2017 Elsevier B.V. All rights reserved.

  2. How the study of Listeria monocytogenes has led to new concepts in biology.

    PubMed

    Rolhion, Nathalie; Cossart, Pascale

    2017-06-01

    The opportunistic intracellular bacterial pathogen Listeria monocytogenes has in 30 years emerged as an exceptional bacterial model system in infection biology. Research on this bacterium has provided considerable insight into how pathogenic bacteria adapt to mammalian hosts, invade eukaryotic cells, move intracellularly, interfere with host cell functions and disseminate within tissues. It also contributed to unveil features of normal host cell pathways and unsuspected functions of previously known cellular proteins. This review provides an updated overview of our knowledge on this pathogen. In many examples, findings on L. monocytogenes provided the basis for new concepts in bacterial regulation, cell biology and infection processes.

  3. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality

    PubMed Central

    Wei, Ge; Lai, Yiling; Wang, Guandong; Chen, Huan; Li, Fang

    2017-01-01

    The insect gut microbiota plays crucial roles in modulating the interactions between the host and intestinal pathogens. Unlike viruses, bacteria, and parasites, which need to be ingested to cause disease, entomopathogenic fungi infect insects through the cuticle and proliferate in the hemolymph. However, interactions between the gut microbiota and entomopathogenic fungi are unknown. Here we show that the pathogenic fungus Beauveria bassiana interacts with the gut microbiota to accelerate mosquito death. After topical fungal infection, mosquitoes with gut microbiota die significantly faster than mosquitoes without microbiota. Furthermore, fungal infection causes dysbiosis of mosquito gut microbiota with a significant increase in gut bacterial load and a significant decrease in bacterial diversity. In particular, the opportunistic pathogenic bacterium Serratia marcescens overgrows in the midgut and translocates to the hemocoel, which promotes fungal killing of mosquitoes. We further reveal that fungal infection down-regulates antimicrobial peptide and dual oxidase expression in the midgut. Duox down-regulation in the midgut is mediated by secretion of the toxin oosporein from B. bassiana. Our findings reveal the important contribution of the gut microbiota in B. bassiana-killing activity, providing new insights into the mechanisms of fungal pathogenesis in insects. PMID:28533370

  4. The biology, identification and management of Rhizoctonia pathogens

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani is an economically important soilborne pathogen causing economic losses to crops, vegetables, ornamentals, forest trees and turfgrasses. The pathogenic isolates may belong to diverse genera and species and are variously responsible for pre- or post-emergence damping off of seedlin...

  5. Influence of air quality on the composition of microbial pathogens in fresh rainwater.

    PubMed

    Kaushik, Rajni; Balasubramanian, Rajasekhar; de la Cruz, Armah A

    2012-04-01

    In this study, the microbiological quality of fresh rainwater was assessed from 50 rain events under tropical weather conditions for a year. The levels of four major opportunistic waterborne pathogens, namely, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Aeromonas hydrophila, in rainwater samples were quantified by using a robust and sensitive quantitative PCR (qPCR) method. Of the 50 rainwater samples, 25 were found to be positive for at least one pathogen: 21 for E. coli, 16 for P. aeruginosa, 6 for K. pneumoniae, and 1 for A. hydrophila. In addition to the microbiological assessment of rainwater samples, we also studied the influence of prevailing air quality on the microbial quality of rainwater over the sampling period. A significant change in the diversity and relative abundance of the basic microbial indicator organisms in rainwater was observed during a major regional air pollution episode in Southeast Asia due to biomass-burning emissions.

  6. Current laboratory diagnosis of opportunistic enteric parasites in human immunodeficiency virus-infected patients

    PubMed Central

    De, Anuradha

    2013-01-01

    Diarrhea is a major cause of morbidity and mortality in human immunodeficiency virus (HIV)-infected individuals. Opportunistic enteric parasitic infections are encountered in 30-60% of HIV seropositive patients in developed countries and in 90% of patients in developing countries. Once the CD4+ cell count drops below 200 cells/μl, patients are considered to have developed acquired immunodeficiency syndrome (AIDS), with the risk of an AIDS-defining illness or opportunistic infection significantly increasing. Opportunistic enteric parasites encountered in these patients are Cryptosporidium, Isospora, Cyclospora, and microsporidia; as well as those more commonly associated with gastrointestinal disease, for example, Giardia intestinalis, Entamoeba histolytica, Strongyloides stercoralis, and also rarely Balantidium coli. In view of AIDS explosion in India, opportunistic enteric parasites are becoming increasingly important and it has to be identified properly. Apart from wet mounts, concentration methods for stool samples and special staining techniques for identification of these parasites, commercially available fecal immunoassays are widely available for the majority of enteric protozoa. Molecular methods such as polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism, flow cytometry, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), have also come in the pipeline for early diagnosis of these infections. Proper disposal of the feces to prevent contamination of the soil and water, boiling/filtering drinking water along with improved personal hygiene might go a long way in preventing these enteric parasitic infections. PMID:23961436

  7. Environmental (Saprozoic) Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management

    PubMed Central

    Ashbolt, Nicholas J.

    2015-01-01

    Major waterborne (enteric) pathogens are relatively well understood and treatment controls are effective when well managed. However, water-based, saprozoic pathogens that grow within engineered water systems (primarily within biofilms/sediments) cannot be controlled by water treatment alone prior to entry into water distribution and other engineered water systems. Growth within biofilms or as in the case of Legionella pneumophila, primarily within free-living protozoa feeding on biofilms, results from competitive advantage. Meaning, to understand how to manage water-based pathogen diseases (a sub-set of saprozoses) we need to understand the microbial ecology of biofilms; with key factors including biofilm bacterial diversity that influence amoebae hosts and members antagonistic to water-based pathogens, along with impacts from biofilm substratum, water temperature, flow conditions and disinfectant residual—all control variables. Major saprozoic pathogens covering viruses, bacteria, fungi and free-living protozoa are listed, yet today most of the recognized health burden from drinking waters is driven by legionellae, non-tuberculous mycobacteria (NTM) and, to a lesser extent, Pseudomonas aeruginosa. In developing best management practices for engineered water systems based on hazard analysis critical control point (HACCP) or water safety plan (WSP) approaches, multi-factor control strategies, based on quantitative microbial risk assessments need to be developed, to reduce disease from largely opportunistic, water-based pathogens. PMID:26102291

  8. Emerging Trends in Molecular Interactions between Plants and the Broad Host Range Fungal Pathogens Botrytis cinerea and Sclerotinia sclerotiorum

    PubMed Central

    Mbengue, Malick; Navaud, Olivier; Peyraud, Rémi; Barascud, Marielle; Badet, Thomas; Vincent, Rémy; Barbacci, Adelin; Raffaele, Sylvain

    2016-01-01

    Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum, the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi. PMID:27066056

  9. Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen Candida auris

    PubMed Central

    Zhao, Yanan; Lockhart, Shawn R.; Berrio, Indira

    2017-01-01

    ABSTRACT Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial and invasive infections associated with high mortality. C. auris is commonly misidentified as several different yeast species by commercially available phenotypic identification platforms. Thus, there is an urgent need for a reliable diagnostic method. In this paper, we present fast, robust, easy-to-perform and interpret PCR and real-time PCR assays to identify C. auris and related species: Candida duobushaemulonii, Candida haemulonii, and Candida lusitaniae. Targeting rDNA region nucleotide sequences, primers specific for C. auris only or C. auris and related species were designed. A panel of 140 clinical fungal isolates was used in both PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The identification results from the assays were 100% concordant with DNA sequencing results. These molecular assays overcome the deficiencies of existing phenotypic tests to identify C. auris and related species. PMID:28539346

  10. Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen Candida auris.

    PubMed

    Kordalewska, Milena; Zhao, Yanan; Lockhart, Shawn R; Chowdhary, Anuradha; Berrio, Indira; Perlin, David S

    2017-08-01

    Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial and invasive infections associated with high mortality. C. auris is commonly misidentified as several different yeast species by commercially available phenotypic identification platforms. Thus, there is an urgent need for a reliable diagnostic method. In this paper, we present fast, robust, easy-to-perform and interpret PCR and real-time PCR assays to identify C. auris and related species: Candida duobushaemulonii , Candida haemulonii , and Candida lusitaniae Targeting rDNA region nucleotide sequences, primers specific for C. auris only or C. auris and related species were designed. A panel of 140 clinical fungal isolates was used in both PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The identification results from the assays were 100% concordant with DNA sequencing results. These molecular assays overcome the deficiencies of existing phenotypic tests to identify C. auris and related species. Copyright © 2017 Kordalewska et al.

  11. EARLY DIAGNOSIS IN POST RENAL TRANSPLANT OPPORTUNISTIC INFECTIONS: A FRESH LOOK.

    PubMed

    Chopra, G S; Narula, A S; Reddy, P S; Bhardwaj, J R

    1999-04-01

    A total of 86 renal transplant patients who were transplanted with live related donor (LRD) and live unrelated donor (LURD) kidneys were studied for opportunistic infections. Immune diagnosis of Toxoplasma, Cytomegalovirus (CMV), Herpes-simplex virus type II (HSV-2), Aspergillosis and Tuberculosis was carried out in these patients along with sputum examination, CSF studies and biopsy of lymphnode and other tissues in few cases. A high degree of Toxoplasma, CMV & HSV-2 positivity was seen in transplanted patients. However sensitivity of serological diagnosis of tuberculos was found to be low with standard criteria, which increased significantly when modified criteria were used. It is concluded that regular immunological monitoring should be carried out in transplanted patients so as to reach an early diagnosis and management of opportunistic infections.

  12. Acanthamoeba, an opportunistic microorganism: a review.

    PubMed

    Martinez, A J; Janitschke, K

    1985-01-01

    Granulomatous amebic encephalitis due to Acanthamoeba spp. usually occurs in chronically ill and debilitated individuals. Some of these patients may have received immunosuppressive therapy. Another infection due to Acanthamoeba spp. has been corneal ulcerations which usually occur after minimal trauma to the corneal epithelium (1). In contrast, primary amebic meningoencephalitis due to Naegleria fowleri usually occurs in healthy, young individuals with a history of swimming in heated swimming pools, in manmade lakes or with recent contact with contaminated water and practising water-related sports. Subclinical infections due to free-living amebas are probably common in healthy individuals with the protozoa living as "normal flora" in the nose and throat. It is possible that in humans, antibodies and cell-mediated immunity protect the host in such ordinary circumstances against invasive infection. In debilitated and chronically ill individuals, depressed cellmediated immunity may allow these protozoa to proliferate, allowing a fulminant "opportunistic" infection to develop. In the case of acanthamoebic keratitis, it is important to keep in mind that the temperature and moist environment of the eye serve as a good medium for the growth and proliferation of the amebas and is not necessarily associated with immunosuppression but rather with trauma. This review confirms that opportunistic free-living amebic infections occur with increased frequency in patients treated with steroids, radiotherapy, chemotherapeutic drugs or with broad-spectrum antibiotics and suggest that the mechanism of such infection may be depressed cell-mediated immunity or some other alteration of the immune system, like acquired immunodeficiency syndrome (AIDS).

  13. Evolution of pathogen virulence across space during an epidemic

    USGS Publications Warehouse

    Osnas, Erik; Hurtado, Paul J.; Dobson, Andrew P.

    2015-01-01

    We explore pathogen virulence evolution during the spatial expansion of an infectious disease epidemic in the presence of a novel host movement trade-off, using a simple, spatially explicit mathematical model. This work is motivated by empirical observations of the Mycoplasma gallisepticum invasion into North American house finch (Haemorhous mexicanus) populations; however, our results likely have important applications to other emerging infectious diseases in mobile hosts. We assume that infection reduces host movement and survival and that across pathogen strains the severity of these reductions increases with pathogen infectiousness. Assuming these trade-offs between pathogen virulence (host mortality), pathogen transmission, and host movement, we find that pathogen virulence levels near the epidemic front (that maximize wave speed) are lower than those that have a short-term growth rate advantage or that ultimately prevail (i.e., are evolutionarily stable) near the epicenter and where infection becomes endemic (i.e., that maximize the pathogen basic reproductive ratio). We predict that, under these trade-offs, less virulent pathogen strains will dominate the periphery of an epidemic and that more virulent strains will increase in frequency after invasion where disease is endemic. These results have important implications for observing and interpreting spatiotemporal epidemic data and may help explain transient virulence dynamics of emerging infectious diseases.

  14. Role of domestic ducks in the emergence of a new genotype of highly pathogenic H5N1 avian influenza A viruses in Bangladesh

    PubMed Central

    Barman, Subrata; Marinova-Petkova, Atanaska; Hasan, M Kamrul; Akhtar, Sharmin; El-Shesheny, Rabeh; Turner, Jasmine CM; Franks, John; Walker, David; Seiler, Jon; Friedman, Kimberly; Kercher, Lisa; Jeevan, Trushar; Darnell, Daniel; Kayali, Ghazi; Jones-Engel, Lisa; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G; Feeroz, Mohammed M

    2017-01-01

    Highly pathogenic avian influenza H5N1 viruses were first isolated in Bangladesh in February 2007. Subsequently, clades 2.2.2, 2.3.4.2 and 2.3.2.1a were identified in Bangladesh, and our previous surveillance data revealed that by the end of 2014, the circulating viruses exclusively comprised clade 2.3.2.1a. We recently determined the status of circulating avian influenza viruses in Bangladesh by conducting surveillance of live poultry markets and waterfowl in wetland areas from February 2015 through February 2016. Until April 2015, clade 2.3.2.1a persisted without any change in genotype. However, in June 2015, we identified a new genotype of H5N1 viruses, clade 2.3.2.1a, which quickly became predominant. These newly emerged H5N1 viruses contained the hemagglutinin, neuraminidase and matrix genes of circulating 2.3.2.1a Bangladeshi H5N1 viruses and five other genes of low pathogenic Eurasian-lineage avian influenza A viruses. Some of these internal genes were closely related to those of low pathogenic viruses isolated from ducks in free-range farms and wild birds in a wetland region of northeastern Bangladesh, where commercially raised domestic ducks have frequent contact with migratory birds. These findings indicate that migratory birds of the Central Asian flyway and domestic ducks in the free-range farms in Tanguar haor-like wetlands played an important role in the emergence of this novel genotype of highly pathogenic H5N1 viruses. PMID:28790460

  15. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens?

    PubMed

    Dhusia, Kalyani; Bajpai, Archana; Ramteke, P W

    2018-01-10

    Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum.

    PubMed

    Vinayak, Sumiti; Pawlowic, Mattie C; Sateriale, Adam; Brooks, Carrie F; Studstill, Caleb J; Bar-Peled, Yael; Cipriano, Michael J; Striepen, Boris

    2015-07-23

    Recent studies into the global causes of severe diarrhoea in young children have identified the protozoan parasite Cryptosporidium as the second most important diarrhoeal pathogen after rotavirus. Diarrhoeal disease is estimated to be responsible for 10.5% of overall child mortality. Cryptosporidium is also an opportunistic pathogen in the contexts of human immunodeficiency virus (HIV)-caused AIDS and organ transplantation. There is no vaccine and only a single approved drug that provides no benefit for those in gravest danger: malnourished children and immunocompromised patients. Cryptosporidiosis drug and vaccine development is limited by the poor tractability of the parasite, which includes a lack of systems for continuous culture, facile animal models, and molecular genetic tools. Here we describe an experimental framework to genetically modify this important human pathogen. We established and optimized transfection of C. parvum sporozoites in tissue culture. To isolate stable transgenics we developed a mouse model that delivers sporozoites directly into the intestine, a Cryptosporidium clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, and in vivo selection for aminoglycoside resistance. We derived reporter parasites suitable for in vitro and in vivo drug screening, and we evaluated the basis of drug susceptibility by gene knockout. We anticipate that the ability to genetically engineer this parasite will be transformative for Cryptosporidium research. Genetic reporters will provide quantitative correlates for disease, cure and protection, and the role of parasite genes in these processes is now open to rigorous investigation.

  17. AIRBORNE HYPERSPECTRAL IDENTIFICATION OF INVASIVE AND OPPORTUNISTIC WETLANDS PLANT SPECIES

    EPA Science Inventory

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  18. Bacteremia due to ESKAPE pathogens: An emerging problem in cancer patients.

    PubMed

    El-Mahallawy, Hadir A; Hassan, Safaa Shawky; El-Wakil, Mohamed; Moneer, Manar M

    2016-09-01

    In recent years, a few of the antibiotic-resistant bacteria, known as ESKAPE pathogens, have been found responsible for serious infections. We investigated the risk factors, and impact of ESKAPE pathogens on course of blood stream infections (BSIs) in cancer patients in comparison to coagulase negative Staphylococci (CoNS). The data of patients with ESKAPE positive blood cultures at National Cancer Institute, Cairo University were analyzed. Identification and antimicrobial susceptibility of isolates were done using Microscan Walk Away 96. In a 6month period, ESKAPE pathogens were isolated from non-duplicate blood cultures in 81 episodes of 72 cases of pediatric cancer patients, while CoNS were isolated from 135 blood cultures of 116 patients. The ESKAPE pathogens isolated were Enterobacter spp., methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococci in 12%, 23%, 37%, 10%, 9%, and 9% of episodes, respectively. Health-care acquired infections constituted 75% of ESKAPE infections. Duration of episodes and overall mortality were significantly higher in ESKAPE BSIs when compared to CoNS (14.5±7.6 versus 09.9±6.9), and (26% versus 4%); respectively, p value <0.001. ESKAPE pathogens were significantly associated with higher rates of morbidity and mortality indicating the need for improving the means of prevention of these types of infections within health care premises. Microbiology laboratories have a role in defining more dangerous infections and rapid diagnostics are required in the era of resistance. Copyright © 2016 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.

  19. Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones?

    PubMed Central

    Guzman Prieto, Ana M.; van Schaik, Willem; Rogers, Malbert R. C.; Coque, Teresa M.; Baquero, Fernando; Corander, Jukka; Willems, Rob J. L.

    2016-01-01

    Enterococci are Gram-positive bacteria that are found in plants, soil and as commensals of the gastrointestinal tract of humans, mammals, and insects. Despite their commensal nature, they have also become globally important nosocomial pathogens. Within the genus Enterococcus, Enterococcus faecium, and Enterococcus faecalis are clinically most relevant. In this review, we will discuss how E. faecium and E. faecalis have evolved to become a globally disseminated nosocomial pathogen. E. faecium has a defined sub-population that is associated with hospitalized patients and is rarely encountered in community settings. These hospital-associated clones are characterized by the acquisition of adaptive genetic elements, including genes involved in metabolism, biofilm formation, and antibiotic resistance. In contrast to E. faecium, clones of E. faecalis isolated from hospitalized patients, including strains causing clinical infections, are not exclusively found in hospitals but are also present in healthy individuals and animals. This observation suggests that the division between commensals and hospital-adapted lineages is less clear for E. faecalis than for E. faecium. In addition, genes that are reported to be associated with virulence of E. faecalis are often not unique to clinical isolates, but are also found in strains that originate from commensal niches. As a reflection of more ancient association of E. faecalis with different hosts, these determinants Thus, they may not represent genuine virulence genes but may act as host-adaptive functions that are useful in a variety of intestinal environments. The scope of the review is to summarize recent trends in the emergence of antibiotic resistance and explore recent developments in the molecular epidemiology, population structure and mechanisms of adaptation of E. faecium and E. faecalis. PMID:27303380

  20. Opportunistic Sampling of Roadkill as an Entry Point to Accessing Natural Products Assembled by Bacteria Associated with Non-anthropoidal Mammalian Microbiomes

    PubMed Central

    2016-01-01

    Few secondary metabolites have been reported from mammalian microbiome bacteria despite the large numbers of diverse taxa that inhabit warm-blooded higher vertebrates. As a means to investigate natural products from these microorganisms, an opportunistic sampling protocol was developed, which focused on exploring bacteria isolated from roadkill mammals. This initiative was made possible through the establishment of a newly created discovery pipeline, which couples laser ablation electrospray ionization mass spectrometry (LAESIMS) with bioassay testing, to target biologically active metabolites from microbiome-associated bacteria. To illustrate this process, this report focuses on samples obtained from the ear of a roadkill opossum (Dideiphis virginiana) as the source of two bacterial isolates (Pseudomonas sp. and Serratia sp.) that produced several new and known cyclic lipodepsipeptides (viscosin and serrawettins, respectively). These natural products inhibited biofilm formation by the human pathogenic yeast Candida albicans at concentrations well below those required to inhibit yeast viability. Phylogenetic analysis of 16S rRNA gene sequence libraries revealed the presence of diverse microbial communities associated with different sites throughout the opossum carcass. A putative biosynthetic pathway responsible for the production of the new serrawettin analogues was identified by sequencing the genome of the Serratia sp. isolate. This study provides a functional roadmap to carrying out the systematic investigation of the genomic, microbiological, and chemical parameters related to the production of natural products made by bacteria associated with non-anthropoidal mammalian microbiomes. Discoveries emerging from these studies are anticipated to provide a working framework for efforts aimed at augmenting microbiomes to deliver beneficial natural products to a host. PMID:28335605

  1. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States.

    PubMed

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J; Kwan, Patrick; Plummer, Paul J; Han, Jing; Yaeger, Michael J; Zhang, Qijing

    2012-03-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health.

  2. Molecular Evidence for Zoonotic Transmission of an Emergent, Highly Pathogenic Campylobacter jejuni Clone in the United States

    PubMed Central

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J.; Kwan, Patrick; Plummer, Paul J.; Han, Jing; Yaeger, Michael J.

    2012-01-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health. PMID:22189122

  3. Opportunistic mobile air pollution monitoring: A case study with city wardens in Antwerp

    NASA Astrophysics Data System (ADS)

    Van den Bossche, Joris; Theunis, Jan; Elen, Bart; Peters, Jan; Botteldooren, Dick; De Baets, Bernard

    2016-09-01

    The goal of this paper is to explore the potential of opportunistic mobile monitoring to map the exposure to air pollution in the urban environment at a high spatial resolution. Opportunistic mobile monitoring makes use of existing mobile infrastructure or people's common daily routines to move measurement devices around. Opportunistic mobile monitoring can also play a crucial role in participatory monitoring campaigns as a typical way to gather data. A case study to measure black carbon was set up in Antwerp, Belgium, with the collaboration of city employees (city wardens). The Antwerp city wardens are outdoors for a large part of the day on surveillance tours by bicycle or on foot, and gathered a total of 393 h of measurements. The data collection is unstructured both in space and time, leading to sampling bias. A temporal adjustment can only partly counteract this bias. Although a high spatial coverage was obtained, there is still a rather large uncertainty on the average concentration levels at a spatial resolution of 50 m due to a limited number of measurements and sampling bias. Despite of this uncertainty, large spatial patterns within the city are clearly captured. This study illustrates the potential of campaigns with unstructured opportunistic mobile monitoring, including participatory monitoring campaigns. The results demonstrate that such an approach can indeed be used to identify broad spatial trends over a wider area, enabling applications including hotspot identification, personal exposure studies, regression mapping, etc. But, they also emphasize the need for repeated measurements and careful processing and interpretation of the data.

  4. Social-aware data dissemination in opportunistic mobile social networks

    NASA Astrophysics Data System (ADS)

    Yang, Yibo; Zhao, Honglin; Ma, Jinlong; Han, Xiaowei

    Opportunistic Mobile Social Networks (OMSNs), formed by mobile users with social relationships and characteristics, enhance spontaneous communication among users that opportunistically encounter each other. Such networks can be exploited to improve the performance of data forwarding. Discovering optimal relay nodes is one of the important issues for efficient data propagation in OMSNs. Although traditional centrality definitions to identify the nodes features in network, they cannot identify effectively the influential nodes for data dissemination in OMSNs. Existing protocols take advantage of spatial contact frequency and social characteristics to enhance transmission performance. However, existing protocols have not fully exploited the benefits of the relations and the effects between geographical information, social features and user interests. In this paper, we first evaluate these three characteristics of users and design a routing protocol called Geo-Social-Interest (GSI) protocol to select optimal relay nodes. We compare the performance of GSI using real INFOCOM06 data sets. The experiment results demonstrate that GSI overperforms the other protocols with highest data delivery ratio and low communication overhead.

  5. Opportunistic Capacity-Based Resource Allocation for Chunk-Based Multi-Carrier Cognitive Radio Sensor Networks

    PubMed Central

    Huang, Jie; Zeng, Xiaoping; Jian, Xin; Tan, Xiaoheng; Zhang, Qi

    2017-01-01

    The spectrum allocation for cognitive radio sensor networks (CRSNs) has received considerable research attention under the assumption that the spectrum environment is static. However, in practice, the spectrum environment varies over time due to primary user/secondary user (PU/SU) activity and mobility, resulting in time-varied spectrum resources. This paper studies resource allocation for chunk-based multi-carrier CRSNs with time-varied spectrum resources. We present a novel opportunistic capacity model through a continuous time semi-Markov chain (CTSMC) to describe the time-varied spectrum resources of chunks and, based on this, a joint power and chunk allocation model by considering the opportunistically available capacity of chunks is proposed. To reduce the computational complexity, we split this model into two sub-problems and solve them via the Lagrangian dual method. Simulation results illustrate that the proposed opportunistic capacity-based resource allocation algorithm can achieve better performance compared with traditional algorithms when the spectrum environment is time-varied. PMID:28106803

  6. Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission

    PubMed Central

    Lin, Huifa; Shin, Won-Yong

    2017-01-01

    We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice. PMID:28076402

  7. Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission.

    PubMed

    Lin, Huifa; Shin, Won-Yong

    2017-01-01

    We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice.

  8. Mechanisms of innate immune evasion in re-emerging RNA viruses.

    PubMed

    Ma, Daphne Y; Suthar, Mehul S

    2015-06-01

    Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus-host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Pathogenic human viruses in coastal waters

    USGS Publications Warehouse

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  10. [Opportunistic infections and sarcoidosis].

    PubMed

    Jamilloux, Y; Bernard, C; Lortholary, O; Kerever, S; Lelièvre, L; Gerfaud-Valentin, M; Broussolle, C; Valeyre, D; Sève, P

    2017-05-01

    Opportunistic infections (OI) are uncommon in sarcoidosis (1 to 10%) and mostly occur in patients with previously diagnosed disease or can rarely be the presenting manifestation. The most common OIs are, in descending order: aspergillosis, cryptococcosis, and mycobacterial infections. Treatment with corticosteroids is the most frequent risk factor for OI occurrence during sarcoidosis but immunosuppressive drugs and therapy with anti-TNFα are also risk factors. Overall, clinical presentation, treatment, and outcome are identical to that occur in other conditions complicated with the occurrence of OIs. However, some atypical presentations of OIs can mimic sarcoidosis exacerbation and misdiagnosis may lead clinicians to increase immunosuppression, causing worsening of the OI. The meticulous collection of patient's history along with factors differentiating OI from sarcoidosis exacerbation is key factor to optimally manage these patients. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  11. Vacated niches, competitive release and the community ecology of pathogen eradication

    PubMed Central

    Lloyd-Smith, James O.

    2013-01-01

    A recurring theme in the epidemiological literature on disease eradication is that each pathogen occupies an ecological niche, and eradication of one pathogen leaves a vacant niche that favours the emergence of new pathogens to replace it. However, eminent figures have rejected this view unequivocally, stating that there is no basis to fear pathogen replacement and even that pathogen niches do not exist. After exploring the roots of this controversy, I propose resolutions to disputed issues by drawing on broader ecological theory, and advance a new consensus based on robust mechanistic principles. I argue that pathogen eradication (and cessation of vaccination) leads to a ‘vacated niche’, which could be re-invaded by the original pathogen if introduced. Consequences for other pathogens will vary, with the crucial mechanisms being competitive release, whereby the decline of one species allows its competitors to perform better, and evolutionary adaptation. Hence, eradication can cause a quantitative rise in the incidence of another infection, but whether this leads to emergence as an endemic pathogen depends on additional factors. I focus on the case study of human monkeypox and its rise following smallpox eradication, but also survey how these ideas apply to other pathogens and discuss implications for eradication policy. PMID:23798698

  12. Future research needs involving pathogens in groundwater

    NASA Astrophysics Data System (ADS)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  13. Future research needs involving pathogens in groundwater

    USGS Publications Warehouse

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  14. The threat of emerging infections.

    PubMed

    1996-11-01

    A variety of newly discovered pathogens and new forms of older infectious agents threaten to reemerge. Typical symptoms of acute infection are fever, headache, malaise, vomiting, and diarrhea. Some of the better-known emerging viral infections include dengue, filoviruses (Ebola, Marburg), hantaviruses, hepatitis B, hepatitis C, HIV, influenza, lassa fever, measles, rift valley fever, rotavirus, and yellow fever. Emerging bacterial infections include cholera, Escherichia coli 0157:H7, legionnaires disease (Legionella), lyme disease, streptococcus infections (group A), tuberculosis, and typhoid. Emerging parasitic infections include cryptosporidium and other waterborne pathogens and malaria. The causes of many diseases are still shrouded in mystery; thus, treatments and cures for them are as yet unknown.

  15. Emerging zoonotic viral diseases.

    PubMed

    Wang, L-F; Crameri, G

    2014-08-01

    Zoonotic diseases are infectious diseases that are naturally transmitted from vertebrate animals to humans and vice versa. They are caused by all types of pathogenic agents, including bacteria, parasites, fungi, viruses and prions. Although they have been recognised for many centuries, their impact on public health has increased in the last few decades due to a combination of the success in reducing the spread of human infectious diseases through vaccination and effective therapies and the emergence of novel zoonotic diseases. It is being increasingly recognised that a One Health approach at the human-animal-ecosystem interface is needed for effective investigation, prevention and control of any emerging zoonotic disease. Here, the authors will review the drivers for emergence, highlight some of the high-impact emerging zoonotic diseases of the last two decades and provide examples of novel One Health approaches for disease investigation, prevention and control. Although this review focuses on emerging zoonotic viral diseases, the authors consider that the discussions presented in this paper will be equally applicable to emerging zoonotic diseases of other pathogen types.

  16. Resources for Genetic and Genomic Analysis of Emerging Pathogen Acinetobacter baumannii

    PubMed Central

    Ramage, Elizabeth; Weiss, Eli J.; Radey, Matthew; Hayden, Hillary S.; Held, Kiara G.; Huse, Holly K.; Zurawski, Daniel V.; Brittnacher, Mitchell J.; Manoil, Colin

    2015-01-01

    ABSTRACT Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat. IMPORTANCE Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains. PMID:25845845

  17. Evolution and population genetics of exotic and reemerging pathogens: traditional and novel tools and approaches

    Treesearch

    N.J. Grünwald; E.M. Goss

    2011-01-01

    Given human population growth and accelerated global trade, the rate of emergence of exotic plant pathogens is bound to increase. Understanding the processes that lead to the emergence of new pathogens can help manage emerging epidemics. Novel tools for analyzing population genetic variation can be used to infer the evolutionary history of populations or species,...

  18. Pathogenicity of porcine intestinal spirochetes in gnotobiotic pigs.

    PubMed Central

    Neef, N A; Lysons, R J; Trott, D J; Hampson, D J; Jones, P W; Morgan, J H

    1994-01-01

    Twelve intestinal spirochete strains of porcine origin were characterized on the basis of their phenotypic properties, by multilocus enzyme electrophoresis, and by pathogenicity testing in gnotobiotic pigs. The spirochetes used included two strains of Serpulina hyodysenteriae (B204 and P18A), two strains of Serpulina innocens (B256 and 4/71), one strain from the proposed new genus and species "Anguillina coli" (P43/6/78), and seven non-S. hyodysenteriae strains recently isolated from United Kingdom pig herds with a history of nonspecific diarrhea and typhlocolitis. By multilocus enzyme electrophoresis, five of these were identified as S. innocens, one was identified as an unspecified Serpulina sp., and one was identified as "A. coli." S. hyodysenteriae B204 and P18A, "A. coli" P43/6/78 and 2/7, and three (22/7, P280/1, and 14/5) of the five S. innocens field isolates induced mucoid feces and typhlocolitis in gnotobiotic pigs. None of the other spirochetes produced clinical signs or large intestinal pathology in this model. The "A. coli" strains induced a more watery diarrhea, with lesions present more proximally in the large intestine, than did the other pathogenic spirochetes. S. innocens 22/7 was also tested for pathogenicity in hysterotomy-derived pigs that had previously been artificially colonized with a spirochete-free intestinal flora and shown to be susceptible to swine dysentery. Despite effective colonization, strain 22/7 did not produce any disease, nor was there any exacerbation of large intestinal pathology or clinical signs when pigs with an experimentally induced existing colitis caused by Yersinia pseudotuberculosis were superinfected with strain 22/7. Certain non-S. hyodysenteriae spirochetes are therefore capable of inducing disease in gnotobiotic pigs, but their role as primary or opportunistic pathogens in conventional pigs remains equivocal. Images PMID:8188364

  19. Pathogenicity of porcine intestinal spirochetes in gnotobiotic pigs.

    PubMed

    Neef, N A; Lysons, R J; Trott, D J; Hampson, D J; Jones, P W; Morgan, J H

    1994-06-01

    Twelve intestinal spirochete strains of porcine origin were characterized on the basis of their phenotypic properties, by multilocus enzyme electrophoresis, and by pathogenicity testing in gnotobiotic pigs. The spirochetes used included two strains of Serpulina hyodysenteriae (B204 and P18A), two strains of Serpulina innocens (B256 and 4/71), one strain from the proposed new genus and species "Anguillina coli" (P43/6/78), and seven non-S. hyodysenteriae strains recently isolated from United Kingdom pig herds with a history of nonspecific diarrhea and typhlocolitis. By multilocus enzyme electrophoresis, five of these were identified as S. innocens, one was identified as an unspecified Serpulina sp., and one was identified as "A. coli." S. hyodysenteriae B204 and P18A, "A. coli" P43/6/78 and 2/7, and three (22/7, P280/1, and 14/5) of the five S. innocens field isolates induced mucoid feces and typhlocolitis in gnotobiotic pigs. None of the other spirochetes produced clinical signs or large intestinal pathology in this model. The "A. coli" strains induced a more watery diarrhea, with lesions present more proximally in the large intestine, than did the other pathogenic spirochetes. S. innocens 22/7 was also tested for pathogenicity in hysterotomy-derived pigs that had previously been artificially colonized with a spirochete-free intestinal flora and shown to be susceptible to swine dysentery. Despite effective colonization, strain 22/7 did not produce any disease, nor was there any exacerbation of large intestinal pathology or clinical signs when pigs with an experimentally induced existing colitis caused by Yersinia pseudotuberculosis were superinfected with strain 22/7. Certain non-S. hyodysenteriae spirochetes are therefore capable of inducing disease in gnotobiotic pigs, but their role as primary or opportunistic pathogens in conventional pigs remains equivocal.

  20. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.

    PubMed

    Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for

  1. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures

    PubMed Central

    Olson, Deanna H.; Blaustein, Andrew R.

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for

  2. CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells.

    PubMed

    Ziegler, Sabrina; Weiss, Esther; Schmitt, Anna-Lena; Schlegel, Jan; Burgert, Anne; Terpitz, Ulrich; Sauer, Markus; Moretta, Lorenzo; Sivori, Simona; Leonhardt, Ines; Kurzai, Oliver; Einsele, Hermann; Loeffler, Juergen

    2017-07-21

    Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.

  3. Characterization and pathogenicity of Fusarium species associated with leaf spot of mango (Mangifera indica L.).

    PubMed

    Omar, Nurul Husna; Mohd, Masratulhawa; Mohamed Nor, Nik Mohd Izham; Zakaria, Latiffah

    2018-01-01

    Leaf spot diseases are mainly caused by fungi including Fusarium. In the present study several species of Fusarium were isolated from the leaf spot lesion of mango (Mangifera indica L.) Based on morphological characteristics, TEF-1α sequences and phylogenetic analysis, five species were identified as F. proliferatum, F. semitectum, F. mangiferae, F. solani and F. chlamydosporum. Pathogenicity test indicated that representative isolates of F. proliferatum, F. semitectum and F. chlamydosporum were pathogenic on mango leaves causing leaf spot with low to moderate virulence. Nevertheless, abundance of spots on the leaf can disrupt photosynthesis which in turn reduced growth, and lead to susceptibility to infection by opportunistic pathogens due to weakening of the plant. Fusarium solani and F. mangiferae were non-pathogenic and it is possible that both species are saprophyte which associated with nutrient availability on the surface of the leaf through decaying leave tissues. The occurrence of Fusarium spp. on the leaf spot lesion and the effect from the disease needs to be considered when developing disease management method of mango cultivation as numerous spot on the leaves could effect the photosynthesis process and finally giving low yield and less quality of mango. Copyright © 2017. Published by Elsevier Ltd.

  4. Adaptive potential of maritime pine (Pinus pinaster) populations to the emerging pitch canker pathogen, Fusarium circinatum.

    PubMed

    Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

    2014-01-01

    There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3-7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43-0.58 and 0.51-0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease.

  5. Adaptive Potential of Maritime Pine (Pinus pinaster) Populations to the Emerging Pitch Canker Pathogen, Fusarium circinatum

    PubMed Central

    Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

    2014-01-01

    There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3–7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43–0.58 and 0.51–0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease. PMID:25500822

  6. Emerging fungal infections among children: A review on its clinical manifestations, diagnosis, and prevention

    PubMed Central

    Jain, Akansha; Jain, Shubham; Rawat, Swati

    2010-01-01

    The incidence of fungal infections is increasing at an alarming rate, presenting an enormous challenge to healthcare professionals. This increase is directly related to the growing population of immunocompromised individuals especially children resulting from changes in medical practice such as the use of intensive chemotherapy and immunosuppressive drugs. Although healthy children have strong natural immunity against fungal infections, then also fungal infection among children are increasing very fast. Virtually not all fungi are pathogenic and their infection is opportunistic. Fungi can occur in the form of yeast, mould, and dimorph. In children fungi can cause superficial infection, i.e., on skin, nails, and hair like oral thrush, candida diaper rash, tinea infections, etc., are various types of superficial fungal infections, subcutaneous fungal infection in tissues under the skin and lastly it causes systemic infection in deeper tissues. Most superficial and subcutaneous fungal infections are easily diagnosed and readily amenable to treatment. Opportunistic fungal infections are those that cause diseases exclusively in immunocompromised individuals, e.g., aspergillosis, zygomycosis, etc. Systemic infections can be life-threatening and are associated with high morbidity and mortality. Because diagnosis is difficult and the causative agent is often confirmed only at autopsy, the exact incidence of systemic infections is difficult to determine. The most frequently encountered pathogens are Candida albicans and Aspergillus spp. But other fungi such as non-albicans Candida spp. are increasingly important. PMID:21180463

  7. The Endospore-Forming Pathogen Bacillus cereus Exploits a Small Colony Variant-Based Diversification Strategy in Response to Aminoglycoside Exposure.

    PubMed

    Frenzel, Elrike; Kranzler, Markus; Stark, Timo D; Hofmann, Thomas; Ehling-Schulz, Monika

    2015-12-08

    Bacillus cereus is among the microorganisms most often isolated from cases of food spoilage and causes gastrointestinal diseases as well as nongastrointestinal infections elicited by the emetic toxin cereulide, enterotoxins, and a panel of tissue-destructive virulence factors. This opportunistic pathogen is increasingly associated with rapidly fatal clinical infections especially linked to neonates and immunocompromised individuals. Fatality results from either the misdiagnosis of B. cereus as a contaminant of the clinical specimen or from failure of antibiotic therapy. Here we report for the first time that exposure to aminoglycoside antibiotics induces a phenotype switching of emetic B. cereus subpopulations to a slow-growing small colony variant (SCV) state. Along with altered antibiotic resistance, SCVs showed distinct phenotypic and metabolic properties, bearing the risk of antibiotic treatment failure and of clinical misdiagnosis by standard identification tests used in routine diagnostic. The SCV subpopulation is characterized by enhanced production of the toxin cereulide, but it does not secrete tissue-destructive and immune system-affecting enzymes such as sphingomyelinase and phospholipase. SCVs showed significantly prolonged persistence and decreased virulence in the Galleria mellonella model for bacterial infections, indicating diversification concerning their ecological lifestyle. Importantly, diversification into coexisting wild-type and SCV subpopulations also emerged during amikacin pressure during in vivo infection experiments. This study shows for the first time that pathogenic spore-forming B. cereus strains are able to switch to a so far unreported slow-growing lifestyle, which differs substantially in terms of developmental, phenotypic, metabolic, and virulence traits from the wild-type populations. This underpins the necessity of molecular-based differential diagnostics and a well-chosen therapeutic treatment strategy in clinical

  8. Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants

    NASA Astrophysics Data System (ADS)

    Ulery, Bret D.; Petersen, Latrisha K.; Phanse, Yashdeep; Kong, Chang Sun; Broderick, Scott R.; Kumar, Devender; Ramer-Tait, Amanda E.; Carrillo-Conde, Brenda; Rajan, Krishna; Wannemuehler, Michael J.; Bellaire, Bryan H.; Metzger, Dennis W.; Narasimhan, Balaji

    2011-12-01

    An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens.

  9. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.

    PubMed

    Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia; Hube, Bernhard

    2016-10-18

    Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker's yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. The fungus Candida glabrata represents an evolutionarily close relative of the well-studied and benign baker's yeast and model organism Saccharomyces cerevisiae On the other hand, C. glabrata is an important opportunistic human pathogen causing both superficial and systemic infections. The ability to acquire trace metals, in particular, iron, and to tightly regulate this process during infection is considered an important virulence attribute of a variety of pathogens. Importantly, S. cerevisiae uses a highly derivative regulatory system distinct from those of other fungi. Until now, the regulatory mechanism of iron homeostasis in C. glabrata has been mostly unknown. Our study revealed a hybrid iron regulation network that is unique to C. glabrata and is placed at an evolutionary midpoint between those of S. cerevisiae and related fungal pathogens. We thereby

  10. Characterization, Microbial Community Structure, and Pathogen Occurrence in Urban Faucet Biofilms in South China

    PubMed Central

    Lin, Huirong; Zhang, Shuting; Gong, Song; Zhang, Shenghua; Yu, Xin

    2015-01-01

    The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope) results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid) were observed. CLSM (confocal laser scanning microscope) revealed different distributions of attached cells, extracellular proteins, α-polysaccharides, and β-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales) and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence. PMID:26273617

  11. Antibiotic resistance and growth of the emergent pathogen Escherichia albertii on raw ground beef stored under refrigeration, abuse, and physiological temperature.

    PubMed

    Perez, Keila L; Alam, M Jahangir; Castillo, Alejandro; Taylor, T Matthew

    2013-01-01

    Escherichia albertii is an emerging gram-negative facultative rod that has been implicated in multiple cases of human diarrheal disease, particularly in young children. When biochemical and other typing methods have been used, this organism has often been misidentified due to similarities with other members of the family Enterobacteriaceae. Isolates have been reported to be capable of producing attachment and effacement lesions via the synthesis of intimin, cytolethal distending toxin, and a variant form of Shiga toxin. The purposes of this study were to characterize the antibiotic resistance characteristics and the growth of individual strains of E. albertii on raw ground beef at different storage temperatures. Nalidixic acid-resistant strains of E. albertii were inoculated onto raw ground beef to a target of 4.0 log CFU/g, and samples were then aerobically incubated at 5, 22, or 35°C for various time periods prior to microbiological enumeration of the pathogen on lactose-free MacConkey agar containing 50 mg of nalidixic acid per liter and 0.5% L-rhamnose. Antibiotic resistance was determined using a broth microdilution assay. E. albertii did not grow at 5°C, with populations declining slowly over 14 days of refrigerated storage. Strains of the organism grew well under abusive storage, increasing by 2.5 to 3.1 log CFU/g and 4.1 to 4.3 log CFU/g after 24 h at 22 and 35°C, respectively. All strains were resistant to tetracycline but were sensitive to tested cephalosporins and chloramphenicol. Resistance to penicillin was observed, but susceptibility to other members of the b -lactam group, including ampicillin, amoxicillin, and clavulanic acid, was recorded. E. albertii represents an emerging pathogen with a probable foodborne transmission route. Future research should focus on verifying food process measures able to inactivate the pathogen.

  12. [Frequency of opportunistic infections in children with immune neutropenia and their mothers].

    PubMed

    Kalugina, M Iu; Karazhas, N V; Rybalkina, T N; Bosh'ian, R E; Mamedova, E A; Polovtseva, T V; Finogenova, N A

    2012-01-01

    Determine the frequency of opportunistic infections among children with immune neutropenia and their mothers. 66 mothers and 66 children with immune neutropenia diagnosis were examined for the presence of herpes (HV) and pneumocystic infection. Opportunistic infections markers (IgM, IgG, early and late antigens, virus reproduction) were determined by enzyme immunoassay, immunofluorescence reaction and rapid culture method (vero, u937, human fibroblasts). Pneumocystosis was the most active infection in the group. Among mothers 26 (39.3%) cases of pneumocystic infection in acute form were detected, among children - 18 (27.3%) cases. Infection occurred only in acute form during primary infection; there were no cases of its reactivation, which is an indication of recent pneumocystosis infection. Analysis of data on detection of acute and recent herpes infections showed that HV infection markers were determined in a relatively large number of mothers and their children: herpes simplex virus - 21.2%, Epstein-Barr virus - 12.0%, cytomegalovirus - 15.0%, Human herpesvirus 6 - 10.6%, Pneumocystis carinii - 21.2%. The data provided give evidence on a possible family pattern of the infection. A necessity of examination of mothers and their children suffering from immune neutropenia was shown because the specified opportunistic infections can form intra-family foci. The presence of acute form of infection in mother may be one of the conditions of development of this infection in the child.

  13. The Exporting and Franchising of Elite English Private Schools: The Emerging "Second Wave"

    ERIC Educational Resources Information Center

    Bunnell, Tristan

    2008-01-01

    The past decade has seen the emergence, predominantly in Thailand and mainland China, of a form of educational institution that has had little scholarly attention or generic identification. This paper shows how the ad hoc and opportunistic franchising of elite English private schools, beginning with the hyper-capitalist exportation of the Dulwich…

  14. Sexual Reproduction of Human Fungal Pathogens

    PubMed Central

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  15. Shared Features of Cryptic Plasmids from Environmental and Pathogenic Francisella Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Challacombe, Jean Faust; Pillai, Segaran; Kuske, Cheryl R.

    The Francisella genus includes several recognized species, additional potential species, and other representatives that inhabit a range of incredibly diverse ecological niches, but are not closely related to the named species. Francisella species have been obtained from a wide variety of clinical and environmental sources; documented species include highly virulent human and animal pathogens, fish pathogens, opportunistic human pathogens, tick endosymbionts, and free-living isolates inhabiting brackish water. While more than 120 Francisella genomes have been sequenced to date, only a few contain plasmids, and most of these appear to be cryptic, with unknown benefit to the host cell. We havemore » identified several putative cryptic plasmids in the sequenced genomes of three Francisella novicida and F. novicida-like strains (TX07-6608, AZ06-7470, DPG_3A-IS) and two new Francisella species (F. frigiditurris CA97-1460 and F. opportunistica MA06-7296). These plasmids were compared to each other and to previously identified plasmids from other Francisella species. Some of the plasmids encoded functions potentially involved in replication, conjugal transfer and partitioning, environmental survival (transcriptional regulation, signaling, metabolism), and hypothetical proteins with no assignable functions. In conclusion, genomic and phylogenetic comparisons of these new plasmids to the other known Francisella plasmids revealed some similarities that add to our understanding of the evolutionary relationships among the diverse Francisella species.« less

  16. Shared Features of Cryptic Plasmids from Environmental and Pathogenic Francisella Species

    DOE PAGES

    Challacombe, Jean Faust; Pillai, Segaran; Kuske, Cheryl R.

    2017-08-24

    The Francisella genus includes several recognized species, additional potential species, and other representatives that inhabit a range of incredibly diverse ecological niches, but are not closely related to the named species. Francisella species have been obtained from a wide variety of clinical and environmental sources; documented species include highly virulent human and animal pathogens, fish pathogens, opportunistic human pathogens, tick endosymbionts, and free-living isolates inhabiting brackish water. While more than 120 Francisella genomes have been sequenced to date, only a few contain plasmids, and most of these appear to be cryptic, with unknown benefit to the host cell. We havemore » identified several putative cryptic plasmids in the sequenced genomes of three Francisella novicida and F. novicida-like strains (TX07-6608, AZ06-7470, DPG_3A-IS) and two new Francisella species (F. frigiditurris CA97-1460 and F. opportunistica MA06-7296). These plasmids were compared to each other and to previously identified plasmids from other Francisella species. Some of the plasmids encoded functions potentially involved in replication, conjugal transfer and partitioning, environmental survival (transcriptional regulation, signaling, metabolism), and hypothetical proteins with no assignable functions. In conclusion, genomic and phylogenetic comparisons of these new plasmids to the other known Francisella plasmids revealed some similarities that add to our understanding of the evolutionary relationships among the diverse Francisella species.« less

  17. Parallel Evolution of Two Clades of an Atlantic-Endemic Pathogenic Lineage of Vibrio parahaemolyticus by Independent Acquisition of Related Pathogenicity Islands

    PubMed Central

    Xu, Feng; Drees, Kevin P.; Sebra, Robert P.; Jones, Stephen H.

    2017-01-01

    ABSTRACT Shellfish-transmitted Vibrio parahaemolyticus infections have recently increased from locations with historically low disease incidence, such as the Northeast United States. This change coincided with a bacterial population shift toward human-pathogenic variants occurring in part through the introduction of several Pacific native lineages (ST36, ST43, and ST636) to nearshore areas off the Atlantic coast of the Northeast United States. Concomitantly, ST631 emerged as a major endemic pathogen. Phylogenetic trees of clinical and environmental isolates indicated that two clades diverged from a common ST631 ancestor, and in each of these clades, a human-pathogenic variant evolved independently through acquisition of distinct Vibrio pathogenicity islands (VPaI). These VPaI differ from each other and bear little resemblance to hemolysin-containing VPaI from isolates of the pandemic clonal complex. Clade I ST631 isolates either harbored no hemolysins or contained a chromosome I-inserted island we call VPaIβ that encodes a type 3 secretion system (T3SS2β) typical of Trh hemolysin producers. The more clinically prevalent and clonal ST631 clade II had an island we call VPaIγ that encodes both tdh and trh and that was inserted in chromosome II. VPaIγ was derived from VPaIβ but with some additional acquired elements in common with VPaI carried by pandemic isolates, exemplifying the mosaic nature of pathogenicity islands. Genomics comparisons and amplicon assays identified VPaIγ-type islands containing tdh inserted adjacent to the ure cluster in the three introduced Pacific and most other emergent lineages that collectively cause 67% of infections in the Northeast United States as of 2016. IMPORTANCE The availability of three different hemolysin genotypes in the ST631 lineage provided a unique opportunity to employ genome comparisons to further our understanding of the processes underlying pathogen evolution. The fact that two different pathogenic clades arose in

  18. Non-tuberculous Mycobacteria in South African Wildlife: Neglected Pathogens and Potential Impediments for Bovine Tuberculosis Diagnosis.

    PubMed

    Gcebe, Nomakorinte; Hlokwe, Tiny M

    2017-01-01

    Non-tuberculous mycobacteria (NTM) are not only emerging and opportunistic pathogens of both humans and animals, but from a veterinary point of view some species induce cross-reactive immune responses that hamper the diagnosis of bovine tuberculosis (bTB) in both livestock and wildlife. Little information is available about NTM species circulating in wildlife species of South Africa. In this study, we determined the diversity of NTM isolated from wildlife species from South Africa as well as Botswana. Thirty known NTM species and subspecies, as well as unidentified NTM, and NTM closely related to Mycobacterium goodii/Mycobacterium smegmatis were identified from 102 isolates cultured between the years 1998 and 2010, using a combination of molecular assays viz PCR and sequencing of different Mycobacterial house-keeping genes as well as single nucleotide polymorphism (SNP) analysis. The NTM identified in this study include the following species which were isolated from tissue with tuberculosis- like lesions in the absence of Mycobacterium tuberculosis complex (MTBC) implying their potential role as pathogens of animals: Mycobacterium abscessus subsp. bolletii, Mycobacterium gastri, Mycobacterium species closely related to Mycobacterium goodii/Mycobacterium smegmatis, Mycobacterium brasiliensis, Mycobacterium sinense JMD 601, Mycobacterium avium subsp. avium, Mycobacterium sp. GR-2007, Mycobacterium bouchedurhonense , and Mycobacterium septicum / M. peregrinum. Mycobaterium brasiliensis, Mycobacterium gastri, Mycobacterium sp. GR-2007, and a potential novel Mycobacterium species closely related to Mycobacterium goodii were found for the first time in this study to be potential pathogens of animals. Mycobacterium simiae was isolated from a sample originating from a tuberculin skin test positive reactor, demonstrating its potential to elicit inappropriate immune responses in animals that may interfere with diagnosis of tuberculosis by immunology. Mycobacterium abscessus

  19. Non-tuberculous Mycobacteria in South African Wildlife: Neglected Pathogens and Potential Impediments for Bovine Tuberculosis Diagnosis

    PubMed Central

    Gcebe, Nomakorinte; Hlokwe, Tiny M.

    2017-01-01

    Non-tuberculous mycobacteria (NTM) are not only emerging and opportunistic pathogens of both humans and animals, but from a veterinary point of view some species induce cross-reactive immune responses that hamper the diagnosis of bovine tuberculosis (bTB) in both livestock and wildlife. Little information is available about NTM species circulating in wildlife species of South Africa. In this study, we determined the diversity of NTM isolated from wildlife species from South Africa as well as Botswana. Thirty known NTM species and subspecies, as well as unidentified NTM, and NTM closely related to Mycobacterium goodii/Mycobacterium smegmatis were identified from 102 isolates cultured between the years 1998 and 2010, using a combination of molecular assays viz PCR and sequencing of different Mycobacterial house-keeping genes as well as single nucleotide polymorphism (SNP) analysis. The NTM identified in this study include the following species which were isolated from tissue with tuberculosis- like lesions in the absence of Mycobacterium tuberculosis complex (MTBC) implying their potential role as pathogens of animals: Mycobacterium abscessus subsp. bolletii, Mycobacterium gastri, Mycobacterium species closely related to Mycobacterium goodii/Mycobacterium smegmatis, Mycobacterium brasiliensis, Mycobacterium sinense JMD 601, Mycobacterium avium subsp. avium, Mycobacterium sp. GR-2007, Mycobacterium bouchedurhonense, and Mycobacterium septicum/M. peregrinum. Mycobaterium brasiliensis, Mycobacterium gastri, Mycobacterium sp. GR-2007, and a potential novel Mycobacterium species closely related to Mycobacterium goodii were found for the first time in this study to be potential pathogens of animals. Mycobacterium simiae was isolated from a sample originating from a tuberculin skin test positive reactor, demonstrating its potential to elicit inappropriate immune responses in animals that may interfere with diagnosis of tuberculosis by immunology. Mycobacterium abscessus

  20. Emerging oomycete threats to plants and animals

    PubMed Central

    Chaparro-Garcia, Angela

    2016-01-01

    Oomycetes, or water moulds, are fungal-like organisms phylogenetically related to algae. They cause devastating diseases in both plants and animals. Here, we describe seven oomycete species that are emerging or re-emerging threats to agriculture, horticulture, aquaculture and natural ecosystems. They include the plant pathogens Phytophthora infestans, Phytophthora palmivora, Phytophthora ramorum, Plasmopara obducens, and the animal pathogens Aphanomyces invadans, Saprolegnia parasitica and Halioticida noduliformans. For each species, we describe its pathology, importance and impact, discuss why it is an emerging threat and briefly review current research activities. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080985

  1. Analysis of the association opportunistic infections with c-reactive protein focus toxoplasma, cytomegalovirus, rubella,and hepatitis in human immunodeficiency virus

    NASA Astrophysics Data System (ADS)

    Khadijah, K. H.; Ferica, K.; Katu, S.; Halim, R.; Mubin, A. H.

    2018-03-01

    Opportunistic infections occur more often severe in people with HIV. C-reactive protein is known to have a prognostic value in HIV and those with HIV-related opportunistic infections. High level of CRP will increase therisk of infection toxoplasma, CMV, rubella,and hepatitis in HIV.Analyzing association of opportunistic infections toxoplasma, CMV, rubella,and hepatitis with the level of CRP in HIV, a cross-sectional analytic study wasduring January-July 2017 on both outpatientand inpatient HIV subjects at Wahidin Sudirohusodo Hospital, Makassar. Each HIV patient is categorized into agroup of opportunistic infections: toxoplasma, CMV, rubella, hepatitis. CRP levels will be assessed in each group, defined by normal values <5 mg/L and increased when ≥5 mg/L.From 49 patients, 34 people with toxoplasma, 48 CMV, 41 rubella, 3 HBV and 1HCV with amean of age 34.55±8.434 years and CRP 59.74±74.787 mg/L. The only toxoplasma had a significant association with high CRP levels (p <0.05). There was no meaningful relationship between the number of opportunistic infections with high levels of CRP (p>0.05).

  2. Climate forcing of an emerging pathogenic fungus across a montane multi-host community.

    PubMed

    Clare, Frances C; Halder, Julia B; Daniel, Olivia; Bielby, Jon; Semenov, Mikhail A; Jombart, Thibaut; Loyau, Adeline; Schmeller, Dirk S; Cunningham, Andrew A; Rowcliffe, Marcus; Garner, Trenton W J; Bosch, Jaime; Fisher, Matthew C

    2016-12-05

    Changes in the timings of seasonality as a result of anthropogenic climate change are predicted to occur over the coming decades. While this is expected to have widespread impacts on the dynamics of infectious disease through environmental forcing, empirical data are lacking. Here, we investigated whether seasonality, specifically the timing of spring ice-thaw, affected susceptibility to infection by the emerging pathogenic fungus Batrachochytrium dendrobatidis (Bd) across a montane community of amphibians that are suffering declines and extirpations as a consequence of this infection. We found a robust temporal association between the timing of the spring thaw and Bd infection in two host species, where we show that an early onset of spring forced high prevalences of infection. A third highly susceptible species (the midwife toad, Alytes obstetricans) maintained a high prevalence of infection independent of time of spring thaw. Our data show that perennially overwintering midwife toad larvae may act as a year-round reservoir of infection with variation in time of spring thaw determining the extent to which infection spills over into sympatric species. We used future temperature projections based on global climate models to demonstrate that the timing of spring thaw in this region will advance markedly by the 2050s, indicating that climate change will further force the severity of infection. Our findings on the effect of annual variability on multi-host infection dynamics show that the community-level impact of fungal infectious disease on biodiversity will need to be re-evaluated in the face of climate change.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Authors.

  3. Novel vaccine strategies against emerging viruses

    PubMed Central

    García-Sastre, Adolfo; Mena, Ignacio

    2013-01-01

    One of the main public health concerns of emerging viruses is their potential introduction into and sustained circulation among populations of immunologically naïve, susceptible hosts. The induction of protective immunity through vaccination can be a powerful tool to prevent this concern by conferring protection to the population at risk. Conventional approaches to develop vaccines against emerging pathogens have significant limitations: lack of experimental tools for several emerging viruses of concern, poor immunogenicity, safety issues, or lack of cross-protection against antigenic variants. The unpredictability of the emergence of future virus threats demands the capability to rapidly develop safe, effective vaccines. We describe some recent advances in new vaccine strategies that are being explored as alternatives to classical attenuated and inactivated vaccines, and provide examples of potential novel vaccines for emerging viruses. These approaches might be applied to the control of many other emerging pathogens. PMID:23477832

  4. Are outbreaks of emerging pathogens correlated with construction of wetlands? Report 2 : amphibian breeding and disease outbreaks during 2014-2015 and possible correlates with environmental variables : research report.

    DOT National Transportation Integrated Search

    2016-10-01

    A study of wetlands near the Intercounty Connector construction site (now a toll facility MD 200) in Maryland, : found that an emerging pathogen known as Ranavirus was having a significant impact on at least two species of : amphibians as well as...

  5. Checklist of bees (Hymenoptera: Apoidea) from managed emergent wetlands in the lower Mississippi Alluvial Valley of Arkansas

    PubMed Central

    2018-01-01

    Abstract Background Here we present the results from a two-year bee survey conducted on 18 managed emergent wetlands in the lower Mississippi Alluvial Valley of Arkansas, USA. Sample methods included pan traps, sweep netting and blue-vane traps. We document 83 bee species and morphospecies in 5 families and 31 genera, of which 37 species represent first published state records for Arkansas. The majority of species were opportunistic wetland species; only a small number were wetland-dependent species or species largely restricted to alluvial plains. New information We present new distributional records for bee species not previously recorded in managed emergent wetlands and report specimens of thirty-seven species for which no published Arkansas records exist, expanding the known ranges of Ceratina cockerelli, Diadasia enavata, Lasioglossum creberrimum, Svastra cressonii and Dieunomia triangulifera. We also distinguish opportunistic wetland bee species from wetland-dependent and alluvial plain-restricted species. PMID:29773960

  6. Checklist of bees (Hymenoptera: Apoidea) from managed emergent wetlands in the lower Mississippi Alluvial Valley of Arkansas.

    PubMed

    Stephenson, Phillip L; Griswold, Terry L; Arduser, Michael S; Dowling, Ashley P G; Krementz, David G

    2018-01-01

    Here we present the results from a two-year bee survey conducted on 18 managed emergent wetlands in the lower Mississippi Alluvial Valley of Arkansas, USA. Sample methods included pan traps, sweep netting and blue-vane traps. We document 83 bee species and morphospecies in 5 families and 31 genera, of which 37 species represent first published state records for Arkansas. The majority of species were opportunistic wetland species; only a small number were wetland-dependent species or species largely restricted to alluvial plains. We present new distributional records for bee species not previously recorded in managed emergent wetlands and report specimens of thirty-seven species for which no published Arkansas records exist, expanding the known ranges of Ceratina cockerelli , Diadasia enavata, Lasioglossum creberrimum, Svastra cressonii and Dieunomia triangulifera . We also distinguish opportunistic wetland bee species from wetland-dependent and alluvial plain-restricted species.

  7. The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi.

    PubMed

    Crab, R; Lambert, A; Defoirdt, T; Bossier, P; Verstraete, W

    2010-11-01

    To study the potential biocontrol activity of bioflocs technology. Glycerol-grown bioflocs were investigated for their antimicrobial and antipathogenic properties against the opportunistic pathogen Vibrio harveyi. The bioflocs did not produce growth-inhibitory substances. However, bioflocs and biofloc supernatants decreased quorum sensing-regulated bioluminescence of V. harveyi. This suggested that the bioflocs had biocontrol activity against this pathogen because quorum sensing regulates virulence of vibrios towards different hosts. Interestingly, the addition of live bioflocs significantly increased the survival of gnotobiotic brine shrimp (Artemia franciscana) larvae challenged to V. harveyi. Bioflocs grown on glycerol as carbon source inhibit quorum sensing-regulated bioluminescence in V. harveyi and protect brine shrimp larvae from vibriosis. The results presented in this study indicate that in addition to water quality control and in situ feed production, bioflocs technology could help in controlling bacterial infections within the aquaculture pond. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  8. Understanding the contribution of common childhood illnesses and opportunistic infections to morbidity and mortality in children living with HIV in resource-limited settings.

    PubMed

    Modi, Surbhi; Chiu, Alex; Ng'eno, Bernadette; Kellerman, Scott E; Sugandhi, Nandita; Muhe, Lulu

    2013-11-01

    Although antiretroviral treatment (ART) has reduced the incidence of HIV-related opportunistic infections among children living with HIV, access to ART remains limited for children, especially in resource-limited settings. This paper reviews current knowledge on the contribution of opportunistic infections and common childhood illnesses to morbidity and mortality in children living with HIV, highlights interventions known to improve the health of children, and identifies research gaps for further exploration. Literature review of peer-reviewed articles and abstracts combined with expert opinion and operational experience. Morbidity and mortality due to opportunistic infections has decreased in both developed and resource-limited countries. However, the burden of HIV-related infections remains high, especially in sub-Saharan Africa, where the majority of HIV-infected children live. Limitations in diagnostic capacity in resource-limited settings have resulted in a relative paucity of data on opportunistic infections in children. Additionally, the reliance on clinical diagnosis means that opportunistic infections are often confused with common childhood illnesseswhich also contribute to excess morbidity and mortality in these children. Although several preventive interventions have been shown to decrease opportunistic infection-related mortality, implementation of many of these interventions remains inconsistent. In order to reduce opportunistic infection-related mortality, early ART must be expanded, training for front-line clinicians must be improved, and additional research is needed to improve screening and diagnostic algorithms.

  9. Guidelines for the Prevention and Treatment of Opportunistic Infections Among HIV-Exposed and HIV-Infected Children: Recommendations from CDC, the National Institutes of Health, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the American Academy of Pediatrics

    PubMed Central

    Mofenson, Lynne M.; Brady, Michael T.; Danner, Susie P.; Dominguez, Kenneth L.; Hazra, Rohan; Handelsman, Edward; Havens, Peter; Nesheim, Steve; Read, Jennifer S.; Serchuck, Leslie; Van Dyke, Russell

    2010-01-01

    Summary This report updates and combines into one document earlier versions of guidelines for preventing and treating opportunistic infections (OIs) among HIV-exposed and HIV-infected children, last published in 2002 and 2004, respectively. These guidelines are intended for use by clinicians and other health-care workers providing medical care for HIV-exposed and HIV-infected children in the United States. The guidelines discuss opportunistic pathogens that occur in the United States and one that might be acquired during international travel (i.e., malaria). Topic areas covered for each OI include a brief description of the epidemiology, clinical presentation, and diagnosis of the OI in children; prevention of exposure; prevention of disease by chemoprophylaxis and/or vaccination; discontinuation of primary prophylaxis after immune reconstitution; treatment of disease; monitoring for adverse effects during treatment; management of treatment failure; prevention of disease recurrence; and discontinuation of secondary prophylaxis after immune reconstitution. A separate document about preventing and treating of OIs among HIV-infected adults and postpubertal adolescents (Guidelines for the Prevention and Treatment of Opportunistic Infections in HIV-Infected Adults and Adolescents) was prepared by a working group of adult HIV and infectious disease specialists. The guidelines were developed by a panel of specialists in pediatric HIV infection and infectious diseases (the Pediatric Opportunistic Infections Working Group) from the U.S. government and academic institutions. For each OI, a pediatric specialist with content-matter expertise reviewed the literature for new information since the last guidelines were published; they then proposed revised recommendations at a meeting at the National Institutes of Health (NIH) in June 2007. After these presentations and discussions, the guidelines underwent further revision, with review and approval by the Working Group, and final

  10. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria.

    PubMed

    Alexander, Johannes; Bollmann, Anna; Seitz, Wolfram; Schwartz, Thomas

    2015-04-15

    The dissemination of medically relevant antibiotic resistance genes (ARGs) (blaVIM-1, vanA, ampC, ermB, and mecA) and opportunistic bacteria (Enterococcus faecium/faecalis, Pseudomonas aeruginosa, Enterobacteriaceae, Staphylococcus aureus, and CNS) was determined in different anthropogenically influenced aquatic habitats in a selected region of Germany. Over a period of two years, four differently sized wastewater treatment plants (WWTPs) with and without clinical influence, three surface waters, four rain overflow basins, and three groundwater sites were analyzed by quantitative Polymerase Chain Reaction (qPCR). Results were calculated in cell equivalents per 100 ng of total DNA extracted from water samples and per 100 mL sample volume, which seems to underestimate the abundance of antibiotic resistance and opportunistic bacteria. High abundances of opportunistic bacteria and ARG were quantified in clinical wastewaters and influents of the adjacent WWTP. The removal capacities of WWTP were up to 99% for some, but not all investigated bacteria. The abundances of most ARG targets were found to be increased in the bacterial population after conventional wastewater treatment. As a consequence, downstream surface water and also some groundwater compartments displayed high abundances of all four ARGs. It became obvious that the dynamics of the ARG differed from the fate of the opportunistic bacteria. This underlines the necessity of an advanced microbial characterization of anthropogenically influenced environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival

    PubMed Central

    Al-Laaeiby, Ayat; Kershaw, Michael J.; Penn, Tina J.; Thornton, Christopher R.

    2016-01-01

    The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H2O2), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H2O2 treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not contribute to

  12. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival.

    PubMed

    Al-Laaeiby, Ayat; Kershaw, Michael J; Penn, Tina J; Thornton, Christopher R

    2016-03-24

    The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H₂O₂), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H₂O₂ treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not

  13. Emergence and spread of highly pathogenic avian influenza A(H5N8) in Europe in 2016-2017.

    PubMed

    Napp, S; Majó, N; Sánchez-Gónzalez, R; Vergara-Alert, J

    2018-03-14

    Circulation of highly pathogenic avian influenza (HPAI) viruses poses a continuous threat to animal and public health. After the 2005-2006 H5N1 and the 2014-2015 H5N8 epidemics, another H5N8 is currently affecting Europe. Up to August 2017, 1,112 outbreaks in domestic and 955 in wild birds in 30 European countries have been reported, the largest epidemic by a HPAI virus in the continent. Here, the main epidemiological findings are described. While some similarities with previous HPAI virus epidemics were observed, for example in the pattern of emergence, significant differences were also patent, in particular the size and extent of the epidemic. Even though no human infections have been reported to date, the fact that A/H5N8 has affected so far 1,112 domestic holdings, increases the risk of exposure of humans and therefore represents a concern. Understanding the epidemiology of HPAI viruses is essential for the planning future surveillance and control activities. © 2018 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  14. The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11–12th March 2015)

    PubMed Central

    Roux, Frédérique Le; Wegner, K. Mathias; Baker-Austin, Craig; Vezzulli, Luigi; Osorio, Carlos R.; Amaro, Carmen; Ritchie, Jennifer M.; Defoirdt, Tom; Destoumieux-Garzón, Delphine; Blokesch, Melanie; Mazel, Didier; Jacq, Annick; Cava, Felipe; Gram, Lone; Wendling, Carolin C.; Strauch, Eckhard; Kirschner, Alexander; Huehn, Stephan

    2015-01-01

    Global change has caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring during episodes of unusually warm weather. Similar patterns were also observed in Vibrio-associated diseases affecting marine organisms such as fish, bivalves and corals. Basic knowledge is still lacking on the ecology and evolutionary biology of these bacteria as well as on their virulence mechanisms. Current limitations in experimental systems to study infection and the lack of diagnostic tools still prevent a better understanding of Vibrio emergence. A major challenge is to foster cooperation between fundamental and applied research in order to investigate the consequences of pathogen emergence in natural Vibrio populations and answer federative questions that meet societal needs. Here we report the proceedings of the first European workshop dedicated to these specific goals of the Vibrio research community by connecting current knowledge to societal issues related to ocean health and food security. PMID:26322036

  15. Opportunistic infections of the retina in patients with aquaporin-4 antibody disease.

    PubMed

    George, Jithin S; Leite, Maria Isabel; Kitley, Joanna L; Jones, Nicola; Cortes, Nicholas; Donati, Matthew; Matthews, Bethan Non; Calladine, Daniel; Hillier, Charles; Yusuf, Imran H; Munneke, Robert; Patel, Chetan K; Palace, Jacqueline A; Elston, John S

    2014-11-01

    Patients with neuromyelitis optica who have aquaporin-4 antibodies are being identified and receiving immunosuppressant treatment earlier and more aggressively as a result of increasing awareness of the importance of preventing relapses responsible for the high morbidity and mortality associated with the disease. To our knowledge, opportunistic retinal infection in patients with aquaporin-4 antibodies who are receiving immunosuppressants has not been reported to date. We describe 2 patients with aquaporin-4 antibodies who were receiving conventional doses of first-line immunosuppressive therapy. Both patients presented with vision loss that was initially thought to be optic neuritis attacks. The subsequent diagnoses were ocular toxoplasmosis and cytomegalovirus retinitis. Retinal opportunistic infections can occur in patients with aquaporin-4 antibodies who are receiving relatively low levels of immunosuppression, may mimic optic neuritis, and are a potentially reversible cause of vision loss when treated promptly.

  16. In Vitro Antimicrobial Potential of the Lichen Parmotrema sp. Extracts against Various Pathogens.

    PubMed

    Chauhan, Ritika; Abraham, Jayanthi

    2013-07-01

    The ongoing increasing antibiotic resistance is one of the biggest challenges faced by global public health. The perennial need for new antimicrobials against a background of increasing antibiotic resistance in pathogenic and opportunistic microorganisms obliges the scientific community to constantly develop new drugs and antimicrobial agents. Lichens are known prolific sources of natural antimicrobial drugs and biologically active natural products. This study was aimed to explore in vitro antimicrobial activity of lichen Parmotrema sp. The methanol and aqueous extracts of lichen Parmotrema sp. was extracted using Soxhlet extractor. Antibiotic assessment of methanol and aqueous extracts was done against eight bacterial (Escherichia coli, Staphylococcus aureus, Proteus mirabilis, Salmonella sp., Shigella sp., Enterococci faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae,) clinical pathogens and five plant pathogenic fungal strains (Aspergillus terreus strain JAS1, Scedosporium sp. JAS1, Ganoderma sp. JAS4, Candida tropicalis and Fusarium sp.) by Kirby-Bauer method. The methanol lichen Parmotrema sp. extract inhibited all the test organisms. The highest antibacterial activity was found against Pseudomonas aeruginosa and Staphylococcus aureus. The weakest activity was manifested in Salmonella sp. and Scedosporium sp. JAS1. Strong antifungal effect was found against Ganoderma sp. JAS4 and Fusarium sp. The aqueous lichen Parmotrema sp. extract revealed neither antibacterial nor antifungal activity. The present study shows that tested lichen Parmotrema sp. extracts demonstrated a strong antimicrobial effect. That suggests the active components from methanol extracts of the investigated lichen Parmotrema sp. can be used as natural antimicrobial agent against pathogens.

  17. The Long-Term Effectiveness and Cost Effectiveness of Organized versus Opportunistic Screening for Breast Cancer in Austria.

    PubMed

    Schiller-Fruehwirth, Irmgard; Jahn, Beate; Einzinger, Patrick; Zauner, Günther; Urach, Christoph; Siebert, Uwe

    2017-09-01

    In 2014, Austrian health authorities implemented an organized breast cancer screening program. Until then, there has been a long-standing tradition of opportunistic screening. To evaluate the cost-effectiveness of organized screening compared with opportunistic screening, as well as to identify factors influencing the clinical and economic outcomes. We developed and validated an individual-level state-transition model and assessed the health outcomes and costs of organized and opportunistic screening for 40-year-old asymptomatic women. The base-case analysis compared a scenario involving organized biennial screening with a scenario reflecting opportunistic screening practice for an average-risk woman aged 45 to 69 years. We applied an annual discount rate of 3% and estimated the incremental cost-effectiveness ratio in terms of the cost (2012 euros) per life-year gained (LYG) from a health care perspective. Deterministic and probabilistic sensitivity analyses were performed to assess uncertainty. Compared with opportunistic screening, an organized program yielded on average additional 0.0118 undiscounted life-years (i.e., 4.3 days) and cost savings of €41 per woman. In the base-case analysis, the incremental cost-effectiveness ratio of organized screening was approximately €20,000 per LYG compared with no screening. Assuming a willingness-to-pay threshold of €50,000 per LYG, there was a 70% probability that organized screening would be considered cost-effective. The attendance rate, but not the test accuracy of mammography, was an influential factor for the cost-effectiveness. The decision to adopt organized screening is likely an efficient use of limited health care resources in Austria. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  18. Global and local environmental changes as drivers of Buruli ulcer emergence.

    PubMed

    Combe, Marine; Velvin, Camilla Jensen; Morris, Aaron; Garchitorena, Andres; Carolan, Kevin; Sanhueza, Daniel; Roche, Benjamin; Couppié, Pierre; Guégan, Jean-François; Gozlan, Rodolphe Elie

    2017-04-26

    Many emerging infectious diseases are caused by generalist pathogens that infect and transmit via multiple host species with multiple dissemination routes, thus confounding the understanding of pathogen transmission pathways from wildlife reservoirs to humans. The emergence of these pathogens in human populations has frequently been associated with global changes, such as socio-economic, climate or biodiversity modifications, by allowing generalist pathogens to invade and persist in new ecological niches, infect new host species, and thus change the nature of transmission pathways. Using the case of Buruli ulcer disease, we review how land-use changes, climatic patterns and biodiversity alterations contribute to disease emergence in many parts of the world. Here we clearly show that Mycobacterium ulcerans is an environmental pathogen characterized by multi-host transmission dynamics and that its infectious pathways to humans rely on the local effects of global environmental changes. We show that the interplay between habitat changes (for example, deforestation and agricultural land-use changes) and climatic patterns (for example, rainfall events), applied in a local context, can lead to abiotic environmental changes and functional changes in local biodiversity that favor the pathogen's prevalence in the environment and may explain disease emergence.

  19. An enhanced mobile-healthcare emergency system based on extended chaotic maps.

    PubMed

    Lee, Cheng-Chi; Hsu, Che-Wei; Lai, Yan-Ming; Vasilakos, Athanasios

    2013-10-01

    Mobile Healthcare (m-Healthcare) systems, namely smartphone applications of pervasive computing that utilize wireless body sensor networks (BSNs), have recently been proposed to provide smartphone users with health monitoring services and received great attentions. An m-Healthcare system with flaws, however, may leak out the smartphone user's personal information and cause security, privacy preservation, or user anonymity problems. In 2012, Lu et al. proposed a secure and privacy-preserving opportunistic computing (SPOC) framework for mobile-Healthcare emergency. The brilliant SPOC framework can opportunistically gather resources on the smartphone such as computing power and energy to process the computing-intensive personal health information (PHI) in case of an m-Healthcare emergency with minimal privacy disclosure. To balance between the hazard of PHI privacy disclosure and the necessity of PHI processing and transmission in m-Healthcare emergency, in their SPOC framework, Lu et al. introduced an efficient user-centric privacy access control system which they built on the basis of an attribute-based access control mechanism and a new privacy-preserving scalar product computation (PPSPC) technique. However, we found out that Lu et al.'s protocol still has some secure flaws such as user anonymity and mutual authentication. To fix those problems and further enhance the computation efficiency of Lu et al.'s protocol, in this article, the authors will present an improved mobile-Healthcare emergency system based on extended chaotic maps. The new system is capable of not only providing flawless user anonymity and mutual authentication but also reducing the computation cost.

  20. EXPLORATORY OCCURRENCE STUDY OF NEWLY EMERGING PATHOGENS IN POTABLE WATER

    EPA Science Inventory

    Recent attention has focused on the potential transmission via drinking water of two bacterial pathogens, Aeromonas and Helicobacter pylori, both of which are included in the current Contaminant Candidate List. Aeromonas bacteria occur naturally in surface waters and have been i...