Clemensen, R.E.
1959-11-01
An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.
Martin, A.D.
1986-05-09
Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.
NASA Astrophysics Data System (ADS)
Dhurandhar, Sanjeev V.; Tinto, Massimo
2005-07-01
Equal-arm interferometric detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers), the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called Time-Delay Interferometry (TDI). This article provides an overview of the theory and mathematical foundations of TDI as it will be implemented by the forthcoming space-based interferometers such as the Laser Interferometer Space Antenna (LISA) mission. We have purposely left out from this first version of our "Living Review" article on TDI all the results of more practical and experimental nature, as well as all the aspects of TDI that the data analysts will need to account for when analyzing the LISA TDI data combinations. Our forthcoming "second edition" of this review paper will include these topics.
An empirical formula for gas switch breakdown delay
NASA Astrophysics Data System (ADS)
Martin, T. H.
An empirical scaling relationship between the mean electric field and the breakdown time has been found. Many divergent sets of data were used from breakdown experiments on power lines, laser-triggered switches, trigatrons, e-beam triggered gaps, sharp-point electrode to plane gaps, and uniform field gaps. This relationship builds on the Felsenthal and Proud data and extends their breakdown time delay (formative time) data by three orders of magnitude and into the region of interest for triggered gas switching. The data indicates that electrically triggered gaps, laser-triggered gaps, and untriggered gaps are governed by the same time-delay processes. Predictions can be made of trigger gap geometry, trigger delays, and trigger polarity effects. Breakdown delays of sub-centimeter-long to at least 8-meter-long gaps in air with either high or low field-enhanced electrodes are described by this equation. In addition, this relationship appears to be valid for a variety of gases and even accurately predicts the breakdown delay of mixtures of air and SF(sub 6).
Time delay spectrum conditioner
Greiner, Norman R.
1980-01-01
A device for delaying specified frequencies of a multiple frequency laser beam. The device separates the multiple frequency beam into a series of spatially separated single frequency beams. The propagation distance of the single frequency beam is subsequently altered to provide the desired delay for each specific frequency. Focusing reflectors can be utilized to provide a simple but nonadjustable system or, flat reflectors with collimating and focusing optics can be utilized to provide an adjustable system.
Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi
2015-01-01
Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773
Creveling, R.
1959-03-17
A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.
Time delay in molecular photoionization
NASA Astrophysics Data System (ADS)
Hockett, P.; Frumker, E.; Villeneuve, D. M.; Corkum, P. B.
2016-05-01
Time-delays in the photoionization of molecules are investigated. As compared to atomic ionization, the time-delays expected from molecular ionization present a much richer phenomenon, with a strong spatial dependence due to the anisotropic nature of the molecular scattering potential. We investigate this from a scattering theory perspective, and make use of molecular photoionization calculations to examine this effect in representative homonuclear and hetronuclear diatomic molecules, nitrogen and carbon monoxide. We present energy and angle-resolved maps of the Wigner delay time for single-photon valence ionization, and discuss the possibilities for experimental measurements.
Semi-empirical magnetostrictive delay line modelling
NASA Astrophysics Data System (ADS)
Kollár, Mojmír; Hristoforou, Evangelos
In this paper, analogous approach as commonly used at the electric lines was adopted to model the magneostrictive delay line (MDL) operating on amorphous ribbons and wires like that of composition Fe 78Si 7B 15. Particularly, the damping and deterioration of the propagating magnetostrictive wave along the sample and their relation to the intrinsic material properties were of primary interest. Two damping factors taken into the consideration lead to a second-order differential equation of motion that could be solved analytically for instance of a rectangular-pulse excitation. The Laplace transform and convolution, in most of cases as a discrete procedure, has to be utilized in all other cases. Theoretical assessment confronted with some experimental results is showing a fairly good agreement.
Time delay and distance measurement
NASA Technical Reports Server (NTRS)
Abshire, James B. (Inventor); Sun, Xiaoli (Inventor)
2011-01-01
A method for measuring time delay and distance may include providing an electromagnetic radiation carrier frequency and modulating one or more of amplitude, phase, frequency, polarization, and pointing angle of the carrier frequency with a return to zero (RZ) pseudo random noise (PN) code. The RZ PN code may have a constant bit period and a pulse duration that is less than the bit period. A receiver may detect the electromagnetic radiation and calculate the scattering profile versus time (or range) by computing a cross correlation function between the recorded received signal and a three-state RZ PN code kernel in the receiver. The method also may be used for pulse delay time (i.e., PPM) communications.
Synchronization by small time delays
NASA Astrophysics Data System (ADS)
Pruessner, G.; Cheang, S.; Jensen, H. J.
2015-02-01
Synchronization is a phenomenon observed in all of the living and in much of the non-living world, for example in the heart beat, Huygens' clocks, the flashing of fireflies and the clapping of audiences. Depending on the number of degrees of freedom involved, different mathematical approaches have been used to describe it, most prominently integrate-and-fire oscillators and the Kuramoto model of coupled oscillators. In the present work, we study a very simple and general system of smoothly evolving oscillators, which continue to interact even in the synchronized state. We find that under very general circumstances, synchronization generically occurs in the presence of a (small) time delay. Strikingly, the synchronization time is inversely proportional to the time delay.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time....
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time....
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time....
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time....
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time....
PRECISION TIME-DELAY GENERATOR
Carr, B.J.; Peckham, V.D.
1959-06-16
A precision time-delay generator circuit with low jitter is described. The first thyratron has a series resonant circuit and a diode which is connected to the second thyratron. The first thyratron is triggered at the begin-ning of a time delay and a capacitor is discharged through the first thyratron and the diode, thereby, triggering the second thyratron. (T.R.H.) l6l9O The instrument described can measure pressures between sea level and 300,000 ft. The pressure- sensing transducer of the instrument is a small cylindrical tube with a thin foil of titanium-tritium fastened around the inside of the tube. Output is a digital signal which can be used for storage or telemetering more conveniently than an analog signal. (W.D.M.) l6l9l An experimental study was made on rolling contacts in the temperature range of 550 to 1000 deg F. Variables such as material composition, hardness, and operating conditions were investigated in a rolling test stand. Ball bearing tests were run to determine the effect of design parameters, bearing materials, lubricants, and operating conditions. (auth)
Telepresence, time delay, and adaptation
NASA Technical Reports Server (NTRS)
Held, Richard; Durlach, Nathaniel
1989-01-01
Displays are now being used extensively throughout the society. More and more time is spent watching television, movies, computer screens, etc. Furthermore, in an increasing number of cases, the observer interacts with the display and plays the role of operator as well as observer. To a large extent, the normal behavior in the normal environment can also be thought of in these same terms. Taking liberties with Shakespeare, it might be said, all the world's a display and all the individuals in it are operators in and on the display. Within this general context of interactive display systems, a discussion is began with a conceptual overview of a particular class of such systems, namely, teleoperator systems. The notion is considered of telepresence and the factors that limit telepresence, including decorrelation between the: (1) motor output of the teleoperator as sensed directly via the kinesthetic/tactual system, and (2) the motor output of the teleoperator as sensed indirectly via feedback from the slave robot, i.e., via a visual display of the motor actions of the slave robot. Finally, the deleterious effect of time delay (a particular decorrelation) on sensory-motor adaptation (an important phenomenon related to telepresence) is examined.
Time-delayed feedback in neurosystems.
Schöll, Eckehard; Hiller, Gerald; Hövel, Philipp; Dahlem, Markus A
2009-03-28
The influence of time delay in systems of two coupled excitable neurons is studied in the framework of the FitzHugh-Nagumo model. A time delay can occur in the coupling between neurons or in a self-feedback loop. The stochastic synchronization of instantaneously coupled neurons under the influence of white noise can be deliberately controlled by local time-delayed feedback. By appropriate choice of the delay time, synchronization can be either enhanced or suppressed. In delay-coupled neurons, antiphase oscillations can be induced for sufficiently large delay and coupling strength. The additional application of time-delayed self-feedback leads to complex scenarios of synchronized in-phase or antiphase oscillations, bursting patterns or amplitude death. PMID:19218152
Time delay plots of unflavoured baryons
NASA Astrophysics Data System (ADS)
Kelkar, N. G.; Nowakowski, M.; Khemchandani, K. P.; Jain, S. R.
2004-01-01
We explore the usefulness of the existing relations between the S-matrix and time delay in characterizing baryon resonances in pion-nucleon scattering. We draw attention to the fact that the existence of a positive maximum in time delay is a necessary criterion for the existence of a resonance and should be used as a constraint in conventional analyses which locate resonances from poles of the S-matrix and Argand diagrams. The usefulness of the time delay plots of resonances is demonstrated through a detailed analysis of the time delay in several partial waves of πN elastic scattering.
Second order Kerr-Newman time delay
NASA Astrophysics Data System (ADS)
He, G.; Lin, W.
2016-01-01
The explicit form for the post-Newtonian gravitational time delay of light signals propagating on the equatorial plane of a Kerr-Newman black hole is derived. Based on the null geodesic in Kerr-Newman spacetime, we adopt the iterative method to calculate the time delay. Our result reduces to the previous formulation for the Kerr black hole if we drop the contribution from the electrical charge. Our time-delay formula for the Reissner-Nordström geometry is different from the previous publication [Phys. Rev. D 69, 023002 (2004)], in which the largest second order contribution to the time delay is missing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which...
Lin, Aijing; Liu, Kang K L; Bartsch, Ronny P; Ivanov, Plamen Ch
2016-05-13
Within the framework of 'Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. PMID:27044991
Intron Delays and Transcriptional Timing during Development
Swinburne, Ian A.; Silver, Pamela A.
2010-01-01
The time taken to transcribe most metazoan genes is significant because of the substantial length of introns. Developmentally regulated gene networks, where timing and dynamic patterns of expression are critical, may be particularly sensitive to intron delays. We revisit and comment on a perspective last presented by Thummel 16 years ago: transcriptional delays may contribute to timing mechanisms during development. We discuss the presence of intron delays in genetic networks. We consider how delays can impact particular moments during development, which mechanistic attributes of transcription can influence them, how they can be modeled, and how they can be studied using recent technological advances as well as classical genetics. PMID:18331713
Delay Independent Criterion for Multiple Time-delay Systems
NASA Astrophysics Data System (ADS)
Chang, C. J.; Liu, K. F. R.; Yeh, K.; Chen, C. W.; Chung, P. Y.
Based on the fuzzy Lyapunov method, this work addresses the stability conditions for nonlinear systems with multiple time delays to ensure the stability of building structure control systems. The delay independent conditions are derived via the traditional Lyapunov and fuzzy Lyapunov methods for multiple time-delay systems as approximated by the Tagagi-Sugeno (T-S) fuzzy model. The fuzzy Lyapunov function is defined as a fuzzy blending of quadratic Lyapunov functions. A parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic control (FLC) by blending all linear local state feedback controllers in the controller design procedure. Furthermore, the H infinity performance and robustness of the design for modeling errors also need to be considered in the stability conditions.
Switching control and time-delay identification
NASA Astrophysics Data System (ADS)
Chen, Qi; Li, Xiang; Qin, Zhi-Chang; Zhong, Shun; Sun, J. Q.
2014-12-01
The unknown time delay makes the control design a difficult task. When the lower and upper bounds of an unknown time delay of dynamical systems are specified, one can design a supervisory control that switches among a set of controls designed for the sampled time delays in the given range so that the closed-loop system is stable and the control performance is maintained at a desirable level. In this paper, we propose to design a supervisory control to stabilize the system first. After the supervisory control converges, we start an algorithm to identify the unknown time delay, either on-line or off-line, with the known control being implemented. Examples are shown to demonstrate the stabilization and identification for linear time invariant and periodic systems with a single control time delay.
Finite time stabilization of delayed neural networks.
Wang, Leimin; Shen, Yi; Ding, Zhixia
2015-10-01
In this paper, the problem of finite time stabilization for a class of delayed neural networks (DNNs) is investigated. The general conditions on the feedback control law are provided to ensure the finite time stabilization of DNNs. Then some specific conditions are derived by designing two different controllers which include the delay-dependent and delay-independent ones. In addition, the upper bound of the settling time for stabilization is estimated. Under fixed control strength, discussions of the extremum of settling time functional are made and a switched controller is designed to optimize the settling time. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results. PMID:26264170
Ionospheric irregularity influences on GPS time delay
NASA Astrophysics Data System (ADS)
Mansoori, Azad Ahmad; Gwal, Ashok Kumar; Khan, Parvaiz A.; Bhawre, Purushottam
All the trans-ionospheric signals interact with the ionosphere during their passage through ionosphere, hence are strongly influenced by the ionosphere. One of most important ionospheric effects on the trans-ionospheric signals is the delay both in range and time. Under this investigation we have studied the variability of ionospheric range delay in GPS signals. To accomplish this study we have used the GPS measurements at a low latitude station, IISC Bangalore (13.02N, 77.57E) during January 2012 to December 2012. We studied the diurnal monthly as well as seasonal variability of the range delay. We also selected five intense geomagnetic storms that occurred during 2012 and investigated the variability of delay during the disturbed conditions. From our study we found the diurnal variability of the range delay is similar to the diurnal pattern observed for TEC. The delay is maximum during the month of October while lowest delay is found to occur in the month of December. During summer season the range delay in GPS signals in less while the largest delay occurs during the equinox season. The variability of delay during the geomagnetic storms of 09 Mar. 2012, 24 Apr. 2012, 15 Jul. 2012, 01 Oct. 2012 and 14 Nov. 2012 were also studied. All these geomagnetic storms belonged to intense category. We found that the value of delay is strongly increased during the course of geomagnetic storms. We took the peak value of delay as well as calculated the enhancement in the delay during these geomagnetic storms and then investigated their correlation with the storm intensity index Dst. Both the delays follow a very good correlation with Dst index.
Delayed biodiversity change: no time to waste.
Essl, Franz; Dullinger, Stefan; Rabitsch, Wolfgang; Hulme, Philip E; Pyšek, Petr; Wilson, John R U; Richardson, David M
2015-07-01
Delayed biodiversity responses to environmental forcing mean that rates of contemporary biodiversity changes are underestimated, yet these delays are rarely addressed in conservation policies. Here, we identify mechanisms that lead to such time lags, discuss shifting human perceptions, and propose how these phenomena should be addressed in biodiversity management and science. PMID:26028440
IDENTIFYING ANOMALIES IN GRAVITATIONAL LENS TIME DELAYS
Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik E-mail: keeton@physics.rutgers.ed
2010-02-01
We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a 'fold' lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as 'time delay anomalies'. We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.
Gravitational lens time delays and gravitational waves
Frieman, J.A. Department of Astronomy Astrophysics, University of Chicago, Chicago, Illinois 60637 ); Harari, D.D.; Surpi, G.C. )
1994-10-15
Using Fermat's principle, we analyze the effects of very long wavelength gravitational waves upon the images of a gravitationally lensed quasar. We show that the lens equation in the presence of gravity waves is equivalent to that of a lens with a different alignment between source, deflector, and observer in the absence of gravity waves. Contrary to a recent claim, we conclude that measurements of time delays in gravitational lenses cannot serve as a method to detect or constrain a stochastic background of gravitational waves of cosmological wavelengths, because the wave-induced time delay is observationally indistinguishable from an intrinsic time delay due to the lens geometry.
Resonance Effects in Photoemission Time Delays.
Sabbar, M; Heuser, S; Boge, R; Lucchini, M; Carette, T; Lindroth, E; Gallmann, L; Cirelli, C; Keller, U
2015-09-25
We present measurements of single-photon ionization time delays between the outermost valence electrons of argon and neon using a coincidence detection technique that allows for the simultaneous measurement of both species under identical conditions. The analysis of the measured traces reveals energy-dependent time delays of a few tens of attoseconds with high energy resolution. In contrast to photoelectrons ejected through tunneling, single-photon ionization can be well described in the framework of Wigner time delays. Accordingly, the overall trend of our data is reproduced by recent Wigner time delay calculations. However, besides the general trend we observe resonance features occurring at specific photon energies. These features have been qualitatively reproduced and identified by a calculation using the multiconfigurational Hartree-Fock method, including the influence of doubly excited states and ionization thresholds. PMID:26451550
Delay Differential Analysis of Time Series
Lainscsek, Claudia; Sejnowski, Terrence J.
2015-01-01
Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time
Time delays in correlated photoemission processes
NASA Astrophysics Data System (ADS)
Pazourek, R.; Nagele, S.; Burgdörfer, J.
2015-09-01
We theoretically study time-resolved two-photon double ionization (TPDI) of helium as probed by attosecond streaking. We review recent advances in the understanding of the photoelectric effect in the time domain and discuss the differences between one- and two-photon ionization, as well as one- and two-electron emission. We perform exact ab-initio simulations for attosecond streaking experiments in the sequential TPDI regime and compare the results to the two-electron Eisenbud-Wigner-Smith delay for the process. Our calculations directly show that the timing of the emission process sensitively depends on the energy sharing between the two outgoing electrons. In particular, we identify Fano-like interferences in the relative time delay of the two emitted electrons when the sequential ionization channel occurs via intermediate excited ionic (shake-up) states. Furthermore, we find that the photoemission time delays are only weakly dependent on the relative emission angle of the ejected electrons.
NASA Astrophysics Data System (ADS)
Yamazaki, Tatsuya; Hagiwara, Tomomichi
2014-08-01
A new stability analysis method of time-delay systems (TDSs) called the monodromy operator approach has been studied under the assumption that a TDS is represented as a time-delay feedback system consisting of a finite-dimensional linear time-invariant (LTI) system and a pure delay. For applying this approach to TDSs described by delay-differential equations (DDEs), the problem of converting DDEs into representation as time-delay feedback systems has been studied. With regard to such a problem, it was shown that, under discontinuous initial functions, it is natural to define the solutions of DDEs in two different ways, and the above conversion problem was solved for each of these two definitions. More precisely, the solution of a DDE was represented as either the state of the finite-dimensional part of a time-delay feedback system or a part of the output of another time-delay feedback system, depending on which definition of the DDE solution one is talking about. Motivated by the importance in establishing a thorough relationship between time-delay feedback systems and DDEs, this paper discusses the opposite problem of converting time-delay feedback systems into representation as DDEs, including the discussions about the conversion of the initial conditions. We show that the state of (the finite-dimensional part of) a time-delay feedback system can be represented as the solution of a DDE in the sense of one of the two definitions, while its 'essential' output can be represented as that of another DDE in the sense of the other type of definition. Rigorously speaking, however, it is also shown that the latter representation is possible regardless of the initial conditions, while some initial condition could prevent the conversion into the former representation. This study hence establishes that the representation of TDSs as time-delay feedback systems possesses higher ability than that with DDEs, as description methods for LTI TDSs with commensurate delays.
Relationship between Weather, Traffic and Delay Based on Empirical Methods
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Swei, Sean S. M.
2006-01-01
The steady rise in demand for air transportation over the years has put much emphasis on the need for sophisticated air traffic flow management (TFM) within the National Airspace System (NAS). The NAS refers to hardware, software and people, including runways, radars, networks, FAA, airlines, etc., involved in air traffic management (ATM) in the US. One of the metrics that has been used to assess the performance of NAS is the actual delays provided through FAA's Air Traffic Operations Network (OPSNET). The OPSNET delay data includes those reportable delays, i.e. delays of 15 minutes or more experienced by Instrument Flight Rule (IFR) flights, submitted by the FAA facilities. These OPSNET delays are caused by the application of TFM initiatives in response to, for instance, weather conditions, increased traffic volume, equipment outages, airline operations, and runway conditions. TFM initiatives such as, ground stops, ground delay programs, rerouting, airborne holding, and miles-in-trail restrictions, are actions which are needed to control the air traffic demand to mitigate the demand-capacity imbalance due to the reduction in capacity. Consequently, TFM initiatives result in NAS delays. Of all the causes, weather has been identified as the most important causal factor for NAS delays. Therefore, in order to accurately assess the NAS performance, it has become necessary to create a baseline for NAS performance and establish a model which characterizes the relation between weather and NAS delays.
Time delay in Swiss cheese gravitational lensing
Chen, B.; Kantowski, R.; Dai, X.
2010-08-15
We compute time delays for gravitational lensing in a flat {Lambda} dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with {Lambda}) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant's effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach {approx}4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.
Time Delay for the Dirac Equation
NASA Astrophysics Data System (ADS)
Naumkin, Ivan; Weder, Ricardo
2016-07-01
We consider time delay for the Dirac equation. A new method to calculate the asymptotics of the expectation values of the operator {intlimits0 ^{∞}e^{iH0t}ζ(\\vert x\\vert /R) e^{-iH0t}dt} , as {R → ∞} , is presented. Here, H 0 is the free Dirac operator and {ζ(t)} is such that {ζ(t) = 1} for {0 ≤ t ≤ 1} and {ζ(t) = 0} for {t > 1} . This approach allows us to obtain the time delay operator {δ {T}(f)} for initial states f in {{H} 2^{3/2+ɛ}({R}3;{C}4)} , {ɛ > 0} , the Sobolev space of order {3/2+ɛ} and weight 2. The relation between the time delay operator {δ{T}(f)} and the Eisenbud-Wigner time delay operator is given. In addition, the relation between the averaged time delay and the spectral shift function is presented.
SBASI: Actuated pyrotechnic time delay initiator
NASA Technical Reports Server (NTRS)
Salter, S. J.; Lundberg, R. E.; Mcdougal, G. L.
1975-01-01
A precision pyrotechnic time delay initiator for missile staging was developed and tested. Incorporated in the assembly is a single bridgewire Apollo standard initiator (SBASI) for initiation, a through-bulkhead-initiator to provide isolation of the SBASI output from the delay, the pyrotechnic delay, and an output charge. An attempt was made to control both primary and secondary variables affecting functional performance of the delay initiator. Design and functional limit exploration was performed to establish tolerance levels on manufacturing and assembling operations. The test results demonstrate a 2% coefficient of variation at any one temperature and an overall 2.7% coefficient of variation throughout the temperature range of 30 to 120 F. Tests were conducted at simulated operational altitude from sea level to 200,000 feet.
BOLD delay times using group delay in sickle cell disease
NASA Astrophysics Data System (ADS)
Coloigner, Julie; Vu, Chau; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John
2016-03-01
Sickle cell disease (SCD) is an inherited blood disorder that effects red blood cells, which can lead to vasoocclusion, ischemia and infarct. This disease often results in neurological damage and strokes, leading to morbidity and mortality. Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for measuring and mapping the brain activity. Blood Oxygenation Level-Dependent (BOLD) signals contain also information about the neurovascular coupling, vascular reactivity, oxygenation and blood propagation. Temporal relationship between BOLD fluctuations in different parts of the brain provides also a mean to investigate the blood delay information. We used the induced desaturation as a label to profile transit times through different brain areas, reflecting oxygen utilization of tissue. In this study, we aimed to compare blood flow propagation delay times between these patients and healthy subjects in areas vascularized by anterior, middle and posterior cerebral arteries. In a group comparison analysis with control subjects, BOLD changes in these areas were found to be almost simultaneous and shorter in the SCD patients, because of their increased brain blood flow. Secondly, the analysis of a patient with a stenosis on the anterior cerebral artery indicated that signal of the area vascularized by this artery lagged the MCA signal. These findings suggest that sickle cell disease causes blood propagation modifications, and that these changes could be used as a biomarker of vascular damage.
Time-Delayed Quantum Feedback Control
NASA Astrophysics Data System (ADS)
Grimsmo, Arne L.
2015-08-01
A theory of time-delayed coherent quantum feedback is developed. More specifically, we consider a quantum system coupled to a bosonic reservoir creating a unidirectional feedback loop. It is shown that the dynamics can be mapped onto a fictitious series of cascaded quantum systems, where the system is driven by past versions of itself. The derivation of this model relies on a tensor network representation of the system-reservoir time propagator. For concreteness, this general theory is applied to a driven two-level atom scattering into a coherent feedback loop. We demonstrate how delay effects can qualitatively change the dynamics of the atom and how quantum control can be implemented in the presence of time delays.
Time-Delayed Quantum Feedback Control.
Grimsmo, Arne L
2015-08-01
A theory of time-delayed coherent quantum feedback is developed. More specifically, we consider a quantum system coupled to a bosonic reservoir creating a unidirectional feedback loop. It is shown that the dynamics can be mapped onto a fictitious series of cascaded quantum systems, where the system is driven by past versions of itself. The derivation of this model relies on a tensor network representation of the system-reservoir time propagator. For concreteness, this general theory is applied to a driven two-level atom scattering into a coherent feedback loop. We demonstrate how delay effects can qualitatively change the dynamics of the atom and how quantum control can be implemented in the presence of time delays. PMID:26296104
The Strong Lensing Time Delay Challenge (2014)
NASA Astrophysics Data System (ADS)
Liao, Kai; Dobler, G.; Fassnacht, C. D.; Treu, T.; Marshall, P. J.; Rumbaugh, N.; Linder, E.; Hojjati, A.
2014-01-01
Time delays between multiple images in strong lensing systems are a powerful probe of cosmology. At the moment the application of this technique is limited by the number of lensed quasars with measured time delays. However, the number of such systems is expected to increase dramatically in the next few years. Hundred such systems are expected within this decade, while the Large Synoptic Survey Telescope (LSST) is expected to deliver of order 1000 time delays in the 2020 decade. In order to exploit this bounty of lenses we needed to make sure the time delay determination algorithms have sufficiently high precision and accuracy. As a first step to test current algorithms and identify potential areas for improvement we have started a "Time Delay Challenge" (TDC). An "evil" team has created realistic simulated light curves, to be analyzed blindly by "good" teams. The challenge is open to all interested parties. The initial challenge consists of two steps (TDC0 and TDC1). TDC0 consists of a small number of datasets to be used as a training template. The non-mandatory deadline is December 1 2013. The "good" teams that complete TDC0 will be given access to TDC1. TDC1 consists of thousands of lightcurves, a number sufficient to test precision and accuracy at the subpercent level, necessary for time-delay cosmography. The deadline for responding to TDC1 is July 1 2014. Submissions will be analyzed and compared in terms of predefined metrics to establish the goodness-of-fit, efficiency, precision and accuracy of current algorithms. This poster describes the challenge in detail and gives instructions for participation.
Time-delayed autosynchronous swarm control.
Biggs, James D; Bennet, Derek J; Dadzie, S Kokou
2012-01-01
In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations. PMID:22400623
Time-delayed autosynchronous swarm control
NASA Astrophysics Data System (ADS)
Biggs, James D.; Bennet, Derek J.; Dadzie, S. Kokou
2012-01-01
In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.
Joint moments of proper delay times
Martínez-Argüello, Angel M.; Martínez-Mares, Moisés; García, Julio C.
2014-08-15
We calculate negative moments of the N-dimensional Laguerre distribution for the orthogonal, unitary, and symplectic symmetries. These moments correspond to those of the proper delay times, which are needed to determine the statistical fluctuations of several transport properties through classically chaotic cavities, like quantum dots and microwave cavities with ideal coupling.
Time delay measurement in the frequency domain
Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan
2015-08-06
Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible bymore » simply extending the data acquisition time.« less
Time delay measurement in the frequency domain
Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan
2015-08-06
Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible by simply extending the data acquisition time.
Time Delays, Bends, Acceleration and Array Reconfigurations
Faltens, A.
2011-06-24
This note was originally one of the parts of the work on a 50 MeV and 500 MeV Rb{sup +} driver and part of work on delay lines for a 60 GeV U{sup +12} driver. It is slightly expanded here to make it more generally applicable. The emphasis is on beam manipulations such as joining and separating beams at the two ends of a driver and providing various time delays between beams as required by the target.
Influence of time delay and nonlinear diffusion on herbivore outbreak
NASA Astrophysics Data System (ADS)
Sun, Gui-Quan; Chakraborty, Amit; Liu, Quan-Xing; Jin, Zhen; Anderson, Kurt E.; Li, Bai-Lian
2014-05-01
Herbivore outbreaks, a major form of natural disturbance in many ecosystems, often have devastating impacts on their food plants. Understanding those factors permitting herbivore outbreaks to occur is a long-standing issue in conventional studies of plant-herbivore interactions. These studies are largely concerned with the relative importance of intrinsic biological factors and extrinsic environmental variations in determining the degree of herbivore outbreaks. In this paper, we illustrated that how the time delay associated with plant defense responses to herbivore attacks and the spatial diffusion of herbivore jointly promote outbreaks of herbivore population. Using a reaction-diffusion model, we showed that there exists a threshold of time delay in plant-herbivore interactions; when time delay is below the threshold value, there is no herbivore outbreak. However, when time delay is above the threshold value, periodic outbreak of herbivore emerges. Furthermore, the results confirm that during the outbreak period, plants display much lower density than its normal level but higher in the inter-outbreak periods. Our results are supported by empirical findings.
Supervising Remote Humanoids Across Intermediate Time Delay
NASA Technical Reports Server (NTRS)
Hambuchen, Kimberly; Bluethmann, William; Goza, Michael; Ambrose, Robert; Rabe, Kenneth; Allan, Mark
2006-01-01
The President's Vision for Space Exploration, laid out in 2004, relies heavily upon robotic exploration of the lunar surface in early phases of the program. Prior to the arrival of astronauts on the lunar surface, these robots will be required to be controlled across space and time, posing a considerable challenge for traditional telepresence techniques. Because time delays will be measured in seconds, not minutes as is the case for Mars Exploration, uploading the plan for a day seems excessive. An approach for controlling humanoids under intermediate time delay is presented. This approach uses software running within a ground control cockpit to predict an immersed robot supervisor's motions which the remote humanoid autonomously executes. Initial results are presented.
Inertia, gravitation, and radiation time delays
Graneau, P.
1987-05-01
This note explains how an instantaneous action-at-a-distance theory gives rise to time delays between a cause in one location and its effect at another. The key to this is a suitable law of induction which itself does not produce the time delay, but contains the cause in the form of a time derivative. The many-body solution process for an array of simultaneous induction equations then reveals retardation between cause and effect without the transport of energy at finite velocity. It is suggested that a suitable law of induction of inertia applied to an object in the solar system and the many-body universe may furnish the quantitative connection between inertia and Newtonian gravitation.
ERIC Educational Resources Information Center
Bitsakou, Paraskevi; Psychogiou, Lamprini; Thompson, Margaret; Sonuga-Barke, Edmund J. S.
2009-01-01
Background: Delay-related motivational processes are impaired in children with Attention Deficit/Hyperactivity Disorder (ADHD). Here we explore the impact of ADHD on the performance of three putative indices of Delay Aversion (DAv): (i) the choice for immediate over delayed reward; (ii) slower reaction times following delay; and (iii) increased…
Integrated Planning for Telepresence with Time Delays
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Rabe, Kenneth J.
2006-01-01
Teleoperation of remote robotic systems over time delays in the range of 2-10 seconds poses a unique set of challenges. In the context of a supervisory control system for the JSC Robonaut humanoid robot, we have developed an 'intelligent assistant' that integrates an Artificial Intelligence planner (JSHOP2) with execution monitoring of the state of both the human supervisor and the remote robot. The assistant reasons simultaneously about the world state on both sides of the time delay, which represents a novel application of this technology. The purpose of the assistant is to provide advice to the human supervisor about current and future activities, derived from a sequence of high-level goals to be achieved. To do this, the assistant must simultaneously monitor and react to various data sources, including actions taken by the supervisor who is issuing commands to the robot (e.g. with a data glove), actions taken by the robot, and the environment of the robot, both as currently perceived over the time delay, along with the current sequence of goals. We have developed a 'leader/follower' software architecture to handle the dual time-shifted streams of execution feedback. In this paper we describe the integrated planner and its executive, and how it operates in normal and anomaly situations.
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2014-07-01
Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. PMID:24732236
Estimation of time delays from unresolved photometry
NASA Astrophysics Data System (ADS)
Hirv, A.; Eenmäe, T.; Liimets, T.; Liivamägi, L. J.; Pelt, J.
2007-03-01
Context: Longtime monitoring of gravitational lens systems is often done using telescopes and recording equipment with modest resolution. Still, it would be interesting to get as much information as possible from the measured lightcurves. From high resolution images we know that the recorded quasar images are often blends and that the corresponding time series are not pure shifted replicas of the source variability. Aims: In this paper we will develop an algorithm to unscramble this kind of blended data. Methods: The proposed method is based on a simple idea. We use one of the photometric curves, which is supposedly a simple shifted replica of the source curve, to build different artificial combined curves. Then we compare these artificial curves with the blended curves. Proper solutions for a full set of time delays are then obtained by varying free input parameters and estimating statistical distances between the artificial and blended curves. Results: We performed a check of feasibility and applicability of the new algorithm. For numerically generated data sets the time delay systems were recovered for a wide range of setups. Application of the new algorithm to the classical double quasar QSO 0957+561 A, B lightcurves shows a clear splitting of one of the images. This is an unexpected result and extremely interesting, especially in the context of the recent controversy about the exact time delay value for the system. Conclusions: .The proposed method allows us to properly analyse the data from low resolution observations that have long time coverages. There are a number of gravitational lens monitoring programmes that can make use of the new algorithm.
An Empirical Study of Synchrophasor Communication Delay in a Utility TCP/IP Network
NASA Astrophysics Data System (ADS)
Zhu, Kun; Chenine, Moustafa; Nordström, Lars; Holmström, Sture; Ericsson, Göran
2013-07-01
Although there is a plethora of literature dealing with Phasor Measurement Unit (PMU) communication delay, there has not been any effort made to generalize empirical delay results by identifying the distribution with the best fit. The existing studies typically assume a distribution or simply build on analogies to communication network routing delay. Specifically, this study provides insight into the characterization of the communication delay of both unprocessed PMU data and synchrophasors sorted by a Phasor Data Concentrator (PDC). The results suggest that a bi-modal distribution containing two normal distributions offers the best fit of the delay of the unprocessed data, whereas the delay profile of the sorted synchrophasors resembles a normal distribution based on these results, the possibility of evaluating the reliability of a synchrophasor application with respect to a particular choice of PDC timeout is discussed.
Angular dependence of Wigner time delay: Relativistic Effects
NASA Astrophysics Data System (ADS)
Mandal, A.; Deshmukh, P. C.; Manson, S. T.; Kkeifets, A. S.
2016-05-01
Laser assisted photoionization time delay mainly consists of two parts: Wigner time delay, and time delay in continuum-continuum transition. Wigner time delay results from the energy derivative of the phase of the photoionization amplitude (matrix element). In general, the photoionization time delay is not the same in all directions relative to the incident photon polarization, although when a single transition dominates the amplitude, the resultant time delay is essentially isotropic. The relativistic-random-phase approximation is employed to determine the Wigner time delay in photoionization from the outer np subshells of the noble gas atoms, Ne through Xe. The time delay is found to significantly depend on angle, as well as energy. The angular dependence of the time delay is found to be quite sensitive to atomic dynamics and relativistic effects, and exhibit strong energy and angular variation in the neighborhood of Cooper minima. Work supported by DOE, Office of Chemical Sciences and DST (India).
Integrated Planning for Telepresence with Time Delays
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Rabe, Kenneth J.
2006-01-01
Integrated planning and execution of teleoperations in space with time delays is shown. The topics include: 1) The Problem; 2) Future Robot Surgery? 3) Approach Overview; 4) Robonaut; 5) Normal Planning and Execution; 6) Planner Context; 7) Implementation; 8) Use of JSHOP2; 9) Monitoring and Testing GUI; 10) Normal sequence: first the supervisor acts; 11) then the robot; 12) Robot might be late; 13) Supervisor can work ahead; 14) Deviations from Plan; 15) Robot State Change Example; 16) Accomplished goals skipped in replan; 17) Planning continuity; 18) Supervisor Deviation From Plan; 19) Intentional Deviation; and 20) Infeasible states.
Integrated Planning for Telepresence With Time Delays
NASA Technical Reports Server (NTRS)
Johnston, Mark; Rabe, Kenneth
2009-01-01
A conceptual "intelligent assistant" and an artificial-intelligence computer program that implements the intelligent assistant have been developed to improve control exerted by a human supervisor over a robot that is so distant that communication between the human and the robot involves significant signal-propagation delays. The goal of the effort is not only to help the human supervisor monitor and control the state of the robot, but also to improve the efficiency of the robot by allowing the supervisor to "work ahead". The intelligent assistant is an integrated combination of an artificial-intelligence planner and a monitor of states of both the human supervisor and the remote robot. The novelty of the system lies in the way it uses the planner to reason about the states at both ends of the time delay. The purpose served by the assistant is to provide advice to the human supervisor about current and future activities, derived from a sequence of high-level goals to be achieved.
Non-commutativity, teleology and GRB time delay
NASA Astrophysics Data System (ADS)
Li, Miao; Pang, Yi; Wang, Yi
2010-01-01
We propose a model in which an energy-dependent time delay of a photon originates from space-time non-commutativity, the time delay is due to a non-commutative coupling between dilaton and photon. We predict that in our model, high energy photons with different momentum can either be delayed or superluminal, this may be related to a possible time delay reported by the Fermi LAT and Fermi GBM Collaborations.
14 CFR 417.221 - Time delay analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean...
Relativistic calculations of angle-dependent photoemission time delay
NASA Astrophysics Data System (ADS)
Kheifets, Anatoli; Mandal, Ankur; Deshmukh, Pranawa C.; Dolmatov, Valeriy K.; Keating, David A.; Manson, Steven T.
2016-07-01
Angular dependence of photoemission time delay for the valence n p3 /2 and n p1 /2 subshells of Ar, Kr, and Xe is studied in the dipole relativistic random phase approximation. Strong angular anisotropy of the time delay is reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.
14 CFR 417.221 - Time delay analysis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean elapsed... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Time delay analysis. 417.221 Section...
Yang, Qiongfen; Ren, Quanhong; Xie, Xuemei
2014-07-01
This paper is concerned with the delay dependent stability criteria for a class of static recurrent neural networks with interval time-varying delay. By choosing an appropriate Lyapunov-Krasovskii functional and employing a delay partitioning method, the less conservative condition is obtained. Furthermore, the LMIs-based condition depend on the lower and upper bounds of time delay. Finally, a numerical example is also designated to verify the reduced conservatism of developed criteria. PMID:24908560
A time delay controller for magnetic bearings
NASA Technical Reports Server (NTRS)
Youcef-Toumi, K.; Reddy, S.
1991-01-01
The control of systems with unknown dynamics and unpredictable disturbances has raised some challenging problems. This is particularly important when high system performance needs to be guaranteed at all times. Recently, the Time Delay Control has been suggested as an alternative control scheme. The proposed control system does not require an explicit plant model nor does it depend on the estimation of specific plant parameters. Rather, it combines adaptation with past observations to directly estimate the effect of the plant dynamics. A control law is formulated for a class of dynamic systems and a sufficient condition is presented for control systems stability. The derivation is based on the bounded input-bounded output stability approach using L sub infinity function norms. The control scheme is implemented on a five degrees of freedom high speed and high precision magnetic bearing. The control performance is evaluated using step responses, frequency responses, and disturbance rejection properties. The experimental data show an excellent control performance despite the system complexity.
COSMOLOGICAL CONSTRAINTS FROM GRAVITATIONAL LENS TIME DELAYS
Coe, Dan; Moustakas, Leonidas A.
2009-11-20
Future large ensembles of time delay (TD) lenses have the potential to provide interesting cosmological constraints complementary to those of other methods. In a flat universe with constant w including a Planck prior, The Large Synoptic Survey Telescope TD measurements for approx4000 lenses should constrain the local Hubble constant h to approx0.007 (approx1%), OMEGA{sub de} to approx0.005, and w to approx0.026 (all 1sigma precisions). Similar constraints could be obtained by a dedicated gravitational lens observatory (OMEGA) which would obtain precise TD and mass model measurements for approx100 well-studied lenses. We compare these constraints (as well as those for a more general cosmology) to the 'optimistic Stage IV' constraints expected from weak lensing, supernovae, baryon acoustic oscillations, and cluster counts, as calculated by the Dark Energy Task Force. TDs yield a modest constraint on a time-varying w(z), with the best constraint on w(z) at the 'pivot redshift' of z approx 0.31. Our Fisher matrix calculation is provided to allow TD constraints to be easily compared to and combined with constraints from other experiments. We also show how cosmological constraining power varies as a function of numbers of lenses, lens model uncertainty, TD precision, redshift precision, and the ratio of four-image to two-image lenses.
Analytic Modeling of Collector Current and Delay Time in Hbts
NASA Astrophysics Data System (ADS)
Jung, Hee-Bum
1992-01-01
Collector current in abrupt Al_ {0.48}In_{0.52} As/In_{0.53}Ga _{0.47}As HBTs is investigated. Because tunneling plays an important role for abrupt heterojunctions, thermionic field emission (TF) mechanism is included, as a part of the model, in addition to thermionic emission (TE) theory. To model the modulation of the effective barrier height correctly, non-ideal doping profile across the heterojunction is considered. Calculations showed that under nominal operating conditions, TF is dominant over TE in determining the collector current. Furthermore, modulation of the effective barrier height manifests itself in the collector ideality factor that is greater than unity. It is shown that, by calculating the above mentioned transport mechanisms and including the barrier height modulation, the collector current and its temperature dependence in abrupt AlInAs/InGaAs HBTs can be predicted correctly. The detailed calculation is reduced to an analytical closed -form model by assuming a Gaussian energy spectrum for TF current. The model is determined to be accurate over a wide range of bias and temperatures. A simple TE/TF Ebers -Moll model for abrupt HBTs is derived. The classical expression for collector small signal delay time is inadequate for vertically scaled transistors where transient velocity effects can no longer be ignored. Analytical expressions for collector transit time and small signal delay time are proposed for circuit simulation. These models use a general non-uniform velocity profile described entirely in terms of five physical parameters: momentum and energy relaxation times, and initial, peak, and saturated velocities. A C_infty-continuous function approximation for the transit time is used to obtain analytical closed-form expressions for collector small signal delay time in terms of physically meaningful transport parameters. An accurate empirical two-piece model is also proposed. As the collector thickness is scaled down, the ratio of small signal
Delay time and Hartman effect in strain engineered graphene
Chen, Xi Deng, Zhi-Yong; Ban, Yue
2014-05-07
Tunneling times, including group delay and dwell time, are studied for massless Dirac electrons transmitting through a one-dimensional barrier in strain-engineered graphene. The Hartman effect, the independence of group delay on barrier length, is induced by the strain effect, and associated with the transmission gap and the evanescent mode. The influence of barrier height/length and strain modulus/direction on the group delay is also discussed, which provides the flexibility to control the group delay with applications in graphene-based devices. The relationship between group delay and dwell time is finally derived to clarify the nature of the Hartman effect.
Time-delay compensation for stabilization imaging system
NASA Astrophysics Data System (ADS)
Chen, Yueting; Xu, Zhihai; Li, Qi; Feng, Huajun
2014-05-01
The spatial resolution of imaging systems for airborne and space-borne remote sensing are often limited by image degradation resulting from mechanical vibrations of platforms during image exposure. A straightforward way to overcome this problem is to actively stabilize the optical axis or drive the focal plane synchronous to the motion image during exposure. Thus stabilization imaging system usually consists of digital image motion estimation and micromechanical compensation. The performance of such kind of visual servo system is closely related to precision of motion estimation and time delay. Large time delay results in larger phase delay between motion estimation and micromechanical compensation, and leads to larger uncompensated residual motion and limited bandwidth. The paper analyzes the time delay caused by image acquisition period and introduces a time delay compensation method based on SVM (Support Vector Machine) motion prediction. The main idea to cancel the time delay is to predict the current image motion from delayed measurements. A support vector machine based method is designed to predict the image motion. A prototype of stabilization imaging system has been implemented in the lab. To analyze the influences of time delay on system performance and to verify the proposed time delay cancelation method, comparative experiments over various frequencies of vibration are taken. The experimental results show that, the accuracy of motion compensation and the bandwidth of the system can be significantly improved with time delay cancelation.
A novel online adaptive time delay identification technique
NASA Astrophysics Data System (ADS)
Bayrak, Alper; Tatlicioglu, Enver
2016-05-01
Time delay is a phenomenon which is common in signal processing, communication, control applications, etc. The special feature of time delay that makes it attractive is that it is a commonly faced problem in many systems. A literature search on time-delay identification highlights the fact that most studies focused on numerical solutions. In this study, a novel online adaptive time-delay identification technique is proposed. This technique is based on an adaptive update law through a minimum-maximum strategy which is firstly applied to time-delay identification. In the design of the adaptive identification law, Lyapunov-based stability analysis techniques are utilised. Several numerical simulations were conducted with Matlab/Simulink to evaluate the performance of the proposed technique. It is numerically demonstrated that the proposed technique works efficiently in identifying both constant and disturbed time delays, and is also robust to measurement noise.
Consensus networks with time-delays over finite fields
NASA Astrophysics Data System (ADS)
Li, Xiuxian; Su, Housheng; Chen, Michael Z. Q.
2016-05-01
In this paper, we investigate the consensus problem in networks with time-delays over finite fields. The delays are categorised into three cases: single constant delay, multiple constant delays, and time-varying bounded delays. For all cases, some sufficient and necessary conditions for consensus are derived. Furthermore, assuming that the communication graph is strongly connected, some of the obtained necessary conditions reveal that the conditions for consensus with time-delays over finite fields depend not only on the diagonal entries but also on the off-diagonal entries, something that is intrinsically distinct from the case over real numbers (where having at least one nonzero diagonal entry is a sufficient and necessary condition to guarantee consensus). In addition, it is shown that delayed networks cannot achieve consensus when the interaction graph is a tree if the corresponding delay-free networks cannot reach consensus, which is consistent with the result over real numbers. As for average consensus, we show that it can never be achieved for delayed networks over finite fields, although it indeed can be reached under several conditions for delay-free networks over finite fields. Finally, networks with time-varying delays are discussed and one sufficient condition for consensus is presented by graph-theoretic method.
14 CFR 417.221 - Time delay analysis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis....
14 CFR 417.221 - Time delay analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... occurs; (2) A flight safety official's decision and reaction time, including variation in human response... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis....
An evaluation of an empirical model for stall delay due to rotation for HAWTS
Tangler, J L; Selig, M S
1997-07-01
The objective of this study was to evaluate the Corrigan and Schillings stall delay model for predicting rotor performance for horizontal axis wind turbines. Two-dimensional (2D) wind tunnel characteristics with and without stall delay were used in the computer program PROP93 to predict performance for the NREL Combined Experiment Rotor (CER) and a lower solidity commercial machine. For the CER, predictions were made with a constant-chord/twisted blade and a hypothetical tapered/twisted blade. Results for the constant-chord/twisted blade were compared with CER data. Predicted performance using this empirical stall-delay method provided significant increases in peak power over 2D post-stall airfoil characteristics. The predicted peak power increase due to stall delay for the CER was found to be quite large (20% to 30%) as a result of its high blade solidity. For a more typical, lower-solidity commercial blade the predicted peak power increase was 15% to 20%. As described in the paper, correlation with test data was problematic due to factors not related to the stall-delay model.
Stability analysis of genetic regulatory networks with multiple time delays.
Wu, Fang-Xiang
2007-01-01
A genetic regulatory network is a dynamic system to describe interactions among genes (mRNA) and its products (proteins). From the statistic thermodynamics and biochemical reaction principle, a genetic regulatory network can be described by a group of nonlinear differential equations with time delays. Stability is one of interesting properties for genetic regulatory network. Previous studies have investigated stability of genetic regulatory networks with a single time delay. In this paper, we investigate properties of genetic regulatory networks with multiple time delays in the notion of delay-independent stability. We present necessary and sufficient condition for the local delay-independent stability of genetic regulatory network with multiple time delays which are independent or commensurate. PMID:18002223
GPT2: Empirical slant delay model for radio space geodetic techniques
Lagler, K; Schindelegger, M; Böhm, J; Krásná, H; Nilsson, T
2013-01-01
Up to now, state-of-the-art empirical slant delay modeling for processing observations from radio space geodetic techniques has been provided by a combination of two empirical models. These are GPT (Global Pressure and Temperature) and GMF (Global Mapping Function), both operating on the basis of long-term averages of surface values from numerical weather models. Weaknesses in GPT/GMF, specifically their limited spatial and temporal variability, are largely eradicated by a new, combined model GPT2, which provides pressure, temperature, lapse rate, water vapor pressure, and mapping function coefficients at any site, resting upon a global 5° grid of mean values, annual, and semi-annual variations in all parameters. Built on ERA-Interim data, GPT2 brings forth improved empirical slant delays for geophysical studies. Compared to GPT/GMF, GPT2 yields a 40% reduction of annual and semi-annual amplitude differences in station heights with respect to a solution based on instantaneous local pressure values and the Vienna mapping functions 1, as shown with a series of global VLBI (Very Long Baseline Interferometry) solutions. PMID:25821263
NASA Astrophysics Data System (ADS)
Liu, Pin-Lin
2014-08-01
This paper discusses the neutral system with time-varying delay. Firstly, by developing a delayed decomposition approach and introducing integral inequality approach, the information of the delayed plant states can be taken into full consideration, and new delay-dependent sufficient stability criteria are obtained in terms of linear matrix inequalities (LMIs). Then, based on the Lyapunov method, delay-dependent stability criteria are devised by taking the relationship between the terms in the Leibniz-Newton formula into account. The criteria are derived in terms of LMIs, which can be easily solved by using various convex optimization algorithms. Three illustrative numerical examples are given to show the less conservatism of our obtained results and the effectiveness of the proposed method.
14 CFR 417.221 - Time delay analysis.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Time delay analysis. 417.221 Section 417.221 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include...
Stability of a general SEIV epidemic model with time delay
NASA Astrophysics Data System (ADS)
Hikal, M. M.; El-Sheikh, M. M. A.
2013-10-01
An SEIV epidemic model with a general nonlinear incidence rate, vaccination and time delay in treatment is considered. Sufficient conditions for the time delay to keep the stability of the endemic equilibria are given. A numerical simulations is given to illustrate our results.
Using Constant Time Delay to Teach Braille Word Recognition
ERIC Educational Resources Information Center
Hooper, Jonathan; Ivy, Sarah; Hatton, Deborah
2014-01-01
Introduction: Constant time delay has been identified as an evidence-based practice to teach print sight words and picture recognition (Browder, Ahlbrim-Delzell, Spooner, Mims, & Baker, 2009). For the study presented here, we tested the effectiveness of constant time delay to teach new braille words. Methods: A single-subject multiple baseline…
Time-delayed operation of a telerobot via geosynchronous relay
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.
1988-01-01
Operation of a telerobot is compromised if a time delay of more than a few hundred milliseconds exists between the operator and remote manipulator. However, the most economically attractive way to perform telerobotic functions such as assembly, maintenance, and repair in Earth orbit is via geosynchronous relay satellites to a ground-based operator. This induces loop delays from one-half to two seconds, depending on how many relays are involved. Such large delays makes direct master-slave, force-reflecting teleoperated systems infeasible. Research at JPL on a useful telerobot that operates with such time delays is described.
Photonic Circuits with Time Delays and Quantum Feedback
NASA Astrophysics Data System (ADS)
Pichler, Hannes; Zoller, Peter
2016-03-01
We study the dynamics of photonic quantum circuits consisting of nodes coupled by quantum channels. We are interested in the regime where the time delay in communication between the nodes is significant. This includes the problem of quantum feedback, where a quantum signal is fed back on a system with a time delay. We develop a matrix product state approach to solve the quantum stochastic Schrödinger equation with time delays, which accounts in an efficient way for the entanglement of nodes with the stream of emitted photons in the waveguide, and thus the non-Markovian character of the dynamics. We illustrate this approach with two paradigmatic quantum optical examples: two coherently driven distant atoms coupled to a photonic waveguide with a time delay, and a driven atom coupled to its own output field with a time delay as an instance of a quantum feedback problem.
Photonic Circuits with Time Delays and Quantum Feedback.
Pichler, Hannes; Zoller, Peter
2016-03-01
We study the dynamics of photonic quantum circuits consisting of nodes coupled by quantum channels. We are interested in the regime where the time delay in communication between the nodes is significant. This includes the problem of quantum feedback, where a quantum signal is fed back on a system with a time delay. We develop a matrix product state approach to solve the quantum stochastic Schrödinger equation with time delays, which accounts in an efficient way for the entanglement of nodes with the stream of emitted photons in the waveguide, and thus the non-Markovian character of the dynamics. We illustrate this approach with two paradigmatic quantum optical examples: two coherently driven distant atoms coupled to a photonic waveguide with a time delay, and a driven atom coupled to its own output field with a time delay as an instance of a quantum feedback problem. PMID:26991174
MSW variable time-delay techniques
NASA Astrophysics Data System (ADS)
Adam, J. D.; Daniel, M. R.; Emtage, P. R.; Weinert, R. W.
1982-07-01
Work performed during the first year of a program to investigate magnetostatic wave device techniques for phased arrays and microwave signal processing is described. Among the topics covered is a variable delay line formed by a backward volume wave down-chirp and a forward volume wave up-chirp; propagation in YIG films biased at an arbitrary angle; propagation and transduction in double YIG films; and the growth of Sm-doped GGG suitable for use as an epitaxial spacer between two YIG films.
Microsecond delays on non-real time operating systems
Angstadt, R.; Estrada, J.; Diehl, H.T.; Flaugher, B.; Johnson, M.; /Fermilab
2007-05-01
We have developed microsecond timing and profiling software that runs on standard Windows and Linux based operating systems. This software is orders of magnitudes better than most of the standard native functions in wide use. Our software libraries calibrate RDTSC in microseconds or seconds to provide two different types of delays: a ''Guaranteed Minimum'' and a precision ''Long Delay'', which releases to the kernel. Both return profiling information of the actual delay.
Electronically variable time delays using magnetostatic wave technology
NASA Astrophysics Data System (ADS)
Adkins, L. R.; Glass, H. L.; Jin, K. K.; Stearns, F. S.; Ataiiyn, Y. T.
1986-03-01
Variable time delays are necessary in phased array systems to prevent phase squinting and pulse stretching. Methods for providing these time delays include an assortment of fixed cables, ferrite loaded cables, surface acoustic wave (SAW) devices and magnetostatic wave (MSW) devices. Fixed cables are bulky, limiting the number that can be employed per system. Ferrite loaded cables and SAW devices are applicable primarily at frequencies below 1 GHz and provide relatively small delay differentials. MSW wave technology is capable of operating at frequencies up to 20 GHz and providing differential time delays on the order of tens of nanoseconds. An MSW device has recently been demonstrated with a bandwidth greater than 200 MHz centered at 3 GHz. This device has a phase error across the band as low as 8 deg and is capable of providing nearly 50 nS differential delay. Thus, MSW technology appears to be the most promising technique for the next generation of phased array systems.
GPT2/GMF2: An improved empirical model for tropospheric delays
NASA Astrophysics Data System (ADS)
Boehm, J.; Lagler, K.; Schindelegger, M.; Krasna, H.
2012-12-01
Troposphere delay modelling is a major error source in the analysis of space geodetic observations at radio wavelengths, like those from Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). If available, it is recommended to use pressure values recorded at the geodetic sites to determine zenith hydrostatic delays, to map those delays down to the elevation of the observation with the hydrostatic Vienna Mapping Function 1 (VMF1), and to estimate the residual zenith wet delay with the wet VMF1 in a least-squares adjustment. In case that neither local pressure values nor VMF1 are available, the analyst is advised to take the empirical functions, like the Global Pressure and Temperature (GPT) model and the Global Mapping Functions (GMF). Both, GPT and GMF, are built on spherical harmonics up to degree and order nine and they describe the annual variation of pressure, temperature, and the mapping function coefficients. Here, we present an updated version of GPT and GMF, called GPT2/GMF2, which has been obtained from 10 years of monthly climatological means as portrayed by ERA-Interim data of the ECMWF (European Centre for Medium-Range Weather Forecasts). GPT2/GMF2 is based on 5 x 5 degree grids, sine and cosine amplitudes for the annual and semi-annual variation of pressure, temperature, lapse rate, humidity, and mapping function coefficients. We show its implementation and application in the Vienna VLBI Software (VieVS) and compare the station coordinates and zenith delays against those determined with GPT/GMF or the VMF1 with local pressure measurements.
Stability domains of the delay and PID coefficients for general time-delay systems
NASA Astrophysics Data System (ADS)
Almodaresi, Elham; Bozorg, Mohammad; Taghirad, Hamid D.
2016-04-01
Time delays are encountered in many physical systems, and they usually threaten the stability and performance of closed-loop systems. The problem of determining all stabilising proportional-integral-derivative (PID) controllers for systems with perturbed delays is less investigated in the literature. In this study, the Rekasius substitution is employed to transform the system parameters to a new space. Then, the singular frequency (SF) method is revised for the Rekasius transformed system. A novel technique is presented to compute the ranges of time delay for which stable PID controller exists. This stability range cannot be readily computed from the previous methods. Finally, it is shown that similar to the original SF method, finite numbers of singular frequencies are sufficient to compute the stable regions in the space of time delay and controller coefficients.
Next generation strong lensing time delay estimation with Gaussian processes
NASA Astrophysics Data System (ADS)
Hojjati, Alireza; Linder, Eric V.
2014-12-01
Strong gravitational lensing forms multiple, time delayed images of cosmological sources, with the "focal length" of the lens serving as a cosmological distance probe. Robust estimation of the time delay distance can tightly constrain the Hubble constant as well as the matter density and dark energy. Current and next generation surveys will find hundreds to thousands of lensed systems but accurate time delay estimation from noisy, gappy light curves is potentially a limiting systematic. Using a large sample of blinded light curves from the Strong Lens Time Delay Challenge we develop and demonstrate a Gaussian process cross correlation technique that delivers an average bias within 0.1% depending on the sampling, necessary for subpercent Hubble constant determination. The fits are accurate (80% of them within one day) for delays from 5-100 days and robust against cadence variations shorter than six days. We study the effects of survey characteristics such as cadence, season, and campaign length, and derive requirements for time delay cosmology: in order not to bias the cosmology determination by 0.5 σ , the mean time delay fit accuracy must be better than 0.2%.
Chaos synchronization by resonance of multiple delay times
NASA Astrophysics Data System (ADS)
Martin, Manuel Jimenez; D'Huys, Otti; Lauerbach, Laura; Korutcheva, Elka; Kinzel, Wolfgang
2016-02-01
Chaos synchronization may arise in networks of nonlinear units with delayed couplings. We study complete and sublattice synchronization generated by resonance of two large time delays with a specific ratio. As it is known for single-delay networks, the number of synchronized sublattices is determined by the greatest common divisor (GCD) of the network loop lengths. We demonstrate analytically the GCD condition in networks of iterated Bernoulli maps with multiple delay times and complement our analytic results by numerical phase diagrams, providing parameter regions showing complete and sublattice synchronization by resonance for Tent and Bernoulli maps. We compare networks with the same GCD with single and multiple delays, and we investigate the sensitivity of the correlation to a detuning between the delays in a network of coupled Stuart-Landau oscillators. Moreover, the GCD condition also allows detection of time-delay resonances, leading to high correlations in nonsynchronizable networks. Specifically, GCD-induced resonances are observed both in a chaotic asymmetric network and in doubly connected rings of delay-coupled noisy linear oscillators.
Chaos synchronization by resonance of multiple delay times.
Martin, Manuel Jimenez; D'Huys, Otti; Lauerbach, Laura; Korutcheva, Elka; Kinzel, Wolfgang
2016-02-01
Chaos synchronization may arise in networks of nonlinear units with delayed couplings. We study complete and sublattice synchronization generated by resonance of two large time delays with a specific ratio. As it is known for single-delay networks, the number of synchronized sublattices is determined by the greatest common divisor (GCD) of the network loop lengths. We demonstrate analytically the GCD condition in networks of iterated Bernoulli maps with multiple delay times and complement our analytic results by numerical phase diagrams, providing parameter regions showing complete and sublattice synchronization by resonance for Tent and Bernoulli maps. We compare networks with the same GCD with single and multiple delays, and we investigate the sensitivity of the correlation to a detuning between the delays in a network of coupled Stuart-Landau oscillators. Moreover, the GCD condition also allows detection of time-delay resonances, leading to high correlations in nonsynchronizable networks. Specifically, GCD-induced resonances are observed both in a chaotic asymmetric network and in doubly connected rings of delay-coupled noisy linear oscillators. PMID:26986330
Heterogeneity of time delays determines synchronization of coupled oscillators.
Petkoski, Spase; Spiegler, Andreas; Proix, Timothée; Aram, Parham; Temprado, Jean-Jacques; Jirsa, Viktor K
2016-07-01
Network couplings of oscillatory large-scale systems, such as the brain, have a space-time structure composed of connection strengths and signal transmission delays. We provide a theoretical framework, which allows treating the spatial distribution of time delays with regard to synchronization, by decomposing it into patterns and therefore reducing the stability analysis into the tractable problem of a finite set of delay-coupled differential equations. We analyze delay-structured networks of phase oscillators and we find that, depending on the heterogeneity of the delays, the oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically compute their stability boundaries. These results find direct application in the study of brain oscillations. PMID:27575125
Heterogeneity of time delays determines synchronization of coupled oscillators
NASA Astrophysics Data System (ADS)
Petkoski, Spase; Spiegler, Andreas; Proix, Timothée; Aram, Parham; Temprado, Jean-Jacques; Jirsa, Viktor K.
2016-07-01
Network couplings of oscillatory large-scale systems, such as the brain, have a space-time structure composed of connection strengths and signal transmission delays. We provide a theoretical framework, which allows treating the spatial distribution of time delays with regard to synchronization, by decomposing it into patterns and therefore reducing the stability analysis into the tractable problem of a finite set of delay-coupled differential equations. We analyze delay-structured networks of phase oscillators and we find that, depending on the heterogeneity of the delays, the oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically compute their stability boundaries. These results find direct application in the study of brain oscillations.
Workspace visualization and time-delay telerobotic operations
NASA Technical Reports Server (NTRS)
Schenker, P. S.; Bejczy, A. K.
1990-01-01
The paper examines the performance of telerobotic tasks where the operator and robot are physically separated, and a comunication time delay of up to several seconds between them exists. This situation is applicable to space robotic servicing-assembly-maintenance operations on low earth or geosynchronous orbits with a ground-based command station. Attention is given to two developments which address advanced time-delay teleoperations for unstructured tasks: (1) the 'phantom robot', a real-time predictive graphics simulator developed to allow teleoperator eye-to-hand coordination or robot free-space kinematics under a time delay of several seconds; and (2) shared compliance control, a modified form of automatic electromechanical impedance control employed in parallel with manual position control to permit soft contact and grasp compliance with workpiece geometry under a time delay of several seconds.
Time Delay for Dispersive Systems in Quantum Scattering Theory
NASA Astrophysics Data System (ADS)
Tiedra de Aldecoa, Rafael
We consider time delay and symmetrized time delay (defined in terms of sojourn times) for quantum scattering pairs {H0 = h(P), H}, where h(P) is a dispersive operator of hypoelliptic-type. For instance, h(P) can be one of the usual elliptic operators such as the Schrödinger operator h(P) = P2 or the square-root Klein-Gordon operator h(P) = √ {1 + P2}. We show under general conditions that the symmetrized time delay exists for all smooth even localization functions. It is equal to the Eisenbud-Wigner time delay plus a contribution due to the non-radial component of the localization function. If the scattering operator S commutes with some function of the velocity operator ∇h(P), then the time delay also exists and is equal to the symmetrized time delay. As an illustration of our results, we consider the case of a one-dimensional Friedrichs Hamiltonian perturbed by a finite rank potential. Our study puts into evidence an integral formula relating the operator of differentiation with respect to the kinetic energy h(P) to the time evolution of localization operators.
Time-delayed directional beam phased array antenna
Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron
2004-10-19
An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.
Time-delayed coupled logistic capacity model in population dynamics
NASA Astrophysics Data System (ADS)
Cáceres, Manuel O.
2014-08-01
This study proposes a delay-coupled system based on the logistic equation that models the interaction of a population with its varying environment. The integro-diferential equations of the model are presented in terms of a distributed time-delayed coupled logistic-capacity equation. The model eliminates the need for a prior knowledge of the maximum saturation environmental carrying capacity value. Therefore the dynamics toward the final attractor in a distributed time-delayed coupled logistic-capacity model is studied. Exact results are presented, and analytical conclusions have been done in terms of the two parameters of the model.
Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay
NASA Astrophysics Data System (ADS)
Torkamani, Shahab; Butcher, Eric A.
2013-07-01
The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.
The time delay in the twin QSO Q0957 + 561
Schild, R.E. )
1990-12-01
From 10 yr of brightness monitoring of the two gravitational mirage components of Q0957 + 561 A,B it is shown that the time delay is 1.11 yr. An intensive program of daily brightness monitoring suggests a further refinement of the time delay to 404 days. Careful superposition of the phased brightness records shows that small differences are seen. These differences are attributed to microlensing by a star or stars in the lens galaxy. 5 refs.
Time Delay Evolution of Five Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Kovačević, A.; Popović, L. Č.; Shapovalova, A. I.; Ilić, D.; Burenkov, A. N.; Chavushyan, V. H.
2015-12-01
Here we investigate light curves of the continuum and emission lines of five type 1 active galactic nuclei (AGN) from our monitoring campaign, to test time-evolution of their time delays. Using both modeled and observed AGN light curves, we apply Gaussian kernel-based estimator to capture variation of local patterns of their time evolving delays. The largest variations of time delays of all objects occur in the period when continuum or emission lines luminosity is the highest. However, Gaussian kernel-based method shows instability in the case of NGC 5548, 3C 390.3, E1821 + 643 and NGC 4051 possibly due to numerical discrepancies between damped random walk (DRW) time scale of light curves and sliding time windows of the method. The temporal variations of time lags of Arp 102B can correspond to the real nature of the time lag evolution.
ERIC Educational Resources Information Center
McDermott, Steve; Hylton, Cal
A theoretical model was tested for its ability to explain persistence and delayed credibility (or "sleeper") effects in attitude change via persuasive variables. The model predicted opinion effects from two major components: a multiplicative effect of message repetition and credibility, and a simple effect of time since receipt of message. The…
Quasar optical variability: searching for interband time delays
NASA Astrophysics Data System (ADS)
Bachev, R. S.
2009-01-01
Aims: The main purpose of this paper is to study time delays between the light variations in different wavebands for a sample of quasars. Measuring a reliable time delay for a large number of quasars may help constraint the models of their central engines. The standard accretion disk irradiation model predicts a delay of the longer wavelengths behind the shorter ones, a delay that depends on the fundamental quasar parameters. Since the black hole masses and the accretion rates are approximately known for the sample we use, one can compare the observed time delays with the expected ones. Methods: We applied the interpolation cross-correlation function (ICCF) method to the Giveon et al. sample of 42 quasars, monitored in two (B and R) colors, to find the time lags represented by the ICCF peaks. Different tests were performed to assess the influence of photometric errors, sampling, etc., on the final result. Results: We found that most of the objects show a delay in the red light curve behind the blue one (a positive lag), which on average for the sample is about +4 days (+3 for the median), although the scatter is significant. These results are broadly consistent with the reprocessing model, especially for the well-sampled objects. The normalized time-lag deviations do not seem to correlate significantly with other quasar properties, including optical, radio, or X-ray measurables. On the other hand, many objects show a clear negative lag, which, if real, may have important consequences for the variability models.
An adaptive robust controller for time delay maglev transportation systems
NASA Astrophysics Data System (ADS)
Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza
2012-12-01
For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.
A deterministic pseudo-fractal networks with time-delay
NASA Astrophysics Data System (ADS)
Xing, Changming; Yang, Lin; Ma, Jun
2015-08-01
In this paper, inspired by the pseudo-fractal networks (PFN) and the delayed pseudo-fractal networks (DPFN), we present a novel delayed pseudo-fractal networks model, denoted by NDPFN. Different from the generation algorithm of those two networks, every edge of the novel model has a time-delay to generate new nodes after producing one node. We derive exactly the main structural properties of the novel networks: degree distribution, clustering coefficient, diameter and average path length. Analytical results show that the novel networks have small-world effect and scale-free topology. Comparing topological parameters of these three networks, we find that the degree exponent of the novel networks is the largest while the clustering coefficient and the average path length are the smallest. It means that this kind of delay could weaken the heterogeneity and the small-world features of the network. Particularly, the delay effect in the NDPFN is contrary to that in the DPFN, which illustrates the variety of delay method could produce different effects on the network structure. These present findings may be helpful for a deeper understanding of the time-delay influence on the network topology.
Time dependence of delayed neutron emission for fissionable isotope identification
Kinlaw, M.T.; Hunt, A.W.
2005-06-20
The time dependence of delayed neutron emission was examined as a method of fissionable isotope identification. A pulsed bremsstrahlung photon beam was used to induce photofission reactions in {sup 238}U, {sup 232}Th, and {sup 239}Pu targets. The resulting delayed neutron emission was recorded between irradiating pulses and is a well-known technique for fissionable material detection. Monitoring the decay of delayed neutron emission between irradiating pulses demonstrates the ability to not only detect the presence of fissionable materials, but also to identify which fissionable isotope is present.
Estimation of nonlinear pilot model parameters including time delay.
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Roland, V. R.; Wells, W. R.
1972-01-01
Investigation of the feasibility of using a Kalman filter estimator for the identification of unknown parameters in nonlinear dynamic systems with a time delay. The problem considered is the application of estimation theory to determine the parameters of a family of pilot models containing delayed states. In particular, the pilot-plant dynamics are described by differential-difference equations of the retarded type. The pilot delay, included as one of the unknown parameters to be determined, is kept in pure form as opposed to the Pade approximations generally used for these systems. Problem areas associated with processing real pilot response data are included in the discussion.
Unsignaled Delay Of Reinforcement, Relative Time, And Resistance To Change
Shahan, Timothy A; Lattal, Kennon A
2005-01-01
Two experiments with pigeons examined the effects of unsignaled, nonresetting delays of reinforcement on responding maintained by different reinforcement rates. In Experiment 1, 3-s unsignaled delays were introduced into each component of a multiple variable-interval (VI) 15-s VI 90-s VI 540-s schedule. When considered as a proportion of the preceding immediate reinforcement baseline, responding was decreased similarly for the three multiple-schedule components in both the first six and last six sessions of exposure to the delay. In addition, the relation between response rates and reinforcement rates was altered such that both parameters of the single-response version of the matching law (i.e., k and Re) were decreased. Experiment 2 examined the effects of unsignaled delays ranging from 0.5 s to 8.0 s on responding maintained by a multiple VI 20-s VI 120-s schedule of reinforcement. Response rates in both components increased with brief unsignaled delays and decreased with longer delays. As in Experiment 1, response rates as a proportion of baseline were affected similarly for the two components in both the first six and last six sessions of exposure to the delay. Unlike delays imposed between two stimulus events, the effects of delays between responses and reinforcers do not appear to be attenuated when the average time between reinforcers is longer. In addition, the disruptions produced by unsignaled delays appear to be inconsistent with the general finding that responding maintained by higher rates of reinforcement is less resistant to change. PMID:16047606
Time-delay cosmography: increased leverage with angular diameter distances
NASA Astrophysics Data System (ADS)
Jee, I.; Komatsu, E.; Suyu, S. H.; Huterer, D.
2016-04-01
Strong lensing time-delay systems constrain cosmological parameters via the so-called time-delay distance and the angular diameter distance to the lens. In previous studies, only the former information was used in forecasting cosmographic constraints. In this paper, we show that the cosmological constraints improve significantly when the latter information is also included. Specifically, the angular diameter distance plays a crucial role in breaking the degeneracy between the curvature of the Universe and the time-varying equation of state of dark energy. Using a mock sample of 55 bright quadruple lens systems based on expectations for ongoing/future imaging surveys, we find that adding the angular diameter distance information to the time-delay distance information and the Planck's measurements of the cosmic microwave background anisotropies improves the constraint on the constant equation of state by 30%, on the time variation in the equation of state by a factor of two, and on the Hubble constant in the flat ΛCDM model by a factor of two. Therefore, previous forecasts for the statistical power of time-delay systems were overly pessimistic, i.e., time-delay systems are more powerful than previously appreciated.
Relativity time-delay experiments utilizing 'Mariner' spacecraft
NASA Technical Reports Server (NTRS)
Esposito, P. B.; Anderson, J. D.
1974-01-01
Relativity predicts that the transit time of a signal propagated from the earth to a spacecraft and retransmitted back to earth ought to exhibit an additional, variable time delay. The present work describes some of the analytical techniques employed in experiments using Mariner spacecraft designed to test the accuracy of this prediction. Two types of data are analyzed in these relativity experiments; these include phase-coherent, two-way Doppler shift and round-trip, transit-time measurements. Results of Mariner 6 and 7 relativistic time-delay experiments are in agreement with Einstein's theory of general relativity with an uncertainty of 3%.
Time delay in simple one-dimensional systems
NASA Astrophysics Data System (ADS)
van Dijk, W.; Kiers, K. A.
1992-06-01
The time delay or the time advance in the scattering of simple one-dimensional systems can be evaluated in a straightforward manner for certain potential models. It is found that when the interacting potential is attractive and has a strength such that it nearly supports an additional bound state, the time delay at small scattering energy is very large. On the other hand, if the potential supports a bound state with nearly zero binding energy, the time advance near threshold is anomalously large. The behavior of a wave packet scattering from the double delta-function potential is also investigated.
COSMOGRAIL: Time delays in lensed quasars from Himalayan Chandra Telescope
NASA Astrophysics Data System (ADS)
Rathna Kumar, S.; Stalin, C. S.; Tewes, M.; Courbin, F.; Asfandiyarov, I.; Ibrahimov, M.; Eulaers, E.; Meylan, G.; Prabhu, T. P.; Magain, P.
Estimating H_0 to an accuracy of few percent is an important challenge today as it will offer key insights into various questions in cosmology. By measuring time delays between the photometric variations in lensed quasar images and subsequent modelling of the mass distribution in the lensing galaxy, it is possible to constrain H_0 in a way well complementary to traditional techniques. Time delays are difficult to measure due to the long time span needed to monitor the sources and photometry is challenging due to the small angular separation between the lensed quasar images. These issues are addressed by the COSMOGRAIL (COSmological MOnitoring of GRAvItational Lenses) collaboration, which uses several telescopes in both the hemispheres to monitor a large sample of gravitationally lensed quasars. As part of this collaboration, 6 sources are being monitored using the 2 m Himalayan Chandra Telescope (HCT) in Hanle, India. We present here the preliminary estimates of time delays in these sources.
Impacts of Time Delays on Distributed Algorithms for Economic Dispatch
Yang, Tao; Wu, Di; Sun, Yannan; Lian, Jianming
2015-07-26
Economic dispatch problem (EDP) is an important problem in power systems. It can be formulated as an optimization problem with the objective to minimize the total generation cost subject to the power balance constraint and generator capacity limits. Recently, several consensus-based algorithms have been proposed to solve EDP in a distributed manner. However, impacts of communication time delays on these distributed algorithms are not fully understood, especially for the case where the communication network is directed, i.e., the information exchange is unidirectional. This paper investigates communication time delay effects on a distributed algorithm for directed communication networks. The algorithm has been tested by applying time delays to different types of information exchange. Several case studies are carried out to evaluate the effectiveness and performance of the algorithm in the presence of time delays in communication networks. It is found that time delay effects have negative effects on the convergence rate, and can even result in an incorrect converge value or fail the algorithm to converge.
Wigner time delay in photodetachment of negative ions
NASA Astrophysics Data System (ADS)
Saha, S.; Deshmukh, P. C.; Jose, J.; Kkeifets, A. S.; Manson, S. T.
2016-05-01
In recent years, there has been much interest in studies on Wigner time delay in atomic photoionization using various experimental techniques and theoretical methodologies. In the present work, we report time delay in the photodetachment of negative ions using the relativistic-random-phase approximation (RRPA), which includes relativistic and important correlation effects. Time delay is obtained as energy derivative of phase of the photodetachment complex transition amplitude. We investigate the time delay in the dipole n p --> ɛd channels in the photodetachment of F- and Cl-, and in n f --> ɛg channels in the photodetachment of Tm-. In photodetachment of the negative ions, the photoelectron escapes in the field of the neutral atom and thus does not experience the nuclear Coulomb field; hence the phase is devoid of the Coulomb component. The systems chosen are well suited to examine the sensitivity of the photodetachment time delay to the centrifugal potential. The ions chosen have closed shells, and thus amenable to the RPA. Work supported by DOE, Office of Chemical Sciences, DST (India), and the Australian Research Council.
Axonal delay lines for time measurement in the owl's brainstem.
Carr, C E; Konishi, M
1988-11-01
Interaural time difference is an important cue for sound localization. In the barn owl (Tyto alba) neuronal sensitivity to this disparity originates in the brainstem nucleus laminaris. Afferents from the ipsilateral and contralateral magnocellular cochlear nuclei enter the nucleus laminaris through its dorsal and ventral surfaces, respectively, and interdigitate in the nucleus. Intracellular recordings from these afferents show orderly changes in conduction delay with depth in the nucleus. These changes are comparable to the range of interaural time differences available to the owl. Thus, these afferent axons act as delay lines and provide anatomical and physiological bases for a neuronal map of interaural time differences in the nucleus laminaris. PMID:3186725
Linearisation via input-output injection of time delay systems
NASA Astrophysics Data System (ADS)
García-Ramírez, Eduardo; Moog, Claude H.; Califano, Claudia; Alejandro Márquez-Martínez, Luis
2016-06-01
This paper deals with the problem of linearisation of systems with constant commensurable delays by input-output injection using algebraic control tools based on the theory of non-commutative rings. Solutions for the problem of linearisation free of delays, and with delays of an observable nonlinear time-delay systems are presented based on the analysis of the input-output equation. These results are achieved by means of constructive algorithms that use the nth derivative of the output expressed in terms of the state-space variables instead of the explicit computation of the input-output representation of the system. Necessary and sufficient conditions are established in both cases by means of an invertible change of coordinates.
Attosecond time-delay spectroscopy of the hydrogen molecule
NASA Astrophysics Data System (ADS)
Ivanov, I. A.; Kheifets, A. S.; Serov, Vladislav V.
2012-12-01
We apply the concept of photoemission time delay to the process of single-photon one-electron ionization of the H2 molecule. We demonstrate that, by resolving the photoelectron detection in time on the attosecond scale, one can extract differential photoionization cross sections for particular field and molecule orientations from the measurement on a randomly oriented molecule
On the linearity of cross-correlation delay times
NASA Astrophysics Data System (ADS)
Mercerat, E. D.; Nolet, G.
2012-12-01
We investigate the question whether a P-wave delay time Δ T estimated by locating the maximum of the cross-correlation function between data d(t) and a predicted test function s(t): γ (t) = ∫ t1t_2 s(τ ) d(τ -t) \\ {d}τ, provides an estimate of the Delta T that is (quasi-)linear with the relative velocity perturbation deltaln V_P}. Such linearity is intuitive if the data d(t) is an undeformed but delayed replica of the test signal, i.e. if d(t)=s(t-Delta T). Then the maximum of gamma (t) is shifted exactly by the delay Delta T, and linearity holds even for Delta T very large. In this case, we say that the body waves are in the ray theoretical regime and their delays, because of Fermat's Principle, depend quasi-linearly on the relative velocity (or slowness) perturbations deltaln V_P in the model. However, even if we correct for dispersion induced by the instrument response and by attenuation, body waves may show frequency dependent delay times that are caused by diffraction effects around lateral heterogeneities. It is not a-priori clear that linearity holds for Delta T, as is assumed in finite-frequency theory, if the waveforms of d(t) and s(t) differ substantially because of such dispersion. To test the linearity, we generate synthetic seismograms between two boreholes, and between the boreholes and the surface, in a 3D box of 200 × 120 × 120 m. The heterogeneity is a checkerboard with cubic anomalies of size 12 × 12 × 12 m. We test two different anomaly amplitudes: ± 2% and ± 5%, and measure Delta T using a test seismogram s(t) computed for an homogeneous medium. We also predict the delays for the 5% model from those in the 2% model by multiplying with 5/2. These predictions are in error by 10-20% of the delay, which is usually acceptable for tomography when compared with actual data errors. A slight bias in the prediction indicates that the Wielandt effect - the fact that negative delays suffer less wavefront healing than positive delays - is a
Adaptive control of systems with unknown time delays
NASA Astrophysics Data System (ADS)
Nelson, James P.
Control systems, on earth or in outer-space, may exhibit time delays in their dynamic behavior. Aerospace control systems must be able to operate in the presence of time delays both internal to the system and in its inputs and outputs. These delays are often introduced via systems controlled through a network, by information, energy or mass transport phenomena, but can also be caused by computer processing time or by the accumulation of time lags in a number of simple dynamic systems connected in series. When a dynamic system is subject to a time delay, unlike other parameters, this affects the temporal characteristics of the system and exact control over system operation cannot be strictly implemented. Systems with significant time delays are difficult to control using standard feedback controllers. The United States Air Force Research Laboratory (AFRL) is considering the use of router-based data networks on-board next generation satellites and in decentralized control architectures. This approach has the potential to introduce non-constant and non-deterministic communications delays into feedback control loops that make use of these data networks. The desire for rapid deployment of new spacecraft architectures will also introduce many other control issues as the rigorous measurement, calibration and performance tests usually conducted on spacecraft systems to develop a highly precise dynamic model will need to be drastically shortened due to the desired abbreviated build and launch schedule. Due to limited testing and system identification, the spacecraft model will have uncertainties/perturbations from the actual plant. This will require a controller that can robustly control the non-linear dynamic model with limited plant knowledge. The problems created by the control of time delay systems and the limited plant knowledge nature of the systems of interest leads us to the concept of adaptive control. Adaptive control makes adjustment of the controllers
The mean first passage time and stochastic resonance in gene transcriptional system with time delay
NASA Astrophysics Data System (ADS)
Feng, Y. L.; Zhu, J.; Zhang, M.; Gao, L. L.; Liu, Y. F.; Dong, J. M.
2016-04-01
In this paper, the gene transcriptional dynamics driven by correlated noises are investigated, where the time delay for the synthesis of transcriptional factor is introduced. The effects of the noise correlation strength and time delay on the stationary probability distribution (SPD), the mean first passage time and the stochastic resonance (SR) are analyzed in detail based on the delay Fokker-Planck equation. It is found that both the time delay and noise correlation strength play important roles in the bistable transcriptional system. The effect of the correlation strength reduces but the time delay enhances the mean first passage time (MFPT). Finally, the SR for this gene transcriptional system is found to be enhanced by the time delay.
Delay time calculation for dual-wavelength quantum cascade lasers
Hamadou, A.; Lamari, S.; Thobel, J.-L.
2013-11-28
In this paper, we calculate the turn-on delay (t{sub th}) and buildup (Δt) times of a midinfrared quantum cascade laser operating simultaneously on two laser lines having a common upper level. The approach is based on the four-level rate equations model describing the variation of the electron number in the states and the photon number present within the cavity. We obtain simple analytical formulae for the turn-on delay and buildup times that determine the delay times and numerically apply our results to both the single and bimode states of a quantum cascade laser, in addition the effects of current injection on t{sub th} and Δt are explored.
Radiation dependence of inverter propagation delay from timing sampler measurements
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Blaes, B. R.; Lin, Y.-S.
1989-01-01
A timing sampler consisting of 14 four-stage inverter-pair chains with different load capacitances was fabricated in 1.6-micron n-well CMOS and irradiated with cobalt-60 at 10 rad(Si)/s. For this CMOS process the measured results indicate that the rising delay increases by about 2.2 ns/Mrad(Si) and the falling delay increase is very small, i.e., less than 300 ps/Mrad(Si). The amount of radiation-induced delay depends on the size of the load capacitance. The maximum value observed for this effect was 5.65 ns/pF-Mrad(Si). Using a sensitivity analysis, the sensitivity of the rising delay to radiation can be explained by a simple timing model and the radiation sensitivity of dc MOSFET parameters. This same approach could not explain the insensitivity of the falling delay to radiation. This may be due to a failure of the timing model and/or trapping effects.
Kernel regression estimates of time delays between gravitationally lensed fluxes
NASA Astrophysics Data System (ADS)
AL Otaibi, Sultanah; Tiňo, Peter; Cuevas-Tello, Juan C.; Mandel, Ilya; Raychaudhury, Somak
2016-06-01
Strongly lensed variable quasars can serve as precise cosmological probes, provided that time delays between the image fluxes can be accurately measured. A number of methods have been proposed to address this problem. In this paper, we explore in detail a new approach based on kernel regression estimates, which is able to estimate a single time delay given several data sets for the same quasar. We develop realistic artificial data sets in order to carry out controlled experiments to test the performance of this new approach. We also test our method on real data from strongly lensed quasar Q0957+561 and compare our estimates against existing results.
Bao, Haibo; Park, Ju H; Cao, Jinde
2016-01-01
This paper deals with the exponential synchronization of coupled stochastic memristor-based neural networks with probabilistic time-varying delay coupling and time-varying impulsive delay. There is one probabilistic transmittal delay in the delayed coupling that is translated by a Bernoulli stochastic variable satisfying a conditional probability distribution. The disturbance is described by a Wiener process. Based on Lyapunov functions, Halanay inequality, and linear matrix inequalities, sufficient conditions that depend on the probability distribution of the delay coupling and the impulsive delay were obtained. Numerical simulations are used to show the effectiveness of the theoretical results. PMID:26485723
Losing track of time through delayed body representations
Fritz, Thomas H.; Steixner, Agnes; Boettger, Joachim; Villringer, Arno
2015-01-01
The ability to keep track of time is perceived as crucial in most human societies. However, to lose track of time may also serve an important social role, associated with recreational purpose. To this end a number of social technologies are employed, some of which may relate to a manipulation of time perception through a modulation of body representation. Here, we investigated an influence of real-time or delayed videos of own-body representations on time perception in an experimental setup with virtual mirrors. Seventy participants were asked to either stay in the installation until they thought that a defined time (90 s) had passed, or they were encouraged to stay in the installation as long as they wanted and after exiting were asked to estimate the duration of their stay. Results show that a modulation of body representation by time-delayed representations of the mirror-video displays influenced time perception. Furthermore, these time-delayed conditions were associated with a greater sense of arousal and intoxication. We suggest that feeding in references to the immediate past into working memory could be the underlying mental mechanism mediating the observed modulation of time perception. We argue that such an influence on time perception would probably not only be achieved visually, but might also work with acoustic references to the immediate past (e.g., with music). PMID:25918507
Losing track of time through delayed body representations.
Fritz, Thomas H; Steixner, Agnes; Boettger, Joachim; Villringer, Arno
2015-01-01
The ability to keep track of time is perceived as crucial in most human societies. However, to lose track of time may also serve an important social role, associated with recreational purpose. To this end a number of social technologies are employed, some of which may relate to a manipulation of time perception through a modulation of body representation. Here, we investigated an influence of real-time or delayed videos of own-body representations on time perception in an experimental setup with virtual mirrors. Seventy participants were asked to either stay in the installation until they thought that a defined time (90 s) had passed, or they were encouraged to stay in the installation as long as they wanted and after exiting were asked to estimate the duration of their stay. Results show that a modulation of body representation by time-delayed representations of the mirror-video displays influenced time perception. Furthermore, these time-delayed conditions were associated with a greater sense of arousal and intoxication. We suggest that feeding in references to the immediate past into working memory could be the underlying mental mechanism mediating the observed modulation of time perception. We argue that such an influence on time perception would probably not only be achieved visually, but might also work with acoustic references to the immediate past (e.g., with music). PMID:25918507
Emergence of adaptability to time delay in bipedal locomotion.
Ohgane, Kunishige; Ei, Shin-Ichiro; Kazutoshi, Kudo; Ohtsuki, Tatsuyuki
2004-02-01
Based on neurophysiological evidence, theoretical studies have shown that locomotion is generated by mutual entrainment between the oscillatory activities of central pattern generators (CPGs) and body motion. However, it has also been shown that the time delay in the sensorimotor loop can destabilize mutual entrainment and result in the failure to walk. In this study, a new mechanism called flexible-phase locking is proposed to overcome the time delay. It is realized by employing the Bonhoeffer-Van der Pol formalism - well known as a physiologically faithful neuronal model - for neurons in the CPG. The formalism states that neurons modulate their phase according to the delay so that mutual entrainment is stabilized. Flexible-phase locking derives from the phase dynamics related to an asymptotically stable limit cycle of the neuron. The effectiveness of the mechanism is verified by computer simulations of a bipedal locomotion model. PMID:14999479
Two-actor conflict with time delay: A dynamical model
NASA Astrophysics Data System (ADS)
Qubbaj, Murad R.; Muneepeerakul, Rachata
2012-11-01
Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.
Use of Constant Time Delay and Attentional Responses with Adolescents.
ERIC Educational Resources Information Center
Wolery, Mark; And Others
1991-01-01
This study examined effectiveness of a constant time delay (CTD) procedure in teaching social studies and health facts to five adolescents with learning or behavioral disorders. Students were given praise with and without additional information. Results indicated CTD procedures were reliable and effective, and students acquired nontargeted as well…
Stability Criteria for Differential Equations with Variable Time Delays
ERIC Educational Resources Information Center
Schley, D.; Shail, R.; Gourley, S. A.
2002-01-01
Time delays are an important aspect of mathematical modelling, but often result in highly complicated equations which are difficult to treat analytically. In this paper it is shown how careful application of certain undergraduate tools such as the Method of Steps and the Principle of the Argument can yield significant results. Certain delay…
Time-Dependent Delayed Signatures from Energetic Photon Interrogations
Daren R. Norman; James L. Jones; Brandon W. Blackburn; Kevin J. Haskell; James T. Johnson; Scott M. Watson; Alan W. Hunt; Randy Spaulding; Frank Harmon
2007-08-01
Pulsed photonuclear interrogation environments generated by 8–24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in pulsed photonuclear assessment environments. These developments demonstrate that pulsed, high-energy, photon-inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods.
Time-Dependent Delayed Signatures from Energetic Photon Interrogations
Daren R. Norman; James L. Jones; Brandon W. Blackburn; Kevin J. Haskell; James T. Johnson; Scott M. Watson; Alan W. Hunt; Randy Spaulding; Frank Harmon
2007-08-01
Pulsed photonuclear interrogation environments generated by 8–24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in the pulsed photonuclear assessment (PPA) environments. These developments demonstrate that pulsed, high-energy, photon- inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods.
Numerical bifurcation analysis of immunological models with time delays
NASA Astrophysics Data System (ADS)
Luzyanina, Tatyana; Roose, Dirk; Bocharov, Gennady
2005-12-01
In recent years, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. To analyze the models' dynamics, numerical methods are necessary, since analytical studies can only give limited results. In turn, the availability of efficient numerical methods and software packages encourages the use of time delays in mathematical modelling, which may lead to more realistic models. We outline recently developed numerical methods for bifurcation analysis of DDEs and illustrate the use of these methods in the analysis of a mathematical model of human hepatitis B virus infection.
Dynamical analysis of uncertain neural networks with multiple time delays
NASA Astrophysics Data System (ADS)
Arik, Sabri
2016-02-01
This paper investigates the robust stability problem for dynamical neural networks in the presence of time delays and norm-bounded parameter uncertainties with respect to the class of non-decreasing, non-linear activation functions. By employing the Lyapunov stability and homeomorphism mapping theorems together, a new delay-independent sufficient condition is obtained for the existence, uniqueness and global asymptotic stability of the equilibrium point for the delayed uncertain neural networks. The condition obtained for robust stability establishes a matrix-norm relationship between the network parameters of the neural system, which can be easily verified by using properties of the class of the positive definite matrices. Some constructive numerical examples are presented to show the applicability of the obtained result and its advantages over the previously published corresponding literature results.
A comparison of cosmological models using time delay lenses
Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio E-mail: xfwu@pmo.ac.cn
2014-06-20
The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R {sub h} = ct universe is the correct cosmology versus ∼20%-30% for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R {sub h} = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R {sub h} = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.
Measurement of time delay for a prospectively gated CT simulator.
Goharian, M; Khan, R F H
2010-04-01
For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery
Measurement of Gravitational Lens Time Delays with LSST (SULI Paper)
Kirkby, Lowry Anna; /Oxford U. /SLAC
2006-01-04
The proposed Large Synoptic Survey Telescope will be the first to explore multiple dark energy probes simultaneously, including baryon acoustic oscillations, weak lensing, and strong gravitational lensing. The large data sample, covering the entire visible sky every few nights, will allow an unprecedented survey of deep supernova sources and their lensed images. The latter have not yet been observed. Notably, LSST will measure the time delays between different strong-lensed images of the same supernova. This will provide a unique probe of dark matter, dark energy, and the expansion rate of the Universe. By simulating LSST observations under realistic conditions, we determined the time delay precision of multiple images from a representative strong-lensed Type Ia supernova. The output of the simulation was a set of light curves according to field and filter, which were subsequently analyzed to determine the experimental time delays. We find that a time delay precision of better then 10% can be achieved under suitable conditions. Firstly, a minimum observed peak-magnitude of 22 is required for the lensed image, corresponding to an intrinsic source magnitude of about 24. The number of such supernova sources expected for LSST is under investigation, but it could amount to several thousand. Secondly, a minimum of about 50 visits per field is required, and, moreover, these visits must be evenly distributed over the duration of the event. The visit frequency should be approximately once per week, or better. Thirdly, the sky brightness should be below 21 magnitude arcsec{sup -2} to allow sufficient sensitivity to distance sources. Under the nominal LSST visiting schedule and field conditions, 15% of all fields satisfy these criteria, and allow time delay measurements of better than 10% precision. This performance can be further improved by fitting the predicted supernova light curves to the observations, rather than using the simple weighted mean as in the present study
Tunable Optical True-Time Delay Devices Would Exploit EIT
NASA Technical Reports Server (NTRS)
Kulikov, Igor; DiDomenico, Leo; Lee, Hwang
2004-01-01
Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.
Time delay of interplanetary magnetic field penetration into Earth's magnetotail
NASA Astrophysics Data System (ADS)
Rong, Z. J.; Lui, A. T. Y.; Wan, W. X.; Yang, Y. Y.; Shen, C.; Petrukovich, A. A.; Zhang, Y. C.; Zhang, T. L.; Wei, Y.
2015-05-01
Many previous studies have demonstrated that the interplanetary magnetic field (IMF) can control the magnetospheric dynamics. Immediate magnetospheric responses to the external IMF have been assumed for a long time. The specific processes by which IMF penetrates into magnetosphere, however, are actually unclear. Solving this issue will help to accurately interpret the time sequence of magnetospheric activities (e.g., substorm and tail plasmoids) exerted by IMF. With two carefully selected cases, we found that the penetration of IMF into magnetotail is actually delayed by 1-1.5 h, which significantly lags behind the magnetotail response to the solar wind dynamic pressure. The delayed time appears to vary with different auroral convection intensity, which may suggest that IMF penetration in the magnetotail is controlled considerably by the dayside reconnection. Several unfavorable cases demonstrate that the penetration lag time is more clearly identified when storm/substorm activities are not involved.
Equilibrium and Disequilibrium Dynamics in Cobweb Models with Time Delays
NASA Astrophysics Data System (ADS)
Gori, Luca; Guerrini, Luca; Sodini, Mauro
2015-06-01
This paper aims to study price dynamics in two different continuous time cobweb models with delays close to [Hommes, 1994]. In both cases, the stationary equilibrium may be not representative of the long-term dynamics of the model, since it is possible to observe endogenous and persistent fluctuations (supercritical Hopf bifurcations) even if a deterministic context without external shocks is considered. In the model in which markets are in equilibrium every time, we show that the existence of time delays in the expectations formation mechanism may cause chaotic dynamics similar to those obtained in [Hommes, 1994] in a discrete time context. From a mathematical point of view, we apply the Poincaré-Lindstedt perturbation method to study the local dynamic properties of the models. In addition, several numerical experiments are used to investigate global properties of the systems.
Real-time estimation of ionospheric delay using GPS measurements
NASA Astrophysics Data System (ADS)
Lin, Lao-Sheng
1997-12-01
When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is
A Threshold Value for the Time Delay to TB Diagnosis
Uys, Pieter W.; Warren, Robin M.; van Helden, Paul D.
2007-01-01
Background In many communities where TB occurs at high incidence, the major force driving the epidemic is transmission. It is plausible that the typical long delay from the onset of infectious disease to diagnosis and commencement of treatment is almost certainly the major factor contributing to the high rate of transmission. Methodology/Principal Findings This study is confined to communities which are epidemiologically relatively isolated and which have low HIV incidence. The consequences of delays to diagnosis are analyzed and the existence of a threshold delay value is demonstrated. It is shown that unless a sufficient number of cases are detected before this threshold, the epidemic will escalate. The method used for the analysis avoids the standard computer integration of systems of differential equations since the intention is to present a line of reasoning that reveals the essential dynamics of an epidemic in an intuitively clear way that is nevertheless quantitatively realistic. Conclusions/Significance The analysis presented here shows that typical delays to diagnosis present a major obstacle to the control of a TB epidemic. Control can be achieved by optimizing the rapid identification of TB cases together with measures to increase the threshold value. A calculated and aggressive program is therefore necessary in order to bring about a reduction in the prevalence of TB in a community by decreasing the time to diagnosis in all its ramifications. Intervention strategies to increase the threshold value relative to the time to diagnosis and which thereby decrease disease incidence are discussed. PMID:17712405
NASA Technical Reports Server (NTRS)
Jewell, W. F.; Clement, W. F.
1984-01-01
The advent and widespread use of the computer-generated image (CGI) device to simulate visual cues has a mixed impact on the realism and fidelity of flight simulators. On the plus side, CGIs provide greater flexibility in scene content than terrain boards and closed circuit television based visual systems, and they have the potential for a greater field of view. However, on the minus side, CGIs introduce into the visual simulation relatively long time delays. In many CGIs, this delay is as much as 200 ms, which is comparable to the inherent delay time of the pilot. Because most GCIs use multiloop processing and smoothing algorithms and are linked to a multiloop host computer, it is seldom possible to identify a unique throughput time delay, and it is therefore difficult to quantify the performance of the closed loop pilot simulator system relative to the real world task. A method to address these issues using the critical task tester is described. Some empirical results from applying the method are presented, and a novel technique for improving the performance of GCIs is discussed.
Towards Supervising Remote Dexterous Robots Across Time Delay
NASA Technical Reports Server (NTRS)
Hambuchen, Kimberly; Bluethmann, William; Goza, Michael; Ambrose, Robert; Wheeler, Kevin; Rabe, Ken
2006-01-01
The President s Vision for Space Exploration, laid out in 2004, relies heavily upon robotic exploration of the lunar surface in early phases of the program. Prior to the arrival of astronauts on the lunar surface, these robots will be required to be controlled across space and time, posing a considerable challenge for traditional telepresence techniques. Because time delays will be measured in seconds, not minutes as is the case for Mars Exploration, uploading the plan for a day seems excessive. An approach for controlling dexterous robots under intermediate time delay is presented, in which software running within a ground control cockpit predicts the intention of an immersed robot supervisor, then the remote robot autonomously executes the supervisor s intended tasks. Initial results are presented.
Medical ultrasound imager based on time delay spectrometry.
Heyser, R C; Hestenes, J D; Rooney, J A; Gammell, P M; Le Croissette, D H
1989-01-01
A reflection mode proof-of-concept medical ultrasound imager based on time delay spectrometry has been developed and tested. The system uses a broad band swept-frequency signal operating up to 10 MHz. Signal processing using a fast Fourier transform (FFT) permits extraction of range information. The imager has a higher signal-to-noise ratio than pulse-echo systems which allows high resolution at greater depths. The time delay spectrometry (TDS) spread spectrum operates at lower peak intensities than pulse-echo and permits more control of the spectral content and amplitude of the signal. At present, the system is non-real time which degrades in vivo imaging because of averaging over several cardiac cycles and tissue movement. PMID:2643838
Fullerene valence photoemission time delay near ionization cavity minima
NASA Astrophysics Data System (ADS)
Magrakvelidze, Maia; Anstine, Dylan; Dixit, Gopal; Madjet, Mohamed; Chakraborty, Himadri
2015-05-01
We investigate photoemission quantum phases and associated Wigner-Smith time delays for HOMO and HOMO-1 electrons of a C60 molecule using time-dependent local density approximation (TDLDA). The interference oscillations in C60 valence emissions produce series of minima whose energy separation depends on the molecular size. We show that the quantum phase associated with these minima exhibits rapid variations due to electron correlations, causing rich structures in the photoemission time delay. Besides fullerenes, the detection of photoemission minima in metal clusters suggests a possible universality of the phenomenon in cluster systems, or even quantum dots, that confine finite-sized electron gas. The work predicts a new research direction to apply attosecond metrology, such as RABITT, in the world of nanosystems. This work was supported by the U.S. National Science Foundation.
Time-Dependent Delayed Signatures From Energetic Photon Interrogations
D. R. Norman; J. L. Jones; B. W. Blackburn; S. M. Watson; K. J. Haskell
2006-08-01
A pulsed photonuclear interrogation environment is rich with time-dependent, material specific, radiation signatures. Exploitation of these signatures in the delayed time regime (>1us after the photon flash) has been explored through various detection schemes to identify both shielded nuclear material and nitrogen-based explosives. Prompt emission may also be invaluable for these detection methods. Numerical and experimental results, which utilize specially modified neutron and HpGe detectors, are presented which illustrate the efficacy of utilizing these time-dependent signatures. Optimal selection of the appropriate delayed time window is essential to these pulsed inspection systems. For explosive (ANFO surrogate) detection, both numerical models and experimental results illustrate that nearly all 14N(n,y) reactions have occurred within l00 us after the flash. In contrast, however, gamma-ray and neutron signals for nuclear material detection require a delay of several milliseconds after the photon pulse. In this case, any data collected too close to the photon flash results in a spectrum dominated by high energy signals which make it difficult to discern signatures from nuclear material. Specifically, two short-lived, high-energy fission fragments (97Ag(T1/2=5.1 s) and 94Sr(T1/2=75.2 s)) were measured and identified as indicators of the presence of fissionable material. These developments demonstrate that a photon inspection environment can be exploited for time-dependent, material specific signatures through the proper operation of specially modified detectors.
Estimation of coupling between time-delay systems from time series
NASA Astrophysics Data System (ADS)
Prokhorov, M. D.; Ponomarenko, V. I.
2005-07-01
We propose a method for estimation of coupling between the systems governed by scalar time-delay differential equations of the Mackey-Glass type from the observed time series data. The method allows one to detect the presence of certain types of linear coupling between two time-delay systems, to define the type, strength, and direction of coupling, and to recover the model equations of coupled time-delay systems from chaotic time series corrupted by noise. We verify our method using both numerical and experimental data.
Delayed Timing of Eating: Impact on Weight and Metabolism.
Allison, Kelly C; Goel, Namni; Ahima, Rexford S
2014-03-01
Animal studies of delayed eating have provided useful information regarding the potential relationship between nighttime eating and increased weight and metabolic dysregulation, which occur in the absence of increased locomotion or increased caloric intake. We first review recent studies detailing these relationships and possible mechanisms in rodents. We then examine human data showing that sleep restriction leads to increased energy intake and weight gain, followed by a review of the human phenotype of delayed eating, night eating syndrome, and its relation to weight and metabolism. Finally, we examine human experimental studies of delayed eating and discuss preliminary data that show slight weight gain, dysfunction in energy expenditure, and abnormalities in the circadian rhythms of appetitive, stress, and sleep hormones. Well-controlled, longer-term experimental studies in humans are warranted to test the effect of delayed eating without sleep restriction to clarify whether limiting or eliminating nighttime eating could lead to weight loss and significantly improve related disorders, such as diabetes and heart disease, over time. PMID:26626470
Cross section versus time delay and trapping probability
NASA Astrophysics Data System (ADS)
Luna-Acosta, G. A.; Fernández-Marín, A. A.; Méndez-Bermúdez, J. A.; Poli, Charles
2016-07-01
We study the behavior of the s-wave partial cross section σ (k), the Wigner-Smith time delay τ (k), and the trapping probability P (k) as function of the wave number k. The s-wave central square well is used for concreteness, simplicity, and to elucidate the controversy whether it shows true resonances. It is shown that, except for very sharp structures, the resonance part of the cross section, the trapping probability, and the time delay, reach their local maxima at different values of k. We show numerically that τ (k) > 0 at its local maxima, occurring just before the resonant part of the cross section reaches its local maxima. These results are discussed in the light of the standard definition of resonance.
Digital key for chaos communication performing time delay concealment.
Nguimdo, Romain Modeste; Colet, Pere; Larger, Laurent; Pesquera, Luís
2011-07-15
We introduce a scheme that integrates a digital key in a phase-chaos electro-optical delay system for optical chaos communications. A pseudorandom binary sequence (PRBS) is mixed within the chaotic dynamics in a way that a mutual concealment is performed; e.g., the time delay is hidden by the binary sequence, and the PRBS is also masked by the chaos. In addition to bridging the gap between algorithmic symmetric key cryptography and chaos-based analog encoding, the proposed approach is intended to benefit from the complex algebra mixing between a (pseudorandom) Boolean variable, and another continuous time (chaotic) variable. The scheme also provides a large flexibility allowing for easy reconfigurations to communicate securely at a high bit rate between different systems. PMID:21838363
Digital Key for Chaos Communication Performing Time Delay Concealment
NASA Astrophysics Data System (ADS)
Nguimdo, Romain Modeste; Colet, Pere; Larger, Laurent; Pesquera, Luís
2011-07-01
We introduce a scheme that integrates a digital key in a phase-chaos electro-optical delay system for optical chaos communications. A pseudorandom binary sequence (PRBS) is mixed within the chaotic dynamics in a way that a mutual concealment is performed; e.g., the time delay is hidden by the binary sequence, and the PRBS is also masked by the chaos. In addition to bridging the gap between algorithmic symmetric key cryptography and chaos-based analog encoding, the proposed approach is intended to benefit from the complex algebra mixing between a (pseudorandom) Boolean variable, and another continuous time (chaotic) variable. The scheme also provides a large flexibility allowing for easy reconfigurations to communicate securely at a high bit rate between different systems.
Time Delay Integration: A Wide-Field Survey Technique
NASA Astrophysics Data System (ADS)
Lapointe, Robert; Hill, E.; Leimer, L.; McMillian, K.; Miller, A.; Prindle, A.
2009-05-01
The Advanced Placement Physics class of Orange Lutheran High School has conducted a survey-imaging pro-ject using a Time Delay Integration (TDI) technique. TDI enables very wide-field images to be collected in the form of long strips of the sky. A series of five consecutive nights were captured, calibrated and compared to re-veal possible transient phenomena such as supernovae, asteroids, and other events that have a noticeable change over 24-hour intervals.
Simultaneous Estimation of Time Delays and Quasar Structure
NASA Astrophysics Data System (ADS)
Morgan, Christopher W.; Eyler, Michael E.; Kochanek, C. S.; Morgan, Nicholas D.; Falco, Emilio E.; Vuissoz, C.; Courbin, F.; Meylan, G.
2008-03-01
We expand our Bayesian Monte Carlo method for analyzing the light curves of gravitationally lensed quasars to simultaneously estimate time delays and the sizes of quasar continuum emission regions including their mutual uncertainties. We apply the method to HE1104-1805 and QJ0158-4325, two doubly imaged quasars with microlensing and intrinsic variability on comparable timescales. For HE1104-1805 the resulting time delay of Δ tAB = tA - tB = 162.2-5.9+6.3 days and accretion disk size estimate of log {(rs/cm) [cos (i)/0.5]1/2} = 15.7-0.5+0.4 at 0.2 μm in the rest frame and for inclination i are consistent with earlier estimates but suggest that existing methods for estimating time delays in the presence of microlensing underestimate the uncertainties. We are unable to measure a time delay for QJ0158-4325, but the accretion disk size is log {(rs/cm) [cos (i)/0.5]1/2} = 14.9 +/- 0.3 at 0.3 μm in the rest frame. Based on observations obtained with the Small and Moderate Aperture Research Telescope System (SMARTS) 1.3 m, which is operated by the SMARTS Consortium, and observations made with the NASA/ESA Hubble Space Telescope for program HST-GO-9744 of the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
STRONG LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN
Dobler, Gregory; Fassnacht, Christopher D.; Rumbaugh, Nicholas; Treu, Tommaso; Liao, Kai; Marshall, Phil; Hojjati, Alireza; Linder, Eric
2015-02-01
The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ∼10{sup 3} strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a ''Time Delay Challenge'' (TDC). The challenge is organized as a set of ''ladders'', each containing a group of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper.
Correlation-induced Time Delay in Atomic Photoionization
NASA Astrophysics Data System (ADS)
Keating, David A.; Manson, Steven T.; Deshmukh, Pranawa C.; Kheifets, Anatoli S.
2016-05-01
Interchannel coupling has been seen to result in structures in the photoionization cross sections of outer shell electrons in the vicinity of inner-shell thresholds, a result which leads us to ask if the same would be true for the time delay of outer shell electrons near inner-shell thresholds. Using the relativistic-random-phase approximation (RRPA) methodology, a theoretical study of neon, argon, krypton, and xenon were performed to search for these correlation-induced effects. Calculations were performed both with coupling and without coupling to verify that the structures found in the time delay were in fact due to interchannel coupling. Using this method to study the effects of interchannel coupling reveals how much of an impact the coupling has on the time delay, in some cases over a broad energy range. In cases where the spin-orbit doublets' respective thresholds are far enough apart, effects can be found in the j = l + 1/2channels due to interchannel coupling with the j = l-1/2 channels. These structures are purely a relativistic effect and are related to spin-obit activated interchannel coupling effects. Work supported by DOE, Office of Chemical Sciences, DST (India), and the Australian Research Council.
Network delay predictive compensation based on time-delay modelling as disturbance
NASA Astrophysics Data System (ADS)
Florin Caruntu, Constantin; Lazar, Corneliu
2014-10-01
In this paper, a control design methodology that can assure the closed-loop performances of a physical plant, while compensating the network-induced time-varying delays, is proposed. First, the error caused by the time-varying delays is modelled as a disturbance and a novel method of bounding the disturbance is proposed. Second, a robust one step ahead predictive controller based on flexible control Lyapunov functions is designed, which explicitly takes into account the bounds of the disturbances and guarantees also the input-to-state stability of the system in a non-conservative way. The methodology was tested on a vehicle drivetrain controlled through controller area network, with the aim of damping driveline oscillations. The comparison with a proportional-integral-derivative (PID) controller using TrueTime simulator shows that the proposed control scheme can outperform classical controllers and it can handle the performance/physical constraints. Moreover, the handling of the strict limitations on the computational complexity was tested using a real-time test-bench.
Wang, Miaomiao; Li, Bofeng
2016-01-01
An empirical tropospheric delay model, together with a mapping function, is commonly used to correct the tropospheric errors in global navigation satellite system (GNSS) processing. As is well-known, the accuracy of tropospheric delay models relies mainly on the correction efficiency for tropospheric wet delays. In this paper, we evaluate the accuracy of three tropospheric delay models, together with five mapping functions in wet delays calculation. The evaluations are conducted by comparing their slant wet delays with those measured by water vapor radiometer based on its satellite-tracking function (collected data with large liquid water path is removed). For all 15 combinations of three tropospheric models and five mapping functions, their accuracies as a function of elevation are statistically analyzed by using nine-day data in two scenarios, with and without meteorological data. The results show that (1) no matter with or without meteorological data, there is no practical difference between mapping functions, i.e., Chao, Ifadis, Vienna Mapping Function 1 (VMF1), Niell Mapping Function (NMF), and MTT Mapping Function (MTT); (2) without meteorological data, the UNB3 is much better than Saastamoinen and Hopfield models, while the Saastamoinen model performed slightly better than the Hopfield model; (3) with meteorological data, the accuracies of all three tropospheric delay models are improved to be comparable, especially for lower elevations. In addition, the kinematic precise point positioning where no parameter is set up for tropospheric delay modification is conducted to further evaluate the performance of tropospheric delay models in positioning accuracy. It is shown that the UNB3 model is best and can achieve about 10 cm accuracy for the N and E coordinate component while 20 cm accuracy for the U coordinate component no matter the meteorological data is available or not. This accuracy can be obtained by the Saastamoinen model only when meteorological data is
Wang, Miaomiao; Li, Bofeng
2016-01-01
An empirical tropospheric delay model, together with a mapping function, is commonly used to correct the tropospheric errors in global navigation satellite system (GNSS) processing. As is well-known, the accuracy of tropospheric delay models relies mainly on the correction efficiency for tropospheric wet delays. In this paper, we evaluate the accuracy of three tropospheric delay models, together with five mapping functions in wet delays calculation. The evaluations are conducted by comparing their slant wet delays with those measured by water vapor radiometer based on its satellite-tracking function (collected data with large liquid water path is removed). For all 15 combinations of three tropospheric models and five mapping functions, their accuracies as a function of elevation are statistically analyzed by using nine-day data in two scenarios, with and without meteorological data. The results show that (1) no matter with or without meteorological data, there is no practical difference between mapping functions, i.e., Chao, Ifadis, Vienna Mapping Function 1 (VMF1), Niell Mapping Function (NMF), and MTT Mapping Function (MTT); (2) without meteorological data, the UNB3 is much better than Saastamoinen and Hopfield models, while the Saastamoinen model performed slightly better than the Hopfield model; (3) with meteorological data, the accuracies of all three tropospheric delay models are improved to be comparable, especially for lower elevations. In addition, the kinematic precise point positioning where no parameter is set up for tropospheric delay modification is conducted to further evaluate the performance of tropospheric delay models in positioning accuracy. It is shown that the UNB3 model is best and can achieve about 10 cm accuracy for the N and E coordinate component while 20 cm accuracy for the U coordinate component no matter the meteorological data is available or not. This accuracy can be obtained by the Saastamoinen model only when meteorological data is
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2016-07-01
This letter addresses the reservoir design problem in the context of delay-based reservoir computers for multidimensional input signals, parallel architectures, and real-time multitasking. First, an approximating reservoir model is presented in those frameworks that provides an explicit functional link between the reservoir architecture and its performance in the execution of a specific task. Second, the inference properties of the ridge regression estimator in the multivariate context are used to assess the impact of finite sample training on the decrease of the reservoir capacity. Finally, an empirical study is conducted that shows the adequacy of the theoretical results with the empirical performances exhibited by various reservoir architectures in the execution of several nonlinear tasks with multidimensional inputs. Our results confirm the robustness properties of the parallel reservoir architecture with respect to task misspecification and parameter choice already documented in the literature. PMID:27172266
Pg-pPg Time Delays from Sparse Networks Using the Time-Frequency Correlation Method
NASA Astrophysics Data System (ADS)
Pearce, F.; Lu, R.; Toksoz, M. N.
2008-12-01
The arrival times of primary phases generally produce poor estimates of focal depth, particularly for shallow events. While depth phases may be detected at teleseismic distances, no reliable methods currently exist for identifying regional depth phase time delays, such as Pg-pPg. Scattering from crustal heterogeneities obscures the Pg-pPg time delay by producing multiplicative noise within the Pg time window. The theory of Time Reversed Acoustics (TRA) states that the autocorrelation of Pg time windows produces a clear sidelobe at the Pg-pPg time delay. Using large Pg time windows (i.e. including more scattering) and stacking the autocorrelations from an array of receivers improves the reconstruction of the sidelobe at the Pg-pPg time delay. In this paper, we expand the TRA concept to develop the Time-Frequency Correlation (TFC) method for measuring Pg-pPg time delays, which incorporates signal-processing techniques used in Sonar and Radar applications. The TFC method applies a 2D correlation function in time delay and frequency delay to the analytic representation of each Pg time window. Stacking the 2D correlation functions better identifies the sidelobe at the Pg-pPg time delay. Tests of the TFC method on synthetic Pg time windows provide guidance in detecting the Pg-pPg time delays for events with different source time functions, focal depths, and scattering distributions. We apply the TFC method to measure Pg-pPg time delays for 33 local earthquakes from the Southern California Earthquake Data Center (SCEDC) catalog. We include only catalog events with the most accurate locations ('A'), catalog depths between 2 and 16 km (±2 km), and magnitudes between 3.0 and 6.0. For each event, the TFC method uses a station array that is sparse (N < 20), narrow aperture (Δθ < 90°), and located greater than 300 km from the catalog epicenter. The Pg-pPg time delays are converted to focal depths assuming vertical propagation within the SCEDC 3D model at each event
Critical capacity, travel time delays and travel time distribution of rapid mass transit systems
NASA Astrophysics Data System (ADS)
Legara, Erika Fille; Monterola, Christopher; Lee, Kee Khoon; Hung, Gih Guang
2014-07-01
We set up a mechanistic agent-based model of a rapid mass transit system. Using empirical data from Singapore’s unidentifiable smart fare card, we validate our model by reconstructing actual travel demand and duration of travel statistics. We subsequently use this model to investigate two phenomena that are known to significantly affect the dynamics within the RTS: (1) overloading in trains and (2) overcrowding in the RTS platform. We demonstrate that by varying the loading capacity of trains, a tipping point emerges at which an exponential increase in the duration of travel time delays is observed. We also probe the impact on the rail system dynamics of three types of passenger growth distribution across stations: (i) Dirac delta, (ii) uniform and (iii) geometric, which is reminiscent of the effect of land use on transport. Under the assumption of a fixed loading capacity, we demonstrate the dependence of a given origin-destination (OD) pair on the flow volume of commuters in station platforms.
RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE
Ruiter, Ashley J.; Belczynski, Krzysztof; Fryer, Chris E-mail: kbelczyn@nmsu.edu
2009-07-10
We analyze the evolution of binary stars to calculate synthetic rates and delay times of the most promising Type Ia Supernovae (SNe Ia) progenitors. We present and discuss evolutionary scenarios in which a white dwarf (WD) reaches the Chandrasekhar mass and potentially explodes in a SNe Ia. We consider Double Degenerate (DDS; merger of two WDs), Single Degenerate (SDS; WD accreting from H-rich companion), and AM Canum Venaticorum (AM CVn; WD accreting from He-rich companion) scenarios. The results are presented for two different star formation histories: burst (elliptical-like galaxies) and continuous (spiral-like galaxies). It is found that delay times for the DDS in our standard model (with common envelope efficiency {alpha}{sub CE} = 1) follow a power-law distribution. For the SDS we note a wide range of delay times, while AM CVn progenitors produce a short burst of SNe Ia at early times. The DDS median delay time falls between {approx}0.5 and 1 Gyr; the SDS between {approx}2 and 3 Gyr; and the AM CVn between {approx}0.8 and 0.6 Gyr depending on the assumed {alpha}{sub CE}. For a Milky-Way-like (MW-like) galaxy, we estimate the rates of SNe Ia arising from different progenitors as: {approx}10{sup -4} yr{sup -1} for the SDS and AM CVn, and {approx}10{sup -3} yr{sup -1} for the DDS. We point out that only the rates for two merging carbon-oxygen WDs, the only systems found in the DDS, are consistent with the observed rates for typical MW-like spirals. We also note that DDS progenitors are the dominant population in elliptical galaxies. The fact that the delay time distribution for the DDS follows a power law implies more SNe Ia (per unit mass) in young rather than in aged populations. Our results do not exclude other scenarios, but strongly indicate that the DDS is the dominant channel generating SNe Ia in spiral galaxies, at least in the framework of our adopted evolutionary models. Since it is believed that WD mergers cannot produce a thermonuclear explosion
Probability distributed time delays: integrating spatial effects into temporal models
2010-01-01
Background In order to provide insights into the complex biochemical processes inside a cell, modelling approaches must find a balance between achieving an adequate representation of the physical phenomena and keeping the associated computational cost within reasonable limits. This issue is particularly stressed when spatial inhomogeneities have a significant effect on system's behaviour. In such cases, a spatially-resolved stochastic method can better portray the biological reality, but the corresponding computer simulations can in turn be prohibitively expensive. Results We present a method that incorporates spatial information by means of tailored, probability distributed time-delays. These distributions can be directly obtained by single in silico or a suitable set of in vitro experiments and are subsequently fed into a delay stochastic simulation algorithm (DSSA), achieving a good compromise between computational costs and a much more accurate representation of spatial processes such as molecular diffusion and translocation between cell compartments. Additionally, we present a novel alternative approach based on delay differential equations (DDE) that can be used in scenarios of high molecular concentrations and low noise propagation. Conclusions Our proposed methodologies accurately capture and incorporate certain spatial processes into temporal stochastic and deterministic simulations, increasing their accuracy at low computational costs. This is of particular importance given that time spans of cellular processes are generally larger (possibly by several orders of magnitude) than those achievable by current spatially-resolved stochastic simulators. Hence, our methodology allows users to explore cellular scenarios under the effects of diffusion and stochasticity in time spans that were, until now, simply unfeasible. Our methodologies are supported by theoretical considerations on the different modelling regimes, i.e. spatial vs. delay-temporal, as indicated
On troposphere delay constraining in real-time GNSS Precise Point Positioning
NASA Astrophysics Data System (ADS)
Hadas, Tomasz; Kazmierski, Kamil; Bosy, Jaroslaw
2015-04-01
A common procedure in Precise Point Positioning (PPP) is to have the adjustment model accounting for the correction to an a priori value of the total troposphere delay (ZTD) given at the first epoch of data processing, and the troposphere wet delay filter is updated epoch by epoch. This approach requires some time so that a change in satellite geometry allows to efficiently de-correlate among tropospheric delay, receiver clock error and height. Empirical troposphere state models and mapping functions are available, however they may not reflect properly the actual state of the troposphere, especially in severe weather conditions. It might be more appropriate to take advantage on a regional troposphere model derived from near real-time (NRT) processing of GBAS network. To evaluate the impact of troposphere constraining in real-time PPP, one week long period was selected, that was characterized with active troposphere conditions. Using the development version of original GNSS-WARP software, a 1 Hz kinematic positioning was performed for 10 selected Polish GBAS stations using IGS Real-Time Service (RTS) products. Two processing strategies were used, one reflecting the common PPP approach and the second with NRT ZTD to constrain the troposphere delay estimates. GPS only and GPS+GLONASS positioning was performed and analyzed using both strategies. For unconstrained solutions, the convergence time of one hour (GPS only) and 15 minutes (GPS+GLONASS) was reached, providing the sub-decimeter accuracy in horizontal and vertical component. However, for some epochs, and outlying height estimates were observed with the residuals reaching up to 0.5m with the estimated error of 0.2m. At the same time, the unconstrained estimated troposphere delay differs up to 12 cm from the reference NRT ZTD solution. In case the troposphere delay is constrained, all three coordinate components remains accurate and precise for entire processing period after the convergence is reached. From the
Sleep apnea detection using time-delayed heart rate variability.
Nano, Marina-Marinela; Xi Long; Werth, Jan; Aarts, Ronald M; Heusdens, Richard
2015-08-01
Sleep apnea is a sleep disorder distinguished by repetitive absence of breathing. Compared with the traditional expensive and cumbersome methods, sleep apnea diagnosis or screening with physiological information that can be easily acquired is needed. This paper describes algorithms using heart rate variability (HRV) to automatically detect sleep apneas as long as it can be easily acquired with unobtrusive sensors. Because the changes in cardiac activity are usually hysteretic than the presence of apneas with a few minutes, we propose to use the delayed HRV features to identify the episodes with sleep apneic events. This is expected to help improve the apnea detection performance. Experiments were conducted with a data set of 23 sleep apnea patients using support vector machine (SVM) classifiers and cross validations. Results show that using eleven HRV features with a time delay of 1.5 minutes rather than the features without time delay for SA detection, the overall accuracy increased from 74.9% to 76.2% and the Cohen's Kappa coefficient increased from 0.49 to 0.52. Further, an accuracy of 94.5% and a Kappa of 0.89 were achieved when applying subject-specific classifiers. PMID:26738071
On the time delay between ultra-relativistic particles
NASA Astrophysics Data System (ADS)
Fleury, Pierre
2016-09-01
The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.
Lag and anticipating synchronization without time-delay coupling.
Corron, Ned J; Blakely, Jonathan N; Pethel, Shawn D
2005-06-01
We describe a new method for achieving approximate lag and anticipating synchronization in unidirectionally coupled chaotic oscillators. The method uses a specific parameter mismatch between the drive and response that is a first-order approximation to true time-delay coupling. As a result, an adjustable lag or anticipation effect can be achieved without the need for a variable delay line, making the method simpler and more economical to implement in many physical systems. We present a stability analysis, demonstrate the method numerically, and report experimental observation of the effect in radio-frequency electronic oscillators. In the circuit experiments, both lag and anticipation are controlled by tuning a single capacitor in the response oscillator. PMID:16035886
Time delay spectrometry for hydrophone calibrations below 1 MHz.
Gammell, P M; Harris, G R
1999-11-01
Knowing the response of miniature ultrasonic hydrophones at frequencies below 1 MHz is important for assessing the accuracy of acoustic pressure pulse measurements in medical ultrasound applications. Therefore, a time delay spectrometry (TDS) system was developed as an efficient means to measure hydrophone sensitivity in this frequency range. In TDS a swept-frequency signal is transmitted. A tracking receiver distinguishes arrivals with different propagation delays by their frequency offset relative to the signal being transmitted, thus eliminating spurious signals such as those reflected from the water surface or tank walls. Two piezoelectric ceramic source transducers were used: a standard planar disk and a disk with varying thickness to broaden the thickness-resonance. This latter design was preferred for its more uniform response without significant sensitivity loss. TDS is not an absolute method, but it was demonstrated to provide efficient, accurate calibrations via comparison with a reference hydrophone using a substitution technique. PMID:10573913
Extreme fluctuations in stochastic network coordination with time delays
NASA Astrophysics Data System (ADS)
Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.
2015-12-01
We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.
Remote Task-level Commanding of Centaur over Time Delay
NASA Astrophysics Data System (ADS)
Schreckenghost, Debra; Ngo, Tam; Burridge, Robert; Wang, Lui; Izygon, Michel
2008-01-01
Remote operation of robots on the lunar surface by ground controllers poses unique human-robot interaction challenges due to time delay and constrained bandwidth. One strategy for addressing these challenges is to provide task-level commanding of robots by a ground controller. Decision-support tools are being developed at JSC for remote task-level commanding over time-delay. The approach is to provide ground procedures that guide a controller when executing task-level command sequences and aid awareness of the state of command execution in the robot. This approach is being evaluated using the Centaur robot at JSC. The Centaur Central Commander provides a task-level command interface that executes on the robot side of the delay. Decision support tools have been developed for a human Supervisor in the JSC Cockpit to use when interacting with the Centaur Central Commander. Commands to the Central Commander are defined as instructions in a procedure. Sequences of these instructions are grouped into procedures for the Cockpit Supervisor. When a Supervisor is ready to perform a task, a procedure is loaded into the decision support tool. From this tool, the Supervisor can view command sequences and dispatch individual commands to Centaur. Commands are queued for execution on the robot side of the delay. Reliable command sequences can be dispatched automatically upon approval by the Supervisor. The decision support tool provides the Supervisor with feedback about which commands are waiting for execution and which commands have finished. It also informs the Supervisor when a command fails to have its intended effect. Cockpit procedures are defined using the Procedure Representation Language (PRL) developed at JSC for mission operations. The decision support tool is based on a Procedure Sequencer and multi-agent software developed for human-robot interaction. In this paper the approach for remote task-level commanding of robots is described and the results of the evaluation
On time delay estimation from a sparse linear prediction perspective.
He, Hongsen; Yang, Tao; Chen, Jingdong
2015-02-01
This paper proposes a sparse linear prediction based algorithm to estimate time difference of arrival. This algorithm unifies the cross correlation method without prewhitening and that with prewhitening via an ℓ2/ℓ1 optimization process, which is solved by an augmented Lagrangian alternating direction method. It also forms a set of time delay estimators that make a tradeoff between prewhitening and non-prewhitening through adjusting a regularization parameter. The effectiveness of the proposed algorithm is demonstrated in noisy and reverberant environments. PMID:25698037
Transmission ultrasonography. [time delay spectrometry for soft tissue transmission imaging
NASA Technical Reports Server (NTRS)
Heyser, R. C.; Le Croissette, D. H.
1973-01-01
Review of the results of the application of an advanced signal-processing technique, called time delay spectrometry, in obtaining soft tissue transmission images by transmission ultrasonography, both in vivo and in vitro. The presented results include amplitude ultrasound pictures and phase ultrasound pictures obtained by this technique. While amplitude ultrasonographs of tissue are closely analogous to X-ray pictures in that differential absorption is imaged, phase ultrasonographs represent an entirely new source of information based on differential time of propagation. Thus, a new source of information is made available for detailed analysis.
Simplified dead-time compensator for multiple delay SISO systems.
Torrico, Bismark Claure; Correia, Wilkley Bezerra; Nogueira, Fabrício Gonzalez
2016-01-01
This paper presents a dead-time compensation structure able to deal with stable and unstable multiple delay single input single output (SISO) systems. The proposed method aims to simplify the primary controller by replacing it for FIR filters placed at the feedback path. Such modification reduces the total number of parameters to be tuned which facilitates the overall design in comparison with other primary controllers normally considered. Simulation results show a better performance for the proposed control approach compared with other dead-time compensator (DTC) recently proposed in the literature. PMID:26593966
Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging.
Marriott, G; Clegg, R M; Arndt-Jovin, D J; Jovin, T M
1991-01-01
An optical microscope capable of measuring time resolved luminescence (phosphorescence and delayed fluorescence) images has been developed. The technique employs two phase-locked mechanical choppers and a slow-scan scientific CCD camera attached to a normal fluorescence microscope. The sample is illuminated by a periodic train of light pulses and the image is recorded within a defined time interval after the end of each excitation period. The time resolution discriminates completely against light scattering, reflection, autofluorescence, and extraneous prompt fluorescence, which ordinarily decrease contrast in normal fluorescence microscopy measurements. Time resolved image microscopy produces a high contrast image and particular structures can be emphasized by displaying a new parameter, the ratio of the phosphorescence to fluorescence. Objects differing in luminescence decay rates are easily resolved. The lifetime of the long lived luminescence can be measured at each pixel of the microscope image by analyzing a series of images that differ by a variable time delay. The distribution of luminescence decay rates is displayed directly as an image. Several examples demonstrate the utility of the instrument and the complementarity it offers to conventional fluorescence microscopy. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:1723311
Predictive active disturbance rejection control for processes with time delay.
Zheng, Qinling; Gao, Zhiqiang
2014-07-01
Active disturbance rejection control (ADRC) has been shown to be an effective tool in dealing with real world problems of dynamic uncertainties, disturbances, nonlinearities, etc. This paper addresses its existing limitations with plants that have a large transport delay. In particular, to overcome the delay, the extended state observer (ESO) in ADRC is modified to form a predictive ADRC, leading to significant improvements in the transient response and stability characteristics, as shown in extensive simulation studies and hardware-in-the-loop tests, as well as in the frequency response analysis. In this research, it is assumed that the amount of delay is approximately known, as is the approximated model of the plant. Even with such uncharacteristic assumptions for ADRC, the proposed method still exhibits significant improvements in both performance and robustness over the existing methods such as the dead-time compensator based on disturbance observer and the Filtered Smith Predictor, in the context of some well-known problems of chemical reactor and boiler control problems. PMID:24182516
Variations in propagation delay times for line ten (TV) based time transfers
NASA Technical Reports Server (NTRS)
Chiu, M. C.; Shaw, B. W.
1982-01-01
Variation in the propagation delay for a 30 km TV (Line Ten) radio link was evaluated for a series of 30 independent measurements. Time marks from TV Channel 5 WTTG in Washington, D.C. were simultaneously measured at the Johns Hopkins University Applied Physics Laboratory and at the United States Naval Observatory against each stations' local cesium standard clocks. Differences in the stations' cesium clocks were determined by portable cesium clock transfers. Thirty independent timing determinations were made. The root mean square deviation in the propagation delay calculated from the timing determinations was 11 ns. The variations seen in the propagation delays are believed to be caused by environmental factors and by errors in the portable clock timing measurements. In correlating the propagation delay variations with local weather conditions, only a moderate dependence on air temperature and absolute humidity was found.
Empirical modeling of the quiet time nightside magnetosphere
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Spence, H. E.; Stern, D. P.
1993-01-01
Empirical modeling of plasma pressure and magnetic field for the quiet time nightside magnetosphere is investigated. Two models are constructed for this study. One model, referred to here as T89R, is basically the magnetic field model of Tsyganenko (1989) but is modified by the addition of an inner eastward ring current at a radial distance of approximately 3 RE as suggested by observation. The other is a combination of the T89R model and the long version of the magnetic field model of Tsyganenko (1987) such that the former dominates the magnetic field in the inner magnetosphere while the latter prevails in the distant tail. The distribution of plasma pressure which is required to balance the magnetic force for each of these two field models is computed along the tail axis in the midnight meridian. The occurrence of pressure anisotropy in the inner magnetospheric region is also taken into account by determining an empirical fit to the observed plasma pressure anisotropy. This represents the first effort to obtain the plasma pressure distribution in force equilibrium with magnetic stresses from an empirical field model with the inclusion of pressure anisotropy. The inclusion of pressure anisotropy alters the plasma pressure by as much as a factor of approximately 3 in the inner magnetosphere. The deduced plasma pressure profile along the tail axis is found to be in good agreement with the observed quiet time plasma pressure for geocentric distances between approximately 2 and approximately 35 RE.
Empirical modeling of the quiet time nightside magnetosphere
Lui, A.T.Y. ); Spence, H.E. ); Stern, D.P. )
1994-01-01
Empirical modeling of plasma pressure and magnetic field for the quiet time nightside magnetosphere is investigated. Two models are constructed for this study. One model, referred to here as T89R, is basically the magnetic field model of Tsyganenko but is modified by the addition of an inner eastward ring current at a radial distance of [approximately]3 R[sub E] as suggested by observation. The other is a combination of the T89R model and the long version of the magnetic field model of Tsyganenko such that the former dominates the magnetic field in the inner magnetosphere, whereas the latter prevails in the distant tail. The distribution of plasma pressure, which is required to balance the magnetic force for each of these two field models, is computed along the tail axis in the midnight meridian. The occurrence of pressure anisotropy in the inner magnetospheric region is also taken into account by determining an empirical fit to the observed plasma pressure anisotropy. This effort is the first attempt to obtain the plasma pressure distribution in force equilibrium with magnetic stresses from an empirical field model with the inclusion of pressure anisotropy. The inclusion of pressure anisotropy alters the plasma pressure by as much as a factor of [approximately]3 in the inner magnetosphere. The deduced plasma pressure profile along the tail axis is found to be in good agreement with the observed quiet time plasma pressure for geocentric distances between [approximately]2 and [approximately]35 R[sub E]. 40 refs., 5 figs.
Empirical modeling of the quiet time nightside magnetosphere
Lui, A.T.Y.; Spence, H.E.; Stern, D.P.
1993-12-31
Empirical modeling of plasma pressure and magnetic field for the quiet time nightside magnetosphere is investigated. Two models are constructed for this study. One model, referred to here as T89R, is basically the magnetic field model of Tsyganenko but is modified by the addition of an inner eastward ring current at a radial distance of approximately 3 RE as suggested by observation. The other is a combination of the T89R model and the long version of the magnetic field model of Tsyganenko such that the former dominates the magnetic field in the inner magnetosphere while the latter prevails in the distant tail. The distribution of plasma pressure which is required to balance the magnetic force for each of these two field models is computed along the tail axis in the midnight meridian. The occurrence of pressure anisotropy in the inner magnetospheric region is also taken into account by determining an empirical fit to the observed plasma pressure anisotropy. This represents the first effort to obtain the plasma pressure distribution in force equilibrium with magnetic stresses from an empirical field model with the inclusion of pressure anisotropy. The inclusion of pressure anisotropy alters the plasma pressure by as much as a factor of approximately 3 in the inner magnetosphere. The deduced plasma pressure profile along the tail axis is found to be in good agreement with the observed quiet time plasma pressure for geocentric distances between approximately 2 and approximately 35 RE.
Empirical intrinsic geometry for nonlinear modeling and time series filtering
Talmon, Ronen; Coifman, Ronald R.
2013-01-01
In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization. PMID:23847205
Empirical intrinsic geometry for nonlinear modeling and time series filtering.
Talmon, Ronen; Coifman, Ronald R
2013-07-30
In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization. PMID:23847205
Empirical Bayes Estimation of Coalescence Times from Nucleotide Sequence Data.
King, Leandra; Wakeley, John
2016-09-01
We demonstrate the advantages of using information at many unlinked loci to better calibrate estimates of the time to the most recent common ancestor (TMRCA) at a given locus. To this end, we apply a simple empirical Bayes method to estimate the TMRCA. This method is both asymptotically optimal, in the sense that the estimator converges to the true value when the number of unlinked loci for which we have information is large, and has the advantage of not making any assumptions about demographic history. The algorithm works as follows: we first split the sample at each locus into inferred left and right clades to obtain many estimates of the TMRCA, which we can average to obtain an initial estimate of the TMRCA. We then use nucleotide sequence data from other unlinked loci to form an empirical distribution that we can use to improve this initial estimate. PMID:27440864
Distinguishing time-delayed causal interactions using convergent cross mapping
Ye, Hao; Deyle, Ethan R.; Gilarranz, Luis J.; Sugihara, George
2015-01-01
An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended method to representative examples (model simulations, a laboratory predator-prey experiment, temperature and greenhouse gas reconstructions from the Vostok ice core, and long-term ecological time series collected in the Southern California Bight), we demonstrate the ability to identify different time-delayed interactions, distinguish between synchrony induced by strong unidirectional-forcing and true bidirectional causality, and resolve transitive causal chains. PMID:26435402
Distinguishing time-delayed causal interactions using convergent cross mapping.
Ye, Hao; Deyle, Ethan R; Gilarranz, Luis J; Sugihara, George
2015-01-01
An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended method to representative examples (model simulations, a laboratory predator-prey experiment, temperature and greenhouse gas reconstructions from the Vostok ice core, and long-term ecological time series collected in the Southern California Bight), we demonstrate the ability to identify different time-delayed interactions, distinguish between synchrony induced by strong unidirectional-forcing and true bidirectional causality, and resolve transitive causal chains. PMID:26435402
Distinguishing time-delayed causal interactions using convergent cross mapping
NASA Astrophysics Data System (ADS)
Ye, Hao; Deyle, Ethan R.; Gilarranz, Luis J.; Sugihara, George
2015-10-01
An important problem across many scientific fields is the identification of causal effects from observational data alone. Recent methods (convergent cross mapping, CCM) have made substantial progress on this problem by applying the idea of nonlinear attractor reconstruction to time series data. Here, we expand upon the technique of CCM by explicitly considering time lags. Applying this extended method to representative examples (model simulations, a laboratory predator-prey experiment, temperature and greenhouse gas reconstructions from the Vostok ice core, and long-term ecological time series collected in the Southern California Bight), we demonstrate the ability to identify different time-delayed interactions, distinguish between synchrony induced by strong unidirectional-forcing and true bidirectional causality, and resolve transitive causal chains.
Yang, Bin; Zhang, Wei; Wang, Haifeng; Song, Chuandong; Chen, Yuehui
2016-05-01
Regulatory interactions among target genes and regulatory factors occur instantaneously or with time-delay. In this paper, we propose a novel approach namely TDSDMI based on time-delayed S-system model (TDSS) model and delayed mutual information (DMI) to infer time-delay gene regulatory network (TDGRN). Firstly DMI is proposed to delete redundant regulator factors for each target gene. Secondly restricted gene expression programming (RGEP) is proposed as a new representation of the TDSS model to identify instantaneous and time-delayed interactions. To verify the effectiveness of the proposed method, TDSDMI is applied to both simulated and real biological datasets. Experimental results reveal that TDSDMI performs better than the recent reconstruction methods. PMID:27058285
STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1
Liao, Kai; Treu, Tommaso; Marshall, Phil; Fassnacht, Christopher D.; Rumbaugh, Nick; Dobler, Gregory; Aghamousa, Amir; Bonvin, Vivien; Courbin, Frederic; Meylan, Georges; Hojjati, Alireza; Jackson, Neal; Kashyap, Vinay; Mandel, Kaisey; Rathna Kumar, S.; Prabhu, Tushar P.; Linder, Eric; Meng, Xiao-Li; Moustakas, Leonidas A.; Romero-Wolf, Andrew [Jet Propulsion Laboratory, California Institute of Technology, M and others
2015-02-10
We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring accuracy (or bias) A, goodness of fit χ{sup 2}, precision P, and success rate f. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give |A| < 0.03, P < 0.03, and χ{sup 2} < 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range f = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher f than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P < 0.03 and |A| < 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and f depend mostly on season length, while P depends mostly on cadence and campaign duration.
Strong Lens Time Delay Challenge. II. Results of TDC1
NASA Astrophysics Data System (ADS)
Liao, Kai; Treu, Tommaso; Marshall, Phil; Fassnacht, Christopher D.; Rumbaugh, Nick; Dobler, Gregory; Aghamousa, Amir; Bonvin, Vivien; Courbin, Frederic; Hojjati, Alireza; Jackson, Neal; Kashyap, Vinay; Rathna Kumar, S.; Linder, Eric; Mandel, Kaisey; Meng, Xiao-Li; Meylan, Georges; Moustakas, Leonidas A.; Prabhu, Tushar P.; Romero-Wolf, Andrew; Shafieloo, Arman; Siemiginowska, Aneta; Stalin, Chelliah S.; Tak, Hyungsuk; Tewes, Malte; van Dyk, David
2015-02-01
We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring accuracy (or bias) A, goodness of fit χ2, precision P, and success rate f. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give |A| < 0.03, P < 0.03, and χ2 < 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range f = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher f than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P < 0.03 and |A| < 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and f depend mostly on season length, while P depends mostly on cadence and campaign duration.
On noise in time-delay integration CMOS image sensors
NASA Astrophysics Data System (ADS)
Levski, Deyan; Choubey, Bhaskar
2016-05-01
Time delay integration sensors are of increasing interest in CMOS processes owing to their low cost, power and ability to integrate with other circuit readout blocks. This paper presents an analysis of the noise contributors in current day CMOS Time-Delay-Integration image sensors with various readout architectures. An analysis of charge versus voltage domain readout modes is presented, followed by a noise classiﬁcation of the existing Analog Accumulator Readout (AAR) and Digital Accumulator Readout (DAR) schemes for TDI imaging. The analysis and classiﬁcation of existing readout schemes include, pipelined charge transfer, buﬀered direct injection, voltage as well as current-mode analog accumulators and all-digital accumulator techniques. Time-Delay-Integration imaging modes in CMOS processes typically use an N-number of readout steps, equivalent to the number of TDI pixel stages. In CMOS TDI sensors, where voltage domain readout is used, the requirements over speed and noise of the ADC readout chain are increased due to accumulation of the dominant voltage readout and ADC noise with every stage N. Until this day, the latter is the primary reason for a leap-back of CMOS TDI sensors as compared to their CCD counterparts. Moreover, most commercial CMOS TDI implementations are still based on a charge-domain readout, mimicking a CCD-like operation mode. Thus, having a good understanding of each noise contributor in the signal chain, as well as its magnitude in diﬀerent readout architectures, is vital for the design of future generation low-noise CMOS TDI image sensors based on a voltage domain readout. This paper gives a quantitative classiﬁcation of all major noise sources for all popular implementations in the literature.
COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA
Suyu, S. H.; Treu, T.; Sonnenfeld, A.; Hilbert, S.; Spiniello, C.; Auger, M. W.; Collett, T.; Blandford, R. D.; Marshall, P. J.; Courbin, F.; Meylan, G.; Tewes, M.; Fassnacht, C. D.; Koopmans, L. V. E.
2014-06-20
Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly—if systematics were ruled out—resolving the tension would require a departure from the flat ΛCDM cosmology, introducing, for example, a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present an analysis of the gravitational lens RXJ1131–1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurement with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131–1231 in combination with Planck favor a flat universe with Ω{sub k}=0.00{sub −0.02}{sup +0.01} (68% credible interval (CI)). In a flat wCDM model, the combination of RXJ1131–1231 and Planck yields w=−1.52{sub −0.20}{sup +0.19} (68% CI)
Delay-dependent stability of neural networks of neutral type with time delay in the leakage term
NASA Astrophysics Data System (ADS)
Li, Xiaodi; Cao, Jinde
2010-07-01
This paper studies the global asymptotic stability of neural networks of neutral type with mixed delays. The mixed delays include constant delay in the leakage term (i.e. 'leakage delay'), time-varying delays and continuously distributed delays. Based on the topological degree theory, Lyapunov method and linear matrix inequality (LMI) approach, some sufficient conditions are derived ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point, which are dependent on both the discrete and distributed time delays. These conditions are expressed in terms of LMI and can be easily checked by the MATLAB LMI toolbox. Even if there is no leakage delay, the obtained results are less restrictive than some recent works. It can be applied to neural networks of neutral type with activation functions without assuming their boundedness, monotonicity or differentiability. Moreover, the differentiability of the time-varying delay in the non-neutral term is removed. Finally, two numerical examples are given to show the effectiveness of the proposed method.
Equation and test of possible delay time of Newton force
NASA Astrophysics Data System (ADS)
Diósi, Lajos
2014-09-01
Recently, a simple heuristic modification of the Newton potential with a nonzero delay-time τG has been proposed. Our modification is largely suppressed for purely gravitational interactions, it becomes relevant under non-gravitational accelerations of the sources. We illustrate how the choice τG ~ 1 ms may already influence the 5th digit of G determined by Cavendish experiments. Re-evaluation of old Cavendish experiments and implementing slightly modified new ones may confirm the proposal or, at least, put a stronger upper limit on τG.
Delayed choice experiments, the arrow of time, and quantum measurement
Schulman, L. S.
2011-11-29
By a radical modification of statistical mechanics the measurement process of quantum mechanics can be described in terms of pure, unitary time evolution, with no wave function collapse or many-world ideas. The key notion is 'special states', rare microscopic states of a complex system. Recovering the standard probabilities requires of this theory the appearance of Cauchy-distributed noise in some measurement processes. This article treats experimental situations where such noise might be detected and correlated with the need or absence of need for special states. Included in this possibility are 'delayed choice' experiments, in which the correlation contravenes conventional ideas on causality. Background material on all topics is provided.
Time Delay in Neutron-Alpha Resonant Scattering
Hoop, Bernard; Hale, Gerald M.
2011-10-24
Time delay analysis of neutron-alpha resonant scattering cross sections supports characterization of the lowest 3/2{sup +} level in {sup 5}He as fundamentally an n-{alpha} resonance on the second Riemann energy sheet of both n-{alpha} and deuteron-{sup 3}H channels, with an associated shadow pole on a different unphysical sheet that, through its associated zero on the physical sheet, contributes to the large {sup 4}He(n,d){sup 3}H cross section.
Detector module for a simplified ultrasonic time delay spectrometry system
NASA Astrophysics Data System (ADS)
Gammell, Paul M.; Liu, Yunbo; Maruvada, Subha; Harris, Gerald R.
2012-05-01
When setting up a water-tank based ultrasonic system, aligning the transmitting and receiving transducers to maximize the received signal is required. With a digital time delay spectrometry (TDS) system the "dechirped" signal is observed while positional adjustments are being made. Observation is easier if only the envelope, rather than the modulated signal, is displayed. A module is described that provides an envelope (rectified signal) that, when displayed on an oscilloscope, is suitable as an alignment aid for use with the TDS system described elsewhere in these Proceedings.
Time-Delayed Models of Gene Regulatory Networks
Parmar, K.; Blyuss, K. B.; Kyrychko, Y. N.; Hogan, S. J.
2015-01-01
We discuss different mathematical models of gene regulatory networks as relevant to the onset and development of cancer. After discussion of alternative modelling approaches, we use a paradigmatic two-gene network to focus on the role played by time delays in the dynamics of gene regulatory networks. We contrast the dynamics of the reduced model arising in the limit of fast mRNA dynamics with that of the full model. The review concludes with the discussion of some open problems. PMID:26576197
NASA Astrophysics Data System (ADS)
Iiyama, Noriko; Natori, Kenji; Ohnishi, Kouhei
With recent popularization of the Internet, bilateral control systems which are robust to fluctuant and unpredictable time delay are desirable. In such a situation, communication disturbance observer (CDOB) has been proposed as a control method for fluctuant and unpredictable time delay in bilateral teleoperation. It compensates time delay using disturbance observer by considering the effect of communication delay on the system as acceleration dimensional disturbance. Since this method cannot separate network disturbance from contact force exerted on a slave, force response of the slave transmitted to the master side is not precise. This paper presents a method for separating network disturbance from the contact force exerted on the slave. By producing the compensation value using separated network disturbance, the force response value of the slave is transmitted to the master side more precisely. The validity of the proposed method is verified by experimental results.
The VLBI time delay function for synchronous orbits
NASA Technical Reports Server (NTRS)
Rosenbaum, B.
1972-01-01
The VLBI is a satellite tracking technique that to date was applied largely to the tracking of synchronous orbits. These orbits are favorable for VLBI in that the remote satellite range allows continuous viewing from widely separated stations. The primary observable, geometric time delay is the time difference for signal propagation between satellite and baseline terminals. Extraordinary accuracy in angular position data on the satellite can be obtained by observation from baselines of continental dimensions. In satellite tracking though the common objective is to derive orbital elements. A question arises as to how the baseline vector bears on the accuracy of determining the elements. Our approach to this question is to derive an analytic expression for the time delay function in terms of Kepler elements and station coordinates. The analysis, which is for simplicity based on elliptic motion, shows that the resolution for the inclination of the orbital plane depends on the magnitude of the baseline polar component and the resolution for in-plane elements depends on the magnitude of a projected equatorial baseline component.
Teleoperation with large time delay using a prevision system
NASA Astrophysics Data System (ADS)
Bergamasco, Massimo; De Paolis, Lucio; Ciancio, Stefano; Pinna, Sebastiano
1997-12-01
In teleoperation technology various techniques have been proposed in order to alleviate the effects of time delayed communication and to avoid the instability of the system. This paper describes a different approach to robotic teleoperation with large-time delay and a teleoperation system, based on teleprogramming paradigm, has been developed with the intent to improve the slave autonomy and to decrease the amount of information exchanged between master and slave system. The goal concept, specific of AI, has been used. In order to minimize the total task completion time has been introduced a prevision system, called Merlino, able to know in advance the slave's choices taking into account both the operator's actions and the information about the remote environment. The prevision system allows, in case of environment changes, to understand if the slave can solve the goal. Otherwise, Merlino is able to signal a 'fail situation.' Some experiments have been carried out by means of an advanced human-machine interface with force feedback, designed at PERCRO Laboratory of Scuola Superiore S. Anna, which gives a better sensation of presence in the remote environment.
Optical true time delay unit for multi-beamforming.
Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong
2015-04-20
An optical true time delay (TTD) unit capable of adding independent time delays to multiple RF signals is proposed, which can be used for multi-beamforming in both transmit and receive modes. In the proposed unit, N RF signals with different center frequencies are modulated on an optical frequency comb (OFC). After transmission through a dispersive element, the RF-modulated OFC is split into N paths. In each path, a comb line is selected by a tunable optical filter. Thanks to the chromatic dispersion of the dispersive element, independently-controllable TTDs can be obtained in all paths. Then, a microwave photonic filter (MPF) is incorporated in each path, allowing a designated RF signal to undergo the TTD in that path. A proof-of-concept experiment is carried out. A two-path unit with a low-pass MPF in one path and a high-pass MPF in the other path is built. Controllable TTDs up to ~1.4 ns with a step of ~69 ps are demonstrated based on a 25-GHz-spacing OFC. In addition, a wideband multi-beam phased-array antenna system that can work in both transmit and receive modes is designed using the proposed TTD unit. PMID:25969041
ETD: an extended time delay algorithm for ventricular fibrillation detection.
Kim, Jungyoon; Chu, Chao-Hsien
2014-01-01
Ventricular fibrillation (VF) is the most serious type of heart attack which requires quick detection and first aid to improve patients' survival rates. To be most effective in using wearable devices for VF detection, it is vital that the detection algorithms be accurate, robust, reliable and computationally efficient. Previous studies and our experiments both indicate that the time-delay (TD) algorithm has a high reliability for separating sinus rhythm (SR) from VF and is resistant to variable factors, such as window size and filtering method. However, it fails to detect some VF cases. In this paper, we propose an extended time-delay (ETD) algorithm for VF detection and conduct experiments comparing the performance of ETD against five good VF detection algorithms, including TD, using the popular Creighton University (CU) database. Our study shows that (1) TD and ETD outperform the other four algorithms considered and (2) with the same sensitivity setting, ETD improves upon TD in three other quality measures for up to 7.64% and in terms of aggregate accuracy, the ETD algorithm shows an improvement of 2.6% of the area under curve (AUC) compared to TD. PMID:25571480
Effects of Time Delay on Three Interacting Species System with Noise
NASA Astrophysics Data System (ADS)
Su, Yi-Jian; Mei, Dong-Cheng
2008-09-01
We study the effects of time delay in three interacting species system with noise. The time evolution and spatiotemporal pattern in the Lotka-Volterra model of three interacting species with noise and time delay were investigated by means of stochastic simulation. Our results indicate that: (i) Time delay induces the synchronously periodic oscillations of the three species densities; (ii) Time delay cause the spatiotemporal pattern to be concentrated.
Wang, Leimin; Shen, Yi; Sheng, Yin
2016-04-01
This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results. PMID:26878721
NASA Astrophysics Data System (ADS)
Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.
2016-02-01
This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.
Spectrometer employing optical fiber time delays for frequency resolution
Schuss, Jack J.; Johnson, Larry C.
1979-01-01
This invention provides different length glass fibers for providing a broad range of optical time delays for short incident chromatic light pulses for the selective spatial and frequency analysis of the light with a single light detector. To this end, the frequencies of the incident light are orientated and matched with the different length fibers by dispersing the separate frequencies in space according to the respective fiber locations and lengths at the input terminal of the glass fibers. This makes the different length fibers useful in the field of plasma physics. To this end the short light pulses can be scattered by a plasma and then passed through the fibers for analyzing and diagnosing the plasma while it varies rapidly with time.
Boltzmann's knock: auto-ignition delay times from Arrhenius theory
NASA Astrophysics Data System (ADS)
Heffer, Jon; Lewins, Jeffery
2010-10-01
An exact series solution is given for the first-order equation describing delay times in chemical kinetics, especially auto-ignition of fuels, employing the Arrhenius rate factor. Provision is made for both a constant pressure and a constant volume process by means of an index that describes the temperature dependence of the reaction rate. To allow for the common circumstance that the activation temperature is well above the temperature that would be recognised as the onset of combustion, an
Real-Time Tropospheric Delay Estimation using IGS Products
NASA Astrophysics Data System (ADS)
Stürze, Andrea; Liu, Sha; Söhne, Wolfgang
2014-05-01
The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it
Vonderschen, Katrin; Wagner, Hermann
2012-04-25
Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output. PMID:22539852
Asymptotic stability for force reflecting teleoperators with time delay
Anderson, R.J. ); Spong, M.W. )
1992-04-01
A bilateral system consists of a local master manipulator and a remotely located slave manipulator. Velocity commands are sent forward from the master to the slave, and force information is reflected back from the slave to the master. Often, there is a transmission delay when communicating between the two subsystems, which causes instability in the force-reflecting teleoperator. Recently, a solution for this problem was found, based on mimicking the behavior of a lossless transmission line. Although the resulting control law was shown to stabilize an actual single-DOF teleoperator system, and although the control law is intuitively stable because of its passivity properties, stability for the system has not yet been proven. In this article the authors extend these results to a nonlinear n-DOF system and prove its stability. Nonlinear, multidimensional networks are used to characterize the nonlinear equations for the master and slave manipulators, the time-delayed communication systems, the human operator, and the environment. Tellegen's theorem and the Lyapunov theory are then applied to prove that the master and slave subsystems have asymptotically stable velocities. In addition, they show how gain scaling can be used without disturbing the stability of the system.
A novel memristive time-delay chaotic system without equilibrium points
NASA Astrophysics Data System (ADS)
Pham, V.-T.; Vaidyanathan, S.; Volos, C. K.; Jafari, S.; Kuznetsov, N. V.; Hoang, T. M.
2016-02-01
Memristor and time-delay are potential candidates for constructing new systems with complex dynamics and special features. A novel time-delay system with a presence of memristive device is proposed in this work. It is worth noting that this memristive time-delay system can generate chaotic attractors although it possesses no equilibrium points. In addition, a circuitry implementation of such time-delay system has been introduced to show its feasibility.
Time-Delay Discrimination Training: Replication with Different Stimuli and Different Populations.
ERIC Educational Resources Information Center
Smeets, Paul M.; And Others
1990-01-01
Two time-delay conditions for teaching complex visual discriminations to 14 normal preschoolers, 12 with mild mental retardation, and 11 with moderate mental retardation were compared. Results indicated that for all populations and stimuli, time delay of multiple dynamic distinctive-feature prompts produced learning, while time delay of the single…
An Evaluation of Real-Time Zenith Total Delay Estimates
NASA Astrophysics Data System (ADS)
Ahmed, F.; Teferle, F. N.; Bingley, R.; Laurichesse, D.
2012-12-01
The use of modern low-latency Numerical Weather Prediction (NWP) models by meteorological institutions to improve nowcasting operations requires the accurate and timely estimation of the Zenith Total Delay (ZTD). Observations from Global Navigation Satellite Systems (GNSS) can be processed to obtain such ZTD estimates. As of now, meeting the established requirements on the latency (as low as 5 min) and accuracy (up to few millimeters) of the ZTD for its use in nowcasting applications stands as a challenge. However, using, for example, the real-time orbit and clock products from the recently established IGS Real-Time Service, it is possible to estimate the ZTD by different processing strategies and each strategy can result in a different level of accuracy. The Bundesamt für Kartographie und Geodäsie Ntrip Client (BNC) can provide ZTD estimates in real-time using precise point positioning (PPP) without integer ambiguity resolution. Recently, the Centre National d'Etudes Spatiales (CNES) has released a modified version of BNC which produces ZTD estimates in real-time with integer-PPP, i.e. PPP with integer ambiguity resolution using their integer-recovery clock and widelane phase bias information. trackRT from MIT and RTNet from GPS Solutions Inc are also capable of providing real-time estimates of the ZTD. In this study, we present an evaluation of the real-time ZTD estimates obtained from different GNSS processing systems. Furthermore, we compare the real-time estimates to those from a near real-time system and the IGS Final Troposphere products.
Direct Tunneling Delay Time Measurement in an Optical Lattice.
Fortun, A; Cabrera-Gutiérrez, C; Condon, G; Michon, E; Billy, J; Guéry-Odelin, D
2016-07-01
We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics. PMID:27419545
Reduced time delay for gravitational waves with dark matter emulators
NASA Astrophysics Data System (ADS)
Desai, S.; Kahya, E. O.; Woodard, R. P.
2008-06-01
We discuss the implications for gravitational wave detectors of a class of modified gravity theories which dispense with the need for dark matter. These models, which are known as dark matter emulators, have the property that weak gravitational waves couple to the metric that would follow from general relativity without dark matter whereas ordinary particles couple to a combination of the metric and other fields which reproduces the result of general relativity with dark matter. We show that there is an appreciable difference in the Shapiro delays of gravitational waves and photons or neutrinos from the same source, with the gravitational waves always arriving first. We compute the expected time lags for GRB 070201, for SN 1987a and for Sco-X1. We estimate the probable error by taking account of the uncertainty in position, and by using three different dark matter profiles.
Time delay and integration detectors using charge transfer devices
NASA Technical Reports Server (NTRS)
Mccann, D. H.; White, M. H.; Turly, A. P.
1981-01-01
An imaging system comprises a multi-channel matrix array of CCD devices wherein a number of sensor cells (pixels) in each channel are subdivided and operated in discrete intercoupled groups of subarrays with a readout CCD shift register terminating each end of the channels. Clock voltages, applied to the subarrays, selectively cause charge signal flow in each subarray in either direction independent of the other subarrays. By selective application of four phase clock voltages, either one, two or all three of the sections subarray sections cause charge signal flow in one direction, while the remainder cause charge signal flow in the opposite direction. This creates a form of selective electronic exposure control which provides an effective variable time delay and integration of three, six or nine sensor cells or integration stages. The device is constructed on a semiconductor sustrate with a buried channel and is adapted for front surface imaging through transparent doped tin oxide gates.
Time delay between cardiac and brain activity during sleep transitions
NASA Astrophysics Data System (ADS)
Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme
2015-04-01
Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.
Time delay in the Einstein ring PKS 1830-211
NASA Technical Reports Server (NTRS)
Van Ommen, T. D.; Jones, D. L.; Preston, R. A.; Jauncey, D. L.
1995-01-01
We present radio observations of the gravitational lens PKS 1830-211 at 8.4 and 15 GHz acquired using the Very Large Array. The observations were made over a 13 month period. Significant flux density changes over this period provide strong constraints on the time delay between the two lensed images and suffest a value of 44 +/- 9 days. This offers new direct evidence that this source is indeed a gravitational lens. The lens distance is dependent upon the model chosen, but reasonable limits on the mass of the lensing galaxy suggest that it is unlikely to be at a redshift less than a few tenths, and may well be significantly more distant.
Direct Tunneling Delay Time Measurement in an Optical Lattice
NASA Astrophysics Data System (ADS)
Fortun, A.; Cabrera-Gutiérrez, C.; Condon, G.; Michon, E.; Billy, J.; Guéry-Odelin, D.
2016-07-01
We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics.
Lensing and time-delay contributions to galaxy correlations
NASA Astrophysics Data System (ADS)
Raccanelli, Alvise; Bertacca, Daniele; Maartens, Roy; Clarkson, Chris; Doré, Olivier
2016-07-01
Galaxy clustering on very large scales can be probed via the 2-point correlation function in the general case of wide and deep separations, including all the lightcone and relativistic effects. Using our recently developed formalism, we analyze the behavior of the local and integrated contributions and how these depend on redshift range, linear and angular separations and luminosity function. Relativistic corrections to the local part of the correlation can be non-negligible but they remain generally sub-dominant. On the other hand, the additional correlations arising from lensing convergence and time-delay effects can become very important and even dominate the observed total correlation function. We investigate different configurations formed by the observer and the pair of galaxies, and we find that the case of near-radial large-scale separations is where these effects will be the most important.
THE HUBBLE CONSTANT INFERRED FROM 18 TIME-DELAY LENSES
Paraficz, Danuta; Hjorth, Jens
2010-04-01
We present a simultaneous analysis of 18 galaxy lenses with time-delay measurements. For each lens, we derive mass maps using pixelated simultaneous modeling with shared Hubble constant. We estimate the Hubble constant to be 66{sup +6}{sub -4} km s{sup -1} Mpc{sup -1} (for a flat universe with OMEGA{sub m} = 0.3, OMEGA{sub L}AMBDA = 0.7). We have also selected a subsample of five relatively isolated early-type galaxies, and by simultaneous modeling with an additional constraint on isothermality of their mass profiles, we get H{sub 0} = 76{sup +3}{sub -3} km s{sup -1} Mpc{sup -1}.
Performance evaluation of the time delay digital tanlock loop architectures
NASA Astrophysics Data System (ADS)
Al-Kharji Al-Ali, Omar; Anani, Nader; Al-Qutayri, Mahmoud; Al-Araji, Saleh; Ponnapalli, Prasad
2016-01-01
This article presents the architectures, theoretical analyses and testing results of modified time delay digital tanlock loop (TDTLs) system. The modifications to the original TDTL architecture were introduced to overcome some of the limitations of the original TDTL and to enhance the overall performance of the particular systems. The limitations addressed in this article include the non-linearity of the phase detector, the restricted width of the locking range and the overall system acquisition speed. Each of the modified architectures was tested by subjecting the system to sudden positive and negative frequency steps and comparing its response with that of the original TDTL. In addition, the performance of all the architectures was evaluated under noise-free as well as noisy environments. The extensive simulation results using MATLAB/SIMULINK demonstrate that the new architectures overcome the limitations they addressed and the overall results confirmed significant improvements in performance compared to the conventional TDTL system.
NASA Astrophysics Data System (ADS)
Mohamad, Sannay
2001-11-01
Convergence dynamics of continuous-time bidirectional neural networks with constant transmission delays are studied. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, Lyapunov functionals and Halanay-type inequalities are constructed and employed to derive delay independent sufficient conditions under which the continuous-time networks converge exponentially to the equilibria associated with temporally uniform external inputs to the networks. Discrete-time analogues of the continuous-time networks are formulated and we study their dynamical characteristics. It is shown that the convergence dynamics of the continuous-time networks are preserved by the discrete-time analogues without any restriction on the discretization step-size. Several examples are given to illustrate the advantages of the discrete-time analogues in numerically simulating the continuous-time networks.
NASA Astrophysics Data System (ADS)
Sun, Gui-Quan; Wang, Su-Lan; Ren, Qian; Jin, Zhen; Wu, Yong-Ping
2015-06-01
Empirical results indicate that inducible defenses of plants have effects on herbivore populations. However, little is known about how inducible defenses of plants have influences on herbivore outbreak when space effect is considered. To reveal the relationship between inducible defenses and herbivore outbreak, we present a mathematical model to describe the interaction of them. It was found that time delay plays dual effects in the persistence of herbivore populations: (i) large value of time delay may be associated with small density of herbivore populations, and thus causes the populations to run a higher risk of extinction; (ii) moderate value of time delay is beneficial for maintaining herbivore density in a determined range which may promote the persistence of herbivore populations. Additionally, we revealed that interaction of time delay and space promotes the growth of average density of herbivore populations during their outbreak period which implied that time delay may drive the resilience of herbivore populations. Our findings highlight the close relationship between inducible defenses of plants and herbivore outbreak.
Sun, Gui-Quan; Wang, Su-Lan; Ren, Qian; Jin, Zhen; Wu, Yong-Ping
2015-01-01
Empirical results indicate that inducible defenses of plants have effects on herbivore populations. However, little is known about how inducible defenses of plants have influences on herbivore outbreak when space effect is considered. To reveal the relationship between inducible defenses and herbivore outbreak, we present a mathematical model to describe the interaction of them. It was found that time delay plays dual effects in the persistence of herbivore populations: (i) large value of time delay may be associated with small density of herbivore populations, and thus causes the populations to run a higher risk of extinction; (ii) moderate value of time delay is beneficial for maintaining herbivore density in a determined range which may promote the persistence of herbivore populations. Additionally, we revealed that interaction of time delay and space promotes the growth of average density of herbivore populations during their outbreak period which implied that time delay may drive the resilience of herbivore populations. Our findings highlight the close relationship between inducible defenses of plants and herbivore outbreak. PMID:26084812
Statistical analysis of the electrical breakdown time delay distributions in krypton
NASA Astrophysics Data System (ADS)
Maluckov, Čedomir A.; Karamarković, Jugoslav P.; Radović, Miodrag K.; Pejović, Momčilo M.
2006-08-01
The statistical analysis of the experimentally observed electrical breakdown time delay distributions in the krypton-filled diode tube at 2.6mbar is presented. The experimental distributions are obtained on the basis of 1000 successive and independent measurements. The theoretical electrical breakdown time delay distribution is evaluated as the convolution of the statistical time delay with exponential, and discharge formative time with Gaussian distribution. The distribution parameters are estimated by the stochastic modelling of the time delay distributions, and by comparing them with the experimental distributions for different relaxation times, voltages, and intensities of UV radiation. The transition of distribution shapes, from Gaussian-type to the exponential-like, is investigated by calculating the corresponding skewness and excess kurtosis parameters. It is shown that the mathematical model based on the convolution of two random variable distributions describes experimentally obtained time delay distributions and the separation of the total breakdown time delay to the statistical and formative time delay.
Statistical analysis of the electrical breakdown time delay distributions in krypton
Maluckov, Cedomir A.; Karamarkovic, Jugoslav P.; Radovic, Miodrag K.; Pejovic, Momcilo M.
2006-08-15
The statistical analysis of the experimentally observed electrical breakdown time delay distributions in the krypton-filled diode tube at 2.6 mbar is presented. The experimental distributions are obtained on the basis of 1000 successive and independent measurements. The theoretical electrical breakdown time delay distribution is evaluated as the convolution of the statistical time delay with exponential, and discharge formative time with Gaussian distribution. The distribution parameters are estimated by the stochastic modelling of the time delay distributions, and by comparing them with the experimental distributions for different relaxation times, voltages, and intensities of UV radiation. The transition of distribution shapes, from Gaussian-type to the exponential-like, is investigated by calculating the corresponding skewness and excess kurtosis parameters. It is shown that the mathematical model based on the convolution of two random variable distributions describes experimentally obtained time delay distributions and the separation of the total breakdown time delay to the statistical and formative time delay.
Empirical reconstruction of storm-time steady magnetospheric convection events
NASA Astrophysics Data System (ADS)
Stephens, G. K.; Sitnov, M. I.; Kissinger, J.; Tsyganenko, N. A.; McPherron, R. L.; Korth, H.; Anderson, B. J.
2013-12-01
We investigate the storm-scale morphology of the magnetospheric magnetic field as well as underlying distributions of electric currents, equatorial plasma pressure and entropy for four Steady Magnetospheric Convection (SMC) events that occurred during the May 2000 and October 2011 magnetic storms. The analysis is made using the empirical geomagnetic field model TS07D, in which the structure of equatorial currents is not predefined and it is dictated by data. The model also combines the strengths of statistical and event-oriented approaches in mining data for the reconstruction of the magnetic field. The formation of a near-Earth minimum of the equatorial magnetic field in the midnight sector is inferred from data without ad hoc assumptions of a special current system postulated in earlier empirical reconstructions. In addition, a new SMC class is discovered where the minimum equatorial field is substantially larger and located closer to Earth. The magnetic field tailward of the minimum is also much larger, and the corresponding region of accumulated magnetic flux may occupy a very short tail region. The equatorial current and plasma pressure are found to be strongly enhanced far beyond geosynchronous orbit and in a broad local time interval covering the whole nightside region. This picture is consistent with independent recent statistical studies of the SMC pressure distributions, global MHD and kinetic RCM-E simulations. Distributions of the flux tube volume and entropy inferred from data reveal different mechanisms of the magnetotail convection crisis resolution for two classes of SMC events.
MSW (magnetostatic wave) variable time-delay techniques
NASA Astrophysics Data System (ADS)
Adams, J. D.; Bajpai, S. N.; Daniel, M. R.; Emtage, P. R.; Talisa, S. H.
1983-09-01
Studies of magnetostatic wave (MSW) propagation, in epitaxial yttrium iron garnet (YIG) aimed at the development of dispersive delay lines electronically variable delay lines for use in radar and ECM systesms are described. Techniques which show the potential for achieving the performance required for systems application of MSW delay lines have been developed. The most pressing problem area is the reduction of amplitude and phase ripple arising from reflections and higher order mode interference to acceptable levels.
Du, Dongsheng; Jiang, Bin
2016-05-01
This paper investigates the problems of actuator fault estimation and accommodation for discrete-time switched systems with state delay. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault and state delay. Then based on the obtained online fault estimation information, a switched dynamic output feedback controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results. PMID:26924247
Synthetic LISA: Simulating time delay interferometry in a model LISA
Vallisneri, Michele
2005-01-15
We report on three numerical experiments on the implementation of Time-Delay Interferometry (TDI) for LISA, performed with Synthetic LISA, a C++/Python package that we developed to simulate the LISA science process at the level of scientific and technical requirements. Specifically, we study the laser-noise residuals left by first-generation TDI when the LISA armlengths have a realistic time dependence; we characterize the armlength-measurement accuracies that are needed to have effective laser-noise cancellation in both first- and second-generation TDI; and we estimate the quantization and telemetry bitdepth needed for the phase measurements. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the TDI observables; it also provides a streamlined module to compute the TDI responses to gravitational waves according to a full model of TDI, including the motion of the LISA array and the temporal and directional dependence of the armlengths. We discuss the theoretical model that underlies the simulation, its implementation, and its use in future investigations on system-characterization and data-analysis prototyping for LISA.
Du, Yuanhua; Zhong, Shouming; Xu, Jia; Zhou, Nan
2015-05-01
This paper is concerned with the delay-dependent exponential passivity analysis issue for uncertain cellular neural networks with discrete and distributed time-varying delays. By decomposing the delay interval into multiple equidistant subintervals and multiple nonuniform subintervals, a suitable augmented Lyapunov-Krasovskii functionals are constructed on these intervals. A set of novel sufficient conditions are obtained to guarantee the exponential passivity analysis issue for the considered system. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed results. PMID:25702046
Precision cosmology with time delay lenses: high resolution imaging requirements
NASA Astrophysics Data System (ADS)
Meng, Xiao-Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.
2015-09-01
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtotpropto r-γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of
Precision cosmology with time delay lenses: High resolution imaging requirements
Meng, Xiao -Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.
2015-09-28
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ_{tot}∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will
Impact of delays in parallel I/O system: An empirical study
Venugopal, C.R.; Rao, S.S.S.P.
1996-12-31
Performance of I/O intensive applications on a multiprocessor system depends mostly on the variety of disk access delays encountered in the I/O system. Over the years, the improvement in disk performance has taken place slower than corresponding increase in processor speeds. It is therefore necessary to model I/O delays and evaluate performance benefits of moving an application to a better multiprocessor system. In this work, we perform such an analysis by measuring I/O delays for a synthesized application that uses Parallel Distributed File System. The aim of this study was to evaluate the performance benefits of better disks in a multiprocessor system which was designed few years back. We report how the I/O performance would get affected if an application were to be run on a system which would have better disks and communication links. In this study, we show a substantial improvement in the performance of I/O system with better disks and communication links with respect to the existing system.
Unsignaled Delay of Reinforcement, Relative Time, and Resistance to Change
ERIC Educational Resources Information Center
Shahan, Timothy A.; Lattal, Kennon A.
2005-01-01
Two experiments with pigeons examined the effects of unsignaled, nonresetting delays of reinforcement on responding maintained by different reinforcement rates. In Experiment 1, 3-s unsignaled delays were introduced into each component of a multiple variable-interval (VI) 15-s VI 90-s VI 540-s schedule. When considered as a proportion of the…
On the stability of the telegraph equation with time delay
NASA Astrophysics Data System (ADS)
Ashyralyev, Allaberen; Agirseven, Deniz; Turk, Koray
2016-08-01
In this study, the initial value problem for telegraph equations with delay in a Hilbert space is considered. Theorem on stability estimates for the solution of this problem is established. As a test problem, one-dimensional delay telegraph equation with Dirichlet boundary conditions is considered. Numerical solutions of this problem are obtained by first and second order of accuracy difference schemes.
Satellite time series analysis using Empirical Mode Decomposition
NASA Astrophysics Data System (ADS)
Pannimpullath, R. Renosh; Doolaeghe, Diane; Loisel, Hubert; Vantrepotte, Vincent; Schmitt, Francois G.
2016-04-01
Geophysical fields possess large fluctuations over many spatial and temporal scales. Satellite successive images provide interesting sampling of this spatio-temporal multiscale variability. Here we propose to consider such variability by performing satellite time series analysis, pixel by pixel, using Empirical Mode Decomposition (EMD). EMD is a time series analysis technique able to decompose an original time series into a sum of modes, each one having a different mean frequency. It can be used to smooth signals, to extract trends. It is built in a data-adaptative way, and is able to extract information from nonlinear signals. Here we use MERIS Suspended Particulate Matter (SPM) data, on a weekly basis, during 10 years. There are 458 successive time steps. We have selected 5 different regions of coastal waters for the present study. They are Vietnam coastal waters, Brahmaputra region, St. Lawrence, English Channel and McKenzie. These regions have high SPM concentrations due to large scale river run off. Trend and Hurst exponents are derived for each pixel in each region. The energy also extracted using Hilberts Spectral Analysis (HSA) along with EMD method. Normalised energy computed for each mode for each region with the total energy. The total energy computed using all the modes are extracted using EMD method.
Time-Delayed Subsidies: Interspecies Population Effects in Salmon
Nelson, Michelle C.; Reynolds, John D.
2014-01-01
Cross-boundary nutrient inputs can enhance and sustain populations of organisms in nutrient-poor recipient ecosystems. For example, Pacific salmon (Oncorhynchus spp.) can deliver large amounts of marine-derived nutrients to freshwater ecosystems through their eggs, excretion, or carcasses. This has led to the question of whether nutrients from one generation of salmon can benefit juvenile salmon from subsequent generations. In a study of 12 streams on the central coast of British Columbia, we found that the abundance of juvenile coho salmon was most closely correlated with the abundance of adult pink salmon from previous years. There was a secondary role for adult chum salmon and watershed size, followed by other physical characteristics of streams. Most of the coho sampled emerged in the spring, and had little to no direct contact with spawning salmon nutrients at the time of sampling in the summer and fall. A combination of techniques suggest that subsidies from spawning salmon can have a strong, positive, time-delayed influence on the productivity of salmon-bearing streams through indirect effects from previous spawning events. This is the first study on the impacts of nutrients from naturally-occurring spawning salmon on juvenile population abundance of other salmon species. PMID:24911974
Minimizing the total completion time in a two-machine flowshop problem with time delays
NASA Astrophysics Data System (ADS)
Kais Msakni, Mohamed; Khallouli, Wael; Al-Salem, Mohamed; Ladhari, Talel
2016-07-01
This article proposes to solve the problem of minimizing the total completion time in a two-machine permutation flowshop environment in which time delays between the machines are considered. For this purpose, an enumeration algorithm based on the branch-and-bound framework is developed, which includes new lower and upper bounds as well as dominance rules. The computational study shows that problems with up to 40 jobs can be solved in a reasonable amount of time.
Estimating the Lyapunov spectrum of time delay feedback systems from scalar time series
NASA Astrophysics Data System (ADS)
Hegger, Rainer
1999-08-01
On the basis of a recently developed method for modeling time delay systems, we propose a procedure to estimate the spectrum of Lyapunov exponents from a scalar time series. It turns out that the spectrum is approximated very well and allows for good estimates of the Lyapunov dimension even if the sampling rate of the time series is so low that the infinite dimensional tangent space is spanned quite sparsely.
Estimating the Lyapunov spectrum of time delay feedback systems from scalar time series.
Hegger, R
1999-08-01
On the basis of a recently developed method for modeling time delay systems, we propose a procedure to estimate the spectrum of Lyapunov exponents from a scalar time series. It turns out that the spectrum is approximated very well and allows for good estimates of the Lyapunov dimension even if the sampling rate of the time series is so low that the infinite dimensional tangent space is spanned quite sparsely. PMID:11969918
Empirical estimation of the arrival time of ICME Shocks
NASA Astrophysics Data System (ADS)
Shaltout, Mosalam
Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.
Time delay identifiability and estimation for the delayed linear system with incomplete measurement
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxu; Xu, Jian
2016-01-01
When the excitation and the response of a multiple degree-of-freedom (dof) active system is incompletely measurable, the identifiability of delay parameter turns into vague. It instantly brings confidence problems on health monitoring and fault diagnosing for the control loop. To fix this problem, this paper inspects the difference between the system's frequency responses before and after control, and thereby gives practical criteria on parameter identifiability. It shows that when the active control only connects points within measurable ones, the delay parameters are all identifiable. In other words, if someone wants to identify all of the delay parameters in the control loop, only the frequency responses that are relative with the control connected points need to be measured. Based on this conclusion, a parameter identification algorithm based on Newton-Raphson method is proposed. Numerical simulation results show that this algorithm not only gives accurate parameters but also possesses a good quality of noise resistance.
Discriminability of Prediction Artifacts in a Time Delayed Virtual Environment
NASA Technical Reports Server (NTRS)
Adelstein, Bernard D.; Jung, Jae Y.; Ellis, Stephen R.
2001-01-01
Overall latency remains an impediment to perceived image stability and consequently to human performance in virtual environment (VE) systems. Predictive compensators have been proposed as a means to mitigate these shortcomings, but they introduce rendering errors because of induced motion overshoot and heightened noise. Discriminability of these compensator artifacts was investigated by a protocol in which head tracked image stability for 35 ms baseline VE system latency was compared against artificially added (16.7 to 100 ms) latency compensated by a previously studied Kalman Filter (K-F) predictor. A control study in which uncompensated 16.7 to 100 ms latencies were compared against the baseline was also performed. Results from 10 subjects in the main study and 8 in the control group indicate that predictive compensation artifacts are less discernible than the disruptions of uncompensated time delay for the shorter but not the longer added latencies. We propose that noise magnification and overshoot are contributory cues to the presence of predictive compensation.
The delay time distribution of massive double compact star mergers
NASA Astrophysics Data System (ADS)
Mennekens, N.; Vanbeveren, D.
2016-05-01
To investigate the temporal evolution of binary populations, in general, and double compact-star binaries and mergers, in particular, within a galactic evolution context, a very straightforward method is obviously to implement a detailed binary evolutionary model in a galactic chemical evolution code. To our knowledge, the Brussels galactic chemical evolution code is the only one that fully and consistently accounts for the important effects of interacting binaries on the predictions of chemical evolution. With a galactic code that does not explicitly include binaries, the temporal evolution of the population of double compact star binaries and mergers can be estimated with reasonable accuracy if the delay time distribution (DTD) for these mergers is available. The DTD for supernovae type Ia has been studied extensively in the past decade. In the present paper we present the DTD for merging double neutron-star binaries and mixed systems consisting of a neutron star and a black hole. The latter mergers are very promising sites for producing r-process elements, and the DTDs can be used to study the galactic evolution of these elements with a code that does not explicitly account for binaries.