Science.gov

Sample records for emission spectrometry icp-oes

  1. Trace elemental composition of curry by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Gonzálvez, A; Armenta, S; De La Guardia, M

    2008-01-01

    A methodology based on inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted acid digestion was developed to determine the content of traces elements in curry samples from the Spanish market. The methodology was validated in terms of accuracy by the analysis of citrus and tomato leaf reference materials achieving comparable results with the certified values. The trace metal content of curry samples was compared with data available from previously published reports concerning Indian samples, especially in terms of heavy metal composition, in order to guarantee the quality of the commercially available spices in the European countries. Values found for the analysis of arsenic, lead and cadmium were significantly lower than the maximum limit allowed by European Union statutory limits for heavy metals and lower than those obtained for Indian curry leaves reported by Indian research teams by using neutron activation and γ-ray analysis. PMID:24784807

  2. Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES).

    PubMed

    Schenk, Emily R; Almirall, José R

    2012-04-10

    The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the

  3. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka

    2016-05-01

    This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution.

  4. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge

    NASA Astrophysics Data System (ADS)

    Dimpe, K. M.; Ngila, J. C.; Mabuba, N.; Nomngongo, P. N.

    Heavy metal contamination exists in aqueous wastes and sludge of many industrial discharges and domestic wastewater, among other sources. Determination of metals in the wastewater and sludge requires sample pre-treatment prior to analysis because of certain challenges such as the complexity of the physical state of the sample, which may lead to wrong readings in the measurement. This is particularly the case with low analyte concentration to be detected by the instrument. The purpose of this work was to assess and validate the different sample preparation methods namely, hot plate and microwave-assisted digestion procedures for extraction of metal ions in wastewater and sludge samples prior to their inductively coupled plasma optical emission spectrometric (ICP-OES) determination. For the extraction of As, Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, three acid mixtures, that is, HNO3/H2O2, HNO3/HClO4/H2O2 and aqua regia + H2O2, were evaluated. Influent wastewater spiked with the SRM (CWW-TM-B) was used for the optimization of acid mixtures affecting the extraction procedure. After sample digestion, the filtration capabilities of cellulose-acetate filter paper and the acrodisc syringe filter with the pore size of 0.45 μm were compared. In terms of performance, acrodisc syringe filter in terms of the improved recoveries obtained, was found to be the best filtration method compared to the filter paper. Based on the analytical results obtained, microwave-assisted digestion (MAD) using aqua regia + H2O2 mixture was found to be the most suitable method for extraction of heavy metals and major elements in all the sample matrices. Therefore, MAD using aqua regia + H2O2 mixture was used for further investigations. The precision of the developed MAD method expressed in terms of relative standard deviations (% RSD) for different metals was found to be <5%. The limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.12% to 2.18 μg L-1 and 0.61% to 3.43 μg L-1

  5. Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES).

    PubMed

    Thangavel, S; Dash, K; Dhavile, S M; Sahayam, A C

    2015-01-01

    A method has been developed for the determination of traces of arsenic, boron, bismuth, gallium, germanium, phosphorus, lead, antimony, selenium, silicon and tellurium in nickel matrix. The sample was dissolved in HClO4 (~ 150°C) and nickel was settled as crystalline nickelperchlorate [Ni(ClO4)2] on cooling. The mixture was ultrasonicated and after the separation of Ni(ClO4)2, analytes of interest were determined in the supernatant using ICP-OES. Similarly, it was also found that, after the dissolution of nickel in perchloric acid, when the solution temperature was maintained at ~ 100°C, long needle like crystals of nickel perchlorate were formed. The crystals were separated from the mixture and trace elements in the supernatant were determined using ICP-OES. In both methods the matrix removal was >99% and the recoveries of analytes were in the range 92-97%. The limits of detection for As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te were found to be 0.18, 0.21, 0.07, 0.06, 0.25, 0.11, 0.09, 0.10, 0.17, 0.20 and 0.07 μg g(-1) respectively. The procedure was applied for the analysis of a standard reference material nickel oxide (SRM 761, Nickel Oxide No.1, NBS, USA) and the values obtained are in close agreement with the certified values. PMID:25281133

  6. Preconcentration of trace multi-elements in water samples using Dowex 50W-x8 and Chelex-100 resins prior to their determination using inductively coupled plasma atomic emission spectrometry (ICP-OES)

    NASA Astrophysics Data System (ADS)

    Nomngongo, Philiswa N.; Catherine Ngila, J.; Msagati, Titus A. M.; Moodley, Brenda

    This work presents a solid phase extraction (SPE) method for simultaneous preconcentration of trace elements in water samples prior to their ICP-OES determination. Dowex 50W-x8 and Chelex-100 resins were used as SPE sorbent materials for preconcentration of trace Cd, Co, Cr, Cu, Fe, Ni, Pb and Zn. The optimum sample pH, eluent concentration and sample flow rates were found to 6, 3.0 mol L-1 and 3.0 mL min-1, respectively. In terms of multi-element preconcentration capabilities, Dowex 50W-x8 appeared to be a better sorbent. The recoveries for all the tested analytes were >95%. However, Chelex-100 showed a better performance in terms of recovery (>95%) towards Cu, Fe and Zn. Under optimized conditions using Dowex 50W-x8, the relative standard deviations for different metals were <3%. The limits of detection and limits of quantification ranged from 0.01-0.39 μg L-1 and 0.05-0.1.3 μg L-1, respectively. The accuracy of the preconcentration method was confirmed by spike recovery test and the analysis of certified reference materials. The SPE method was applied for preconcentration of the analyte ions in tap water, bottled water and wastewater samples.

  7. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA).

    PubMed

    Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su

    2016-12-01

    This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. PMID:27374562

  8. Method of low tantalum amounts determination in niobium and its compounds by ICP-OES technique.

    PubMed

    Smolik, Marek; Turkowska, Magdalena

    2013-10-15

    A method of determination of low amounts of tantalum in niobium and niobium compounds without its prior separation by means of inductively coupled plasma optical emission spectrometry (ICP-OES) has been worked out. The method involves dissolution of the analyzed samples of niobium as well as its various compounds (oxides, fluorides, chlorides, niobates(V)) in fluoride environments, precipitation of sparingly soluble niobic(tantalic) acid (Nb2O5(Ta2O5) · xH2O), converting them into soluble complex compounds by means of oxalic acid with addition of hydrogen peroxide and finally analyzing directly obtained solutions by ICP-OES. This method permits determination of Ta in niobium at the level of 10(-3)% with relatively good precision (≤ 8% RSD) and accuracy (recovery factor: 0.9-1.1). Relative differences in the results obtained by two independent methods (ICP-OES and ICP-MS) do not exceed 14%, and other elements present in niobium compounds (Ti, W, Zr, Hf, V, Mo, Fe, Cr) at the level of 10(-2)% do not affect determination. PMID:24054577

  9. Selective solid phase extraction of copper using a new Cu(II)-imprinted polymer and determination by inductively coupled plasma optical emission spectroscopy (ICP-OES)

    PubMed Central

    Yilmaz, Vedat; Arslan, Zikri; Hazer, Orhan; Yilmaz, Hayriye

    2014-01-01

    This work reports the preparation of a novel Cu(II)-ion imprinted polymer using 2-thiozylmethacrylamide (TMA) for on-line preconcentration of Cu(II) prior to its determination by inductively coupled optical emission spectroscopy (ICP-OES). Cu(II)-TMA monomer (complex) was synthesized and copolymerized via bulk polymerization method in the presence of ethyleneglycoldimethacrylate cross-linker. The resulting polymer was washed with 5% (v/v) HNO3 to remove Cu(II) ions and then with water until a neutral pH. The ion imprinted polymer was characterized by FT-IR and scanning electron microscopy. The experimental conditions were optimized for on-line preconcentration of Cu(II) using a minicolumn of ion imprinted polymer (IIP). Quantitative retention was achieved between pH 5.0 and 6.0, whereas the recoveries for the non-imprinted polymer (NIP) were about 61%. The IIP showed about 30 times higher selectivity to Cu(II) in comparison to NIP. The IIP also exhibited excellent selectivity for Cu(II) against the competing transition and heavy metal ions, including Cd, Co, Cr, Fe, Mn, Ni, Pb and Zn. Computational calculations revealed that the selectivity of IIP was mediated by the stability of Cu(II)-TMA complex which was far more stable than those of Co(II), Ni(II) and Zn(II) that have similar charge and ionic radii to Cu(II). A volume of 10 mL sample solution was loaded onto the column at 4.0 mL min−1 by using a sequential injection system (FIALab 3200) followed by elution with 1.0 mL of 2% (v/v) HNO3. The relative standard deviation (RSD) and limit of detection (LOD, 3s) of the method were 3.2% and 0.4 μg L−1, respectively. The method was successfully applied to determination of Cu(II) in fish otoliths (CRM 22), bone ash (SRM 1400) and coastal seawater and estuarine water samples. PMID:24511158

  10. Volatile organic silicon compounds in biogases: development of sampling and analytical methods for total silicon quantification by ICP-OES.

    PubMed

    Chottier, Claire; Chatain, Vincent; Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES. PMID:25379538

  11. Volatile Organic Silicon Compounds in Biogases: Development of Sampling and Analytical Methods for Total Silicon Quantification by ICP-OES

    PubMed Central

    Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES. PMID:25379538

  12. Uncertainty estimation in the determination of metals in superficial water by ICP-OES

    NASA Astrophysics Data System (ADS)

    Faustino, Mainara G.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Soares, Sabrina M. V.; Silva, Tatiane B. S. C.; da Silva, Douglas B.; Pires, Maria Aparecida F.; Cotrim, Marycel E. B.

    2016-07-01

    From validation studies, it was possible to estimate a measurement uncertainty of several elements such as Al, Ba, Ca, Cu, Cr, Cd, Fe, Mg, Mn, Ni and K in water samples from Guarapiranga Dam. These elements were analyzed by optical emission spectrometry with inductively coupled plasma (ICP-OES). The value of relative estimated uncertainties were between 3% and 15%. The greatest uncertainty contributions were analytical curve, and the recovery method, which were related with elements concentrations and the equipment response. Water samples analyzed were compared with CONAMA Resolution #357/2005.

  13. A rapid ICP-OES strategy for determination of gold and silver in blister copper by nitric acid digestion

    NASA Astrophysics Data System (ADS)

    Zhang, Gai; Tian, Min

    2014-03-01

    A rapid strategy for the analysis of gold and silver in blister copper by inductively coupled plasma optical emission spectrometry (ICP-OES) was firstly proposed. Nitric acid was used to digest blister copper instead of commonly used sulfuric acid. This prevented forming the salt of copper sulfate in the filtration process when the volume of the mixture is very small. Thus, the time of filtration was saved. After filtrating, aqua regia was used to digest the residue and acidize the filter liquor. Two parts of gotten solution were directly determined by ICP-OES. The cycle of analysis was shortened compared with sulfuric acid-fire assay. The proposed method was successfully applied to determine gold and silver in blister copper, and the results were in good agreement with those obtained by lead fire assay.

  14. ICP OES and CV AAS in determination of mercury in an unusual fatal case of long-term exposure to elemental mercury in a teenager.

    PubMed

    Lech, Teresa

    2014-04-01

    In this work, a case of deliberate self-poisoning is presented. A 14-year-old girl suddenly died during one of the several hospitalizations. Abdominal computer tomography showed a large number of metallic particles in the large intestine. Analysis of blood and internal organs for mercury and other toxic metals carried out by inductively coupled plasma optical emission spectrometry (ICP OES) revealed high concentrations of mercury in kidneys and liver (64,200 and 2470ng/g, respectively), less in stomach (90ng/g), and none in blood. Using cold vapor-atomic absorption spectrometry (CV AAS), high levels of mercury were confirmed in all examined materials, including blood (87ng/g), and additionally in hair. The results of analysis obtained by two techniques revealed that the exposure to mercury was considerable (some time later, it was stated that the mercury originated from thermometers that had been broken over the course of about 1 year, because of Münchausen syndrome). CV AAS is a more sensitive technique, particularly for blood samples (negative results using ICP OES), and tissue samples - with LOQ: 0.63ng/g of Hg (CV AAS) vis-à-vis 70ng/g of Hg (ICP OES). However, ICP OES may be used as a screening technique for autopsy material in acute poisoning by a heavy metal, even one as volatile as mercury. PMID:24630410

  15. Evaluation of inorganic elements in cat's claw teas using ICP OES and GF AAS.

    PubMed

    Pereira, João B; Dantas, Kelly G F

    2016-04-01

    The determination of Ba, Ca, Cu, Fe, Mg, Mn, P, Pb, and Zn by inductively coupled plasma optical emission spectrometry (ICP OES), and Se by graphite furnace atomic absorption spectrometry (GF AAS), has been carried out in dry matter and teas from 11 samples of the cat's claw plant. The accuracy and precision values were verified against GBW 07604 (Poplar leaves) certified reference material and by the recovery test. Results showed a high content of Ca in the medicinal plant studied, followed by Mg and P. The values obtained showed that the elements studied have different concentrations depending on the method of tea preparation. The highest levels were observed in Ca and Mg, and the lowest for Se and Pb, by both infusion and decoction. Teas prepared from this plant were found to be at safe levels for human consumption, and may be suitable as sources of these elements in the human diet. PMID:26593498

  16. Simplified multi-element analysis of ground and instant coffees by ICP-OES and FAAS.

    PubMed

    Szymczycha-Madeja, Anna; Welna, Maja; Pohl, Pawel

    2015-01-01

    A simplified alternative to the wet digestion sample preparation procedure for roasted ground and instant coffees has been developed and validated for the determination of different elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, Zn) and flame atomic absorption spectrometry (FAAS) (Ca, Fe, K, Mg, Na). The proposed procedure, i.e. the ultrasound-assisted solubilisation in aqua regia, is quite fast and simple, requires minimal use of reagents, and demonstrated good analytical performance, i.e. accuracy from -4.7% to 1.9%, precision within 0.5-8.6% and recovery in the range 93.5-103%. Detection limits of elements were from 0.086 ng ml(-1) (Sr) to 40 ng ml(-1) (Fe). A preliminary classification of 18 samples of ground and instant coffees was successfully made based on concentrations of selected elements and using principal component analysis and hierarchic cluster analysis. PMID:26140574

  17. Selected problems with boron determination in water treatment processes. Part I: comparison of the reference methods for ICP-MS and ICP-OES determinations.

    PubMed

    Kmiecik, Ewa; Tomaszewska, Barbara; Wątor, Katarzyna; Bodzek, Michał

    2016-06-01

    The aim of the study was to compare the two reference methods for the determination of boron in water samples and further assess the impact of the method of preparation of samples for analysis on the results obtained. Samples were collected during different desalination processes, ultrafiltration and the double reverse osmosis system, connected in series. From each point, samples were prepared in four different ways: the first was filtered (through a membrane filter of 0.45 μm) and acidified (using 1 mL ultrapure nitric acid for each 100 mL of samples) (FA), the second was unfiltered and not acidified (UFNA), the third was filtered but not acidified (FNA), and finally, the fourth was unfiltered but acidified (UFA). All samples were analysed using two analytical methods: inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained were compared and correlated, and the differences between them were studied. The results show that there are statistically significant differences between the concentrations obtained using the ICP-MS and ICP-OES techniques regardless of the methods of sampling preparation (sample filtration and preservation). Finally, both the ICP-MS and ICP-OES methods can be used for determination of the boron concentration in water. The differences in the boron concentrations obtained using these two methods can be caused by several high-level concentrations in selected whole-water digestates and some matrix effects. Higher concentrations of iron (from 1 to 20 mg/L) than chromium (0.02-1 mg/L) in the samples analysed can influence boron determination. When iron concentrations are high, we can observe the emission spectrum as a double joined and overlapping peak. PMID:26939686

  18. Low gas flow inductively coupled plasma optical emission spectrometry for the analysis of food samples after microwave digestion.

    PubMed

    Nowak, Sascha; Gesell, Monika; Holtkamp, Michael; Scheffer, Andy; Sperling, Michael; Karst, Uwe; Buscher, Wolfgang

    2014-11-01

    In this work, the recently introduced low flow inductively coupled plasma optical emission spectrometry (ICP-OES) with a total argon consumption below 0.7 L/min is applied for the first time to the field of food analysis. One goal is the investigation of the performance of this low flow plasma compared to a conventional ICP-OES system when non-aqueous samples with a certain matrix are introduced into the system. For this purpose, arsenic is determined in three different kinds of fish samples. In addition several nutrients (K, Na, Mg, Ca) and trace metals (Co, Cu, Mn, Cd, Pb, Zn, Fe, and Ni) are determined in honey samples (acacia) after microwave digestion. The precision of the measurements is characterized by relative standard deviations (RSD) and compared to the corresponding precision values achieved using the conventional Fassel-type torch of the ICP. To prove the accuracy of the low flow ICP-OES method, the obtained data from honey samples are validated by a conventional ICP-OES. For the measurements concerning arsenic in fish, the low flow ICP-OES values are validated by conventional Fassel-type ICP-OES. Furthermore, a certified reference material was investigated with the low gas flow setup. Limits of detection (LOD), according to the 3σ criterion, were determined to be in the low microgram per liter range for all analytes. Recovery rates in the range of 96-106% were observed for the determined trace metal elements. It was proven that the low gas flow ICP-OES leads to results that are comparable with those obtained with the Fassel-type torch for the analysis of food samples. PMID:25127635

  19. Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS.

    PubMed

    Barin, J S; Pereira, J S F; Mello, P A; Knorr, C L; Moraes, D P; Mesko, M F; Nóbrega, J A; Korn, M G A; Flores, E M M

    2012-05-30

    The advantages and shortcomings of focused microwave-induced combustion (FMIC) for digestion of plant samples were studied. The effects of sample mass, absorbing solution, oxygen gas flow-rate, and time of reflux step on recoveries of major, minor and trace metals were systematically evaluated. Afterwards, Al, Ba, Ca, Co, Cr, Cu, Mg, Mn, Ni, Sr, V, and Zn were determined by inductively coupled plasma optical emission spectrometry (ICP OES) and by inductively coupled plasma mass spectrometry (ICP-MS). The main advantages of FMIC when compared to microwave-assisted wet digestion (MAWD) and focused-microwave-assisted wet digestion (FMAWD) are the possibility to digest larger masses of samples (up to 3g) using shorter heating times and diluted nitric acid solution for absorbing all analytes. Using the selected experimental conditions for FMIC, residual carbon content was lower than 0.7% for all samples and relative standard deviation (RSD) varied from 1.5 to 14.1%. Certified reference materials (NIST 1515 apple leaves and NIST 1547 peach leaves) were used for checking accuracy and determined values for all metals were in agreement with certified values at a 95% confidence level. No statistical difference (ANOVA, 95% of confidence level) was observed for results obtained by FMIC, FMAWD, and MAWD. Limits of detection were lower when using FMIC in the range of 0.02-0.15 μg g(-1) for ICP OES and 0.001-0.01 μg g(-1) for ICP-MS, which were about 3 and 6 times lower than the values obtained by FMAWD and MAWD, respectively. It is important to point out that FMIC was a suitable sample preparation method for major, minor and trace metals by both determination techniques (ICP OES and ICP-MS). Additionally, since it allows lower LODs (because up to 3g of sample can be digested) and diluted acid solutions are used (without any further dilution), the use of ICP-MS is not mandatory. PMID:22608453

  20. Application of ICP-OES for Evaluating Energy Extraction and Production Wastewater Discharge Impacts on Surface Waters in Western Pennsylvania

    EPA Science Inventory

    Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) w...

  1. Effect of sample preparation procedure for the determination of As, Sb and Se in fruit juices by HG-ICP-OES.

    PubMed

    Welna, Maja; Szymczycha-Madeja, Anna

    2014-09-15

    Various sample preparation procedures for the simultaneous determination of As, Sb and Se in fruit juices by hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES) were examined. Applicability of total wet digestion with HNO3/H2O2, partial decomposition (solubilisation in aqua regia), 1:1 dilution with 2% (v/v) HNO3 and direct analysis were evaluated. Hydrides were generated in the reaction of an acidified sample with NaBH4 after pre-reduction with KI-ascorbic acid for total As and Sb, and boiling with HCl for total Se. Best results, i.e. limits of detection (LODs) of 0.51-0.73 ng mL(-1), precision (RSD) within 1.7-3.6% and recoveries for spiked samples between 101% and 106% were found using aqua regia treatment. This procedure simplifying and improving sample preparation step prior to As, Sb and Se measurements in fruit juices by HG-ICP-OES, thus could be adequate for the routine analysis in terms of the quality control of these drinks. PMID:24767075

  2. [Determination of metal elements in PM2. 5 by ICP-OES with microwave digestion].

    PubMed

    Zhang, Liu-Yi; Fu, Chuan; Yang, Fu-Mo; Yang, Ji-Dong; Huang, Yi-Min; Zhang, Qiang; Wu, Bing-Yu

    2014-11-01

    In the present work, a method was developed for determining lead, zinc, copper, cadmium, znd chromium in PM2. 5 by inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis with microwave digestion and glass fibre filter collection of samples. The microwave digestion systems were investigated and the experimental conditions were optimized. The results show that (1) HNO3-H2O02 digestion system is more stable and complete than HNO3-HCl and HNO3-H2 SO4 digestion systems; (2) The most sensitive emission wave length of lead, zinc, copper, cadmium, and chromium are 220.353, 213.857, 327.393, 228.802, and 267.716 nm, respectively; (3) The highest signal-to-noise ratios were observed under the conditions: RF power of 1 300 W, peristaltic pump flow rate of 1.5 mL x min(-1), cooling gas flow rate of 15 L x min(-1), and carrier gas flow rate of 0.8 L x min(-1). In addition, the detection limit for these elements ranged between 2.02 x 10(-3) and 8.20 x 10(-3(μg x mL(-1), the relative standard deviations (RSD, n = 6) for the samples were in the range of 1.86%-2.82%, and the recovery for the elements determined was from 91.6% to 103.7%. The proposed method was used for determination of the above five elements in atmospheric fine particulate matter at Wanzhou Monitoring Site of Chongqing Institute of Green and Intelligent Technology. The results revealed that the atmospheric fine particulate matter at this monitoring site was not polluted by cadmium and chromium, lead was at the level of potential contamination, while zinc and copper were at the level of slight pollution. PMID:25752068

  3. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    USGS Publications Warehouse

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  4. Characterization of Hatay honeys according to their multi-element analysis using ICP-OES combined with chemometrics.

    PubMed

    Yücel, Yasin; Sultanoğlu, Pınar

    2013-09-01

    Chemical characterisation has been carried out on 45 honey samples collected from Hatay region of Turkey. The concentrations of 17 elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ca, K, Mg and Na were the most abundant elements, with mean contents of 219.38, 446.93, 49.06 and 95.91 mg kg(-1) respectively. The trace element mean contents ranged between 0.03 and 15.07 mg kg(-1). Chemometric methods such as principal component analysis (PCA) and cluster analysis (CA) techniques were applied to classify honey according to mineral content. The first most important principal component (PC) was strongly associated with the value of Al, B, Cd and Co. CA showed eight clusters corresponding to the eight botanical origins of honey. PCA explained 75.69% of the variance with the first six PC variables. Chemometric analysis of the analytical data allowed the accurate classification of the honey samples according to origin. PMID:23578638

  5. Improvement of a sample preparation procedure for multi-elemental determination in Brazil nuts by ICP-OES.

    PubMed

    Welna, Maja; Szymczycha-Madeja, Anna

    2014-04-01

    Various sample preparation procedures, such as common wet digestions and alternatives based on solubilisation in aqua regia or tetramethyl ammonium hydroxide, were compared for the determination of the total Ba, Ca, Cr, Cd, Cu, Fe, Mg, Mn, Ni, P, Pb, Se, Sr and Zn contents in Brazil nuts using inductively coupled plasma optical emission spectrometry (ICP-OES). For measurement of Se, a hydride generation technique was used. The performance of these procedures was measured in terms of precision, accuracy and limits of detection of the elements. It was found that solubilisation in aqua regia gave the best results, i.e. limits of detection from 0.60 to 41.9 ng ml(-1), precision of 1.0-3.9% and accuracy better than 5%. External calibration with simple standard solutions could be applied for the analysis. The proposed procedure is simple, reduces sample handling, and minimises the time and reagent consumption. Thus, this can be a vital alternative to traditional sample treatment approaches based on the total digestion with concentrated reagents. A phenomenon resulting from levels of Ba, Se and Sr in Brazil nuts was also discussed. PMID:24405323

  6. ICP-OES and Micronucleus Test to Evaluate Heavy Metal Contamination in Commercially Available Brazilian Herbal Teas.

    PubMed

    Schunk, Priscila Francisca Tschaen; Kalil, Ieda Carneiro; Pimentel-Schmitt, Elisangela Flavia; Lenz, Dominik; de Andrade, Tadeu Uggere; Ribeiro, Juliano Souza; Endringer, Denise Coutinho

    2016-07-01

    Increased tea consumption in combination with intensive pesticide use is generating heavy metal contaminations amongst Brazilian tea consumers, causing health concerns. Inductively coupled plasma optical emission spectrometry (ICP-OES) was applied to quantify minerals and heavy metals such as aluminum, barium, cadmium, lead, cobalt, copper, chromium, tin, manganese, molybdenum, nickel, selenium, silver, thallium, vanadium and zinc in Brazilian chamomile, lemongrass, fennel and yerba mate teas. Teas, purchased in local supermarkets, were prepared using infusion and acid digestion. Higher concentrations of Al were present in all samples. In the digested samples, the Al mean concentration was 2.41 μg g(-1) (sd = 0.72) for fennel and 33.42 μg g(-1) (sd = 17.18) for chamomile, whilst the sample C for chamomile tea presented the highest concentration with 51.62 μg g(-1) (sd = 9.17). The safety relation in decreasing order is fennel, lemongrass, chamomile and yerba mate. Chemometric analyses demonstrated a strong correlation between the elements Cd and Pb in the samples. Yerba mate had the highest amount of metal (100 mg kg(-1)), being the subject of a micronucleus test assay for cytotoxicity. The metals found in Yerba mate did not present cytotoxicity/mutagenicity using the micronucleus test. The inorganic contaminants in teas should have their impact carefully monitored. PMID:26610685

  7. Microwave-assisted ultraviolet digestion of petroleum coke for the simultaneous determination of nickel, vanadium and sulfur by ICP-OES.

    PubMed

    Oliveira, Jussiane S S; Picoloto, Rochele S; Bizzi, Cezar A; Mello, Paola A; Barin, Juliano S; Flores, Erico M M

    2015-11-01

    A method for the simultaneous determination of Ni, V and S in petroleum coke by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted ultraviolet digestion (MW-UV) in closed vessels was proposed. Digestion was performed using electrodeless discharge lamps positioned inside quartz vessels and turned on by microwave radiation. The following parameters were evaluated: HNO3 concentration (15 mL of 1, 4, 7, 10 or 14.4 mol L(-1)), volume of H2O2 (30%, 1 or 3 mL), sample mass (100, 250 or 500 mg) and heating time (40 or 60 min) with or without the use of UV lamps. Digestion efficiency was evaluated by the determination of the residual carbon content (RCC) in digests. Using UV lamps lower RCC was obtained and the combination of 4 mol L(-1) HNO3 with 3 mL of H2O2 and 60 min of heating allowed a suitable digestion of up to 500 mg of petroleum coke (RCC< 21%). The agreement with the reference values for Ni, V and S (obtained by digestion of petroleum coke by microwave-induced combustion) and with a certified reference material of petroleum coke was between 96 and 101%. The proposed method was considered as advantageous when compared to American Society for Testing and Materials method because it allowed the simultaneous determination of Ni, V and S with lower limit of detection (0.22, 0.12 and 8.7 µg g(-1) for Ni, V and S, respectively) avoiding the use of concentrated nitric acid and providing digests suitable for routine analysis by ICP-OES. PMID:26452926

  8. PIXE as a complement to ICP-OES trace metal analysis in Sudanese medicinal plants.

    PubMed

    Mubark Ebrahim, Ammar; Etayeb, M A; Khalid, H; Noun, Manale; Roumie, M; Michalke, B

    2014-08-01

    This paper compares trace element concentrations (Ca, K, Sr, Fe, Mn, Zn, Ni, Cu, Co and Cr) in 27 Sudanese medical plants determined in parallel by PIXE and ICP-OES to get information on which technique is preferable at different matrices and element concentrations. PIXE correlates well to ICP-OES for Sr, Mn, Ca, K, Zn and Fe determinations. ICP-OES seems to be the superior technique over PIXE when measuring low concentrated elements (chromium, cobalt, nickel and copper) in the medicinal plants. PMID:24814608

  9. The survival of gunshot residues in cremated bone: an inductively coupled plasma optical emission spectrometry study.

    PubMed

    Amadasi, Alberto; Merli, Daniele; Brandone, Alberto; Poppa, Pasquale; Gibelli, Daniele; Cattaneo, Cristina

    2013-07-01

    Gunshot residue (GSR) has been sought and demonstrated on many types of material and with many techniques. Inductively coupled plasma optical emission spectrometry (ICP-OES) could be a useful method on difficult substrates, but a systematic study on burnt material has never been performed. Hence, this study aims at evaluating the usefulness and reliability of this method on burnt samples. Sixteen adult bovine ribs (eight with soft tissues, eight totally skeletonized) were shot using two kinds of projectile (both 9 mm full metal-jacketed or unjacketed). Then, every sample was led to complete calcination in an electric oven. The area of the gunshot entrance wound was swabbed and analyzed by ICP-OES; the results were also correlated with a previously published parallel study by scanning electron microscopy (SEM) equipped with an SEM-energy dispersive X-ray analyzer. ICP-OES proved to be very sensitive and reliable even on degraded material and can be an appropriate nondestructive method for detecting residues on difficult and delicate substrates such as burnt bone. PMID:23692414

  10. Method development for the determination of manganese, cobalt and copper in green coffee comparing direct solid sampling electrothermal atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry.

    PubMed

    Oleszczuk, Nédio; Castro, Jacira T; da Silva, Márcia M; Korn, Maria das Graças A; Welz, Bernhard; Vale, Maria Goreti R

    2007-10-31

    A method has been developed for the determination of cobalt, copper and manganese in green coffee using direct solid sampling electrothermal atomic absorption spectrometry (SS-ET AAS). The motivation for the study was that only a few elements might be suitable to determine the origin of green coffee so that the multi-element techniques usually applied for this purpose might not be necessary. The three elements have been chosen as test elements as they were found to be significant in previous investigations. A number of botanical certified reference materials (CRM) and pre-analyzed samples of green coffee have been used for method validation, and inductively coupled plasma optical emission spectrometry (ICP OES) after microwave-assisted acid digestion of the samples as reference method. Calibration against aqueous standards could be used for the determination of Mn and Co by SS-ET AAS, but calibration against solid CRM was necessary for the determination of Cu. No significant difference was found between the results obtained with the proposed method and certified or independently determined values. The limits of detection for Mn, Cu and Co were 0.012, 0.006 and 0.004mugg(-1) using SS-ET AAS and 0.015, 0.13 and 0.10mugg(-1) using ICP OES. Seven samples of Brazilian green coffee have been analyzed, and there was no significant difference between the values obtained with SS-ET AAS and ICP OES for Mn and Cu. ICP OES could not be used as a reference method for Co, as essentially all values were below the limit of quantification of this technique. PMID:19073113

  11. Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion

    SciTech Connect

    Wellinger, Marco; Wochele, Joerg; Biollaz, Serge M.A.; Ludwig, Christian

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous measurements of 23 elements in process gases of a waste wood combustor. Black-Right-Pointing-Pointer Mobile ICP spectrometer allows measurements of high quality at industrial plants. Black-Right-Pointing-Pointer Continuous online measurements with high temporal resolution. Black-Right-Pointing-Pointer Linear correlations among element concentrations in the raw flue gas were detected. Black-Right-Pointing-Pointer Novel sampling and calibration methods for ICP-OES analysis of process gases. - Abstract: A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium.

  12. Certification of beryllium mass fraction in SRM 1877 Beryllium Oxide Powder using high-performance inductively coupled plasma optical emission spectrometry with exact matching.

    PubMed

    Winchester, Michael R; Turk, Gregory C; Butler, Therese A; Oatts, Thomas J; Coleman, Charles; Nadratowski, Donald; Sud, Ritu; Hoover, Mark D; Stefaniak, Aleksandr B

    2009-03-15

    High-performance inductively coupled plasma optical emission spectrometry (HP-ICP-OES) was used to certify the Be mass fraction in National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1877 Beryllium Oxide Powder. The certified value and expanded uncertainty expressed at a 95% confidence level is (0.3576 +/- 0.0024) g/g. To obtain best results, the Be mass fractions, Mn (internal standard) mass fractions, and matrix compositions of the calibration solutions were carefully matched to those of the sample solutions for each individual HP-ICP-OES analysis. This "exact matching" approach was used because experience at NIST has shown that it often affords improved accuracy and precision in HP-ICP-OES analysis. NIST has never published these observations. Due to the toxicity of BeO and the difficulty of containing the very fine powder material, sets of solutions for HP-ICP-OES analysis were prepared by laboratories collaborating with NIST who have the experience and equipment needed to work with the material safely. Each laboratory utilized a unique digestion protocol(s). After preparing the sets of solutions, the collaborating laboratories shipped them to NIST for HP-ICP-OES analysis. NIST provided the collaborating laboratories with solution preparation kits and spreadsheets to help establish traceability of the HP-ICP-OES results to the International System of Units (SI) and to allow exact matching to be accomplished. The agreement observed among the four individual Be mass fraction values determined from the sets of solutions prepared by the collaborating laboratories was 0.074% relative (1s of mean). The excellent agreement provides a measure of confidence in the robustness of each of the digestion procedures, as well as in the certified Be mass fraction value. The analytical benefits of using exact matching for this particular certification were investigated. Results show that exactly matching the matrix compositions of the

  13. Application of ICP-OES for evaluating energy extraction and production wastewater discharge impacts on surface waters in Western Pennsylvania.

    PubMed

    Pancras, Joseph Patrick; Norris, Gary A; Landis, Matthew S; Kovalcik, Kasey D; McGee, John K; Kamal, Ali S

    2015-10-01

    Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to quantify inorganic species in wastewater and river samples using a method based on EPA Method 200.7 rev4.4. A total of 53 emission lines from 30 elements (Al, As, B, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, Tl, V, and Zn) were investigated. Samples were prepared by microwave-assisted acid digestion using a mixture of 2% HNO3 and 0.5% HCl. Lower interferences and better detection characteristics resulted in selection of alternative wavelengths for Al, As, Sb, Mg, Mo, and Na. Radial view measurements offered accurate determinations of Al, Ba, K, Li, Na, and Sr in high-brine samples. Spike recovery studies and analyses of reference materials showed 80-105% recoveries for most analytes. This method was used to quantify species in samples with high to low brine concentrations with method detection limits a factor of 2 below the maximum contaminant limit concentrations of national drinking water standards. Elements B, Ca, K, Li, Mg, Na, and Sr were identified as potential tracers for the sources impacting PDWS intakes. Usability of the ICP-OES derived data for factor analytic model applications was also demonstrated. PMID:26005746

  14. [Study on microwave digestion of coal for the determination of multi-element by ICP-OES and ICP-MS].

    PubMed

    Wang, Hui; Song, Qiang; Yao, Qiang; Chen, Chang-He; Yu, Fei-Lu

    2012-06-01

    Effects of temperature and four acids (HNO3, HNO3/H2O2, HNO3/HF and HNO3/HF+H3BO3) on the coal decomposition by microwave digestion and the multi-element analysis were studied. SARM20 was used as a coal standard reference material. The contents of 10 mineral elements (Al, Ca, Fe, Mg, K, Na, S, Si, Sr and Ti) in the coal SARM20 were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). And the contents of 20 heavy metals (Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Zr, Sn, Cs, Ba, Ce, Eu and Pb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that the coal was completely decomposed by microwave digestion with HNO3/HF+ H3BO3 at 210 degrees C. Good recoveries for all elements in the coal SARM20 were obtained by this two-step microwave digestion method. The recoveries of the 10 mineral elements were from 87.5% to 98.8%, and the recoveries of the 20 heavy metals were from 85% to 112.5%. All RSDs of tests were below 3%. PMID:22870661

  15. Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determination by ICP-OES.

    PubMed

    Cheng, Guihong; He, Man; Peng, Hanyong; Hu, Bin

    2012-01-15

    A fast and simple method for analysis of trace amounts of Cr(III), Cu(II), Pb(II) and Zn(II) in environmental and biological samples was developed by combining magnetic solid phase extraction (MSPE) with inductively coupled plasma-optical emission spectrometry (ICP-OES) detection. Dithizone modified silica-coated magnetic Fe(3)O(4) nanoparticles (H(2)Dz-SCMNPs) were prepared and used for MSPE of trace amounts of Cr(III), Cu(II), Pb(II) and Zn(II). The prepared magnetic nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The factors affecting the extraction of the target metal ions such as pH, sample volume, eluent, and interfering ions had been investigated and the adsorption mechanism of the target metals on the self-prepared H(2)Dz-SCMNPs was investigated by FT-IR and X-ray photo electron spectroscopy (XPS). Under the optimized conditions, the detection limits of the developed method for Cr(III), Cu(II), Pb(II) and Zn(II) were 35, 11, 62, and 8ngL(-1), respectively, with the enrichment factor of 100. The relative standard deviations (RSDs, c=10μgL(-1), n=7) were in the range of 1.7-3.1% and the linear range was 0.1-100μgL(-1). The proposed method had been validated by two certified reference materials (GSBZ50009-88 environmental water and GBW07601 human hair), and the determined values were in good agreement with the certified values. The method was also applied for the determination of trace metals in real water and human hair samples with recoveries in the range of 85-110% for the spiked samples. The developed MSPE-ICP-OES method has the advantages of simplicity, rapidity, selectivity, high extraction efficiency and is suitable for the analysis of samples with large volume and complex matrix. PMID:22265534

  16. Comparison of extraction induced by emulsion breaking, ultrasonic extraction and wet digestion procedures for determination of metals in edible oil samples in Turkey using ICP-OES.

    PubMed

    Bakircioglu, Dilek; Kurtulus, Yasemin Bakircioglu; Yurtsever, Selcuk

    2013-06-01

    The content of elements (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in edible oils (sunflower, hazelnut, canola, corn and olive oils) from Turkey was determined using inductively coupled plasma optical emission spectrometry (ICP-OES) after ultrasonic extraction, wet digestion, and extraction induced by emulsion breaking procedures (EIEB). In order to evaluate the best sample preparation procedure, EIEB procedure was compared by ultrasonic extraction and wet digestion procedures. The results in the samples (minimum-maximum in mgkg(-1)) were : 0.022-0.058, Cr 0.126-7.106, Cu 0.570-4.504, Fe 8.004-12.588, Mn 0.035-0.054, Ni 0.908-2.182, Pb 0.099-0.134 and Zn 2.206-8.982. The EIEB procedure was found to be fast, reliable, simple, and excellent in comparison with the other studied procedures. The recovery test was performed by spiking the samples with known amounts of the metals in the form of organometallic standards and applying the EIEB procedure. The recoveries were in the range of 96-109%. PMID:23411174

  17. On-line preconcentration/determination of lead in Ilex paraguariensis samples (mate tea) using polyurethane foam as filter and USN-ICP-OES.

    PubMed

    Marchisio, P F; Sales, A; Cerutti, S; Marchevski, E; Martinez, L D

    2005-09-30

    The present paper proposes an on-line preconcentration procedure for lead determination in Ilex paraguariensis (St. Hilaire) samples by ultrasonic nebulization associated to inductively coupled plasma optical emission spectrometry (USN-ICP-OES). It is based on the precipitation of lead(II) ion on a minicolumn packed with polyurethane foam using 2-(5-bromo-2-pyridilazo)-5-diethylaminophenol (5-Br-PADAP) as precipitating reagent. The collected analyte precipitate was quantitatively eluted from the minicolumn with 20% (v/v) nitric acid. An enhancement factor of 225-fold was obtained (15 for USN and 15 for preconcentration). The detection limit (DL) value for the preconcentration of 10.0 ml of sample was 40.0 ng/l. The relative standard deviation (R.S.D.) was 3.0% for a Pb concentration of 1 microg/l, calculated from the peak heights obtained. The calibration graph using the preconcentration system for lead was linear with a correlation coefficient of 0.9997, at levels near the detection limits up to at least 100 microg/l. The preconcentration procedure was successfully applied to the determination of lead in mate tea samples. PMID:15936141

  18. Assessment of status of three water bodies in Serbia based on tissue metal and metalloid concentration (ICP-OES) and genotoxicity (comet assay).

    PubMed

    Sunjog, Karolina; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Višnjić-Jeftić, Željka; Skorić, Stefan; Gačić, Zoran; Lenhardt, Mirjana; Vasić, Nebojša; Vuković-Gačić, Branka

    2016-06-01

    Metals and metalloids are natural components of the biosphere, which are not produced per se by human beings, but whose form and distribution can be affected by human activities. Like all substances, they are a contaminant if present in excess compared to background levels and/or in a form that would not normally occur in the environment. Samples of liver, gills, gonads and muscle from European chub, Squalius cephalus, were analyzed for Al, As, B, Ba, Cr, Cu, Fe, Hg, Mn, Mo, Sr and Zn using inductively coupled plasma optical emission spectrometry (ICP-OES) to highlight the importance of tissue selection in monitoring research. The comet assay or single cell gel electrophoresis (SCGE) was selected as an in vivo genotoxicity assay, a rapid and sensitive method for measuring genotoxic effects in blood, liver and gills of the European chub. Microscopic images of comets were scored using Comet IV Computer Software (Perceptive Instruments, UK). The objective of our study was to investigate two reservoirs, Zlatar and Garasi, and one river, Pestan by: (i) determining and comparing metal and metalloid concentrations in sediment, water and tissues of European chub: liver, gills, muscle and gonads (ii) comparing these findings with genotoxicity of water expressed through DNA damage of fish tissues. A clear link between the level of metals in water, sediment and tissues and between metal and genotoxicity levels at examined sites was not found. This suggests that other xenobiotics (possibly the organic compounds), contribute to DNA damage. PMID:27016612

  19. Microwave-assisted wet digestion with H2O2 at high temperature and pressure using single reaction chamber for elemental determination in milk powder by ICP-OES and ICP-MS.

    PubMed

    Muller, Edson I; Souza, Juliana P; Muller, Cristiano C; Muller, Aline L H; Mello, Paola A; Bizzi, Cezar A

    2016-08-15

    In this work a green digestion method which only used H2O2 as an oxidant and high temperature and pressure in the single reaction chamber system (SRC-UltraWave™) was applied for subsequent elemental determination by inductively coupled plasma-based techniques. Milk powder was chosen to demonstrate the feasibility and advantages of the proposed method. Samples masses up to 500mg were efficiently digested, and the determination of Ca, Fe, K, Mg and Na was performed by inductively coupled plasma optical emission spectrometry (ICP-OES), while trace elements (B, Ba, Cd, Cu, Mn, Mo, Pb, Sr and Zn) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Residual carbon (RC) lower than 918mgL(-1) of C was obtained for digests which contributed to minimizing interferences in determination by ICP-OES and ICP-MS. Accuracy was evaluated using certified reference materials NIST 1549 (non-fat milk powder certified reference material) and NIST 8435 (whole milk powder reference material). The results obtained by the proposed method were in agreement with the certified reference values (t-test, 95% confidence level). In addition, no significant difference was observed between results obtained by the proposed method and conventional wet digestion using concentrated HNO3. As digestion was performed without using any kind of acid, the characteristics of final digests were in agreement with green chemistry principles when compared to digests obtained using conventional wet digestion method with concentrated HNO3. Additionally, H2O2 digests were more suitable for subsequent analysis by ICP-based techniques due to of water being the main product of organic matrix oxidation. The proposed method was suitable for quality control of major components and trace elements present in milk powder in consonance with green sample preparation. PMID:27260458

  20. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Elements in Whole-Water Digests Using Inductively Coupled Plasma-Optical Emission Spectrometry and Inductively Coupled Plasma-Mass Spectrometry

    USGS Publications Warehouse

    Garbarino, John R.; Struzeski, Tedmund M.

    1998-01-01

    Inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) can be used to determine 26 elements in whole-water digests. Both methods have distinct advantages and disadvantages--ICP-OES is capable of analyzing samples with higher elemental concentrations without dilution, however, ICP-MS is more sensitive and capable of determining much lower elemental concentrations. Both techniques gave accurate results for spike recoveries, digested standard reference-water samples, and whole-water digests. Average spike recoveries in whole-water digests were 100 plus/minus 10 percent, although recoveries for digests with high dissolved-solid concentrations were lower for selected elements by ICP-MS. Results for standard reference-water samples were generally within 1 standard deviation of hte most probable values. Statistical analysis of the results from 43 whole-water digest indicated that there was no significant difference among ICP-OES, ICP-MS, and former official methods of analysis for 24 of the 26 elements evaluated.

  1. Multielement trace determination in SiC powders: assessment of interlaboratory comparisons aimed at the validation and standardization of analytical procedures with direct solid sampling based on ETV ICP OES and DC arc OES.

    PubMed

    Matschat, Ralf; Hassler, Jürgen; Traub, Heike; Dette, Angelika

    2005-12-01

    The members of the committee NMP 264 "Chemical analysis of non-oxidic raw and basic materials" of the German Standards Institute (DIN) have organized two interlaboratory comparisons for multielement determination of trace elements in silicon carbide (SiC) powders via direct solid sampling methods. One of the interlaboratory comparisons was based on the application of inductively coupled plasma optical emission spectrometry with electrothermal vaporization (ETV ICP OES), and the other on the application of optical emission spectrometry with direct current arc (DC arc OES). The interlaboratory comparisons were organized and performed in the framework of the development of two standards related to "the determination of mass fractions of metallic impurities in powders and grain sizes of ceramic raw and basic materials" by both methods. SiC powders were used as typical examples of this category of material. The aim of the interlaboratory comparisons was to determine the repeatability and reproducibility of both analytical methods to be standardized. This was an important contribution to the practical applicability of both draft standards. Eight laboratories participated in the interlaboratory comparison with ETV ICP OES and nine in the interlaboratory comparison with DC arc OES. Ten analytes were investigated by ETV ICP OES and eleven by DC arc OES. Six different SiC powders were used for the calibration. The mass fractions of their relevant trace elements were determined after wet chemical digestion. All participants followed the analytical requirements described in the draft standards. In the calculation process, three of the calibration materials were used successively as analytical samples. This was managed in the following manner: the material that had just been used as the analytical sample was excluded from the calibration, so the five other materials were used to establish the calibration plot. The results from the interlaboratory comparisons were summarized and

  2. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.

    PubMed

    Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel

    2005-05-01

    CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:15702309

  3. A rapid and practical strategy for the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in large amounts of ultrabasic rock by inductively coupled plasma optical emission spectrometry combined with ultrasound extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Gai; Tian, Min

    2015-04-01

    This proposed method regulated the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in platinum-group ores by nickel sulfide fire assay—inductively coupled plasma optical emission spectrometry (ICP-OES) combined with ultrasound extraction for the first time. The quantitative limits were 0.013-0.023μg/g. The samples were fused to separate the platinum-group elements from matrix. The nickel sulfide button was then dissolved with hydrochloric acid and the insoluble platinum-group sulfide residue was dissolved with aqua regia by ultrasound bath and finally determined by ICP-OES. The proposed method has been applied into the determination of platinum-group element and gold in large amounts of ultrabasic rocks from the Great Dyke of Zimbabwe.

  4. Selective Divalent Cobalt Ions Detection Using Ag2O3-ZnO Nanocones by ICP-OES Method for Environmental Remediation

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Marwani, Hadi M.; Asiri, Abdullah M.

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg−1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results. PMID:25464507

  5. Dispersed particle extraction--a new procedure for trace element enrichment from natural aqueous samples with subsequent ICP-OES analysis.

    PubMed

    Bauer, Gerald; Neouze, Marie-Alexandra; Limbeck, Andreas

    2013-01-15

    A novel sample pre-treatment method for multi trace element enrichment from environmental waters prior to optical emission spectrometry analysis with inductively coupled plasma (ICP-OES) is proposed, based on dispersed particle extraction (DPE). This method is based on the use of silica nanoparticles functionalized with strong cation exchange ligands. After separation from the investigated sample solution, the nanoparticles used for the extraction are directly introduced in the ICP for measurement of the adsorbed target analytes. A prerequisite for the successful application of the developed slurry approach is the use of sorbent particles with a mean size of 500 nm instead of commercially available μm sized beads. The proposed method offers the known advantages of common bead-injection (BI) techniques, and further circumvents the elution step required in conventional solid phase extraction procedures. With the use of 14.4 mL sample and addition of ammonium acetate buffer and particle slurry limits of detection (LODs) from 0.03 μg L(-1) for Be to 0.48 μg L(-1) for Fe, with relative standard deviations ranging from 1.7% for Fe and 5.5% for Cr and an average enrichment factor of 10.4 could be achieved. By implementing this method the possibility to access sorbent materials with irreversible bonding mechanisms for sample pre-treatment is established, thus improvements in the selectivity of sample pre-treatment procedures can be achieved. The presented procedure was tested for accuracy with NIST standard reference material 1643e (fresh water) and was applied to drinking water samples from the vicinity of Vienna. PMID:23200370

  6. Comparision of ICP-OES and MP-AES in determing soil nutrients by Mechlich3 method

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Penu, Priit; Krebstein, Kadri; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Accurate, routine testing of nutrients in soil samples is critical to understanding soil potential fertility. There are different factors which must be taken into account selecting the best analytical technique for soil laboratory analysis. Several techniques can provide adequate detection range for same analytical subject. In similar cases the choise of technique will depend on factors such as sample throughput, required infrastructure, ease of use, used chemicals and need for gas supply and operating costs. Mehlich 3 extraction method is widely used for the determination of the plant available nutrient elements contents in agricultural soils. For determination of Ca, K, and Mg from soil extract depending of laboratory ICP and AAS techniques are used, also flame photometry for K in some laboratories. For the determination of extracted P is used ICP or Vis spectrometry. The excellent sensitivity and wide working range for all extracted elements make ICP a nearly ideal method, so long as the sample throughput is big enough to justify the initial capital outlay. Other advantage of ICP techniques is the multiplex character (simultaneous acquisition of all wavelengths). Depending on element the detection limits are in range 0.1 - 1000 μg/L. For smaller laboratories with low sample throughput requirements the use of AAS is more common. Flame AAS is a fast, relatively cheap and easy technique for analysis of elements. The disadvantages of the method is single element analysis and use of flammable gas, like C2H2 and oxidation gas N2O for some elements. Detection limits of elements for AAS lays from 1 to 1000 μg/L. MP-AES offers a unique alternative to both, AAS and ICP-OES techniques with its detection power, speed of analysis. MP-AES is quite new, simple and relatively inexpensive multielemental technique, which is use self-sustained atmospheric pressure microwave plasma (MP) using nitrogen gas generated by nitrogen generator. Therefore not needs for argon and

  7. Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Souza, Gilberto B.; Carrilho, Elma Neide V. M.; Oliveira, Camila V.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2002-12-01

    A rapid sample preparation method is proposed for decomposition of milk powder, corn bran, bovine and fish tissues, containing certified contents of the analytes. The procedure involves sample combustion in a commercial stainless steel oxygen bomb operating at 25 bar. Most of the samples were decomposed within 5 min. Diluted nitric acid or water-soluble tertiary amines 10% v/v were used as absorption solutions. Calcium, Cu, K, Mg, Na, P, S and Zn were recovered with the bomb washings and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ethanol mixed with paraffin was used as a combustion aid to allow complete combustion. A cooling step prior releasing of the bomb valve was employed to increase the efficiency of sample combustion. Iodine was also determined in milk samples spiked with potassium iodide to evaluate the volatilization and collection of iodine in amine CFA-C medium and the feasibility of its determination by ICP-OES with axial view configuration. Most of the element recoveries in the samples were between 91 and 105% and the certified and found contents exhibited a fair agreement at a 95% confidence level.

  8. Elemental fingerprinting of Hypericum perforatum (St John's Wort) herb and preparations using ICP-OES and chemometrics.

    PubMed

    Owen, Jade D; Kirton, Stewart B; Evans, Sara J; Stair, Jacqueline L

    2016-06-01

    St. John's wort (SJW) (Hypericum perforatum) is a herbal remedy commonly used to treat mild depression. The elemental profiles of 54 samples (i.e., dry herbs, tablets and capsules) were evaluated by monitoring 25 elements using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The major elemental constituents in the SJW samples were Ca (300-199,000μg/g), Mg (410-3,530μg/g), Al (4.4-900μg/g), Fe (1.154-760μg/g), Mn (2.4-261μg/g), Sr (0.88-83.6μg/g), and Zn (7-64μg/g). For the sixteen elements that could be reliably quantified, principal component analysis (PCA) was used to investigate underlying patterns in the data. PCA models identified 7 key elements (i.e., Ba, Ca, Cd, Mg, Mo, Ni and Y), which described 85% of the variance in the dataset in the first three principal components. The PCA approach resulted in a general delineation between the three different formulations and provides a basis for monitoring product quality in this manner. PMID:26994552

  9. Using SEM-EDX and ICP-OES to Investigate the Elemental Composition of Green Macroalga Vaucheria sessilis

    PubMed Central

    Michalak, Izabela; Marycz, Krzysztof; Basińska, Katarzyna; Chojnacka, Katarzyna

    2014-01-01

    The biomass of Vaucheria sessilis forms algal mats in many freshwaters. There is a need to find the method of algal biomass utilization. Vaucheria sessilis is a rich source of micro- and macronutrients and can be used as a soil amendment. In the paper, the elemental composition of enriched, via bioaccumulation process, macroalga was investigated. For this purpose, two independent techniques were used: scanning electron microscopy with an energy dispersive X-ray analytical system (SEMEDX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The biomass was exposed to two microelemental solutions, with Cu(II) and Zn(II) ions. After two weeks of the experiment, macroalga accumulated 98.5 mg of Zn(II) ions in 1 g of dry biomass and 68.9 mg g−1 of Cu(II) ions. Micrographs performed by SEM proved that bioaccumulation occurred. Metal ions were bound on the surface and in the interior of cells. Mappings of all cations showed that in the case of the surface of biomass (biosorption), the elements constituted aggregations and in the case of the cross section (bioaccumulation) they were evenly distributed. The algal biomass with permanently bound microelements can find an application in many branches of the industry (feed, natural fertilizers, etc.). PMID:25180212

  10. Preconcentration of Cu(II), Fe(III) and Pb(II) with 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon followed by ICP-OES determination.

    PubMed

    He, Qun; Hu, Zheng; Jiang, Yin; Chang, Xijun; Tu, Zhifeng; Zhang, Lina

    2010-03-15

    A procedure for separation and preconcentration trace amount of Cu(II), Fe(III) and Pb(II) by 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon (AC-AMP) packed column has been proposed. Under the optimized conditions (pH 4, flow rate 2.0 mL min(-1)), Cu(II), Fe(III) and Pb(II) were retained on the column, then quantitatively eluted by 2 mL 1 mol L(-1) nitric acid solution and determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The tolerance limits of electrolytes were very high. The adsorption capacity of AC-AMP was found to be 12.1, 67.1, and 16.2 mg g(-1) for Cu(II), Fe(III), and Pb(II), respectively. According to the definition of International Union of Pure and Applied Chemistry, the detection limits (3 sigma) of this method for Cu(II), Fe(III) and Pb(II) were 0.27, 0.41 and 0.16 microg L(-1), respectively. The relative standard deviation under optimum conditions is less than 3.0% (n=11). The proposed method has been validated by analyzing a certified reference material and successfully applied to the preconcentration and determination of Cu(II), Fe(III), and Pb(II) in actual samples with satisfactory results. PMID:19926213

  11. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    PubMed

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). PMID:26838401

  12. In situ digestion for the determination of Ca in beverages by tungsten coil atomic emission spectrometry.

    PubMed

    Santos, Luana N; Gonzalez, Mário H; Moura, Monise F; Donati, George L; Nóbrega, Joaquim A

    2012-08-15

    Tungsten coil atomic emission spectrometry (WCAES) is employed for the determination of calcium in juice, mineral and coconut water samples. A sample aliquot of 20 μL is placed directly on the coil and a constant-voltage power source is used to dry and atomize the sample, as well as to promote Ca atomic emission. Analytical signals are resolved and detected using a Czerny-Turner spectrometer and a charge coupled device detector. Some experimental parameters such as coil position related to the spectrometer entrance slit and integration time are critically evaluated. A heating program with relatively constant drying temperatures is used in all measurements. An in situ digestion procedure is used to partially decompose organic matrices and improve WCAES precision and accuracy. By adding an oxidizing mixture to the sample and including a digestion step in the heating cycle, no statistical difference was observed between WCAES and ICP OES results for Ca in juice and coconut water samples. Mineral water samples were simply diluted with 1% vv(-1) HNO(3) before analysis and no significant interference was observed for concomitants such as Na and K. Despite severe positive interference caused by Mg, good agreement was obtained between WCAES and ICP OES results for Ca in several mineral water samples. Limits of detection and quantification obtained were 0.02 and 0.07 mg L(-1), respectively. The method precision, calculated as the relative standard deviation for 10 consecutive measurements of a 2.5 mg L(-1) Ca solution, is 3.8%. PMID:22841081

  13. Comparing Compositions of Modern Cast Bronze Sculptures: Optical Emission Spectroscopy Versus x-Ray Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Young, M. L.; Dunand, D. C.

    2015-07-01

    Bulk elemental compositions of 74 modern cast bronze sculptures from the collection at the Art Institute of Chicago, the Philadelphia Museum of Art, and the Rodin Museum (Philadelphia, PA) were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and a handheld x-ray fluorescence (XRF) spectrometer. The elemental compositions of the cast sculptures as measured previously by ICP-OES and presently by XRF are compared: A good match is found between the two methods for the base metal (Cu) and the two majority alloying elements (Zn and Sn). For both ICP-OES and XRF data, when the Zn composition is plotted versus the Sn composition, three discernable clusters are found that are related to the artist, foundry, casting date, and casting method; they consist of (A) high-zinc brass, (B) low-zinc, low-tin brass, and (C) low-zinc, tin bronze. Thus, our study confirms that the relatively fast, nondestructive XRF spectrometry can be used effectively over slower and invasive, but more accurate, ICP-OES to help determine a sculpture's artist, foundry, date of creation, date of casting, and casting method.

  14. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part I. Theoretical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Due to their outstanding analytical performances, inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are widely used for multi-elemental measurements and also for isotopic characterization in the case of ICP-MS. While most studies are carried out in aqueous matrices, applications involving organic/hydro-organic matrices become increasingly widespread. This kind of matrices is introduced in ICP based instruments when classical "matrix removal" approaches such as acid digestion or extraction procedures cannot be implemented. Due to the physico-chemical properties of organic/hydro-organic matrices and their associated effects on instrumentation and analytical performances, their introduction into ICP sources is particularly challenging and has become a full topic. In this framework, numerous theoretical and phenomenological studies of these effects have been performed in the past, mainly by ICP-OES, while recent literature is more focused on applications and associated instrumental developments. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP-OES and ICP-MS. The present Part I, provides theoretical considerations in connection with the physico-chemical properties of organic/hydro-organic matrices, in order to better understand the induced phenomena. This focal point is divided in four chapters highlighting: (i) the impact of organic/hydro-organic matrices from aerosol generation to atomization/excitation/ionization processes; (ii) the production of carbon molecular constituents and their spatial distribution in the plasma with respect to analytes repartition; (iii) the subsequent modifications of plasma fundamental properties; and (iv) the resulting spectroscopic and non spectroscopic interferences. This first part of this tutorial review is addressed either to beginners or to more experienced scientists who are interested in the

  15. Improvement of the capabilities of inductively coupled plasma optical emission spectrometry by replacing the desolvation system of an ultrasonic nebulization system with a pre-evaporation tube

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Beauchemin, Diane

    2010-05-01

    The effect of replacing the desolvation system (i.e., heater/condenser (HC) and membrane desolvator (MD)) of an ultrasonic nebulizer (USN) system with a pre-evaporation tube (PET) that is heated to about 400 °C on the analytical capabilities of inductively coupled plasma optical emission spectrometry (ICP-OES) was investigated. A multivariate optimisation was conducted in each case to find operating conditions maximizing plasma robustness. Under optimum conditions, the analytical performance of ICP-OES was significantly improved (i.e., better sensitivity, detection limit and plasma robustness) with USN-PET compared to that achieved with both the commercially-available USN-HC-MD and a conventional pneumatic nebulizer/spray chamber sample introduction system. However, only the USN-PET approach allows the determination of Hg, which appears to otherwise be lost in the heater/condenser system. Using a simple external calibration, without any matrix matching, and using an argon emission line for internal standardization, the results obtained for the determination of trace elements in certified soil reference materials (SRM 2710 and 2711) by USN-PET were in good agreement with certified values. This is unlike with conventional sample introduction systems where internal standardization using an Ar line is unusual, as it does not compensate for physical interferences, and either internal standardization (with internal standards added to the sample and standard solutions) or matrix-matched calibration is required.

  16. Determination of elemental impurities in poly(vinyl chloride) by inductively coupled plasma optical emission spectrometry.

    PubMed

    Pereira, Leticia S F; Pedrotti, Matheus F; Miceli, Tatiane M; Pereira, Juliana S F; Flores, Erico M M

    2016-05-15

    In this work, a method for poly(vinyl chloride) (PVC) analysis by inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. Samples were digested by microwave-induced combustion (MIC) and thirteen elements (Ba, Cd, Co, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn) were determined by ICP-OES. Operational conditions of MIC were investigated allowing quantitative determination of all the analytes and suitable results were achieved using a 3 mol L(-1) HNO3 solution. Microwave-assisted wet digestion (MAWD) using closed quartz vessels and a single reaction chamber microwave digestion system (MAWD-SRC), were also evaluated for PVC digestion for results comparison. All the evaluated sample preparation methods were considered suitable for PVC digestion but MIC was preferable due to the possibility of using diluted HNO3 instead of concentrated reagents and due to the better digestion efficiency. The residual carbon content (RCC) in digests obtained by MIC was significantly lower in comparison with the values obtained after MAWD and by MAWD-SRC. Accuracy for the proposed method was better than 94% for all analytes by comparison of results with those obtained by neutron activation analysis (NAA). Using MIC, it was possible to digest a relatively high sample mass (500 mg) and up to 8 samples in less time (25 min) in comparison with MAWD and MAWD-SRC (about 60 min for both methods). The efficiency of digestion by MIC was higher 99% and lower limits of detection (as low as 0.1 µg g(-1)) were obtained avoiding the use of concentrated acids that is of great concern according to the current green chemistry recommendations. PMID:26992533

  17. Determination of 28 selected elements in textiles by axially viewed inductively coupled plasma optical emission spectrometry.

    PubMed

    Rezić, Iva; Zeiner, Michaela; Steffan, Ilse

    2011-01-15

    A simple, robust and reliable analytical procedure for the determination of 28 selected elements, namely Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Hg, Mg, Mn, Mo, Na, Ni, Pb, Sc, Si, Se, Sn, Sm, Sr, Tl, V, and Zn in textile materials by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave digestion of samples was optimized and validated in this work. The total amount of elements present in textile samples was determined after microwave digestion of materials in 7 mol/L nitric acid within the optimal working program: 5 min at 150°C (power 250 W), 15 min 180°C (300 W) and 20 min at the maximum temperature of 200°C (350 W). For the quality control reasons, which were ascertained by analysis of the certified cotton trace elements reference material IAEA-V9, the ICP-OES method was optimized through several parameters: by comparing Meinhard and Gemcone Low Flow nebulizers efficiency, ranging nebulizer gas flows from 0.6 to 1.0 L/min, ranging sample flows from 0.8 to 1.2 mL/min, testing RF power from 1200 to 1400 W, detecting data acquisition time (read time) from 0 to 527 s, ranging washing (delay) time from 0 to 408 s, as well as by checking the occurring interferences for the optimal line selection. Validation included determination of linearity, selectivity, accuracy, reproducibility, precision and limits of detection calculated for all 28 selected elements of interest. The developed analytical procedure was successfully applied on textile fibers (cotton, flax and hemp) as well as on standard knitted textile sample materials (cotton and wool). PMID:21147330

  18. Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES.

    PubMed

    Low, Fiona; Zhang, Lian

    2012-11-15

    In this paper, microwave digestion conditions have been optimised to achieve complete recoveries for the ash-forming inorganic elements in coal and coal combustion fly ash, during the analysis by inductively coupled plasma optical emission spectroscopy (ICP-OES). The elements analysed include six major (Al, Ca, Fe, K, Mg and Na) and twelve trace (As, Ba, Be, Co, Cr, Cu, Li, Mn, Ni, Pb, Sr and V). Seven reference samples have been tested, including two standard coal references, SRM1632c and SARM19, their corresponding high-temperature ashes (HTAs), and three coal fly ash references, SRM1633c, SRM2690 and BCR38. The recoveries of individual elements in these samples have been examined intensively, as a function of the amount of hydrofluoric acid (HF, 0-2.0 ml), microwave power (900 W vs. 1200 W) and sample mass (0.05 g vs. 0.1 g). As have been confirmed, the recoveries of these individual elements varied significantly with the microwave digestion condition, elemental type and sample property. For the coal references and their HTAs, the use of HF can be ruled out for most of the elements, except K associated with feldspar, Pb and V. In particular, the recovery of Pb in coal is highly sample-specific and thus unpredictable. The majority of elements in fly ash references require the use of 0.1-0.2 ml HF for a complete recovery. Al in fly ash is the only exceptional element which gave incomplete recoveries throughout, suggesting the use of a complementary technique for its quantification. As has proven to be the only element inconsequential of sample type and digestion conditions, achieving complete recoveries for all cases. On the power parameter, using a higher power such as 1200 W is critical, which has proved to be an ultimatum for the recovery of certain elements, especially in fly ash. Halving sample mass from 0.1 g to 0.05 g was also found to be insignificant. PMID:23158332

  19. Ornamental Planting Restoration at Jefferson's Poplar Forest Through XRF and ICP-OES Analysis of Disturbed Soils

    NASA Astrophysics Data System (ADS)

    Hatfield, M.; Low, P. C.; Devlin, S.

    2011-12-01

    Thomas Jefferson's Poplar Forest estate near Lynchburg, VA is currently attempting to restore the property to its Jeffersonian condition. Subsequent modifications to the property following its sale by Jefferson's heirs included the removal of the original trees in order to facilitate agricultural activity. One key facet of the restoration involves determining the precise location of the sixty-four paper mulberry trees that Jefferson reportedly had transplanted in 1815 from his on-site nursery to near the main house. At Monticello, it is well-documented that Jefferson used contextually innovative fertilizing techniques, including the addition of gypsum and lime "to restore the exhaustion of a single crop from the soil." Whether he used these methods in the nursery at Poplar Forest to the degree that decades of subsequent leaching, weathering, and other disturbances would not erase remains historically and analytically unclear. Since the transplantation process requires that large amounts of soil be moved with the trees, small areas of compositionally distinct soils in the suspected planting area could be used to establish the exact location of each tree through differentiating between nursery and in situ soils. Through X-ray fluorescence spectroscopy (XRF) and intercoupled plasma optical emission spectroscopy (ICP-OES) geochemical analysis, the specific composition of soil can be determined. Preliminary analysis shows slight differences in phosphorus and sulfur between the nursery and in situ soil; however, the property lies on three different distinct geological units: actinolite schist and feldspathic metagreywacke units of the Alligator Back formation, and biotite gneiss of the Ashe Formation (biotite gneiss). The location of the nursery where the sixty-four paper mulberry trees were originally grown lies on the feldspathic metagreywacke unit; whereas the relocation site where Jefferson had them planted rests on the actinolite schist unit. Percursory study

  20. Cloud point extraction of vanadium in parenteral solutions using a nonionic surfactant (PONPE 5.0) and determination by flow injection-inductively coupled plasma optical emission spectrometry.

    PubMed

    Wuilloud, Gustavo M; de Wuilloud, Jorgelina C A; Wuilloud, Rodolfo G; Silva, Maria F; Olsina, Roberto A; Martinez, Luis D

    2002-10-16

    A preconcentration and determination methodology for vanadium at trace levels in parenteral solutions was developed. Cloud point extraction was successfully employed for the preconcentration of vanadium prior to inductively coupled plasma atomic optical emission spectrometry (ICP-OES) coupled to a flow injection (FI) system. The vanadium was extracted as vanadium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol [V-(5-Br-PADAP)] complex, at pH 3.7 mediated by micelles of the nonionic surfactant polyoxyethylene (5.0) nonylphenol (PONPE 5.0). The extracted surfactant-rich phase (100 mul) was mixed with 100 mul of ethanol and this final volume injected into ICP-OES for the vanadium determination. Under these conditions, the 50 ml sample solution preconcentration allowed raising an enrichment factor of 250-fold; however, it was possible to obtain a theoretical enrichment factor of 500-fold. The lower limit of detection (LOD) obtained under the optimal conditions was 16 ng l(-1). The precision for 10 replicate determinations at the 2.0 mug l(-1) V level was 2.3% relative standard deviation (RSD), calculated with the peak heights. The calibration graph using the preconcentration system for vanadium was linear with a correlation coefficient of 0.9996 at levels near the detection limits up to at least 50 mug l(-1). The method was successfully applied to the determination of vanadium in parenteral solution samples. PMID:18968790

  1. Determination of Se in biological samples by axial view inductively coupled plasma optical emission spectrometry after digestion with aqua regia and on-line chemical vapor generation

    NASA Astrophysics Data System (ADS)

    dos Santos, Éder José; Herrmann, Amanda Beatriz; de Caires, Suzete Kulik; Frescura, Vera Lúcia Azzolin; Curtius, Adilson José

    2009-06-01

    A simple and fast method for the determination of Se in biological samples, including food, by axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation (CVG-ICP OES) is proposed. The concentrations of HCl and NaBH 4, used in the chemical vapor generation were optimized by factorial analysis. Six certified materials (non-fat milk powder, lobster hepatopancreas, human hair, whole egg powder, oyster tissue, and lyophilised pig kidney) were treated with 10 mL of aqua regia in a microwave system under reflux for 15 min followed by additional 15 min in an ultrasonic bath. The solutions were transferred to a 100 mL volumetric flask and the final volume was made up with water. The Se was determined directly in these solutions by CVG-ICP OES, using the analytical line at 196.026 nm. Calibration against aqueous standards in 10% v/v aqua regia in the concentration range of 0.5-10.0 µg L - 1 Se(IV) was used for the analysis. The quantification limit, considering a 0.5 g sample weight in a final volume of 100 mL - 1 was 0.10 µg g - 1. The obtained concentration values were in agreement with the total certified concentrations, according to the t-test for a 95% confidence level.

  2. Factorial design for multivariate optimization of an on-line preconcentration system for platinum determination by ultrasonic nebulization coupled to inductively coupled plasma optical emission spectrometry.

    PubMed

    Cerutti, S; Salonia, J A; Ferreira, S L C; Olsina, R A; Martinez, L D

    2004-07-01

    A system for on-line preconcentration and determination of platinum by ultrasonic nebulization (USN) coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) was studied. It is based on the chemical sorption of platinum on a column packed with polyurethane foam loaded with thiocyanate reagent. The optimization step was carried out using two level full factorial design. Three variables (pH, loading flow rate (LFR) and eluent concentration) were regarded as factors in the optimization. Results of the two level factorial design 2(3) with three replicates of the central point for platinum preconcentration, based on the variance analysis (ANOVA), demonstrated that the factors and their interactions are not statistically significant. The proposed procedure allowed the determination of platinum with a detection limit of 0.28mugl(-1). The precision for 10 replicate determinations at 10.0mugl(-1) Pt level was 3.8% relative standard deviation (R.S.D.), calculated from the peak heights obtained. A total enhancement factor of 100 was obtained with respect to ICP-OES using pneumatic nebulization (10 for USN and 10 for preconcentration). A sampling frequency of 50 samples per hour was obtained. The effect of other ions in concentrations agreeing with water samples was studied. The addition/recovery experiments in the samples analyzed demonstrated the accuracy and applicability of the system developed for platinum determination in spiked water samples. PMID:18969536

  3. Dissolution reaction and surface iron speciation of UICC crocidolite in buffered solution at pH 7.4: A combined ICP-OES, XPS and TEM investigation

    NASA Astrophysics Data System (ADS)

    Pacella, Alessandro; Fantauzzi, Marzia; Turci, Francesco; Cremisini, Carlo; Montereali, Maria Rita; Nardi, Elisa; Atzei, Davide; Rossi, Antonella; Andreozzi, Giovanni B.

    2014-02-01

    The dissolution reaction and the surface modifications of crocidolite asbestos fibres incubated for 0.5, 1, 24, 48, 168 and 1440 h in a phosphate buffered solution at pH 7.4 with and without hydrogen peroxide were investigated. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) was used to monitor the ion release into solution, X-ray Photoelectron Spectroscopy (XPS) was performed to unveil the chemistry of the leached surface, and High Resolution Transmission Electron Microscopy (HR-TEM) was carried out to monitor the structural modifications of the fibres. No significant differences were observed between dissolution experiments carried out with and without H2O2 with the exception of results after the first hour, from which it may be inferred that the dissolution proceeds faster in the presence of H2O2 but only in its very early steps. Congruent mobilization of Si and Mg from crocidolite was observed, increasing with time especially in the range between 1 and 48 h, while Ca decreased after 48 h and Fe was not detected at any incubation time. In the undersaturated conditions (0-48 h), dissolution rate of UICC crocidolite fibres has been estimated to be d(Si)/dt = 0.079 μmol h-1. The fibre surface modification is continuous with time: XPS results showed a regular depletion of Si and Mg and enrichment of Fe along dissolution. The Fe2p3/2 signal on the surface was fitted with four components at 709.0, 710.5, 711.6 and 712.8 eV binding energy values corresponding to: (i) Fe(II)-O and (ii) Fe(III)-O surrounded by oxygen atoms in the silicate structure, (iii) Fe(III)-OOH as a product of the dissolution process, and (iv) Fe in a phosphate precipitate (Fe-P), respectively. The evolution of Fe speciation on the crocidolite surface was followed by integrating the four photoemission peaks, and results showed that the oxidative environment promotes the formation of Fe(III)-O (up to 37% Fetot) and of Fe-P species (up to 16% Fetot), which are found on the fibre

  4. Fast method of elements determination in slim coffees by ICP OES.

    PubMed

    Szymczycha-Madeja, Anna; Welna, Maja; Pohl, Pawel

    2014-03-01

    Six sample preparation procedures, i.e., the total decomposition in a HNO3 and H2O2 mixture by microwave-assisted or hot-plate heating, a partial decomposition by means of solubilisation in aqua regia or tetramethyl ammonium hydroxide and simple dissolution in diluted HNO3 or in H2O, for the determination of the total content of Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb, Sr and Zn in slim instant coffees using inductively coupled plasma optical emission spectrometry were compared. The performance of procedures was determined based on the precision and the accuracy of results and limits of detection of elements. It was found that the extraction with aqua regia provides the best results, i.e., limits of detection of elements within 0.11-108ngmL(-1), the precision of 0.6-5% and the accuracy better than 5%. Elements' concentrations agree with those after the wet digestion in the HNO3 and H2O2 mixture, therefore this procedure is a simple and fast alternative to complete sample decomposition procedures and can be easily applied for routine analyses. Six commercial slim coffee products were analysed with the proposed procedure. PMID:24176335

  5. Studies the alterations of biochemical and mineral contents in bone tissue of mus musculus due to aluminum toxicity and the protective action of desferrioxamine and deferiprone by FTIR, ICP-OES, SEM and XRD techniques

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Khatiwada, Chandra Prasad; Sivasubramanian, J.

    The present study has attempt to analyze the changes in the biochemical and mineral contents of aluminum intoxicated bone and determine the protective action of desferrioxamine (DFO) and deferiprone (DFP) by using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), and scanning electron microscopy (SEM) techniques for four groups of animals such as control (Group I), aluminum intoxicated (Group II), Al + DFP (Group III) and Al + DFO + DFP (Group IV) treated groups respectively. The FTIR spectra of the aluminum intoxicated bone showed significant alteration in the biochemical constituents. The bands ratio at I1400/I877 significantly decreased from control to aluminum, but enhanced it by Al + DFP to Al + DFO + DFP treated bone tissue for treatments of 16 weeks. This result suggests that DFO and DFP are the carbonate inhibitor, recovered from chronic growth of bone diseases and pathologies. The alteration of proteins profile indicated by Amide I and Amide II, where peak area values decreased from control to aluminum respectively, but enhanced by treated with DFP (p.o.) and DFO + DFP (i.p.) respectively. The XRD analysis showed a decrease in crystallinity due to aluminum toxicity. Further, the Ca, Mg, and P contents of the aluminum exposed bone were less than those of the control group, and enhanced by treatments with DFO and DFP. The concentrations of trace elements were found by ICP-OES. Therefore, present study suggests that due to aluminum toxicity severe loss of bone minerals, decrease in the biochemical constituents and changes in the surface morphology.

  6. Automatable on-line generation of calibration curves and standard additions in solution-cathode glow discharge optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Schwartz, Andrew J.; Ray, Steven J.; Hieftje, Gary M.

    2015-03-01

    Two methods are described that enable on-line generation of calibration standards and standard additions in solution-cathode glow discharge optical emission spectrometry (SCGD-OES). The first method employs a gradient high-performance liquid chromatography pump to perform on-line mixing and delivery of a stock standard, sample solution, and diluent to achieve a desired solution composition. The second method makes use of a simpler system of three peristaltic pumps to perform the same function of on-line solution mixing. Both methods can be computer-controlled and automated, and thereby enable both simple and standard-addition calibrations to be rapidly performed on-line. Performance of the on-line approaches is shown to be comparable to that of traditional methods of sample preparation, in terms of calibration curves, signal stability, accuracy, and limits of detection. Potential drawbacks to the on-line procedures include signal lag between changes in solution composition and pump-induced multiplicative noise. Though the new on-line methods were applied here to SCGD-OES to improve sample throughput, they are not limited in application to only SCGD-OES-any instrument that samples from flowing solution streams (flame atomic absorption spectrometry, ICP-OES, ICP-mass spectrometry, etc.) could benefit from them.

  7. Tin Content Determination in Canned Fruits and Vegetables by Hydride Generation Inductively Coupled Plasma Optical Emission Spectrometry

    PubMed Central

    Rončević, Sanda; Benutić, Anica; Nemet, Ivan; Gabelica, Buga

    2012-01-01

    Tin content in samples of canned fruits and vegetables was determined by hydride generation inductively coupled plasma atomic emission spectrometry (HG-ICP-OES), and it was compared with results obtained by standard method of flame atomic absorption spectrometry (AAS). Selected tin emission lines intensity was measured in prepared samples after addition of tartaric acid and followed by hydride generation with sodium borohydride solution. The most favorable line at 189.991 nm showed the best detection limit (1.9 μg L−1) and limit of quantification (6.4 μg kg−1). Good linearity and sensitivity were established from time resolved analysis and calibration tests. Analytical accuracy of 98–102% was obtained by recovery study of spiked samples. Method of standard addition was applied for tin determination in samples from fully protected tinplate. Tin presence at low-concentration range was successfully determined. It was shown that tenth times less concentrations of Sn were present in protected cans than in nonprotected or partially protected tinplate. PMID:22550488

  8. Development of a wet digestion method for paints for the determination of metals and metalloids using inductively coupled plasma optical emission spectrometry.

    PubMed

    Silva, Francisco L F; Duarte, Thalita A O; Melo, Luciana S; Ribeiro, Livia P D; Gouveia, Sandro T; Lopes, Gisele S; Matos, Wladiana O

    2016-01-01

    Paints, a complex matrix, have a variable composition that is dependent on the application. In this work, a new wet digestion procedure for the determination of Al, As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Sn, Sr, Ti and Zn in paint samples using inductively coupled plasma optical emission spectrometry (ICP OES) has been developed. An experimental design approach was employed to determine the optimal conditions for achieving complete solubilization and/or decomposition in the sample preparation method. An efficient sample preparation was developed that consisted of a pre-digestion step at 40°C for 20 min using 1 mL of HNO3 to eliminate organic solvents followed by digestion at 120°C for 3h using 5 mL of HCl and 1 mL of HF in a block digestion. The proposed procedure promotes the complete solubilization of different bases of paints at low temperature and atmospheric pressure. The accuracy was determined by addition/recovery tests and comparing the results with those obtained using the ASTM D335-85a standard sample preparation method. The limits of quantification were 1.78, 0.11, 0.006, 0.006, 0.01, 0.04, 0.006, 0.006, 0.02, 0.07, 0.30, 1.30 and 0.30 mg kg(-1) for Al, As, Ba, Cd, Cr, Cu,Mn, Ni, Pb, Sn, Sr, Ti and Zn, respectively. The proposed method was applied for the analysis of inorganics via the ICP OES of paints with different colors and bases used to cover wall surfaces. PMID:26695251

  9. Chlorine and sulfur determination in extra-heavy crude oil by inductively coupled plasma optical emission spectrometry after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Pereira, Juliana S. F.; Mello, Paola A.; Moraes, Diogo P.; Duarte, Fábio A.; Dressler, Valderi L.; Knapp, Guenter; Flores, Érico M. M.

    2009-06-01

    In this study, microwave-induced combustion (MIC) of extra-heavy crude oil is proposed for further chlorine and sulfur determination by inductively coupled plasma optical emission spectrometry (ICP OES). Combustion was carried out under oxygen pressure (20 bar) in quartz vessels using ammonium nitrate (50 µl of 6 mol l - 1 solution) as ignition aid. Samples were wrapped with polyethylene film and placed on a quartz holder positioned inside the quartz vessels. The need for an additional reflux step after combustion and the type and concentration of absorbing solution (water, 0.02 to 0.9 mmol l - 1 H 2O 2, 10 to 100 mmol l - 1 (NH 4) 2CO 3 or 0.1 to 14 mol l - 1 HNO 3) were studied. The influence of sample mass, O 2 pressure and maximum pressure attained during the combustion process were investigated. Recoveries from 92 to 102% were obtained for Cl and S for all absorbing solutions. For comparison, Cl and S determination was also performed by ion chromatography (IC) using 25 mmol l - 1 (NH 4) 2CO 3 as absorbing solution. Using MIC with a reflux step the agreement was better than 95% for certified reference materials of similar composition (crude oil, petroleum coke, coal and residual fuel oil). Microwave-assisted digestion and water extraction in high pressure closed vessels were also evaluated. Using these procedures the maximum recoveries were 30 and 98% for Cl and S, respectively, using microwave-assisted digestion and 70% for Cl and less than 1% for S by water extraction procedure. Limits of detection by ICP OES were 12 and 5 µg g - 1 for Cl and S, respectively, and the corresponding values by IC were 1.2 and 8 µg g - 1 . Using MIC it was possible to digest simultaneously up to eight samples resulting in a solution suitable for the determination of both analytes with a single combustion step.

  10. Evaluation of the mineral profile of textile materials using inductively coupled plasma optical emission spectrometry and chemometrics.

    PubMed

    Menezes, E A; Carapelli, R; Bianchi, S R; Souza, S N P; Matos, W O; Pereira-Filho, E R; Nogueira, A R A

    2010-10-15

    The content of Al, Ba, Ca, Cr, Cu, Fe, Ni, P, Zn, Cd and Pb was determined in textile material samples after microwave-assisted decomposition in a cavity oven and extraction with an artificial sweat solution. Radial viewing inductively coupled plasma optical emission spectrometry (ICP OES) was the main detection technique, but Cd and Pb were determined by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) to increase the sensitivity. Principal components analysis (PCA) was applied to the data sets to characterize the samples with respect to their geographic origin and color difference. The PCA for Brazilian single-color samples showed separation, with one group consisting of blue and green textiles and another with all the other materials evaluated. The geographic origin study showed a clear separation between Brazilian and Chinese textiles. The metals amount extracted with sweat extractable solution were lower than limits values pointed by the International Testing and Certification System for Textiles, Oko Tex Standard 100, in the all considered classes. Recoveries varied from 85 to 112% for additions ranging from 3.0 to 25 mg kg(-1) for Ca and from 0.3 to 7.0 mg kg(-1) for all other analytes through the microwave-assisted decomposition procedure. PMID:20599322

  11. Partial microwave-assisted wet digestion of animal tissue using a baby-bottle sterilizer for analyte determination by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Matos, Wladiana O.; Menezes, Eveline A.; Gonzalez, Mário H.; Costa, Letícia M.; Trevizan, Lilian C.; Nogueira, Ana Rita A.

    2009-06-01

    A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) micro-vessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 µL. The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe, Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2 4-1 fractional factorial design: 650 W microwave power, 7 min digestion time, 50 µL nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials.

  12. Sequential cloud point extraction for the speciation of mercury in seafood by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Yingjie; Hu, Bin

    2007-10-01

    A novel nonchromatographic speciation technique for the speciation of mercury by sequential cloud point extraction (CPE) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The method based on Hg 2+ was complexed with I - to form HgI 42-, and the HgI 42- reacted with the methyl green (MG) cation to form hydrophobic ion-associated complex, and the ion-associated complex was then extracted into the surfactant-rich phase of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114), which are subsequently separated from methylmercury (MeHg +) in the initial solution by centrifugation. The surfactant-rich phase containing Hg(II) was diluted with 0.5 mol L - 1 HNO 3 for ICP-OES determination. The supernatant is also subjected to the similar CPE procedure for the preconcentration of MeHg + by the addition of a chelating agent, ammonium pyrrolidine dithiocarbamate (APDC), in order to form water-insolvable complex with MeHg +. The MeHg + in the micelles was directly analyzed after disposal as describe above. Under the optimized conditions, the extraction efficiency was 93.5% for Hg(II) and 51.5% for MeHg + with the enrichment factor of 18.7 for Hg(II) and 10.3 for MeHg +, respectively. The limits of detection (LODs) were 56.3 ng L - 1 for Hg(II) and 94.6 ng L - 1 for MeHg + (as Hg) with the relative standard deviations (RSDs) of 3.6% for Hg(II) and 4.5% for MeHg + ( C = 10 μg L -1, n = 7), respectively. The developed technique was applied to the speciation of mercury in real seafood samples and the recoveries for spiked samples were found to be in the range of 93.2-108.7%. For validation, a certified reference material of DORM-2 (dogfish muscle) was analyzed and the determined values are in good agreement with the certified values.

  13. Multivariate optimization of mercury determination by flow injection-cold vapor generation-inductively coupled plasma optical emission spectrometry.

    PubMed

    dos Santos, Vanessa Cristina Gonçalves; Grassi, Marco Tadeu; de Campos, Mônica Soares; Peralta-Zamora, Patricio Guillermo; Abate, Gilberto

    2012-10-01

    In this work a procedure for mercury determination by Flow Injection-Cold Vapor Generation-Inductively Coupled Plasma Optical Emission Spectrometry (FI-CVG-ICP OES) has been developed. The system uses a small homemade glass separator constructed to drive the Hg vapor to the plasma. An evolutionary operation factorial design was used to evaluate the optimal experimental conditions for mercury vapor generation, aiming at the low consumption of reagents, the improvement of the analytical signal and consequently greater sensitivity. The procedure allowed the determination of mercury and showed excellent linearity for the concentration range from 0.50 μg L(-1) to 100.0 μg L(-1), with Limits of Detection (LOD) and Quantification (LOQ) of 0.11 μg L(-1) and 0.36 μg L(-1), respectively, and a sampling rate of 36 analyses per hour. The optimized procedure showed good accuracy and precision, and the method was validated by the analysis of two certified reference materials: Buffalo River Sediment (NIST 2704) and human hair (IAEA 085). A good agreement with the certified values was achieved, with recovery values of 99% and 98% and relative standard deviation close to 2%. PMID:22870503

  14. Multi-element determination in acid-digested soy protein formulations by inductively coupled plasma-optical emission spectrometry.

    PubMed

    Morte, Elane S Boa; Costa, Leticia M; Nobrega, Joaquim A; Korn, Maria das Gracas A

    2008-05-01

    The concentrations of major (Ca, K, Mg, Na and P) and trace elements (Al, Cu and Fe) in soy protein formulations sold in Bahia (Brazil) were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). Liquid and powdered soy protein formulation samples, both whole and light, were digested using a conventional heating program on a hot-plate. The powdered samples were prepared according to the label instructions for human consumption. A 5.0-ml aliquot of the soy protein emulsion was transferred to a borosilicate Erlenmeyer and concentrated nitric and sulfuric acid added. After a digestion time of approximately 50 min, hydrogen peroxide was added and heating continued to give a final volume of approximately 5 ml; the colorless digests were then made up to 15.0 ml with deionised water. Residual acid content was determined by acid-base titration. Good agreement between measured and certified values for all analytes in a non-fat milk powder (NIST SRM 1549) indicated that the method was suitable for major and trace elements determination in soy protein formulations. PMID:18473216

  15. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming; Bings, Nicolas H.; Broekaert, José A. C.

    2008-02-01

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS™ spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm - 2 and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower µg g - 1 range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 µg g - 1 .

  16. Determination of tungsten in tantalum-tungsten alloy by X-ray fluorescence spectrometry using fusion, thin layer, and pressed powder pellet techniques

    NASA Astrophysics Data System (ADS)

    Tian, Lunfu; Zou, Deshuang; Dai, Yichun; Tang, Guangping

    2015-08-01

    A method is described for the X-ray fluorescence (XRF) determination of tungsten in tantalum-tungsten alloy over the range of 10.5%-13.5%. The sample was prepared by three methods, namely, borate fusion, filter paper disk, and pressed powder pellet, respectively. We compared the feature of the three methods of specimen preparation and found that filter paper disk method was the most suitable technique for specimen preparation. Furthermore, the results were compared with those given by inductively coupled plasma optical emission spectrometry (ICP-OES), and the relative standard deviation was less than 2%, which could meet the requirement of this application.

  17. Flowing Liquid Anode Atmospheric Pressure Glow Discharge as an Excitation Source for Optical Emission Spectrometry with the Improved Detectability of Ag, Cd, Hg, Pb, Tl, and Zn.

    PubMed

    Greda, Krzysztof; Swiderski, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-09-01

    A novel atmospheric pressure glow discharge generated in contact with a flowing liquid anode (FLA-APGD) was developed as the efficient excitation source for the optical emission spectrometry (OES) detection. Differences in the appearance and the electrical characteristic of the FLA-APGD and a conventional system operated with a flowing liquid cathode (FLC-APGD) were studied in detail and discussed. Under the optimal operating conditions for the FLA-APGD, the emission from the analytes (Ag, Cd, Hg, Pb, Tl, and Zn) was from 20 to 120 times higher as compared to the FLC-APGD. Limits of detections (LODs) established with a novel FLA-APGD system were on average 20 times better than those obtained for the FLC-APGD. A further improvement of the LODs was achieved by reducing the background shift interferences and, as a result, the LODs for Ag, Cd, Hg, Pb, Tl, and Zn were 0.004, 0.040, 0.70, 1.7, 0.035, and 0.45 μg L(-1), respectively. The precision of the FLA-APGD-OES method was evaluated to be within 2-5% (as the relative standard deviation of the repeated measurements). The method found its application in the determination of the content of Ag, Cd, Hg, Pb, Tl, and Zn in a certified reference material (CRM) of Lobster hepatopancreas (TORT-2), four brass samples as well as mineral water and tea leaves samples spiked with the analytes. In the case of brass samples, a reference method, i.e., inductively coupled plasma optical emission spectrometry (ICP-OES) was used. A good agreement between the results obtained with FLA-APGD-OES and the certified values for the CRM TORT-2 as well as the reference values obtained with ICP-OES for the brass samples was revealed, indicating the good accuracy of the proposed method. The recoveries obtained for the spiked samples of mineral water and tea leaves were within the range of 97.5-102%. PMID:27476678

  18. Solid Phase Extraction of Trace Elements in Waterand Tissue Samples on a Mini Column with Diphenylcarbazone Impregnated Nano-TiO2 and Their Determination by Inductively Coupled Plasma Optical Emission Spectrometry

    PubMed Central

    Baytak, Sıtkı; Arslan, Zikri

    2015-01-01

    This study presents a simple, robust and environmentally friendly solid phase preconcentration procedure for multielement determination by inductively coupled plasma optical emission spectrometry (ICP-OES) using diphenylcarbazone (DPC) impregnated TiO2 nanopowder (n-TiO2). DPC was successfully impregnated onto n-TiO2 in colloidal solution. A number of elements, including Co(II), Cr(III), Cu(II), Fe(III), Mn(II) and Zn(II) were quantitatively preconcentrated from aqueous solutions between pH 8 and 8.5 at a flow rate of 2 mL min−1, and then eluted with 2 mL of 5% (v/v) HNO3. A mini-column packed with 0.12 g DPC impregnated n-TiO2 retained all elements quantitatively from up to 250 mL multielement solution (2.5 μg per analyte) affording an enrichment factor of 125. The limits of detection (LOD) for preconcentration of 50 mL blank solutions (n = 12) were 0.28, 0.15, 0.25, 0.22, 0.12, and 0.10 μg L−1 for Co, Cr, Cu, Fe, Mn, and Zn, respectively. The relative standard deviation (RSD) for five replicate determinations was 0.8, 3.4, 2.6, 2.2, 1.2 and 3.3% for Co, Cr, Cu, Fe, Mn and Zn, respectively, at 5 μg L−1 level. The method was validated with analysis of Freshwater (SRM 1643e) and Lobster hepatopancreas (TORT-2) certified reference materials, and then applied to the determination of the elements from tap water and lake water samples by ICP-OES. PMID:26236403

  19. On line vapor generation of osmium based on solution cathode glow discharge for the determination by ICP-OES.

    PubMed

    Zhu, Zhenli; Huang, Chunying; He, Qian; Xiao, Qing; Liu, Zhifu; Zhang, Suicheng; Hu, Shenghong

    2013-03-15

    A novel plasma induced vapor generation method is proposed to determine osmium in solutions. Without any chemical oxidizing agents, osmium ion can be readily converted to volatile osmium tetraoxide vapor in the solution cathode glow discharge (SCGD) system. The generated osmium vapor is then transported to inductively coupled plasma for determination by optical emission spectrometry. The influences of background electrolyte, carrier gas flow rate, sample flow rate, ICP power and discharge current were investigated. The analytical performances of this proposed technique were evaluated under optimized conditions. The detection limit of Os was calculated to be 0.51 ng mL(-1). The reproducibility, expressed as the relative standard deviation (n=11) of a 2.0 μg mL(-1) standard solution, was 1.9%. This SCGD induced vapor generation is sensitive and simple, oxidation reagents free, providing an alternative analytical method for measuring Os in geological or environmental water samples. PMID:23598105

  20. Ultrasound- and microwave-assisted extractions followed by hydride generation inductively coupled plasma optical emission spectrometry for lead determination in geological samples.

    PubMed

    Welna, Maja; Borkowska-Burnecka, Jolanta; Popko, Malgorzata

    2015-11-01

    Followed the current idea of simplified sample pretratmet before analysis we evaluated the procedure for the determination of Pb in calcium-rich materials such as dolomites after ultrasound- or microwave- assisted extraction with diluted acids using hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES). Corresponding Pb hydride was generated in the reaction of an acidified sample solution with NaBH4 after pre-oxidation of Pb(II) to Pb(IV) by K3[Fe(CN)6]. Several chemical (acidic media: HCl, HNO3 or CH3COOH, concentration of the reductant as well as type and concentration of oxidazing agents) and physical (reagents flow rates, reaction coil length) parameters affecting the efficiency of plumbane formation were optimized in order to improve the detectability of Pb using HG-ICP-OES. Limitation of the method derived from the matrix effects was pointed out. Employing Pb separation by HG technique allows the significant reduction of interferences caused by sample matrix constituents (mainly Ca and Mg), nevertheless they could not be overcame at all, hence calibration based on the standard addition method was recommended for Pb quantification in dolomites. Under the selected conditions, i.e. 0.3 mol L(-1) HCl, HNO3 or CH3COOH, 1.5% NaBH4 and 3.0% K3[Fe(CN)6] the limits of detection (LODs) between 2.3-5.6 μg L(-1) (3.4-6.8 μg L(-1) considering matrix effects) and the precision below 5% were achieved. The accuracy of the procedure was verified by analysis of certified reference materials (NCS DC70308 (Carbonate Rock) and NIST 14000 (Bone Ash)) and recovery test with satisfactory results of Pb recoveries ranging between 94-108% (CRMs analysis) and 92-114% (standard addition method). The applicability of the proposed method was demonstrated by the determination of Pb in dolomites used by different fertiliser factories. PMID:26452913

  1. Total sulfur determination in gasoline, kerosene and diesel fuel using inductively coupled plasma optical emission spectrometry after direct sample introduction as detergent emulsions

    NASA Astrophysics Data System (ADS)

    Santelli, Ricardo Erthal; Oliveira, Eliane Padua; de Carvalho, Maria de Fátima Batista; Bezerra, Marcos Almeida; Freire, Aline Soares

    2008-07-01

    Herein, we present the development of a procedure for the determination of total sulfur in petroleum-derived products (gasoline, kerosene and diesel fuel) employing inductively coupled plasma optical emission spectrometry (ICP OES). For this procedure, samples were prepared as emulsions that were made using concentrated nitric acid, Triton X-100, sample, and ultra pure water in proportions of 5/10/7/78% (v/v), respectively. Sample volumes were weighed because of the density differences, and oxygen was added to the sheat gas entrance of the ICP OES in order to decrease carbon deposition in the torch and to minimize background effects. A Doehlert design was applied as an experimental matrix to investigate the flow ratios of argon (sheat and plasma gas) and oxygen in relation to the signal-to-background ratio. A comparative study among the slopes of the analytical curves built in aqueous media, surfactant/HNO 3, and by spike addition for several sample emulsions indicates that a unique solution of surfactant in acidic media can be employed to perform the external calibration for analysis of the emulsions. The developed procedure allows for the determination of the total sulfur content in petroleum derivatives with a limit of detection (LOD) and limit of quantification (LOQ) of 0.72 and 2.4 μg g - 1 , respectively. Precision values, expressed as the relative standard deviations (% RSD, n = 10) for 12 and 400 μg g - 1 , were 2.2% and 1.3%, respectively. The proposed procedure was applied toward the determination of total sulfur in samples of gasoline, kerosene, and diesel fuel commercialized in the city of Niterói/RJ, Brazil. The accuracy of the proposed method was evaluated by the determination of the total sulfur in three different standard reference materials (SRM): NIST 2723a (sulfur in diesel fuel oil), NIST 1616b (sulfur in kerosene), and NIST 2298 (sulfur in gasoline). The data indicate that the methodology can be successfully applied to these types of samples

  2. Reduction of Argon Consumption to Less than 2 L min(-1) by Gas Recycling in Inductively Coupled Plasma Optical Emission Spectrometry.

    PubMed

    Tirk, Paul; Wolfgang, Matthias; Wiltsche, Helmar

    2016-07-19

    An innovative interface between the torch and the entrance optics for inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. This system is capable of collecting all argon which was initially supplied to the torch, cooling and cleaning it and feeding most of the argon back to the outer gas port of the torch. Thereby, the total argon consumption could be reduced from 14 to 1.4 L min(-1) using a standard torch and without restricting the rf power. The excitation- and rotational temperature of the plasma were identical when comparing the traditional setup with the enclosed plasma interface. However, the limits of detection (LOD) and limits of quantification (LOQ) of 27 elements investigated were degraded about 5-fold, though this fact can be expected to stem from a change of the observed zone in the plasma caused by the slight overpressure of 2000 Pa within the interface. Though the enclosed plasma interface was located close to the load coil, the rf power coupled to the interface was well below 1 W and no rf arcing was observed for two different rf generator designs. PMID:27306111

  3. An ultrasound-assisted digestion method for the determination of toxic element concentrations in ash samples by inductively coupled plasma optical emission spectrometry.

    PubMed

    Ilander, Aki; Väisänen, Ari

    2007-10-29

    A method of ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of toxic element concentrations (arsenic, barium, cobalt, copper, lead, nickel, strontium, vanadium and zinc) in ash samples was developed. All the measurements were performed in robust plasma conditions which were tested by measuring the Mg(II) 280.270 nm/Mg(I) 285.213 nm line intensity ratios. The highest line intensity ratios were observed when a nebulizer gas flow of 0.6 L min(-1), auxiliary gas flow of 0.2 L min(-1) and plasma power of 1400 W were used for radially viewed plasma. The analysis of SRM 1633b showed that the ultrasound-assisted method developed is highly comparable with the microwave digestion method standardized by the United States Environmental Protection Agency (EPA-3052). The ultrasound-assisted digestion with a digestion solution of aqua regia and hydrofluoric acid (HF) resulted in recovery rates of over 81%. One exception is arsenic which resulted in recoveries of about 60% only; however, it could be digested with good recovery (>90%) using a digestion solution of 5 mL of water and 5 mL of aqua regia. The major advantage of the ultrasound-assisted digestion over microwave digestion is the high treatment rate (30 samples simultaneously with a sonication time of 18 min). PMID:17933604

  4. Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; da Costa, Silvânio Silvério Lopes; Santos, Dayane Melo; dos Santos Pinto, Jéssica; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira

    2014-06-01

    An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg- 1 for Mn to 77.3 mg kg- 1 for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento - MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES).

  5. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry - Critical review

    NASA Astrophysics Data System (ADS)

    Bings, N. H.; Orlandini von Niessen, J. O.; Schaper, J. N.

    2014-10-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally suited

  6. Cobalt as chemical modifier to improve chromium sensitivity and minimize matrix effects in tungsten coil atomic emission spectrometry.

    PubMed

    Silva, Sidnei G; Donati, George L; Santos, Luana N; Jones, Bradley T; Nóbrega, Joaquim A

    2013-05-30

    Cobalt is used as chemical modifier to improve sensitivity and minimize matrix effects in Cr determinations by tungsten coil atomic emission spectrometry (WCAES). The atomizer is a tungsten filament extracted from microscope light bulbs. A solid-state power supply and a handheld CCD-based spectrometer are also used in the instrumental setup. In the presence of 1000 mg L(-1) Co, WCAES limit of detection for Cr (λ=425.4 nm) is calculated as 0.070 mg L(-1); a 10-fold improvement compared to determinations without Co modifier. The mechanism involved in such signal enhancement is similar to the one observed in ICP OES and ICP-MS determinations of As and Se in the presence of C. Cobalt increases the population of Cr(+) by charge transfer reactions. In a second step, Cr(+)/e(-) recombination takes place, which results in a larger population of excited-state Cr atoms. This alternative excitation route is energetically more efficient than heat transfer from atomizer and gas phase to analyte atoms. A linear dynamic range of 0.25-10 mg L(-1) and repeatability of 3.8% (RSD, n=10) for a 2.0 mg L(-1) Cr solution are obtained with this strategy. The modifier high concentration also contributes to improving accuracy due to a matrix-matching effect. The method was applied to a certified reference material of Dogfish Muscle (DORM-2) and no statistically significant difference was observed between determined and certified Cr values at a 95% confidence level. Spike experiments with bottled water samples resulted in recoveries between 93% and 112%. PMID:23680545

  7. Evaluation of the metal uptake of several algae strains in a multicomponent matrix utilizing inductively coupled plasma emission spectrometry

    SciTech Connect

    Mahan, C.A.; Majidi, V.; Holcombe, J.A.

    1989-03-15

    Three freshwater heat-killed, lyophilized blue-green algae strains have been characterized as to their ability to accumulate heavy metals with a focus on the utilization of these algae as an analytical preconcentration technique. This study examines the metal uptake in several multicomponent mixtures by using inductively coupled plasma optical emission spectrometry (ICP-OES). Six milligrams of a pure strain of algae was added to 20-mL aliquots of buffered (pH 5.5-6.5) multielement solutions containing 0.1, 0.5, 1.0, 2.0, and 4.0 mg/L of K, Mg, Ca, Fe, Sr, Co, Cu, Mn, Ni, V, Zn, As, Cd, Mo, Pb, and Se. All three algae strains exhibit relatively high adsorption affinities for Fe, Pb, and Cu, with uptake between 70 and 98% at the 4 ppm concentration level. Biosorption occurs for essentially every element with the relative affinities decreasing in the order Pb greater than Fe greater than Cu greater than Cd greater than Zn greater than Mn greater than Mo greater than Sr greater than Ni greater than V greater than Se greater than As greater than Co for Chlorella pyrenoidosa at the 4 mg/L concentration level. Although some minor differences were seen, the other algae strains (Stichococcus bacillaris and Chlamydomonas reinharti) displayed similar adsorption behavior over the concentration range studied, indicating similar cell wall binding sites. Langmuirian isotherms exhibited a minimum of two slopes over the concentration range of 0.1-4.0 mg/L, indicating the probable existence of at least two adsorption mechanisms.

  8. Characterization of binary silver based alloys by nanosecond-infrared-laser-ablation-inductively coupled plasma-optical emission spectrometer

    NASA Astrophysics Data System (ADS)

    Márquez, Ciro; Sobral, Hugo

    2013-11-01

    A nanosecond infrared laser ablation (LA) system was examined to determine the composition of several silver-copper alloys through an inductively coupled plasma-optical emission spectrometer (ICP-OES). Samples with different concentrations were prepared and analyzed by atomic absorption, and ICP-OES after sample digestion, and compared with an energy-dispersive x-ray spectrometer-scanning electron microscopy (EDX-SEM). Elemental fractionation during the ablation process and within the ICP was investigated for different laser frequencies and fluences. Samples were used for optimizing and calibrating the coupling between LA to the ICP-OES system. Results obtained from the samples analysis were in agreement with those obtained by atomic absorption spectroscopy, ICP-OES and EDX-SEM, showing that fractionation was not significant for laser fluences higher than 55 J cm-2.

  9. Straightforward way to enhance robustness in ultrasonic nebulization-axial view inductively coupled plasma optical emission spectrometry via an additional N2 gas stream

    NASA Astrophysics Data System (ADS)

    Scheffler, Guilherme Luiz; Pozebon, Dirce

    2015-11-01

    In the present study a low flow of N2 is mixed with the aerosol produced by ultrasonic nebulization (USN) prior analysis using inductively coupled plasma optical emission spectrometry (ICP OES). The foreign gas is added for improving plasma characteristics in axially-viewed ICP. By computing the Mg ionic to atomic ratio (plasma robustness) it was concluded that N2 dissociates closer to the load coil when USN is used as sample introduction system. The maximum emission intensity of Mg(II) for pneumatic nebulization (PN) was observed at 11 mm from the load coil while it was 8 mm for USN, indicating earlier aerosol desolvation, atomization and excitation processes in the ICP. Emission profiles of Ar(I) 415.861 nm, Ba(II) 486.601 nm and Ba(II) 233.527 nm indicated that metastable Ar species are overpopulated in the ICP under the N2 flow. Copper and manganese ionic lines with energy close to 16 eV (Ar ionization) were monitored to evaluate spatially dependent charge-transfer reaction along the ICP axis in the presence and absence of the N2 flow. The Cu(II) signal profiles indicated abundance of Ar+ species at low distances from the load coil when N2 was added. On the other hand, differences were not observed at longer distances from the load coil for both plasmas (mixed-gas and pure Ar-ICP). The calculated limits of detection (LODs) for both plasmas had the same order of magnitude. Analysis of certified reference samples demonstrated that the accuracy was preserved by adding the low flow of N2. It was concluded that adding a low flow of N2 to the aerosol produced by USN is a simple way to increase plasma robustness, which is usually lower than that achieved using conventional PN.

  10. Multivariate optimization of an analytical method for the analysis of dog and cat foods by ICP OES.

    PubMed

    da Costa, Silvânio Silvério Lopes; Pereira, Ana Cristina Lima; Passos, Elisangela Andrade; Alves, José do Patrocínio Hora; Garcia, Carlos Alexandre Borges; Araujo, Rennan Geovanny Oliveira

    2013-04-15

    Experimental design methodology was used to optimize an analytical method for determination of the mineral element composition (Al, Ca, Cd, Cr, Cu, Ba, Fe, K, Mg, Mn, P, S, Sr and Zn) of dog and cat foods. Two-level full factorial design was applied to define the optimal proportions of the reagents used for microwave-assisted sample digestion (2.0 mol L(-1) HNO3 and 6% m/v H2O2). A three-level factorial design for two variables was used to optimize the operational conditions of the inductively coupled plasma optical emission spectrometer, employed for analysis of the extracts. A radiofrequency power of 1.2 kW and a nebulizer argon flow of 1.0 L min(-1) were selected. The limits of quantification (LOQ) were between 0.03 μg g(-1) (Cr, 267.716 nm) and 87 μg g(-1) (Ca, 373.690 nm). The trueness of the optimized method was evaluated by analysis of five certified reference materials (CRMs): wheat flour (NIST 1567a), bovine liver (NIST 1577), peach leaves (NIST 1547), oyster tissue (NIST 1566b), and fish protein (DORM-3). The recovery values obtained for the CRMs were between 80 ± 4% (Cr) and 117 ± 5% (Cd), with relative standard deviations (RSDs) better than 5%, demonstrating that the proposed method offered good trueness and precision. Ten samples of pet food (five each of cat and dog food) were acquired at supermarkets in Aracaju city (Sergipe State, Brazil). Concentrations in the dog food ranged between 7.1 mg kg(-1) (Ba) and 2.7 g kg(-1) (Ca), while for cat food the values were between 3.7 mg kg(-1) (Ba) and 3.0 g kg(-1) (Ca). The concentrations of Ca, K, Mg, P, Cu, Fe, Mn, and Zn in the food were compared with the guidelines of the United States' Association of American Feed Control Officials (AAFCO) and the Brazilian Ministry of Agriculture, Livestock, and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento-MAPA). PMID:23601884

  11. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    NASA Astrophysics Data System (ADS)

    Gomes, Marcos S.; Schenk, Emily R.; Santos, Dário; Krug, Francisco José; Almirall, José R.

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg- 1 for Zn to as high as 94 mg kg- 1 for K but were generally below 6 mg kg- 1 for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ~ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ~ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis.

  12. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry.

    PubMed

    Silva, Edson Luiz; Roldan, Paulo dos Santos; Giné, Maria Fernanda

    2009-11-15

    A procedure for simultaneous separation/preconcentration of copper, zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-114). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L(-1), 0.3 mL, 0.15% (w/v), 50 degrees C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n=9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0, and 6.3 microg L(-1), respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples. PMID:19646812

  13. Capillary microextraction combined with fluorinating assisted electrothermal vaporization inductively coupled plasma optical emission spectrometry for the determination of trace lanthanum, europium, dysprosium and yttrium in human hair.

    PubMed

    Wu, Shaowei; Hu, Chengguo; He, Man; Chen, Beibei; Hu, Bin

    2013-10-15

    In this work, a congo red modified single wall carbon nanotubes (CR-SWCNTs) coated fused-silica capillary was prepared and used for capillary microextraction (CME) of trace amounts of lanthanum (La), europium (Eu), dysprosium (Dy) and yttrium (Y) in human hair followed by fluorinating assisted electrothermal vaporization-inductively coupled plasma-optical emission spectrometry (FETV-ICP-OES) determination. The adsorption properties and stability of the prepared CR-SWCNTs coated capillary along with the various factors affecting the separation/preconcentration of La, Eu, Dy and Y by CME were investigated in detail. Under the optimized conditions, with a consumption of 2 mL sample solution, a theoretical enrichment factor of 50 and a detection limit (3σ) of 0.12 ng mL(-1) for La, 0.03 ng mL(-1) for Eu, 0.11 ng mL(-1) for Dy and 0.03 ng mL(-1) for Y were obtained, respectively. The preparation reproducibility of the CR-SWCNTs coated capillary was investigated and the relative standard deviations (RSDs) were ranging from 4.1% (Eu) to 4.4% (La) (CLa, Dy=1.4 ng mL(-1); CY, Eu=0.25 ng mL(-1), n=7) in one batch, and from 5.7% (Eu) to 6.1% (Y) (CLa, Dy=1.4 ng mL(-1); CY, Eu=0.25 ng mL(-1), n=5) among different batches. The proposed method was applied to the analysis of real-world human hair sample and the recoveries for the spiked sample were in the range of 93-105%. The method was also applied to the determination of La, Eu, Dy and Y in Certified Reference Material of GBW07601 human hair, and the determined values were in good agreement with the certified values. PMID:24054601

  14. Analysis of whole blood samples with low gas flow inductively coupled plasma-optical emission spectrometry.

    PubMed

    Nowak, Sascha; Künnemeyer, Jens; Terborg, Lydia; Trümpler, Stefan; Günsel, Andreas; Wiesmüller, Gerhard A; Karst, Uwe; Buscher, Wolfgang

    2015-01-01

    Low gas flow ICP-OES with a total argon consumption below 0.7 L/min is introduced for the analysis of trace elements in blood samples to investigate the influence of samples containing an organic solvent in a demanding matrix on the performance of this plasma for the first time. Therefore, gadolinium was determined in human plasma samples and mercury in red blood cells, human plasma, and precipitated plasma protein fraction. Limits of detection (LOD) were determined to be in the low microgram per liter range for the analytes and the accuracy of the method was assessed by comparison with a conventional Fassel-type torch-based ICP-OES. It was proven that the low gas flow ICP-OES leads to comparable results with the instrument based on the Fassel-type torch. PMID:25240935

  15. Selective Iron(III) ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry

    PubMed Central

    2012-01-01

    Background CuO-TiO2 nanosheets (NSs), a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR) and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III) ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III) ion. The static adsorption capacity for Fe(III) was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites. PMID:23244218

  16. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.

    PubMed

    Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Andrew, Michael E

    2006-03-01

    Personal and area samples for airborne lead were taken at a lead mine concentrator mill, and at a lead-acid battery recycler. Lead is mined as its sulfidic ore, galena, which is often associated with zinc and silver. The ore typically is concentrated, and partially separated, on site by crushing and differential froth flotation of the ore minerals before being sent to a primary smelter. Besides lead, zinc and iron are also present in the airborne dusts, together with insignificant levels of copper and silver, and, in one area, manganese. The disposal of used lead-acid batteries presents environmental issues, and is also a waste of recoverable materials. Recycling operations allow for the recovery of lead, which can then be sold back to battery manufacturers to form a closed loop. At the recycling facility lead is the chief airborne metal, together with minor antimony and tin, but several other metals are generally present in much smaller quantities, including copper, chromium, manganese and cadmium. Samplers used in these studies included the closed-face 37 mm filter cassette (the current US standard method for lead sampling), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. The filters were analyzed after sampling for their content of the various metals, particularly lead, that could be analyzed by the specific portable X-ray fluorescence (XRF) analyzer under study, and then were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The 25 mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37 mm filters. For lead at the mine concentrate mill, all five samplers gave good correlations (r2 > 0.96) between the two analytical methods over the entire range of found lead mass

  17. Simultaneous preconcentrations of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions by Bacillus altitudinis immobilized nanodiamond prior to their determinations in food samples by ICP-OES.

    PubMed

    Ozdemir, Sadin; Kilinc, Ersin; Celik, Kadir Serdar; Okumus, Veysi; Soylak, Mustafa

    2017-01-15

    A novel solid phase extraction method was developed for simultaneous preconcentration-separation of Co(2+), Cr(6+), Hg(2+) and Pb(2+) ions prior to their determinations in food samples by ICP-OES. Thermophilic Bacillus altitudinis immobilized nanodiamond was used as a new biosorbent. SEM and FT-IR analysis were studied to characterize the biosorbent. The optimum pH values of quantitative biosorption for Co(2+), Cr(6+), Hg(2+) and Pb(2+) were found to be 5.0, 6.0, 6.0 and 6.0, respectively. A flow rate of 3.0mLmin(-1) was selected as optimum for all metal ions. 5mL of 1mol/L HCl was used as eluent. Preconcentration factor was achieved as 80. LODs were calculated as 0.071, 0.023, 0.016 and 0.034ngmL(-1), respectively for Hg(2+), Co(2+), Cr(6+) and Pb(2+). The biosorption capacities were calculated for Co(2+), Cr(6+), Hg(2+) and Pb(2+) as 26.4, 30.4, 19.5, and 35.2mg/g, respectively. The developed method was successfully applied to food samples to determine analyte concentrations. PMID:27542497

  18. A software system for emission spectrometry

    NASA Technical Reports Server (NTRS)

    Auping, J. V.; Megargle, R. G.

    1981-01-01

    A computer system was developed for an emission spectrometry facility consisting of a direct current (DC) argon arc spectrograph optically coupled to an inductively coupled plasma multichannel spectrometer. Custom hardware and software were designed to control analytical functions and perform data acquisition. The software system was designed to make operation of the facility simple for routine operation and flexible for research and development. Special software was written to collect data under controlled conditions to characterize and monitor system response. One sequence collects intensity versus time data on all channels and displays the data graphically. These profiles are useful in studying the effects of operating parameters on measurement precision. Another special sequence performs calibration using a spline curve fit procedure. Routines were also written to measure dark currents and signals from a standard tungsten halogen lamp mounted in place of the DC arc. For quality control purposes, histories of these values are kept and monitored for excess scatter or drift.

  19. Evaluation of PGE Liberation and Chromium Isolation in a Solid UG2 Chromitite Concentrates at Moderate Temperatures Using ICP-OES

    NASA Astrophysics Data System (ADS)

    Chiweshe, Trevor T.; Purcell, Walter; Venter, Johan A.

    2016-01-01

    Complete sample digestion is a prerequisite in achieving accurate and reproducible results in wet chemical analysis as well as effective element recovery in hydrometallurgical beneficiation processes. Inductively coupled plasma-optical emission spectroscopy was used to evaluate the efficiency of (NH4)2HPO4/(NH4)H2PO4, Na2HPO4/NaH2PO4·H2O (800°C), NH4F·HF flux (250°C), microwave dissolution using HCl and aqua regia acids (240°C) to dissolve and liberate the platinum group metals (PGE) in a Upper Group 2 (UG2) chromitite concentrate sample. Complete digestion of the UG2 chromitite ore was achieved using Na2HPO4/NaH2PO4·H2O and (NH4)2HPO4/(NH4)H2PO4 flux mixtures and average PGE (Ru, Os and Pt) yields of 1.90 g/kg (Ru), 0.88 g/kg (Os), 2.52 g/kg (Pt) were obtained using Sc as internal standard. Fusion with NH4F·HF yielded 0.85 g/kg (Ru), 0.72 g/kg (Os) and 0.95 g/kg (Pt) whilst microwave dissolution using HCl and aqua regia yielded an average of 0.77 g/kg (Ru), 0.08 g/kg (Os) and 0.35 g/kg (Pt). Sodium phosphate flux, however, introduced Na+ ions as easily ionised elements, which affected the emission intensities to yield slightly inflated PGE (Ru, Os and Pt) yields. The use of ammonium phosphate and sodium phosphate at 800°C (after the selective removal of Na+ ions) proved to better the fluxes and produced higher and consistent PGE yields. The use of ammonium phosphate flux was also shown to facilitate the isolation of a green chromium precipitate with a 98.9% purity, which may assist in a hydrometallurgical beneficiation process of the UG2 chromitite concentrate ore and may also have important implications for the ferro-chrome industry.

  20. Evaluation of PGE Liberation and Chromium Isolation in a Solid UG2 Chromitite Concentrates at Moderate Temperatures Using ICP-OES

    NASA Astrophysics Data System (ADS)

    Chiweshe, Trevor T.; Purcell, Walter; Venter, Johan A.

    2016-06-01

    Complete sample digestion is a prerequisite in achieving accurate and reproducible results in wet chemical analysis as well as effective element recovery in hydrometallurgical beneficiation processes. Inductively coupled plasma-optical emission spectroscopy was used to evaluate the efficiency of (NH4)2HPO4/(NH4)H2PO4, Na2HPO4/NaH2PO4·H2O (800°C), NH4F·HF flux (250°C), microwave dissolution using HCl and aqua regia acids (240°C) to dissolve and liberate the platinum group metals (PGE) in a Upper Group 2 (UG2) chromitite concentrate sample. Complete digestion of the UG2 chromitite ore was achieved using Na2HPO4/NaH2PO4·H2O and (NH4)2HPO4/(NH4)H2PO4 flux mixtures and average PGE (Ru, Os and Pt) yields of 1.90 g/kg (Ru), 0.88 g/kg (Os), 2.52 g/kg (Pt) were obtained using Sc as internal standard. Fusion with NH4F·HF yielded 0.85 g/kg (Ru), 0.72 g/kg (Os) and 0.95 g/kg (Pt) whilst microwave dissolution using HCl and aqua regia yielded an average of 0.77 g/kg (Ru), 0.08 g/kg (Os) and 0.35 g/kg (Pt). Sodium phosphate flux, however, introduced Na+ ions as easily ionised elements, which affected the emission intensities to yield slightly inflated PGE (Ru, Os and Pt) yields. The use of ammonium phosphate and sodium phosphate at 800°C (after the selective removal of Na+ ions) proved to better the fluxes and produced higher and consistent PGE yields. The use of ammonium phosphate flux was also shown to facilitate the isolation of a green chromium precipitate with a 98.9% purity, which may assist in a hydrometallurgical beneficiation process of the UG2 chromitite concentrate ore and may also have important implications for the ferro-chrome industry.

  1. TXRF and ICP-OES analysis of liquid-phase laser-ablated (LP-LA) nanoparticles of cryolite-alumina solutions

    NASA Astrophysics Data System (ADS)

    Castell, Ricardo; Greaves, Eduardo D.; Abdala, Lyzeth; Barros, Haydn

    2012-10-01

    A new procedure with minimum sample preparation has been developed for a fast and serial analysis of cryolite with varying concentrations of dissolved alumina by liquid-phase laser ablation followed by Total Reflection X-Ray Fluorescence and induced coupled plasma optical emission spectroscopy. The analysis supplies the sodium/aluminium ratio of bath samples taken from industrial Hall-Herault reduction cells, as well as trace element relative concentrations. Two different types of molten samples taken directly from the aluminium production plant were placed under distilled de-ionized water in a quartz cell and subjected to pulsed laser ablation using the beam from a third harmonic Nd:YAG laser. Scanning electron microscopy examination shows the nanoparticles nature of the ablated material. The water-suspension is deposited on quartz reflectors for Total Reflection X-ray Fluorescence analysis or directly aspirated to the induced coupled plasma yielding the aluminium and sodium signals. Instrument quantification of the elements is performed by the use of aqueous standards. Validation tests were done with cryolite sample digestion and standard methods of sample quantification. The procedure can provide the aluminium/sodium ratio with adequate precision for aluminium production plant cell diagnostics and reveals the trace elements that could be considered as contamination.

  2. Analysis of Zn, Cd, As, Cu, Pb, and Fe in snails as bioindicators and soil samples near traffic road by ICP-OES.

    PubMed

    Massadeh, Adnan M; Alomary, Ahmed A; Mir, Sayeeda; Momani, Fouad A; Haddad, Hazem I; Hadad, Yazen A

    2016-07-01

    Snails are used as biological indicators of the environment pollution for heavy metals. Living snail samples were collected from different sites at the city of Irbid-Jordan and classified according to their morphological features including Helix pelasga, Eobania vermiculata, Xeropicta derbentina, Oychilus, Xerocrassa seetzenii, Xerocrassa simulata, and Pila. Zn, Cd, As, Cu, Pb, and Fe levels were measured by inductively coupled plasma-optical emission spectroscopy. Results indicated that metal concentrations in all snail shell samples were with an average and range for Zn 22.4 (6.5-105.5) μg g(-1), Cd 7.8 (0.4-48.1) μg g(-1), As 25.9 (0.7-248.5) μg g(-1), Cu 15.1 (1.6-69.0) μg g(-1), Pb 0.4 (0.2-1.7) μg g(-1), and Fe 119.6 (14.0-1102.0) μg g(-1), whereas, in soil samples, the average and range for Zn 204.0 (12.0-709.0) μg g(-1), Cd 5.7 (0.2-39.5) μg g(-1), As 3.2 (1.8-5.2) μg g(-1), Cu 22.1 (2.3-77.4) μg g(-1), Pb 0.2 (0.1-0.3) μg g(-1), and Fe 242.4 (25.0-680.0) μg g(-1). PMID:27026544

  3. Determination of selenium in dietary supplements by optical emission spectrometry after alkaline dissolution and subsequent headspace solid phase microextraction.

    PubMed

    Tyburska, Anna; Jankowski, Krzysztof

    2013-02-23

    Headspace solid phase microextraction (HSSPME) of chemically generated selenium hydride from alkaline solution followed by thermal desorption (TD) coupled directly to a microwave plasma (MWP) source has been examined for the optical emission spectrometric (OES) determination of Se. Various chemical and operating parameters including the NaBH(4) and HCl concentrations as well as the fiber exposure time and desorption temperature have been optimized. Alternatively, continuous hydride generation (HG) from alkaline medium and inductively coupled plasma (ICP) may be used for Se determination by OES. With the procedure developed, the determination of Se in dietary supplements at the tens of μgg(-1) level and an accuracy of 3-6% could be performed even in the presence of the 1000-fold excess of Fe and Cu. Additionally, Se was determined in the NIST 8418 material (Wheat gluten) with a certified concentration of Se of 2.58 ± 0.19 μgg(-1), and a value of 2.45 ± 0.25 μgg(-1) was found using HG-HSSPME-MWP-OES. The detection limit for Se (3.2 ng ml(-1)) with the proposed procedure was comparable to those obtained with HG-ICP-OES and the calibration curve was linear of about 2 orders of magnitude. PMID:23245260

  4. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 1--major and trace element composition.

    PubMed

    Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F

    2015-01-01

    Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions. PMID:25262949

  5. Novel solid-phase extractor based on functionalization of multi-walled carbon nano tubes with 5-aminosalicylic acid for preconcentration of Pb(II) in water samples prior to determination by ICP-OES.

    PubMed

    Soliman, Ezzat M; Marwani, Hadi M; Albishri, Hassan M

    2013-12-01

    New solid-phase extractor (MWCNTs-5-ASA) was synthesized via covalent immobilization of 5-aminsalicylic acid onto multi-walled carbon nanotubes (MWCNs). The success of the functionalization process was confirmed using Fourier transform infrared spectroscopy, scanning electron microscope, and surface coverage determination. Batch experiments were conducted as a function of pH to explore MWCNTs-5-ASA efficiency to extract several metal ions viz., Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II). It was found that Pb(II) exhibits the highest extraction percentage with maximum adsorption capacity 32.75 mg g(-1). Its binding performance was well fitted with Langmuir sorption isotherm. On the other hand, the selective separation and preconcentration of trace Pb(II) under dynamic conditions prior to determination by inductively coupled plasma-optical emission spectrometry was investigated under different parameters. These included the rate of flow and volume of sample solution, in addition to the type of the eluate, its volume and concentration. The effect of a variety of foreign ions on the recovery percentage was also evaluated. Trace Pb(II) ions present in 500 mL aqueous solution adjusted to pH 4.0 were retained on 50 mg of MWCNTs-5-ASA and completely eluted using 4.0 mL of 2 M HNO₃. The limit of detection and the precision of the method were 0.25 ng mL(-1) and 2.8%, respectively (N = 5). This methodology has been applied for the determination of Pb(II) in water samples with good results. PMID:23832232

  6. Microwave-assisted extraction of rare earth elements from petroleum refining catalysts and ambient fine aerosols prior to inductively coupled plasma-mass spectrometry.

    PubMed

    Kulkarni, Pranav; Chellam, Shankararaman; Mittlefehldt, David W

    2007-01-01

    A robust microwave-assisted acid digestion procedure followed by inductively coupled plasma-mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM(2.5)). High temperature (200 degrees C), high pressure (200 psig), acid digestion (HNO(3), HF and H(3)BO(3)) with 20 min dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst and PM(2.5). This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using (115)In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu and Dy in ambient PM(2.5) in an industrial area of Houston, TX. PMID:17386451

  7. Microwave-assisted Extraction of Rare Earth Elements from Petroleum Refining Catalysts and Ambient Fine Aerosols Prior to Inductively Coupled Plasma - Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar

    2006-01-01

    In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.

  8. Spectrometric estimation of sample amount in aliquot for a direct solid sampling system and its application to the determination of trace impurities in silver nanoparticles by ETV-ICP-OES.

    PubMed

    Nakata, Kenichi; Okamoto, Yasuaki; Ishizaka, Syoji; Fujiwara, Terufumi

    2016-04-01

    A method based on a tungsten boat furnace vaporiser, tungsten sample cuvettes, and an inductively coupled plasma (ICP) optical emission spectrometer has been developed for the direct determination of silicon, phosphorus, and sulphur in silver nanoparticles. The important point in the proposed method is that the entire sample in each batch is vaporised, which enables simultaneous measurement of the emission of not only the analyte but also the silver matrix. Furthermore, since the silver nanoparticles are sufficiently pure, the contribution of impurities to the sample amounts will be negligible. Therefore, this estimation is suitable for measuring the sample amount in each aliquot instead of the conventional weighing procedure using a microbalance; therefore, no tedious weighing procedures for estimating the sample amount introduced into the ETV device are needed. An additional advantage is that pretreatment and/or predigestion are unnecessary. The sample throughput is approximately 35 batches per hour. The detection limits of silicon, phosphorus, and sulphur in the silver nanoparticles (dry powder) are 15, 4.2, and 62 µg g(-1), respectively. Analytical results for various silver nanoparticles as both dry particles and in suspended solutions are described, and these values are compared to those obtained by conventional weighing with a microbalance. This methodology is useful for rapid screening and accurate analysis of silver nanoparticles, especially for industrial applications. PMID:26838427

  9. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  10. Determination of trace amounts of total dissolved cationic aluminium species in environmental samples by solid phase extraction using nanometer-sized titanium dioxide and atomic spectrometry techniques.

    PubMed

    Matús, Peter; Hagarová, Ingrid; Bujdos, Marek; Divis, Pavel; Kubová, Jana

    2009-11-01

    Nanometer-sized titanium dioxide was used as a solid-phase extractant for the separation and preconcentration of trace amounts of Al(III) prior to its determination by electrothermal atomic absorption spectrometry (ET AAS) and inductively coupled plasma optical emission spectrometry (ICP OES). The optimal conditions for the proposed solid phase extraction (SPE; 50mg TiO(2), 10 min extraction time, pH 6.0, HCl and HNO(3) as eluents) and ET AAS measurement (1500 degrees C pyrolysis and 2600 degrees C atomization temperatures, Mg(NO(3))(2) as matrix modifier) were obtained. The adsorption capacity of TiO(2) was 4.1mg Al g(-1) TiO(2). Two modes of the proposed procedure were compared, (I) batch and elution mode with the elution of Al from TiO(2) phase by nitric or hydrochloric acid, and (II) batch and slurry mode (without elution) with the direct TiO(2) phase-slurry sampling. Finally, the batch and slurry mode of nanometer-sized TiO(2) SPE with slurry ET AAS detection and quantification was preferred and used for the determination of trace amounts of total dissolved cationic Al species in synthetic and natural water samples. The method accuracy was checked by the analysis of lake water CRM TMDA-61 and by the technique of analyte addition (sample spiking). Under the optimal conditions, the calibration curve for batch and slurry TiO(2) SPE with a 10-fold preconcentration was linear up to 40 microg L(-1) Al. The limit of detection (LOD) and the limit of quantification (LOQ) was 0.11 microg L(-1) Al and 0.35 microg L(-1) Al, respectively, with a preconcentration factor of 20 and a relative standard deviation (RSD) lower than 5%. PMID:19717191

  11. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  12. Pulsed, atmospheric pressure plasma source for emission spectrometry

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  13. Constraining Anthropogenic and Biogenic Emissions Using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Spencer, Kathleen M.

    Numerous gas-phase anthropogenic and biogenic compounds are emitted into the atmosphere. These gases undergo oxidation to form other gas-phase species and particulate matter. Whether directly or indirectly, primary pollutants, secondary gas-phase products, and particulate matter all pose health and environmental risks. In this work, ambient measurements conducted using chemical ionization mass spectrometry are used as a tool for investigating regional air quality. Ambient measurements of peroxynitric acid (HO2NO2) were conducted in Mexico City. A method of inferring the rate of ozone production, PO3, is developed based on observations of HO2NO 2, NO, and NO2. Comparison of this observationally based PO3 to a highly constrained photochemical box model indicates that regulations aimed at reducing ozone levels in Mexico City by reducing NOx concentrations may be effective at higher NO x levels than predicted using accepted photochemistry. Measurements of SO2 and particulate sulfate were conducted over the Los Angeles basin in 2008 and are compared to measurements made in 2002. A large decrease in SO2 concentration and a change in spatial distribution are observed. Nevertheless, only a modest reduction in sulfate concentration is observed at ground sites within the basin. Possible explanations for these trends are investigated. Two techniques, single and triple quadrupole chemical ionization mass spectrometry, were used to quantify ambient concentrations of biogenic oxidation products, hydroxyacetone and glycolaldehyde. The use of these techniques demonstrates the advantage of triple quadrupole mass spectrometry for separation of mass analogues, provided the collision-induced daughter ions are sufficiently distinct. Enhancement ratios of hydroxyacetone and glycolaldehyde in Californian biomass burning plumes are presented as are concentrations of these compounds at a rural ground site downwind of Sacramento.

  14. Apparatus and method for transient thermal infrared emission spectrometry

    DOEpatents

    McClelland, John F.; Jones, Roger W.

    1991-12-24

    A method and apparatus for enabling analysis of a solid material (16, 42) by applying energy from an energy source (20, 70) top a surface region of the solid material sufficient to cause transient heating in a thin surface layer portion of the solid material (16, 42) so as to enable transient thermal emission of infrared radiation from the thin surface layer portion, and by detecting with a spectrometer/detector (28, 58) substantially only the transient thermal emission of infrared radiation from the thin surface layer portion of the solid material. The detected transient thermal emission of infrared radiation is sufficiently free of self-absorption by the solid material of emitted infrared radiation, so as to be indicative of characteristics relating to molecular composition of the solid material.

  15. Determination of microelements in uncontaminated natural water from the Baikal region by atomic emission spectrometry

    SciTech Connect

    Kuznetsova, A.I.; Chumakova, N.L.

    1995-10-01

    In this study, concentration by evaporation was used to determine 17 microelements (B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ag, Sn, Ba, and Pb) in water from Lake Baikal and its tributaries by atomic-emission spectrometry with the arc excitation of spectra.

  16. Analytical control of wollastonite for biomedical applications by use of atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry.

    PubMed

    De Aza, P N; Guitián, F; De Aza, S; Valle, F J

    1998-04-01

    Preliminary in vitro experiments revealed that wollastonite (CaSiO3) is a potentially highly bioactive material that forms a hyroxyapatite (HA) surface layer on exposure to simulated body fluid with an ion concentration, pH and temperature virtually identical with those of human blood plasma. The formation of the HA layer is an essential requirement for an artificial material to be used as bioactive bone substitute. This finding opens up a wide field for biomedical applications of wollastonite. Biomaterials used as implants in the human body require strict control of trace elements and of the toxic species specified in American Society for Testing and Materials F-1185-88 (As, Cd, Hg and Pb) in ceramic hydroxyapatite for surgical implantation. In this work, two types of pseudowollastonite, the high temperature form of wollastonite, were analysed by using cold vapour atomic absorption spectrometry and hydride generation atomic absorption spectrometry, in order to determine the elements stated in the above-mentioned norm, and inductively coupled plasma atomic emission spectrometry to establish the SiO2/CaO ratio of the two materials and analyse for all other impurities introduced by the raw materials and by the processes of synthesis, sintering and grinding. Barium and Mg were especially prominent in raw materials, and Zr, Y, Mg, W, Co and Ni come mainly from the processing. PMID:9684401

  17. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1992-01-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  18. Narrowband emission line imaging spectrometry using Savart plates

    NASA Astrophysics Data System (ADS)

    Maione, Bryan; Brickson, Leandra; Kudenov, Michael; Escuti, Michael

    2016-05-01

    Polarization spatial heterodyne interferometry (PSHI) allows for the development of compact, vibration insensitive, high spectral resolution sensors. Introducing the imaging qualities of a lenslet array extends the advantages of PSHI to imaging interferometers. The use of Savart plates enables a birefringent interferometer that obtains higher spectral resolution with fewer optical aberrations when compared to alternative designs. In this paper, we describe the design, construction, calibration and validation of a narrowband emission line imaging spectrometer (NELIS), based on Savart plates and liquid crystal polarization gratings, along with its associated theoretical model. This sensor is advantageous for spectral imaging in the areas of remote sensing, biomedical imaging and machine vision.

  19. Evaluation of a new optic-enabled portable X-ray fluorescence spectrometry instrument for measuring toxic metals/metalloids in consumer goods and cultural products

    NASA Astrophysics Data System (ADS)

    Guimarães, Diana; Praamsma, Meredith L.; Parsons, Patrick J.

    2016-08-01

    X-ray fluorescence spectrometry (XRF) is a rapid, non-destructive multi-elemental analytical technique used for determining elemental contents ranging from percent down to the μg/g level. Although detection limits are much higher for XRF compared to other laboratory-based methods, such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectrometry (OES) and atomic absorption spectrometry (AAS), its portability and ease of use make it a valuable tool, especially for field-based studies. A growing necessity to monitor human exposure to toxic metals and metalloids in consumer goods, cultural products, foods and other sample types while performing the analysis in situ has led to several important developments in portable XRF technology. In this study, a new portable XRF analyzer based on the use of doubly curved crystal optics (HD Mobile®) was evaluated for detecting toxic elements in foods, medicines, cosmetics and spices used in many Asian communities. Two models of the HD Mobile® (a pre-production and a final production unit) were investigated. Performance parameters including accuracy, precision and detection limits were characterized in a laboratory setting using certified reference materials (CRMs) and standard solutions. Bias estimates for key elements of public health significance such as As, Cd, Hg and Pb ranged from - 10% to 11% for the pre-production, and - 14% to 16% for the final production model. Five archived public health samples including herbal medicine products, ethnic spices and cosmetic products were analyzed using both XRF instruments. There was good agreement between the pre-production and final production models for the four key elements, such that the data were judged to be fit-for-purpose for the majority of samples analyzed. Detection of the four key elements of interest using the HD Mobile® was confirmed using archived samples for which ICP-OES data were available based on digested sample materials. The HD

  20. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    SciTech Connect

    Montaser, A.

    1990-01-01

    In this project, new high temperature plasmas and new sample introduction systems are developed for rapid elemental and isotopic analysis of gases, solutions, and solids using atomic emission spectrometry (AES) and mass spectrometry (MS). These devices offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, biomedicine and nutrition. Emphasis is being placed on: generation of annular, helium inductively coupled plasmas (He ICPs) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies, with the intent of enhancing the detecting powers of a number of elements; diagnostic studies of high-temperature plasmas to quantify their fundamental properties, with the ultimate aim to improve analytical performance of atomic spectrometry; development and characterization of new sample introduction systems that consume microliter or microgram quantities of samples, and investigation of new membrane separators for striping solvent from sample aerosol to reduce various interferences and to enhance sensitivity in plasma spectrometry.

  1. Laser-Induced Breakdown Spectrometry as a Multimetal Continuous-Emission Monitor

    NASA Astrophysics Data System (ADS)

    Zhang, Hansheng; Yueh, Fang-Yu; Singh, Jagdish P.

    1999-03-01

    Laser-induced breakdown spectrometry (LIBS) has been used to detect atomic and molecular species in various environments. LIBS has the capability to be used as a continuous-emission monitor to monitor toxic-metal concentrations in stack emissions. Recently a mobile LIBS system was calibrated in our laboratory and tested as a multimetal continuous-emission monitor during a joint U.S. Department of Energy Environmental Protection Agency (EPA) test. LIBS measurements were performed with three sets of metal concentrations at the EPA Rotary Kiln Incinerator Simulator. The LIBS system successfully measured concentrations of Cr, Pb, Cd, and Be in near real time in this test. Real-time LIBS data were averaged and compared with data obtained from an EPA reference method that was conducted concurrently with LIBS. The details of the LIBS calibration and results of these LIBS measurements are described.

  2. Particulate PAH emissions from residential biomass combustion: time-resolved analysis with aerosol mass spectrometry.

    PubMed

    Eriksson, A C; Nordin, E Z; Nyström, R; Pettersson, E; Swietlicki, E; Bergvall, C; Westerholm, R; Boman, C; Pagels, J H

    2014-06-17

    Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (AMS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. AMS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (Dva ∼ 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (Dva ∼ 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions. PMID:24866381

  3. Electron field emission from freestanding Diamond nanomembranes and Application to time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Hyunseok; Park, Jonghoo; Shin, Hyuncheol; Blick, Robert H.

    2013-03-01

    We introduce a prototype of a freestanding diamond nanomembrane for large protein detection in time-of-flight mass spectrometry. Doped diamond as a material for mass spectroscopy is extremely interesting due to its mechanical and electrical properties. The freestanding diamond nanomembranes we are able to fabricate have lateral extensions of 400 μm × 400 μm with a thickness of 100nm. We employ optical lithography and a Buffered Oxide Etch (BOE) of SiO2 followed by anisotropic etching of the substrate silicon using TMAH solution and finally removing SiO2. The electron field emission from the surface of the membrane is traced in the IV characteristics at room temperature. The membrane is then applied for detection of the large ionized proteins using time-of-flight mass spectrometry. Ion detection is demonstrated in our nanomembrane MALDI-TOF analysis of Insulin (5,735 Da). That is when the ions with a large kinetic energy bombard the nanomembrane, their energy is thermalized upon impact into phonons. The phonons give a thermal energy to the electrons with the membrane, which are then excited to higher energetic states. Given an extraction voltage this leads to electron field emission from the membrane which we labeled phonon-assisted field emission (PAFE). In other words, the MALDI mass spectra are obtained by exploiting ballistic phonon propagation and quasi-diffusive phonon propagation.

  4. The Kalman filter approach to inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Van Veen, E. H.; Bosch, S.; De Loos-Vollebregt, M. T. C.

    1994-07-01

    This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text, comprising the main article and two appendices, is accompanied by a disk containing the compiled program, a reference manual and data files. The work deals with data handling in inductively coupled plasma atomic emission spectrometry (ICP-AES). With this technique, the analyte signal is superimposed on a background signal. When separating the signals by manual or automated three-point background correction, there are many instances in which the data reduction fails. Based on scans recorded in a fast-scanning mode and on a library of pure-component scans, the Kaiman filter approach models the emission in the spectral window (about 100 pm) of the analyte and mathematically solves the problem of background correction. By using a criterion-based algorithm to correct for optical instability, the uncertainty in the determination of the interferent line signal is eliminated. Therefore, the present filter implementation yields more accurate and precise results, especially in the case of line overlap. The Kalman filter Approach to Atomic Spectrometry (KAAS) software automatically processes Perkin-Elmer Plasma 1000/2000 text files, but can also handle ASCII data files. Practical and comprehensive examples are given to evoke the "Kalman filter feeling" in the crucial step of creating the emission model.

  5. Expressing self-absorption in the analytical function of inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kántor, Tibor; Bartha, András

    2015-11-01

    The self-absorption of spectral lines was studied with up to date multi-element inductively coupled plasma atomic emission spectrometry (ICP-AES) instrumentation using radial and axial viewing of the plasma, as well, performing line peak height and line peak area measurements. Two resonance atomic and ionic lines of Cd and Mg were studied, the concentration range was extended up to 2000 mg/L. At the varying analyte concentration, constant matrix concentration of 10,000 mg/L Ca was ensured in the pneumatically nebulized solutions. The physical and the phenomenological formulation of the emission analytical function is overviewed and as the continuity of the earlier results the following equation is offered:

  6. Simple, sensitive nitrogen analyzer based on pulsed miniplasma source emission spectrometry

    NASA Astrophysics Data System (ADS)

    Jin, Zhe; Duan, Yixiang

    2003-12-01

    The development of pulsed miniplasma source emission spectrometry for trace nitrogen determination in inert gases is described in this article. The instrument consists of a pulsed miniplasma source generated by an in-house fabricated portable high-voltage supply, an optical beam collection system, an integrated small spectrometer with a charge-coupled-device detector, an interface card, and a notebook computer for controlling spectrometer parameters and signal processing. Trace nitrogen in the inert gases, such as helium and argon, was determined by monitoring the emission intensities from nitrogen molecules at 357 and 337 nm. The analytical performance was examined under various experimental conditions. The system has a detection limit of about 15 ppb (v/v) for nitrogen in helium with a relative standard deviation of 1.5%. The newly developed instrument offers a simple, low-cost, and sensitive method for continuously monitoring trace nitrogen in high-purity inert gases.

  7. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    PubMed Central

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  8. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective.

  9. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis.

    PubMed

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  10. [Preliminary study of atomic emission spectrometry of Ti (H) plasma produced by vacuum arc ion source].

    PubMed

    Deng, Chun-Feng; Wu, Chun-Lei; Wang, Yi-Fu; Lu, Biao; Wen, Zhong-Wei

    2014-03-01

    In order to study the discharge process of vacuum arc ion source, make a detail description of the discharge plasma, and lay the foundation for further research on ion source, atomic emission spectrometry was used to diagnose the parameters of plasma produced by vaccum arc ion source. In the present paper, two kinds of analysis method for the emission spectra data collected by a spectrometer were developed. Those were based in the stark broadening of spectral lines and Saba-Boltzmann equation. Using those two methods, the electron temperature, electron number density and the ion temperature of the plasma can be determined. The emission spectroscopy data used in this paper was collected from the plasma produced by a vacuum are ion source whose cathode was made by Ti material (which adsorbed hydrogen during storage procedure). Both of the two methods were used to diagnose the plasma parameters and judge the thermal motion state of the plasma. Otherwise, the validity of the diagnostic results by the two methods were analyzed and compared. In addition, the affection from laboratory background radiation during the spectral acquisition process was discussed. PMID:25208416

  11. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) in support of nuclear waste management

    NASA Astrophysics Data System (ADS)

    Huff, Edmund A.; Horwitz, E. Philip

    Simulated complex nuclear waste solutions are characterized by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Simultaneous and sequential measurements are made of liquid extraction distribution coefficients needed in the development of process flow sheets for component separations. This paper describes the determination of 19 elements, comprised of process contaminants (Al, Cr, Fe, Ni) and nuclear fission products (Ba, Cd, Ce, Eu, La, Mo, Nd, Pd, Pr, Rh, Ru, Sm, Sr, Y, Zr), in diverse aqueous streams. The concentrations determined vary from 0.04 to 4000μg ml -1 with dilutions being used to bring analytical measurements into the range of calibration standards. The estimated precision and accuracy of the method are 1-5 %. Data are presented on recoveries and material balances for extraction systems that can be used for the implementation of actinide (III)-fission product separation schemes.

  12. [Study on the distribution of plasma parameters in electrodeless lamp using emission spectrometry].

    PubMed

    Wang, Chang-Quan; Zhang, Gui-Xin; Wang, Xin-Xin; Shao, Ming-Song; Dong, Jin-Yang; Wang, Zan-Ji

    2011-09-01

    Electrodeless lamp in pear shape was ignited using inductively coupled discharge setup and Ar-Hg mixtures as working gas. The changes in electronic temperature and density with axial and radial positions at 5 s of igniting were studied by means of emission spectrometry. The changes in electronic temperature were obtained according to the Ar line intensity ratio of 425.9 nm/ 750.4 nm. And the variations in electronic density were analyzed using 750.4 nm line intensity. It was found that plasma electronic temperature and density is various at different axial or radial positions. The electronic temperatures first increase, then decrease, and then increase quickly, and finally decline. While the electronic density firstly increase quickly, the decrease, and then rise slowly and finally decline again with axial distance increasing. With radial distance increasing, electronic temperature increases to a stable area, then continues to rise, while electronic density decreases. PMID:22097865

  13. Fourier transform infrared spectrometry -- A mature analytical method for industrial-level emission monitoring

    SciTech Connect

    Gravel, D.; Rilling, A.; Karfik, V.; Schmaeh, M.

    1997-12-31

    Monitoring extremely low limits of pollutants in the stack emissions of waste incinerators is required by German law (and recently by European Community regulations). This calls for the most advanced and innovative monitoring equipment. Fourier Transform Infrared Spectrometers designed for use in industrial environments can now meet this need. The operating principle and construction of an FTIR-based continuous emissions multicomponent monitoring system will be explained. This FTIR spectrometer provides quantitative results of 9 chemical compounds simultaneously. This number can be increased by simple software addition. The hot/wet, extractive analytical method provides accurate results at extremely low concentration levels for pollutants like HCl, SO{sub 2} and NH{sub 3}, even with up to 60 Vol% water vapor in the gas sample. The combination of FTIR spectrometry and modern chemometrics gives higher selectivity than any other analyzer. The excellent long-term stability allows extending the calibration interval to six months. The ruggedness of industrial grade FTIR Spectrometer and the simple design of the sampling and gas conditioning systems ensure extremely high availability. The performance of the FTIR spectrometer has been validated by an independent products testing organization, TUV Rheinland Germany. The testing includes a laboratory examination and a long term trial under real working conditions. As a result, the FTIR based system Cemas achieved the official permission for emission monitoring by the German Federal Ministry of Environment and Reactor Security. The experience and particular results obtained from the operation of more than 70 FTIR continuous emissions monitoring systems throughout the world will be presented.

  14. ANALYSIS OF TRACE-LEVEL ORGANIC COMBUSTION PROCESS EMISSIONS USING NOVEL MULTIDIMENSIONAL GAS CHROMATOGRAPHY-MASS SPECTROMETRY PROCEDURES

    EPA Science Inventory

    The paper discusses the analysis of trace-level organic combustion process emissions using novel multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures. It outlines the application of the technique through the analyses of various incinerator effluent and produ...

  15. Flame Emission Spectrometry in General Chemistry Labs: Solubility Product (K[subscript sp]) of Potassium Hydrogen Phthalate

    ERIC Educational Resources Information Center

    Nyasulu, Frazier W.; Cusworth, William, III; Lindquist, David; Mackin, John

    2007-01-01

    In this general chemistry laboratory, flame emission spectrometry is used to determine the potassium ion concentration in saturated solutions of potassium hydrogen phthalate (KHP) in the 0-65 [degree]C temperature range. From these data the solubility products (K[subscript sp]), the Gibbs free energies of solution ([Delta][subscript…

  16. PLANE-INTEGRATED OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROMETRY METHODOLOGY FOR ANAEROBIC SWINE LAGOON EMISSION MEASUREMENTS

    EPA Science Inventory

    Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...

  17. Extraction of trace elements in coal for determination by inductively coupled plasma-optical emission spectrometry using N,N-dimethylformamide and ultrasound

    NASA Astrophysics Data System (ADS)

    Mujuru, Munyaradzi; Moyo, Stanley; McCrindle, Robert I.; Mokgalaka-Matlala, Ntebogeng

    2012-10-01

    Coal usage continues to increase due to global energy demands. Increasing environmental monitoring and concern means that better methods of trace element determination are always required. This study investigated the use of N,N-dimethylformamide (DMF), Triton X-100, HNO3 and ultrasound to extract trace elements (Cr, Mn, Pb, Sr and V) from coal prior to analysis using ICP-OES and ICP-MS. It was found that the proportion extracted was lowest for V (17%) and highest for Pb (100%). Partial dissolution of the coal particles used in the slurries was demonstrated using scanning electron microscopy studies. Trace element determination of two reference material coal samples demonstrated that this method of extraction is effective. Trace elements in three bituminous coals from different seams being mined in South Africa were determined.

  18. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  19. Multielemental inductively coupled plasma optical emission spectrometry analysis of nickeliferous minerals.

    PubMed

    Abad-Peña, Elizabet; Larrea-Marín, María Teresa; Villanueva-Tagle, Margarita Edelia; Pomares-Alfonso, Mario Simeón

    2014-06-01

    An inductively coupled plasma optical emission spectrometry method for the quantitative simultaneous determination of Al, Ca, Co, Cu, Cr, Fe, K, Mg, Mn, Na, Ni, P and Zn in Cuban laterite and serpentine minerals has been developed. Additionally, V and Ti can be quantitatively determined in laterite mineral; Li, Sr, and Zr can be detected in both mineral types and Pb can be detected just in laterite mineral. The microwave-assisted total acid digestion of samples was achieved with HCl+HNO3+HF and HNO3+HClO4+HF acid mixtures for laterite and serpentine samples, respectively. In non-robust plasma operating conditions, the matrix effect characteristics of the laterite sample were dictated by the principal component Fe; while the character of the Mg principal component matrix effect was some how modified by the concomitants Fe and Ni in serpentine sample. The selection of robust conditions decreased the matrix effect. Additionally, the simulation of the matrix samples by introducing the principal component Fe or Mg, correspondingly, in calibration dissolutions was needed to overcome completely the matrix effect over the analysis accuracy. Precision of analysis was very near or lower than 10% for most elements, except Sr (15%) in L-1; and K (15%) and Li (15%) in SNi sample. Accuracy of analysis was around or lowers than 10% for most elements, except K (15%), Na (19%), P (19%) and V (19%) in L-1 sample; and Ca (14%) and P (20%) in SNi sample. PMID:24767449

  20. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    DOEpatents

    Chan, George C. Y.; Hieftje, Gary M.

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  1. Standard dilution analysis of beverages by microwave-induced plasma optical emission spectrometry.

    PubMed

    Goncalves, Daniel A; McSweeney, Tina; Santos, Mirian C; Jones, Bradley T; Donati, George L

    2016-02-25

    In this work, standard dilution analysis (SDA) is combined with microwave-induced plasma optical emission spectrometry (MIP OES) to determine seven elements in coffee, green tea, energy drink, beer, whiskey and cachaça (Brazilian hard liquor). No sample preparation other than simple dilution in HNO3 1% v v(-1) is required. Due to relatively low plasma temperatures, matrix effects may compromise accuracies in MIP OES analyzes of complex samples. The method of standard additions (SA) offers enhanced accuracies, but is time-consuming and labor intensive. SDA offers a simpler, faster approach, with improved accuracies for complex matrices. In this work, SDA's efficiency is evaluated by spike experiments, and the results are compared to the traditional methods of external calibration (EC), internal standard (IS), and standard additions (SA). SDA is comparable to the traditional calibration methods, and it provides superior accuracies for applications involving ethanol-containing beverage samples. The SDA-MIP OES procedure is effective. Using only two calibration solutions, it may be easily automated for accurate and high sample throughput routine applications. PMID:26851081

  2. Inductively coupled plasma optical emission spectroscopy determination of trace element composition of argan oil.

    PubMed

    Gonzálvez, A; Ghanjaoui, M E; El Rhazi, M; de la Guardia, M

    2010-02-01

    A methodology based on inductively coupled plasma optical emission spectroscopy (ICP-OES) after microwave assisted acid digestion has been developed to determine the trace element content of Moroccan argan oil. Limit of detection values equal or lower than few mg/kg were obtained for all elements under study. To assure the accuracy of the whole procedure, recovery studies were carried out on argan oil samples spiked at different concentration levels from 10 to 200 µg/L. Quantitative average recovery values were obtained for all elements evaluated, demonstrating the suitability of this methodology for the determination of trace elements in argan oil samples. Aluminum, calcium, chromium, iron, potassium, lithium, magnesium, sodium, vanadium and zinc were quantitatively determined in Moroccan argan oils being found that their concentration is different of that found in other edible oils thus offering a way for authentication and for the evaluation of possible adulterations. PMID:21339122

  3. Mechanical Modulation of Phonon-Assisted Field Emission in a Silicon Nanomembrane Detector for Time-of-Flight Mass Spectrometry

    PubMed Central

    Park, Jonghoo; Blick, Robert H.

    2016-01-01

    We demonstrate mechanical modulation of phonon-assisted field emission in a free-standing silicon nanomembrane detector for time-of-flight mass spectrometry of proteins. The impacts of ion bombardment on the silicon nanomembrane have been explored in both mechanical and electrical points of view. Locally elevated lattice temperature in the silicon nanomembrane, resulting from the transduction of ion kinetic energy into thermal energy through the ion bombardment, induces not only phonon-assisted field emission but also a mechanical vibration in the silicon nanomembrane. The coupling of these mechanical and electrical phenomenon leads to mechanical modulation of phonon-assisted field emission. The thermal energy relaxation through mechanical vibration in addition to the lateral heat conduction and field emission in the silicon nanomembrane offers effective cooling of the nanomembrane, thereby allowing high resolution mass analysis. PMID:26861329

  4. Mechanical Modulation of Phonon-Assisted Field Emission in a Silicon Nanomembrane Detector for Time-of-Flight Mass Spectrometry.

    PubMed

    Park, Jonghoo; Blick, Robert H

    2016-01-01

    We demonstrate mechanical modulation of phonon-assisted field emission in a free-standing silicon nanomembrane detector for time-of-flight mass spectrometry of proteins. The impacts of ion bombardment on the silicon nanomembrane have been explored in both mechanical and electrical points of view. Locally elevated lattice temperature in the silicon nanomembrane, resulting from the transduction of ion kinetic energy into thermal energy through the ion bombardment, induces not only phonon-assisted field emission but also a mechanical vibration in the silicon nanomembrane. The coupling of these mechanical and electrical phenomenon leads to mechanical modulation of phonon-assisted field emission. The thermal energy relaxation through mechanical vibration in addition to the lateral heat conduction and field emission in the silicon nanomembrane offers effective cooling of the nanomembrane, thereby allowing high resolution mass analysis. PMID:26861329

  5. Gunshot residue testing in suicides: Part II: Analysis by inductive coupled plasma-atomic emission spectrometry.

    PubMed

    Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death. PMID:17721164

  6. Improved voltage transfer coefficients for nonconductive materials in radiofrequency glow discharge optical emission spectrometry.

    PubMed

    Therese, L; Ghalem, Z; Guillot, P; Belenguer, P

    2006-09-01

    In radiofrequency glow discharge emission spectrometry (RF-GDOES), the excitation voltage used to create the plasma is applied to the back or front end of the sample to be analyzed. In this paper we focus on back-applied voltage systems (a configuration that represents about half of the instruments available on the market), and on applied voltage problems (the power coupling efficiency and materials analysis are beyond the scope of this study). In the RF-GDOES of nonconductive samples, a voltage drop develops inside the material. The voltage transfer coefficient is defined as the ratio between the peak voltage in front of the sample (facing the plasma) and the peak voltage applied to the back of the sample. In this work, we show that it is possible to increase the voltage transfer coefficient by increasing the capacitance of the sample. The capacitance of a given nonconductive material depends on its surface, its thickness and its permittivity. Increasing the voltage transfer coefficient permits higher power deposition in the plasma. This study is based on an electrical equivalent circuit for the discharge device, which takes into account the sample and reactor capacitances as well as the voltage probes used for the measurements. This circuit, when modeled by a commercial electrical circuit simulator, gives the voltage transfer coefficient as a function of the sample capacitance. Different approaches to increasing the sample capacitance and their influence on the voltage transfer coefficient are presented and related to the 750.4 nm argon line intensity, which is correlated to the electron density. PMID:16724217

  7. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    NASA Astrophysics Data System (ADS)

    Papadopoulou, D. N.; Zachariadis, G. A.; Anthemidis, A. N.; Tsirliganis, N. C.; Stratis, J. A.

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).

  8. [A Study of FTIR Spectrometry Based on a Long Optical Path on the Emission Rules of Nitrous Oxide from Soil].

    PubMed

    Xiao, Guang-dong; Zheng, Ling; Dong, Da-ming; Zhang, Dong-yan; Zhang, Bao-hua; Liao, Tong-qing

    2015-11-01

    The excessive emission of N₂O (Nitrous oxide) will destroy the ozone layer, reasonable fertilization and adopting measures of emission reduction of N₂O are of great significance to slowing down the greenhouse effect. The article studied the impact of fertilization and water on the emission of N2 0 from the cabbage farmland using FTIR spectrometry. To enhance the sensitivity of the measuring system, we used multi-reflecting mirrors to increase the optical pathlength. By comparing the infrared spectra between the before and after fertilizer application and the NIST spectral library, finally, the band at 2160-2225 cm⁻¹ was chosen as the spectral characteristics band of quantitative calculation of N₂O through analyzing. The research found that fertilization and water could promote the emission of N2 0 from the cabbage farmland soil, which could supply theory bases for emission reduction of N₂O and slowing down the greenhouse effect. Finally, we also studied the diurnal emission rules of N₂O from the fertilized soil; the results showed that the emission of N₂O was lower at night and the results were compared with that of previous' studies, which verifies the feasibility of this method. The results proved that FTIR with long optical path was a rapid and effective method to measure the emission rules of N₂O from the cabbage farmland soil, which can measure the gas emissions of N₂O from the fertilized cabbage farmland soil and compared with other traditional measuring methods, it had the advantages such as rapidness and convenience. PMID:26978909

  9. Depth profile characterization of Zn-TiO2 nanocomposite films by pulsed radiofrequency glow discharge-optical emission spectrometry.

    PubMed

    Alberts, Deborah; Fernández, Beatriz; Frade, Tania; Gomes, Anabela; Pereira, Maria Isabel da Silva; Pereiro, Rosario; Sanz-Medel, Alfredo

    2011-04-15

    In recent years particular effort is being devoted towards the development of radiofrequency (rf) pulsed glow discharges (GDs) coupled to optical emission spectrometry (OES) for depth profile analysis of materials with technological interest. In this work, pulsed rf-GD-OES is investigated for the fast and sensitive depth characterization of Zn-TiO(2) nanocomposite films deposited on conductive substrates (Ti and steel). The first part of this work focuses on assessing the advantages of pulsed GDs, in comparison with the continuous GD, in terms of analytical emission intensities and emission yields. Next, the capability of pulsed rf-GD-OES for determination of thickness and compositional depth profiles is demonstrated by resorting to a simple multi-matrix calibration procedure. A rf forward power of 75 W, a pressure of 600 Pa, 10 kHz pulse frequency and 50% duty cycle were selected as GD operation parameters.Quantitative depth profiles obtained with the GD proposed methodology for Zn-TiO(2) nanocomposite films, prepared by the occlusion electrodeposition method using pulsed reverse current electrolysis, have proved to be in good agreement with results achieved by complementary techniques, including scanning electron microscopy and inductively coupled plasma-mass spectrometry. The work carried out demonstrates that pulsed rf-GD-OES is a promising tool for the fast analytical characterization of nanocomposite films. PMID:21376989

  10. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  11. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  12. Validation and comparable analysis of aluminum in the popular Chinese fried bread youtiao by wavelength dispersive XRF.

    PubMed

    Hua, Hongying; Jiang, Xiaofei; Wu, Shimin

    2016-09-15

    Aluminum (Al) is an element in alum commonly used as a raising agent for Chinese flour products, especially for a typical fried food youtiao. In the present study, the feasibility of wavelength dispersive X-ray fluorescence spectrometry (WDXRF) for analysis of aluminum levels in youtiao was examined. Youtiao samples spiked with known amounts of aluminum were used for calibration. Linearity, accuracy, precision, and detection and quantification limits were tested, based on three calibration curves. For further validation, test youtiao samples were analyzed by both WDXRF and inductively coupled plasma optical emission spectrometry (ICP-OES). Comparison of the two methods showed that measurement performance was not significantly different. Taken together, these results indicate that WDXRF can form the basis of a rapid and simple methodology for measuring the aluminum content of youtiao, and that it is a good candidate for replacing ICP-OES for analyzing Al-containing flour products. PMID:27080872

  13. Emissions of volatile organic compounds from Quercus ilex L. measured by Proton Transfer Reaction Mass Spectrometry under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Holzinger, R.; Sandoval-Soto, L.; Rottenberger, S.; Crutzen, P. J.; Kesselmeier, J.

    2000-08-01

    Volatile organic compound (VOC) emissions of the Mediterranean holm oak (Quercus ilex L.) were investigated using a fast Proton Transfer Reaction Mass Spectrometry (PTR-MS) instrument for analysis. This technique is able to measure compounds with a proton affinity higher than water with a high time resolution of 1 s per compound. Hence nearly all VOCs can be detected on-line. We could clearly identify the emission of methanol, acetaldehyde, ethanol, acetone, acetic acid, isoprene, monoterpenes, toluene, and C10-benzenes. Some other species could be tentatively denominated. Among these are the masses 67 (cyclo pentadiene), mass 71 (tentatively attributed to methyl vinyl ketone (MVK) and metacrolein (MACR)), 73 (attributed to methyl ethyl ketone (MEK)), 85 (C6H12 or hexanol), and 95 (vinylfuran or phenol). The emissions of all these compounds (identified as well as nonidentified) together represent 99% of all masses detected and account for a carbon loss of 0.7-2.9% of the net photosynthesis. Of special interest was a change in the emission behavior under changing environmental conditions such as flooding or fast light/dark changes. Flooding of the root system caused an increase of several VOCs between 60 and 2000%, dominated by the emission of ethanol and acetaldehyde, which can be explained by the well described production of ethanol under anoxic conditions of the root system and the recently described subsequent transport and partial oxidation to acetaldehyde within the green leaves. However, ethanol emissions were dominant. Additionally, bursts of acetaldehyde with lower ethanol emission were also found under fast light/dark changes. These bursts are not understood.

  14. Characterization of direct current He-N{sub 2} mixture plasma using optical emission spectroscopy and mass spectrometry

    SciTech Connect

    Flores, O.; Castillo, F.; Martinez, H.; Villa, M.; Reyes, P. G.; Villalobos, S.

    2014-05-15

    This study analyses the glow discharge of He and N{sub 2} mixture at the pressure of 2.0 Torr, power of 10 W, and flow rate of 16.5 l/min, by using optical emission spectroscopy and mass spectrometry. The emission bands were measured in the wavelength range of 200–1100 nm. The principal species observed were N{sub 2}{sup +} (B{sup 2}Σ{sup +}{sub u}→X{sup 2}Σ{sup +}{sub g}), N{sub 2} (C{sup 3}Π{sub u}→B{sup 3}Π{sub g}), and He, which are in good agreement with the results of mass spectrometry. Besides, the electron temperature and ion density were determined by using a double Langmuir probe. Results indicate that the electron temperature is in the range of 1.55–2.93 eV, and the electron concentration is of the order of 10{sup 10} cm{sup −3}. The experimental results of electron temperature and ion density for pure N{sub 2} and pure He are in good agreement with the values reported in the literature.

  15. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  16. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Shoaee, Hamta; Roshdi, Mina; Khanlarzadeh, Nasibeh; Beiraghi, Asadollah

    2012-12-01

    A cloud-point extraction process coupled to ICP-OES by using 3-nitro benzaldehyde thiosemicarbazone (3-NBT) as complexing agent was developed for the simultaneous preconcentration and determination of copper and mercury in water samples. The variables affecting the complexation and extraction steps were optimized. Under the optimum conditions (i.e. 1.5 × 10-5 mol L-1 ligand, 0.3% (v/v) Triton X-114, 55 °C equilibrium temperature, incubation time of 30 min) the calibration graphs were linear in the range of 5-120 and 10-100 ng mL-1 with enhancement factor of 82.7 and 51.3 for Cu2+ and Hg2+, respectively. The preconcentration factors were 28.6 in both cases and detection limits were obtained 0.48 for Cu and 1.1 ng mL-1 for Hg. The precisions (R.S.D.%) for five replicate determinations at 50 ng mL-1 of copper and mercury were better than 1.8% and 3.2%, respectively. The accuracy of the proposed method is validated by analyzing a certified reference material of water (RTC-QCI-049) with satisfactory results. Finally, the proposed method was utilized successfully for the determination of copper and mercury in surface water (river), tap water and bottled mineral water samples.

  17. Sulfur Limits of Detection and Spectral Interference Corrections for DWPF Sludge Matrices by Inductively Coupled Plasma Emission Spectrometry

    SciTech Connect

    JURGENSEN, AR

    2004-04-20

    The Savannah River Technology Center (SRTC) has been requested to perform sulfur (S) analysis on digested radioactive sludge and supernatant samples by Inductively Coupled Plasma Emission Spectrometry (ICP-ES). The amount of sulfur is a concern because there are sulfur limits for the incoming feed, due to glass melter, process vessel, and off-gas line corrosion concerns and limited sulfur solubility in the glass wasteform. Recent changes in the washing strategy and stream additions change the amount of sulfur in the sludge. Increasing the sulfur concentration in the sludge challenges the current limits, so accurately determining the amount of sulfur present in a sludge batch is paramount. There are two important figures of merit that need to be evaluated for this analysis. The first is the detection limit (LOD), the smallest concentration of an element that can be detected with a defined certainty. This issue is important since the sulfur concentration in these process streams is l ow. Another critical analytical parameter is the effect on the S quantitation from potential spectral interferences. Spectral interferences are caused by background emission from plasma recombination events, scattered and stray light from the line emission of high concentration elements, or molecular band emission and from direct or tailing spectral line overlap from a matrix element. Any existing spectral overlaps could give false positives or increase the measured S concentrations in these matrices.

  18. Effect of different glycation agents on Cu(II) binding to human serum albumin, studied by liquid chromatography, nitrogen microwave-plasma atomic-emission spectrometry, inductively-coupled-plasma mass spectrometry, and high-resolution molecular-mass spectrometry.

    PubMed

    Corrales Escobosa, Alma Rosa; Wrobel, Katarzyna; Yanez Barrientos, Eunice; Jaramillo Ortiz, Sarahi; Ramirez Segovia, Alejandra Sarahi; Wrobel, Kazimierz

    2015-02-01

    The ability of human serum albumin to capture unbound copper under different clinical conditions is an important variable potentially affecting homeostasis of this element. Here, we propose a simple procedure based on size-exclusion chromatography with on-line UV and nitrogen microwave-plasma atomic-emission spectrometry (MP-AES) for quantitative evaluation of Cu(II) binding to HSA upon its glycation in vitro. The Cu-to-protein molar ratio for non-glycated albumin was 0.98 ± 0.09; for HSA modified with glyoxal (GO), methylglyoxal (MGO), oxoacetic acid (GA), and glucose (Glc), the ratios were 1.30 ± 0.22, 0.72 ± 0.14, 0.50 ± 0.06, and 0.95 ± 0.12, respectively. The results were confirmed by using ICP-MS as an alternative detection system. A reduced ability of glycated protein to coordinate Cu(II) was associated with alteration of the N-terminal metal-binding site during incubation with MGO and GA. In contrast, glycation with GO seemed to generate new binding sites as a result of tertiary structural changes in HSA. Capillary reversed-phase liquid chromatography with electrospray-ionization quadrupole-time-of-flight tandem mass spectrometry enabled detection and identification of Cu(II) coordinated to the N-terminal metal-binding site (Cu(II)-DAHK) in all tryptic digests analyzed. This is the first report confirming Cu(II)-DAHK species in HSA by means of high-resolution tandem mass spectrometry, and the first report on the use of MP-AES in combination with chromatographic separation. PMID:25428457

  19. Real-time, high-resolution quantitative measurement of multiple soil gas emissions: selected ion flow tube mass spectrometry.

    PubMed

    Milligan, D B; Wilson, P F; Mautner, M N; Freeman, C G; McEwan, M J; Clough, T J; Sherlock, R R

    2002-01-01

    A new technique is presented for the rapid, high-resolution identification and quantification of multiple trace gases above soils, at concentrations down to 0.01 microL L(-1) (10 ppb). The technique, selected ion flow tube mass spectrometry (SIFT-MS), utilizes chemical ionization reagent ions that react with trace gases but not with the major air components (N2, O2, Ar, CO2). This allows the real-time measurement of multiple trace gases without the need for preconcentration, trapping, or chromatographic separation. The technique is demonstrated by monitoring the emission of ammonia and nitric oxide, and the search for volatile organics, above containerized soil samples treated with synthetic cattle urine. In this model system, NH3 emissions peaked after 24 h at 2000 nmol m(-2) s(-1) and integrated to approximately 7% of the urea N applied, while NO emissions peaked about 25 d after urine addition at approximately 140 nmol m(-2) s(-1) and integrated to approximately 10% of the applied urea N. The monitoring of organics along with NH3 and NO was demonstrated in soils treated with synthetic urine, pyridine, and dimethylamine. No emission of volatile nitrogen organics from the urine treatments was observed at levels >0.01% of the applied nitrogen. The SIFT method allows the simultaneous in situ measurement of multiple gas components with a high spatial resolution of < 10 cm and time resolution <20 s. These capabilities allow, for example, identification of emission hotspots, and measurement of localized and rapid variations above agricultural and contaminated soils, as well as integrated emissions over longer periods. PMID:11931442

  20. Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry.

    PubMed

    Groth, Angela; Maurer, Claudia; Reiser, Martin; Kranert, Martin

    2015-02-01

    The aim of the work was to establish a method for emission control of biogas plants especially the observation of fugitive methane emissions. The used method is in a developmental stage but the topic is crucial to environmental and economic issues. A remote sensing measurement method was adopted to determine methane emission rates of a biogas plant in Rhineland-Palatinate, Germany. An inverse dispersion model was used to deduce emission rates. This technique required one concentration measurement with an open path tunable diode laser absorption spectrometer (TDLAS) downwind and upwind the source and basic wind information, like wind speed and direction. Different operating conditions of the biogas plant occurring on the measuring day (December 2013) could be represented roughly in the results. During undisturbed operational modes the methane emission rate averaged 2.8 g/s, which corresponds to 4% of the methane gas production rate of the biogas plant. PMID:25446786

  1. EVALUATION OF A MATRIX INTERFERENCE IN GROUND WATER ARSENIC MEASUREMENT BY ICP-OES

    EPA Science Inventory

    Arsenic enters ground water systems by either the weathering of naturally occurring subsurface materials or human activities such as mining and pesticide manufacturing. The current EPA drinking water limit for arsenic is set at 50 ug/L, with the reduction to 10 ug/L in 2006. The...

  2. Flagging and correcting non-spectral matrix interferences with spatial emission profiles and gradient dilution in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Cheung, Yan; Schwartz, Andrew J.; Chan, George C.-Y.; Hieftje, Gary M.

    2015-08-01

    Matrix interference remains one of the most daunting challenges commonly encountered in inductively coupled plasma-atomic emission spectrometry (ICP-AES). In the present study, a method is described that enables identification and correction of matrix interferences in axial-viewed ICP-AES through a combination of spatial mapping and on-line gradient dilution. Cross-sectional emission maps of the plasma are used to indicate the presence of non-spectral (plasma-related and sample-introduction-related) matrix interferences. In particular, apparent concentrations of an analyte species determined at various radial locations in the plasma differ in the presence of a matrix interference, which allows the interference to be flagged. To correct for the interference, progressive, on-line dilution of the sample, performed by a gradient high-performance liquid-chromatograph pump, is utilized. The spatially dependent intensities of analyte emission are monitored at different levels of sample dilution. As the dilution proceeds, the matrix-induced signal variation is reduced. At a dilution where the determined concentrations become independent of location in the plasma, the matrix interference is minimized.

  3. Characterizing Methane Emissions at Local Scales with a 20 Year Total Hydrocarbon Time Series, Imaging Spectrometry, and Web Facilitated Analysis

    NASA Astrophysics Data System (ADS)

    Bradley, Eliza Swan

    Methane is an important greenhouse gas for which uncertainty in local emission strengths necessitates improved source characterizations. Although CH4 plume mapping did not motivate the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) design and municipal air quality monitoring stations were not intended for studying marine geological seepage, these assets have capabilities that can make them viable for studying concentrated (high flux, highly heterogeneous) CH4 sources, such as the Coal Oil Point (COP) seep field (˜0.015 Tg CH4 yr-1) offshore Santa Barbara, California. Hourly total hydrocarbon (THC) data, spanning 1990 to 2008 from an air pollution station located near COP, were analyzed and showed geologic CH4 emissions as the dominant local source. A band ratio approach was developed and applied to high glint AVIRIS data over COP, resulting in local-scale mapping of natural atmospheric CH4 plumes. A Cluster-Tuned Matched Filter (CTMF) technique was applied to Gulf of Mexico AVIRIS data to detect CH4 venting from offshore platforms. Review of 744 platform-centered CTMF subsets was facilitated through a flexible PHP-based web portal. This dissertation demonstrates the value of investigating municipal air quality data and imaging spectrometry for gathering insight into concentrated methane source emissions and highlights how flexible web-based solutions can help facilitate remote sensing research.

  4. Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kanický, V.; Otruba, V.; Mermet, J.-M.

    2000-10-01

    Infrared laser ablation was studied for application to the analysis of plasma-sprayed tungsten carbide/cobalt coatings. The potential of the laser induced argon-spark (LINA-Spark™), as a sample introduction device in inductively coupled plasma atomic emission spectrometry was studied. The use of an IR laser along with defocusing led to laser-induced microplasma-based ablation. The mass ablation rate, represented by the ICP emission intensity per laser beam unit area, exhibited a flat increase in the irradiance range 2-250 GW/cm 2. A low slope (0.5) of this dependence in log-log scale gave evidence of plasma shielding. The steep increase in the measured acoustic signal when focused in front of the sample, i.e. in argon, indicated a breakdown of argon. Consequently, considerably lower ICP emissions were observed within the same range of irradiance. The cobalt/tungsten line intensity ratio in the ICP was practically constant from 1.5 up to at least 250 GW/cm 2. Acceptable precision (R.S.D.<5%) was obtained without internal standardization for irradiance between 2 and 8 GW/cm 2. Optimization of the laser pulse energy, repetition rate, beam focusing and sample displacement during interaction led to the linearization of dependences of signal vs. cobalt percentage, at least up to the highest studied value of 23% Co.

  5. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  6. The microwave induced plasma with optical emission spectrometry (MIP-OES) in 23 elements determination in geological samples.

    PubMed

    Niedzielski, P; Kozak, L; Wachelka, M; Jakubowski, K; Wybieralska, J

    2015-01-01

    The article presents the optimisation, validation and application of the microwave induced plasma optical emission spectrometry (MIP-OES) dedicated for a routine determination of Ag, Al, B, Ba, Bi, Ca, Cd, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, Tl, Zn, in the geological samples. The three procedures of sample preparation has been proposed: sample digestion with the use of hydrofluoric acid for determination of total concentration of elements, extraction by aqua regia for determination of the quasi-total element concentration and extraction by hydrochloric acid solution to determine contents of the elements in acid leachable fraction. The detection limits were on the level 0.001-0.121 mg L(-1) (from 0.010-0.10 to 1.2-12 mg kg(-1) depend on the samples preparation procedure); the precision: 0.20-1.37%; accuracy 85-115% (for recovery for certified standards materials analysis and parallel analysis by independent analytical techniques: X-ray fluorescence (XRF) and flame absorption spectrometry (FAAS)). The conformity of the results obtained by MIP-OES analytical procedures with the results obtained by XRF and FAAS analysis allows to propose the procedures for studies of elemental composition of the fraction of the geological samples. Additionally, the MIP-OES technique is much less expensive than ICP techniques and much less time-consuming than AAS techniques. PMID:25476349

  7. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration

    USGS Publications Warehouse

    Smith, C.L.; Motooka, J.M.; Willson, W.R.

    1984-01-01

    Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.

  8. Field measurement of nitromethane from automotive emissions at a busy intersection using proton-transfer-reaction mass spectrometry

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Fujitani, Yuji; Fushimi, Akihiro; Tanimoto, Hiroshi; Sekimoto, Kanako; Yamada, Hiroyuki

    2014-10-01

    Field measurements of seven nitro-organic compounds including nitromethane and ten related volatile organic compounds were carried out using proton-transfer-reaction mass spectrometry at a busy intersection of an urban city, Kawasaki, Japan from 26th February to 6th March, 2011. Among the nitro-organic compounds, nitromethane was usually observed along with air pollutants emitted from automobiles. The mixing ratios of nitromethane varied substantially and sometimes clearly varied at an approximately constant interval. The interval corresponded to the cycle of the traffic signals at the intersection and the regular peaks of nitromethane concentrations were caused by emissions from diesel trucks running with high speed. In addition to the regular peaks, sharp increases of nitromethane concentrations were often observed irregularly from diesel trucks accelerating in front of the measurement site. For other nitro-organic compounds such as nitrophenol, nitrocresol, dihydroxynitrobenzene, nitrobenzene, nitrotoluene, and nitronaphthalene, most of the data fluctuated within the detection limits.

  9. Subnanogram determination of inorganic and organic mercury by helium-microwave induced plasma-atomic emission spectrometry

    SciTech Connect

    Fukushi, K. ); Willie, S.N.; Sturgeon, R.E. )

    1993-02-01

    Inorganic and organic mercury were determined by helium-microwave induced plasma-atomic emission spectrometry following cold vapor generation. Whereas only inorganic mercury was reduced by stannous ion in an acidic medium, both inorganic and organic mercury (total mercury) were reduced by stannous ion in the presence of cupric ion in a basic medium. Organic mercury was determined as the difference between total and inorganic mercury. Detection limits for inorganic and organic mercury were 11 and 10 pg, respectively. The accuracy of the proposed method was verified through the determination of inorganic, total and organic mercury in two marine biological standard reference materials, DORM-1 and TORT-1. 21 refs., 1 fig., 4 tabs.

  10. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  11. Evaluation of Five Phase Digitally Controlled Rotating Field Plasma Source for Photochemical Mercury Vapor Generation Optical Emission Spectrometry.

    PubMed

    Matusiewicz, Henryk; Ślachciński, Mariusz; Pawłowski, Paweł; Portalski, Marek

    2015-01-01

    A new sensitive method for total mercury determination in reference materials using a 5-phase digitally controlled rotating field plasma source (RFP) for optical emission spectrometry (OES) was developed. A novel synergic effect of ultrasonic nebulization (USN) and ultraviolet-visible light (UV-Vis) irradiation when used in combination was exploited for efficient Hg vapor generation. UV- and Vis-based irradiation systems were studied. It was found that the most advantageous design was an ultrasonic nebulizer fitted with a 6 W mercury lamp supplying a microliter sample to a quartz oscillator, converting liquid into aerosol at the entrance of the UV spray chamber. Optimal conditions involved using a 20% v/v solution of acetic acid as the generation medium. The mercury cold vapor, favorably generated from Hg(2+) solutions by UV irradiation, was rapidly transported into a plasma source with rotating field generated within the five electrodes and detected by digitally controlled rotating field plasma optical emission spectrometry (RFP-OES). Under optimal conditions, the experimental concentration detection limit for the determination, calculated as the concentration giving a signal equal to three times the standard deviation of the blank (LOD, 3σblank criterion, peak height), was 4.1 ng mL(-1). The relative standard deviation for samples was equal to or better than 5% for liquid analysis and microsampling capability. The methodology was validated through determination of mercury in three certified reference materials (corresponding to biological and environmental samples) (NRCC DOLT-2, NRCC PACS-1, NIST 2710) using the external aqueous standard calibration techniques in acetic acid media, with satisfactory recoveries. Mercury serves as an example element to validate the capability of this approach. This is a simple, reagent-saving, cost-effective and green analytical method for mercury determination. PMID:26460362

  12. Comparison of several analytical methods for the determination of tin in geochemical samples as a function of tin speciation

    USGS Publications Warehouse

    Kane, J.S.; Evans, J.R.; Jackson, J.C.

    1989-01-01

    Accurate and precise determinations of tin in geological materials are needed for fundamental studies of tin geochemistry, and for tin prospecting purposes. Achieving the required accuracy is difficult because of the different matrices in which Sn can occur (i.e. sulfides, silicates and cassiterite), and because of the variability of literature values for Sn concentrations in geochemical reference materials. We have evaluated three methods for the analysis of samples for Sn concentration: graphite furnace atomic absorption spectrometry (HGA-AAS) following iodide extraction, inductively coupled plasma atomic emission spectrometry (ICP-OES), and energy-dispersive X-ray fluorescence (EDXRF) spectrometry. Two of these methods (HGA-AAS and ICP-OES) required sample decomposition either by acid digestion or fusion, while the third (EDXRF) was performed directly on the powdered sample. Analytical details of all three methods, their potential errors, and the steps necessary to correct these errors were investigated. Results showed that similar accuracy was achieved from all methods for unmineralized samples, which contain no known Sn-bearing phase. For mineralized samples, which contain Sn-bearing minerals, either cassiterite or stannous sulfides, only EDXRF and fusion ICP-OES methods provided acceptable accuracy. This summary of our study provides information which helps to assure correct interpretation of data bases for underlying geochemical processes, regardless of method of data collection and its inherent limitations. ?? 1989.

  13. Detection of trace gas emissions from point sources using shortwave infrared imaging spectrometry

    NASA Astrophysics Data System (ADS)

    Thorpe, A. K.; Roberts, D. A.; Dennison, P. E.; Bradley, E. S.; Funk, C. C.

    2011-12-01

    Existing spaceborne remote sensing provides an effective means of detecting continental-scale variation in trace gas concentrations, but does not permit mapping of local emissions from point sources. Point source emissions of methane (CH4), nitrous oxide (N2O) and particulates, often associated with combustion and carbon dioxide (CO2) emissions, have significant impacts on air quality. Using Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data and a cluster-tuned matched filter technique, we have mapped local CH4, N2O and CO2 emissions from terrestrial sources in the Los Angeles basin. CH4 anomalies were in close proximity to known and probable emission sources, including hydrocarbon storage tanks and gas flares. Multiple N2O and CH4 anomalies were detected at a wastewater treatment facility, while CH4 and CO2 anomalies were also identified at a large oil refinery. We discuss ongoing efforts to estimate CH4 concentrations using radiative transfer modeling and potential application of this technique to additional trace gasses with distinct absorption features. This method could be applied to data from existing airborne sensors and planned satellite missions like HyspIRI, thereby improving high resolution mapping of trace gasses and better constraining local sources.

  14. Ground-based aircraft exhaust measurements of a Lufthansa Airbus A340 using FTIR emission spectrometry

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Heland, Joerg

    1999-01-01

    The emission inventories of aircraft emissions are being set up using flight routing data and test rig measurements of the engine manufacturers for certification purposes which have to be extrapolated with respect to the actual parameters at cruise altitude. Precise data from in-service engines are not existing. FTIR-emission-spectroscopy as a remote sensing multi-component exhaust gas analysis method has been further developed to specify the traceable molecules in aircraft exhausts, to determine the detection limits, and to obtain reliable statements concerning its accuracy. The first measurement with the Airbus A340 engine CFM56-5C2 during run up tests at ground level showed the overall ability of the FTIR-emission system to analyze the exhausts of modern gas turbines with high bypass ratio and mixing of fan air into the exhausts before the nozzle exit. Good quality spectra were measured and analyzed with respect to the mixing rations of CO2, H2O, CO, NO, and N2O, and the emission indices of CO, NO, and N2O. Total measurement times at one thrust level should be about 15 minutes to obtain reliable result which can be compared to the ICAO data of this engine.

  15. Determination of Vanadium, Tin and Mercury in Atmospheric Particulate Matter and Cement Dust Samples by Direct Current Plasma Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Hindy, Kamal T.; And Others

    1992-01-01

    An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…

  16. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources.

    PubMed

    Radauscher, Erich J; Keil, Adam D; Wells, Mitch; Amsden, Jason J; Piascik, Jeffrey R; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities. Graphical Abstract ᅟ. PMID:26133527

  17. Chemical Ionization Mass Spectrometry Using Carbon Nanotube Field Emission Electron Sources

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich J.; Keil, Adam D.; Wells, Mitch; Amsden, Jason J.; Piascik, Jeffrey R.; Parker, Charles B.; Stoner, Brian R.; Glass, Jeffrey T.

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities.

  18. Metal carbonyl vapor generation coupled with dielectric barrier discharge to avoid plasma quench for optical emission spectrometry.

    PubMed

    Cai, Yi; Li, Shao-Hua; Dou, Shuai; Yu, Yong-Liang; Wang, Jian-Hua

    2015-01-20

    The scope of dielectric barrier discharge (DBD) microplasma as a radiation source for optical emission spectrometry (OES) is extended by nickel carbonyl vapor generation. We proved that metal carbonyl completely avoids the extinguishing of plasma, and it is much more suitable for matching the DBD excitation and OES detection with respect to significant DBD quenching by concomitant hydrogen when hydride generation is used. A concentric quartz UV reactor allows sample solution to flow through the central channel wherein to efficiently receive the uniformly distributed UV irradiation in the confined cylindrical space between the concentric tubes, which facilitates effective carbonyl generation in a nickel solution. The carbonyl is transferred into the DBD excitation chamber by an argon stream for nickel excitation, and the characteristic emission of nickel at 232.0 nm is detected by a charge-coupled device (CCD) spectrometer. A 1.0 mL sample solution results in a linear range of 5-100 μg L(-1) along with a detection limit of 1.3 μg L(-1) and a precision of 2.4% RSD at 50 μg L(-1). The present DBD-OES system is validated by nickel in certified reference materials. PMID:25511607

  19. Determination of silicon in organic matrices with grazing-emission X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Claes, M.; Van Dyck, K.; Deelstra, H.; Van Grieken, R.

    1999-10-01

    The potential of a prototype grazing-emission X-ray fluorescence spectrometer for reliable analysis of sample solutions, obtained by pressurized microwave oven digestion of Si-spiked organic and biological materials, was investigated as part of an inter-laboratory study. The fact that this grazing-emission technique is based on the total reflection phenomenon and wavelength-dispersive detection, gives it the benefit to determine light elements in a sensitive way. Results of the determination of silicon in pork liver, cellulose, urine, serum, spinach, beer, mineral water and horsetail (dry plant extract) samples are presented. Some of the results are compared with those obtained with other analytical techniques. The study proved that determination of silicon traces in biological matrices represents an extremely difficult task, however, measurements of silicon are achieved with acceptable precision. The most important problems still arise when sample pre-treatment is needed prior to analysis.

  20. A mass quadrupole spectrometry investigation on proton emission by nanosecond laser ablation

    SciTech Connect

    Caridi, F.

    2015-02-15

    A nanosecond pulsed Nd:YAG laser operating at the fundamental wavelength of 1064 nm and at an intensity of about 10{sup 10} W/cm{sup 2} was employed to irradiate hydrogenated polymers in vacuum. The produced plasma was characterized in terms of thermal and Coulomb interactions evaluating the equivalent temperature and the acceleration voltage developed in the non-equilibrium plasma core. Particles emission along the normal to the target surface was investigated by measuring, with the Hiden EQP 300 mass quadrupole spectrometer, ion energy distributions and fitting experimental data with the “Coulomb-Boltzmann-shifted” function. Time-of-flight technique was employed in order to measure the proton energy and yield. A comparison between experimental results is presented and discussed, with a special regard to the protons emission.

  1. A mass quadrupole spectrometry investigation on proton emission by nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Caridi, F.

    2015-02-01

    A nanosecond pulsed Nd:YAG laser operating at the fundamental wavelength of 1064 nm and at an intensity of about 1010 W/cm2 was employed to irradiate hydrogenated polymers in vacuum. The produced plasma was characterized in terms of thermal and Coulomb interactions evaluating the equivalent temperature and the acceleration voltage developed in the non-equilibrium plasma core. Particles emission along the normal to the target surface was investigated by measuring, with the Hiden EQP 300 mass quadrupole spectrometer, ion energy distributions and fitting experimental data with the "Coulomb-Boltzmann-shifted" function. Time-of-flight technique was employed in order to measure the proton energy and yield. A comparison between experimental results is presented and discussed, with a special regard to the protons emission.

  2. Single Nanoparticle Mass Spectrometry as a High Temperature Kinetics Tool: Sublimation, Oxidation, and Emission Spectra of Hot Carbon Nanoparticles.

    PubMed

    Howder, Collin R; Long, Bryan A; Gerlich, Dieter; Alley, Rex N; Anderson, Scott L

    2015-12-17

    In single nanoparticle mass spectrometry, individual charged nanoparticles (NPs) are trapped in a quadrupole ion trap and detected optically, allowing their mass, charge, and optical properties to be monitored continuously. Previous experiments of this type probed NPs that were either fluorescent or large enough to detect by light scattering. Alternatively, small NPs can be heated to temperatures where thermally excited emission is strong enough to allow detection, and this approach should provide a new tool for measurements of sublimation and surface reaction kinetics of materials at high temperatures. As an initial test, we report a study of carbon NPs in the 20-50 nm range, heated by 10.6 μm, 532 nm, or 445 nm lasers. The kinetics for sublimation and oxidation of individual carbon NPs were studied, and a model is presented for the factors that control the NP temperature, including laser heating, and cooling by sublimation, buffer gas collisions, and radiation. The estimated NP temperatures were in the 1700-2000 K range, and the NP absorption cross sections ranged from ∼0.8 to 0.2% of the geometric cross sections for 532 nm and 10.6 μm excitation, respectively. Emission spectra of single NPs and small NP ensembles show a feature in the IR that appears to be the high energy tail of the thermal (blackbody-like) emission expected from hot particles but also a discrete feature peaking around 750 nm. Both the IR tail and 750 nm peak are observed for all particles and for both IR and visible laser excitation. No significant difference was observed between graphite and amorphous carbon NPs. PMID:26513667

  3. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    PubMed

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line. PMID:19277614

  4. Development and characterization of induction heating electrothermal vaporization (IH-ETV) sample introduction for inductively coupled plasma spectrometry

    NASA Astrophysics Data System (ADS)

    Rybak, Michael E.; Salin, Eric D.

    2001-03-01

    A general study of performance attributes was conducted for a prototypical electrothermal vaporization (ETV) sample introduction system, in which induction heating (IH) was used to facilitate the drying, pyrolysis, and vaporization of samples from long, undercut graphite cup probes in a radio-frequency (RF) induction field. In the first part of this study, experiments were carried out to determine the heating characteristics and temperature control aspects of an IH-ETV arrangement. Using a remote-sensing infrared thermocouple, it was determined that a 3/8-inch (9.53-mm) outer diameter graphite cup sample probe could be heated to a maximum temperature of 1860°C in the induction field of the IH-ETV under full forward power (1.5 kW). The IH-ETV device was found to have a rapid heating response (1/ e time-constant of 2.0±0.2 s) that was independent of the initial/final temperatures chosen. Linear temperature control was possible by regulating either the DC voltage applied to the plate or the current flowing to the grid of the RF generator oscillator tube. The second part of this work consisted of studies to establish benchmarks, such as limits of detection (LOD) with inductively coupled plasma optical emission spectrometry (ICP-OES) and transport efficiency for analyte vaporization under several x-Ar mixed gas atmospheres [where x=15% N 2, 10% O 2, HCl (sparged), or 15% SF 6 (v/v)]. In general, reproducible transient signals with evolution times of 5-15 s were seen for the vaporization of most elements studied, with peak area intensity and reproducibility generally being the best with SF 6-Ar. A 10-fold increase in transport efficiency was seen for refractory carbide-forming analytes (Cr, V) when vaporization was conducted in a halogenous ( x=HCl, SF 6) versus non-halogenous ( x=N 2, O 2) environment, with a two-fold improvement being observed for most other non-refractory elements (Cd, Cu, Fe, Mn, Ni, Pb, Zn). The transport of arsenic proved to be a special case

  5. Determination of trace amounts of molybdenum in plant tissue by solvent extraction-atomic-absorption and direct-current plasma emission spectrometry.

    PubMed

    Lajunen, L H; Kubin, A

    1986-03-01

    Methods are presented for determination of molybdenum in plant tissue by flame and graphite-furnace atomic-absorption spectrometry and direct-current argon-plasma emission spectrometry. The samples are digested in HNO(3)-H(2)SO(4)-HC1O(4) mixture, and Mo is separated and concentrated by chelation and extraction. Three organic solvents (methyl isobutyl ketone, di-isobutyl ketone and isoamyl alcohol) and two ligands (8-hydroxyquinoline and toluene-3,4-dithiol) were studied. The procedure were tested on pine needle and birch leaf samples. PMID:18964076

  6. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry. Progress report, January 1, 1990--December 31, 1992

    SciTech Connect

    Montaser, A.

    1992-09-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  7. Study of uranium matrix interference on ten analytes using inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Ghazi, A. A.; Qamar, Sajid; Atta, M. A.

    1993-08-01

    Maximum allowable concentrations of 12 elements in uranium hexafluoride feed for enrichment to reactor grade material (about 3%), vary from 1 to 100 ppm ( μg/g). Using an inductively coupled plasma atomic emission spectrometer, 51 lines of ten of these elements (B, Cr, Mo, P, Sb, Si, Ta, Ti, V and W) have been studied with a uranium matrix to investigate the matrix interference on the basis of signal to background (SBR), and background to background ratios (BBR). Detection limits and limits of quantitative determination (LQDs) were calculated for these elements in a uranium matrix using SBR and relative standard deviation of the background signal (RSD B) approach. In almost all cases, the uranium matrix interference reduces the SBRs to the extent that direct trace analysis is impossible. A uranium sample having known concentrations of impurities (around LQDs) was directly analysed with results that showed reasonable accuracy and precision.

  8. Rapid Analysis of Inorganic Species in Herbaceous Materials Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Emerson, Rachel M.

    2015-01-01

    Abstract Inorganic compounds in biomass, often referred to as ash, are known to be problematic in the thermochemical conversion of biomass to bio-oil or syngas and, ultimately, hydrocarbon fuels because they negatively influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. The most common ash-analysis methods, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS), require considerable time and expensive reagents. Laser-induced breakdown spectroscopy (LIBS) is emerging as a technique for rapid analysis of the inorganic constituents in a wide range of biomass materials. This study compares analytical results using LIBS data to results obtained from three separate ICP-OES/MS methods for 12 samples, including six standard reference materials. Analyzed elements include aluminum, calcium, iron, magnesium, manganese, phosphorus, potassium, sodium, and silicon, and results show that concentrations can be measured with an uncertainty of approximately 100 parts per million using univariate calibration models and relatively few calibration samples. These results indicate that the accuracy of LIBS is comparable to that of ICP-OES methods and indicate that some acid-digestion methods for ICP-OES may not be reliable for Na and Al. These results also demonstrate that germanium can be used as an internal standard to improve the reliability and accuracy of measuring many elements of interest, and that LIBS can be used for rapid determination of total ash in biomass samples. Key benefits of LIBS include little sample preparation, no reagent consumption, and the generation of meaningful analytical data instantaneously. PMID:26733765

  9. NEW METHOD FOR REMOVAL OF SPECTRAL INTERFERENCES FOR BERYLLIUM ASSAY USING INDUCTIVELY COUPLED PLASMA ATOMIC EMISSION SPECTROMETRY

    SciTech Connect

    Maxwell, S; Matthew Nelson, M; Linda Youmans, L; Maureen Bernard, M

    2008-01-14

    Beryllium has been used widely in specific areas of nuclear technology. Frequent monitoring of air and possible contaminated surfaces in U.S Department of Energy (DOE) facilities is required to identify potential health risks and to protect DOE workers from beryllium-contaminated dust. A new method has been developed to rapidly remove spectral interferences prior to beryllium (Be) measurement by inductively-coupled plasma atomic emission spectrometry (ICP-AES). The ion exchange separation removes uranium (U), thorium (Th), niobium (Nb), vanadium (V), molybdenum (Mo), zirconium (Zr), tungsten (W), iron (Fe), chromium (Cr), cerium (Ce), erbium (Er) and titanium (Ti). A stacked column consisting of Diphonix Resin{reg_sign} and TEVA Resin{reg_sign} reduces the levels of the spectral interferences so that low level Be measurements can be performed accurately. If necessary, an additional anion exchange separation can be used for further removal of interferences, particularly chromium. The method has been tested using spiked filters, spiked wipe samples and certified reference material standards with high levels of interferences added. The method provides very efficient removal of spectral interferences with very good accuracy and precision for beryllium on filters or wipes. A vacuum box system is employed to reduce analytical time and reduce labor costs.

  10. [Determination of SiO2 in Groundwater and Mineral Water by Inductively Coupled Plasma-Atomic Emission Spectrometry].

    PubMed

    Liu, Bing-bing; Han, Mei; Jia, Na; Liu, Sheng-hua

    2015-05-01

    The concentration of silica in groundwater and mineral water was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). After a more sensitive analytical line of silicon was chosen, the effects of operating conditions of the ICP spectrometer on the analysis results were investigated, at the same time, the impact of coexisting ions on determination results of SiO2 was also considered and eliminated. The transmit power of 1 350 W, observation height of 12 mm, the nebulizer pressure of 0. 20 MPa and the pump speed of analysis of 75 r . min-1 were selected by experimental conditions. Under the optimum analytical conditions of spectrometer, the method was used for the determination of SiO2 in groundwater and mineral water with the detection limit of 0. 017. mg . L-1, recoveries between 94. 10% and 103. 8%, and relative standard deviation (RSD)s≤3. 06%. Compared with the results of silicon molybdenum yellow spectrophotometry, the results were basically consistent with the relative deviation ≤3. 00%. In conclusion, the method is simple and efficient with high precision and accuracy, and can be used for research and routine production. PMID:26415465

  11. Study of polymer ablation products obtained by ultraviolet laser ablation — inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Todolí, J.-L.; Mermet, J.-M.

    1998-10-01

    A study of the nature of aerosols following polymer laser ablation was performed. A glass sample was used for comparison. Aerosol fractions were analyzed by using simple methods based on transport efficiency and filters. Three different tube lengths, i.e. 4, 29 and 54 m, were inserted between the ablation cell and the inductively coupled plasma atomic emission spectrometry (ICP-AES) injector. For the glass sample, 10 elements were studied. Only Na and K exhibited different results as the particle size, i.e. tube length, was varied. The polymers used were poly(vinyl chloride), PVC, and poly(ethylene), PE. Three elements (Ca, Ti and Sn) under different chemical forms were measured. Unlike Ti and Sn the ablated aerosol particle size (mass) seemed to depend on the Ca chemical form. Another PVC sample containing 11 elements was also studied. Na, Al and C exhibited a different behavior with particle size with respect to the remaining elements. Then, the carbon signal was studied after a 0.3 μm pore size filter had been placed between the ablation cell and the ICP torch. The results indicated that carbon was mainly present under gaseous form and particles smaller than 0.3 μm size. The analysis of the aerosol gaseous phase by thermal desorption GC-MS confirmed the presence of polymer volatile thermal degradation products. These results explained why carbon could not be applied as an efficient internal standard.

  12. Microplasma source based on a dielectric barrier discharge for the determination of mercury by atomic emission spectrometry.

    PubMed

    Zhu, Zhenli; Chan, George C-Y; Ray, Steven J; Zhang, Xinrong; Hieftje, Gary M

    2008-11-15

    A low-power, atmospheric-pressure microplasma source based on a dielectric barrier discharge (DBD) has been developed for use in atomic emission spectrometry. The small plasma (0.6 mm x 1 mm x 10 mm) is generated within a glass cell by using electrodes that do not contact the plasma. Powered by an inexpensive ozone generator, the discharge ignites spontaneously, can be easily sustained in Ar or He at gas flow rates ranging from 5 to 200 mL min(-1), and requires less than 1 W of power. The effect of operating parameters such as plasma gas identity, plasma gas flow rate, and residual water vapor on the DBD source performance has been investigated. The plasma can be operated without removal of residual water vapor, permitting it to be directly coupled with cold vapor generation sample introduction. The spectral background of the source is quite clean in the range from 200 to 260 nm with low continuum and structured components. The DBD source has been applied to the determination of Hg by continuous-flow, cold vapor generation and offers detection limits from 14 (He-DBD) to 43 pg mL(-1) (Ar-DBD) without removal of the residual moisture. The use of flow injection with the He-DBD permits measurement of Hg with a 7.2 pg limit of detection, and with repetitive injections having an RSD of <2% for a 10 ng mL(-1) standard. PMID:18937424

  13. [Study on the simultaneous determintion of various components in cement samples by inductive coupled plasma-atomic emission spectrometry].

    PubMed

    Xu, Xue-Qin

    2013-07-01

    A simple and rapid method for determination of CaO, MgO, Fe2O3, Al2O3 and TiO2 in cement samples by inductive coupled plasma-atomic emission spectrometry (ICP-AES) was developed. In order to carry out the analysis, the cement samples were dissolved with mixed aqua regia, hydrofluoric acid, perchloric acid, hydrochloric acid, and the standard solution was prepared by a series of standard cement samples. The matrix interference and the mutual interference of elements under test were studied by ICP-AES. The detection limits are in the range of 3.79 x 10(-4)-1.07 x 10(-2) microg x mL(-1). The recovery rates and relative standard deviations (RSD) of the method are in the range of 87.5%-105.6% and less than 1% respectively. Research results show that the method can meet the requirements of rapid chemical analysis for cement. PMID:24059210

  14. Determination of arsenic and selenium by hydride generation and headspace solid phase microextraction coupled with optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Tyburska, Anna; Jankowski, Krzysztof; Rodzik, Agnieszka

    2011-07-01

    A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL - 1 , respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.

  15. Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F., Jr.

    1984-01-01

    An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.

  16. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels. PMID:22483872

  17. Rf glow discharge optical emission spectrometry for the analysis of arrays of Ni nanowires in nanoporous alumina and titania membranes

    NASA Astrophysics Data System (ADS)

    Prida, V. M.; Navas, D.; Pirota, K. R.; Hernandez-Velez, M.; Menéndez, A.; Bordel, N.; Pereiro, R.; Sanz-Medel, A.; Hernando, B.; Vazquez, M.

    2006-05-01

    Anodic alumina (Al2O3) and titania (TiO2) nanoporous oxide membranes are among the most widely studied self-organized nanopore templates, formed by uniform and well aligned arrays of synthetized nanometric pores or tubes. Here, we perform a comparative study of the depth profiling analysis in self-ordered alumina and titania nanoporous membrane templates by means of the radiofrequency glow discharge coupled to optical emission spectrometry (rf-GD-OES) technique. The densely packed columnar arrays of hexagonally self-ordered nanoporous alumina membranes investigated, with an average inner pore diameter of 35 nm and 105 nm interspacing, give an uniform thickness pore length about more than 5 μm, depending on the anodization time. Meanwhile, the analysis of the anodized titania nanotubes, with an average inner pore diameter of 100 nm and 40 nm wall thickness, shown to be about 300 nm in length. Each type of membranes were also studied in both cases, when the nanopores were empty and after filling with electrodeposited Ni. The direct analysis by rf-GD-OES reveals the ability of this technique to control the quality of these so synthesized nanocomposites formed by electrodeposited Ni nanowires into the alumina and titania nanoporous templates.

  18. Determination of impurities in magnesium niobate by slurry introduction axially viewed inductively coupled plasma optical emission spectrometry.

    PubMed

    Wu, Dongmei; Qu, Haiyun; Dong, Min; Wang, Anbao; He, Pingang; Fang, Yuzhi

    2007-11-01

    A simple preparation scheme is described for the quantitative analysis of a magnesium niobate sample using slurry introduction axially viewed inductively coupled plasma optical emission spectrometry. Relationships between the stability of slurries and the conditions, such as particle size, pH, dispersant and amount of dispersant, were investigated experimentally. The MgNb(2)O(6) slurry sample was prepared by adding the dispersant sodium polyacrylate and agitation in an ultrasonic bath to ensure good dispersion. Under optimization of pH and amount of dispersant, an analysis of minor and trace impurities (Ba, Ca, Cr, Cu, Fe, Mn, Ni, Pb) in magnesium niobate was accomplished. Applying a paired t test, we showed that the results were in agreement at a 95% confidence level with the reference values obtained by a fusion method for a magnesium niobate sample, which verified that the calibration curves could be established by aqueous standards. Analytical results demonstrate that the factors that affected the accuracy of determination for MgNb(2)O(6) are mainly the particle size of the sample and the stability of slurry. PMID:17851651

  19. Nonthermal Optical Emission Spectrometry: Direct Atomization and Excitation of Cadmium for Highly Sensitive Determination.

    PubMed

    Cai, Yi; Zhang, Ya-Jie; Wu, De-Fu; Yu, Yong-Liang; Wang, Jian-Hua

    2016-04-19

    The low atomization and excitation capability of nonthermal microplasma, e.g., dielectric barrier discharge (DBD), has greatly hampered its potential applications for the determination of metals in solution. In the present work, an inspiring development is reported for direct atomization and excitation of cadmium in aqueous solution by DBD and facilitates highly sensitive determination. A DBD microplasma is generated on the nozzle of a pneumatic micronebulizer to focus the DBD energy on a confined space and atomize/excite metals in the spray. Meanwhile, an appropriate sample matrix and nebulization in helium further improves the atomization and excitation capability of DBD. With cadmium as a model, its emission is recorded by a CCD spectrometer at 228.8 nm. By using an 80 μL sample solution nebulized at 3 μL s(-1), a linear range of 5-1000 μg L(-1) along with a detection limit of 1.5 μg L(-1) is achieved, which is comparable to those obtained by commercial bulky inductively coupled plasma (ICP)-based instrumentations. PMID:27030025

  20. Direct determination of metals in organics by inductively coupled plasma atomic emission spectrometry in aqueous matrices.

    PubMed

    Wang, Tiebang; Jia, Xiujuan; Wu, Jane

    2003-11-24

    A simple method for the simultaneous determination of up to 21 elements in organic matrices is proposed. Organic samples are simply dispersed in concentrated nitric acid by sonication, and the resulting emulsions/suspensions are directly aspirated into an inductively coupled plasma atomic emission spectrometer (ICP-AES) calibrated with aqueous standards for analysis. Proof of concept was provided by the excellent recoveries for the analysis of a 21-element metallo-organic standard. In addition, the results obtained using this method for a waste oil sample compared favorably with those from a method that utilized microwave digestion for sample preparation. Comparable results were also obtained by dilution in an organic solvent followed by ICP-AES analysis with an ultrasonic nebulizer equipped with a membrane desolvator. Furthermore, the viability and validity of this method were confirmed by the analysis of the National Institute of Standards and Technology standard reference material 1084a Wear-Metals in Lubricating Oil. Spike recoveries ranged from 83 to 105% and the limits of quantitation were 6 microg g(-1) or less for all the elements analyzed. PMID:14623589

  1. Analysis of Tropical Forest Fire Emissions Using in Situ Gas Chromatography/Mass Spectrometry during Sambba

    NASA Astrophysics Data System (ADS)

    Minaeian, J.; Lewis, A. C.; Edwards, P. M.; Evans, M. J.; Hopkins, J. R.; Lee, J. D.; Purvis, R.

    2014-12-01

    Vertical atmospheric profiles of volatile organic compounds (VOCs) were made over Amazonia using an in situ gas chromatography/mass spectrometer (GC/MS), including isoprene, methacrolein, methyl vinyl ketone and products of biomass burning such as benzene. Measurements were made in the Amazonian (Rondônia and Amazonas) region during September 2012, a period of extensive biomass burning. Data was obtained between 100m and 8500m from the FAAM BAe 146 research aircraft. Isoprene was observed to be constrained overwhelmingly to the boundary layer (height typically ~2500m) with mean boundary layer mixing ratio of ~2 ppbv and a peak of ~5 ppbv at the lowest flight levels of 100 m. First generation isoprene oxidation products, methyl vinyl ketone and methacrolein, were quantified individually rather than as the sum of the pair, which is more commonly found in the literature. Both MACR and MVK were constrained primarily to the boundary layer, however trace quantities could be seen in the free troposphere to a height of 8000 m. Benzene from biomass burning was observed in both boundary layer and free troposphere, with a peak mixing ratio of ~0.8 ppbv at 750 m. This work will present the spatial distribution of isoprene within the boundary as a function of underlying surface type. The vertical profiles of all species are then compared to representative simulations from the GEOS-Chem chemistry transport model and conclusions drawn on the success of the model in representing emissions and oxidation chemistry.

  2. Development of a partial least-squares calibration model for simultaneous determination of elements by inductively coupled plasma-atomic emission spectrometry.

    PubMed

    Chaloosi, Marzieh; Asadollahi, Seyed Azadeh; Khanchi, Ali Reza; FirozZare, Mahmoud; Mahani, Mohamad Khayatzadeh

    2009-01-01

    A partial least-squares (PLS) calibration model was developed for simultaneous multicomponent elemental analysis with inductively coupled plasma-atomic emission spectrometry (ICP-AES) in the presence of spectral interference. The best calibration model was obtained using a PLS2 algorithm. Validation was performed with an artificial test set. Multivariate calibration models were constructed using 2 series of synthetic mixtures (Zn, Cu, Fe, and U, V). Accuracy of the method was evaluated with unknown synthetic and real samples. PMID:19382589

  3. Modelling of the evaporation behaviour of particulate material for slurry nebulization inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Merten, D.; Heitland, P.; Broekaert, J. A. C.

    1997-11-01

    This paper is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta, Part B (SAB). This hardcopy text, comprising the main body and an appendix, is accompanied by a disk with programs, data files and a brief manual. The main body discusses purpose, design principle and usage of the computer software for modelling the evaporation behaviour of particles in inductively coupled plasma atomic emission spectrometry (ICP-AES). Computer software has been developed in FORTRAN 77 language in order to simulate the evaporation behaviour of particles of refractory materials such as encountered in the analysis of advanced ceramic powders by slurry nebulization inductively coupled argon plasma atomic spectrometry. The program simulates the evaporation of single particles in the inductively coupled plasma and also enable it to calculate on the base of a given particle size distribution the evaporation behaviour of all the particles contained in a sample. In a so-called "intensity concept", the intensity is calculated as a function of the observation height in order to determine recovery rates for slurries compared with aqueous solutions. This yields a quick insight whether a calibration with aqueous solutions can be used for analysis of slurries of a given powder by slurry nebulization ICP-AES and also is a help in determining the optimal parameters for analyses of powders by means of slurry nebulization ICP-AES. Applications for the evaporation of Al 2O 3 and SiC powders document the usefulness of the model for the case of a 1.5 kW argon ICP of which the temperature at 8 mm above the load coil has been determined to be 6100 K. The model predicts the maximum particle size for SiC and Al 2O 3 that can be transported (10-15 μm) and evaporated for a given efficiency under given experimental conditions. For both Al 2O 3 and SiC, two ceramic powders of different grain size were investigated. The median particle sizes cover

  4. Determination of barium, chromium, cadmium, manganese, lead and zinc in atmospheric particulate matter by inductively coupled plasma atomic emission spectrometry (ICP-AES)

    NASA Astrophysics Data System (ADS)

    Boevski, I. V.; Daskalova, N.; Havezov, I.

    2000-11-01

    The present paper has shown that the Q concept, as proposed by P.W.J.M. Boumans, J.J.A.M. Vrakking, Spectrochim. Acta Part B 43 (1988) 69, can be used as a basic methodology in the determination of Ba, Cr, Cd, Mn, Pb and Zn in pairs of atmospheric particles by inductively coupled plasma atomic emission spectrometry (ICP-AES). The data base of Q values for line interference [ QIj(λ a)] and Q values for wing background interference [ QWJ(Δλ a)] were obtained in our former work [N. Daskalova, Iv. Boevski, Spectral interferences in the determination of trace elements in environmental materials by inductively coupled plasma atomic emission spectrometry, Spectrochim. Acta Part B 54 (1999) 1099-1122]. The samples of atmospheric particles were collected by the Bergerhoff method. The ICP-AES determination was performed after sample digestion with aqua regia. Q values were used for the calculation of both the total interfering signal under the analysis lines and the true detection limits, depending on the matrix constituents in the different samples. Comparative data for the concentration of analytes were obtained by flame atomic absorption spectrometry (FAAS) and direct current arc atomic emission spectrographic method (dc arc-AES).

  5. Evaluation of the temporal profiles and the analytical features of a laser ablation - Pulsed glow discharge coupling for optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    González de Vega, Claudia; Bordel, Nerea; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-07-01

    The coupling of a glow discharge (GD) in pulsed mode (PGD) as secondary source for excitation/ionization of the material provided by laser ablation (LA) has been investigated using optical emission spectrometry (OES). The variation of the laser pulse delay with respect to the GD pulse allows to producing the ablation process during prepeak, plateau or afterglow GD regions. Emission properties of the LA-PGD plasma in each temporal region of the GD pulse have been evaluated for analytical lines of different elements. Resonant atomic lines have shown higher emission intensity in the prepeak region compared to non-resonant lines. Non-resonant lines showed higher enhancement of the emission intensity in the afterglow region. Moreover, the coupled LA-PGD system offered better linear correlation coefficients using a set of glass standards for calibration as well as lower detection limits (by at least a factor of two) when compared to laser induced breakdown spectroscopy.

  6. Ultra-violet and resonant laser ablation coupled with microwave induced plasma atomic emission spectrometry and determination of tin in nickel based alloys by electrothermal atomizer atomic absorption and laser excited atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong

    Chapter 1 reviews laser ablation in analytical atomic spectrometry. Laser ablation is categorized into two functions: one is used as a sample introduction method, the other function is used as a microprobe analysis method. Both fundamental and applicational aspects are reviewed with the citations of related papers. This chapter also serves as an introduction to the work which is described in chapter 2 and chapter 3 as laser ablation is a relatively new research area for the research group. In chapter 2, instrumentation for excimer (308nm) laser ablation of samples was coupled with a microwave induced plasma (MLP), and evaluated for its potential as an approach to solid sampling for atomic emission spectrometry. Operating parameters were optimized, and the effects of laser repetition rate and number of laser shots on the emission signal were investigated. The UV excimer laser removed more material than would be expected of an infrared laser of similar energy. The chromium detection limit in the solid steel sample was estimated to be about 500 mug/g. In chapter 3, a wavelength tunable optical parametric oscillator (OPO) laser was used to ablate a steel sample into the same apparatus described in chapter 2. The emission signal for the elements was selectively enhanced when the ablation wavelength was tuned to be in resonance with any atomic transition of that element. This was the first report of the observation of resonant ablation by use of optical detection, as prior reports of resonant ablation have used mass spectrometric detectors. Chapter 4 reviews the publications in laser excited atomic fluorescence spectrometry in recent eight years. The focus of the review is on recent development on new instruments and applications of this technique. Chapter 5 studies the determination of tin in nickel-based alloys with laser excited atomic fluorescence in a graphite furnace. Zeeman electrothermal atomizer atomic absorption spectrometry and inductively coupled plasma mass

  7. Elemental analysis of gunshot residue to differentiate bullet type and firing distance

    NASA Astrophysics Data System (ADS)

    Hay, Christine Ella

    Gunshot residue (GSR) was deposited on porcine tissue with hand loaded non-jacketed (NJ) and full-jacketed (FJ) ammunition at two different firing distances. Fresh tissue samples, as well as samples collected throughout decomposition were microwave digested in nitric acid and analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) to determine the elemental composition of the GSR. Element concentrations for lead (Pb), antimony (Sb), barium (Ba), copper (Cu), iron (Fe), and zinc (Zn) were statistically compared in order to investigate differentiation of bullet type and firing distance based on chemical concentrations in the GSR. Control (unshot) samples were collected in order to assess for environmental contaminants. Results of this study demonstrated that ICP-OES was adequate to detect the characteristic elements of GSR in fresh tissue, but was not sensitive enough to detect all elements throughout decomposition. Lead and Sb were significantly greater in NJ samples. Barium was useful in differentiating firing distance for both bullet types, while Cu was used to differentiate firing distance in FJ ammunition only. Analysis using ICP-MS, which has detection limits up to three orders of magnitude lower compared to ICP-OES, demonstrated the persistence of Pb, Sb, and Ba on porcine tissue throughout decomposition at a firing distance of 5 cm for both NJ and FJ ammunition.

  8. Determination of rare earth and concomitant elements in magnesium alloys by inductively coupled plasma optical emission spectrometry.

    PubMed

    Fariñas, Juan C; Rucandio, Isabel; Pomares-Alfonso, Mario S; Villanueva-Tagle, Margarita E; Larrea, María T

    2016-07-01

    An Inductively Coupled Plasma Optical Emission Spectrometry method for simultaneous determination of Al, Ca, Cu, Fe, In, Mn, Ni, Si, Sr, Y, Zn, Zr and rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in magnesium alloys, including the new rare earth elements-alloyed magnesium, has been developed. Robust conditions have been established as nebulizer argon flow rate of 0.5mLmin(-1) and RF incident power of 1500W, in which matrix effects were significantly reduced around 10%. Three acid digestion procedures were performed at 110°C in closed PFA vessels heated in an oven, in closed TFM vessels heated in a microwave furnace, and in open polypropylene tubes with reflux caps heated in a graphite block. The three digestion procedures are suitable to put into solution the magnesium alloys samples. From the most sensitive lines, one analytical line with lack or low spectral interferences has been selected for each element. Mg, Rh and Sc have been studied as internal standards. Among them, Rh was selected as the best one by using Rh I 343.488nm and Rh II 249.078nm lines as a function of the analytical lines. The trueness and precision have been established by using the Certified Reference Material BCS 316, as well as by means of recovery studies. Quantification limits were between 0.1 and 9mgkg(-1) for Lu and Pr, respectively, in a 2gL(-1) magnesium matrix solution. The method developed has been applied to the commercial alloys AM60, AZ80, ZK30, AJ62, WE54 and AE44. PMID:27154648

  9. Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: An ultrahigh resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; O'Connor, I. P.; Giorio, C.; Fuller, S. J.; Kristensen, K.; Maenhaut, W.; Wenger, J. C.; Sodeau, J. R.; Glasius, M.; Kalberer, M.

    2014-06-01

    Identification of the organic composition of atmospheric aerosols is necessary to develop effective air pollution mitigation strategies. However, the majority of the organic aerosol mass is poorly characterized and its detailed analysis is a major analytical challenge. In this study, we applied state-of-the-art direct infusion nano-electrospray (nanoESI) ultrahigh resolution mass spectrometry (UHRMS) and liquid chromatography ESI Quadrupole Time-of-Flight (Q-TOF) MS for the analysis of the organic fraction of fine particulate matter (PM2.5) collected at an urban location in Cork, Ireland. Comprehensive mass spectral data evaluation methods (e.g., Kendrick Mass Defect and Van Krevelen) were used to identify compound classes and mass distributions of the detected species. Up to 850 elemental formulae were identified in negative mode nanoESI-UHR-MS. Nitrogen and/or sulphur containing organic species contributed up to 40% of the total identified formulae and exhibited strong diurnal variations suggesting the importance of night-time NO3 chemistry at the site. The presence of a large number of oxidised aromatic and nitroaromatic compounds in the samples indicated a strong anthropogenic influence, i.e., from traffic emissions and domestic solid fuel (DSF) burning. Most of the identified biogenic secondary organic aerosol (SOA) compounds are later-generation nitrogen- and sulphur-containing products, indicating that SOA composition is strongly affected by anthropogenic species such as NOx and SO2. Unsaturated and saturated C12-C20 fatty acids were found to be the most abundant homologs with a composition reflecting a primary marine origin. The results of this work demonstrate that the studied site is a very complex environment affected by a variety of anthropogenic activities and natural sources.

  10. Investigations on the conditional kinetic and thermodynamic stability of aquatic humic substance-metal complexes by means of EDTA exchange, ultrafiltration and atomic spectrometry.

    PubMed

    Van den Bergh, J; Jakubowski, B; Burba, P

    2001-09-13

    The conditional metal availability and the kinetic stability of humic substance-metal species in humic-rich waters (e.g. bog water) was characterized by means of EDTA exchange. For this purpose a combined procedure consisting of time-controlled ligand exchange by EDTA, species differentiation by a fast single-stage tangential-flow ultrafiltration (TF-UF) technique (cut-off 1 kDa) and sensitive atomic spectrometry methods (e.g. AAS, ICP-OES, TXRF) was developed. The kinetics and the yield of the EDTA exchange served as operational parameters for assessing the kinetic stability and EDTA availability of HS-metal species, respectively. Considerable fractions of natural HS-metal species studied were shown to be EDTA-inert (e.g. 31% of the total Fe, 44% of the total Al) even after long reaction times (48 h), in contrast to artificial ones formed in solutions of isolated HS. Moreover, the conditional thermodynamic stability of HS-metal complexes formed by successive loading of an aquatic reference HS (HO14) with a number of heavy metal ions (e.g. Cr(III), Cu(II), Fe(III), Mn(II), Zn(II)) was also evaluated discriminating the free metal concentrations by means of TF-UF. In addition, from the loading isotherms obtained conditional complexation capacities could be derived for the studied HS exhibiting the order Fe(III)>Cu(II)>Cr(III)>Co(II)>Mn(II). PMID:18968404

  11. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry. Progress report: January 1, 1993--December 31, 1993

    SciTech Connect

    Montaser, A.

    1993-12-31

    In this research, new high-temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. During the period January 1993--December 1993, emphasis was placed on (a) analytical investigations of atmospheric-pressure helium inductively coupled plasma (He ICP) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies; (b) simulation and computer modeling of plasma sources to predict their structure and fundamental and analytical properties without incurring the enormous cost of experimental studies; (c) spectrosopic imaging and diagnostic studies of high-temperature plasmas; (d) fundamental studies of He ICP discharges and argon-nitrogen plasma by high-resolution Fourier transform spectrometry; and (e) fundamental and analytical investigation of new, low-cost devices as sample introduction systems for atomic spectrometry and examination of new diagnostic techniques for probing aerosols. Only the most important achievements are included in this report to illustrate progress and obstacles. Detailed descriptions of the authors` investigations are outlined in the reprints and preprints that accompany this report. The technical progress expected next year is briefly described at the end of this report.

  12. [Pretreatment of Aluminum-Lithium Alloy Sample and Determination of Argentum and Lithium by Spectral Analysis].

    PubMed

    Zhou, Hui; Tan, Qian; Gao, Ya-ling; Sang, Shi-hua; Chen, Wen

    2015-10-01

    Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Flame Atomic Absorption Spectrometry (FAAS) and Visible Spectrometry (VS) was applied for determination of Ag and Li in lithium-aluminium alloy standard sample and test sample, their respective advantages and disadvantages were compared, the excellent selectivity of ICP-OES was confirmed by analyses of certified standard sample. Three different sample digestion methods were compared and discussed in this study. It was found that the better accuracy would be obtained by digesting sample with chloroazotic acid while the content of Li was measured by FAAS, and it was better to digest sample with hydrochloric acid and hydrogen peroxide while determining Ag and Li by ICP-OES simultaneously and determining Ag by FAAS and VS. The interference of co-existing elements and elimination methods was detailedly discussed. Ammonium hydroxide was added to adjust the sample solution into alkalescent and Al, Ti, Zr was precipitated by forming hydroxide precipitation, Mg and Cu was formed complex precipitation with 8-hydroxyquinoline in this condition, then the interference from matrix element to determinate Ag by FAAS was eliminated. In addition, phosphate was used to precipitate Ti to eliminate its interference for determination of Li by FAAS. The same treatment of determination for Ag by FAAS was used to eliminate the interference of matrix element for determination of Ag by VS, the excess of nitrate was added into sample and heated to release Ag+ from silver chloride complex, and the color of 8-hydroxyquinoline was eliminated because of decomposed by heating. The accuracy of analysis result for standard sample was conspicuously improved which confirms the efficient of the method to eliminate interference in this study. The optimal digestion method and eliminate interference method was applied to lithium-aluminium alloy samples. The recovery of samples was from 100.39% to 103.01% by ICP-OES determination for Ag

  13. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions.

    PubMed

    Arndt, J; Deboudt, K; Anderson, A; Blondel, A; Eliet, S; Flament, P; Fourmentin, M; Healy, R M; Savary, V; Setyan, A; Wenger, J C

    2016-03-01

    The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe-Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site. PMID:26708757

  14. Simultaneous determination of trace heavy metals in ambient aerosols by inductively coupled plasma atomic emission spectrometry after pre-concentration with sodium diethyldithiocarbamate.

    PubMed

    Talebi, S M; Malekiha, M

    2008-07-01

    The simultaneous determination of heavy metals associated with airborne particulate matter in the atmosphere of the city Isfahan (Iran) was performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) after pre-concentration with sodium diethyldithiocarbamate. The preconcentration procedure developed found instrumental to determine the trace heavy metals associated with ambient aerosols collected at a short sampling period or collected from rural areas where the concentrations of these metals are much less than those in urban areas. Several samples were analyzed by both flame atomic absorption spectrometry (FAAS) as a conventional method and the proposed method. The results obtained by the two methods were found in good agreement. The method was applied to the determination of atmospheric level of heavy metals in rural area and also for study of variation in levels of heavy metals in urban atmosphere during the days and nights. PMID:19552073

  15. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    SciTech Connect

    Ombaba, J.M.

    1992-01-01

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (mytilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienylmanganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were considered. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is discussed. The program is used for separation optimization and prediction of gas chromatographic parameters. The program produces a relative resolution map (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.

  16. Detailed gas and diesel vehicle emissions: PTR-MS measurements of real-time VOC profiles and comprehensive characterization of primary emissions for IVOC, SVOC, and LVOC by gas chromatography with vacuum ultra-violet ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Frodin, B.; Zhao, Y.; Franklin, J. P.; Cross, E. S.; Saleh, R.; Saliba, G.; Lambe, A. T.; Sardar, S.; Maldonado, H.; Russell, L. M.; Kroll, J. H.; Robinson, A. L.; Goldstein, A. H.

    2015-12-01

    Over the past fifteen years US vehicle emissions standards have dramatically improved, with the goal of reducing urban air pollution. Recent studies demonstrate secondary organic aerosol (SOA) to be the dominant contributor to urban organic aerosol, but controversy remains regarding the contributions of different vehicle types to SOA. Increased potency for SOA formation from non methane hydrocarbons (NMHC) from newer vehicles that meet tighter emission standards has also been observed. Both speciation and temporal resolution of vehicular emissions are critical for predicting SOA formation. The relative importance of diesel and gasoline emissions to SOA formation depends critically on speciation. Experiments were conducted at the California Air Resources Board Haagen-Smit Laboratory to better understand SOA formation for low, ultra-low, super ultra-low and partial zero emission vehicles (LEV, ULEV, SULEV, PZEV). Exhaust was sampled on filters and adsorbent tubes to measure intermediate-, semi-, and low-volatility NMHC (IVOC, SVOC, LVOC). A proton-transfer-reaction mass spectrometer (PTR-MS) measured volatile organics (VOC) emissions with high time-resolution. Analysis of filters and adsorbent tubes using gas chromatography with vacuum-ultra-violet ionization mass spectrometry provided unprecedented characterization of emissions according to degree of branching, number of cyclic rings, aromaticity, and molecular weight. ULEV vehicles show the composition distributions of primary particulate emissions peak for compounds in the SVOC range. PZEV vehicle emissions peak in the IVOC range. Diesel vehicles have up to ten times higher emissions than gasoline vehicles; their distributions have significant IVOC levels and peak in the SVOC/LVOC range. Our measurements are used to predict potential SOA formation by vehicle standard class and the relative SOA formation for diesel and gasoline vehicles. PTR-MS measurement show VOC emissions after cold start occur almost entirely

  17. [Determination of Cr, Ni, Cu, Mn, P, Si, Mo and Ti in high chromium cast iron by inductively coupled plasma atomic emission spectrometry].

    PubMed

    Wang, Hui; Wang, Guo-Xin; Xu, Yu-Yu; Yu, Lu; Yang, Peng-Yuan

    2011-09-01

    The high-chromium cast iron sample was microwave-assisted digested with aqueous regia in a closed vessel. Series standards were prepared with matching Fe matrix and adding Y as internal standard. Line intensities of the prepared standards and the digested sample solutions were determined by inductively coupled plasma atomic emission spectrometry. Accuracy of the proposed method was verified by the analysis of three national standard Materials GSBH 41018, GBW 01120 and GBW 01121, and the results were well agreed with the certification data. PMID:22097871

  18. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  19. Comparison of ultrasonic and thermospray systems for high performance sample introduction to inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Conver, Timothy S.; Koropchak, John A.

    1995-06-01

    This paper describes detailed work done in our lab to compare analytical figures of merit for pneumatic, ultrasonic and thermospray sample introduction (SI) systems with three different inductively coupled plasma-atomic emission spectrometry (ICP-AES) instruments. One instrument from Leeman Labs, Inc. has an air path echelle spectrometer and a 27 MHz ICP. For low dissolved solid samples with this instrument, we observed that the ultrasonic nebulizer (USN) and fused silica aperture thermospray (FSApT) both offered similar LOD improvements as compared to pneumatic nebulization (PN), 14 and 16 times, respectively. Average sensitivities compared to PN were better for the USN, by 58 times, compared to 39 times for the FSApT. For solutions containing high dissolved solids we observed that FSApT optimized at the same conditions as for low dissolved solids, whereas USN required changes in power and gas flows to maintain a stable discharge. These changes degraded the LODs for USN substantially as compared to those utilized for low dissolved solid solutions, limiting improvement compared to PN to an average factor of 4. In general, sensitivities for USN were degraded at these new conditions. When solutions with 3000 μg/g Ca were analyzed, LOD improvements were smaller for FSApT and USN, but FSApT showed an improvement over USN of 6.5 times. Sensitivities compared to solutions without high dissolved solids were degraded by 19% on average for FSApT, while those for USN were degraded by 26%. The SI systems were also tested with a Varian Instruments Liberty 220 having a vacuum path Czerny-Turner monochromator and a 40 MHz generator. The sensitivities with low dissolved solids solutions compared to PN were 20 times better for the USN and 39 times better for FSApT, and LODs for every element were better for FSApT. Better correlation between relative sensitivities and anticipated relative analyte mass fluxes for FSApT and USN was observed with the Varian instrument. LOD

  20. A novel methodology for rapid digestion of rare earth element ores and determination by microwave plasma-atomic emission spectrometry and dynamic reaction cell-inductively coupled plasma-mass spectrometry.

    PubMed

    Helmeczi, Erick; Wang, Yong; Brindle, Ian D

    2016-11-01

    Short-wavelength infrared radiation has been successfully applied to accelerate the acid digestion of refractory rare-earth ore samples. Determinations were achieved with microwave plasma-atomic emission spectrometry (MP-AES) and dynamic reaction cell - inductively coupled plasma-mass spectrometry (DRC-ICP-MS). The digestion method developed was able to tackle high iron-oxide and silicate matrices using only phosphoric acid in a time frame of only 8min, and did not require perchloric or hydrofluoric acid. Additionally, excellent recoveries and reproducibilities of the rare earth elements, as well as uranium and thorium, were achieved. Digestions of the certified reference materials OREAS-465 and REE-1, with radically different mineralogies, delivered results that mirror those obtained by fusion processes. For the rare-earth CRM OKA-2, whose REE data are provisional, experimental data for the rare-earth elements were generally higher than the provisional values, often exceeding z-values of +2. Determined values for Th and U in this reference material, for which certified values are available, were in excellent agreement. PMID:27591646

  1. Determination of main and minor components of silicon based materials by a combustion with elemental fluorine. Separation of gaseous fluorination products by carrier gas distillation and gas mass spectrometry

    PubMed

    Russe; Kipphardt; Broekaert

    2000-08-15

    For the determination of main and minor components in silicon-based ceramic powders, a decomposition by a combustion with elemental fluorine and separation of the volatile fluorination products by a carrier-gas distillation with a subsequent detection by quadrupole mass spectrometry is described. The necessity and success of the separation step is demonstrated for the determination of boron as a minor constituent in SiC, where the spectral interferences of silicon on the boron signals are decreased considerably. The method developed is shown to be directly applicable to determination of silicon in Si3N4, SiC, and SiO2. The determination of nitrogen in Si3N4 requires additional effort, to separate nitrogen from the excess of fluorine. For the determination of boron, a complete mobilization of BF3 is assured by the presence of an adequate amount of GeF4. Analysis results obtained with different types of calibration show a precision of 30 microg for boron at the milligram-per-gram level and a precision between 0.5 and 2% (m/m) for the main components, silicon and nitrogen. Within these standard deviations, the results agree well with the values expected from the stoichiometry, with the results for silicon and boron obtained by wet chemical decomposition and slurry techniques in combination with ICP-OES and with the results for nitrogen obtained by carrier gas heat extraction. PMID:10959976

  2. Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Cooking Emissions.

    PubMed

    Klein, Felix; Platt, Stephen M; Farren, Naomi J; Detournay, Anais; Bruns, Emily A; Bozzetti, Carlo; Daellenbach, Kaspar R; Kilic, Dogushan; Kumar, Nivedita K; Pieber, Simone M; Slowik, Jay G; Temime-Roussel, Brice; Marchand, Nicolas; Hamilton, Jacqueline F; Baltensperger, Urs; Prévôt, André S H; El Haddad, Imad

    2016-02-01

    Cooking processes produce gaseous and particle emissions that are potentially deleterious to human health. Using a highly controlled experimental setup involving a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), we investigate the emission factors and the detailed chemical composition of gas phase emissions from a broad variety of cooking styles and techniques. A total of 95 experiments were conducted to characterize nonmethane organic gas (NMOG) emissions from boiling, charbroiling, shallow frying, and deep frying of various vegetables and meats, as well as emissions from vegetable oils heated to different temperatures. Emissions from boiling vegetables are dominated by methanol. Significant amounts of dimethyl sulfide are emitted from cruciferous vegetables. Emissions from shallow frying, deep frying and charbroiling are dominated by aldehydes of differing relative composition depending on the oil used. We show that the emission factors of some aldehydes are particularly large which may result in considerable negative impacts on human health in indoor environments. The suitability of some of the aldehydes as tracers for the identification of cooking emissions in ambient air is discussed. PMID:26766423

  3. Measurement of non-enteric emission fluxes of volatile fatty acids from a California dairy by solid phase micro-extraction with gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Alanis, Phillip; Sorenson, Mark; Beene, Matt; Krauter, Charles; Shamp, Brian; Hasson, Alam S.

    Dairies are a major source of volatile organic compounds (VOCs) in California's San Joaquin Valley; a region that experiences high ozone levels during summer. Short-chain carboxylic acids, or volatile fatty acids (VFAs), are believed to make up a large fraction of VOC emissions from these facilities, although there are few studies to substantiate this. In this work, a method using a flux chamber coupled to solid phase micro-extraction (SPME) fibers followed by analysis using gas chromatography/mass spectrometry was developed to quantify emissions of six VFAs (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid and 3-methyl butanoic acid) from non-enteric sources. The technique was then used to quantify VFA fluxes from a small dairy located on the campus of California State University Fresno. Both animal feed and animal waste are found to be major sources of VFAs, with acetic acid contributing 70-90% of emissions from the sources tested. Measured total acid fluxes during spring (with an average temperature of 20 °C) were 1.84 ± 0.01, 1.06 ± 0.08, (1.3 ± 0.5) × 10 -2, (1.7 ± 0.2) × 10 -2 and (1.2 ± 0.5) × 10 -2 g m -2 h -1 from silage, total mixed rations, flushing lane, open lot and lagoon sources, respectively. VFA emissions from the sources tested total 390 ± 80 g h -1. The data indicate high fluxes of VFAs from dairy facilities, but differences in the design and operation of dairies in the San Joaquin Valley as well as seasonal variations mean that additional measurements must be made to accurately determine emissions inventories for the region.

  4. Use of gradient dilution to flag and overcome matrix interferences in axial-viewing inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Cheung, Yan; Schwartz, Andrew J.; Hieftje, Gary M.

    2014-10-01

    Despite the undisputed power of inductively coupled plasma-atomic emission spectrometry (ICP-AES), its users still face serious challenges in obtaining accurate analytical results. Matrix interference is perhaps the most important challenge. Dilution of a matrix-containing sample is a common practice to reduce matrix interference. However, determining the optimal dilution factor requires tedious and time-consuming offline sample preparation, since emission lines and the effect of matrix interferences are affected differently by the dilution. The current study exploits this difference by employing a high-performance liquid chromatography gradient pump prior to the nebulizer to perform on-line mixing of a sample solution and diluent. Linear gradient dilution is performed on both the calibration standard and the matrix-containing sample. By ratioing the signals from two emission lines (from the same or different elements) as a function of dilution factor, the analyst can not only identify the presence of a matrix interference, but also determine the optimal dilution factor needed to overcome the interference. A ratio that does not change with dilution signals the absence of a matrix interference, whereas a changing ratio indicates the presence of an interference. The point on the dilution profile where the ratio stabilizes indicates the optimal dilution factor to correct the interference. The current study was performed on axial-viewing ICP-AES with o-xylene as the solvent.

  5. Analysis of non-regulated vehicular emissions by extractive FTIR spectrometry: tests on a hybrid car in Mexico City

    NASA Astrophysics Data System (ADS)

    Reyes, F.; Grutter, M.; Jazcilevich, A.; González-Oropeza, R.

    2006-07-01

    A methodology to acquire valuable information on the chemical composition and evolution of vehicular emissions is presented. The analysis of the gases is performed by passing a constant flow of a sample gas from the tail-pipe into a 10 L multi-pass cell. The absorption spectra within the cell are obtained using an FTIR spectrometer at 0.5 cm-1 resolution along a 13.1 m optical path. Additionally, the total flow from the exhaust is continuously measured from a differential pressure sensor on a Pitot tube installed at the exit of the exhaust. This configuration aims to obtain a good speciation capability by coadding spectra during 30 s and reporting the emission (in g/km) of key and non-regulated pollutants, such as CO2, CO, NO, SO2, NH3, HCHO, NMHC, during predetermined driving routines. The advantages and disadvantages of increasing the acquisition frequency, as well as the effect of other parameters such as spectral resolution, cell volume and flow rate, are discussed. With the aim of testing and evaluating the proposed technique, experiments were performed on a dynamometer running FTP-75 and typical driving cycles of the Mexico City Metropolitan Area (MCMA) on a Toyota Prius hybrid vehicle. This car is an example of recent automotive technology to reach the market dedicated to reduce emissions and therefore pressing the need of low detection techniques. This study shows the potential of the proposed technique to measure and report in real time the emissions of a large variety of pollutants, even from a super ultra-low emission vehicle (SULEV). The emissions of HC's, NOx, CO and CO2 obtained here are similar to experiments performed in other locations with the same vehicle model. Some differences suggest that an inefficient combustion process and type of gasoline used in the MCMA may be partly responsible for lower CO2 and higher CO and NO emission factors. Also, a fast reduction of NO emission to very low values is observed after cold ignition, giving rise to

  6. Determination of heavy metals in bee honey with connected and not connected metal wires using inductively coupled plasma atomic emission spectrometry (ICP-AES).

    PubMed

    Özcan, Mehmet Musa; Al Juhaimi, Fahad Y

    2012-04-01

    Two honey samples are taken from two parts of the same honeycomb: one that contacts to the surface of the wire and the other taken from the surface that does not contact the wires. Heavy metal contents of these two samples were determined by inductively coupled plasma atomic emission spectrometry). The Mo, Cd, Cr, Fe, Mn, Ni and Zn contents of the honey in contact with wire is higher when compared to the other. Especially, Fe and Zn contents of honey in contact with wire is much higher than the non-contact one. These values are, respectively, 190.21 and 112.76 ppm. Besides, Ni content of honey in contact with wire is approximately 50% higher. PMID:21573852

  7. Calibration graphs for Ti, Ta and Nb in sintered tungsten carbide by infrared laser ablation inductively coupled plasma atomic emission spectrometry.

    PubMed

    Kanický, V; Otruba, V; Mermet, J M

    2001-12-01

    Infrared laser ablation (IR-LA) has been studied as a sample introduction technique for the analysis of sintered cobalt-cemented tungsten carbide materials by inductively coupled plasma atomic emission spectrometry (ICP-AES). Fractionation of cobalt was observed. Linearity of calibration plots was verified at least up to 15% Ti, 8% Ta, and 3% Nb. Above 1% (m/m) Ti, Ta, and Nb, the repeatability of results was better than 3% R.S.D. The relative uncertainty at the centroid of the calibration line was in the range from +/- 3% to +/- 4% for Ti, Ta, and Nb with internal standardization by tungsten and up to +/- 5% without internal standardization. The limits of detection were 0.004% Ti, 0.001% Ta, and 0.004% Nb. Elimination of the cemented hardmetal dissolution procedure is the main advantage of this method. PMID:11769803

  8. Factors influence accuracy and precision in the determination of the elemental composition of defense waste glass by ICP-emission spectrometry

    SciTech Connect

    Goode, S.R.

    1995-12-31

    The influence of instrumental factors on the accuracy and precision of the determination of the composition of glass and glass feedstock is presented. In addition, the effects of different methods of sampling, dissolution methods, and standardization procedures and their effect on the quality of the chemical analysis will also be presented. The target glass simulates the material that will be prepared by the vitrification of highly radioactive liquid defense waste. The glass and feedstock streams must be well characterized to ensure a durable glass; current models estimate a 100,000 year lifetime. The elemental composition will be determined by ICP-emission spectrometry with radiation exposure issues requiring a multielement analysis for all constituents, on a single analytical sample, using compromise conditions.

  9. Current Opportunities and Challenges of Magnetic Resonance Spectroscopy, Positron Emission Tomography, and Mass Spectrometry Imaging for Mapping Cancer Metabolism In Vivo

    PubMed Central

    Chung, Yuen-Li

    2014-01-01

    Cancer is known to have unique metabolic features such as Warburg effect. Current cancer therapy has moved forward from cytotoxic treatment to personalized, targeted therapies, with some that could lead to specific metabolic changes, potentially monitored by imaging methods. In this paper we addressed the important aspects to study cancer metabolism by using image techniques, focusing on opportunities and challenges of magnetic resonance spectroscopy (MRS), dynamic nuclear polarization (DNP)-MRS, positron emission tomography (PET), and mass spectrometry imaging (MSI) for mapping cancer metabolism. Finally, we highlighted the future possibilities of an integrated in vivo PET/MR imaging systems, together with an in situ MSI tissue analytical platform, may become the ultimate technologies for unraveling and understanding the molecular complexities in some aspects of cancer metabolism. Such comprehensive imaging investigations might provide information on pharmacometabolomics, biomarker discovery, and disease diagnosis, prognosis, and treatment response monitoring for clinical medicine. PMID:24724090

  10. Solvent extraction of cadmium as a previous step for its determination in biological samples by inductively coupled plasma atomic emission spectrometry

    SciTech Connect

    Siles Cordero, M.T.; Garcia de Torres, A.; Cano Pavon, J.M.

    1994-07-01

    A method is proposed for the solvent extraction of cadmium using 1,5-bis[1-(2-pyridyl)ethylidene] thiocarbonohydrazide (APTH) as extractant. The optimum extraction conditions were evaluated from a critical study of the effect of pH, concentration of extractant, shaking time and ionic strength. The maximum volume ratio of the aqueous to organic phase was 25:1 for a single-stage extraction of 99-100% of the metal ion. The detection limit is 0.15 ng/ml cadmium, and the calibration is linear from 0.2 to 500 ng/ml. The effect of interferences was studied and no interferences from the elements commonly found in biological materials were observed. The extraction method was applied to the determination of cadmium in some biological materials using inductively coupled plasma atomic emission spectrometry (ICP-AES).

  11. Light emission of a polyfluorene derivative containing complexed europium ions.

    PubMed

    Turchetti, Denis Augusto; Nolasco, Mariela Martins; Szczerbowski, Daiane; Carlos, Luís Dias; Akcelrud, Leni Campos

    2015-10-21

    The photophysical properties of a new alternating copolymer containing fluorene, terpyridine, and complexed sites with trivalent europium (Eu(3+)) ions (LaPPS66Eu) were investigated, using the non-complexed backbone (LaPPS66) and a low molecular weight compound of similar chemical structure of the ligand/Eu(3+) site (LaPPS66M) as a model compound. The analogous gadolinium complex (LaPPS66Gd) was also synthesized to determine the triplet state of the complex. (1)H and (13)C nuclear magnetic resonance (NMR) analysis, Fourier transform infrared (FT-IR) spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES), elemental analyses, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) characterized the chemical structure and thermal properties of the synthesized materials. A level of Eu(3+) insertion of 37% (molar basis) in the polymer backbone was achieved. The photoluminescence studies were performed in the solid state showing the occurrence of polymer-to-Eu(3+) energy transfer brought about by the spectral overlap between the absorption spectra of the Eu(3+) complex and the emission of the polymer backbone. A detailed theoretical photoluminescence study performed using time-dependent DFT (TD-DFT) calculations and the recently developed LUMPAC luminescence package is also presented. The high accuracy of the theoretical calculations was achieved on comparison with the experimental values. Aiming at a deeper level of understanding of the photoluminescence process, the ligand-to-Eu(3+) intramolecular energy transfer and back-transfer rates were predicted. The complexed materials showed a dominant pathway involving the energy transfer between the triplet of the dbm (dibenzoylmethane) ligand and the (5)D1 and (5)D0 Eu(3+) levels. PMID:26384315

  12. Chemical state information of bulk specimens obtained by SEM-based soft-X-ray emission spectrometry.

    PubMed

    Terauchi, Masami; Koshiya, Shogo; Satoh, Futami; Takahashi, Hideyuki; Handa, Nobuo; Murano, Takanori; Koike, Masato; Imazono, Takashi; Koeda, Masaru; Nagano, Tetsuya; Sasai, Hiroyuki; Oue, Yuki; Yonezawa, Zeno; Kuramoto, Satoshi

    2014-06-01

    Electron-beam-induced soft-X-ray emission spectroscopy (SXES) that uses a grating spectrometer has been introduced to a conventional scanning electron microscope (SEM) for characterizing desired specimen areas of bulk materials. The spectrometer was designed as a grazing incidence flat-field optics by using aberration corrected (varied line spacing) gratings and a multichannel plate detector combined with a charge-coupled device camera, which has already been applied to a transmission electron microscope. The best resolution was confirmed as 0.13 eV at Mg L-emission (50 eV), which is comparable with that of recent dedicated electron energy-loss spectroscopy instruments. This SXES-SEM instrument presents density of states of simple metals of bulk Mg and Li. Apparent band-structure effects have been observed in Si L-emission of Si wafer, P L-emission of GaP wafer, and Al L-emissions of intermetallic compounds of AlCo, AlPd, Al2Pt, and Al2Au. PMID:24625988

  13. A Simple But Comprehensive Methodology To Determine Gas-Phase Emissions Of Motor Vehicles With Extractive FTIR Spectrometry

    NASA Astrophysics Data System (ADS)

    Reyes, F. M.; Jaczilevich, A.; Grutter, M. A.; Huerta, M. A.; Rincón, P.; Rincón, R.; González, R.

    2004-12-01

    In this contribution, a methodology to acquire valuable information on the chemical composition and evolution of vehicular emissions is presented. With this innovative experimental set-up, it is possible to obtain real-time emissions of the combustion products without the need of dilution or sample collection. Key pollutants such as CO, CO2, H2CO, CH4, NO, N2O, NH3, SO2, CH3OH, acetylene, ethylene, ethane and total hydrocarbons, most of which are not regulated nor measured by current emissions control programs, can be accurately monitored with a single instrument. An FTIR spectrometer is used for the analysis of a constant flow of sample gas from the tail-pipe into a stainless-steel cylindrical cell of constant volume.(1) The cell is heated to 185 °C to avoid condensation, the pressure is kept constant and a multi-pass optical arrangement(2)is used to transmit the modulated infrared beam several times to improve the sensitivity. The total flow from the exhaust used for calculating the emission can be continuously determined from the differential pressure measurements from a "Pitot" tube calibrated against a hot-wire devise. This simple methodology is proposed for performing state-of-the-art evaluations on the emission behavior of new technologies, reformulated fuels and emission control devices. The results presented here were performed on a dynamometer running FTP-75 and driving cycles typical for Mexico City.(3,4) References 1. Grutter M. "Multi-Gas Analysis using FTIR Spectroscopy over Mexico City." Atmosfera 16, 1-16 (2003). 2. White J.U. "Long optical paths of large aperture. J. Opt. Soc. Am., 32, 285-288 (1942). 3. Santiago Cruz L. and P.I. Rincón. "Instrumentation of the Emission Control Laboratory at the Engineering School of the National Autonomous University of Mexico." Instrumentation and Development 4, 19-24, (2000). 4. González Oropeza R. and A. Galván Zacarías. "Desarrollo de ciclos de manejo característicos de la Ciudad de México." Memorias

  14. Direct solid sampling system for electrothermal vaporization and its application to the determination of chlorine in nanopowder samples by inductively coupled plasma optical emission spectroscopy.

    PubMed

    Nakata, Kenichi; Hashimoto, Bunji; Uchihara, Hiroshi; Okamoto, Yasuaki; Ishizaka, Syoji; Fujiwara, Terufumi

    2015-06-01

    An electrothermal vaporization (ETV) system using a tungsten boat furnace (TBF) sample cuvette was designed for the direct determination of chlorine in metallic nanopowders and fine powder samples with detection by inductively coupled plasma optical emission spectroscopy (ICP-OES). A portion of a powder or particle sample was placed into a small tungsten sample cuvette and weighed accurately. A modifier solution of aqueous or alcoholic potassium hydroxide was added to it. Then, the cuvette was positioned on the TBF incorporated into the ETV apparatus. The analyte was vaporized and introduced into the ICP optical emission spectrometer with a carrier gas stream of argon and hydrogen. The metal samples were analyzed by using an external calibration curve prepared from aqueous standard solutions. Few chemical species including analyte and some chlorine-free species were introduced into the ICP, because the analyte has been separated from the matrix before introduction. Under such dry plasma conditions, the energy of plasma discharge was focused on the excitation of chlorine atoms, and as a result, lower detection limits were achieved. A detection limit of 170 ng g(-1) of chlorine in solid metal samples was established when 60 mg sample was used. The relative standard deviation for 16 replicate measurements obtained with 100 ng chlorine was 8.7%. Approximately 30 batches could be vaporized per hour. The analytical results for various nanopowders (iron (III) oxide, copper, silver, and gold) and metallic fine powder samples (silver and gold) are described. PMID:25863402

  15. Determination of free and total sulfur dioxide in wine samples by vapour-generation inductively coupled plasma-optical-emission spectrometry.

    PubMed

    Cmelík, Jirí; Machát, Jirí; Niedobová, Eva; Otruba, Vítezslav; Kanický, Viktor

    2005-10-01

    Sulfur dioxide (SO(2)) is used as a preservative and stabilizer in wine production to prevent undesired biochemical processes in the must and the final product. The concentration of SO(2) is restricted by national regulations. There are two main forms of SO(2) in wine-free (inorganic forms) and bound (fixed to organic compounds, e.g. aldehydes). Iodometric titration is commonly employed for determination of SO(2) concentration (either by direct titration or after pre-separation by distillation); other techniques are also used. In this work inductively coupled plasma-optical-emission spectrometry with vapour generation was used for determination of free and total SO(2) in wine. Gaseous SO(2) is released from the sample by addition of acid and swept into the ICP by an argon stream. The intensity of the sulfur atomic emission lines is measured in the vacuum UV region. Determination of total SO(2) is performed after hydrolysis of bound forms with sodium hydroxide (NaOH). Concentrations of acid for vapour generation and NaOH for hydrolysis were optimised. The method was used for determination of free and total SO(2) in red and white wine samples and results were compared with those from iodometric titration. PMID:16052345

  16. Polycyclic aromatic hydrocarbon emissions in diesel exhaust using gas chromatography-mass spectrometry with programmed temperature vaporization and large volume injection

    NASA Astrophysics Data System (ADS)

    Vieira de Souza, Carolina; Corrêa, Sergio Machado

    2015-02-01

    Diesel engines are significant sources of Polycyclic Aromatic Compounds (PAHs) in urban atmospheres. These compounds are widely known for their carcinogenic potential and mutagenic properties. In this study, a method was developed for the analysis of 16 priorities PAHs using gas chromatography-mass spectrometry (GC-MS) with programmable temperature vaporizer large volume injection (PTV-LVI), which allowed to be obtained detection limits below 2.0 ng mL-1. This method was evaluated in samples from stratified particulate matter and gas phase from the emissions of diesel vehicle employing diesel commercial S10 (sulfur 10 mg L-1) and B5 (biodiesel 5% v/v). A sampling system that does not employ exhaust products dilution was used to evaluate the PAHs gas-particle partition. Six PAHs were identified in extracts and gas-phase PAHs took percentage of 80% in the total PAHs emissions. The sampling system without dilution not caused a strong nucleation/condensation of the most volatile PAHs. PAHs size-particle distribution was found in higher levels in the accumulation mode.

  17. Gaseous and particulate composition of fresh and aged emissions of diesel, RME and CNG buses using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Psichoudaki, Magda; Le Breton, Michael; Hallquist, Mattias; Watne, Ågot; Hallquist, Asa

    2016-04-01

    Urban air pollution is becoming a significant global problem, especially for large cities around the world. Traffic emissions contribute significantly to both elevated particle concentrations and to gaseous pollutants in cities. The latter also have the potential of forming more particulate mass via their photochemical oxidation in the atmosphere. The International Agency for Research on Cancer and the US EPA have characterised diesel exhausts as a likely human carcinogen that can also contribute to other health problems. In order to meet the challenges with increased transportation and enhanced greenhouse gas emissions, the European Union have decided on a 10% substitution of traditional fuels in the road transport sector by alternative fuels (e.g. biodiesel, CNG) before the year 2020. However, it is also important to study the influence of fuel switches on other primary pollutants as well as the potential to form secondary aerosol mass. This work focuses on the characterisation of the chemical composition of the gas and the condensed phase of fresh bus emissions during acceleration, in order to mimic the exhaust plume that humans would inhale under realistic conditions. In addition, photochemical aging of the exhaust emissions was achieved by employing a Potential Aerosol Mass (PAM) flow reactor, allowing the characterization of the composition of the corresponding aged emissions. The PAM reactor uses UV lamps and high concentrations of oxidants (OH radicals and O3) to oxidize the organic species present in the chamber. The oxidation that takes place within the reactor can be equivalent to up to one week of atmospheric oxidation. Preliminary tests showed that the oxidation employed in these measurements corresponded to a range from 4 to 8 days in the atmosphere. During June and July 2015, a total of 29 buses, 5 diesel, 13 CNG and 11 RME (rapeseed methyl ester), were tested in two different locations with limited influence from other types of emissions and traffic

  18. Determination of dissolved boron in fresh, estuarine, and geothermal waters by d.c. argon-plasma emission spectrometry

    USGS Publications Warehouse

    Ball, J.W.; Thompson, J.M.; Jenne, E.A.

    1978-01-01

    A d.c. argon-plasma emission spectrometer is used to determine dissolved boron in natural (fresh and estuarine) water samples. Concentrations ranged from 0.02 to 250 mg l-1. The emission-concentration function is linear from 0.02 to 1000 mg l-1. Achievement of a relative standard deviation of ??? 3% requires frequent restandardization to offset sensitivity changes. Dilution may be necessary to overcome high and variable electron density caused by differences in alkali-metal content and to avoid quenching of the plasma by high solute concentrations of sodium and other easily ionized elements. The proposed method was tested against a reference method and found to be more sensitive, equally or more precise and accurate, less subject to interferences, with a wider linear analytical range than the carmine method. Analyses of standard reference samples yielded results in all cases within one standard deviation of the means. ?? 1978.

  19. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  20. Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source

    SciTech Connect

    Shen, Luan

    1995-10-06

    This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

  1. Ion and electron bombardment-related ion emission during the analysis of diamond using secondary ion mass spectrometry

    SciTech Connect

    Guzman de la Mata, Berta; Dowsett, Mark G.

    2007-02-01

    In recent years, the ability to grow single crystal layers of both doped and pure diamonds has improved, and devices for applications in high power electronics and microelectronics are being developed, most of them based on boron doped diamond. In this work, convoluted angular and energy spectra (so-called secondary ion mass spectrometry energy spectra) have been measured for {sup 11}B{sup +}, {sup 12}C{sup +}, {sup 16}O{sup +}, CO{sup +} and CO{sub 2}{sup +} ions ejected from a single crystal boron doped diamond layer under ultralow energy oxygen and electron beam bombardment. A low energy tail was observed in the {sup 12}C{sup +}, CO{sup +}, and CO{sub 2}{sup +} signals, corresponding to ions produced in the gas phase. Changing the bombardment conditions, we have identified interaction with the electron beam as the main ionization mechanism. In the case of {sup 12}C{sup +} it appears that the gas phase ions are produced by electron stimulated desorption and postionization of surface species created by the oxygen beam. We have detected high signals for CO{sup +} and CO{sub 2}{sup +} ionized in the gas phase, which supports a mechanism previously suggested to explain the anomalously fast diamond erosion under oxygen ion beam bombardment. We also observe that some species appearing in the mass spectrum are produced by electron stimulated desorption and this needs to be remembered when analyzing these on insulating diamond with charge compensation.

  2. Fuel ion ratio determination in NBI heated deuterium tritium fusion plasmas at JET using neutron emission spectrometry

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Eriksson, J.; Binda, F.; Conroy, S.; Ericsson, G.; Hjalmarsson, A.; Skiba, M.; Weiszflog, M.; Contributors, JET-EFDA

    2015-02-01

    The fuel ion ratio (nt/nd) is of central importance for the performance and control of a future burning fusion plasma, and reliable measurements of this quantity are essential for ITER. This paper demonstrates a method to derive the core fuel ion ratio by comparing the thermonuclear and beam-thermal neutron emission intensities, using a neutron spectrometer. The method is applied to NBI heated deuterium tritium (DT) plasmas at JET, using data from the magnetic proton recoil spectrometer. The trend in the results is consistent with Penning trap measurements of the fuel ion ratio at the edge of the plasma, but there is a discrepancy in the absolute values, possibly owing to the fact that the two measurements are weighted towards different parts of the plasma. It is suggested to further validate this method by comparing it to the traditionally proposed method to estimate nt/nd from the ratio of the thermal DD and DT neutron emission components. The spectrometer requirements for measuring nt/nd at ITER are also briefly discussed.

  3. Standard dilution analysis.

    PubMed

    Jones, Willis B; Donati, George L; Calloway, Clifton P; Jones, Bradley T

    2015-02-17

    Standard dilution analysis (SDA) is a novel calibration method that may be applied to most instrumental techniques that will accept liquid samples and are capable of monitoring two wavelengths simultaneously. It combines the traditional methods of standard additions and internal standards. Therefore, it simultaneously corrects for matrix effects and for fluctuations due to changes in sample size, orientation, or instrumental parameters. SDA requires only 200 s per sample with inductively coupled plasma optical emission spectrometry (ICP OES). Neither the preparation of a series of standard solutions nor the construction of a universal calibration graph is required. The analysis is performed by combining two solutions in a single container: the first containing 50% sample and 50% standard mixture; the second containing 50% sample and 50% solvent. Data are collected in real time as the first solution is diluted by the second one. The results are used to prepare a plot of the analyte-to-internal standard signal ratio on the y-axis versus the inverse of the internal standard concentration on the x-axis. The analyte concentration in the sample is determined from the ratio of the slope and intercept of that plot. The method has been applied to the determination of FD&C dye Blue No. 1 in mouthwash by molecular absorption spectrometry and to the determination of eight metals in mouthwash, wine, cola, nitric acid, and water by ICP OES. Both the accuracy and precision for SDA are better than those observed for the external calibration, standard additions, and internal standard methods using ICP OES. PMID:25599250

  4. Nature of unresolved complex mixture in size-distributed emissions from residential wood combustion as measured by thermal desorption-gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hays, Michael D.; Smith, N. Dean; Dong, Yuanji

    2004-08-01

    Unresolved complex mixture (UCM) is an analytical artifact of gas chromatographs of combustion source-related fine aerosol extracts. In this study the UCM is examined in size-resolved fine aerosol emissions from residential wood combustion. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). A semiquantitative system for predicting the branched alkane, cycloalkane, alkylbenzene, C3-, C4-, C5-alkylbenzene, methylnaphthalene, C3-, C4-, C5-alkylnaphthalene, methylphenanthrene C2-, C3-alkylphenanthrene, and dibenzothiophene concentrations in the UCM is introduced. Analysis by TD/GS/MS detects UCM on each ELPI stage for all six combustion tests. The UCM baseline among the different fuel types is variable. In particular, the UCM of Pseudotsuga sp. is enriched in later-eluting compounds of lower volatility. A high level of reproducibility is achieved in determining UCM areas. UCM fractions (UCM ion area/total extracted ion chromatograph area) by individual ELPI stage return a mean relative standard deviation of 19.1% over the entire combustion test set, indicating a highly consistent UCM fraction across the ELPI size boundaries. Among the molecular ions investigated, branched alkane (m/z 57) and dibenzothiophene (m/z 212 and 226) constituents are most abundant in UCM emissions from RWC, collectively accounting for 64-95% of the targeted chemical species. The total UCM emissions span 446-756 mg/kg of dry biomass burned and correspond to an upper limit of 7.1% of the PM2.5 mass. The UCM emissions are primarily accumulation mode (0.1 μm ≤ aerodynamic diameter (da) ≤ 1 μm), with a geometric mean diameter (dg) range of 120.3-518.4 nm. UCM in PM2.5 is chemically asymmetric (shifted to finer da), typically clustering at da ≤ 1 μm. Measurable shifts in dg and changes in distribution widths (σg) on an intratest basis suggest that the particle density

  5. [Determination of aqueous potassium and sodium ions with liquid-phase diaphragm glow discharge-atomic emission spectrometry].

    PubMed

    Liu, Yong-jun; Wang, Lei

    2013-09-01

    The present paper described the determination of potassium and sodium ions with a liquid-phase diaphragm glow discharge emission spectroscopy (LDGD-AES) in aqueous solution. The discharge was formed in a pin hole on a dielectric diaphragm interposed between two submerged graphite electrodes. Effects of applied voltage and the addition of organic additive methanol on the determination were examined. It was found that increasing the applied voltage and adding of methanol can increase the detection sensitivity and decrease the detection limit. Limits of detection for K and Na were 0. 007 and 0. 001 mg x L(-1) under the applied voltage of 850 V and addition of 0.6%-0.8% methanol, respectively. It was demonstrated that the LDGD-AES is a promising technique in measurements of metal ions in aqueous solution, because no optical interferences from the electrodes and the background molecular bands from air were found. PMID:24369674

  6. Speciation of inorganic and organometallic compounds in solid biological samples by thermal vaporization and plasma emission spectrometry

    SciTech Connect

    Hanamura, S.; Smith, B.W.; Winefordner, J.D.

    1983-11-01

    By means of thermal vaporization, inorganic, organic, and metallorganic species are separated and elemental emission in a microwave plasma is detected as a function of vaporization temperature. Solid samples of 250 mg or more are used to avoid problems with sample heterogeneity. The precision of characteristic appearance temperatures is +/-2/sup 0/C. The single electrode atmosphere pressure microwave plasma system is extremely tolerant to the introduction of water, organic solvents, and air. The measurement system contained a repetition wavelength scan device to allow background correction. The plasma temperature was 5500 K. The system was used to measure C, H, N, O, and Hg in orchard leaves and in tuna fish. 9 figures, 5 tables.

  7. Mercury speciation by HPLC--cold-vapour radiofrequency glow-discharge optical-emission spectrometry with on-line microwave oxidation.

    PubMed

    Martínez, R; Pereiro, R; Sanz-Medel, A; Bordel, N

    2001-11-01

    Hollow-cathode (HC) radiofrequency glow-discharge (rf-GD) optical-emission spectrometry (OES) has been used as detector for the determination of inorganic mercury by cold-vapour (CV) generation in a flow-injection (FI) system. Both NaBH4 and SnCl2 were evaluated as reducing reagents for production of mercury CV. The conditions governing the discharge (pressure, He flow rate, and delivered power) and Hg CV generation (NaBH4 or SnCl2 concentration and reagent flow rate) were optimized using both reducing agents. The analytical performance characteristics of FI-CV-rf-GD-OES for mercury detection were evaluated at the 253.6 nm emission mercury line. Detection limits (DL) of 0.2 ng mL(-1) using SnCl2 and 1.8 ng mL(-1) using NaBH4 were obtained (100 microliter sample injections were used). When the optimized experimental conditions using SnCl2 had been determined, the analytical potential of this CV-rf-GD-OES method was investigated as on-line detector for high-performance liquid chromatographic (HPLC) speciation of mercury (Hg(II) and methylmercury). The HPLC-CV-rf-GD-OES detection limits for 100 microliter sample injections were found to be 1.2 and 1.8 ng mL(-1) (as mercury) of inorganic mercury and methylmercury, respectively. The reproducibility observed was below +/- 8% for both species. Finally, the HPLC-CV-rf-GD-OES system developed was successfully applied to the determination of methylmercury (speciation) in two certified reference materials, Dorm-2 and Dolt-2. PMID:11768461

  8. Continuous-flow determination of aqueous sulfur by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry with gas-phase sample introduction

    NASA Astrophysics Data System (ADS)

    Nakahara, Taketoshi; Mori, Toshio; Morimoto, Satoru; Ishikawa, Hiroshi

    1995-06-01

    A simple continuous-flow generation of volatile hydrogen sulfide and sulfur dioxide by acidification of aqueous sulfide and sulfite ions, respectively, is described for the determination of low concentrations of sulfur by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry (MIP-AES) in the normal ultraviolet (UV) and vacuum ultraviolet (VUV) regions of the spectrum. For measuring spectral lines in the VUV region, the monochromator and the enclosed external optical path between the MIP source and the entrance slit of the monochromator have both been purged with nitrogen to minimize oxygen absorption below 190 nm. Sulfur atomic emission lines at 180.73, 182.04 and 217.05 nm have been selected as the analytical lines. Of the various acids examined, 1.0 M hydrochloric acid is the most favorable for both the generation of hydrogen sulfide from sulfide ions and sulfur dioxide from sulfite ions. Either generated hydrogen sulfide or sulfur dioxide is separated from the solution in a simple gas-liquid separator and swept into the helium stream of a microwave-induced plasma for analysis. The best attainable detection limits (3 σ criterion) for sulfur at 180.73 nm were 0.13 and 1.28 ng ml -1 for the generation of hydrogen sulfide and sulfur dioxide, respectively, with the corresponding background equivalent concentrations of 20.9 and 62.2 ng ml -1 in sulfur concentration. The typical analytical working graphs obtained under the optimized experimental conditions were rectilinear over approximately four orders of magnitude in sulfur concentration. The present method has been successfully applied to the recovery test of the sulfide spiked to waste water samples and to the determination of sulfite in some samples of commercially available wine.

  9. Study of Non-Thermal DC Arc Plasma of CH4/Ar at Atmospheric Pressure Using Optical Emission Spectroscopy and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liao, Mengran; Wang, Yu; Wu, Hanfeng; Li, Hui; Xia, Weidong

    2015-09-01

    Non-thermal C/H/Ar plasmas are widely applied to carbonaceous material production and processing. In this work, plasma parameters and gaseous species of the atmospheric non-thermal C/H/Ar plasmas produced by an atmospheric-pressure DC arc discharge generator in CH4/Ar were investigated. The voltage-current characteristics were measured for different CH4/Ar ratios. Optical emission spectroscopy was employed to analyze the electron excitation temperature, gas temperature and electron density under various discharge conditions. The hydrocarbon molecules produced in the CH4/Ar plasmas were detected with photoionization mass spectrometry. The optical spectral results demonstrated that the electron excitation temperature was 0.4-1 eV, the gas temperature was 2800-4200 K and the electron density was in the range of (5-20)×1015 cm-3. The mass spectrum indicated that a variety of unsaturated hydrocarbons (C2H4, C3H6, C6H6, etc.) and several highly unsaturated hydrocarbons (C4H2, C5H6, etc.) were produced in the non-thermal arc plasmas. supported by National Natural Science Foundation of China (Nos. 11035005, 11475174, 50876101) and USTC-NSRL Association Funding (No. KY2090130001)

  10. Simultaneous determination of arsenic(III) and arsenic(V) by flow injection-inductively coupled plasma-atomic emission spectrometry (ICP-AES) with ultrasonic nebulization.

    PubMed

    Karthikeyan, Sathrugnan; Hirata, Shizuko

    2003-01-01

    A dual-column protocol for the sequential determination of As(III) and As(V) is described using inductively coupled plasma-atomic emission spectrometry (ICP-AES) with ultrasonic nebulization (USN). This procedure employed a 16-way valve containing two different homemade mini columns for selective preconcentration of As(III) and As(V). One column was filled with Muromac A-1, which selectively preconcentrated As(III) at pH 3 after complexation with ammonium pyrrolidine dithiocarbamate (APDC, 0.05%). The effluent of the first column was then passed through the second column, which was filled with an anion-exchange resin to collect As(V). By using 0.6 M sodium hydroxide, both species were eluted sequentially and measured by ICP-AES. Enrichment factors of 136 (17 for micro column x8 for USN) for As(V) and 160 (20 for micro column x8 for USN) for As(III) were achieved with 4 min preconcentration. With the proposed procedure, the detection limits were calculated to be 0.7 micro g L(-1) for As(V) and 0.8 micro g L(-1) for As(III) based on (3 sigma) blank determination ( N=10). The relative standard deviations for 20 micro g L(-1) of As(V) and As(III) were 5.8% and 6.5%, respectively. The recovery for spiked water samples was in the range of 85-112%. PMID:12520450

  11. Determination of traces of uranium and thorium in titanium and copper used for the construction of the Russian Emission Detector 100 by inductively coupled plasma mass spectrometry.

    PubMed

    Poteshin, Sergey S; Sysoev, Alexey A; Lagunov, Sergey S; Sereda, Andrei; Sosnovtsev, Valery V; Bolozdynya, Alexander I; Efremenko, Yuriy B

    2015-01-01

    The Russian Emission Detector 100 (RED-100) under construction at the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) is designed to detect the presently undiscovered effect of coherent neutrino scattering. One of the factors limiting the sensitivity of the detector is the spontaneous decay of uranium and thorium in the detector materials. Radioactive impurities in detector materials at levels of parts per billion can significantly affect the sensitivity. Five random samples of titanium and one of copper from materials used in the construction of the detector were selected for assay. The concentration of (232)Th and (238)U were measured by inductively coupled plasma mass spectrometry (ICP- MS) in solid titanium using both: solutions in acids and direct sampling by laser ablation (LA-ICP-MS). The LA- ICP-MS method allowed us to determine (238)U and (232)Th at subnanogram per gram levels. This method is much faster than ICP-MS with liquid injection. The titanium samples studied have impurities in the range between 1 ng g(-1) and 21 ng g(-1) for (238)U and 3 ng g(-1) and 31 ng g(-1) for (232)Th. In copper we set upper limits of 0.4 ng g(-1) for (238)U and 1 ng g(-1)for (232)Th. The total activity of the cryostat constructed from materials studied was estimated to be 43 Bq. PMID:26307714

  12. Pressure dissolution and real sample matrix calibration for multielement analysis of raw agricultural crops by inductively coupled plasma atomic emission spectrometry

    SciTech Connect

    Kuennen, R.W.; Woinik, K.A.; Fricke, F.L.; Caruso, J.A.

    1982-11-01

    A method utilizing a pressure dissolution technique to minimize sample pretreatment is described for multielement analysis of raw agricultural crops by inductively coupled argon plasma atomic emission spectrometry. The procedure employs a 30-min pressure dissolution of sample composite with 6 M HCI at 80/sup 8/C in 60-mL linear polyethylene bottles. A sample introduction system is also described which permits direct atomization of complex organic matrices. Combined with a real sample matrix callbration technique, this introduction system allows rapid and accurate multielement analysis of complex HCl sample matrix solutions. The procedure compares favorably to more time-consuming conventional wet ashing methods for the determination of major, minor, and trace elements occurring in lettuce, potatoes, peanuts, soybeans, spinach, sweet corn, and wheat. Recoveries for spiked samples, precision studies, and analyses of NBS reference materials demonstrate the reliability and accuracy of the procedure. Advantages and limitations of this technique relative to conventional wet ashing methods are discussed. 2 figures, 7 tables.

  13. Multielement determination of heavy metals in water samples by continuous powder introduction microwave-induced plasma atomic emission spectrometry after preconcentration on activated carbon

    NASA Astrophysics Data System (ADS)

    Jankowski, Krzysztof; Yao, Jun; Kasiura, Krzysztof; Jackowska, Adrianna; Sieradzka, Anna

    2005-03-01

    A novel continuous powder introduction microwave-induced plasma atomic emission spectrometry method (CPI-MIP-AES) has been developed for trace determination of metals in ground and tap water samples after preconcentration on activated carbon. The experimental setup consisted of integrated rectangular cavity TE 101 and vertically positioned plasma torch. The technical arrangement of the sample introduction system has been designed based on the fluidized bed concept. The satisfactory signal stability required for sequential analysis was attained owing to the vertical plasma configuration, as well as the plasma gas flow rate compatibility with sample introduction flow rate. The elements of interest (Cd, Cu, Cr, Fe, Mn, Pb, Zn) were preconcentrated in a batch procedure at pH 8-8.5 after addition of activated carbon and then, after filtering and drying of the activated carbon suspension, introduced to the MIP by the CPI system. An enrichment factor of about 1000-fold for a sample volume of 1 l was obtained. The detection limit values for the proposed method were 17-250 ng l -1. The proposed method was validated by analyzing the certified reference materials: SRW "Warta" Synthetic River Water and BCR CRM 399 major elements in freshwater. The method was successfully applied to the determination of the heavy metals in tap water samples.

  14. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes. PMID:26830585

  15. Imaging of elements in leaves of tobacco by solid sampling-electrothermal vaporization-inductively coupled plasma-optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Masson, Pierre

    2014-12-01

    Plants take up and store elements according to the environment in which they are growing. Because plants are at the base of the food chain, the determination of essential elements or toxic elements in plant materials is of importance. However, it is assumed that the element content determined on selected tissues may provide more specific information than that derived from the whole plant analysis. In this work, we assessed the feasibility of solid sampling-electrothermal vaporization-inductively coupled plasma-optical emission spectrometry analyses for quantitative imaging of Cd and Mg in plant leaves. Leaves of tobacco (Nicotiana tabacum) were selected to be used as samples. To produce a two dimensional image, sections cut from leaf samples were analyzed. Cellulose doped with multi-element solution standards was used as calibration samples. Two certified reference materials (NIST SRM 1547 Peach Leaves and NIST SRM 1573a Tomato leaves) were used to verify the accuracy of measurements with good agreement between the measured concentrations and the certified values. Quantitative imaging revealed the inhomogeneous distribution of the selected elements. Excess of Cd and Mg tended to be focused on peripheral regions and the tip of the leaf.

  16. Simultaneous determination of macro and trace elements in biological reference materials by microwave induced plasma optical emission spectrometry with slurry sample introduction

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Golik, Bartosz

    2004-05-01

    A slurry sampling technique (SST) has been utilized for simultaneous multi-element analysis by microwave-induced plasma optical emission spectrometry (MIP-OES). Slurry samples from a spray chamber are fed directly into the microwave cavity-torch assembly (power 300 W) with no desolvation apparatus. The performance of SST-MIP-OES was demonstrated by the determination of macro (Na, K, Ca, Mg, P) and trace (Cd, Cu, Mn, Sr, Zn) elements in three biological certified reference materials using a V-groove, clog-free Babington-type nebulizer. Slurry concentrations up to 1% m/v (particles <20 μm), prepared in 10% HNO 3 (pH 1.2) containing 0.01% of Triton X-100, were used with calibration by the standard additions method. The method offers relatively good precision (R.S.D. ranged from 7 to 11%) with measured concentrations being in satisfactory agreement with certified values for NRCC TORT-1 (Lobster hepatopancreas), NRCC LUTS-1 (Lobster hepatopancreas) and IAEA-153 (Milk powder). The concentrations of Na, K, Ca, Mg, P and Cd, Cu, Mn, Sr, Zn were determined in the range 90-22 000 μg/g and 1-420 μg/g, respectively. The method could be useful as a routine procedure.

  17. Monitoring of volatile compound emissions during dry anaerobic digestion of the Organic Fraction of Municipal Solid Waste by Proton Transfer Reaction Time-of-Flight Mass Spectrometry.

    PubMed

    Papurello, Davide; Soukoulis, Christos; Schuhfried, Erna; Cappellin, Luca; Gasperi, Flavia; Silvestri, Silvia; Santarelli, Massimo; Biasioli, Franco

    2012-12-01

    Volatile Organic Compounds (VOCs) formed during anaerobic digestion of aerobically pre-treated Organic Fraction of Municipal Solid Waste (OFMSW), have been monitored over a 30 day period by a direct injection mass spectrometric technique: Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Most of the tentatively identified compounds exhibited a double-peaked emission pattern which is probably the combined result from the volatilization or oxidation of the biomass-inherited organic compounds and the microbial degradation of organic substrates. Of the sulfur compounds, hydrogen sulfide had the highest accumulative production. Alkylthiols were the predominant sulfur organic compounds, reaching their maximum levels during the last stage of the process. H(2)S formation seems to be influenced by the metabolic reactions that the sulfur organic compounds undergo, such as a methanogenesis induced mechanism i.e. an amino acid degradation/sulfate reduction. Comparison of different batches indicates that PTR-ToF-MS is a suitable tool providing information for rapid in situ bioprocess monitoring. PMID:23079412

  18. Analysis of six heavy metals in Ortho mineral trioxide aggregate and ProRoot mineral trioxide aggregate by inductively coupled plasma-optical emission spectrometry.

    PubMed

    Kum, Kee-Yeon; Zhu, Qiang; Safavi, Kamran; Gu, Yu; Bae, Kwang-Shik; Chang, Seok Woo

    2013-12-01

    Ortho mineral trioxide aggregate (MTA) is a mineral aggregate newly developed for perforation repair, root end filling and pulp capping. The aim of this study was to investigate the levels of cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn) in Ortho MTA and ProRoot MTA. A total of 0.2 g of each MTA was digested using a mixture of hydrochloric and nitric acids and filtered. Six heavy metals in the resulting filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (n = 5). The results were statistically analyzed using the Mann-Whitney U-test. The concentrations of Cd, Cu, Fe, Mn, Ni and Zn in Ortho MTA were 0.10, 7.73, 49.51, 2.58, 0.82 and 10.09 p.p.m., respectively. The concentrations of Cd, Cu, Fe, Mn, Ni and Zn in ProRoot MTA were 0.16, 9.38, 1438.11, 74.51, 18.98 and 4.05 p.p.m., respectively. In conclusion, Ortho MTA had lower levels of Cd, Cu, Fe, Mn and Ni than ProRoot MTA. PMID:24279659

  19. Determination of heavy metals and their speciation in street dusts by inductively coupled plasma-optical emission spectrometry after a Community Bureau of Reference sequential extraction procedure.

    PubMed

    Altundag, Huseyin; Imamoglu, Mustafa; Doganci, Secil; Baysal, Erkan; Albayrak, Sinem; Tuzen, Mustafa

    2013-01-01

    Sequential selective extraction techniques are commonly used to fractionate the solid-phase forms of metals in soils. This procedure provides measurements of extractable metals from media, such as acetic acid (0.11 M), hydroxyl ammonium chloride (0.1 M), hydrogen peroxide (8.8 M) plus ammonium acetate (1 M), and aqua regia stages of the sequential extraction procedure. In this work, the extractable Pb, Cu, Mn, Sr, Ni, V, Fe, Zn, and Cr were evaluated in street dust samples from Sakarya, Turkey, between May and October 2009 using the three-step sequential extraction procedure described by the Community Bureau of Reference (BCR, now the Standards, Measurements, and Testing Programme) of the European Union. The sampling sites were divided into 10 categories; a total of 50 street dusts were analyzed. The determination of multielements in the samples was performed by inductively coupled plasma-optical emission spectrometry. Validation of the proposed method was performed using BCR 701 certified reference material. The results showed good agreement between the obtained and the certified values for the metals analyzed. PMID:24000761

  20. Evaluation of flow injection-solution cathode glow discharge-atomic emission spectrometry for the determination of major elements in brines.

    PubMed

    Yang, Chun; Wang, Lin; Zhu, Zhenli; Jin, Lanlan; Zheng, Hongtao; Belshaw, Nicholas Stanley; Hu, Shenghong

    2016-08-01

    A new method for the determination of major metal elements in high salinity brines was developed by solution cathode glow discharge (SCGD) with flow injection analysis (FIA). The matrix interferences of major cations and anions in brines have been evaluated. It was found that high concentration of Na(+) and K(+) could interfere each other, K(+) at a concentration of 400mgL(-1) enhanced the signal intensity of Na(+) more than 20%. The effect of the anions was observed and it was noted that the signal intensity of both Ca(2+) and Mg(2+) were suppressed significantly when the SO4(2-) reached 100mgL(-1). It was demonstrated that some low molecular weight organic substances such as formic acid, glycerol and ascorbic acid could eliminate interference of SO4(2-) even with volume percentages of 0.5%. Under the optimized condition, the proposed FIA-SCGD can determine K, Na, Ca and Mg with the limits of detection of 0.49 (K), 0.14 (Na), 11 (Ca) and 5.5 (Mg) ngmL(-1). The proposed method has been successfully applied to the analysis of 5 salt lake samples and compared with those obtained with inductively coupled plasma atomic emission spectrometry (ICP-AES). The advantages of small size, low energy consumption, good stability and repeatability indicated that the SCGD is promising for the determination of major ions in brine samples. PMID:27216688

  1. On-line determination of Sb(III) and total Sb using baker's yeast immobilized on polyurethane foam and hydride generation inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Menegário, Amauri A.; Silva, Ariovaldo José; Pozzi, Eloísa; Durrant, Steven F.; Abreu, Cassio H.

    2006-09-01

    The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(III) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to on-line pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 μg L - 1 were obtained for total Sb and Sb(III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 ± 19 and 111 ±15% when 120 s of sample loading were used.

  2. Problems, possibilities and limitations of inductively coupled plasma atomic emission spectrometry in the determination of platinum, palladium and rhodium in samples with different matrix composition

    NASA Astrophysics Data System (ADS)

    Petrova, P.; Velichkov, S.; Velitchkova, N.; Havezov, I.; Daskalova, N.

    2010-02-01

    The economic and geological importance of platinum group of elements has led to the development of analytical methods to quantify them in different types of samples. In the present paper the quantitative information for spectral interference in radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometry in the determination of Pt, Pd and Rh in the presence of complex matrix, containing Al, Ca, Fe, Mg, Mn, P and Ti as matrix constituents was obtained. The database was used for optimum line selections. By using the selected analysis lines the following detection limits in ng g - 1 were obtained: Pt 1700, Pd-1440, Rh-900. The reached detection limits determine the possibilities and limitation of the direct ICP-AES method in the determination of Pt, Pd and Rh in geological and environmental materials. The database for spectral interferences in the presence of aluminum can be used for the determination of platinum group of elements in car catalysts. The accuracy of the analytical results was experimentally demonstrated by two certified reference materials that were analyzed: SARM 7, Pt ore and recycled auto-catalyst certified reference material SRM 2556.

  3. Investigation on the erosion/deposition processes in the ITER-like wall divertor at JET using glow discharge optical emission spectrometry technique

    NASA Astrophysics Data System (ADS)

    Ruset, C.; Grigore, E.; Luculescu, C.; Tiseanu, I.; Likonen, J.; Mayer, M.; Rubel, M.; Matthews, G. F.; contributors, JET

    2016-02-01

    As a complementary method to Rutherford back scattering (RBS), glow discharge optical emission spectrometry (GDOES) was used to investigate the depth profiles of W, Mo, Be, O and C concentrations into marker coatings (CFC/Mo/W/Mo/W) and the substrate of divertor tiles up to a depth of about 100 μm. A number of 10 samples cored from particular areas of the divertor tiles were analyzed. The results presented in this paper are valid only for those areas and they cannot be extrapolated to the entire tile. Significant deposition of Be was measured on Tile 3 (near to the top), Tile 6 (at about 40 mm from the innermost edge) and especially on Tile 0 (HFGC). Preliminary experiments seem to indicate a penetration of Be through the pores and imperfections of CFC material up to a depth of 100 μm in some cases. No erosion and a thin layer of Be (<1 μm) was detected on Tiles 4, 7 and 8. On Tile 1 no erosion was found at about 1/3 from bottom.

  4. Detection limits in inductively coupled plasma atomic emission spectrometry: an approach to the breakdown of the ratios of detection limits reported for different equipments

    NASA Astrophysics Data System (ADS)

    Boumans, P. W. J. M.; Vrakking, J. J. A. M.

    This paper deals with the differences among detection limits in inductively coupled plasma atomic emission spectrometry (ICP-AES) as reported for different experimental facilities. The factor by which such detection limits differ can be split into three factors to account separately for the differences between the sources, the resolving powers of the spectrometers and the noise characteristics of the systems. The approach uses earlier results about the behaviour of the relative standard deviation (RSD) of the background signal and, as a new feature, an experimentally established linear relationship between the ratio of signal-to-background ratios, (SBR) HR/(SBR) MR, and the inverse ratio of the effective line widths, (Δλ eff) MR/(Δλ eff) HR, where "HR" and "MR" refer to high and medium spectral resolution as achieved by applying narrow (60μm) and wide (210μm) slits in a 1.5-m echelle monochromator. The approach is applied to the breakdown of the ratios of detection limits reported by winge et al. ( Appl. Spectrosc.33, 206 (1979)) for a 27-MHz ICP and those found in this work for a 50-MHz ICP. Data for some 100 prominent ICP lines in the wavelength region between about 280 and 325 nm were processed. It is shown that the approach leads to a rational comparison of detection limits.

  5. A simple and rapid method for the multielement analysis of wheat crispbread products by inductively coupled plasma-optical emission spectrometry.

    PubMed

    Szymczycha-Madeja, Anna

    2014-01-01

    A simple and fast method for the determination of total concentrations of Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, P, Sr, and Zn in wheat crispbreads using inductively coupled plasma-optical emission spectrometry was developed. Initially, three different sample preparation procedures, i.e., microwave- assisted digestion in an HNO3 and H2O2 mixture and solubilization in aqua regia or tetramethylammonium hydroxide solution were compared. The performance of these procedures was evaluated for precision, accuracy, and LOD of the elements. It was established that the application of aqua regia allows determining elements with LOD within 0.1-42 ng/mL, precision of 0.2-4.1%, and accuracy better than 5%. Furthermore, good agreement between measured and certified values of a National Institute of Standards and Technology certified reference material of wheat flour (SRM 1567a) was found. It was confirmed that the proposed method could be used successfully as an alternative to microwave-assisted acid digestion in routine multielement analyses of wheat crispbreads. PMID:25632441

  6. An evaluation of microwave-assisted fusion and microwave-assisted acid digestion methods for determining elemental impurities in carbon nanostructures using inductively coupled plasma optical emission spectrometry.

    PubMed

    Patole, Shashikant P; Simões, Filipa; Yapici, Tahir F; Warsama, Bashir H; Anjum, Dalaver H; Costa, Pedro M F J

    2016-02-01

    It is common for as-prepared carbon nanotube (CNT) and graphene samples to contain remnants of the transition metals used to catalyze their growth; contamination may also leave other trace elemental impurities in the samples. Although a full quantification of impurities in as-prepared samples of carbon nanostructures is difficult, particularly when trace elements are intercalated or encapsulated within a protective layer of graphitic carbon, reliable information is essential for reasons such as quantifying the adulteration of physico-chemical properties of the materials and for evaluating environmental issues. Here, we introduce a microwave-based fusion method to degrade single- and double-walled CNTs and graphene nanoplatelets into a fusion flux thereby thoroughly leaching all metallic impurities. Subsequent dissolution of the fusion product in diluted hydrochloric and nitric acid allowed us to identify their trace elemental impurities using inductively coupled plasma optical emission spectrometry. Comparisons of the results from the proposed microwave-assisted fusion method against those of a more classical microwave-assisted acid digestion approach suggest complementarity between the two that ultimately could lead to a more reliable and less costly determination of trace elemental impurities in carbon nanostructured materials. PMID:26653428

  7. Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry.

    PubMed

    Gonzáles, A P S; Firmino, M A; Nomura, C S; Rocha, F R P; Oliveira, P V; Gaubeur, I

    2009-03-23

    The physical and chemical characteristics of peat were assessed through measurement of pH, percentage of organic matter, cationic exchange capacity (CEC), elemental analysis, infrared spectroscopy and quantitative analysis of metals by ICP OES. Despite the material showed to be very acid in view of the percentage of organic matter, its CEC was significant, showing potential for retention of metal ions. This characteristic was exploited by coupling a peat mini-column to a flow system based on the multicommutation approach for the in-line copper concentration prior to flame atomic absorption spectrometric determination. Cu(II) ions were adsorbed at pH 4.5 and eluted with 0.50 molL(-1) HNO(3). The influence of chemical and hydrodynamic parameters, such as sample pH, buffer concentration, eluent type and concentration, sample flow-rate and preconcentration time were investigated. Under the optimized conditions, a linear response was observed between 16 and 100 microgL(-1), with a detection limit estimated as 3 microgL(-1) at the 99.7% confidence level and an enrichment factor of 16. The relative standard deviation was estimated as 3.3% (n=20). The mini-column was used for at least 100 sampling cycles without significant variation in the analytical response. Recoveries from copper spiked to lake water or groundwater as well as concentrates used in hemodialysis were in the 97.3-111% range. The results obtained for copper determination in these samples agreed with those achieved by graphite furnace atomic absorption spectrometry (GFAAS) at the 95% confidence level. PMID:19264168

  8. Effects of acid type and concentration on the determination of 34 elements by simultaneous inductively coupled plasma atomic emission spectrometry

    SciTech Connect

    Hee, S.S.Q.; Macdonald, T.J.; Boyle, J.R.

    1985-06-01

    A mixed acid consisting of 11.6% HCl/2.8% HNO/sub 3/ proved superior to 2 to 10% HCl, HNO/sub 3/, and H/sub 2/SO/sub 4/ alone in chemical compatibility and storage characteristics for simultaneous inductively coupled plasma atomic emission spectrometric (ICP-AES) determination of 33 elements admixed up to concentrations of 100 ..mu..g/mL each. A 2% aqua regia solution appeared to be adequate below 10..mu..g/mL of all these admixed elements plus silver. Use of the mixed acid generally also allowed for more reproducible interelemental k factors. Less sensitive elements and elements whose lines were in the vacuum ultraviolet were not as reproducible. A two-point standardization procedure was adequate, and k factor values agreed within 10% only over a specific concentration range. A practical procedure to define the range of determination was developed using the 11.6% HCl/2.8% HNO/sub 3/ acid solvent. 24 references, 11 tables.

  9. [Performance comparison of material tests for cadmium and lead in food contact plastics].

    PubMed

    Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Ishii, Rie; Itoh, Yuko; Ohno, Hiroyuki; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kaneko, Reiko; Kawamura, Yoko; Shibata, Hiroshi; Sekido, Haruko; Sonobe, Hironori; Takasaka, Noriko; Tajima, Yoshiyasu; Tanaka, Aoi; Nomura, Chie; Hikida, Akinori; Matsuyama, Sigetomo; Murakami, Ryo; Yamaguchi, Miku; Wada, Takenari; Watanabe, Kazunari; Akiyama, Hiroshi

    2014-01-01

    Based on the Japanese Food Sanitation Law, the performances of official and alternative material test methods for cadmium (Cd) and lead (Pb) in food contact plastics were compared. Nineteen laboratories participated to an interlaboratory study, and quantified Cd and Pb in three PVC pellets. in the official method, a sample is digested with H2SO4, taken up in HCl, and evaporated to dryness on a water bath, then measured by atomic absorption spectrometry (AAS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). Statistical treatment revealed that the trueness, repeatability (RSDr) and reproducibility (RSDr) were 86-95%, 3.1-9.4% and 8.6-22.1%, respectively. The values of the performance parameters fulfilled the requirements , and the performances met the test specifications. The combination of evaporation to dryness on a hot plate and measurement by AAS or ICP-OES is applicable as an alternative method. However, the trueness and RSDr were inferior to those of the official method. The performance parameters obtained by using the microwave digestion method (MW method) to prepare test solution were better than those of the official method. Thus, the MW method is available as an alternative method. Induced coupled plasma-mass spectrometry (ICP-MS) is also available as an alternative method. However, it is necessary to ensure complete digestion of the sample. PMID:25743590

  10. [Interlaboratory study on migration test of antimony and germanium for food-contact polyethylene terephthalate].

    PubMed

    Murakami, Ryo; Mutsuga, Motoh; Abe, Takashi; Abe, Yutaka; Ohsaka, Ikue; Ohno, Haruka; Ohno, Hiroyuki; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kawasaki, Hiromi; Kobayashi, Hisashi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Sonobe, Hironori; Takasaka, Noriko; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Nomura, Chie; Haneishi, Nahoko; Hikida, Akinori; Miura, Toshihiko; Watanabe, Kazunari; Akiyama, Hiroshi

    2015-01-01

    An interlaboratory study was performed to evaluate a migration test method of antimony (Sb) and germanium (Ge), based on the Japanese Food Sanitation Law for food- contact polyethylene terephthalate. Eighteen laboratories participated, and quantified Sb and Ge in three test solutions as blind duplicates using graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma-optical emission spectrometry (ICP-OES) or induced coupled plasma-mass spectrometry (ICP-MS). Statistical analysis revealed that the trueness, repeatability and reproducibility were 98-107%, 1.7-7.5% and 2.0-18.8% by using GF-AAS and ICP-OES. The performance of these methods is sufficient for testing the specifications. The performance parameters of ICP-MS were 99-106%, 0.7-2.2% and 2.2-10.5%, respectively. ICP-MS is available as an alternative measuring method. However, in some laboratories, the quantitative values of Sb were higher than the addition levels. We found that Sb in working solutions is absorbed on glass vessels. Careful control of concentration in working solutions is required for Sb analysis. PMID:25925077

  11. Development of a direct hydride generation nebulizer for the determination of selenium by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Carrión, Nereida; Murillo, Miguel; Montiel, Edie; Díaz, Dorfe

    2003-08-01

    A study was conducted to evaluate the performance of a new direct hydride generation nebulizer system for determination of hydride forming elements by inductively coupled plasma optical emission spectroscopy. This system was designed and optimized to obtain the highest sensitivity. Several experimental designs were used for these purposes. To optimize the individual parameters of the system, and to study the interaction between these parameters for both direct hydride generation nebulizers, a central composite orthogonal design with eight factors was set up. Significant behavioral differences were observed in the two direct hydride generation nebulizers studied. Finally, a 70 μm gas orifice nebulizer exhibits a better detection limit than the 120 μm nebulizer. Generally, for determination of selenium, this new direct hydride generation nebulizer system exhibits a linear dynamic range and detection limit (3 σb) of 3 orders of magnitude and 0.2 μg l -1 for selenium, respectively. This new hydride generator is much simpler system that conventional hydride generation systems, which does not need to be changed to work in normal mode with the inductively coupled plasma, since this system may be used for hydride forming elements and those that do not form them. It produces a rapid response with low memory effect. It reduces the interference level of Ni, Co and Cu to 600, 500 and 5 mg l -1, respectively. The accuracy of the system was verified by the determination of selenium in several standard reference materials of ambient, food and clinical sample matrices. No statistically significant differences (95 confidence level) were obtained between our method and the reference values.

  12. Application of microwave plasma atomic emission spectrometry (MP-AES) for environmental monitoring of industrially contaminated sites in Hyderabad city.

    PubMed

    Kamala C T; Balaram V; Dharmendra V; Satyanarayanan M; Subramanyam K S V; Krishnaiah A

    2014-11-01

    Recently introduced microwave plasma-atomic emission spectroscopy (MP-AES) represents yet another and very important addition to the existing array of modern instrumental analytical techniques. In this study, an attempt is made to summarize the performance characteristics of MP-AES and its potential as an analytical tool for environmental studies with some practical examples from Patancheru and Uppal industrial sectors of Hyderabad city. A range of soil, sediment, water reference materials, particulate matter, and real-life samples were chosen to evaluate the performance of this new analytical technique. Analytical wavelengths were selected considering the interference effects of other concomitant elements present in different sample solutions. The detection limits for several elements were found to be in the range from 0.05 to 5 ng/g. The trace metals analyzed in both the sectors followed the topography with more pollution in the low-lying sites. The metal contents were found to be more in ground waters than surface waters. Since a decade, the pollutants are transfered from Patancheru industrial area to Musi River. After polluting Nakkavagu and turning huge tracts of agricultural lands barren besides making people residing along the rivulet impotent and sick, industrialists of Patancheru are shifting the effluents to downstream of Musi River through an 18-km pipeline from Patancheru. Since the effluent undergoes primary treatment at Common Effluent Treatment Plant (CETP) at Patanchru and travels through pipeline and mixes with sewage, the organic effluents will be diluted. But the inorganic pollutants such as heavy and toxic metals tend to accumulate in the environmental segments near and downstreams of Musi River. The data generated by MP-AES of toxic metals like Zn, Cu, and Cr in the ground and surface waters can only be attributed to pollution from Patancheru since no other sources are available to Musi River. PMID:25086712

  13. The use of ion chromatography-dc plasma atomic emission spectrometry for the speciation of trace metals

    SciTech Connect

    Urasa, I.T.

    1991-09-20

    The original objects of this research program were: to interface d.c. plasma atomic emission spectrometer with an ion chromatograph; to characterize and optimize the combined systems for application in the speciation of metals in aqueous solutions; to use this system in the study of the solution chemistry of various metals; and to find ways in which the measurement sensitivity of the method can be enhanced, thereby allowing the detection of metal species at low ppb concentration levels. This approach has been used to study the chemistry of and speciate several elements in solution including: arsenic, chromium, iron, manganese, nickel phosphorus, platinum, selenium, and vanadium. During the course of this research, we have found that the solution chemistry of the elements studied and the speciation data obtained can vary considerably depending on the solution, and the chromatographic conditions employed. The speciation of chromium, iron, and vanadium was found to be highly influenced by the acidity of the sample. The element selective nature of the d.c. plasma detector allows these changes to be monitored, thereby providing quantitative information on the new moieties formed. New approaches are being developed including the use of chelating ligands as preconcentration agents for purposes of reducing further the detection limits of the elements of interest and to improve the overall element speciation scheme. New thrusts are being directed towards the employment of post-column derivatization method coupled with colorimetric measurements to detect and quantify metal species eluting from the chromatographic column. The influence of sample acidity on these investigations will be carefully evaluated. These new thrusts are described in the accompanying Project Renewal Proposal.

  14. Optical Characteristics and Chemical Composition of Dissolved Organic Matter (DOM) from Riparian Soil by Using Excitation-Emission Matrix (EEM) Fluorescence Spectroscopy and Mass Spectrometry.

    PubMed

    Wang, Yulai; Yang, Changming; Zou, Limin; Cui, Hengzhao

    2015-05-01

    Understanding the quantity and quality of soil dissolved organic matter (DOM) in riparian buffer zones is critical for explaining the biogeochemical processes of soil DOM in river ecosystems. Here, we investigated the dissolved organic carbon, fluorescent DOM (FDOM), and DOM molecules from riparian soils on Chongming Island in eastern China. Simultaneously, the soil DOM was extensively characterized in terms of the total aromaticity index (TAI) and several optical indices. The excitation (Ex)-emission (Em) matrix parallel factor analysis results showed that two humic-like components were present (Ex/Em = 283(364)/454 nm; 337/410 nm), a fulvic-like component (Ex/Em = 241/426 nm) and a microbial degradation component (Ex/Em = 295/382 nm). The humic-like and fulvic-like substances were the main components in the riparian soil FDOM, accounting for ~90% of the FDOM. Mass spectrometry provided more detailed information for the soil DOM molecules. Six chemical fractions, amino acids, carbonyl compounds, fatty acids, lipids, proteins and sugars, were identified using liquid chromatography with quadrupole time-of-flight mass spectrometry. Lipids, proteins, and carbonyl compounds were dominant in the soil DOM, accounting for >85% of the detected molecules (m/z < 1000). Significant differences were observed between the quantities of the six soil DOM chemical fractions at the different sampling locations. Discriminant molecules verified the hypothesis that the chemical soil DOM fractions varied with the land use of the adjacent watersheds. The TAI for the soil DOM could provide more reliable information regarding the biogeochemical processes of DOM. The carbonyl compounds and lipid fractions controlled this index. Overall, the optical indices and TAI values can improve our understanding of soil DOM quality; however, the optical indices did not provide quantitative evidence regarding the sources or properties of the soil DOM. The observations from this study provided detailed

  15. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.

    PubMed

    Cleveland, Danielle; Stchur, Peter; Hou, Xiandeng; Yang, Karl X; Zhou, Jack; Michel, Robert G

    2005-12-01

    It has been shown that an increase in sensitivity and selectivity of detection of an analyte can be achieved by tuning the ablation laser wavelength to match that of a resonant gas-phase transition of that analyte. This has been termed resonant laser ablation (RLA). For a pulsed tunable nanosecond laser, the data presented here illustrate the resonant enhancement effect in pure copper and aluminum samples, chromium oxide thin films, and for trace molybdenum in stainless steel samples, and indicate two main characteristics of the RLA phenomenon. The first is that there is an increase in the number of atoms ablated from the surface. The second is that the bandwidth of the wavelength dependence of the ablation is on the order of 1 nm. The effect was found to be virtually identical whether the atoms were detected by use of a microwave-induced plasma with atomic emission detection, by an inductively coupled plasma with mass spectrometric detection, or by observation of the number of laser pulses required to penetrate through thin films. The data indicate that a distinct ablation laser wavelength dependence exists, probably initiated via resonant radiation trapping, and accompanied by collisional broadening. Desorption contributions through radiation trapping are substantiated by changes in crater morphology as a function of wavelength and by the relatively broad linewidth of the ablation laser wavelength scans, compared to gas-phase excitation spectra. Also, other experiments with thin films demonstrate the existence of a distinct laser-material interaction and suggest that a combination of desorption induced by electronic transition (DIET) with resonant radiation trapping could assist in the enhancement of desorption yields. These results were obtained by a detailed inspection of the effect of the wavelength of the ablation laser over a narrow range of energy densities that lie between the threshold of laser-induced desorption of species and the usual analytical

  16. A comparison of benthic foraminiferal Mn / Ca and sedimentary Mn / Al as proxies of relative bottom-water oxygenation in the low-latitude NE Atlantic upwelling system

    NASA Astrophysics Data System (ADS)

    McKay, C. L.; Groeneveld, J.; Filipsson, H. L.; Gallego-Torres, D.; Whitehouse, M. J.; Toyofuku, T.; Romero, O. E.

    2015-09-01

    Trace element incorporation into foraminiferal shells (tests) is governed by physical and chemical conditions of the surrounding marine environment, and therefore foraminiferal geochemistry provides a means of palaeo-oceanographic reconstructions. With the availability of high-spatial-resolution instrumentation with high precision, foraminiferal geochemistry has become a major research topic over recent years. However, reconstructions of past bottom-water oxygenation using foraminiferal tests remain in their infancy. In this study we explore the potential of using Mn / Ca determined by secondary ion mass spectrometry (SIMS) as well as by flow-through inductively coupled plasma optical emission spectroscopy (FT-ICP-OES) in the benthic foraminiferal species Eubuliminella exilis as a proxy for recording changes in bottom-water oxygen conditions in the low-latitude NE Atlantic upwelling system. Furthermore, we compare the SIMS and FT-ICP-OES results with published Mn sediment bulk measurements from the same sediment core. This is the first time that benthic foraminiferal Mn / Ca is directly compared with Mn bulk measurements, which largely agree on the former oxygen conditions. Samples were selected to include different productivity regimes related to Marine Isotope Stage 3 (35-28 ka), the Last Glacial Maximum (28-19 ka), Heinrich Event 1 (18-15.5 ka), Bølling Allerød (15.5-13.5 ka) and the Younger Dryas (13.5-11.5 ka). Foraminiferal Mn / Ca determined by SIMS and FT-ICP-OES is comparable. Mn / Ca was higher during periods with high primary productivity, such as during the Younger Dryas, which indicates low-oxygen conditions. This is further supported by the benthic foraminiferal faunal composition. Our results highlight the proxy potential of Mn / Ca in benthic foraminifera from upwelling systems for reconstructing past variations in oxygen conditions of the sea floor environment as well as the need to use it in combination with other proxy records such as faunal

  17. Separation and preconcentration of ultra trace amounts of beryllium in water samples using mixed micelle-mediated extraction and determination by inductively coupled plasma-atomic emission spectrometry.

    PubMed

    Beiraghi, Assadollah; Babaee, Saeed

    2008-01-28

    In the present study a cloud point extraction process using mixed micelle of the cationic surfactant cetyl-pyridinium chloride (CPC) and non-ionic surfactant Triton X-114 for extraction of beryllium from aqueous solutions is developed. The extraction of analyte from aqueous samples was performed in the presence of 1,8-dihydroxyanthrone as chelating agent in buffer media of pH 9.5. After phase separation, the surfactant-rich phase was diluted with 0.4mL of a 60:40 methanol-water mixture containing 0.03 mL HNO(3). Then, the enriched analyte in the surfactant-rich phase was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The different variables affecting the complexation and extraction conditions were optimized. Under the optimum conditions (i.e. 1.6 x 10(-4) molL(-1) 1,8-dihydroxyanthrone, 1.2 x 10(-4) molL(-1) CPC, 0.15% (v/v) Triton X-114, 50 degrees C equilibrium temperature) the calibration graph was linear in the range of 0.006-80 ngmL(-1) with detection limit of 0.001 ngmL(-1) and the precision (R.S.D.%) for five replicate determinations at 18 ngmL(-1) of Be(II) was better than 2.9%. In this manner the preconcentration and enrichment factors were 16.7 and 24.8, respectively. Under the presence of foreign ions no significant interference was observed. Finally, the proposed method was successfully utilized for the determination of this cation in water samples. PMID:18190807

  18. Multivariate optimization by exploratory analysis applied to the determination of microelements in fruit juice by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Froes, Roberta Eliane Santos; Neto, Waldomiro Borges; Silva, Nilton Oliveira Couto e.; Naveira, Rita Lopes Pereira; Nascentes, Clésia Cristina; da Silva, José Bento Borba

    2009-06-01

    A method for the direct determination (without sample pre-digestion) of microelements in fruit juice by inductively coupled plasma optical emission spectrometry has been developed. The method has been optimized by a 2 3 factorial design, which evaluated the plasma conditions (nebulization gas flow rate, applied power, and sample flow rate). A 1:1 diluted juice sample with 2% HNO 3 (Tetra Packed, peach flavor) and spiked with 0.5 mg L - 1 of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, and Zn was employed in the optimization. The results of the factorial design were evaluated by exploratory analysis (Hierarchical Cluster Analysis, HCA, and Principal Component Analysis, PCA) to determine the optimum analytical conditions for all elements. Central point condition differentiation (0.75 L min - 1 , 1.3 kW, and 1.25 mL min - 1 ) was observed for both methods, Principal Component Analysis and Hierarchical Cluster Analysis, with higher analytical signal values, suggesting that these are the optimal analytical conditions. F and t-student tests were used to compare the slopes of the calibration curves for aqueous and matrix-matched standards. No significant differences were observed at 95% confidence level. The correlation coefficient was higher than 0.99 for all the elements evaluated. The limits of quantification were: Al 253, Cu 3.6, Fe 84, Mn 0.4, Zn 71, Ni 67, Cd 69, Pb 129, Sn 206, Cr 79, Co 24, and Ba 2.1 µg L - 1 . The spiking experiments with fruit juice samples resulted in recoveries between 80 and 120%, except for Co and Sn. Al, Cd, Pb, Sn and Cr could not be quantified in any of the samples investigated. The method was applied to the determination of several elements in fruit juice samples commercialized in Brazil.

  19. Determination of Phosphorus and Potassium in Commercial Inorganic Fertilizers by Inductively Coupled Plasma-Optical Emission Spectrometry: Single-Laboratory Validation, First Action 2015.18.

    PubMed

    Thiex, Nancy J

    2016-07-01

    A previously validated method for the determination of both citrate-EDTA-soluble P and K and acid-soluble P and K in commercial inorganic fertilizers by inductively coupled plasma-optical emission spectrometry was submitted to the expert review panel (ERP) for fertilizers for consideration of First Action Official Method(SM) status. The ERP evaluated the single-laboratory validation results and recommended the method for First Action Official Method status and provided recommendations for achieving Final Action. Validation materials ranging from 4.4 to 52.4% P2O5 (1.7-22.7% P) and 3-62% K2O (2.5-51.1% K) were used for the validation. Recoveries from validation materials for citrate-soluble P and K ranged from 99.3 to 124.9% P and from 98.4 to 100.7% K. Recoveries from validation materials for acid-soluble "total" P and K ranged from 95.53 to 99.40% P and from 98.36 to 107.28% K. Values of r for citrate-soluble P and K, expressed as RSD, ranged from 0.28 to 1.30% for P and from 0.41 to 1.52% for K. Values of r for total P and K, expressed as RSD, ranged from 0.71 to 1.13% for P and from 0.39 to 1.18% for K. Based on the validation data, the ERP recommended the method (with alternatives for the citrate-soluble and the acid-soluble extractions) for First Action Official Method status and provided recommendations for achieving Final Action status. PMID:27455933

  20. Ultrasensitive Speciation Analysis of Mercury in Rice by Headspace Solid Phase Microextraction Using Porous Carbons and Gas Chromatography-Dielectric Barrier Discharge Optical Emission Spectrometry.

    PubMed

    Lin, Yao; Yang, Yuan; Li, Yuxuan; Yang, Lu; Hou, Xiandeng; Feng, Xinbin; Zheng, Chengbin

    2016-03-01

    Rice consumption is a primary pathway for human methylmercury (MeHg) exposure in inland mercury mining areas of Asia. In addition, the use of iodomethane, a common fumigant that significantly accelerates the methylation of mercury in soil under sunlight, could increase the MeHg exposure from rice. Conventional hyphenated techniques used for mercury speciation analysis are usually too costly for most developing countries. Consequently, there is an increased interest in the development of sensitive and inexpensive methods for the speciation of mercury in rice. In this work, gas chromatography (GC) coupled to dielectric barrier discharge optical emission spectrometry (DBD-OES) was developed for the speciation analysis of mercury in rice. Prior to GC-DBD-OES analysis, mercury species were derivatized to their volatile species with NaBPh4 and preconcentrated by headspace solid phase microextraction using porous carbons. Limits of detection of 0.5 μg kg(-1) (0.16 ng), 0.75 μg kg(-1) (0.24 ng), and 1.0 μg kg(-1) (0.34 ng) were obtained for Hg(2+), CH3Hg(+), and CH3CH2Hg(+), respectively, with relative standard deviations (RSDs) better than 5.2% and 6.8% for one fiber or fiber-to-fiber mode, respectively. Recoveries of 90-105% were obtained for the rice samples, demonstrating the applicability of the proposed technique. Owing to the small size, low power, and low gas consumption of DBD-OES as well as efficient extraction of mercury species by porous carbons headspace solid phase micro-extraction, the proposed technique provides several advantages including compactness, cost-effectiveness, and potential to couple with miniature GC to accomplish the field speciation of mercury in rice compared to conventional hyphenated techniques. PMID:26828416

  1. Use of a solution cathode glow discharge for cold vapor generation of mercury with determination by ICP-atomic emission spectrometry.

    PubMed

    Zhu, Zhenli; Chan, George C-Y; Ray, Steven J; Zhang, Xinrong; Hieftje, Gary M

    2008-09-15

    A novel vapor-generation technique is described for mercury determination in aqueous solutions. Without need for a chemical reducing agent, dissolved mercury species are converted to volatile Hg vapor in a solution cathode glow discharge. The generated Hg vapor is then transported to an inductively coupled plasma for determination by atomic emission spectrometry. Mercury vapor is readily generated from a background electrolyte containing 0.1 M HNO 3. Vapor generation efficiency was found to be higher by a factor of 2-3 in the presence of low molecular weight organic acids (formic or acetic acids) or alcohols (ethanol). Optimal conditions for discharge-induced vapor generation and reduced interference from concomitant inorganic ions were also identified. However, the presence of chloride ion reduces the efficiency of Hg-vapor generation. In the continuous sample introduction mode, the detection limit was found to be 0.7 microg L (-1), and repeatability was 1.2% RSD ( n = 11) for a 20 microg L (-1) standard. In comparison with other vapor generation methods, it offers several advantages: First, it is applicable to both inorganic and organic Hg determination; organic mercury (thiomersal) can be directly transformed into volatile Hg species without the need for prior oxidation. Second, the vapor-generation efficiency is high; the efficiency (with formic acid as a promoter) is superior to that of conventional SnCl 2-HCl reduction. Third, the vapor generation is extremely rapid and therefore is easy to couple with flow injection. The method is sensitive and simple in operation, requires no auxiliary reagents, and serves as a useful alternative to conventional vapor generation for ultratrace Hg determination. PMID:18710258

  2. Preconcentration of some metal ions with lanthanum-8-hydroxyquinoline co-precipitation system.

    PubMed

    Feist, Barbara; Mikula, Barbara

    2014-03-15

    A method of separation and preconcentration of cadmium, copper, nickel, lead and zinc at trace level using 8-hydroxyquinoline as a chelating agent and lanthanum(III) as a carrier element is proposed. The heavy metals were determined after preconcentration by inductively coupled plasma optical emission spectrometry (ICP-OES). The results were compared with those obtained using flame atomic absorption spectrometry (F-AAS). The influence of several parameters such as pH, amount of lanthanum(III) as a carrier element, amount of 8-hydroxyquinoline, duration of co-precipitation was examined. Moreover, effects of inorganic matrix on recovery of the determined elements were studied. The detection limits (DL) for ICP-OES were 0.31, 2.9, 1.4, 3.2 and 1.2 μg L(-1) for Cd, Cu, Ni, Pb and Zn, respectively, whereas for F-AAS DL were 0.63, 1.1, 3.2, 2.7 and 0.74 μg L(-1). The recovery of the method for the determined elements was better than 94% with relative standard deviation between 0.63% and 2.9%. The preconcentration factor was 60. The proposed method was successfully applied for determination of Cd, Cu, Ni, Pb, and Zn in plant materials. Accuracy of the proposed method was verified using certified reference material (NCS ZC85006 Tomato). PMID:24206710

  3. Rapid Analysis of Ash Composition Using Laser-Induced Breakdown Spectroscopy (LIBS)

    SciTech Connect

    Tyler L. Westover

    2013-01-01

    Inorganic compounds are known to be problematic in the thermochemical conversion of biomass to syngas and ultimately hydrocarbon fuels. The elements Si, K, Ca, Na, S, P, Cl, Mg, Fe, and Al are particularly problematic and are known to influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. Substantial quantities of inorganic species can be entrained in the bark of trees during harvest operations. Herbaceous feedstocks often have even greater quantities of inorganic constituents, which can account for as much as one-fifth of the total dry matter. Current methodologies to measure the concentrations of these elements, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS) are expensive in time and reagents. This study demonstrates that a new methodology employing laser-induced breakdown spectroscopy (LIBS) can rapidly and accurately analyze the inorganic constituents in a wide range of biomass materials, including both woody and herbaceous examples. This technique requires little or no sample preparation, does not consume any reagents, and the analytical data is available immediately. In addition to comparing LIBS data with the results from ICP-OES methods, this work also includes discussions of sample preparation techniques, calibration curves for interpreting LIBS spectra, minimum detection limits, and the use of internal standards and standard reference materials.

  4. Rapid methodology to screen flame retardants in upholstered furniture for compliance with new California labeling law (SB 1019).

    PubMed

    Petreas, Myrto; Gill, Ranjit; Takaku-Pugh, Sayaka; Lytle, Eric; Parry, Emily; Wang, Miaomiao; Quinn, John; Park, June-Soo

    2016-06-01

    In response to concerns regarding the widespread use of flame retardants, the California Legislature passed a law (SB1019) requiring labels on furniture products to indicate whether they do or do not contain flame retardants. To support the enforcement of the new law, our laboratory developed a step-wise, screening approach to test for brominated (BFR) and phosphorus-based flame retardants (OPFRs) in several types of furniture components (foam, fabric, batting, plumage, etc.). We used X-Ray Fluorescence (XRF) to screen for the presence of Br (and other elements) and Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES) to identify and measure the concentration of P (and other elements). The same samples were also extracted by dichloromethane using sonication and analyzed by a single injection into a Gas Chromatograph - Tandem Mass Spectrometer to obtain concentrations of specific BFRs and OPFRs. Our approach showed excellent screening potential for Br and Sb by XRF and for P by ICP-OES, with both tests having predictive values of a negative equal to 1. To explore and screen for flame retardants in products not included in our current list of target chemicals, we used Liquid Chromatography/Time-of-Flight Mass Spectrometry operated with electrospray ionization, to identify additional flame retardants to be incorporated in quantitative methods. We are making all our methodologies public to facilitate simple and low cost methods that can help manufacturers and suppliers have their products tested and correctly labeled, ultimately benefitting the consumer. PMID:26991383

  5. Tungsten coil atomic emission spectrometry combined with dispersive liquid-liquid microextraction: A synergistic association for chromium determination in water samples.

    PubMed

    Vidal, Lorena; Silva, Sidnei G; Canals, Antonio; Nóbrega, Joaquim A

    2016-02-01

    A novel and environment friendly analytical method is reported for total chromium determination and chromium speciation in water samples, whereby tungsten coil atomic emission spectrometry (WCAES) is combined with in situ ionic liquid formation dispersive liquid-liquid microextraction (in situ IL-DLLME). A two stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selection of the significant factor involved in the in situ IL-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were complexant concentration: 0.5% (or 0.1%); complexant type: DDTC; IL anion: PF6(-); [Hmim][Cl] IL amount: 60 mg; ionic strength: 0% NaCl; pH: 5 (or 2); centrifugation time: 10 min; and centrifugation speed: 1000 rpm. Under the optimized experimental conditions the method was evaluated and proper linearity was obtained with a correlation coefficient of 0.991 (5 calibration standards). Limits of detection and quantification for both chromium species were 3 and 10 µg L(-1), respectively. This is a 233-fold improvement when compared with chromium determination by WCAES without using preconcentration. The repeatability of the proposed method was evaluated at two different spiking levels (10 and 50 µg L(-1)) obtaining coefficients of variation of 11.4% and 3.6% (n=3), respectively. A certified reference material (SRM-1643e NIST) was analyzed in order to determine the accuracy of the method for total chromium determination and 112.3% and 2.5 µg L(-1) were the recovery (trueness) and standard deviation values, respectively. Tap, bottled mineral and natural mineral water samples were analyzed at 60 µg L(-1) spiking level of total Cr content at two Cr(VI)/Cr(III) ratios, and relative recovery values ranged between 88% and 112% showing that the matrix has a negligible effect. To our knowledge, this is the first time that combines in situ IL-DLLME and WCAES. PMID:26653490

  6. Passive degassing at Nyiragongo (D.R. Congo) and Etna (Italy) volcanoes: the chemical characterization of the emissions and assessment of their uptake of trace elements emissions on the local environment

    NASA Astrophysics Data System (ADS)

    Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco

    2014-05-01

    Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching

  7. Potential metal impurities in active pharmaceutical substances and finished medicinal products - A market surveillance study.

    PubMed

    Wollein, Uwe; Bauer, Bettina; Habernegg, Renate; Schramek, Nicholas

    2015-09-18

    A market surveillance study has been established by using different atomic spectrometric methods for the determination of selected elemental impurities of particular interest, to gain an overview about the quality of presently marketed drug products and their bulk drug substances. The limit tests were carried out with respect to the existing EMA guideline on the specification limits for residuals of metal catalysts or metal reagents. Also attention was given to the future implementation of two new chapters of the United States Pharmacopoeia (USP) stating limit concentrations of elemental impurities. The methods used for determination of metal residues were inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-optical emission spectrometry (ICP-OES), and atomic absorption spectrometry technologies (GFAAS, CVAAS, HGAAS). This article presents the development and validation of the methods used for the determination of 21 selected metals in 113 samples from drug products and their active pharmaceutical ingredients. PMID:26036232

  8. Investigation on the heavy-metal content of zinc-air button cells.

    PubMed

    Richter, Andrea; Richter, Silke; Recknagel, Sebastian

    2008-01-01

    Within the framework of a German government project (initiated by the Federal Environment Agency) to check the compliance of commercially available batteries with the German Battery Ordinance concerning their heavy metal contents, 18 different types of commercially available zinc-air button cells were analysed for their cadmium, lead and mercury contents. After microwave assisted dissolution with aqua regia, Cd and Pb were determined using inductively coupled plasma mass spectrometry (ICP-MS), and Hg was determined using inductively coupled plasma optical emission spectrometry (ICP OES) and atomic absorption spectrometry. Cd contents were found to be much lower than the permitted limits; Pb contents were also found to be below the limits. Hg contents were found to be near the limits, and in one case the limit was exceeded. PMID:18280730

  9. Spatial distribution and historical trends of heavy metals in the sediments of petroleum producing regions of the Beibu Gulf, China.

    PubMed

    Yang, Jichao; Wang, Weiguo; Zhao, Mengwei; Chen, Bin; Dada, Olusegun A; Chu, Zhihui

    2015-02-15

    The concentrations of As, Sb, Hg, Pb, Cd, and Ba in the surface and core sediments of the oil and gas producing region of the Beibu Gulf were measured by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Atomic Fluorescence Spectrometry (AFS), and the spatial distribution and historical trends of these elements are discussed. The results show that the concentrations of these elements are highest near the platforms. The results of Enrichment Factor (EF) and Potential Ecological Risk Index (PERI) also reveal significantly higher enrichment around the platforms, which imply that the offshore petroleum production was the cause of the unusual distribution and severe enrichment of these elements in the study area. The environment around the platforms was highly laden with toxic elements, thereby representing a very high ecological risk to the environment of the study area. PMID:25547615

  10. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) in support of nuclear waste management. [HHDECMP (hexyl hexyl-N,N diethylcarbamolymethylphosphonate) and n-octyl(phenyl)-N,N diisobutylcarbamoylmethylphosphine oxide

    SciTech Connect

    Huff, E.A.; Horwitz, E.P.

    1984-01-01

    Simulated complex nuclear waste solutions are characterized by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AEC). The system uses and ICP source focused on both a polychromator and a computer-controlled scanning monochromator for intensity measurements. This instrumentation allows for simultaneous and sequential measurements of liquid extraction distribution coefficients needed in the development of process flow sheets for component separations. A large number of elements are determined rapidly with adequate sensitivity and accuracy. The focus of this investigation centers on the analysis of nuclear fission products. 13 references, 13 tables.

  11. Thermal-to-plasma transitions and energy thresholds in laser ablated metals monitored by atomic emission/mass spectrometry coincidence analysis

    NASA Astrophysics Data System (ADS)

    Vadillo, José M.; García, Carmen C.; Alcántara, José F.; Laserna, J. Javier

    2005-08-01

    A simultaneous laser-induced plasma spectrometry/laser ionization mass spectrometry experiment has been used to follow the ion and photon intensity in laser plasmas generated over pure metallic targets as a function of fluence. The excitation conditions have been chosen to cover the range from low fluence levels, where surface desorption and thermoemission are the common processes, to the high fluence regime, characterized by plasma formation. The fluence thresholds for ion formation and plasma formation have been calculated. The dependence of both processes with melting temperature has been demonstrated.

  12. Fast digestion procedure for determination of catalyst residues in La- and Ni-based carbon nanotubes.

    PubMed

    Mortari, Sergio Roberto; Cocco, Carmem Regina; Bartz, Fabiane Regina; Dresssler, Valderi L; Flores, Erico Marlon de Moraes

    2010-05-15

    A procedure based on microwave-induced combustion (MIC) was applied for carbon nanotube (CNT) digestion and further determination of La and Ni by inductively coupled plasma optical emission spectrometry (ICP OES). Samples (up to 400 mg) were completely combusted at 20 bar of oxygen, and a reflux step was applied to improve the analyte absorption. Combustion was finished in less than 50 s, and analytes were absorbed in diluted acid solution. Absorbing solutions ranging from 1 to 12 mol L(-1) for HCl and from 1 to 14 mol L(-1) HNO(3) were tested. Accuracy for both analytes was evaluated using certified reference materials and analyte spikes. Neutron activation analysis was also used to check accuracy for La. Agreement was better than 96% for La and Ni using a 4 mol L(-1) absorbing solution of HNO(3) or HCl and 15 min of reflux. The residual carbon content was lower than 0.5%. Up to eight samples could be digested simultaneously in 36 min, that makes the throughput using MIC more suitable when it is compared to the digestion by dry ashing as recommended by other procedures. The obtained limits of detection using MIC were lower than those using dry ashing, and a single absorbing solution, e.g., diluted HNO(3), can be used for simultaneous determination of La and Ni by ICP OES. PMID:20405950

  13. Preparation and characterization of modified starch granules with high hydrophobicity and flowability.

    PubMed

    Chang, Fengdan; He, Xiaowei; Fu, Xiong; Huang, Qiang; Qiu, Yaofang

    2014-01-01

    Normal cornstarch (NC) was chemically modified by octenylsuccinic anhydride (OSA) and Al2(SO4)3. The effects of the concentration of NaOH, OSA, and Al2(SO4)3 on the properties of modified starch(OS-starch-Al) were investigated. The OS-starch-Al was characterized by repose angle, activation index, inductively coupled plasma-atomic emission spectrometry (ICP-OES), light microscopy, SEM, FT-IR, and (27)Al NMR. The results showed that pH 4 was the optimum condition for Al(3+) cross-linking with OS-starch and for obtaining high flowability and hydrophobicity. When the concentration of OSA and Al2(SO4)3 was 2%, the OS-starch-Al was characterized by high flowability. A concentration of 4% OSA and Al2(SO4)3 yielded the highest activation index. The moisture content affected the flowability of native NC, but had a minor effect on OS-starch-Al. SEM and polarized microscopy revealed that the modification had slight effects on the crystalline structure and morphology of NC. During the preparation, some dust particles functioning as flow additives were produced on the surface of starch granules. The results of FT-IR, ICP-OES, and (27)Al NMR confirmed the formation of ester group and the cross-link with Al(3+). PMID:24444923

  14. Odor and odorous chemical emissions from dairy and swine facilities: Part 5-Simultaneous chemical and sensory analysis with Gas Chromatography - Mass Spectrometry - Olfactometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simultaneous chemical and sensory analyses using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) for air samples collected at barn exhaust fans were used for quantification and ranking of odor impact of target odorous gases. Fifteen target odorous VOCs (odorants) were selected. Air sampl...

  15. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  16. Raman Spectrometry.

    ERIC Educational Resources Information Center

    Gardiner, Derek J.

    1980-01-01

    Reviews mainly quantitative analytical applications in the field of Raman spectrometry. Includes references to other reviews, new and analytically untested techniques, and novel sampling and instrument designs. Cites 184 references. (CS)

  17. Multielemental fingerprinting as a tool for authentication of organic wheat, barley, faba bean, and potato.

    PubMed

    Laursen, Kristian H; Schjoerring, Jan K; Olesen, Jørgen E; Askegaard, Margrethe; Halekoh, Ulrich; Husted, Søren

    2011-05-11

    The multielemental composition of organic and conventional winter wheat, spring barley, faba bean, and potato was analyzed with inductively coupled plasma-optical emission spectrometry (ICP-OES) and -mass spectrometry (ICP-MS). The crops were cultivated in two years at three geographically different field locations, each accommodating one conventional and two organic cropping systems. The conventional system produced the highest harvest yields for all crops except the nitrogen-fixing faba bean, whereas the dry matter content of each crop was similar across systems. No systematic differences between organic and conventional crops were found in the content of essential plant nutrients when statistically analyzed individually. However, chemometric analysis of multielemental fingerprints comprising up to 14 elements allowed discrimination. The discrimination power was further enhanced by analysis of up to 25 elements derived from semiquantitative ICP-MS. It is concluded that multielemental fingerprinting with semiquantitative ICP-MS and chemometrics has the potential to enable authentication of organic crops. PMID:21417209

  18. In vitro study of thimerosal reactions in human whole blood and plasma surrogate samples.

    PubMed

    Trümpler, Stefan; Meermann, Björn; Nowak, Sascha; Buscher, Wolfgang; Karst, Uwe; Sperling, Michael

    2014-04-01

    Because of its bactericidal and fungicidal properties, thimerosal is used as a preservative in drugs and vaccines and is thus deliberately injected into the human body. In aqueous environment, it decomposes into thiosalicylic acid and the ethylmercury cation. This organomercury fragment is a potent neurotoxin and is suspected to have similar toxicity and bioavailability like the methylmercury cation. In this work, human whole blood and physiological simulation solutions were incubated with thimerosal to investigate its behaviour and binding partners in the blood stream. Inductively coupled plasma with optical emission spectrometry (ICP-OES) was used for total mercury determination in different blood fractions, while liquid chromatography (LC) coupled to electrospray ionisation time-of-flight (ESI-TOF) and inductively coupled plasma-mass spectrometry (ICP-MS) provided information on the individual mercury species in plasma surrogate samples. Analogous behaviour of methylmercury and ethylmercury species in human blood was shown and an ethylmercury-glutathione adduct was identified. PMID:24613139

  19. Measurements of CF4 and C2F6 in the emissions from aluminum smelters by tunable diode laser absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Schiff, Harold I.; Bechara, J.; Pisano, John T.; Mackay, Gervase I.

    1994-06-01

    Because of their very long atmospheric lifetimes the two perfluorocarbons, CF4 and C2F6 have `global warming potentials' tens of thousands times greater than CO2. Aluminum smelting is believed to be the major source of these gases in the atmosphere although there is a great deal of uncertainty in the global emissions from this source. The emissions occur largely during `anode event' episodes. A tunable diode laser absorption spectrometer was used to measure the emissions of these gases from 8 smelters in the Province of Quebec which represent different technologies and contribute 11% to the total global production of aluminum. The results show that there is considerable variability in emissions between technologies, and in the intensity, the shape and the duration of the anode events with an apparent relationship between the duration and the fluxes during the anode events.

  20. Tecnical Note: Analysis of non-regulated vehicular emissions by extractive FTIR spectrometry: tests on a hybrid car in Mexico City

    NASA Astrophysics Data System (ADS)

    Reyes, F.; Grutter, M.; Jazcilevich, A.; González-Oropeza, R.

    2006-11-01

    A methodology to acquire valuable information on the chemical composition and evolution of vehicular emissions is presented. The analysis of the gases is performed by passing a constant flow of a sample gas from the tail-pipe into a 10 L multi-pass cell. The absorption spectra within the cell are obtained using an FTIR spectrometer at 0.5 cm-1 resolution along a 13.1 m optical path. Additionally, the total flow from the exhaust is continuously measured from a differential pressure sensor on a textit{Pitot} tube installed at the exit of the exhaust. This configuration aims to obtain a good speciation capability by coadding spectra during 30 s and reporting the emission (in g/km) of both criteria and non-regulated pollutants, such as CO2, CO, NO, SO2, NH3, HCHO and some NMHC, during predetermined driving cycles. The advantages and disadvantages of increasing the measurement frequency, as well as the effect of other parameters such as spectral resolution, cell volume and flow rate, are discussed. To test and evaluate the proposed technique, experiments were performed on a dynamometer running FTP-75 and typical driving cycles for the Mexico City Metropolitan Area (MCMA) on a Toyota Prius hybrid vehicle. This car is an example of recent marketed automotive technology dedicated to reduced emissions, increasing the need for sensitive detection techniques. This study shows the potential of the proposed technique to measure and report in real time the emissions of a large variety of pollutants, even from a super ultra-low emission vehicle (SULEV). The emissions of HC's, NOx, CO and CO2 obtained here were compared to experiments performed in other locations with the same model vehicle. The proposed technique provides a tool for future studies comparing in detail the emissions of vehicles using alternative fuels and emission control systems.

  1. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of dissolved aluminum and boron in water by inductively coupled plasma-atomic emission spectrometry

    USGS Publications Warehouse

    Struzeski, T.M.; DeGiacomo, W.J.; Zayhowski, E.J.

    1996-01-01

    Inductively coupled plasma-atomic emission spectrometry is a sensitive, rapid, and accurate method for determining the dissolved concentration of aluminum and boron in water samples. The method detection limits are 5 micrograms per liter for aluminum and 4 micrograms per liter for boron. For aluminum, low-level (about 30 micrograms per liter) short-term precision (single-operator, seven days) is about 5 percent relative standard deviation and the low-level long-term precision (single-operator, nine months) is about 8 percent relative standard deviation. For boron, the low-level short-term precision is about 4 percent relative standard deviation, and the low-level long-term precision is about 5 percent relative standard deviation. Spike recoveries for aluminum ranged from 86 to 100 percent, and recoveries for boron ranged from 92 to 109 percent.

  2. Enrichment with air-sandwiched method of on-line collection/concentration using chelating resin and simultaneous determination of trace elements by inductively coupled plasma atomic emission spectrometry.

    PubMed

    Noguchi, Osamu; Oshima, Mitsuko; Motomizu, Shoji

    2009-06-15

    The application of inductively coupled plasma atomic emission spectrometry (ICP-AES) to the forensic sample was studied. On-line collection/concentration method of the sample with chelating resin column (TE-05) and air-sandwiched method to isolate the analyte zone at the highest concentration of an eluent was coupled with ICP-AES. The limits of detection (LODs) were much improved to 35 fold (Co): from Sc, 0.15 ng ml(-1) to Ni, 1.99 ng ml(-1), and the concentration efficiency was 7-14 times. This method was applied to the concrete with about 10mg of samples. Major elements (Al, Fe, Mg) measured by conventional/ICP-AES and trace elements measured by this method, such as Cd, Co, Ni, and Pb were determined without matrices interference. Four concrete samples can be discriminated by comparing the content profiles of the trace elements and the major elements. PMID:19362181

  3. [Identification of hashish samples with inductively coupled high-frequency plasma emission spectrometry and neutron activation analysis and data handling with neuronal networks. 1. Methods for the quantitative determination of characteristic trace elements].

    PubMed

    Lahl, H; Henke, G

    1997-11-01

    Neutron activation analysis (NAA) and inductively coupled plasma emission spectrometry (ICP-AES) were used to quantify the relative contents of Fe, Sc, Ce, Pa, Cr, Co, respectively the absolute contents of Cr, Zn, Mn, Fe, Mg, Al, Cu, Ti, Ca, Sr in hashish samples, seized in different countries. The samples were processed after dry ashing by means of instrumental NAA and after wet mineralization by means of ICP-AES. For determination of the sampling and measurement errors, one of the samples was analyzed repeatedly with both methods. Classifying hashish samples with regard to concentration of certain elements could be done by artificial neural networks with a modified backpropagation algorithm. By this way, identity and non identity of one unknown sample with one of many different samples as data pool can be ascertained, on principle. PMID:9446107

  4. Evaluation of the stability of a mixture of volatile organic compounds on sorbents for the determination of emissions from indoor materials and products using thermal desorption/gas chromatography/mass spectrometry.

    PubMed

    Brown, Veronica M; Crump, Derrick R; Plant, Neil T; Pengelly, Ian

    2014-07-11

    The standard method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air (ISO 16000-6:2011) specifies sampling onto the sorbent Tenax TA followed by analysis using thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). The informative Annex D to the standard suggests the use of multi-sorbent samplers to extend the volatility range of compounds which can be determined. The aim of this study was to investigate the storage performance of Tenax TA and two multi-sorbent tubes loaded with a mixture of nine VOCs of relevance for material emissions testing. The sorbent combinations tested were quartz wool/Tenax TA/Carbograph™ 5TD and quartz wool/Tenax TA/Carbopack™ X. A range of loading levels, loading conditions (humidities and air volume), storage times (1-4 weeks) and storage conditions (refrigerated and ambient) were investigated. Longer term storage trials (up to 1 year) were conducted with Tenax TA tubes to evaluate the stability of tubes used for proficiency testing (PT) of material emissions analyses. The storage performance of the multi-sorbent tubes tested was found to be equal to that for Tenax TA, with recoveries after 4 weeks storage of within about 10% of the amounts loaded. No consistent differences in recoveries were found for the different loading or storage conditions. The longer term storage trials also showed good recovery for these compounds, although two other compounds, hexanal and BHT, were found to be unstable when stored on Tenax TA. The results of this study provide confidence in the stability of nine analytes for up to 4 weeks on two multi-sorbent tubes for material emissions testing and the same compounds loaded on Tenax TA sorbent for a recently introduced PT scheme for material emissions testing. PMID:24877978

  5. Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Stockwell, C. E.; Veres, P. R.; Williams, J.; Yokelson, R. J.

    2015-01-01

    We deployed a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) to measure biomass-burning emissions from peat, crop residue, cooking fires, and many other fire types during the fourth Fire Lab at Missoula Experiment (FLAME-4) laboratory campaign. A combination of gas standard calibrations and composition sensitive, mass-dependent calibration curves was applied to quantify gas-phase non-methane organic compounds (NMOCs) observed in the complex mixture of fire emissions. We used several approaches to assign the best identities to most major "exact masses", including many high molecular mass species. Using these methods, approximately 80-96% of the total NMOC mass detected by the PTR-TOF-MS and Fourier transform infrared (FTIR) spectroscopy was positively or tentatively identified for major fuel types. We report data for many rarely measured or previously unmeasured emissions in several compound classes including aromatic hydrocarbons, phenolic compounds, and furans; many of these are suspected secondary organic aerosol precursors. A large set of new emission factors (EFs) for a range of globally significant biomass fuels is presented. Measurements show that oxygenated NMOCs accounted for the largest fraction of emissions of all compound classes. In a brief study of various traditional and advanced cooking methods, the EFs for these emissions groups were greatest for open three-stone cooking in comparison to their more advanced counterparts. Several little-studied nitrogen-containing organic compounds were detected from many fuel types, that together accounted for 0.1-8.7% of the fuel nitrogen, and some may play a role in new particle formation.

  6. Silica-gel Particles Loaded with an Ionic Liquid for Separation of Zr(IV) Prior to Its Determination by ICP-OES.

    PubMed

    Marwani, Hadi M; Alsafrani, Amjad E; Asiri, Abdullah M; Rahman, Mohammed M

    2016-01-01

    A new ionic liquid loaded silica gel amine (SG-APTMS-N,N-EPANTf₂) was developed, as an adsorptive material, for selective adsorption and determination of zirconium, Zr(IV), without the need for a chelating intermediate. Based on a selectivity study, the SG-APTMS-N,N-EPANTf₂ phase showed a perfect selectivity towards Zr(IV) at pH 4 as compared to other metallic ions, including gold [Au(III)], copper [Cu(II)], cobalt [Co(II)], chromium [Cr(III)], lead [Pb(II)], selenium [Se(IV)] and mercury [Hg(II)] ions. The influence of pH, Zr(IV) concentration, contact time and interfering ions on SG-APTMS-N,N-EPANTf₂ uptake for Zr(IV) was evaluated. The presence of incorporated donor atoms in newly synthesized SG-APTMS-N,N-EPANTf₂ phase played a significant role in enhancing its uptake capacity of Zr(IV) by 78.64% in contrast to silica gel (activated). The equilibrium and kinetic information of Zr(IV) adsorption onto SG-APTMS-N,N-EPANTf₂ were best expressed by Langmuir and pseudo second-order kinetic models, respectively. General co-existing cations did not interfere with the extraction and detection of Zr(IV). Finally, the analytical efficiency of the newly developed method was also confirmed by implementing it for the determination of Zr(IV) in several water samples. PMID:27367692

  7. The Levels of Trace Elements in Honey and Molasses Samples That Were Determined by ICP-OES After Microwave Digestion Method.

    PubMed

    Altundag, Huseyin; Bina, Emel; Altıntıg, Esra

    2016-04-01

    The aim of this study is determining the amount of Al, Cu, Fe, Mn, Ni, Pb and Zn in samples of molasses and honey which were gathered from the Sakarya and Istanbul regions. In this study, trace elements in 8 honey and 20 molasses samples with different botanic features were evaluated. The sample preparation phase was performed via wet decomposition method and microwave digestion system. The accuracy of the method was checked by the standard reference material; tea leaves (INCY-TL-1) and NIST-SRM 1515-apple. The concentrations of essential trace elements (TEs) were observed in the range of 1.61 ± 0.01-287.03 ± 1.07; 0.21 ± 0.01-11.04 ± 0.12; 0.35 ± 0.03-21.71 ± 0.02 and 1.19 ± 0.01-60.90 ± 1.09 μg g(-1) for iron, copper, manganese and zinc ions, respectively, while the toxic element contents were observed in the range of 0.82 ± 0.17-3.06 ± 0.03; 0.04 ± 0.05-1.96 ± 0.03 and 0.62 ± 0.01-120.52 ± 0.10 μg g(-1) for lead, nickel and aluminum ions, respectively. The concentrations of basic TEs iron, copper, manganese and zinc were determined as 3.87 ± 0.04-16.76 ± 0.06; 0.45 ± 0.03-2.15 ± 0.01; 0.13 ± 0.01-15.02 ± 0.14 and 0.80 ± 0.09-12.03 ± 0.19 for honey samples. Also, toxic metal, lead, nickel and aluminum values in the honey samples were determined as 1.21 ± 0.12-2.46 ± 0.21; 0.28 ± 0.14-0.88 ± 0.43 and 2.11 ± 0.02-8.04 ± 0.08. A comparison between gathered data and literature values has performed and it is determined that such findings are suitable with the literature. PMID:26335573

  8. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies.

    PubMed

    de la Rosa, Guadalupe; Peralta-Videa, Jose R; Montes, Milka; Parsons, Jason G; Cano-Aguilera, Irene; Gardea-Torresdey, Jorge L

    2004-06-01

    Cadmium is a heavy metal, which, even at low concentrations, can be highly toxic to the growth and development of both plants and animals. Plant species vary extensively in their tolerance to excess cadmium in a growth medium and very few cadmium-tolerant species have been identified. In this study, tumbleweed plants (Salsola kali) grown in an agar-based medium with 20 mgl(-1) of Cd(II) did not show phytotoxicity, and their roots had the most biomass (4.5 mg) (P < 0.05) compared to the control plants (2.7 mg) as well as other treated plants. These plants accumulated 2696, 2075, and 2016 mg Cd kg(-1) of dry roots, stems, and leaves, respectively. The results suggest that there is no restricted cadmium movement in tumbleweed plants. In addition, the amount of Cd found in the dry leaf tissue suggests that tumbleweed could be considered as potential cadmium hyperaccumulating species. X-ray absorption spectroscopy studies demonstrated that in roots, cadmium was bound to oxygen while in stems and leaves, the metal was attached to oxygen and sulfur groups. This might imply that some small organic acids are responsible for Cd transport from roots to stems and leaves. In addition, it might be possible that the plant synthesizes phytochelatins in the stems, later coordinating the absorbed cadmium for transport and storage in cell structures. Thus, it is possible that in the leaves, Cd either exists as a Cd-phytochelatin complex or bound to cell wall structures. Current studies are being performed in order to elucidate the proposed hypothesis. PMID:15081756

  9. Silica-gel Particles Loaded with an Ionic Liquid for Separation of Zr(IV) Prior to Its Determination by ICP-OES

    PubMed Central

    Marwani, Hadi M.; Alsafrani, Amjad E.; Asiri, Abdullah M.; Rahman, Mohammed M.

    2016-01-01

    A new ionic liquid loaded silica gel amine (SG-APTMS-N,N-EPANTf2) was developed, as an adsorptive material, for selective adsorption and determination of zirconium, Zr(IV), without the need for a chelating intermediate. Based on a selectivity study, the SG-APTMS-N,N-EPANTf2 phase showed a perfect selectivity towards Zr(IV) at pH 4 as compared to other metallic ions, including gold [Au(III)], copper [Cu(II)], cobalt [Co(II)], chromium [Cr(III)], lead [Pb(II)], selenium [Se(IV)] and mercury [Hg(II)] ions. The influence of pH, Zr(IV) concentration, contact time and interfering ions on SG-APTMS-N,N-EPANTf2 uptake for Zr(IV) was evaluated. The presence of incorporated donor atoms in newly synthesized SG-APTMS-N,N-EPANTf2 phase played a significant role in enhancing its uptake capacity of Zr(IV) by 78.64% in contrast to silica gel (activated). The equilibrium and kinetic information of Zr(IV) adsorption onto SG-APTMS-N,N-EPANTf2 were best expressed by Langmuir and pseudo second-order kinetic models, respectively. General co-existing cations did not interfere with the extraction and detection of Zr(IV). Finally, the analytical efficiency of the newly developed method was also confirmed by implementing it for the determination of Zr(IV) in several water samples. PMID:27367692

  10. Use of zirconium oxychloride to neutralize HF in the microwave-assisted acid dissolution of ceramic glazes for their chemical analysis by ICP-OES.

    PubMed

    Dondi, M; Fabbri, B; Mingazzini, C

    1998-04-01

    The use of a zirconium compound (ZrOCl(2)) to neutralize HF in the microwave-assisted acid dissolution of ceramic glazes for their chemical analysis was tested. Zr is a strong complexing agent for the fluorine ion and permits the determination of those elements which would form insoluble fluorides. The use of Zr implies strong spectral interferences and a high salt content; however, we found that at least 27 elements can be measured with low detection limits, and satisfactory precision and accuracy. In addition, the use of ZrOCl(2) would permit the complete analysis of a ceramic glaze with a single attack when acid-resistant mineral phases are not present. For potassium determinations in acid matrix, the addition of an ionization buffer was studied in order to increase sensitivity, avoiding ionization interferences and non-linear calibration curves. PMID:18967112

  11. NATURE OF UNRESOLVED COMPLEX MIXTURE IN SIZE-DISTRIBUTED EMISSIONS FROM RESIDENTIAL WOOD COMBUSTION AS MEASURED BY THERMAL DESORPTION-GAS CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    In this study, the unresolved complex mixture (UCM) in size resolved fine aerosol emissions from residential wood combustion (RWC) is examined. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorbtion/gas chroma...

  12. THE DETERMINATION OF MERCURY SPECIES AND MULTIPLE METALS IN COAL COMBUSTION EMISSIONS USING IODINE-BASED IMPINGERS AND DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Mercury (Hg) emissions from coal utilities are difficult to control. Hg eludes capture by most air pollution control devices (APCDs). To determine the gaseous Hg species in stack gases, U.S. EPA Method 5 type sampling is used. In this type of sampling a hole is drilled into th...

  13. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry. Progress report, January 1, 1994--December 31, 1994

    SciTech Connect

    Montaser, A.

    1994-09-01

    This research follows a multifaceted approach, from theory to practice, to the investigation and development of novel helium plasmas, sample introduction systems, and diagnostic techniques for atomic and mass spectrometries. During the period January 1994 - December 1994, four major sets of challenging research programs were addressed that each included a number of discrete but complementary projects: (1) The first program is concerned with fundamental and analytical investigations of novel atmospheric-pressure helium inductively coupled plasmas (He ICPS) that are suitable for the atomization-excitation-ionization of elements, especially those possessing high excitation and ionization energies, for the purpose of enhancing sensitivity and selectivity of analytical measurements. (2) The second program includes simulation and computer modeling of He ICPS. The aim is to ease the hunt for new helium plasmas by predicting their structure and fundamental and analytical properties, without incurring the enormous cost for extensive experimental studies. (3) The third program involves spectroscopic imaging and diagnostic studies of plasma discharges to instantly visualize their prevailing structures, to quantify key fundamental properties, and to verify predictions by mathematical models. (4) The fourth program entails investigation of new, low-cost sample introduction systems that consume micro- to nanoliter quantity of sample solution in plasma spectrometries. A portion of this research involves development and applications of novel diagnostic techniques suitable for probing key fundamental properties of aerosol prior to and after injection into high-temperature plasmas. These efforts, still in progress, collectively offer promise of solving singularly difficult analytical problems that either exist now or are likely to arise in the future in the various fields of energy generation, environmental pollution, material science, biomedicine and nutrition.

  14. Analysis of enantiomeric and non-enantiomeric monoterpenes in plant emissions using portable dynamic air sampling/solid-phase microextraction (PDAS-SPME) and chiral gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yassaa, Noureddine; Williams, Jonathan

    A portable dynamic air sampler (PDAS) using a porous polymer solid-phase microextraction (SPME) fibre has been validated for the determination of biogenic enantiomeric and non-enantiomeric monoterpenes in air. These compounds were adsorbed in the field, and then thermally desorbed at 250 °C in a gas chromatograph injector port connected via a β-cyclodextrin capillary separating column to a mass spectrometer. The optimized method has been applied for investigating the emissions of enantiomeric monoterpenes from Pseudotsuga menziesii (Douglas-fir), Rosmarinus officinalis (Rosemary) and Lavandula lanata (Lavender) which were selected as representative of coniferous trees and aromatic plants, respectively. The enantiomers of α-pinene, sabinene, camphene, δ-3-carene, β-pinene, limonene, β-phellandrene, 4-carene and camphor were successfully determined in the emissions from the three plants. While Douglas-fir showed a strong predominance toward (-)-enantiomers, Rosemary and Lavender demonstrated a large variation in enantiomeric distribution of monoterpenes. The simplicity, rapidity and sensitivity of dynamic sampling with porous polymer coated SPME fibres coupled to chiral capillary gas chromatography/mass spectrometry (GC/MS) makes this method potentially useful for in-field investigations of atmosphere-biosphere interactions and studies of optically explicit atmospheric chemistry.

  15. Fine-particle emissions from solid biofuel combustion studied with single-particle mass spectrometry: Identification of markers for organics, soot, and ash components

    NASA Astrophysics Data System (ADS)

    Pagels, Joakim; Dutcher, Dabrina D.; Stolzenburg, Mark R.; McMurry, Peter H.; GäLli, Markus E.; Gross, Deborah S.

    2013-01-01

    The effects of combustion phase and fuel on smoke particle emissions from a wood stove operated with three different wood fuels and from a corn stove were investigated. A single-particle mass spectrometer (aerosol time of flight mass spectrometer (ATOFMS)) was used for time- and size-resolved chemical signatures and a scanning mobility particle sizer (SMPS) was used for online mobility size distributions. Markers of particle phase organics and elemental carbon, PM1.5, and CO emissions were strongly reduced for the corn stove compared to the wood stove. This is because the more controlled fuel and air supply in the corn stove result in more complete combustion. NOx emissions and particle phase phosphates showed the opposite trend. Marker ions and particle types associated with soot and alkali salts such as potassium chloride and potassium sulfates dominated during flaming combustion and were correlated with increased exhaust temperatures and reduced CO emissions. Marker ions of hydrocarbons and oxidized organics as well as a particle cluster type with a strong organic signature were associated with reduced combustion temperature and increased CO levels, observed during start up from cold stove, addition of fuel, and combustion with reduced air supply. Two different particle types were identified in corn experiments when particles were classified according to mobility before they were measured with the ATOFMS. "Less massive" particles contained mostly ash and soot and had vacuum aerodynamic diameters that were nearly independent of mobility diameter. "More massive" particles had aerodynamic diameters that increased linearly with mobility diameter, indicating approximately spherical shapes, and were hypothesized to consist of organics.

  16. Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry.

    PubMed

    Radischat, Christian; Sippula, Olli; Stengel, Benjamin; Klingbeil, Sophie; Sklorz, Martin; Rabe, Rom; Streibel, Thorsten; Harndorf, Horst; Zimmermann, Ralf

    2015-08-01

    Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust. PMID:25600686

  17. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations.

    PubMed

    Mohr, Claudia; Huffman, Alex; Cubison, Michael J; Aiken, Allison C; Docherty, Kenneth S; Kimmel, Joel R; Ulbrich, Ingrid M; Hannigan, Michael; Jimenez, Jose L

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z. PMID:19452899

  18. Micromachined, planar-geometry, atmospheric-pressure, battery-operated microplasma devices (MPDs) on chips for analysis of microsamples of liquids, solids, or gases by optical-emission spectrometry.

    PubMed

    Karanassios, Vassili; Johnson, Kara; Smith, Andrea T

    2007-08-01

    Because of their desirable characteristics, for example small size, lightness, low power and gas consumption, and potential for portability, miniaturized plasma sources are receiving significant attention in the scientific literature. To take advantage of these characteristics we micromachined and fabricated new, planar-geometry, self-igniting, atmospheric-pressure microplasma devices (MPDs) on chips. These microplasmas required such low power for their operation they could be operated from a re-chargeable battery (of the type used in cordless power-tools). Despite their advantages, most miniaturized plasma sources reported in the literature have not performed well with liquid samples; analysis of powders or solids that can be converted to a powder (and processed and used as slurries) is even more difficult. To address these shortcomings we coupled an electrothermal, mini-in-torch vaporization (mini-ITV) "dry" sample-introduction system to the low-power planar microplasma devices we developed. In this preliminary investigation, absolute detection limits obtained from microsamples of single-element liquid standards and optical emission spectrometry with photomultiplier-tube detection and a spectral bandpass similar to that of portable, commercially available fiber-optic spectrometers were in the low-pg to ng range, for example 2 pg (for K) to 25 ng (for Pb). Mini-ITV also enabled (as far as we are aware, for the first time) measurement of analyte emission from microsamples of powdered solids (as slurries). In addition to the 3% H2 in Ar mixtures, the ac-operated microplasmas were sustained by use of a variety of electrode materials and different plasma-support gases (e.g. Ar, He and 3% H2 in He) thus indicating fabrication versatility and operational flexibility. Such flexibility has the potential to enable microplasmas to be tailored to analytical problems, and this is demonstrated by using a He MPD and chlorine emission measurements (837.594 nm) from gaseous

  19. Use of thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) on identification of odorant emission focus by volatile organic compounds characterisation.

    PubMed

    Rodríguez-Navas, Carlos; Forteza, Rafael; Cerdà, Víctor

    2012-11-01

    Volatile organic compounds (VOCs) from several different municipal solid wastes' treatment plants in Mallorca (Spain) have been analysed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Ambient (immission) air was collected during February and March 2011 by active sampling onto sorbents Tenax™ TA and Carboxen™ 1000. The study presents the chemical characterisation of 93 volatile organic compounds (VOCs) from an overall set of 84 immission air samples. 70 VOCs were positively identified. The linear fit for all 93 external standard calibration, from 10 mg L(-1) to 150 mg L(-1) (n=4), was within the range 0.974

  20. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    NASA Technical Reports Server (NTRS)

    Henley, D. B.; Corcoran, M. F.; Pittard, J. M.; Stevens, I. R.; Hamaguchi, K.; Gull, T. R.

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star eta Car, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggesting that the line-forming region is > 1.6 stellar radii from the companion star, and that the emitting plasma may be in a non-equilibrium state. We show that simple geometrical models cannot simultaneously fit both the observed centroid variations and changes in line width as a function of phase. We show that the observed profiles can be fitted with synthetic profiles with a reasonable model of the emissivity along the wind-wind collision boundary. We use this analysis to help constrain the line formation region as a function of orbital phase, and the orbital geometry. Subject headings: X-rays: stars -stars: early-type-stars: individual (q Car)

  1. Time-dependent biodistribution, clearance and biocompatibility of magnetic fibrin nanoparticles: an in vivo study

    NASA Astrophysics Data System (ADS)

    Prabu, Periyathambi; Vedakumari, Weslen S.; Sastry, Thotapalli P.

    2015-05-01

    Recently, bioretention and toxicity of injected nanoparticles in the body has drawn much attention in biomedical research. In the present study, 5 mg Fe per kg body weight of magnetic fibrin nanoparticles (MFNPs) were injected into mice intravenously and investigated for their blood clearance profile, biodistribution, haematology and pathology studies for a time period of 28 days. Moderately long circulation of MFNPs in blood was observed with probable degradation and excretion into the bloodstream via monoatomic iron forms. Inductively coupled plasma optical emission spectrometry (ICP-OES) and Prussian blue staining results showed increased accumulation of MFNPs in the liver, followed by spleen and other organs. Body weight, spleen/thymus indexes, haematology, serum biochemistry and histopathology studies demonstrated that MFNPs were biocompatible. These results suggest the feasibility of using MFNPs for drug delivery and imaging applications.

  2. Metal concentrations of wild edible mushrooms from Turkey.

    PubMed

    Sarikurkcu, Cengiz; Tepe, Bektas; Solak, Mehmet Halil; Cetinkaya, Serap

    2012-01-01

    In the present study, the contents of Zn, Fe, Cu, Mn, Co, Ni, Pb, Cd, Cr, Al, Ca, Mg, and K in Agaricus campestris, Agrocybe cylindracea, Collybia dryophila, Helvella leucopus, Russula delica, Tricholoma auratum, Amanita ovoidea, Melanoleuca excissa, Rhizopogon roseolus, Russula chloroides, Volvoriella gloiocephala, Lyophyllum decastes, Morcella angusticeps, Morchella esculenta and Morcella eximia collected from Isparta, Mugla, and Osmaniye provinces (Turkey) were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave digestion. The intake of heavy metals (Pb, Cd) and other metals (Fe, Cu, Zn) by consumption of 30 g dry weight of mushrooms daily poses no risk at all except in A. cylindracea and H. leucopus (for Cd) for the consumer. PMID:22794131

  3. Lead and cadmium in wild boar (Sus scrofa) in the Sierra Nevada Natural Space (southern Spain).

    PubMed

    Mulero, Rocío; Cano-Manuel, Javier; Ráez-Bravo, Arián; Pérez, Jesús M; Espinosa, José; Soriguer, Ramón; Fandos, Paulino; Granados, José E; Romero, Diego

    2016-08-01

    The aims of the present study were to investigate Pb and Cd levels in tissues of wild boar (Sus scrofa) from the Sierra Nevada Natural Space (SNNS) (southern Spain). Heavy metal concentrations in livers, kidneys and bones from 111 animals were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Bones and kidneys were the most Pb- and Cd-contaminated tissues, respectively; Cd concentrations were 5.6 times higher in kidneys than in livers. This is the first biomonitoring study of these pollutants in wild boar tissues in the SNNS, and findings indicate that this population is chronically exposed to these heavy metals. The detected Pb and Cd concentrations were lower than those found in many studies performed in Europe on the same species. PMID:27178294

  4. In situ Fabrication of Monolithic Copper Azide

    NASA Astrophysics Data System (ADS)

    Li, Bing; Li, Mingyu; Zeng, Qingxuan; Wu, Xingyu

    2016-04-01

    Fabrication and characterization of monolithic copper azide were performed. The monolithic nanoporous copper (NPC) with interconnected pores and nanoparticles was prepared by decomposition and sintering of the ultrafine copper oxalate. The preferable monolithic NPC can be obtained through decomposition and sintering at 400°C for 30 min. Then, the available monolithic NPC was in situ reacted with the gaseous HN3 for 24 h and the monolithic NPC was transformed into monolithic copper azide. Additionally, the copper particles prepared by electrodeposition were also reacted with the gaseous HN3 under uniform conditions as a comparison. The fabricated monolithic copper azide was characterized by Fourier transform infrared (FTIR), inductively coupled plasma-optical emission spectrometry (ICP-OES), and differential scanning calorimetry (DSC).

  5. Interactions of skin with gold nanoparticles of different surface charge, shape, and functionality.

    PubMed

    Fernandes, Rute; Smyth, Neil R; Muskens, Otto L; Nitti, Simone; Heuer-Jungemann, Amelie; Ardern-Jones, Michael R; Kanaras, Antonios G

    2015-02-11

    The interactions between skin and colloidal gold nanoparticles of different physicochemical characteristics are investigated. By systematically varying the charge, shape, and functionality of gold nanoparticles, the nanoparticle penetration through the different skin layers is assessed. The penetration is evaluated both qualitatively and quantitatively using a variety of complementary techniques. Inductively coupled plasma optical emission spectrometry (ICP-OES) is used to quantify the total number of particles which penetrate the skin structure. Transmission electron microscopy (TEM) and two photon photoluminescence microscopy (TPPL) on skin cross sections provide a direct visualization of nanoparticle migration within the different skin substructures. These studies reveal that gold nanoparticles functionalized with cell penetrating peptides (CPPs) TAT and R7 are found in the skin in larger quantities than polyethylene glycol-functionalized nanoparticles, and are able to enter deep into the skin structure. The systematic studies presented in this work may be of strong interest for developments in transdermal administration of drugs and therapy. PMID:25288531

  6. Determining the geographical origin of Sechium edule fruits by multielement analysis and advanced chemometric techniques.

    PubMed

    Hidalgo, Melisa J; Fechner, Diana C; Marchevsky, Eduardo J; Pellerano, Roberto G

    2016-11-01

    This paper describes the determination and evaluation of the major and trace element composition (Al, As, Ba, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Pb, Sr and Zn) of Sechium edule (Jacq) Swartz fruits collected from four different places of production in Corrientes province, Argentina. Element concentrations were determined by using inductively coupled plasma optical emission spectrometry (ICP OES) after microwave digestion. The accuracy was confirmed with standard reference material of spinach leaves (NIST, 1570a) and spiking tests. Principal component analysis (PCA), linear discriminant analysis (LDA), k-nearest neighbors (kNN), partial least square-discriminant analysis (PLS-DA) and support vector machine (SVM) were applied to the results for discriminating the geographical origin of S. edule fruits. Finally, the LDA method was found to perform best with up to 90% accuracy rate based on the following elements: Ca, Ba, Cu, Mn, Na, Sr, and Zn. PMID:27211642

  7. Bioactivity evaluation of titanium/hydroxyapatite composite coating on stainless steel prepared by thermal spraying

    NASA Astrophysics Data System (ADS)

    Azhar, Nurul Humaira; Talari, Mahesh Kumar; Koong, Chue Keen

    2015-08-01

    In this study, titanium powder mixed with different wt % of HA was coated on stainless steel (SS) substrate using high velocity oxy-fuel (HVOF) technique to produce composite coating for biomedical applications. As the addition of HA is expected to influence the bioactivity of the coatings, these coatings were investigated for bioactivity by immersing the samples in a simulated body fluid (SBF) solution for 14 days. The apatite growth rate was evaluated by measuring Ca and P concentration in the SBF using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). The concentrations of Ca and P have decreased over time in the SBF, suggesting a bone like apatite precipitation on the sample surface. It was observed that pH value increased with the increase of immersion time during initial three days and a subsequent drop after 7 days. Microstructure analysis done using FESEM technique showed nucleation and growth of bone-like apatite on the surface of the coating.

  8. Pattern recognition applied to mineral characterization of Brazilian coffees and sugar-cane spirits

    NASA Astrophysics Data System (ADS)

    Fernandes, Andréa P.; Santos, Mirian C.; Lemos, Sherlan G.; Ferreira, Márcia M. C.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2005-06-01

    Aluminium, Ca, Cu, Fe, K, Mg, Mn, Na, Pb, S, Se, Si, Sn, Sr, and Zn were determined in coffee and sugar-cane spirit (cachaça) samples by axial viewing inductively coupled plasma optical emission spectrometry (ICP OES). Pattern recognition techniques such as principal component analysis and cluster analysis were applied to data sets in order to characterize samples with relation to their geographical origin and production mode (industrial or homemade and organically or conventionally produced). Attempts to correlate metal ion content with the geographical origin of coffee and the production mode (organic or conventional) of cachaça were not successful. Some differentiation was suggested for the geographical origin of cachaça of three regions (Northeast, Central, and South), and for coffee samples, related to the production mode. Clear separations were only obtained for differentiation between industrial and homemade cachaças, and between instant soluble and roasted coffees.

  9. Mineral profile of kaki fruits (Diospyros kaki L.).

    PubMed

    Mir-Marqués, Alba; Domingo, Ana; Cervera, M Luisa; de la Guardia, Miguel

    2015-04-01

    The main objective of this study was the determination of the mineral profile of 167 kaki fruit (Diospyros kaki L.) samples produced from different regions of Spain, including samples with the protected designation of origin (PDO) 'Kaki Ribera del Xúquer' Valencia (Spain). Samples were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Consumption of one piece of kaki fruit (200-400 g) would give a mineral intake providing 1-10% of the recommended daily allowance (RDA) for calcium, 1-30% for copper and potassium, 1-15% from iron and magnesium, up to 1% of sodium, and up to 4% of zinc. ANOVA analysis indicates differences between samples from different Spanish region, thus offering a way for authentication of PDO sample origin. PMID:25442556

  10. Essential and toxic heavy metals in cereals and agricultural products marketed in Kermanshah, Iran, and human health risk assessment.

    PubMed

    Pirsaheb, Meghdad; Fattahi, Nazir; Sharafi, Kiomars; Khamotian, Razieh; Atafar, Zahra

    2016-01-01

    Levels of some essential and toxic heavy metals such as lead, cadmium, chromium, nickel, zinc and copper in cereals and agricultural products obtained from the markets in Kermanshah city, west Iran, were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The average concentrations for lead and cadmium in some cereals were higher than the maximum levels set by the Codex Alimentarius. A potential human health risk assessment was conducted by calculating estimated weekly intake (EWI) of the metals from eating cereals and comparison of these values with provisional tolerable weekly intake (PTWI) values. In combination with recent cereal consumption data, the EWIs of heavy metals were calculated for the Kermanshah population. EWI data for the studied metals through cereal consumption were lower than the PTWI values. Cr, Ni, Zn and Cu levels in all samples analysed were within the ranges reported for similar cereals from various parts of the world. PMID:26465977

  11. Determination of rare-earth elements, yttrium and scandium in manganese nodules by inductively-coupled argon-plastma emission spectrometry

    USGS Publications Warehouse

    Fries, T.; Lamothe, P.J.; Pesek, J.J.

    1984-01-01

    A sequential-scanning, inductively-coupled argon plasma emission spectrometer is used for the determination of the rare-earth elements, plus yttrium and scandium, in manganese nodules. Wavelength selection is optimized to minimize spectral interferences from manganese nodule components. Samples are decomposed with mixed acids in a sealed polycarbonate vessel, and elements are quantified without further treatment. Results for U.S. Geological Survey manganese nodule standards A-1 and P-1 had average relative standard deviations of 6.8% and 8.1%, respectively, and results were in good agreement with those obtained by other methods. ?? 1984.

  12. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    SciTech Connect

    Setyan, Ari; Zhang, Qi; Merkel, M.; Knighton, Walter B.; Sun, Y.; Song, Chen; Shilling, John E.; Onasch, Timothy B.; Herndon, Scott C.; Worsnop, Douglas R.; Fast, Jerome D.; Zaveri, Rahul A.; Berg, Larry K.; Wiedensohler, A.; Flowers, B. A.; Dubey, Manvendra K.; Subramanian, R.

    2012-09-11

    The Carbonaceous Aerosols and Radiative Effects Study (CARES) took place in the Sacramento Valley of California in summer 2010. We present results obtained at Cool, CA, the T1 site of the project ({approx}40 km downwind of urban emissions from Sacramento), where we deployed an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in parallel with complementary instrumentation to characterize the sources and processes of submicron particles (PM1). Cool is located at the foothill of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. The particle mass loading was low (3.0 {micro}gm{sup -3} on average) and dominated by organics (80% of the PM1 mass) followed by sulfate (9.9 %). Organics and sulfate appeared to be externally mixed, as suggested by their different time series (r2 = 0.13) and size distributions. Sulfate showed a bimodal distribution with a droplet mode peaking at {approx}400nm in vacuum aerodynamic diameter (Dva), and a condensation mode at {approx}150 nm, while organics generally displayed a broad distribution in 60-600nm (Dva). New particle formation and growth events were observed almost every day, emphasizing the roles of organics and sulfate in new particle growth, especially that of organics. The organic aerosol (OA) had a nominal formula of C{sub 1}H{sub 1.38}N{sub 0.004}O{sub 0.44}, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two different oxygenated OA (OOA, 90% of total OA mass) and a hydrocarbon-like OA (HOA, 10 %) were identified by Positive matrix factorization (PMF) of the high resolution mass spectra. The more oxidized MO-OOA (O/C = 0.54) corresponded to secondary OA (SOA) primarily influenced by biogenic emissions, while the less oxidized LO-OOA (O/C = 0.42) corresponded to SOA associated with urban transport. The HOA factor corresponded to primary emissions mainly

  13. Mass spectrometry

    SciTech Connect

    Burlingame, A.L.; Baillie, T.A.; Derrick, P.J.

    1986-04-01

    It is the intention of the review to bring together in one source the direction of major developments in mass spectrometry and to illustrate these by citing key contributions from both fundamental and applied research. The Review is intended to provide the reader with a sense of the main currents, their breadth and depth, and probable future directions. It is also intended to provide the reader with a glimpse of the diverse discoveries and results that underpin the eventual development of new methods and instruments - the keys to obtaining new insights in all the physical, chemical, and biological sciences which depend on mass spectrometry at various levels of sophistication. Focal points for future interdisciplinary synergism might be selective quantitative derivatization of large peptides, which would convey properties that direct fragmentation providing specific sequence information, or optimization of LCMS for biooligomer sequencing and mixture analysis, or the perfect way to control or enhance the internal energy of ions of any size, or many others. 1669 references.

  14. Determination of inorganic pollutants in soil after volatilization using microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Picoloto, Rochele S.; Wiltsche, Helmar; Knapp, Günter; Mello, Paola A.; Barin, Juliano S.; Flores, Erico M. M.

    2013-08-01

    Microwave-induced combustion (MIC) was applied for analyte volatilization from soil and subsequent determination of As, Cd and Pb by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES), and Hg by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Soil samples (up to 300 mg) were mixed with microcrystalline cellulose, pressed as pellets and combusted in closed quartz vessels pressurized with 20 bar O2. Analytes were volatilized from soil during combustion and quantitatively absorbed in a suitable solution: nitric acid (1, 2, 4 or 6 mol L- 1) or a solution of nitric (2 mol L- 1) and hydrochloric (1, 2 or 4 mol L- 1) acids. Accuracy was evaluated using certified reference materials of soil (NIST 2709, San Joaquin Soil) and sediment (SUD-1, Sudbury sediment for trace elements). Agreement with certified values was better than 95% (t-test, 95% confidence level) for all analytes when 6 mL of a solution of 2 mol L- 1 HNO3 and 2 mol L- 1 HCl was used with a reflux step of 5 min. The limit of detection was 0.010, 0.002, 0.009 and 0.012 μg g- 1 for As, Cd, Hg and Pb, respectively using ICP-MS determination. A clear advantage of the proposed method over classical approaches is that only diluted solution is used. Moreover, a complete separation of the analytes from matrix is achieved minimizing potential interferences in ICP-MS or ICP-OES determination. Up to eight samples can be digested in a single run of only 25 min, resulting in a solution suitable for the determination of all analytes by both techniques.

  15. Simultaneous determination of bromine and iodine in milk powder for adult and infant nutrition by plasma based techniques after digestion using microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Picoloto, Rochele S.; Doneda, Morgana; Flores, Eder L. M.; Mesko, Marcia F.; Flores, Erico M. M.; Mello, Paola A.

    2015-05-01

    In this work, bromine and iodine determination in milk powder for adult and infant nutrition was performed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion by microwave-induced combustion (MIC). Contrarily to previous works using MIC, a higher sample mass was digested (700 mg). Water and ammonium hydroxide (10 to 100 mmol L- 1) were investigated as absorbing solutions and accurate results were achieved using a 25 mmol L- 1 NH4OH solution. Moreover, the high stability of analytes after digestion (up to 30 days) using this solution was observed. The accuracy of the proposed MIC method was evaluated using certified and reference materials of milk powder (NIST 1549 and NIST 8435). No statistical difference was observed between results obtained by MIC-ICP-MS and reference values. Results for samples were also compared with those obtained by ICP-OES and no statistical difference was observed. Microwave-assisted alkaline extraction (MW-AE) was also evaluated for milk powder using NH4OH and tetramethylammonium hydroxide solutions. Solutions obtained after digestion by MIC (whole milk powder) presented low carbon content in digests (< 25 mg L- 1) while solutions obtained after alkaline extraction presented up to 10,000 mg L- 1 of C. MIC method was preferable in view of the possibility of obtaining solutions with low carbon content even using a relatively high sample mass (up to 700 mg) avoiding additional dilution prior to ICP-MS analysis, thus allowing better detection limits. Limits of detection obtained by MIC-ICP-MS were 0.007 and 0.003 μg g- 1 for Br and I, respectively, while for MW-AE were 0.1 and 0.05 μg g- 1 respectively for Br and I. Among the main advantages of the proposed method are the use of diluted alkaline solutions that is in agreement with green analytical chemistry recommendations, the high stability of analytes in solution and the suitability of digests for

  16. Determination of barium, strontium and nine minor and trace elements in impure barite and strontianite by inductively-coupled plasma atomic-emission spectrometry after dissolution in disodium ethylenediaminetetraacetate.

    PubMed

    Gupta, J G

    1991-10-01

    A new method has been developed for the determination of barium, strontium, silicon and nine minor and trace elements of barite and strontianite associated with gangue materials. It involves dissolution of the sample by boiling under reflux with a concentrated solution of disodium ethylenedi-aminetetraacetate (EDTA-2Na) in the presence of ammonium hydroxide. Barite and strontianite dissolve quantitatively under this condition, and any associated silicate and sulphide mineral impurities, remaining insoluble, are filtered off and ignited to constant weight in a platinum crucible. Silica is determined gravimetrically by heating the residue with concentrated sulphuric and hydrofluoric acids, followed by ignition to oxides. The residue is fused with sodium bisulphate and dissolved in dilute sulphuric acid. After suitable dilution of the EDTA-2Na solution, Ba, Sr, Be, Co, Cr, Cu, La, Ni, V, Yb and Zn are determined by inductively-coupled plasma atomic-emission spectrometry (ICP-AES). The bisulphate fusion product is separately analysed by ICP-AES, and the elements found are combined with those obtained from the EDTA-2Na solution. The replicate values of this work compare well with each other and with other values obtained by independent methods. PMID:18965264

  17. Determination of soluble toxic arsenic species in alga samples by microwave-assisted extraction and high performance liquid chromatography-hydride generation-inductively coupled plasma-atomic emission spectrometry.

    PubMed

    García Salgado, S; Quijano Nieto, M A; Bonilla Simón, M M

    2006-09-29

    A microwave-based procedure for arsenic species extraction in alga samples (Sargassum fulvellum, Chlorella vulgaris, Hizikia fusiformis and Laminaria digitata) is described. Extraction time and temperature were tested in order to evaluate the extraction efficiency of the process. Arsenic compounds were extracted in 8 ml of deionised water at 90 degrees C for 5 min. The process was repeated three times. Soluble arsenic compounds extracted accounted for about 78-98% of total arsenic. The results were compared with those obtained in a previous work, where the extraction process was carried out by ultrasonic focussed probe for 30 s. Speciation studies were carried out by high performance liquid chromatography-hydride generation-inductively coupled plasma-atomic emission spectrometry (HPLC-HG-ICP-AES). The chromatographic method allowed us to separate As(III), As(V), monomethylarsonic acid and dimethylarsinic acid in less than 13 min. The chromatographic analysis of the samples allowed us to identify and quantify As(V) in Hizikia sample and Sargasso material, while the four arsenic species studied were found in Chlorella sample. In the case of Laminaria sample, none of these species was identified by HPLC-HG-ICP-AES. However, in the chromatographic analysis of this alga by HPLC-ICP-AES, an unknown arsenic species was detected. PMID:16876177

  18. Automated detection and interpretation of spectral information using cross-correlation, millilitre volumes, pneumatic nebulization sample introduction and inductively coupled plasma-atomic emission spectrometry with photodiode array detection

    NASA Astrophysics Data System (ADS)

    Karanassios, V.; Drouin, P. J.; Spiers, G. A.

    1998-08-01

    A method for automated detection and interpretation of spectral information from ˜230 nm spectral windows, millilitre volume samples for 15 elements is presented. The basic approach involves cross-correlation of a spectral pattern obtained by running laboratory prepared multi-element `unknowns' with a reference spectral pattern obtained by running a single element standard. From the resultant cross-correlogram, it can be decided whether or not the sought-for reference spectral pattern (and the corresponding element) are present in the unknown. Spectral patterns were acquired using an inductively coupled plasma-atomic emission spectrometry (ICP-AES) system equipped with a linear, 1024-element, photo-diode array (Leco, Plasmarray). Reference spectral patterns for Al, Au, Be, Cd, Cu, Ga, Mg, Mn, Ni, Pd, Si, Sc, Y, Sr and Zn were converted to noise-free and interference-free binary software masks and, subsequently, to analogue software masks. Cross-correlation of the analogue masks with spectral patterns acquired by running multi-element unknowns is discussed, an algorithm that does not rely on fast Fourier transforms (FFT) to calculate cross-correlations is presented and a context-sensitive, colour-coded and interrogatable periodic table graphical user-interface that presents the likely composition of an unknown on the computer screen is described in detail.

  19. Internal standardization for the determination of cadmium, cobalt, chromium and manganese in saline produced water from petroleum industry by inductively coupled plasma optical emission spectrometry after cloud point extraction

    NASA Astrophysics Data System (ADS)

    Bezerra, Marcos Almeida; Mitihiro do Nascimento Maêda, Sérgio; Oliveira, Eliane Padua; de Fátima Batista de Carvalho, Maria; Santelli, Ricardo Erthal

    2007-09-01

    In the present paper a procedure is proposed for the determination of traces of Cd, Co, Mn and Cr in petroleum industry produced water by inductively coupled plasma optical emission spectrometry. The procedure is based on cloud point extraction of these metals, as their dithizonate complexes, into the surfactant-rich phase of octylphenoxypolyethoxyethanol surfactant (Triton X-114). Extractions were carried out in solutions with salinities between 10‰ and 70‰. Since residual salinity in the surfactant-rich phase caused differences in its transport to the plasma, yttrium was used as an internal standard to correct for this effect. The simultaneous metal extraction procedure was optimized by response surface methodology using a Doehlert design and desirability function. Enhancement factors of 21, 21, 9 and 19, along with limits of quantification of 0.093, 0.20, 0.73 and 1.2 μg L - 1 , and precision expressed as relative standard deviation ( n = 8, 20.0 μg L - 1 ) of 5.8, 1.2, 1.7 and 5.7% were obtained for Cd, Co, Mn and Cr, respectively. The accuracy was evaluated by spike recovery tests on the high salinity water samples with salinity of 40 and 63‰.

  20. Determination of calcium, copper, iron, magnesium, manganese, potassium, phosphorus, sodium, and zinc in fortified food products by microwave digestion and inductively coupled plasma-optical emission spectrometry: single-laboratory validation and ring trial.

    PubMed

    Poitevin, Eric

    2012-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-optical emission spectrometry in order to modernize AOAC Official Method 984.27. The improvements involved extension of the scope to all food matrixes (including infant formula), optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed- or open-vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proven through a successful RT using experienced independent food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD, and HorRat values) regarding SLVs and RTs. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an extended updated version of AOAC Official Method 984.27 for fortified food products, including infant formula. PMID:22468357

  1. Anthropogenic sources of aerosol particles in a football stadium: Real-time characterization of emissions from cigarette smoking, cooking, hand flares, and color smoke bombs by high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Faber, Peter; Drewnick, Frank; Veres, Patrick R.; Williams, Jonathan; Borrmann, Stephan

    2013-10-01

    Aerosol particles from several anthropogenic sources associated with football stadia including cooking, cigarette smoking, burning of color smoke bombs and hand flares were analyzed by high-resolution aerosol mass spectrometry. The physical and chemical characteristics of these different aerosols, in particular the organic fraction, were explored in laboratory studies to obtain robust references. These data were compared with field campaign results from a Bundesliga (German football league) match in the Coface Arena (Mainz, Germany) on 20th April 2012. The field measurement revealed a strongly elevated mass concentration of organic aerosols (OA) compared to background levels showing a temporal structure clearly related to the match. PMF analysis established that during the football match event cigarette smoke was the predominant component of submicron organic aerosol (67% of total OA). Cooking emissions from food outlets within the stadium correlated well with the sales figures of the catering stations and were also found to be of relevance (24% of total OA) especially in the period before kickoff. Pyrotechnics were not observed during this football match and no signatures of these sources were found in the mass spectra from the stadium measurements. All species that were elevated during the football match returned to their initial background levels within one hour after the match had finished. This demonstrates a good ventilation capacity of the open-topped Coface Arena.

  2. Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry

    SciTech Connect

    Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

    1981-01-01

    The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

  3. Inductively coupled plasma optical emission spectrometry for trace multi-element determination in vegetable oils, margarine and butter after stabilization with propan-1-ol and water

    NASA Astrophysics Data System (ADS)

    de Souza, Roseli M.; Mathias, Bárbara M.; da Silveira, Carmem Lúcia P.; Aucélio, Ricardo Q.

    2005-06-01

    The quantitative evaluation of trace elements in foodstuffs is of considerable interest due to the potential toxicity of many elements, and because the presence of some metallic species might affect the overall quality (flavor and stability) of these products. In the present work, an inductively coupled plasma optical emission spectrometric method has been developed for the determination of six elements (Cd, Co, Cr, Cu, Ni and Mn) in olive oil, soy oil, margarine and butter. Organic samples (oils and fats) were stabilized using propan-1-ol and water, which enabled long-time sample dispersion in the solution. This simple sample preparation procedure, together with an efficient sample introduction strategy (using a Meinhard K3 nebulizer and a twister cyclonic spray chamber), facilitated the overall analytical procedure, allowing quantification using calibration curves prepared with inorganic standards. Internal standardization (Sc) was used for correction of matrix effects and signal fluctuations. Good sensitivities with limits of detection in the ng g -1 range were achieved for all six elements. These sensitivities were appropriate for the intended application. The method was tested through the analysis of laboratory-fortified samples with good recoveries (between 91.3% and 105.5%).

  4. Laser ablation in liquids as a new technique of sampling in elemental analysis of solid materials

    NASA Astrophysics Data System (ADS)

    Muravitskaya, E. V.; Rosantsev, V. A.; Belkov, M. V.; Ershov-Pavlov, E. A.; Klyachkovskaya, E. V.

    2009-02-01

    Laser ablation in liquid media is considered as a new sample preparation technique in the elemental composition analysis of materials using optical emission spectroscopy of inductively coupled plasma (ICP-OES). Solid samples are transformed into uniform colloidal solutions of nanosized analyte particles using laser radiation focused onto the sample surface. High homogeneity of the resulting solution allows performing the ICP-OES quantitative analysis especially for the samples, which are poorly soluble in acids. The technique is compatible with the conventional solution-based standards.

  5. Particulate-matter distribution and its flow from power plants using infrared spectrometry and thermodynamics for in situ continuous emissions monitoring

    NASA Astrophysics Data System (ADS)

    Shlifshteyn, Alex; Lang, Fred D.; Ayrapetian, Robert

    1996-01-01

    Spectroscopy measurements made through a continuum having suspended particulate matter are addressed. The applications presented permit correction of spectral transmissions as effected by particulate-producing fossil-fuel combustion. The research is especially applicable to large effluent flows from coal-fired power plants, whose effluents are studied with in situ (smokestack) radiometers. Methods involving fast calculation procedures based on measured irradiances in unabsorbed regions of the IR spectrum are presented. The methodology is based on wavelength-dependent extinction of radiation by small particles, considering both elastic scattering and absorbing effects. This extinction leads to an observed skeweness (or shift) of the blackbody spectral shape. Based on such skeweness, the particulate number distribution is determined with Mie theory. In order to simplify, and to speed up the routine for real-time application, a two-step procedure is presented. During preinstallation calibration with Mie theory, sets of integral tables are computed for all possible solution values and stored in computer memory. Based on instantaneous spectral measurements, the appropriate integral tables are retrieved, then used as inputs in a process leading to particulate number distribution. Because all time-consuming calculations associated with Mie theory are performed during preinstallation calibration, the technique is capable of monitoring particulate emission in real time. Furthermore, given resolution of the number distribution in combination with thermodynamic analysis of the system, determination of particulate apparent density and particulate mass flow rate is made. These values have importance for environmental reporting. Comparisons of calculated particulate distributions with in situ measurements are also presented. Confirmatory testing programs conducted at several power plants are discussed.

  6. The use of ion chromatography-dc plasma atomic emission spectrometry for the speciation of trace metals. Annual performance report, February 1, 1989--January 31, 1992

    SciTech Connect

    Urasa, I.T.

    1991-09-20

    The original objects of this research program were: to interface d.c. plasma atomic emission spectrometer with an ion chromatograph; to characterize and optimize the combined systems for application in the speciation of metals in aqueous solutions; to use this system in the study of the solution chemistry of various metals; and to find ways in which the measurement sensitivity of the method can be enhanced, thereby allowing the detection of metal species at low ppb concentration levels. This approach has been used to study the chemistry of and speciate several elements in solution including: arsenic, chromium, iron, manganese, nickel phosphorus, platinum, selenium, and vanadium. During the course of this research, we have found that the solution chemistry of the elements studied and the speciation data obtained can vary considerably depending on the solution, and the chromatographic conditions employed. The speciation of chromium, iron, and vanadium was found to be highly influenced by the acidity of the sample. The element selective nature of the d.c. plasma detector allows these changes to be monitored, thereby providing quantitative information on the new moieties formed. New approaches are being developed including the use of chelating ligands as preconcentration agents for purposes of reducing further the detection limits of the elements of interest and to improve the overall element speciation scheme. New thrusts are being directed towards the employment of post-column derivatization method coupled with colorimetric measurements to detect and quantify metal species eluting from the chromatographic column. The influence of sample acidity on these investigations will be carefully evaluated. These new thrusts are described in the accompanying Project Renewal Proposal.

  7. Single event mass spectrometry

    DOEpatents

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  8. An analytical method for hydrogeochemical surveys: Inductively coupled plasma-atomic emission spectrometry after using enrichment coprecipitation with cobalt and ammonium pyrrolidine dithiocarbamate

    USGS Publications Warehouse

    Hopkins, D.M.

    1991-01-01

    Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a

  9. Evaluation of sample preparation methods for elastomer digestion for further halogens determination.

    PubMed

    Moraes, Diogo P; Pereira, Juliana S F; Diehl, Liange O; Mesko, Márcia F; Dressler, Valderi L; Paniz, José Neri G; Knapp, Guenter; Flores, Erico M M

    2010-05-01

    In this work, three sample preparation methods were evaluated for further halogen determination in elastomers containing high concentrations of carbon black. Samples of nitrile-butadiene rubber, styrene-butadiene rubber, and ethylene-propylene-diene monomer elastomers were decomposed using oxygen flask combustion and microwave-induced combustion (MIC) for further Br and Cl determination by ion chromatography (IC), inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma mass spectrometry (ICP-MS). Extraction assisted by microwave radiation in closed vessels was also evaluated using water or alkaline solution. Digestion by MIC was carried out using 50 mmol l(-1) (NH(4))(2)CO(3) as the absorbing solution. The effect of the reflux step was also evaluated. Accuracy was evaluated using certified reference materials with polymeric matrix composition and by comparison of results using neutron activation analysis. Agreement for Br and Cl was better than 95% by MIC using 5 min of reflux, and no statistical difference was found using IC, ICP OES, and ICP-MS for determination of both analytes. For MIC, the relative standard deviation (RSD) was lower than 5%. Using extraction in closed vessels, a high amount of residues was observed, and recoveries were lower than 45% for both analytes. For oxygen flask combustion, the agreement was similar using MIC but RSD was higher (20%). The residual carbon content, an important parameter used to evaluate the digestion efficiency, was always below 1% for MIC. Using MIC, it was possible to digest elastomers with high efficiency, resulting in a single solution suitable for halogen determination by different techniques. PMID:20135306

  10. Environmental impact of volcanic emissions at Nyiragongo (DRC)

    NASA Astrophysics Data System (ADS)

    Scaglione, Sarah; Calabrese, Sergio; Bobrowski, Nicole; Giuffrida, Giovanni; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Liotta, Marcello; Minani, Abel; Shamavu, Patient; Pandolfo, Francesco; Tedesco, Dario

    2015-04-01

    The large amount of trace elements emitted from volcanoes has a strong impact on the close surrounding areas. Nyiragongo Volcano (Democratic Republic of Congo) belongs to the Virunga volcanic chain and is one of the most active volcanoes in Africa. It is characterized by the presence of an active and permanent lava lake with a persistent degassing activity. During a field trip in October-November 2014, we investigated the impact of the volcanogenic deposition in the surrounding of the crater by using different sampling techniques. Rain-gauges were used to collect atmospheric bulk deposition. Active and passive biomonitoring techniques (moss-bags and leaves of endemic plants - Senecio spp. and Amarantus viridis) were applied in order to investigate the dispersion of volcanic gas and particle emissions. We collected daily rainfall events at various sites: seven samples at the crater rim (on the western and southern side, 3470 m a.s.l.), one sample at the village Kibati (south-eastern flank, 1955 m a.s.l.) located at the up-wind base of the volcano (representing the local background), and four samples in the city of Goma (southern flank of the volcano, 1500 m a.s.l.). In order to implement our dataset, several samples of rainwater, amaranth leaves, soils and atmospheric depositions (by moss-bags and filters exposition) were sampled after the field trip by the researchers of the Goma Volcano Observatory (GVO). Since, the prevalent wind direction was blowing the plume in westerly or southwesterly direction, we exposed the raingauges in the villages of Bulengo, Rusayo and Kingi in the southwestern side respect to the volcano, and Kibumba in the southesthern as a background site, at increasing distance from the rim. In the same sites, leaves of Amarantus viridis, which is one of the principal vegetables eaten by the local population, were collected. Rainwater, moss bags and plant samples were analyzed for major and trace elements by IC, ICP-OES and ICP-MS. The large

  11. Effect of gallium on growth of Streptococcus mutans NCTC 10449 and dental tissues.

    PubMed

    Valappil, S P; Owens, G J; Miles, E J; Farmer, N L; Cooper, L; Miller, G; Clowes, R; Lynch, R J M; Higham, S M

    2014-01-01

    Gallium-doped phosphate-based glasses (Ga-PBG) were assessed for their impact on Streptococcus mutans and dental mineralisation, firstly by disc diffusion assays followed by biofilms grown on nitrocellulose filter membrane (NFM) and constant-depth film fermentor (CDFF). Short-time exposure (10 min) effects of Ga-PBG on S. mutans biofilm were compared with that of 0.2% chlorhexidine. The effects of Ga-PBG on bovine enamel (which was investigated under pH-cycling condition) and dentine were analysed using transverse microradiography (TMR), profilometry and inductively coupled plasma optical-emission spectrometry (ICP-OES). The disc diffusion assays showed inhibition zones of 24.5 ± 0.5 mm for Ga-PBG compared with controls (C-PBG). Ga-PBG showed statistically significant growth inhibition of S. mutans biofilms on NFM (p = 0.001) and CDFF (p < 0.046) compared with hydroxyapatite (HA) and C-PBG. The CDFF assay revealed a maximum of 2.11 log colony-forming unit (CFU) reduction at 48 h, but short-time exposure effects were comparable with that of 0.2% chlorhexidine only on older biofilms (maximum of 0.59 vs. 0.69 log CFU reduction at 120 h). TMR analyses of the enamel revealed non-significant mineral loss (p = 0.37) only in the case of Ga-PBG samples compared with controls including sodium fluoride. ICP-OES analyses indicated transient gallium adsorption into dentine by calcium displacement. The results confirmed that gallium inhibited S. mutans growth and appears to have the potential to protect the enamel surface under conditions representative of the oral environment. Further work is needed to establish whether it has an application in daily oral hygiene procedures to prevent or reduce caries. PMID:24335164

  12. Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water.

    PubMed

    Nurak, Thara; Praphairaksit, Narong; Chailapakul, Orawon

    2013-09-30

    A spraying method with lacquer was developed for the fabrication of paper-based devices. A patterned iron mask was initially placed on a filter paper and held tightly attached by a magnetic plate placed on the opposite side. After that, acrylic lacquer was sprayed on the filter paper to create a hydrophobic area while the hydrophilic area was protected with the iron mask. The optimal conditions for the fabrication of this device were studied including lacquer type and particle retention efficiency of filter paper. Gloss spray lacquer and filter paper No. 4 were chosen as optimal lacquer type and particle retention efficiency of filter paper, respectively. To evaluate its efficiency, the paper-based devices were used to determine nickel using electrochemical detection. Cu-enhancer solution was employed to increase sensitivity of nickel determination with the optimal concentration of 4.5 ppm. Under the optimal conditions, linear range was observed in the range of 1-50 ppm with a coefficient of determination of 0.9971. The limit of detection (LOD) and the limit of quantitation (LOQ) were found to be 0.5 and 1.97 ppm, respectively. Moreover, these paper-based devices coupled with electrochemical detection were applied to determine nickel in waste water of a jewelry factory and compared to those obtained with inductively coupled plasma optical emission spectrometry (ICP-OES). The results indicated that there were no significant variations between this proposed method (4.15±0.043 ppm) and the ICP-OES method (4.06±0.013 ppm). Therefore, this spraying method was found to be an excellent alternative for the fabrication of paper-based devices due to its ease of use, affordability and simplicity. PMID:23953473

  13. Determination of platinum, palladium, and rhodium in automotive catalysts using high-energy secondary target X-ray fluorescence spectrometry.

    PubMed

    Van Meel, Katleen; Smekens, Anne; Behets, Marc; Kazandjian, Paul; Van Grieken, René

    2007-08-15

    A fast and direct determination procedure for precious metals in spent automotive catalyst was developed using the novel high-energy polarized-beam XRF. A sample preparation method working directly on the ground material was optimized. The material was pressed as a pellet using wax as a binder; no internal standard was added. The standards for this application were available spent automotive catalyst, previously analyzed by ICP-OES to verify their concentration, prepared in the same way as the unknown samples. The investigated concentration ranged from nearly 0 to approximately 2700 ppm for Pt, to 500 ppm for Rh, and to 7500 ppm for Pd. The repeatability of the XRF measurement appeared to be better than 0.5%, while the precision of the whole method was approximately 1%. The accuracy of the XRF method was verified with the well-established (but very time-consuming) ICP-OES method; a good agreement (no difference when using the 95% confidence interval) was found for the results. When using an irradiation time of 500 s for the CsI secondary target and the Zr secondary target, the detection limits for Pt, Pd, and Rh were found to be better than 5 ppm. PMID:17628117

  14. Nanopore Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bush, Joseph; Mihovilovic, Mirna; Maulbetsch, William; Frenchette, Layne; Moon, Wooyoung; Pruitt, Cole; Bazemore-Walker, Carthene; Weber, Peter; Stein, Derek

    2013-03-01

    We report on the design, construction, and characterization of a nanopore-based ion source for mass spectrometry. Our goal is to field-extract ions directly from solution into the high vacuum to enable unit collection efficiency and temporal resolution of sequential ion emissions for DNA sequencing. The ion source features a capillary whose tip, measuring tens to hundreds of nanometers in inner diameter, is situated in the vacuum ~ 1.5 cm away from an extractor electrode. The capillary was filled with conductive solution and voltage-biased relative to the extractor. Applied voltages of hundreds of volts extracted tens to hundreds of nA of current from the tip. A mass analysis of the extracted ions showed primarily singly charged clusters comprising the cation or anion solvated by several solvent molecules. Our interpretation of these results, based on the works of Taylor and of de la Mora, is that the applied electric stresses distort the fluid meniscus into a Taylor cone, where electric fields reach ~ 1V/nm and induce significant ion evaporation. Accordingly, the abundances of extracted ionic clusters resemble a Boltzmann distribution. This work was supported by NIH grant NHGRI 1R21HG005100-01.

  15. Facile synthesis of ultrasmall monodisperse ``raisin-bun''-type MoO3/SiO2 nanocomposites with enhanced catalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Jiasheng; Li, Xin; Zhang, Shufen; Lu, Rongwen

    2013-05-01

    We report the preparation of ultrasmall monodisperse MoO3/SiO2 nanocomposites in reverse microemulsions formed by Brij-58/cyclohexane/water. The nanocomposites are of ``raisin-bun''-type with 1.0 +/- 0.2 nm MoO3 homogeneously dispersed in 23 +/- 2 nm silica spheres. Characterization is carried out based on transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDS), X-ray powder diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES), N2 sorption measurement, and NH3 temperature-programmed desorption (NH3-TPD). The as-prepared MoO3/SiO2 nanocomposites are microporous and exhibit enhanced catalytic activities for acetalization of benzaldehyde with ethylene glycol and can be repeatedly used 5 times without obvious deactivation. The catalytic performance improvement is attributed to the unique structure and ultrasmall size of the nanocomposites.We report the preparation of ultrasmall monodisperse MoO3/SiO2 nanocomposites in reverse microemulsions formed by Brij-58/cyclohexane/water. The nanocomposites are of ``raisin-bun''-type with 1.0 +/- 0.2 nm MoO3 homogeneously dispersed in 23 +/- 2 nm silica spheres. Characterization is carried out based on transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDS), X-ray powder diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES), N2 sorption measurement, and NH3 temperature-programmed desorption (NH3-TPD). The as-prepared MoO3/SiO2 nanocomposites are microporous and exhibit enhanced catalytic activities for acetalization of benzaldehyde with ethylene glycol and can be repeatedly used 5 times without obvious deactivation. The catalytic performance improvement is attributed to the unique

  16. Nuclear Magnetic Resonance Spectrometry.

    ERIC Educational Resources Information Center

    Wasson, John R.; Salinas, Jorge E.

    1980-01-01

    Reviews current research in NMR spectrometry, in the areas of apparatus and techniques, spectral analysis, computer applications, analytical applications, and selected organic and inorganic systems. Various aspects of NMR spectrometry are presented in tabular form, with 133 references. Listed also are 124 references from the discussions in the…

  17. Method of trivalent chromium concentration determination by atomic spectrometry

    DOEpatents

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  18. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  19. X-Ray Spectrometry.

    ERIC Educational Resources Information Center

    Macdonald, G. L.

    1980-01-01

    Reviews instrumental developments and technique improvements in X-ray spectrometry, grouped into major topic areas of excitation, dispersion and detection, instrumentation and techniques, and quantitative analyses. Cites 162 references. (CS)

  20. Plasma-based determination of inorganic contaminants in waste of electric and electronic equipment after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S. S.; Muller, Edson I.; Mesko, Marcia F.; Flores, Erico M. M.

    2015-03-01

    A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO3 or HNO3 plus HCl) were evaluated for metals and metalloids and NH4OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k-low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g- 1 for Co by ICP-MS up to 3.120 μg g-1 for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO3 and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb. In addition, suitable agreement of Cr to

  1. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China

    USGS Publications Warehouse

    Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.

    2011-01-01

    To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.

  2. Data on copper level in the blood of patients with normal and abnormal angiography.

    PubMed

    Amiri, Leila; Movahed, Ali; Iranpour, Dariush; Ostovar, Afshin; Raeisi, Alireza; Keshtkar, Mozhgan; Hajian, Najmeh; Dobaradaran, Sina

    2016-12-01

    In this data article, we measured the levels of copper in the blood of patients undergoing coronary angiography. The samples were taken from patients with cardiovascular disease in Bushehr׳s university hospital, Iran. Patients were divided in two groups: normal angiography and abnormal angiography. After the chemical digestion of samples, the concentration levels of Cu in both groups were determined by using inductively coupled plasma optical spectrometry (ICP-OES). PMID:27622204

  3. Uncertainties in gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Lépy, M. C.; Pearce, A.; Sima, O.

    2015-06-01

    High resolution gamma-ray spectrometry is a well-established metrological technique that can be applied to a large number of photon-emitting radionuclides, activity levels and sample shapes and compositions. Three kinds of quantitative information can be derived using this technique: detection efficiency calibration, radionuclide activity and photon emission intensities. In contrast to other radionuclide measurement techniques gamma-ray spectrometry provides unambiguous identification of gamma-ray emitting radionuclides in addition to activity values. This extra information comes at a cost of increased complexity and inherently higher uncertainties when compared with other secondary techniques. The relative combined standard uncertainty associated with any result obtained by gamma-ray spectrometry depends not only on the uncertainties of the main input parameters but also on different correction factors. To reduce the uncertainties, the experimental conditions must be optimized in terms of the signal processing electronics and the physical parameters of the measured sample should be accurately characterized. Measurement results and detailed examination of the associated uncertainties are presented with a specific focus on the efficiency calibration, peak area determination and correction factors. It must be noted that some of the input values used in quantitative analysis calculation can be correlated, which should be taken into account in fitting procedures or calculation of the uncertainties associated with quantitative results. It is shown that relative combined standard uncertainties are rarely lower than 1% in gamma-ray spectrometry measurements.

  4. Forensic Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, William D.; Jackson, Glen P.

    2015-07-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

  5. Forensic Mass Spectrometry.

    PubMed

    Hoffmann, William D; Jackson, Glen P

    2015-01-01

    Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques. PMID:26070716

  6. Volatile Organic Compound emissions from soil: using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS) for the real time observation of microbial processes

    NASA Astrophysics Data System (ADS)

    Veres, P. R.; Behrendt, T.; Klapthor, A.; Meixner, F. X.; Williams, J.

    2014-08-01

    In this study we report on the emissions of volatile organic compounds (VOC) and nitric oxide (NO) from two contrasting soils (equatorial rainforest and arid cotton field) analyzed in a laboratory based dynamic chamber system. The effect of soil moisture and soil temperature on VOC and NO emission was examined in laboratory incubation experiments by measuring as a pre-saturated soil dried out. Our results suggest that real time monitoring of VOC emissions from soil using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) instrument can be used to improve our understanding of the release mechanisms of trace gases (e.g. NO, N2O) that are involved in the nitrogen cycle. Moreover, we report on the release rate of various VOC species, many of which exhibit a temperature dependent response indicative of biological production, namely a temperature amplification factor (Q10) ∼ 2-3. Contrary to the conventional modeling of NO emissions from soils, that the release of NO from the overall community across the range of soil water content can be modeled as an optimum function, we suggest that VOC measurements indicate there exist multiple distinct contributing microbial guilds releasing NO. These microbial guilds could likely be individually identified with the observed VOC profiles. Using a cotton field soil sample from a Sache oasis (Taklimakan desert, Xinijang, P. R. China), we identify five VOC emission groups with varying degrees of NO co-emission. An equatorial rainforest soil (Suriname) was shown to emit a variety of VOC including acetaldehyde, acetone, DMS, formaldehyde, and isoprene that vary strongly and individually as a function of temperature and soil moisture content. PTR-TOF-MS with high time resolution, sensitivity, and molecular specificity is an ideal tool for the real time analysis of VOC and NO emitting processes in soil systems. These experiments can be used as a template for future experiments to more completely and specifically

  7. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  8. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  9. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  10. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  11. Analytical mass spectrometry

    SciTech Connect

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  12. Analytical mass spectrometry. Abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  13. MASS SPECTROMETRY IN ENVIRONMENTAL SCIENCES

    EPA Science Inventory

    This review covers applications of mass spectrometry to the environmental sciences. From the early applications of mass spectrometry to environmental research in the 1960s and 1970s, mass spectrometry has played an important role in aiding our understanding of environmental poll...

  14. Nanostructured inorganic materials: Synthesis and associated electrochemical properties

    NASA Astrophysics Data System (ADS)

    Yau, Shali Zhu

    Synthetic strategy for preparing potential battery materials at low temperature was developed. Magnetite (Fe3O4), silver hollandnite (AgxMn8O16), magnesium manganese oxide (MgxMnO 2˙yH2O), and silver vanadium phosphorous oxide (Ag 2VO2PO4) were studied. Magnetite (Fe3O4) was prepared by coprecipitation induced by triethylamine from aqueous iron(II) and iron(III) chloride solutions of varying concentrations. Variation of the iron(II) and iron(III) concentrations results in crystallite size control of the Fe3O4 products. Materials characterization of the Fe3O4 samples is reported, including Brunauer-Emmitt-Teller (BET) surface area, x-ray powder diffraction (XRD), transmission electron microscopy (TEM), particle size, and saturation magnetization results. A strong correlation between discharge capacity and voltage recovery behavior versus crystallite size was observed when tested as an electrode material in lithium electrochemical cells. Silver hollandite (AgxMn8O16) was successfully synthesized through a low temperature reflux reaction. The crystallite size and silver content of AgxMn8O16 by varying the reactant ratio of silver permanganate (AgMnO4) and manganese sulfate monohydrate (MnSO4˙H2O). Silver hollandite was characterized by Brunauer-Emmitt-Teller (BET) surface area, inductively coupled plasma-optical emission (ICP-OES) spectrometry, helium pycnometry, simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), and x-ray powder diffraction (XRD). The crystallite size showed a strong correlation with silver content, BET surface area, and particle sizes. The silver hollandite cathode showed good discharge capacity retention in 30 cycles of discharge-charge. There were a good relationship between crystallite size and rate capability and pulse ability. Magnesium manganese oxide (MgxMnO2˙yH 2O) was made by redox reaction by mixing sodium hydroxide (NaOH), manganese sulfate monohydrate (MnSO4˙HO2), and potassium persulfate (K2S2O8

  15. Environmental impact of Mt. Etna's degassing: volcanogenic trace elements bioaccumulation in two endemic plant species (Senecio aethnensis and Rumex aethnensis)

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Walter; Calabrese, Sergio; Bellomo, Sergio; Brusca, Lorenzo; di Maio, Giuseppe; Parello, Francesco; Saiano, Filippo

    2010-05-01

    A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500-3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.

  16. Development of a hydrophilic interaction liquid chromatography-mass spectrometry method for detection and quantification of urea thermal decomposition by-products in emission from diesel engine employing selective catalytic reduction technology.

    PubMed

    Yassine, Mahmoud M; Dabek-Zlotorzynska, Ewa; Celo, Valbona

    2012-03-16

    The use of urea based selective catalytic reduction (SCR) technology for the reduction of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least six thermal decomposition by-products, ammonia, and unreacted urea from the tailpipe. These compounds may include: biuret, dicyandiamine, cyanuric acid, ammelide, ammeline and melamine. In the present study, a simple, sensitive and reliable hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization (ESI)/mass spectrometry (MS) method without complex sample pre-treatment was developed for identification and determination of urea decomposition by-products in diesel exhaust. Gradient separation was performed on a SeQuant ZIC-HILIC column with a highly polar zwitterionic stationary phase, and using a mobile phase consisting of acetonitrile (eluent A) and 15 mM ammonium formate (pH 6; eluent B). Detection and quantification were performed using a quadrupole ESI/MS operated simultaneously in negative and positive mode. With 10 μL injection volume, LODs for all target analytes were in the range of 0.2-3 μg/L. The method showed a good inter-day precision of retention time (RSD<0.5%) and peak area (RSD<3%). Satisfactory extraction recoveries from spiked blanks ranged between 96 and 98%. Analyses of samples collected during transient chassis dynamometer tests of a bus engine equipped with a diesel particulate filter (DPF) and urea based SCR technology showed the presence of five target analytes with cyanuric acid and ammelide the most abundant compounds in the exhaust. PMID:22318005

  17. Measurement uncertainty in Total Reflection X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Floor, G. H.; Queralt, I.; Hidalgo, M.; Marguí, E.

    2015-09-01

    Total Reflection X-ray Fluorescence (TXRF) spectrometry is a multi-elemental technique using micro-volumes of sample. This work assessed the components contributing to the combined uncertainty budget associated with TXRF measurements using Cu and Fe concentrations in different spiked and natural water samples as an example. The results showed that an uncertainty estimation based solely on the count statistics of the analyte is not a realistic estimation of the overall uncertainty, since the depositional repeatability and the relative sensitivity between the analyte and the internal standard are important contributions to the uncertainty budget. The uncertainty on the instrumental repeatability and sensitivity factor could be estimated and as such, potentially relatively straightforward implemented in the TXRF instrument software. However, the depositional repeatability varied significantly from sample to sample and between elemental ratios and the controlling factors are not well understood. By a lack of theoretical prediction of the depositional repeatability, the uncertainty budget can be based on repeat measurements using different reflectors. A simple approach to estimate the uncertainty was presented. The measurement procedure implemented and the uncertainty estimation processes developed were validated from the agreement with results obtained by inductively coupled plasma - optical emission spectrometry (ICP-OES) and/or reference/calculated values.

  18. Potential Health Risk of Herbal Distillates and Decoctions Consumption in Shiraz, Iran.

    PubMed

    Moore, F; Akhbarizadeh, R; Keshavarzi, B; Tavakoli, F

    2015-10-01

    Concentration of 26 elements in 16 different herbal distillates and 5 herbal decoctions, were determined using inductively coupled plasma-mass spectrometry (ICP-MS). The elemental content of five raw herbal materials used for making decoctions and seven distilled and boiled residues were also evaluated by inductively coupled plasma optical emission spectrometry (ICP-OES). The results indicated that herbal products display a wide range of elemental concentrations. Compared with world health regulations, the concentrations of the elements in herbal distillates and decoctions did not exceed the recommended limits. The analysis of herbal extracts did not show a significant transfer of toxic elements during decoction preparation. Comparison of elemental content among fresh herbal material and herbal distillate and decoction of the same herb showed that, besides the elemental abundance of herbal organs, the ionic potential of elements also play an important role in elemental content of herbal products. Based on the results of the research, it seems that most health benefits attributed to herbal products (especially herbal distillates) are more related to their organic compounds rather than elemental composition. Calculated hazard quotient (HQ) and hazard index (HI) were used to evaluate the noncarcinogenic health risk from individual and combined metals via daily consumption of 100 ml of herbal distillates and 250 ml of herbal decoctions. Both HQs and HI through consumption of herbal distillates and herbal decoctions (except Valerian) were below 1. Apparently, daily consumption of herbal distillates and decoctions at the indicated doses poses no significant health risk to a normal adult. PMID:25778835

  19. Facile synthesis of ultrasmall monodisperse "raisin-bun"-type MoO3/SiO2 nanocomposites with enhanced catalytic properties.

    PubMed

    Wang, Jiasheng; Li, Xin; Zhang, Shufen; Lu, Rongwen

    2013-06-01

    We report the preparation of ultrasmall monodisperse MoO3/SiO2 nanocomposites in reverse microemulsions formed by Brij-58/cyclohexane/water. The nanocomposites are of "raisin-bun"-type with 1.0 ± 0.2 nm MoO3 homogeneously dispersed in 23 ± 2 nm silica spheres. Characterization is carried out based on transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDS), X-ray powder diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES), N2 sorption measurement, and NH3 temperature-programmed desorption (NH3-TPD). The as-prepared MoO3/SiO2 nanocomposites are microporous and exhibit enhanced catalytic activities for acetalization of benzaldehyde with ethylene glycol and can be repeatedly used 5 times without obvious deactivation. The catalytic performance improvement is attributed to the unique structure and ultrasmall size of the nanocomposites. PMID:23613166

  20. Surface dental enamel lead levels and antisocial behavior in Brazilian adolescents.

    PubMed

    Olympio, Kelly P K; Oliveira, Pedro V; Naozuka, Juliana; Cardoso, Maria R A; Marques, Antonio F; Günther, Wanda M R; Bechara, Etelvino J H

    2010-01-01

    Lead poisoning has been reportedly linked to a high risk of learning disabilities, aggression and criminal offenses. To study the association between lead exposure and antisocial/delinquent behavior, a cross-sectional study was conducted with 173 Brazilian youths aged 14-18 and their parents (n=93), living in impoverished neighborhoods of Bauru-SP, with high criminality indices. Self-Reported Delinquency (SRD) and Child Behavior Checklist (CBCL) questionnaires were used to evaluate delinquent/antisocial behavior. Body lead burdens were evaluated in surface dental enamel acid microbiopsies. The dental enamel lead levels (DELL) were quantified by graphite furnace atomic absorption spectrometry (GFAAS) and phosphorus content was measured using inductively coupled plasma optical emission spectrometry (ICP-OES). Logistic regression was used to identify associations between DELL and each scale defined by CBCL and SRD scores. Odd ratios adjusted for familial and social covariates, considering a group of youths exposed to high lead levels (>or=75 percentile), indicated that high DELL is associated with increased risk of exceeding the clinical score for somatic complaints, social problems, rule-breaking behavior and externalizing problems (CI 95%). High DELL was not found to be associated with elevated SRD scores. In conclusion, our data support the hypothesis that high-level lead exposure can trigger antisocial behavior, which calls for public policies to prevent lead poisoning. PMID:20005947

  1. Chemical Elemental Distribution and Soil DNA Fingerprints Provide the Critical Evidence in Murder Case Investigation

    PubMed Central

    Concheri, Giuseppe; Bertoldi, Daniela; Polone, Elisa; Otto, Stefan; Larcher, Roberto; Squartini, Andrea

    2011-01-01

    Background The scientific contribution to the solution of crime cases, or throughout the consequent forensic trials, is a crucial aspect of the justice system. The possibility to extract meaningful information from trace amounts of samples, and to match and validate evidences with robust and unambiguous statistical tests, are the key points of such process. The present report is the authorized disclosure of an investigation, carried out by Attorney General appointment, on a murder case in northern Italy, which yielded the critical supporting evidence for the judicial trial. Methodology/Principal Findings The proportional distribution of 54 chemical elements and the bacterial community DNA fingerprints were used as signature markers to prove the similarity of two soil samples. The first soil was collected on the crime scene, along a corn field, while the second was found in trace amounts on the carpet of a car impounded from the main suspect in a distant location. The matching similarity of the two soils was proven by crossing the results of two independent techniques: a) elemental analysis via inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES) approaches, and b) amplified ribosomal DNA restriction analysis by gel electrophoresis (ARDRA). Conclusions Besides introducing the novel application of these methods to forensic disciplines, the highly accurate level of resolution observed, opens new possibilities also in the fields of soil typing and tracking, historical analyses, geochemical surveys and global land mapping. PMID:21674041

  2. Investigation of cobalt interference on lead hydride generation with tetrahydroborate(III) in the presence of hexacyanoferrate(III)

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Lin, Li; Zhu, Lihui; Jiang, Mindi

    2009-03-01

    The interference of Co(II) on plumbane generation with tetrahydroborate in the presence of hexacyanoferrate(III) was studied with a new mechanism proposed to explain the interference. The products that were obtained, following reactions of a CoCl 2 solution with tetrahydroborate(III), which interfere with plumbane generation, were precipitated and investigated by inductively-coupled plasma-atomic emission spectrometry and -mass spectrometry (ICP-OES and ICP-MS). Batch experiments of the potentiometer analysis and pH determination were performed to investigate a mechanism of Co(II) interference on plumbane generation, the role of hexacyanoferrate(III) on plumbane generation, and the function of the masking agent on Co(II) interference. The preferentially formed nanoscale catalytic and magnetic cobalt borides in the redox system cause a potential for a strong reducing condition and induces the precipitation of Fe(III) and Pb(II) in the solution, which is counter to plumbane generation. Potassium thiocyanate/oxalic acid/1,10-phenanthroline, as the combined masking agent and working with hexacyanoferrate(III), decreases the amount of borides in the precipitates and acts as a kind of buffer of the redox potential, which maintains the conditions for plumbane generation. This hydride generation method has been applied to the direct determination of trace Pb in cobalt oxide standard reference materials with a detection limit of 0.3 µg L - 1 .

  3. A novel solid-state fractionation of naphthenic acid fraction components from oil sands process-affected water.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Shah, Jaimin R; Bailey, Jon; Peru, Kerry M; Headley, John V

    2015-10-01

    Various sorbent materials were evaluated for the fractionation of naphthenic acid fraction components (NAFCs) from oil sand process-affected water (OSPW). The solid phase materials include activated carbon (AC), cellulose, iron oxides (magnetite and goethite), polyaniline (PANI) and three types of biochar derived from biomass (BC-1; rice husks, BC-2; acacia low temperature and BC-3; acacia high temperature). NAFCs were semi-quantified using electrospray ionization high resolution Orbitrap mass spectrometry (ESI-MS) and the metals were assessed by inductively coupled plasma optical emission spectrometry (ICP-OES). The average removal efficacy of NAFCs by AC was 95%. The removal efficacy decreased in the following order: AC, BC-1>BC-2, BC-3, goethite>PANI>cellulose, magnetite. The removal of metals did not follow a clear trend; however, there was notable leaching of potassium by AC and biochar samples. The bound NAFCs by AC were desorbed efficiently with methanol. Methanol regeneration and recycling of AC revealed 88% removal on the fourth cycle; a 4.4% decrease from the first cycle. This fractionation method represents a rapid, cost-effective, efficient, and green strategy for NAFCs from OSPW, as compared with conventional solvent extraction. PMID:26042363

  4. Methodological aspects of in vitro assessment of bio-accessible risk element pool in urban particulate matter.

    PubMed

    Sysalová, Jiřina; Száková, Jiřina; Tremlová, Jana; Kašparovská, Kateřina; Kotlík, Bohumil; Tlustoš, Pavel; Svoboda, Petr

    2014-11-01

    In vitro tests simulating the elements release from inhaled urban particulate matter (PM) with artificial lung fluids (Gamble's and Hatch's solutions) and simulated gastric and pancreatic solutions were applied for an estimation of hazardous element (As, Cd, Cr, Hg, Mn, Ni, Pb and Zn) bio-accessibility in this material. An inductively coupled plasma optical emission spectrometry (ICP-OES) and an inductively coupled plasma mass spectrometry (ICP-MS) were employed for the element determination in extracted solutions. The effect of the extraction agent used, extraction time, sample-to-extractant ratio, sample particle size and/or individual element properties was evaluated. Different patterns of individual elements were observed, comparing Hatch's solution vs. simulated gastric and pancreatic solutions. For Hatch's solution, a decreasing sample-to-extractant ratio in a PM size fraction of <0.063 mm resulted in increasing leached contents of all investigated elements. As already proved for other operationally defined extraction procedures, the extractable element portions are affected not only by their mobility in the particulate matter itself but also by the sample preparation procedure. Results of simulated in vitro tests can be applied for the reasonable estimation of bio-accessible element portions in the particulate matter as an alternative method, which, consequently, initiates further examinations including potential in vivo assessments. PMID:25123460

  5. Evolution of dispersive liquid-liquid microextraction method.

    PubMed

    Rezaee, Mohammad; Yamini, Yadollah; Faraji, Mohammad

    2010-04-16

    Dispersive liquid-liquid microextraction (DLLME) has become a very popular environmentally benign sample-preparation technique, because it is fast, inexpensive, easy to operate with a high enrichment factor and consumes low volume of organic solvent. DLLME is a modified solvent extraction method in which acceptor-to-donor phase ratio is greatly reduced compared with other methods. In this review, in order to encourage further development of DLLME, its combination with different analytical techniques such as gas chromatography (GC), high-performance liquid chromatography (HPLC), inductively coupled plasma-optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ET AAS) will be discussed. Also, its applications in conjunction with different extraction techniques such as solid-phase extraction (SPE), solidification of floating organic drop (SFO) and supercritical fluid extraction (SFE) are summarized. This review focuses on the extra steps in sample preparation for application of DLLME in different matrixes such as food, biological fluids and solid samples. Further, the recent developments in DLLME are presented. DLLME does have some limitations, which will also be discussed in detail. Finally, an outlook on the future of the technique will be given. PMID:20005521

  6. XRF scanners as a quick screening tool for detecting toxic pollutant elements in sediments from Marín harbour in the Ría de Pontevedra (NW Spain).

    PubMed

    Rodríguez-Germade, I; Rubio, B; Rey, D

    2014-09-15

    X-ray fluorescence scanners, such as the Itrax™ Core Scanner (Itrax) (Cox Analytical Systems, Mölndal, Sweden), provide high-resolution geochemical data within several hours. However, the semi-quantitative nature of these analysers has hampered their use to study pollution. This study explores Itrax's capabilities to detect trace metals, such as Hg and Cd, in the Ría de Pontevedra harbour (NW Spain). A set of Itrax detection levels were proposed for each metal after comparison with quantitative measurements obtained from Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Vapour Atomic Absorption Spectrometry (CVAAS) analyses. These quantitative data obtained after a sequential extraction were used to evaluate pollutant bioavailability and to determine metal pollution levels exhibiting Hg pollution. The reliability of inc/coh and Br/Cl ratios to assess the total organic matter variability was also evaluated. The results indicated that the Itrax is an efficient and fast option to monitor contamination, thereby avoiding laborious discrete analyses and reducing analytical cost and time. PMID:25044038

  7. Pretreatment and integrated analysis of spectral data reveal seaweed similarities based on chemical diversity.

    PubMed

    Wei, Feifei; Ito, Kengo; Sakata, Kenji; Date, Yasuhiro; Kikuchi, Jun

    2015-03-01

    Extracting useful information from high dimensionality and large data sets is a major challenge for data-driven approaches. The present study was aimed at developing novel integrated analytical strategies for comprehensively characterizing seaweed similarities based on chemical diversity. The chemical compositions of 107 seaweed and 2 seagrass samples were analyzed using multiple techniques, including Fourier transform infrared (FT-IR) and solid- and solution-state nuclear magnetic resonance (NMR) spectroscopy, thermogravimetry-differential thermal analysis (TG-DTA), inductively coupled plasma-optical emission spectrometry (ICP-OES), CHNS/O total elemental analysis, and isotope ratio mass spectrometry (IR-MS). The spectral data were preprocessed using non-negative matrix factorization (NMF) and NMF combined with multivariate curve resolution-alternating least-squares (MCR-ALS) methods in order to separate individual component information from the overlapping and/or broad spectral peaks. Integrated analysis of the preprocessed chemical data demonstrated distinct discrimination of differential seaweed species. Further network analysis revealed a close correlation between the heavy metal elements and characteristic components of brown algae, such as cellulose, alginic acid, and sulfated mucopolysaccharides, providing a componential basis for its metal-sorbing potential. These results suggest that this integrated analytical strategy is useful for extracting and identifying the chemical characteristics of diverse seaweeds based on large chemical data sets, particularly complicated overlapping spectral data. PMID:25647718

  8. Occurrence, distribution, and ecological risk assessment of potentially toxic elements in surface sediments of Lake Awassa and Lake Ziway, Ethiopia.

    PubMed

    Mekonnen, Kebede N; Ambushe, Abayneh A; Chandravanshi, Bhagwan S; Redi-Abshiro, Mesfin; McCrindle, Robert I

    2015-01-01

    Microwave-assisted acid digestion and modified aqua regia (HNO3:HCl:HF:H3BO3) leaching techniques were used for the determination of 15 potentially toxic elements (V, Cr, Fe, Mn, Co, Ni, Cu, Zn, As, Se, Ag, Cd, Sn, Hg and Pb) in sediment samples from Lake Awassa and Lake Ziway, Ethiopia. The digests were subsequently analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-optical emission spectrometry (ICP-OES). Mercury was directly determined in the solid samples using an elemental mercury analyzer. The precision and accuracy of the digestion procedures were verified using certified reference materials. The experimental results were in good agreement with the certified values (P < 0.05) and the recoveries were quantitative (>90%). The average relative standard deviations were below 10%. There is significant correlation between the two lakes at the 0.01 level (2-tailed). Using the sediment quality guidelines, both lakes are heavily polluted with Zn and some of the sites are heavily polluted with Cu, Ni and Pb. Based on effect range low (ERL) - effect range medium (ERM), in both lakes for Ag were greater than the ERM, indicating that the areas could be toxic to aquatic organisms, while for Cr, Cu, As and Hg the values were less than ERL. PMID:25438135

  9. Determination of certain micro and macroelements in plant stimulants and their infusions.

    PubMed

    Malik, Jan; Szakova, Jirina; Drabek, Ondrej; Balik, Jiri; Kokoska, Ladislav

    2008-11-15

    The quantitative analysis of Al, B, Cu, Fe, Mn, P and Zn by inductively coupled plasma optical emission spectrometry (ICP-OES) and Ca, K and Mg by atomic absorption spectrometry (AAS) has been carried out in both the raw material and infusions from 31 samples of traditional plant stimulants (tea and coffee) and mate, rooibos, honeybush and chamomile. The results were discussed with respect to differences to the beverage quality and their role in the human diet. The levels of elements not significantly differ between tea types (black, green, oolong, white), and between Arabica and Robusta coffee. In comparison with tea, coffee was found to be a poor source of elements with the exception of Ca and Fe. High levels of B, Ca, Cu, Mn, Mg and Zn were found in mate (mainly green type) and of B, Ca, Cu, Fe and P in chamomile, whereas the amounts of all elements in rooibos and honeybush infusions were low (except of Ca). Apart from tea, other stimulants appeared to not represent important sources of potentially harmful amounts of Al for the human diet. PMID:26047460

  10. Depleted uranium mobility across a weapons testing site: isotopic investigation of porewater, earthworms, and soils.

    PubMed

    Oliver, Ian W; Graham, Margaret C; MacKenzie, Angus B; Ellam, Robert M; Farmer, John G

    2008-12-15

    The mobility and bioavailability of depleted uranium (DU) in soils at a UK Ministry of Defence (UK MoD) weapons testing range were investigated. Soil and vegetation were collected near a test-firing position and at eight points along a transect line extending approximately 200 m down-slope, perpendicular to the firing line, toward a small stream. Earthworms and porewaters were subsequently separated from the soils and both total filtered porewater (<0.2 microm) and discrete size fractions (0.2 microm-100 kDa, 100-30 kDa, 30-3 kDa, and <3 kDa)obtainedvia centrifugal ultrafiltration were examined. Uranium concentrations were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) for soils and ICP-mass spectrometry (MS) for earthworms and porewaters, while 235U:238U atom ratios were determined by multicollector (MC)-ICP-MS. Comparison of the porewater and earthworm isotopic values with those of the soil solids indicated that DU released into the environment during weapons test-firing operations was more labile and more bioavailable than naturally occurring U in the soils at the testing range. Importantly, DU was shown to be present in soil porewater even at a distance of approximately 185 m from the test-firing position and, along the extent of the transect was apparently associated with organic colloids. PMID:19174886

  11. Biological Cluster Mass Spectrometry

    PubMed Central

    Winograd, Nicholas; Garrison, Barbara J.

    2010-01-01

    This article reviews the new physics and new applications of secondary ion mass spectrometry using cluster ion probes. These probes, particularly C60, exhibit enhanced molecular desorption with improved sensitivity owing to the unique nature of the energy-deposition process. In addition, these projectiles are capable of eroding molecular solids while retaining the molecular specificity of mass spectrometry. When the beams are microfocused to a spot on the sample, bioimaging experiments in two and three dimensions are feasible. We describe emerging theoretical models that allow the energy-deposition process to be understood on an atomic and molecular basis. Moreover, experiments on model systems are described that allow protocols for imaging on biological materials to be implemented. Finally, we present recent applications of imaging to biological tissue and single cells to illustrate the future directions of this methodology. PMID:20055679

  12. A new technique for trace elemental analysis of speleothems using microbeam xrf

    NASA Astrophysics Data System (ADS)

    Buckles, J.; Rowe, H.; Gao, Y.; Cheng, H.; Edwards, R. L.; Springer, G.; Hardt, B.

    2012-04-01

    Trace element ratios in speleothems (Sr/Ca, Mg/Ca, Ba/Ca) have been used to interpret the hydrogeochemical processes in the epikarst zone as well as the partitioning that occurs at the calcite-water interface. During periods of low rainfall, trace element ratios generally increase as a result of the longer residence time of water in the soil and epikarst zones. High-resolution time series analyses of these elements in speleothems provide evidence for changing paleohydrological and geochemical conditions over time. The conventional methods of trace metal analysis of speleothems- Laser Ablation Inductively-Coupled Plasma Mass Spectrometry (LA-ICPMS) and Inductively-Coupled Plasma Optical Emission Spectroscopy (ICP-OES) have yielded many high-quality data sets. However, these methods can be expensive, time-consuming, and require the destruction - either by ablation, micro-milling, or powdering of speleothem samples. The many caveats of these conventional methods have led to the search for a viable alternative - one that will provide the same high-resolution result, but that is affordable, rapid, and non-destructive. Presented here are trace element analysis results using microbeam X-ray Fluorescence Spectrometry. The Brüker-AXS ARTAX microbeam XRF spectrometer permits a multi-element analysis from Na to U with a spatial resolution of 70 µm. The method is non-contact and non-destructive, therefore preserving the sample for additional analyses (e.g. stable isotopes). A simple calibration method for Sr/Ca using pressed mixed powders will be described. It will be demonstrated that microbeam XRF is an important tool in trace element analysis of speleothems and a viable alternative to conventional methods. Sr/Ca ratios were obtained for multiple speleothems and serve as a preliminary test of microbeam XRF suitability. Analyses of variable count times, temporal and spatial reproducibility along transects, and a comparison between microbeam XRF spectra and ICP-OES spectra

  13. Particulate matters collected from ceramic factories in Lampang Province affecting rat lungs*

    PubMed Central

    Fongmoon, Duriya; Pongnikorn, Surathat; Chaisena, Aphiruk; Iamsaard, Sitthichai

    2014-01-01

    Background: Lung cancer ranks as the fifth largest of all cancer cases in Thailand. However, it is the first leading cancer in the northern part of Thailand (data from 2003–2007). There are several predisposing causes that lead to lung cancer and one important inducement is particulate matters (PMs). Lampang Province in Thailand is famous for the ceramic industry, where there are over 200 ceramic industrial factories. PMs are produced during the ceramic manufacturing process and spread throughout all of the working areas. It is very possible that workers could directly inhale PM-contaminated air during working hours. Objective: This study focuses on the toxic effects of PMs collected from ceramic factories on genes and lungs of rats. Methods: PMs collected from six ceramic factories in Lampang Province were extracted using dimethyl sulfoxide (DMSO). The inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to analyze the chemical elements at lower and higher concentrations, respectively. Then, the toxicity of PMs on the genes was examined by the Ames test, and subsequently, the effect of PMs on DNA was examined by quantifying the amount of 8-hydroxy-2′-deoxyguanosine (8-OHdG). Finally, the toxicity of the PMs on rat’s lungs was examined by histology. Results: As chemical elements of lower concentrations, cadmium, chromium, nickel, copper, and lead were detected by ICP-MS. As chemical elements of higher concentrations, manganese, magnesium, zinc, iron, potassium, calcium, and sodium were detected by ICP-OES. No mutagenicity in Salmonella typhimurium was found in the PM extracts from all six factories by utilizing the Ames test. In the histological study, the reduction in spaces of alveolar ducts and sacs, and terminal bronchioles, the thickening of interstitial connective tissues were noted by PM extracts in high amounts (100 and 350 μg). Female rats were more sensitive to PM

  14. Eddy covariance emission and deposition flux measurements using proton transfer reaction - time of flight - mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes

    NASA Astrophysics Data System (ADS)

    Park, J.-H.; Goldstein, A. H.; Timkovsky, J.; Fares, S.; Weber, R.; Karlik, J.; Holzinger, R.

    2013-02-01

    During summer 2010, a proton transfer reaction - time of flight - mass spectrometer (PTR-TOF-MS) and a quadrupole proton transfer reaction mass spectrometer (PTR-MS) were deployed simultaneously for one month in an orange orchard in the Central Valley of California to collect continuous data suitable for eddy covariance (EC) flux calculations. The high time resolution (5 Hz) and high mass resolution (up to 5000 m/Δm) data from the PTR-TOF-MS provided the basis for calculating the concentration and flux for a wide range of volatile organic compounds (VOC). Throughout the campaign, 664 mass peaks were detected in mass-to-charge ratios between 10 and 1278. Here we present PTR-TOF-MS EC fluxes of the 27 ion species for which the vertical gradient was simultaneously measured by PTR-MS. These EC flux data were validated through spectral analysis (i.e., co-spectrum, normalized co-spectrum, and ogive). Based on inter-comparison of the two PTR instruments, no significant instrumental biases were found in either mixing ratios or fluxes, and the data showed agreement within 5% on average for methanol and acetone. For the measured biogenic volatile organic compounds (BVOC), the EC fluxes from PTR-TOF-MS were in agreement with the qualitatively inferred flux directions from vertical gradient measurements by PTR-MS. For the 27 selected ion species reported here, the PTR-TOF-MS measured total (24 h) mean net flux of 299 μg C m-2 h-1. The dominant BVOC emissions from this site were monoterpenes (m/z 81.070 + m/z 137.131 + m/z 95.086, 34%, 102 μg C m-2 h-1) and methanol (m/z 33.032, 18%, 72 μg C m-2 h-1). The next largest fluxes were detected at the following masses (attribution in parenthesis): m/z 59.048 (mostly acetone, 12.2%, 36.5 μg C m-2 h-1), m/z 61.027 (mostly acetic acid, 11.9%, 35.7 μg C m-2 h-1), m/z 93.069 (para-cymene + toluene, 4.1%, 12.2 μg C m-2 h-1), m/z 45.033 (acetaldehyde, 3.8%, 11.5 μg C m-2 h-1), m/z 71.048 (methylvinylketone + methacrolein, 2.4%, 7

  15. Eddy covariance emission and deposition flux measurements using proton transfer reaction-time of flight-mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes

    NASA Astrophysics Data System (ADS)

    Park, J.-H.; Goldstein, A. H.; Timkovsky, J.; Fares, S.; Weber, R.; Karlik, J.; Holzinger, R.

    2012-08-01

    During summer 2010, a proton transfer reaction-time of flight-mass spectrometer (PTR-TOF-MS) and a standard proton transfer reaction mass spectrometer (PTR-MS) were deployed simultaneously for one month in an orange orchard in the Central Valley of California to collect continuous data suitable for eddy covariance (EC) flux calculations. The high time resolution (5 Hz) and high mass resolution (up to 5000 m Δ m-1) data from the PTR-TOF-MS provided the basis for calculating the concentration and flux for a wide range of volatile organic compounds (VOC). Throughout the campaign, 664 mass peaks were detected in mass-to-charge ratios between 10 and 1278. Here we present PTR-TOF-MS EC fluxes of the 27 ion species for which the vertical gradient was simultaneously measured by PTR-MS. These EC flux data were validated through spectral analysis (i.e. co-spectrum, normalized co-spectrum, and ogive). Based on inter-comparison of the two PTR instruments, no significant instrumental biases were found in either mixing ratios or fluxes, and the data showed agreement within 5% on average for methanol and acetone. For the measured biogenic volatile organic compounds (BVOC), the EC fluxes from PTR-TOF-MS were in agreement with the qualitatively inferred flux directions from vertical gradient measurements by PTR-MS. For the 27 selected ion species reported here, the PTR-TOF-MS measured total (24 h) mean net flux of 299 μg C m-2 h-1. The dominant BVOC emissions from this site were monoterpenes (m/z 81.070 + m/z 137.131 + m/z 95.086, 34%, 102 μg C m-2 h-1) and methanol (m/z 33.032, 18%, 72 μg C m-2 h-1). The next largest fluxes were detected at the following masses (attribution in parenthesis): m/z 59.048 (mostly acetone, 12.2%, 36.5 μg C m-2 h-1), m/z 61.027 (mostly acetic acid, 11.9%, 35.7 μg C m-2 h-1), m/z 93.069 (para-cymene + toluene, 4.1%, 12.2 μg C m-2 h-1), m/z 45.033 (acetaldehyde, 3.8%, 11.5 μg C m-2 h-1), m/z 71.048 (methylvinylketone + methacrolein, 2.4%, 7.1

  16. Spectrometry of nebulae

    NASA Astrophysics Data System (ADS)

    Acker, A.

    2011-04-01

    Nebular emission lines are easy to observe, and their spectrum contains a lot of information. We explain the mechanisms of production of the emissions, and the relation between the intensity of the recombination and forbidden lines, and the physical parameters of the objects. A gallery of emission lines spectra is presented, and a rough analysis will clarify their differences. The case of Planetary Nebulae will be developed, in order to determine the extinction constant, the plasma parameters (electron density and temperature), the chemical abundances, and also the properties of the central star (temperature, mass, stellar wind velocity, age).

  17. Micro-PIXE mapping of mineral distribution in mature grain of two pearl millet cultivars

    NASA Astrophysics Data System (ADS)

    Minnis-Ndimba, R.; Kruger, J.; Taylor, J. R. N.; Mtshali, C.; Pineda-Vargas, C. A.

    2015-11-01

    Micro-proton-induced X-ray emission (micro-PIXE) was used to map the distribution of several nutritionally important minerals found in the grain tissue of two cultivars of pearl millet (Pennisetum glaucum (L.) R. Br.). The distribution maps revealed that the predominant localisation of minerals was within the germ (consisting of the scutellum and embryo) and the outer grain layers (specifically the pericarp and aleurone); whilst the bulk of the endosperm tissue featured relatively low concentrations of the surveyed minerals. Within the germ, the scutellum was revealed as a major storage tissue for P and K, whilst Ca, Mn and Zn were more prominent within the embryo. Fe was revealed to have a distinctive distribution pattern, confined to the dorsal end of the scutellum; but was also highly concentrated in the outer grain layers. Interestingly, the hilar region was also revealed as a site of high accumulation of minerals, particularly for S, Ca, Mn, Fe and Zn, which may be part of a defensive strategy against infection or damage. Differences between the two cultivars, in terms of the bulk Fe and P content obtained via inductively coupled plasma optical emission spectrometry (ICP-OES), concurred with the average concentration data determined from the analysis of micro-PIXE spectra specifically extracted from the endosperm tissue.

  18. Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles

    SciTech Connect

    Sonawane, Yogesh S.; Kanade, K.G.; Kale, B.B. Aiyer, R.C.

    2008-10-02

    Electrical and gas sensing properties of nanocrystalline ZnO:Cu, having Cu X wt% (X = 0.0, 0.5, 1.0, and 1.5) in ZnO, in the form of pellet were investigated. Copper chloride and zinc acetate were used as precursors along with oxalic acid as a precipitating reagent in methanol. Material characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and inductive coupled plasma with optical emission spectrometry (ICP-OES). FE-SEM showed the self-aligned Cu-doped ZnO nano-clusters with particles in the range of 40-45 nm. The doping of 0.5% of copper changes the electrical conductivity by an order of magnitude whereas the temperature coefficient of resistance (TCR) reduces with increase in copper wt% in ZnO. The material has shown an excellent sensitivity for the H{sub 2}, LPG and CO gases with limited temperature selectivity through the optimized operating temperature of 130, 190 and 220 deg. C for H{sub 2}, LPG and CO gases, respectively at 625 ppm gas concentration. The %SF was observed to be 1460 for H{sub 2} at 1% Cu doping whereas the 0.5% Cu doping offered %SF of 950 and 520 for CO and LPG, respectively. The response and recovery time was found to be 6 to 8 s and 16 s, respectively.

  19. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; use of a modified ultrasonic nebulizer for the analysis of low ionic-strength water by inductively coupled optical emission spectrometry

    USGS Publications Warehouse

    Harris, Carl M.; Litteral, Charles J.; Damrau, Donna L.

    1997-01-01

    The U.S. Geological Survey National Water Quality Laboratory has developed a method for the determination of dissolved calcium, iron, magnesium, manganese, silica, and sodium using a modified ultrasonic nebulizer sample-introduction system to an inductively coupled plasma-optical emission spectrometer. The nebulizer's spray chamber has been modified to avoid carryover and memory effects common in some conventional ultrasonic designs. The modified ultrasonic nebulizer is equipped with a high-speed rinse cycle to remove previously analyzed samples from the spray chamber without excessive flush times. This new rinse cycle decreases sample washout times by reducing carryover and memory effects from salt or analytes in previously analyzed samples by as much as 45 percent. Plasma instability has been reduced by repositioning the argon carrier gas inlet on the spray chamber and by directly pumping waste from the chamber, instead of from open drain traps, thereby maintaining constant pressure to the plasma. The ultrasonic nebulizer improves signal intensities, which are 8 to 16 times greater than for a conventional cross-flow pneumatic nebulizer, without being sensitive to clogging from salt buildup as in cross-flow nebulizers. Detection limits for the ultrasonic nebulizer are 4 to 18 times less than detection limits achievable using a cross-flow pneumatic nebulizer, with equivalent sample analysis time.

  20. Combustion diagnostics by laser spectrometry

    NASA Astrophysics Data System (ADS)

    Kitagawa, Kuniyuki; Morita, Shigeaki; Kodama, Kenji; Matsumoto, Kozo

    2009-03-01

    We have developed three different types of visualization methods for energy conversion systems by means of laser spectrometry. (1) Laser-induced fluorescence (LIF) spectroscopy and (2) laser ionization mass spectrometry (LIMS) have been applied to visualization of chemical species in combustion fields of flames. (3) Near-infrared laser absorption spectroscopy has been used for visualization of water in a polymer electrolyte fuel cell (PEFC). Complex physicochemical processes in the energy conversion systems have been revealed by laser spectrometry.

  1. Quantitative biomedical mass spectrometry

    NASA Astrophysics Data System (ADS)

    de Leenheer, Andrép; Thienpont, Linda M.

    1992-09-01

    The scope of this contribution is an illustration of the capabilities of isotope dilution mass spectrometry (IDMS) for quantification of target substances in the biomedical field. After a brief discussion of the general principles of quantitative MS in biological samples, special attention will be paid to new technological developments or trends in IDMS from selected examples from the literature. The final section will deal with the use of IDMS for accuracy assessment in clinical chemistry. Methodological aspects considered crucial for avoiding sources of error will be discussed.

  2. Bioaffinity Mass Spectrometry Screening.

    PubMed

    Yang, Ben; Feng, Yun Jiang; Vu, Hoan; McCormick, Brendan; Rowley, Jessica; Pedro, Liliana; Crowther, Gregory J; Van Voorhis, Wesley C; Forster, Paul I; Quinn, Ronald J

    2016-02-01

    Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS or ESI-FTMS) was used to screen 192 natural product extracts and a 659-member natural product-based fragment library for bindings to a potential malaria drug target, Plasmodium falciparum Rab11a (PfRab11a, PF13_0119). One natural product extract and 11 fragments showed binding activity. A new natural product, arborside E, was identified from the active extract of Psydrax montigena as a weak binder. Its binding activity and inhibitory activity against PfRab11a were confirmed by ESI-FTMS titration experiments and an orthogonal enzyme assay. PMID:26773071

  3. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  4. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  5. Isotope dilution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Heumann, Klaus G.

    1992-09-01

    In the past isotope dilution mass spectrometry (IDMS) has usually been applied using the formation of positive thermal ions of metals. Especially in calibrating other analytical methods and for the certification of standard reference materials this type of IDMS became a routine method. Today, the progress in this field lies in the determination of ultra trace amounts of elements, e.g. of heavy metals in Antarctic ice and in aerosols in remote areas down to the sub-pg g-1 and sub-pg m-3 levels respectively, in the analysis of uranium and thorium at concentrations of a few pg g-1 in sputter targets for the production of micro- electronic devices or in the determination of sub-picogram amounts of230Th in corals for geochemical age determinations and of226Ra in rock samples. During the last few years negative thermal ionization IDMS has become a frequently used method. The determination of very small amounts of selenium and technetium as well as of other transition metals such as vanadium, chromium, molybdenum and tungsten are important examples in this field. Also the measurement of silicon in connection with a re-determination of Avogadro's number and osmium analyses for geological age determinations by the Re/Os method are of special interest. Inductively-coupled plasma mass spectrometry is increasingly being used for multi-element analyses by the isotope dilution technique. Determinations of heavy metals in samples of marine origin are representative examples for this type of multi-element analysis by IDMS. Gas chromatography-mass spectrometry systems have also been successfully applied after chelation of metals (for example Pt determination in clinical samples) or for the determination of volatile element species in the environment, e.g. dimethyl sulfide. However, IDMS--specially at low concentration levels in the environment--seems likely to be one of the most powerful analytical methods for speciation in the future. This has been shown, up to now, for species of

  6. Characterization and determination of 28 elements in fly ashes collected in a thermal power plant in Argentina using different instrumental techniques

    NASA Astrophysics Data System (ADS)

    Marrero, Julieta; Polla, Griselda; Jiménez Rebagliati, Raúl; Plá, Rita; Gómez, Darío; Smichowski, Patricia

    2007-02-01

    Different techniques were selected for comprehensive characterization of seven samples of fly ashes collected from the electrostatic precipitator of the San Nicolás thermal power plant (Buenos Aires, Argentina). Particle size was measured using laser based particle size analyzer. X-ray diffraction powder (XRD) analysis and scanning electron microscopy (SEM) were used to characterize the mineral phase present in the matrix consisting basically of aluminosilicates and large amounts of amorphous material. The predominant crystalline phases were mullite and quartz. Major and minors elements (Al, Ca, Cl, Fe, K, Mg, Na, S, Si and Ti) were detected by energy dispersive X-ray analysis (EDAX). Trace elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, V and Zn) content was quantified by inductively coupled plasma optical emission spectrometry (ICP OES). Different acid mixtures and digestion procedures were compared for subsequent ICP OES measurements of the dissolved samples. The digestion procedures used were: i) a mixture of FH + HNO 3 + HClO 4 (open system digestion); ii) a mixture of FH + HNO 3 (MW-assisted digestion); iii) a mixture of HF and aqua regia (MW-assisted digestion). Instrumental neutron activation analysis (INAA) was employed for the determination of As, Ba, Co, Cr, Ce, Cs, Eu, Fe, Gd, Hf, La, Lu, Rb, Sb, Sc, Sm, Ta, Tb, Th, U and Yb. The validation of the procedure was performed by the analysis of two certified materials namely, i) NIST 1633b, coal fly ash and ii) GBW07105, rock. Mean elements content spanned from 41870 μg g - 1 for Fe to 1.14 μg g - 1 for Lu. The study showed that Fe (41870 μg g - 1 ) ≫ V (1137 μg g - 1 ) > Ni (269 μg g - 1 ) > Mn (169 μg g - 1 ) are the main components. An enrichment, with respect to crustal average, in many elements was observed especially for As, V and Sb that deserve particular interest from the environmental and human health point of view.

  7. Predictive complexation models of the impact of natural organic matter and cations on scaling in cooling water pipes: A case study of power generation plants in South Africa

    NASA Astrophysics Data System (ADS)

    Bosire, G. O.; Ngila, J. C.; Mbugua, J. M.

    This work discusses simulative models of Ca and Mg complexation with natural organic matter (NOM), in order to control the incidence of scaling in pipes carrying cooling water at the Eskom power generating stations in South Africa. In particular, the paper reports how parameters such as pH and trace element levels influence the distribution of scaling species and their interactions, over and above mineral phase saturation indices. In order to generate modelling inputs, two experimental scenarios were created in the model solutions: Firstly, the trace metals Cu, Pb and Zn were used as markers for Ca and Mg complexation to humic acid and secondly the effect of natural organic matter in cooling water was determined by spiking model solutions. Labile metal ions and total elements in model solutions and water samples were analysed by square wave anodic stripping voltammetry and inductively coupled plasma optical emission spectrometry (ICP-OES), respectively. ICP-OES results revealed high levels of K, Na, S, Mg and Ca and low levels of trace elements (Cd, Se, Pb, Cu, Mn, Mo, Ni, Al and Zn) in the cooling water samples. Using the Tipping and Hurley's database WHAM in PHREEQC format (T_H.DAT), the total elemental concentrations were run as inputs on a PHREEQC code, at pH 6.8 and defined charge as alkalinity (as HCO3-) For model solutions, PHREEQC inputs were based on (i) free metal differences attributed to competitive effect of Ca and the effect of Ca + Mg, respectively; (ii) total Ca and Mg used in the model solutions and (iii) alkalinity described as hydrogen carbonate. Anodic stripping peak heights were used to calculate the concentration of the free/uncomplexed/labile metal ions (used as tracers) in the model solutions. The objective of modelling was to describe scaling in terms of saturation indices of mineral phases. Accordingly, the minerals most likely to generate scale were further simulated (over a range of pH (3-10) to yield results that mimicked changing p

  8. Concurrent Sr/Ca Ratios and Bomb Test 14C Records from a Porites evermanni Colony on Kure Atoll: SST, Climate Change, Ocean Circulation and Management Applications

    NASA Astrophysics Data System (ADS)

    Covarrubias, S.; Potts, D.; Siciliano, D.; Andrews, A.; Franks, R.

    2013-12-01

    Coral reefs near their latitudinal and ecological limits may be affected disproportionately by global climate changes, especially by changing sea surface temperatures (SST's). One such reef is Kure Atoll, the northernmost reef in the Hawaiian chain. Kure Atoll experiences dramatic temperature and seasonal differences throughout the year. Tracking these fluctuations is important for understanding recent physical forces affecting coral growth in such marginal reefs, and for predicting likely responses to future climate and oceanic changes. We used Sr/Ca ratios of a 50cm Porites evermanni coral core collected in Kure (September 2002) as a SST proxy for reconstructing a temperature timescale spanning the length of the core (~62 years). After cutting a 5 mm thick slab through the center growth axis and X-raying it to identify annual density banding, we extracted 4 equally-spaced samples from each annual increment to quantify, seasonal, inter-annual, and decadal SST patterns. We measured Sr and Ca concentrations by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). We then converted Sr/Ca ratios (mmol/mol) to SST using published equations, and calibrated the more recent SST estimates against satellite-based SST imagery and instrumental records from Midway Atoll (ca. 90 km to SE). We coupled the ICP-OES data with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) scans along the core to provide higher temporal resolution for interpreting intra-seasonal and inter-seasonal trends. Higher resolution of temperature dating can help us interpret strong inter-seasonal changes not readily seen with low resolution measurements, giving us the ability to track temperature anomalies at interannual and decadal timescales, such as El Niño/Southern Oscillation or La Niña/North Pacific Decadal Oscillation. Further, the SST signature from the Sr/Ca analyses are being used in conjunction with bomb radiocarbon signals in order to establish a complete

  9. Apparatus for studying premixed laminar flames using mass spectrometry and fiber-optic spectrometry

    NASA Astrophysics Data System (ADS)

    Olsson, Jim O.; Andersson, Lars L.; Lenner, Magnus; Simonson, Margaret

    1990-03-01

    An integrated flat-flame/ microprobe sampling quadrupole mass spectrometer system, complemented by optical spectrometry based on optical fibers, is presented. The short microprobe sampling line (total 25 cm) is directly connected to an open ion source closely flanked by two nude cryopumps (900 l/s) yielding a background pressure of 10-9 Torr and a sampling pressure of about 10-5 Torr. Due to this improved microprobe system, mass spectrometry can be used for analysis of stable species (including fuel, O2, H2O, CO2, CO, and Ar) with less disturbance of the sample than with a conventional microprobe with a back pressure of about 1 Torr. Optical spectrometry is used for the study of emission from important radical species (such as C2, CH, and OH). The system is proposed as a complement to more conventional flat-flame/MBMS systems in which the sampling cone can effect the experimental system. Details are provided concerning the configuration of the whole system ranging from gas delivery to data evaluation. Test data are presented for a 16% methanol/68% oxygen/16% argon flame studied at a pressure of 40 Torr, to elucidate the special features of this system.

  10. Developments in ion mobility spectrometry-mass spectrometry.

    PubMed

    Collins, D C; Lee, M L

    2002-01-01

    Ion mobility spectrometry (IMS) has been used for over 30 years as a sensitive detector of organic compounds. The following is a brief review of IMS and its principles with an emphasis on its usage when coupled to mass spectrometry. Since its inception, IMS has been interfaced with quadrupole, time-of-flight, and Fourier-transform ion cyclotron resonance mass spectrometry. These hybrid instruments have been employed for the analysis of a variety of target analytes, including biomolecules, explosives, chemical warfare degradation products, and illicit drugs. PMID:11939214

  11. Determination of inorganic contaminants in polyamide textiles used for manufacturing sport T-shirts.

    PubMed

    Matoso, Erika; Cadore, Solange

    2012-01-15

    An acid microwave closed vessel digestion method was used for the determination of inorganic contaminants (Sb, As, Pb, Cd, Cr, Co, Cu, Ni and Hg) in polyamide raw materials (pellets) and textiles by inductively coupled plasma optical emission spectrometry (ICP OES). The initial tests were carried out with samples of polyamide pellets, which is the main raw material used to manufacture sport textiles. The recovery factors obtained were 94.4-105.7% with relative standard deviation (RSD) of 0.5-2.2%. The proposed method was evaluated by addition and recovery tests and also using certified reference materials (ERM-BCR680 and ERM-BCR681) showing good accuracy. The residual acidity was about 4% HNO(3) (w/w) and the quantification limits were from 0.1 to 6.6 mg kg(-1). After the development of these parameters for the raw material, the method was applied to textile samples from different sport fabrics obtained from three different brands. The residual carbon after sample digestion was 0.2% (w/w) and the most significant result was obtained for chromium, 901 mg kg(-1), in black fabric. Lixiviation tests using synthetic sweat and temperature were carried out on two black samples, showing that only 0.3% of the initial concentration migrated to the solution. PMID:22265532

  12. Reductive spectrophotometry of divalent tin sensitization on soda lime glass

    NASA Astrophysics Data System (ADS)

    Bejugam, Vinith; Wei, Xingfei; Roper, D. Keith

    2016-07-01

    Rapid and facile evaluation of tin (II) sensitization could lead to improved understanding of metal deposition in electroless (EL) plating. This report used a balanced redox reaction between 3,3‧,5,5‧-tetramethylbenzidine dihydrochloride (TMB-HCL) and N-bromosuccinimide (NBS) to evaluate effects of sensitization conditions (i.e., sensitization time, analyte concentration, aqueous immersion, and acid content) on the accumulated mass of surface-associated divalent tin ion. The accumulated mass of tin (II) increased as the sensitization time increased up to 30 s in proportion to aqueous tin (II) chloride concentrations between 2.6 and 26 mM at a trifluoroacetic acid (TFA) content of 68 mM. The average mass peaked at 7.3 nanomoles (nmol) per cm2 after a 5 s aqueous immersion post-sensitization, and then decreased with increasing aqueous immersion post-sensitization. The total average tin (II) + tin (IV) accumulated on soda lime glass measured by inductively coupled plasma optical emission spectrometry (ICP-OES) was 17% higher at 30 s sensitization, suggesting a fraction of the tin (II) present may have oxidized to tin (IV). These results indicated that in situ spectrophotometric evaluation of tin (II) could support development of EL plating for electronics, catalysis, and solar cells.

  13. Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland.

    PubMed

    Mleczek, M; Niedzielski, P; Kalač, P; Budka, A; Siwulski, M; Gąsecka, M; Rzymski, P; Magdziak, Z; Sobieralski, K

    2016-08-01

    The aim of this work was to compare 10 mostly edible aboveground and 10 wood-growing mushroom species collected near a heavily trafficked road (approximately 28,000 vehicles per 24 h) in Poland with regard to their capacity to accumulate 26 trace elements (Ag, Al, As, Au, B, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Ge, In, Li, Mn, Ni, Pb, Re, Sb, Se, Sr, Te, Tl, and Zn) in their fruit bodies in order to illustrate mushroom diversity in element accumulation. All analyses were performed using an inductively coupled plasma optical emission spectrometry (ICP-OES) spectrometer in synchronous dual view mode. The aboveground species had significantly higher levels of 12 elements, including Ag, As, Pb, and Se, compared to the wood-growing species. An opposite relationship was observed only for Au, Ba, and Sr. The results of principal component analysis (PCA) and hierarchical cluster analysis (HCA) implied some new relationships among the analyzed species and elements. Of the analyzed mushroom species, lead content in Macrolepiota procera would seem to pose a health risk; however, at present knowledge regarding lead bioaccessibility from mushrooms is quite limited. PMID:27155831

  14. Heavy metal and trace element bioaccumulation in target tissues of four edible fish species from the Danube River (Serbia).

    PubMed

    Subotić, Srđan; Spasić, Slađana; Višnjić-Jeftić, Zeljka; Hegediš, Aleksandar; Krpo-Ćetković, Jasmina; Mićković, Branislav; Skorić, Stefan; Lenhardt, Mirjana

    2013-12-01

    Pikeperch (Sander lucioperca), European catfish (Silurus glanis), burbot (Lota lota), and common carp (Cyprinus carpio) were collected from the Danube River (Belgrade section, Serbia), and samples of liver, muscle, and gills were analyzed for Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, and Zn using inductively coupled plasma optical emission spectrometry (ICP-OES) to highlight the importance of species and tissue selection in monitoring research, contaminant studies, and human health research. The Kruskal-Wallis test revealed significant differences between fish species in regard to metal levels in liver, muscle, and gills. The principal component analysis (PCA) indicated that the studied fish species could be grouped on the basis of the level of analyzed elements in liver and gills. The Mann-Whitney test showed two subsets (one comprising two piscivorous species, pikeperch and catfish, and the other, two polyphagous species, burbot and carp) in regard to Cr and Hg levels in liver (higher levels in piscivorous species), as well as B, Fe, and Hg in gills (B and Fe with higher levels in polyphagous and Hg in piscivorous species), and As in muscle (higher levels in polyphagous species). Carp had distinctly higher levels of Cd, Cu, and Zn in liver in comparison to other three species. None of the elements exceeded the maximum acceptable concentrations (MAC). However, since Hg levels are close to the prescribed MAC levels, the consumption of these fishes can be potentially hazardous for humans. PMID:24054751

  15. Heavy metals in cigarettes for sale in Spain.

    PubMed

    Rubio Armendáriz, Carmen; Garcia, Tiago; Soler, Alfredo; Gutiérrez Fernández, Ángel José; Glez-Weller, Dailos; Luis González, Gara; de la Torre, Arturo Hardisson; Revert Gironés, Consuelo

    2015-11-01

    The aim of the present study was to determine the concentrations of eight metals (Al, Cd, Co, Cr, Mn, Ni, Pb, Sr) in 33 cigarette brands for sale in Spain. Samples were analysed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Mean values obtained were 428 µg Al/g, 0.810 µg Cd/g, 0.558 µg Co/g, 1.442 µg Cr/g, 112.026 µg Mn/g, 2.238 µg Ni/g, 0.602 µg Pb/g and 82.206 µg Sr/g. Statistically significant differences were observed with respect to concentrations of Co (0.004), Cr (0.045), Mn (0.005) and Sr (0.005) between black and blond tobacco and between levels of Mn (0.027) among manufacturers. Considering a Cd inhalation rate of 10% and a Cd absorption rate of 50%, absorption of Cd for smokers of 30 cigarettes/day was estimated at 0.75 µg Cd/day. An inhalation rate of 2-6% and an absorption rate of 86% were considered for Pb, Pb absorption in smokers of 30 cigarettes/day was therefore 0.18-0.54 μg/day. In view of the significant toxic effects of these metals, quantification and control of their concentrations in this drug are of the utmost importance. PMID:26492401

  16. Screening of Trace Elements in Hair of the Female Population with Different Types of Cancers in Wielkopolska Region of Poland

    PubMed Central

    Czerny, Bogusław; Krupka, Krzysztof; Ożarowski, Marcin; Seremak-Mrozikiewicz, Agnieszka

    2014-01-01

    Background. Cancer constitutes a major health problem worldwide. Thus, search for reliable and practical markers of the disease process remains the key issue of the diagnostic process. Objectives. The study aims at linking the trace element status of an organism, assessed by hair analysis, with the occurrence of cancer diseases. Material and Methods. Hair samples were collected from 299 patients with cancer diseases confirmed by a histopathological test and from 100 controls. Cancer patients were divided into three groups, depending on cancer type: hormone-dependent cancer, cancer of the alimentary tract, and cancer with high glycolytic activity. Mineral element analysis of hair was performed using an atomic emission spectrophotometer with inductively coupled plasma (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Results. Statistically significantly lower concentrations of selenium, zinc, copper, germanium and boron, iron, and magnesium were observed in the three groups of cancer patients. Disturbance in the axis glucose-insulin and changes in concentrations of heavy metals and toxic elements were also noted. Conclusions. It seems safe to conclude that our results confirmed usefulness of hair element analysis in screening tests for the assessment of the biomarker of various cancer diseases in a female population. PMID:25580464

  17. Construction of inorganic elemental fingerprint and multivariate statistical analysis of marine traditional Chinese medicine Meretricis concha from Rushan Bay

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Zheng, Kang; Zhao, Fengjia; Zheng, Yongjun; Li, Yantuan

    2014-08-01

    Meretricis concha is a kind of marine traditional Chinese medicine (TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, the elemental contents of M. concha from five sampling points in Rushan Bay have been determined by means of inductively coupled plasma optical emission spectrometry (ICP-OES). Based on the contents of 14 inorganic elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn), the inorganic elemental fingerprint which well reflects the elemental characteristics was constructed. All the data from the five sampling points were discriminated with accuracy through hierarchical cluster analysis (HCA) and principle component analysis (PCA), indicating that a four-factor model which could explain approximately 80% of the detection data was established, and the elements Al, As, Cd, Cu, Ni and Pb could be viewed as the characteristic elements. This investigation suggests that the inorganic elemental fingerprint combined with multivariate statistical analysis is a promising method for verifying the geographical origin of M. concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.

  18. Selective solid-phase extraction using oxidized activated carbon modified with triethylenetetramine for preconcentration of metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Chang, Xijun; Li, Zhenhua; He, Qun

    2010-02-01

    A new selective solid-phase extractant using activated carbon as matrix which was purified, oxidized and modified by triethylenetetramine (AC-TETA) was prepared and characterized by FT-IR spectroscopy. At pH 4, quantitative extraction of trace Cr(III), Fe(III) and Pb(II) was obtained and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 0.5 mol L -1 HCl. The maximum static adsorption capacity of sorbent for Cr(III), Fe(III) and Pb(II) was 34.6, 36.5 and 51.9 mg g -1, respectively. The time of quantitative adsorption was less than 2 min. The detection limits of the method was found to be 0.71, 0.35 and 0.45 ng mL -1 for Cr(III), Fe(III) and Pb(II), and the relative standard deviation (RSD) was 3.7%, 2.2% and 2.5%, respectively. Moreover, the method was free from interference with common coexiting ions. The method was also successfully applied to the preconcentration of trace Cr(III), Fe(III) and Pb(II) in synthetic samples and a real sample with satisfactory results.

  19. Comparison of various digestion procedures in chemical analysis of spent hydrodesulfurization catalyst.

    PubMed

    Szymczycha-Madeja, Anna; Mulak, Władysława

    2009-05-30

    Four digestion procedures have been tested to verify their applicability to the determination of major and trace elements (Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr, Ti, V, Zn) in a spent catalyst by inductively coupled plasma optical emission spectrometry (ICP-OES). Two digestion procedures have been carried out in a closed microwave system using: (1) HCl+HNO(3)+H(2)O(2); (2) HNO(3)+HF, whereas the remaining two in an open system using: (1) aqua regia+NH(4)F, HNO(3), H(2)SO(4); (2) HF+HClO(4), H(3)BO(3), HCl. Among these four procedures the microwave digestion system (1) gave the best recovery results. The quality of the analytical results has been evaluated by the analysis of the CTA-FFA-1 Fine Fly Ash Certified Reference Material. A good agreement between the measured and reference values was found for almost all elements. The precision was assessed from the replicate analyses of microwave digestion (1) system and was found to be less than 5% of the relative standard deviation (R.S.D.). PMID:18849117

  20. Human contribution to trace elements in urban areas as measured in holm oak (Quercus ilex L.) bark.

    PubMed

    Minganti, Vincenzo; Drava, Giuliana; Giordani, Paolo; Malaspina, Paola; Modenesi, Paolo

    2016-06-01

    The effect of human activities on the presence of trace elements in the atmosphere was evaluated by analyzing samples of holm oak bark, collected in Italy in a large city, in a small town, and in a reference area, scarcely inhabited. In all cases, point sources of pollution were excluded (e.g., industries and incinerators). The concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V, and Zn were measured using inductively coupled plasma optical emission spectrometry (ICP-OES). The element concentrations in the small town are not different from the reference area, except for Pb and Cu, while the samples collected in the large city show higher concentrations of Co, Cu, Fe, Ni, Pb, V, and Zn with respect to the rural area. In particular, the Pb levels in the large city are approximately 16 times higher than in the reference site, and five times higher than in the small town. Most element concentrations are correlated in the large city, while in the reference site, only a few significant correlations between elements were found. Even in the absence of specific sources of pollution, populations living in big cities are exposed to higher concentrations of trace elements than those living in rural environments or in small urban centers. PMID:27000118

  1. Synthesis and characterization of silver nanoparticles from Alpinia calcarata by Green approach and its applications in bactericidal and nonlinear optics

    NASA Astrophysics Data System (ADS)

    Pugazhendhi, S.; Kirubha, E.; Palanisamy, P. K.; Gopalakrishnan, R.

    2015-12-01

    Development of green route for the synthesis of nanoparticles with plant extracts plays a very important role in nanotechnology without any toxicity chemicals. Herein we report a new approach to synthesize silver nanoparticles (AgNPs) using aqueous extract of Alpinia calcarata root as a reducing as well as stabilizing agent. The crystal structure and purity of the synthesized AgNPs were studied using Powder X-ray Diffraction analysis. The Surface Plasmon Resonance bands of synthesized silver nanoparticles have been obtained and monitored using UV-Visible spectrum. The morphologies of the AgNPs were analyzed using High resolution transmission electron microscopy (HRTEM). The elements present in the A. calcarata extract were determined by the inductively coupled plasma-optical emission Spectrometry (ICP-OES) and Fourier transform infrared spectroscopy (FTIR). Silver nanoparticles from A. calcarata possess very good antimicrobial activity which was confirmed by resazurin dye reduction assay method and thus it is a potential source of antimicrobial agent. The synthesized Ag nanoparticles exhibit good optical nonlinearity and the nonlinear optical studies have been carried out by Z-scan technique.

  2. The Role of Ligand in the Mechanical Properties of Self-Assembled Nanoparticle Films

    NASA Astrophysics Data System (ADS)

    Griesemer, Sean; You, Sean; Kanjanaboos, Pongsakorn; Barry, Edward; Bu, Wei; Rice, Stuart; Lin, Binhua

    Self-assembled films of nanoparticles (NP) capped with ligands at the air/water interface exhibit rich mechanical responses to compression including hashing, wrinkling, and folding, which are the combined result of particle- and ligand-based interactions. Previous studies have shown that a high concentration of ligands inhibits wrinkling and folding, but the mechanism remains elusive. By using inductively coupled plasma optical emission spectrometry (ICP-OES) to measure the ligand concentration of our NP solutions and then back-adding excess ligands at controlled amounts, we precisely control ligand-based interactions, enabling an investigation of how these interactions guide self-assembly and correspondingly on mechanical properties. Our experiments reveal that increasing the ligand concentration of the films causes the formation of free-ligand islands in addition to an increase in the interparticle separation. These effects are correlated with the previously observed inhibition of wrinkling and folding, as well a decrease in the dilatational and shear moduli. This work was supported by the University of Chicago Materials Research Science and Engineering Center, NSF-DMR-1420709.

  3. Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius.

    PubMed

    Kojta, Anna K; Falandysz, Jerzy

    2016-06-01

    The aim of this study was to investigate and compare the levels of eight metallic elements in the fruiting bodies of Bay Bolete (Boletus badius; current name Imleria badia) collected from ten sites in Poland to understand better the value of this popular mushroom as an organic food. Bay Bolete fruiting bodies were collected from the forest area near the towns and villages of Kętrzyn, Poniatowa, Bydgoszcz, Pelplin, Włocławek, Żuromin, Chełmno, Ełk and Wilków communities, as well as in the Augustów Primeval Forest. Elements such as Ca, Fe, K, Mg, Mn, Na and Zn were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-OES), and mercury by cold vapor atomic absorption spectrometry (CV-AAS). This made it possible to assess the nutritional value of the mushroom, as well as possible toxicological risks associated with its consumption. The results were subjected to statistical analysis (Kruskal-Wallis test, cluster analysis, principal component analysis). PMID:26830580

  4. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering.

    PubMed

    Le, Thi Duy Hanh; Bonani, Walter; Speranza, Giorgio; Sglavo, Vincenzo; Ceccato, Riccardo; Maniglio, Devid; Motta, Antonella; Migliaresi, Claudio

    2016-02-01

    Silicon plays an important role in bone formation and maintenance, improving osteoblast cell function and inducing mineralization. Often, bone deformation and long bone abnormalities have been associated with silica/silicon deficiency. Diatomite, a natural deposit of diatom skeleton, is a cheap and abundant source of biogenic silica. The aim of the present study is to validate the potential of diatom particles derived from diatom skeletons as silicon-donor materials for bone tissue engineering applications. Raw diatomite (RD) and calcined diatomite (CD) powders were purified by acid treatments, and diatom microparticles (MPs) and nanoparticles (NPs) were produced by fragmentation of purified diatoms under alkaline conditions. The influence of processing on the surface chemical composition of purified diatomites was evaluated by X-ray photoelectron spectroscopy (XPS). Diatoms NPs were also characterized in terms of morphology and size distribution by transmission electron microscopy (TEM) and Dynamic light scattering (DLS), while diatom MPs morphology was analyzed by scanning electron microscopy (SEM). Surface area and microporosity of the diatom particles were evaluated by nitrogen physisorption methods. Release of silicon ions from diatom-derived particles was demonstrated using inductively coupled plasma optical emission spectrometry (ICP/OES); furthermore, silicon release kinetic was found to be influenced by diatomite purification method and particle size. Diatom-derived microparticles (MPs) and nanoparticles (NPs) showed limited or no cytotoxic effect in vitro depending on the administration conditions. PMID:26652398

  5. Laser ablation methods for analysis of urinary calculi: Comparison study based on calibration pellets

    NASA Astrophysics Data System (ADS)

    Štěpánková, K.; Novotný, K.; Vašinová Galiová, M.; Kanický, V.; Kaiser, J.; Hahn, D. W.

    2013-03-01

    Methods based on laser ablation, such as Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass/Optical Emission Spectrometry (LA-ICP-MS/OES) are particularly suitable for urinary calculi bulk and micro analysis. Investigation of spatial distribution of matrix and trace elements can help to explain their emergence and growth. However, quantification is still very problematic and these methods are often used only for qualitative elemental mapping. There are no commercially available standards, which would correspond to the urinary calculi matrix. Internal standardization is also difficult, mainly due to different crystalline phases in one kidney stone. The aim of this study is to demonstrate the calibration capabilities and examine the limitations of laser ablation based techniques. Calibration pellets were prepared from powdered human urinary calculi with phosphate, oxalate and urate matrix. For this comparative study, the most frequently used laser-ablation based analytical techniques were chosen, such as LIBS and LA-ICP-MS. Moreover, some alternative techniques such as simultaneous LIBS-LA-ICP-OES and laser ablation LA-LIBS were also utilized.

  6. Solid solution between Al-ettringite and Fe-ettringite (Ca{sub 6}[Al{sub 1-x}Fe{sub x}(OH){sub 6}]{sub 2}(SO{sub 4}){sub 3}.26H{sub 2}O)

    SciTech Connect

    Moeschner, Goeril Lothenbach, Barbara; Winnefeld, Frank; Ulrich, Andrea; Figi, Renato; Kretzschmar, Ruben

    2009-06-15

    The solid solution between Al- and Fe-ettringite Ca{sub 6}[Al{sub 1-x}Fe{sub x}(OH){sub 6}]{sub 2}(SO{sub 4}){sub 3}.26H{sub 2}O was investigated. Ettringite phases were synthesized at different Al/(Al + Fe)-ratios (= X{sub Al,total}), so that X{sub Al} increased from 0.0 to 1.0 in 0.1 unit steps. After 8 months of equilibration, the solid phases were analyzed by X-ray diffraction (XRD) and thermogravimetric analysis (TGA), while the aqueous solutions were analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). XRD analyses of the solid phases indicated the existence of a miscibility gap between X{sub Al,total} = 0.3-0.6. Some of the XRD reflections showed two overlapping peaks at these molar ratios. The composition of the aqueous solutions, however, would have been in agreement with both, the existence of a miscibility gap or a continuous solid solution between Al- and Fe-ettringite, based on thermodynamic modeling, simulating the experimental conditions.

  7. Jujube honey from China: physicochemical characteristics and mineral contents.

    PubMed

    Zhou, Juan; Suo, Zhirong; Zhao, Pinpin; Cheng, Ni; Gao, Hui; Zhao, Jing; Cao, Wei

    2013-03-01

    We investigated and compared the physicochemical properties (moisture, color, ash, pH, electrical conductivity, free acidity, lactonic acidity, total acidity, fructose, glucose, sucrose, diastase activity, and HMF) and mineral contents (Al, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, As, Cd, Pb, and Zn), as well as total proline and total protein contents of 23 jujube honey samples collected from different regions of China. The mineral content was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The physicochemical values were in the range of approved limits (conforming to EU legislation) in all 23 samples. The physicochemical properties of jujube honey showed significant variations among samples. The mean pH value of the jujube honeys was 6.71. The most abundant minerals were potassium, calcium, sodium, and magnesium, ranging between 1081.4 and 2642.9, 97.1 and 194.2, 7.79 and 127.8, and 10.36 and 24.67 mg/kg, respectively, and potassium made up 71% of the total mineral content. This study demonstrated remarkable variation in physicochemical parameters and mineral contents of jujube honey, mainly depending on its geographic source. PMID:23458746

  8. Assessment and distribution of antimony in soils around three coal mines, Anhui, China

    USGS Publications Warehouse

    Qi, C.; Liu, Gaisheng; Kang, Y.; Lam, P.K.S.; Chou, C.

    2011-01-01

    Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasmaoptical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg-1, which is lower than in coals from this region (6.2 mg kg-1). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5-20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils. ?? 2011 Air & Waste Management Association.

  9. Spatial distribution and enrichment assessment of heavy metals in surface sediments from Baixada Santista, Southeastern Brazil.

    PubMed

    Kim, Bianca Sung Mi; Salaroli, Alexandre Barbosa; Ferreira, Paulo Alves de Lima; Sartoretto, Juliê Rosemberg; de Mahiques, Michel Michaelovich; Figueira, Rubens Cesar Lopes

    2016-02-15

    The Baixada Santista, besides being an important estuarine system, is responsible for most of the international trade and economic development in the region because of the Santos Port and the Cubatão Industrial Complex. The aim of this study is to assess heavy metal contamination of the Santos São Vicente Estuary using enrichment factors (EFs) and sediment quality guidelines (SQGs). Thus, superficial sediment samples were subjected to acid digestion and analyzed (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sc, V, and Zn) by inductively coupled plasma optical emission spectrometry (ICP-OES). The results indicated an absence of contamination, with the EFs indicating moderate enrichment. As and Pb presented higher enrichment probably due to the natural processes of weathering and sedimentation, and the influence of human activity. This conjoint analysis showed that potentially polluting activities are of concern as the highest values converge near the Cubatão Industrial Complex, which correspond to intense urbanization and industrial activity. PMID:26774439

  10. Modification of Ca isotope and trace metal composition of the major matrices involved in shell formation of Mytilus edulis

    NASA Astrophysics Data System (ADS)

    Heinemann, Agnes; Fietzke, Jan; Eisenhauer, Anton; Zumholz, Karsten

    2008-01-01

    In this study we present the first combined investigation into the composition of the major matrices involved in calcification processes (surrounding water, extrapallial fluid, aragonite, and calcite) of Mytilus edulis with respect to their calcium isotope (δ44/40Ca) and elemental compositions (Sr/Ca and Mg/Ca). Our aim was to examine the suitability of Mytilus edulis as a proxy archive and to contribute to the understanding of the process of biomineralization. Mytilus edulis specimens were live collected from the Schwentine Estuary, Kiel Fjord, and North Sea (Sylt). δ44/40Ca was determined by thermal ionization mass spectrometry (TIMS) accompanied by measurements of Mg/Ca and Sr/Ca using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The elemental and isotopic compositions of the investigated matrices showed systematic offsets. The carbonates are strongly depleted in their magnesium and strontium concentrations and fractionated toward lighter calcium isotope compositions relative to the surrounding Schwentine Estuary water. The opposite is observed for the extrapallial fluid (EPF). Our findings extend the results of previous studies reporting a strong biological control and the interaction of different environmental conditions influencing biomineralization. Future studies should focus on the temporal development of the interrelation between the different matrices.

  11. Trace metals geochemistry of Bengkulu river and estuary

    NASA Astrophysics Data System (ADS)

    Firdaus, M. Lutfi; Darti, Puspa; Alwi, Wiwit; Swistoro, Eko; Sundaryono, Agus; Ruyani, Aceng

    2015-09-01

    Unique feature of Indonesian archipelago in addition to its location that settled between the Pacific Ocean and the Indian Ocean has made Indonesian seas as important parts of the world ocean system. In contrast, research on Indonesian seas including its marine geochemistry is scarce. Research findings have proven that Indonesian seas and its characteristics, such as Indonesian throughflow, are important in the seawater thermohaline circulation that affect world's global climate. The transports of mass and heat from the Pacific into the Indian Ocean are crucial for the oceanic circulation and sea surface temperatures. It is only until recently known that water masses movement could be traced using chemical elements such as Zr and Hf. In modern ocean, sources of these chemicals are mostly from continents. Chemicals had been brought to the oceans through river, estuary, coastal and eventually open seawater. We have analyzed selected important trace metals of Bengkulu river and estuary starting from upper stream of Bengkulu River to coastal seawater of the Indian Ocean. Concentrations of trace metals in the sample were determined by inductively coupled plasma - optical emission spectrometry (ICP-OES). Dissolved and labile particulate concentrations of Al, Fe, Mn, V, Sr and Zn are reported in this study.

  12. Green direct determination of mineral elements in artichokes by infrared spectroscopy and X-ray fluorescence.

    PubMed

    Mir-Marqués, Alba; Martínez-García, Maria; Garrigues, Salvador; Cervera, M Luisa; de la Guardia, Miguel

    2016-04-01

    Near infrared (NIR) and X-ray fluorescence (XRF) spectroscopy were investigated to predict the concentration of calcium, potassium, iron, magnesium, manganese and zinc in artichoke samples. Sixty artichokes were purchased from different Spanish areas (Benicarló, Valencia and Murcia). NIR and XRF spectra, combined with partial least squares (PLS) data treatment, were used to develop chemometric models for the prediction of mineral concentration. To obtain reference data, samples were mineralised and analysed by inductively coupled plasma optical emission spectrometry (ICP-OES). Coefficients of determination obtained for the regression between predicted values and reference ones for calcium, potassium, magnesium, iron, manganese and zinc were 0.61, 0.79, 0.53, 0.77, 0.54 and 0.60 for NIR and 0.96, 0.93, 0.80, 0.79, 0.76 and 0.90 for XRF, respectively. Both assayed methodologies, offer green alternatives to classical mineral analysis, but XRF provided the best results in order to be used as a quantitative screening method. PMID:26593585

  13. Determination of major, minor and trace elements in Glyceric Macerates and Mother Tinctures and in the starting plant materials.

    PubMed

    Malandrino, Mery; Giacomino, Agnese; Abollino, Ornella; Allio, Arianna; Toniolo, Rosanna; Colombo, Maria Laura

    2015-03-15

    Glyceric Macerates (GMs) and Mother Tinctures (MTs) are liquid preparations obtained from plant buds (for GMs) and flowers, leaves or roots (for MT) by extraction with a mixture of solvents. Their quality depends on the quality of the plant materials and on the preparation procedures. In this work we determined the concentrations of major, minor and trace elements in buds, flowers and other plant components and in the GMs and MTs obtained from them by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) after microwave mineralization. To the best of our knowledge, this procedure has been applied for the first time here to the analysis of buds. We have taken into account spectral interferences and other causes of errors. Analogies and differences with regard to the method reported by European Pharmacopoeia for heavy metal determination in herbal drugs have been highlighted. The experimental results have been interpreted with chemometric techniques. No significant contamination was detected during the manufacturing step. Element concentrations in GMs and MTs, taking into account their daily dosages, are lower than acceptable intake levels. PMID:25554479

  14. Heavy metals contamination in lipsticks and their associated health risks to lipstick consumers.

    PubMed

    Zakaria, Airin; Ho, Yu Bin

    2015-10-01

    This study aimed to determine the heavy metals (lead, cadmium, and chromium) concentration in lipsticks of different price categories sold in the Malaysian market and evaluate the potential health risks due to daily ingestion of heavy metals in lipsticks. A total of 374 questionnaires were distributed to the female staff in a public university in Malaysia in order to obtain information such as brand and price of the lipsticks, body weight, and frequency and duration of wearing lipstick. This information was important for the calculation of hazard quotient (HQ) in health risk assessment. The samples were extracted using a microwave digester and analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The concentrations of lead, cadmium, and chromium in lipsticks ranged from 0.77 to 15.44 mg kg(-1), 0.06-0.33 mg kg(-1), and 0.48-2.50 mg kg(-1), respectively. There was a significant difference of lead content in the lipsticks of different price categories. There was no significant non-carcinogenic health risk due to the exposure of these heavy metals through lipstick consumption for the prolonged exposure of 35 years (HQ < 1). PMID:26190304

  15. Development and certification of the new SRM 695 trace elements in multi-nutrient fertilizer

    USGS Publications Warehouse

    MacKey, E.A.; Cronise, M.P.; Fales, C.N.; Greenberg, R.R.; Leigh, S.D.; Long, S.E.; Marlow, A.F.; Murphy, K.E.; Oflaz, R.; Sieber, J.R.; Rearick, M.S.; Wood, L.J.; Yu, L.L.; Wilson, S.A.; Briggs, P.H.; Brown, Z.A.; Budahn, J.; Kane, P.F.; Hall, W.L., Jr.

    2007-01-01

    During the past seven years, several states within the US have enacted regulations that limit the amounts of selected non-nutritive elements in fertilizers. Internationally, several countries, including Japan, China, and Australia, and the European Union also limit the amount of selected elements in fertilizers. The elements of interest include As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn. Fertilizer manufacturers and state regulatory authorities, faced with meeting and verifying these limits, need to develop analytical methods for determination of the elements of concern and to validate results obtained using these methods. Until now, there were no certified reference materials available with certified mass fraction values for all elements of interest in a blended, multi-nutrient fertilizer matrix. A new standard reference material (SRM) 695 trace elements in multi-nutrient fertilizer, has been developed to help meet these needs. SRM 695 has recently been issued with certified mass fraction values for seventeen elements, reference values for an additional five elements, and information values for two elements. The certificate of analysis includes an addendum listing percentage recovery for eight of these elements, determined using an acid-extraction inductively-coupled plasma optical-emission spectrometry (ICP-OES) method recently developed and tested by members of the Association of American Plant Food Control Officials. ?? Springer-Verlag 2007.

  16. Chemical Speciation and Potential Mobility of Heavy Metals in the Soil of Former Tin Mining Catchment

    PubMed Central

    Ashraf, M. A.; Maah, M. J.; Yusoff, I.

    2012-01-01

    This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As. PMID:22566758

  17. Chemometric methods for studying the relationships between trace elements in laryngeal cancer and healthy tissues.

    PubMed

    Dobrowolski, R; Klatka, J; Brodnjak-Voncina, D; Trojanowska, A; Myśliwiec, D; Ostrowski, J; Remer, M

    2014-06-01

    A quick and reliable method for the evaluation and classification of two types of tissues is presented. Several chemometric methods were applied to evaluate multivariate data of the tissue samples with respect to the content of trace elements. The content of Pb, Al, Zn, Cd, Cu, Ni and Co was determined in samples of healthy and cancerous tissue obtained from 26 patients. Determination was done at milligram/kilogram level with inductively coupled plasma optical emission spectrometry (ICP-OES) and atomic absorption spectroscopy (AAS) techniques. Contents of trace metals in studied tissues are not normally distributed; however, normal distribution was confirmed for log values. There is a statistically significant difference in the content of Zn, Cd, Cu and Al (p<0.01) and Ni and Co (p<0.05) when healthy tissue is compared to cancerous one. Correlation between contents of trace elements for studied tissues was positive; the highest was found between Zn and Cu. A chemometric methodology seems to be a promising tool for classifications of the tissue samples. PMID:24838928

  18. Effects of Sulfate during CO2 Attack on Portland Cement and Their Impacts on Mechanical Properties under Geologic CO2 Sequestration Conditions.

    PubMed

    Li, Qingyun; Lim, Yun Mook; Jun, Young-Shin

    2015-06-01

    To investigate the effects of sulfate on CO2 attack on wellbore cement (i.e., chemical and mechanical alterations) during geologic CO2 sequestration (GCS), we reacted cement samples in brine with 0.05 M sulfate and 0.4 M NaCl at 95 °C under 100 bar of either N2 or supercritical CO2. The results were compared to those obtained from systems without additional sulfate at the same temperature, pressure, salinity, and initial brine pHs. After 10 reaction days, chemical analyses using scanning electron microscopy with a backscattered electron detector (SEM-BSE) and inductively coupled plasma optical emission spectrometry (ICP-OES) showed that the CO2 attack in the presence of additional sulfate was much less severe than that in the system without additional sulfate. The results from three-point bending tests also indicated that sulfate significantly mitigated the deterioration of the cement's strength and elastic modulus. In all our systems, typical sulfate attacks on cement via formation of ettringite were not observed. The protective effects of sulfate on cement against CO2 attack resulted from sulfate adsorption, coating of CaSO4 on the CaCO3 grains in the carbonated layer, or both, which inhibited dissolution of CaCO3. Findings from this study provide new, important information for understanding the integrity of wellbores at GCS sites and thus promote safer GCS operations. PMID:25938805

  19. Bioaccumulation of heavy metals in fish and Ardeid at Pearl River Estuary, China.

    PubMed

    Kwok, C K; Liang, Y; Wang, H; Dong, Y H; Leung, S Y; Wong, M H

    2014-08-01

    Sediment, fish (tilapia, Oreochromis mossambicus and snakehead, Channa asiatica), eggs and eggshells of Little Egrets (Egretta garzetta) and Chinese Pond Herons (Ardeola bacchus) were collected from Mai Po Ramsar site of Hong Kong, as well as from wetlands in the Gu Cheng County, Shang Hu County and Dafeng Milu National Nature Reserve of Jiangsu Province, China between 2004 and 2007 (n=3-9). Concentrations of six heavy metals were analyzed, based on inductively coupled plasma optical emission spectrometry (ICP-OES). Significant bioaccumulations of Cd (BAF: 165-1271 percent) were observed in the muscle and viscera of large tilapia and snakehead, suggesting potential health risks to the two bird species, as the fishes are the main preys of waterbirds. Significant (p<0.01) linear relationships were obtained between concentrations of Cd, Cr, Cu, Mn, Pb and Zn in the eggs and eggshells of various Ardeid species, and these regression models were used to extrapolate the heavy metal concentrations in the Ardeid eggs of Mai Po. Extrapolated concentrations are consistent with data in the available literature, and advocate the potential use of these models as a non-invasive sampling method for predicting heavy metal contamination in Ardeid eggs. PMID:24836879

  20. Cellular uptake and imaging studies of gadolinium-loaded single-walled carbon nanotubes as MRI contrast agents.

    PubMed

    Tang, Annie M; Ananta, Jeyarama S; Zhao, Hong; Cisneros, Brandon T; Lam, Edmund Y; Wong, Stephen T; Wilson, Lon J; Wong, Kelvin K

    2011-01-01

    We quantify here, for the first time, the intracellular uptake (J774A.1 murine macrophage cells) of gadolinium-loaded ultra-short single-walled carbon nanotubes (gadonanotubes or GNTs) in a 3 T MRI scanner using R(2) and R(2)* mapping in vitro. GNT-labeled cells exhibited high and linear changes in net transverse relaxations (ΔR(2) and ΔR 2*) with increasing cell concentration. The measured ΔR(2)* were about three to four times greater than the respective ΔR(2) for each cell concentration. The intracellular uptake of GNTs was validated with inductively coupled plasma optical emission spectrometry (ICP-OES), indicating an average cellular uptake of 0.44 ± 0.09 pg Gd per cell or 1.69 × 10(9) Gd(3+) ions per cell. Cell proliferation MTS assays demonstrated that the cells were effectively labeled, without cytotoxicity, for GNTs concentrations ≤28 µM Gd. In vivo relaxometry of a subcutaneously-injected GNT-labeled cell pellet in a mouse was also demonstrated at 3 T. Finally, the pronounced R(2)* effect of GNT-labeled cells enabled successful in vitro visualization of labeled cells at 9.4 T. PMID:21504063

  1. Homogeneity study of a corn flour laboratory reference material candidate for inorganic analysis.

    PubMed

    Dos Santos, Ana Maria Pinto; Dos Santos, Liz Oliveira; Brandao, Geovani Cardoso; Leao, Danilo Junqueira; Bernedo, Alfredo Victor Bellido; Lopes, Ricardo Tadeu; Lemos, Valfredo Azevedo

    2015-07-01

    In this work, a homogeneity study of a corn flour reference material candidate for inorganic analysis is presented. Seven kilograms of corn flour were used to prepare the material, which was distributed among 100 bottles. The elements Ca, K, Mg, P, Zn, Cu, Fe, Mn and Mo were quantified by inductively coupled plasma optical emission spectrometry (ICP OES) after acid digestion procedure. The method accuracy was confirmed by analyzing the rice flour certified reference material, NIST 1568a. All results were evaluated by analysis of variance (ANOVA) and principal component analysis (PCA). In the study, a sample mass of 400mg was established as the minimum mass required for analysis, according to the PCA. The between-bottle test was performed by analyzing 9 bottles of the material. Subsamples of a single bottle were analyzed for the within-bottle test. No significant differences were observed for the results obtained through the application of both statistical methods. This fact demonstrates that the material is homogeneous for use as a laboratory reference material. PMID:25704713

  2. Characterization of radioactive contaminants and water treatment trials for the Taiwan Research Reactor's spent fuel pool.

    PubMed

    Huang, Chun-Ping; Lin, Tzung-Yi; Chiao, Ling-Huan; Chen, Hong-Bin

    2012-09-30

    There were approximately 926 m(3) of water contaminated by fission products and actinides in the Taiwan Research Reactor's spent fuel pool (TRR SFP). The solid and ionic contaminants were thoroughly characterized using radiochemical analyses, scanning electron microscopy equipped with an energy dispersive spectrometer (SEM-EDS), and inductively coupled plasma optical emission spectrometry (ICP-OES) in this study. The sludge was made up of agglomerates contaminated by spent fuel particles. Suspended solids from spent ion-exchange resins interfered with the clarity of the water. In addition, the ionic radionuclides such as (137)Cs, (90)Sr, U, and α-emitters, present in the water were measured. Various filters and cation-exchange resins were employed for water treatment trials, and the results indicated that the solid and ionic contaminants could be effectively removed through the use of <0.9 μm filters and cation exchange resins, respectively. Interestingly, the removal of U was obviously efficient by cation exchange resin, and the ceramic depth filter composed of diatomite exhibited the properties of both filtration and adsorption. It was found that the ceramic depth filter could adsorb β-emitters, α-emitters, and uranium ions. The diatomite-based ceramic depth filter was able to simultaneously eliminate particles and adsorb ionic radionuclides from water. PMID:22841295

  3. Bioaccumulation of metals in the trees of Novi Sad, Serbia.

    PubMed

    Štrbac, Snežana; Gavrilović, Marjana; Budakov, Ljiljana

    2016-01-01

    In urban and industrial areas, higher plants are used as biomonitors of exposure. The objective of this study was to assess metals accumulation in leaves of dendroflora for the city of Novi Sad, Serbia, in May and September. The investigation was conducted at three sites in the urban area of Novi Sad. Determination of metals concentration for Al, As, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the sample was performed by inductively coupled plasma-optical emission spectrometry (ICP/OES). In the leaves of the examined tree species the highest concentrations were obtained for: Al, Fe, Mn, and Zn. The highest mean concentrations of metals were present in leaves of Aesculus hippocastanum in September. Trees from Liman and the Danube Park contained higher mean concentrations of metals in the leaves. In A. hippocastanum and Platanus hybrida an increase of al., As, Cr, Fe, and Pb concentrations occurred from May to September, with higher concentrations of Al and Fe noted in May. However, in Celtis australis, Juglans regia, and Tilia platypyllos there was a reduction in Al, Mn, Fe, and Zn from May to September. The basis for these findings requires further investigation, but diverse washing procedures may account partially for these observations. PMID:27459035

  4. Nickel-based xerogel catalysts: Synthesis via fast sol-gel method and application in catalytic hydrogenation of p-nitrophenol to p-aminophenol

    NASA Astrophysics Data System (ADS)

    Feng, Jin; Wang, Qiang; Fan, Dongliang; Ma, Lirong; Jiang, Deli; Xie, Jimin; Zhu, Jianjun

    2016-09-01

    In order to investigate the roles of three-dimensional network structure and calcium on Ni catalysts, the Ni, Ni-Al2O3, Ni-Ca-Al2O3 xerogel catalysts were successfully synthesized via the fast sol-gel process and chemical reduction method. The crystal structure of three different catalysts was observed with X-ray powder diffraction (XRD). Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and nitrogen adsorption-desorption were employed to investigate the role of network structure of xerogel catalysts and the size distribution of Ni nanoparticles. The catalyst composition was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) measurement and energy-dispersive X-ray spectroscopy (EDS). Temperature-programmed reduction (TPR) experiments were carried out to investigate the reducibility of nickel species and the interaction between nickel species and alumina. The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over the prepared nickel-based xerogel catalysts. The conversion of p-nitrophenol was monitored by UV spectrophotometry and high performance liquid chromatography (HPLC). The results show that the catalysts are highly selective for the conversion of p-nitrophenol to p-aminophenol and the order of catalytic activities of the catalysts is Ni < Ni-Al2O3 < Ni-Ca-Al2O3. The catalysts were recycled and were used to evaluate the reutilization.

  5. Heavy metal concentrations in two populations of Mopane worms (Imbrasia belina) in the Kruger National Park pose a potential human health risk.

    PubMed

    Greenfield, R; Akala, N; van der Bank, F H

    2014-09-01

    Metal concentrations in Mopane worms from Phalaborwa and Shangoni sites in the Kruger National Park were determined. Metal concentrations were evaluated by inductively coupled plasma optical emission spectroscopy (ICP-OES) and ICP-MS spectrometry after microwave digestion. The results indicate a substantial bioaccumulation of metals in Mopane worms. In Phalaborwa Cd concentrations were 15 times and Cu two times higher than the EU and UK recommended legal limits for human consumption, Zn levels were tolerable. Likewise, Cd, Cu and Zn concentrations at the Shangoni site were 26, 2.5 and 0.4 times over the EU and UK approved limits. Manganese concentrations were 20 and 67 times higher than FDA standards respectively. During the study the condition factor of the worms was determined. No significant difference between the condition factors indicated the worms at both sites are in similar condition. Potential sources of metals in the worms are either from the food they eat or pollution settling on the leaves. PMID:24974173

  6. Pressurized liquid extraction-assisted mussel cytosol preparation for the determination of metals bound to metallothionein-like proteins.

    PubMed

    Santiago-Rivas, Sandra; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; Muniategui-Lorenzo, Soledad; López-Mahía, Purificación; Prada-Rodríguez, Darío

    2007-11-01

    The possibilities of pressurized liquid extraction (PLE) have been novelty tested to assist the cytosol preparation from wet mussel soft tissue before the determination of metals bound to metallothionein-like proteins (MLPs). Results obtained after PLE were compared with those obtained after a classical blending procedure for mussel cytosolic preparation. Isoforms MLP-1 (retention time of 4.1 min) and MLP-2 (retention time of 7.4 min) were separated by anion exchange high-performance liquid chromatography (HPLC) and the concentrations of Ba, Cu, Mn, Sr and Zn bound to MLP isoforms were directly measured by inductively coupled plasma-atomic emission spectrometry (ICP-OES) as a multi-element detector. The optimized PLE-assisted mussel cytosol preparation has consisted of one extraction cycle at room temperature and 1500 psi for 2 min. Since separation between the solid mussel residue and the extract (cytosol) is performed by the PLE system, the cytosol preparation method is faster than conventional cytosol preparation methods by cutting/blending using Ultraturrax or Stomacher devices. PMID:17950055

  7. Elemental analysis of Egyptian phosphate fertilizer components.

    PubMed

    El-Bahi, S M; El-Dine, N Walley; El-Shershaby, A; Sroor, A

    2004-03-01

    The accumulation of certain elements in vitally important media such as water, soil, and food is undesirable from the medical point of view. It is clear that the fertilizers vary widely in their heavy metals and uranium content. A shielded high purity germanium HPGe detector has been used to measure the natural concentration of 238U, 232Th, and 40K activities in the phosphate fertilizer and its components collected from Abu-Zaabal fertilizers and chemical industries in Egypt. The concentration ranges were 134.97-681.11 Bq kg(-1), 125.23-239.26 Bq kg(-1), and 446.11-882.45 Bq kg(-1) for 238U, 232Th, and 40K, respectively. The absorbed dose rate and external hazard index were found to be from 177.14 to 445.90 nGy h(-1) and 1.03 to 2.71 nGy y(-1), respectively. The concentrations of 22 elements (Be, Na, Mg, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Mo, Cd, Ba) in the samples under investigation were determined by inductively coupled plasma optical-emission spectrometry (ICP-OES). The results for the input raw materials (rock phosphate, limestone and sulfur) and the output product as final fertilizer are presented and discussed. PMID:14982231

  8. Investigation of ruthenium promoted palladium catalysts for methanol electrooxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Jurzinsky, Tilman; Kammerer, Patricia; Cremers, Carsten; Pinkwart, Karsten; Tübke, Jens

    2016-01-01

    In this study, the investigation of binary palladium based electrocatalysts for methanol oxidation in alkaline media is reported. For this purpose, electrocatalysts with a loading of 20wt% metal on VulcanXC72-R were synthesized via wet chemical reduction with various compositions of palladium and ruthenium. Physical characterization via transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and inductively coupled plasma optical emission spectroscopy (ICP-OES) was done and verified the synthesis of nanoparticles on carbon support. Electrochemical evaluation of the catalytic behavior of Pd/C, Ru/C and PdXRu/C (X = 1, 3, 5) via cyclic voltammetry and chronoamperometry was conducted in a 3-electrode setup. These measurements suggested that Pd3Ru/C is a promising material for methanol oxidation reaction in alkaline media with an onset potential of 0.465 VRHE and a peak current density of over 1 A mg-1Pd. To further investigate the oxidation of methanol on Pd/C and Ru promoted catalysts, differential electrochemical mass spectrometry (DEMS) measurements were done. From these results a higher CO2 current efficiency (CCE) of 86% for Pd3Ru/C compared to 65% for Pd/C was found. Moreover, fuel cell tests verified the results and showed that Pd3Ru/C has the better performance.

  9. The bioaccumulation of lead in the organs of roe deer (Capreolus capreolus L.), red deer (Cervus elaphus L.), and wild boar (Sus scrofa L.) from Poland.

    PubMed

    Bąkowska, Małgorzata; Pilarczyk, Bogumiła; Tomza-Marciniak, Agnieszka; Udała, Jan; Pilarczyk, Renata

    2016-07-01

    The aim of this study was to evaluate the level of lead (Pb) in the livers and kidneys of free-living animals from Poland, with regard to the differences in tissue Pb content between the species. The research material consisted of liver and kidney samples collected from roe deer (Capreolus capreolus), red deer (Cervus elaphus), and wild boar (Sus scrofa) that had been hunted in 16 voivodeships of Poland. The concentration of lead had been measured using inductively coupled plasma optical emission spectrometry (ICP-OES) method. The results show that differences in lead concentration in the organs depended on the geographic location. In roe deer and red deer, the highest mean lead concentrations in the livers and kidneys, observed in the central region of Poland, were twice as high as the lowest concentration of Pb in these animals from the northeastern region of the country. In wild boar, the highest mean concentration of Pb was noted in the livers of animals from the central region of Poland and in the kidneys of animals from the northwestern region, while the lowest lead concentrations in both organs were typical for wild boar from the southeast part of the country. Our results show that areas located in the center and in the north of Poland carry most of the burden of lead bioaccumulation. PMID:27068893

  10. Migration of 18 trace elements from ceramic food contact material: influence of pigment, pH, nature of acid and temperature.

    PubMed

    Demont, M; Boutakhrit, K; Fekete, V; Bolle, F; Van Loco, J

    2012-03-01

    The effect of pH, nature of acid and temperature on trace element migration from ceramic ware treated with 18 commercially available glazes was studied. Besides of the well-studied lead and cadmium, migration of other toxic and non toxic elements such as aluminum, boron, barium, cobalt, chrome, copper, iron, lithium, magnesium, manganese, nickel, antimony, tin, strontium, titanium, vanadium, zinc and zirconium was investigated in order to evaluate their potential health hazards. Trace element concentrations were determined with Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). This study suggests that there is indeed a health risk concerning the possible migration of other elements than lead and cadmium. At low pH (2

  11. Antioxidant value and element content in some tinctures used in medication.

    PubMed

    Szentmihályi, Klára; Varga, Ilona Szöllősi; Gergely, Anita; Rábai, Mária; Then, Mária

    2015-09-01

    Tinctures are almost the oldest medicines and their use is substantial in the medication nowadays as well. The antioxidant values by ferric reducing/antioxidant power (FRAP) method and element content by inductively coupled plasma optical emission spectrometry (ICP-OES) were investigated in some tinctures official in the VII. and VIII. Pharmacopoeia Hungarica. The highest FRAP values were found for volatile oil containing Tinctura Aurantii amari epicarpii et mesocarpii, Tinctura Amara and Tinctura Valerianae (764.54 ± 19.90; 757.37 ± 14.46; 826.40 ± 5.89 µmol l⁻¹, respectively). The correlations between the FRAP values and dilution with different alcohol content in Tinctura Chinae, Tinctura Ipecacuanhae normata and Tinctura Strychni were also investigated. Remarkable differences were found between the element concentrations in the different tinctures. The element contents in tinctures are not so high in absolute values nevertheless the presence of essential selenium, zinc, manganese and copper is important since they have key role in the antioxidant system. The common feature of the tinctures seems to be the lithium content. The Ca to Mg concentration ratio was found to be shifted towards magnesium in some of the tinctures that can show a higher Mg absorption which could affect against the proinflammatoric processes in the cases of gastrointestinal diseases. PMID:26344025

  12. Classification and individualization of used engine oils using elemental composition and discriminant analysis.

    PubMed

    Kim, Yuna; Kim, Nam Yee; Park, Seh Youn; Lee, Dong-Kye; Lee, Jin Hoon

    2013-07-10

    The six most common commercial automotive gasoline and diesel engine oils in the Republic of Korea, ZIC A, ZIC XQ RV/SUV, Kixx G1, Kixx RV, and the brand name products HD Premium gasoline and HD Premium diesel, were randomly used in nineteen different vehicles. Samples of seventy-six used engine oils, which were withdrawn from the sumps of those vehicles at different intervals, were analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES), and statistically compared. Two data analysis strategies were used to interpret and understand the elemental profiles in the multi-dimensional data. Macro (additive elements of Ca, Zn and P) and trace (wear metal elements of Ag, Al, Ba, Cd, Cr, Cu, Fe, Mg, Mo, Na, Ni, Pb and Sn) elements were used as potential markers to determine the brand of oil used and the engine type in which the oil was used, and to trace the individual vehicle for forensic purposes. The discriminant analysis statistical technique was applied, and its prediction ability was assessed. In this study, 92.1%, 82.9% and 92.1% of the cross-validated grouped cases correctly predicted the brand of oil, the engine type and the vehicle that was the source of the oil, respectively. PMID:23806831

  13. Effect of heavy-metal-resistant bacteria on enhanced metal uptake and translocation of the Cu-tolerant plant, Elsholtzia splendens.

    PubMed

    Xu, Chen; Chen, Xincai; Duan, Dechao; Peng, Cheng; Le, Thu; Shi, Jiyan

    2015-04-01

    A hydroponics trial was employed to study the effects of Pseudomonas putida CZ1 (CZ1), a heavy-metal-resistant bacterial strain isolated from the rhizosphere of Elsholtzia splendens (E. splendens), on the uptake and translocation of copper (Cu) in E. splendens. Significant promotion of plant growth coupled with the obvious plant-growth-promoting (PGP) characters of the bacteria suggested that CZ1 would be a plant-growth-promoting rhizobacterium (PGPR) to E. splendens under Cu stress condition. The results of inductively coupled plasma optical emission spectrometry (ICP-OES) showed that CZ1 increased the concentration of Cu in the shoots (up to 211.6% compared to non-inoculation treatment) and translocation factor (TF) (from 0.56 to 1.83%) of those exposed to Cu. The distribution of Cu in root cross section measured by synchrotron-based X-ray fluorescence microscopy (SRXRF) indicated that CZ1 promoted the transport of Cu from cortex to xylem in roots, which contributed to the accumulation of Cu in shoots. Furthermore, CZ1 improved the uptake of nutrient elements by plants to oppose to the toxicity of Cu. In summary, P. putida CZ1 acted as a PGPR in resistance to Cu and promoted the accumulation and translocation of Cu from root to shoot by element redistribution in plant root; hence, CZ1 is a promising assistance to phytoremediation. PMID:25510610

  14. Analysis of 10B antitumoral compounds by means of flow-injection into ESI-MS/MS.

    PubMed

    Basilico, F; Sauerwein, W; Pozzi, F; Wittig, A; Moss, R; Mauri, P L

    2005-12-01

    Boron neutron capture therapy (BNCT) is a promising binary treatment for cancer. BNCT is based on the ability of the nonradioactive isotope (10)B to capture, with a very high probability, thermal neutrons. This nuclear reaction results in two particles (an alpha and a lithium nucleus). The particles have a high biological effectiveness, which is limited in tissue to approximately the diameter of one cell. If the reaction can be limited to a tumor cell, the physical characteristic opens up the possibility to selectively destroy cancer cells, while sparing the surrounding healthy tissue. Quality control of (10)B-containing compounds and their distribution at present are very important, and different analytical methods have been developed, such as time-of-flight secondary ion mass spectrometry (TOF-SIMS), electron energy loss spectrometry (EELS), prompt gamma analysis and inductively coupled plasma-optical emission spectrometry (ICP-OES). These methods allow the analyses of (10)B, but it is not possible to characterize the specific molecular compounds containing (10)B. For this reason, we propose a fast and quantitative method that permits the determination of closo-undecahydro-1-mercaptododecaborate (BSH) and (10)boron-phenylalanine (BPA) and their eventual metabolites. In particular, (10)B-containing compounds are detected by means of flow-injection electrospray tandem mass spectrometry (FI/ESI-MS/MS). This approach allows the identification of Boron compounds, BSH and BPA, using tandem mass spectrometry, and quantitative analysis is also possible (c.v. +/-4.7%; n = 5; linear range 10-10,000 ng/ml). Furthermore, (10)B-containing compounds were detected in actual biological sample (urine and plasma, diluted 10,000- and 1,000-fold, respectively) injecting a small volume (1 microl) of diluted samples. PMID:16320299

  15. Mass Spectrometry of Nanoparticles is Different

    NASA Astrophysics Data System (ADS)

    Liang, C.-K.; Eller, M. J.; Verkhoturov, S. V.; Schweikert, Emile A.

    2015-08-01

    Secondary ion mass spectrometry, SIMS, is a method of choice for the characterization of nanoparticles, NPs. For NPs with large surface-to-volume ratios, heterogeneity is a concern. Assays should thus be on individual nano-objects rather than an ensemble of NPs; however, this may be difficult or impossible. This limitation can be side-stepped by probing a large number of dispersed NPs one-by-one and recording the emission from each NP separately. A large collection of NPs will likely contain subsets of like-NPs. The experimental approach is to disperse the NPs and hit an individual NP with a single massive cluster (e.g., C-60, Au-400). At impact energies of ~1 keV/atom, they generate notable secondary ion (SI) emission. Examination of small NPs (≤20 nm in diameter) shows that the SI emission is size-dependent and impacts are not all equivalent. Accurate identification of the type of impact is key for qualitative assays of core or outer shell composition. For quantitative assays, the concept of effective impacts is introduced. Selection of co-emitted ejecta combined with rejection (anticoincidence) of substrate ions allows refining chemical information within the projectile interaction volume. Last, to maximize the SI signal, small NPs (≤5 nm in diameter) can be examined in the transmission mode where the SI yields are enhanced ~10-fold over those in the (conventional) reflection direction. Future endeavors should focus on schemes acquiring SIs, electrons, and photons concurrently.

  16. Fluorescence preselection of bioaerosol for single-particle mass spectrometry.

    PubMed

    Stowers, M A; van Wuijckhuijse, A L; Marijnissen, J C M; Kientz, Ch E; Ciach, T

    2006-11-20

    We have designed, constructed, and tested a system that pre-selects the biological fraction of airborne particles from the overall aerosol. The preselection is based on fluorescence emission excited by a continuous 266 nm laser beam. This beam is one of two cw beams used to measure the aerodynamic particle size of sampled particles. The intention in our system is that single particles, based on size and fluorescence emission, can be selected and further examined for chemical composition by mass spectrometry. PMID:17086265

  17. Fourier transform infrared spectrometry: a versatile technique for real world samples.

    PubMed

    Rintoul, L; Panayiotou, H; Kokot, S; George, G; Cash, G; Frost, R; Bui, T; Fredericks, P

    1998-04-01

    The versatility of FTIR spectrometry was explored by considering a variety of samples drawn from industrial applications, materials science and biomedical research. These samples included polymeric insulators, bauxite ore, clay, human hair and human skin. A range of sampling techniques suitable for these samples is discussed, in particular FTIR microscopy, FTIR emission spectroscopy, attenuated total reflectance and photoacoustic FTIR spectrometry. The power of modern data processing techniques, particularly multivariate analysis, to extract useful information from spectral data is also illustrated. PMID:9684399

  18. Ion mobility-mass spectrometry.

    PubMed

    Kanu, Abu B; Dwivedi, Prabha; Tam, Maggie; Matz, Laura; Hill, Herbert H

    2008-01-01

    This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided. PMID:18200615

  19. Imaging spectrometry for ecological applications

    NASA Astrophysics Data System (ADS)

    Curran, Paul J.

    Imaging spectrometry from aircraft or satellite borne sensors has many potential ecological applications. This paper reviews its use for the remote sensing of foliar biochemical concentration, as this is an ecological application of remote sensing that is unique to imaging spectrometry. Attention is focussed on the development of methodologies, drawing where relevant on theory and techniques from both outside and inside remote sensing. Examples from the fields of near infrared spectroscopy (NIRS) and geological remote sensing, along with an extensive reference list, provide an introduction to some of the ecological opportunities offered by imaging spectrometry.

  20. Two new advanced forms of spectrometry for space and commercial applications

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.

    1991-01-01

    Reagentless ultraviolet absorption spectrometry (UVAS) and Liquid Atomic Emission Spectrometry (LAES) represent new forms of spectrometry with extensive potential in both space and commercial applications. Originally developed under KSC sponsorship for monitoring nutrient solutions for the Controlled Ecological Life Support System (CELSS), both UVAS and LAES have extensive analytical capabilities for both organic and inorganic chemical compounds. Both forms of instrumentation involve the use of remote fiber optic probes and real-time measurements for on-line process monitoring. Commercial applications exist primarily in environmental analysis and for process control in the chemical, pulp and paper, food processing, metal plating, and water/wastewater treatment industries.

  1. Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices

    PubMed Central

    Volckens, John

    2014-01-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments. PMID:24515892

  2. Rapid detection of transition metals in welding fumes using paper-based analytical devices.

    PubMed

    Cate, David M; Nanthasurasak, Pavisara; Riwkulkajorn, Pornpak; L'Orange, Christian; Henry, Charles S; Volckens, John

    2014-05-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments. PMID:24515892

  3. Observation of infrared emission spectra from silicon combustion products

    NASA Astrophysics Data System (ADS)

    Smit, Kenneth J.; De Yong, Leo V.; Gray, Rodney

    1996-05-01

    The combustion of silicon based pyrotechnic compositions is observed with time resolved infrared spectrometry. This revealed the build up of strong emission at 9.1 ± 0.1 μm, which is associated with condensed silicon dioxide particulates. Time averaged spectra for compositions containing different oxidants or binders illustrate the dependence of SiO 2 emission intensity on composition.

  4. Methods for Neutron Spectrometry

    DOE R&D Accomplishments Database

    Brockhouse, Bertram N.

    1961-01-09

    The appropriate theories and the general philosophy of methods of measurement and treatment of data neutron spectrometry are discussed. Methods of analysis of results for liquids using the Van Hove formulation, and for crystals using the Born-von Karman theory, are reviewed. The most useful of the available methods of measurement are considered to be the crystal spectrometer methods and the pulsed monoenergetic beam/time-of-flight method. Pulsed-beam spectrometers have the advantage of higher counting rates than crystal spectrometers, especially in view of the fact that simultaneous measurements in several counters at different angles of scattering are possible in pulsed-beam spectrometers. The crystal spectrometer permits several valuable new types of specialized experiments to be performed, especially energy distribution measurements at constant momentum transfer. The Chalk River triple-axis crystal-spectrometer is discussed, with reference to its use in making the specialized experiments. The Chalk River rotating crystal (pulsed-beam) spectrometer is described, and a comparison of this type instrument with other pulsed-beam spectrometers is made. A partial outline of the theory of operation of rotating-crystal spectrometers is presented. The use of quartz-crystal filters for fast neutron elimination and for order elimination is discussed. (auth)

  5. Gridless overtone mobility spectrometry.

    PubMed

    Zucker, Steven M; Ewing, Michael A; Clemmer, David E

    2013-11-01

    A novel overtone mobility spectrometry (OMS) instrument utilizing a gridless elimination mechanism and cooperative radio frequency confinement is described. The gridless elimination region uses a set of mobility-discriminating radial electric fields that are designed so that the frequency of field application results in selective transmission and elimination of ions. To neutralize ions with mobilities that do not match the field application frequency, active elimination regions radially defocus ions toward the lens walls. Concomitantly, a lens-dependent radio frequency waveform is applied to the transmission regions of the drift tube resulting in radial confinement for mobility-matched ions. Compared with prior techniques, which use many grids for ion elimination, the new gridless configuration substantially reduces indiscriminate ion losses. A description of the apparatus and elimination process, including detailed simulations showing how ions are transmitted and eliminated is presented. A prototype 28 cm long OMS instrument is shown to have a resolving power of 20 and is capable of attomole detection limits of a model peptide (angiotensin I) spiked into a complex mixture (in this case peptides generated from digestion of β-casein with trypsin). PMID:24125033

  6. Gridless Overtone Mobility Spectrometry

    PubMed Central

    Zucker, Steven M.; Ewing, Michael A.; Clemmer, David E.

    2013-01-01

    A novel overtone mobility spectrometry (OMS) instrument utilizing a gridless elimination mechanism and cooperative radio frequency confinement is described. The gridless elimination region uses a set of mobility-discriminating radial electric fields that are designed so that the frequency of field application results in selective transmission and elimination of ions. To neutralize ions with mobilities that do not match the field application frequency, active elimination regions radially defocus ions towards the lens walls. Concomitantly, a lens-dependent radio frequency waveform is applied to the transmission regions of the drift tube resulting in radial confinement for mobility-matched ions. Compared with prior techniques, which use many grids for ion elimination, the new gridless configuration substantially reduces indiscriminate ion losses. A description of the apparatus and elimination process, including detailed simulations showing how ions are transmitted and eliminated is presented. A prototype 28 cm long OMS instrument is shown to have a resolving power of 20 and is capable of attomole detection limits of a model peptide (angiotensin I) spiked into a complex mixture (in this case peptides generated from digestion of β-casein with trypsin). PMID:24125033

  7. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  8. Questa baseline and pre-mining ground-water-quality investigation. 16. Quality assurance and quality control for water analyses

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Naus, Cheryl A.

    2004-01-01

    The Questa baseline and pre-mining ground-water quality investigation has the main objective of inferring the ground-water chemistry at an active mine site. Hence, existing ground-water chemistry and its quality assurance and quality control is of crucial importance to this study and a substantial effort was spent on this activity. Analyses of seventy-two blanks demonstrated that contamination from processing, handling, and analyses were minimal. Blanks collected using water deionized with anion and cation exchange resins contained elevated concentrations of boron (0.17 milligrams per liter (mg/L)) and silica (3.90 mg/L), whereas double-distilled water did not. Boron and silica were not completely retained by the resins because they can exist as uncharged species in water. Chloride was detected in ten blanks, the highest being 3.9 mg/L, probably as the result of washing bottles, filter apparatuses, and tubing with hydrochloric acid. Sulfate was detected in seven blanks; the highest value was 3.0 mg/L, most likely because of carryover from the high sulfate waters sampled. With only a few exceptions, the remaining blank analyses were near or below method detection limits. Analyses of standard reference water samples by cold-vapor atomic fluorescence spectrometry, ion chromatography, inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry, FerroZine, graphite furnace atomic absorption spectrometry, hydride generation atomic spectrometry, and titration provided an accuracy check. For constituents greater than 10 times the detection limit, 95 percent of the samples had a percent error of less than 8.5. For constituents within 10 percent of the detection limit, the percent error often increased as a result of measurement imprecision. Charge imbalance was calculated using WATEQ4F and 251 out of 257 samples had a charge imbalance less than 11.8 percent. The charge imbalance for all samples ranged from -16 to 16 percent. Spike

  9. Spectrometry: Report of panel

    NASA Technical Reports Server (NTRS)

    Farmer, C. Barney; Murcray, David G.; Abreu, Vincent; Gille, John C.; Hanel, Rudolph A.; Hoell, James M., Jr.; Jamieson, John A.; Zwick, Harold

    1987-01-01

    Spectroscopic measurements are required to define the spectral background and provide the detailed spectral information that is essential for the design of species-specific systems and the analysis of data obtained from them. This function of spectroscopic measurements is expected to be an important part of any tropospheric remote-sensing program, and both emission and absorption spectroscopy are relevant in this context. The data from such observations are of value to tropospheric science in their own right, during the initial phases while species-specific techniques and instruments are under development. In addition, there are a number of unresolved problems in tropospheric radiative transfer and spectroscopy which presently limit the accuracy and reliability of all remote sensing methods. Only through a supporting program of spectroscopic measurements can progress be made in improving the understanding of these aspects of radiative transfer and ultimately reaching the desired confidence in the accuracy to species-specific monitoring techniques.

  10. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  11. Symposium on accelerator mass spectrometry

    SciTech Connect

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  12. Mass spectrometry for biomarker development

    SciTech Connect

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  13. DISCRIMINATION OF COMBUSTION FUEL SOURCES USING GAS CHROMATOGRAPY-PLANAR FIELD ASYMETRIC WAVEFORM ION MOBILITY SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smoke plumes from cotton, paper, grass and cigarettes and emissions from a gasoline engine were sampled using solid-phase microextraction (SPME) and samples were analyzed for volatile organic compounds(VOC) using gas chromatography-mass spectrometry (GC-MS). Chemical compositions were sufficiently ...

  14. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  15. Ultraviolet and Light Absorption Spectrometry.

    ERIC Educational Resources Information Center

    Hargis, L. G.; Howell, J. A.

    1984-01-01

    Reviews developments in ultraviolet and light absorption spectrometry from December 1981 through November 1983, focusing on the chemistry involved in developing suitable reagents, absorbing systems, and methods of determination, and on physical aspects of the procedures. Includes lists of spectrophotometric methods for metals, non-metals, and…

  16. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  17. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  18. Mass spectrometry of large complexes.

    PubMed

    Bich, Claudia; Zenobi, Renato

    2009-10-01

    Mass spectrometry is becoming a more and more powerful tool for investigating protein complexes. Recent developments, based on different ionization techniques, electrospray, desorption/ionization and others are contributing to the usefulness of MS to describe the organization and structure of large non-covalent assemblies. PMID:19782560

  19. Monitoring trace metals in urban aerosols from Buenos Aires city. Determination by plasma-based techniques.

    PubMed

    Smichowski, Patricia; Gómez, Dario R; Dawidowski, Laura E; Giné, María Fernanda; Bellato, Ana Claudia Sánchez; Reich, Silvia L

    2004-04-01

    A study was undertaken, within the framework of a 3 years national project, to assess the content of 13 elements in airborne particulate matter collected in representative zones of the metropolitan area of Buenos Aires. The sampling strategy followed consisted in collecting simultaneously 67 samples of PM10 particulate matter in 9 sampling sites covering an area of about 30 km2 during one week. The collection was performed on ash-free fibre-glass filters using high volume samplers. A combination of aqua regia and perchloric acid was used for leaching metals from filters. Key elements, namely Al, Ca, Cu, Fe, Mn, Mo, Ni, Pb, S, Sb, Sn, Zn and Zr, were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) at micro g g(-1) and ng g(-1) levels. Analyte concentration varied from 130 ng g(-1)(Mo) to over 30%(Ca). Multivariate statistical analysis was performed on the data set including the measured elemental compositions for the monitored period. The atmospheric concentration found for Pb confirms the decreasing levels of this element since the introduction of unleaded gasoline in 1995: 88 ng m(-3)(2001) < 220 ng m(-3)(1997) < 3900 ng m(-3)(1994). The average S concentration above 3 microg m(-3) is somehow unexpectedly high for Buenos Aires since the relatively low S content of liquid fuels and the massive usage of natural gas imply low emissions of this element from combustion activities. To the best of our knowledge, S concentrations are reported for the first time for this city. PMID:15054536

  20. Study of projectile fragmentation reaction with isochronous mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tu, X. L.; Mei, B.; Zhang, Y. H.; Xu, H. S.; Litvinov, Yu A.; Huang, W. J.; Podolyak, Z.; Kelic-Heil, A.; Zhang, W.; Litvinov, S. A.; Blaum, K.; Zhou, X. H.; Shuai, P.; Wang, M.; Gao, B. S.; Chen, X. C.; Yuan, Y. J.; Xia, J. W.; Yang, J. C.; Hu, Z. G.; Ma, X. W.; Sun, B. H.; Yan, X. L.; Mao, R. S.; Sun, Z. Y.; Xiao, G. Q.; Xu, X.; Walker, P. M.; Yamaguchi, T.; Bosch, F.; Winckler, N.; Chen, R. J.; Xing, Y. M.; Fu, C. Y.; Liu, D. W.; Zeng, Q.; Ge, Z.; Sun, Y.; Zhao, H. W.; Zhao, T. C.

    2015-11-01

    Relative yields of fragments following the 78Kr projectile fragmentation in a beryllium target were measured in a storage ring by using isochronous mass spectrometry (IMS). Odd-even staggering of the relative fragment yields is observed and can be explained by the odd-even staggering of the particle-emission threshold energies. IMS is a complementary technique to γ-ray spectroscopy for measuring isomeric ratios, in particular for nuclides with long lifetimes. It was found that the isomeric yield ratios in 53Fe are almost constant for different longitudinal momenta.

  1. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  2. Imaging Mass Spectrometry in Neuroscience

    PubMed Central

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  3. Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor.

    PubMed

    Taddei, M H T; Macacini, J F; Vicente, R; Marumo, J T; Sakata, S K; Terremoto, L A A

    2013-07-01

    A radiochemical method has been adapted to determine (59)Ni and (63)Ni in samples of radioactive wastes from the water cleanup system of the IEA-R1 nuclear research reactor. The process includes extraction chromatographic resin with dimethylglyoxime (DMG) as a functional group. Activity concentrations of (59)Ni and (63)Ni were measured, respectively, by X-ray spectrometry and liquid scintillation counting, whereas the chemical yield was determined by ICP-OES. The average ratio of measured activity concentrations of (63)Ni and (59)Ni agree well with theory. PMID:23524230

  4. Data on metal contents (As, Ag, Sr, Sn, Sb, and Mo) in sediments and shells of Trachycardium lacunosum in the northern part of the Persian Gulf.

    PubMed

    Karbasdehi, Vahid Noroozi; Dobaradaran, Sina; Nabipour, Iraj; Arfaeinia, Hossein; Mirahmadi, Roghayeh; Keshtkar, Mozhgan

    2016-09-01

    In this data article, by using inductively coupled plasma optical spectrometry (ICP-OES), we aimed to (1) determine the concentration levels of As, Ag, Sr, Sn, Sb, and Mo in the sediments and the shells of Trachycardium lacunosum simultaneously in two separated areas (unpolluted and polluted areas) (2) comparison between the metal contents of sediments in the unpolluted and polluted areas as well as shells. Analysis of data showed that sediment as well as shell samples in polluted area contained significantly higher concentration levels of all measured metals compared with unpolluted area. PMID:27508251

  5. Instrumentation for mass spectrometry: 1997

    SciTech Connect

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  6. Emissions Overview

    NASA Technical Reports Server (NTRS)

    Rohde, John

    2001-01-01

    The Emissions Reduction Project is working in close partnership with the U.S. aircraft engine manufacturers and academia to develop technologies to reduce NO, emissions by 70 percent over the LTO cycle from 1996 ICAO standards with no increase in other emission constituents (carbon monoxide, smoke, and unburned hydrocarbons) and with comparable NO, reduction during cruise operations. These technologies cannot impact the overall combustor and fuel delivery system operability, affordability or maintainability. These new combustion concepts and technologies will include lean burning combustors with higher operating gas temperatures and pressures, fuel staging, ceramic matrix composite material liners with reduced cooling air and possibly advanced controls. Improved physics-based analysis tool will be developed and validated and some longer term technologies that are more revolutionary will be assessed. These improved computational codes will provide improved design tools to increase design confidence and cut the development time to achieve major reductions in NO, emissions. Longer term, revolutionary technologies like active combustion controls, combustion from a large array of micro-injectors, electrostatic fuel injectors, fuel additives and others will be investigated and assessed through proof-of-concept testing.

  7. Classification models based on the level of metals in hair and nails of laryngeal cancer patients: diagnosis support or rather speculation?

    PubMed

    Golasik, Magdalena; Jawień, Wojciech; Przybyłowicz, Agnieszka; Szyfter, Witold; Herman, Małgorzata; Golusiński, Wojciech; Florek, Ewa; Piekoszewski, Wojciech

    2015-03-01

    The etiology of cancer is complex, and the disturbances in toxic and essential metals homeostasis are among many of the factors that lead to the development of malignancy. The aim of this study is to investigate the relationship between cancer risk and element status as well as cancer risk and external factors, such as diet, smoking and drinking habits, in order to support diagnosis of cancer. The samples of hair and nails obtained from patients with larynx cancer and healthy subjects were analyzed. Essential elements (Ca, Cr, Mg, Zn, Cu, Mn, and Fe), besides toxic metals (Cd, Co, and Pb), were determined using inductively coupled plasma atomic emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) techniques. The concentration of essential elements was from 1.5- (Zn) to 4.7-fold (Fe) higher in hair and from 2.4- to 3.3-fold higher in the nails of the control group compared to the patients, while the opposite trend was observed for the heavy metals. The differences between two groups in the level of metals (except for Zn) were statistically significant (p < 0.05). The association of cancer with metals and other factors was evaluated using various statistical methods, for which the best predictions were obtained using logistic regression, artificial neural networks and canonical discriminant analysis. The classifiers constructed using the data from a survey of diet and lifestyle, and analysis of elements in hair and nails, can be useful tools for estimating cancer risk and early screening of the disease. PMID:25616222

  8. Will selenium increase lentil (Lens culinaris Medik) yield and seed quality?

    PubMed

    Thavarajah, Dil; Thavarajah, Pushparajah; Vial, Eric; Gebhardt, Mary; Lacher, Craig; Kumar, Shiv; Combs, Gerald F

    2015-01-01

    Lentil (Lens culinaris Medik), a nutritious traditional pulse crop, has been experiencing a declining area of production in South East Asia, due to lower yields, and marginal soils. The objective of this study was to determine whether selenium (Se) fertilization can increase lentil yield, productivity, and seed quality (both seed Se concentration and speciation). Selenium was provided to five lentil accessions as selenate or selenite by foliar or soil application at rates of 0, 10, 20, or 30 kg Se/ha and the resulting lentil biomass, grain yield, seed Se concentration, and Se speciation was determined. Seed Se concentration was measured using inductively coupled plasma optical emission spectrometry (ICP-OES) after acid digestion. Seed Se speciation was measured using ICP-mass spectrometry with a high performance liquid chromatography (ICP-MS-LC) system. Foliar application of Se significantly increased lentil biomass (5586 vs. 7361 kg/ha), grain yield (1732 vs. 2468 kg /ha), and seed Se concentrations (0.8 vs. 2.4 μg/g) compared to soil application. In general, both application methods and both forms of Se increased concentrations of organic Se forms (selenocysteine and selenomethionine) in lentil seeds. Not surprisingly, the high yielding CDC Redberry had the highest levels of biomass and grain yield of all varieties evaluated. Eston, ILL505, and CDC Robin had the greatest responses to Se fertilization with respect to both grain yield, seed Se concentration and speciation; thus, use of these varieties in areas with low-Se soils might require Se fertilization to reach yield potentials. PMID:26042141

  9. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  10. A novel digestion method based on a choline chloride-oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples.

    PubMed

    Habibi, Emadaldin; Ghanemi, Kamal; Fallah-Mehrjardi, Mehdi; Dadolahi-Sohrab, Ali

    2013-01-31

    A novel and efficient digestion method based on choline chloride-oxalic acid (ChCl-Ox) deep eutectic solvent (DES) was developed for flame atomic absorption spectrometry (FAAS) determination of Cu, Zn, and Fe in biological fish samples. Key parameters that influence analyte recovery were investigated and optimized, using the fish protein certified reference material (CRM, DORM-3) throughout the procedure. In this method, 100 mg of the sample was dissolved in ChCl-Ox (1:2, molar ratio) at 100°C for 45 min. Then, 5.0 mL HNO(3) (1.0 M) was added. After centrifugation, the supernatant solution was filtered, diluted to a known volume, and analyzed by FAAS. Under optimized conditions, an excellent agreement between the obtained results and the certified values was observed, using Student's t-test (P=0.05); the extraction recovery of the all elements was greater than 95.3%. The proposed method was successfully applied to the determination of analytes in different tissues (muscle, liver, and gills) having a broad concentration range in a marine fish sample. The reproducibility of the method was validated by analyzing all samples by our method in a different laboratory, using inductively coupled plasma optical emission spectrometry (ICP-OES). For comparison, a conventional acid digestion (CAD) method was also used for the determination of analytes in all studied samples. The simplicity of the proposed experimental procedure, high extraction efficiency, short analysis time, lack of concentrated acids and oxidizing agents, and the use of safe and inexpensive components demonstrate the high potential of ChCl-Ox (1:2) for routine trace metal analysis in biological samples. PMID:23327946

  11. Determination of traces of Sb(III) using ASV in Sb-rich water samples affected by mining.

    PubMed

    Cidu, Rosa; Biddau, Riccardo; Dore, Elisabetta

    2015-01-01

    Chemical speciation [Sb(V) and Sb(III)] affects the mobility, bioavailability and toxicity of antimony. In oxygenated environments Sb(V) dominates whereas thermodynamically unstable Sb(III) may occur. In this study, a simple method for the determination of Sb(III) in non acidic, oxygenated water contaminated with antimony is proposed. The determination of Sb(III) was performed by anodic stripping voltammetry (ASV, 1-20 μg L(-1) working range), the total antimony, Sb(tot), was determined either by inductively coupled plasma mass spectrometry (ICP-MS, 1-100μgL(-1) working range) or inductively coupled plasma optical emission spectrometry (ICP-OES, 100-10,000 μg L(-1) working range) depending on concentration. Water samples were filtered on site through 0.45 μm pore size filters. The aliquot for determination of Sb(tot) was acidified with 1% (v/v) HNO3. Different preservatives, namely HCl, L(+) ascorbic acid or L(+) tartaric acid plus HNO3, were used to assess the stability of Sb(III) in synthetic solutions. The method was tested on groundwater and surface water draining the abandoned mine of Su Suergiu (Sardinia, Italy), an area heavily contaminated with Sb. The waters interacting with Sb-rich mining residues were non acidic, oxygenated, and showed extreme concentrations of Sb(tot) (up to 13,000 μg L(-1)), with Sb(III) <10% of total antimony. The stabilization with L(+) tartaric acid plus HNO3 appears useful for the determination of Sb(III) in oxygenated, Sb-rich waters. Due to the instability of Sb(III), analyses should be carried out within 7 days upon the water collection. The main advantage of the proposed method is that it does not require time-consuming preparation steps prior to analysis of Sb(III). PMID:25479865

  12. Development of a standard protocol for monitoring trace elements in continental waters with moss bags: inter- and intraspecific differences.

    PubMed

    Cesa, Mattia; Bertossi, Alberto; Cherubini, Giovanni; Gava, Emanuele; Mazzilis, Denis; Piccoli, Elisa; Verardo, Pierluigi; Nimis, Pier Luigi

    2015-04-01

    This paper is a contribution for validating a standard method for trace element monitoring based on transplants and analysis of aquatic bryophytes, in the framework of the EC Directive 2000/60. It presents the results of an experiment carried out to assess significant differences in the amount and variability of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in three moss species (Cinclidotus aquaticus, Fontinalis antipyretica, Platyhypnidium riparioides) and two different parts of the moss (whole plant vs apical tips). Mosses were caged in bags made of a plastic net and transplanted for 2 weeks to an irrigation canal impacted by a waste water treatment plant. Trace element concentrations were measured by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) before and after exposure to the experimental and control sites in five samples. Enrichment factors >2 were found for Cu, Ni, Mn, Pb and Zn in all moss species, lower in C. aquaticus, intermediate in F. antipyretica and higher in P. riparioides (the species we recommend to use). The analysis of apical tips after exposure instead of the whole plant led to (I) lower concentrations of As, Co, Cr, Fe and Zn in C. aquaticus (-7 to -30%) and of Fe and Pb (-13, -18%) in P. riparioides, (II) higher concentrations of Cu, Ni and Zn (+14 to +18%) in P. riparioides, while (III) no significant difference (p > 0.05) in F. antipyretica. Data variability after exposure was generally lower in apical tips, especially in C. aquaticus and in F. antipyretica, less in P. riparioides. In the aim of standardizing the moss-bag technique, the analysis of apical tips is recommended. PMID:25647488

  13. Biogenic emissions from Citrus species in California

    NASA Astrophysics Data System (ADS)

    Fares, Silvano; Gentner, Drew R.; Park, Jeong-Hoo; Ormeno, Elena; Karlik, John; Goldstein, Allen H.

    2011-09-01

    Biogenic Volatile Organic Compounds (BVOC) emitted from plants are the dominant source of reduced carbon chemicals to the atmosphere and are important precursors to the photochemical production of ozone and secondary organic aerosols. Considering the extensive land used for agriculture, cultivated Citrus plantations may play an important role in the chemistry of the atmosphere especially in regions such as the Central Valley of California. Moreover, the BVOC emissions from Citrus species have not been characterized in detail and more species-specific inputs for regional models of BVOC emissions are needed. In this study, we measured the physiological parameters and emissions of the most relevant BVOC (oxygenated compounds, monoterpenes, and sesquiterpenes) for four predominant Citrus species planted in California ( Citrus sinensis var. 'Parent Navel', Citrus limon var. 'Meyer', Citrus reticulata var. 'W. Murcott' and 'Clementine'). We used two analytical techniques to measure a full range of BVOC emitted: Proton Transfer Reaction Mass Spectrometry (PTR-MS) and gas chromatography with mass spectrometry. Methanol, followed by acetone and acetaldehyde, were the dominant BVOC emitted from lem