Science.gov

Sample records for emulsion behavior surfactant

  1. CHARACTERIZATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND OIL RECOVERY FOR NOVEL ALCOHOL ETHOXYCARBOXYLATE SURFACTANTS

    SciTech Connect

    LEBONE MOETI; RAMANATHAN SAMPATH

    1998-11-01

    This semi-annual technical progress report describes work performed at Clark Atlanta University under DOE Grant No. DE-FG26-97FT97278 during the period April 01, 1998 to October 01, 1998 which covers the second six months of the project. Presently work is in progress at the EOR Laboratory, Clark Atlanta University (CAU), to characterize phase and emulsion behavior for a novel, hybrid (ionic/non-ionic), alcohol ethoxycarboxylate surfactant (NEODOX 23-4 from Shell Chemical Company). During this reporting period, salinity scans were completed for 0, 5, 10, 20, 50, 100, 250, 500, 1000, 2000, 3000, 4000, 5000, and 6000 mM salt concentrations at 20, 25, and 30 °C to identify optimal salinity intervals in which all three phases coexist for this surfactant. Temperature scans were also performed at 20 mM salt concentration for various surfactant concentrations ranging from 0 to 60 weight percent at temperatures ranging from 5 to 50 °C to identify optimal surfactant concentration and temperature intervals in which all three phases coexist. This resulted in an "alpha" curve with an interval of temperature in which all three phases coexisted. Presently, temperature scans are being repeated at 100, 250, 500, 1000, and 5000 mM salt concentrations to see whether increase in salt concentration has any effect on the temperature interval. This will provide us better understanding and experimental control of the many variables involved in this research in the future. Following completion of the temperature scans, phase studies will be conducted at CAU, and coreflooding experiments at the facility of our industrial partner, Surtek, Golden, CO.

  2. CHARACTERIZATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND OIL RECOVERY FOR NOVEL ALCOHOL ETHOXYCARBOXYLATE SURFACTANTS

    SciTech Connect

    Lebone T. Moeti; Ramanathan Sampath

    2001-09-28

    This final technical report describes work performed under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to August 31, 2001 which covers the total performance period of the project. During this period, detailed information on optimal salinity, temperature, emulsion morphologies, effectiveness for surfactant retention and oil recovery was obtained for an Alcohol Ethoxycarboxylate (AEC) surfactant to evaluate its performance in flooding processes. Tests were conducted on several AEC surfactants and NEODOX (23-4) was identified as the most suitable hybrid surfactant that yielded the best proportion in volume for top, middle, and bottom phases when mixed with oil and water. Following the selection of this surfactant, temperature and salinity scans were performed to identify the optimal salinity and temperature, and the temperature and salinity intervals in which all three phases coexisted. NEODOX 23-4 formed three phases between 4 and 52.5 C. It formed an aqueous rich microemulsion phase at high temperatures and an oleic rich microemulsion phase at low temperatures--a characteristic of the ionic part of the surfactant. The morphology measurement system was set-up successfully at CAU. The best oil/water/surfactant system defined by the above phase work was then studied for emulsion morphologies. Electrical conductivities were measured for middle and bottom phases of the NEODOX 23-4/dodecane/10mM water system and by mixing measured volumes of the middle phase into a fixed volume of the bottom phase and vice versa at room temperature. Electrical conductivity of the mixture decreased as the fraction of volume of the middle phase was increased and vice versa. Also inversion phenomena was observed. These experiments were then repeated for bottom/middle (B/M) and middle/bottom (M/B) conjugate pair phases at 10, 15, 25, 30, 35, 40, and 45 C. Electrical conductivity measurements were then compared with the predictions of the conductivity model developed in this project. The M/B and B/M morphologies and their inversion hysteresis lines conformed to the previously postulated dispersion morphology diagram; that is, within experimental uncertainties, the two emulsion inversion lines in phase volume-temperature space met at a critical point that coincided with the upper critical end point for the phases. Coreflooding measurements were performed by our industrial partner in this project, Surtek, Golden, CO which showed poor hydrocarbon recovery (38.1%) for NEODOX 23-4. It was also found that NEODOX 23-4 surfactant adsorbed too much to the rock (97.1% surfactant loss to the core), a characteristic of the non-ionic part of the surfactant.

  3. Characterization of Phase and Emulsion Behavior, Surfactant Retention, and Oil Recovery for Novel Alcohol Ethoxycarboxylate Surfactant

    SciTech Connect

    Moeti, Lebone T.; Sampath, Ramanathan

    2002-03-13

    Electrical conductivity measurements for middle, bottom, and top phases, as well as bottom/middle, and middle/bottom conjugate pair phases of the NEODOX 23-4/dodecane/10mM water system were continued from the previous reporting period. Electrical conductivity of the mixture decreased as the fraction of volume of the middle phase was increased and vice versa. Also inversion phenomena was observed. Following this, more emulsion studies at various temperatures were progresses. A theoretical model to predict the conductivity measurements using Maxwell equations was developed and sensitivity analyses to test the performance of the model was completed. Surtek, Golden, CO, our industrial partner in this project, investigated the suitability of the surfactant for enhanced oil recovery employing coreflooding techniques and observed lower surfactant and hydrocarbon recovery for NEODOX 23-4.

  4. Characterization of Phase and Emulsion Behavior, Surfactant Retention, and Oil Recovery for Novel Alcohol Ethoxycarboxylate Surfactants

    SciTech Connect

    Lebone T. Moeti; Ramanathan Sampath.

    1998-05-01

    This semi-annual technical progress report describes work performed at Clark Atlanta University under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to April 01, 1998 which covers the first six months of the project. During this reporting period, laboratory space to set up the surfactant characterization measurement system in the Research Science Center was made available. A Ph.D. student in Chemistry was identified and is supported as a Graduate Research Assistant in this project. Her contribution towards this project will form her Ph.D. thesis. The test matrix to perform salinity and temperature scans was established. Supply requests to obtain refined hydrocarbon, surfactant, and crude were processed and supplies obtained. A temperature bath with a control unit to perform temperature scans was obtained on loan from Federal Energy Technology Center, Morgantown, WV. The setting up of the temperature control unit, and associated chiller with water circulation lines is in progress. Tests were conducted on several hybrid surfactants to identify the best surfactants for future experimental work that yield almost equal volumes of top, middle, and bottom phases when mixed with oil and water. The student reviewed the current literature in the subject area, and modeling efforts that were established in previous studies to predict electrical conductivities and inversion phenomena. These activities resulted in one published conference paper, and one student poster paper during this reporting period.

  5. Characterization of Surfactant Free Emulsions

    NASA Astrophysics Data System (ADS)

    Brar, Ramaninder; Urquidi, Jacob

    2012-10-01

    There is a pharmacological interest in providing a delivery mechanism for highly hydrophobic drugs through the bloodstream. A typical methodology would be to introduce a surfactant which would serve to bind the hydrophobic molecule to the aqueous environment. Because of the need for the surfactant to be non-toxic this avenue proves problematic and many highly hydrophobic drugs which could prove effective are not useable. We have demonstrated the formation of a stable emulsion of Silicone Oil in degassed water alone. The emulsion droplets were on the order of 50 nm in diameter and stable over a period of 8 hours. Previous studies have shown that the surfactant free emulsions do not lose their stability when the previously removed gasses are reintroduced. The formation of a stable emulsion in the complete absence of a surfactant could provide an alternative approach to a physiologically safe drug carrier. The present work involves the formation of stabilized surfactant free emulsions in a homologous series from pentane through decane. The emulsion's structure and thermodynamic stability were then characterized using small angle x-ray scattering.

  6. Geranyl acetate emulsions: surfactant association structures and emulsion inversion.

    PubMed

    Friberg, Stig E; Al-Bawab, Abeer; Bozeya, Ayat; Aikens, Patricia A

    2009-08-01

    Three emulsions of geranyl acetate (GA)-in-water (W) with identical GA/W ratios and varying surfactant (S), Laureth 4, a commercial C(12)EO (4) compound, fractions were investigated for nature and stability. The emulsions with up to 6% surfactant were W/O, as expected with respect to the solubility of the surfactant in the oil. At 10% surfactant, the aqueous phase became the continuous one and the apparent stability of the emulsion was significantly enhanced. Analysis of the phase diagram and experimental evidence showed the high water content emulsion to be a liquid crystal-in-water emulsion; a kind that did not change even at extreme O/W and LC/W ratios. PMID:19409570

  7. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    PubMed

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials. PMID:25463186

  8. Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures

    SciTech Connect

    Ramanathan Sampath

    2004-09-30

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period April 01, 2004 to September 30, 2004 which covers the fourth six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number is used as the model condensate. During this reporting period, work was under way and the electrical conductivity experimental system was set up at the Atlanta University Center. Following the set-up of the emulsion measurement system, the electronic instruments and data acquisition modules involved were tested for proper operation of the system. Then, the conductivity output was normalized with that obtained for 10mM NaCl water. Radial coreflooding experiments with ethanol injection prior to and after water injection were completed to assess the effectiveness of the surfactant flooding in the recovery of condensate by our industrial partner, Surtek, CO, in this reporting period. In Run 1, 10 mM NaCl without ethanol injection recovered 31.5% of the initial ethyl benzene saturation. Injection of ethanol following 10 mM NaCl produced a tertiary ethyl benzene bank with maximum ethyl benzene cuts of 32%. In Run 2, 50 vol% of pure (100%) ethanol was injected and flowed through the Berea sandstone after Ethyl Benzene Saturation. 69% of the initial ethyl benzene was recovered. Results of the radial corefloods are very encouraging. Emulsion conductivity measurements for conjugate pair phases are in progress at Morehouse.

  9. Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures

    SciTech Connect

    Ramanathan Sampath

    2004-03-31

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2003 to March 31, 2004 which covers the third six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number is used as the model condensate. During this reporting period, temperature scans were performed mixing equal volumes of ethylbenzene and 10mM NaCl water with various concentrations of ethanol ranging from 2 to 70 vol%. For the range of temperatures tested (2 to 70 C), results indicate that temperature is invariant and produced a single phase for ethanol concentrations greater than 60 vol%. For ethanol concentrations less than 60 vol%, only two phases were obtained with aqueous rich bottom phase more in volume than that of the ethylbenzene rich top phase. Linear coreflooding experiments were completed by our industrial partner in this project, Surtek, CO, to measure the condensate recovery in flooding processes. It was found about 30% ethylbenzene recovery was obtained by the waterflooding, however, 2wt% ethanol flooding did not produce incremental recovery of the ethylbenzene. Radial coreflooding with ethanol injection prior to water injection is in progress to assess the effectiveness of the surfactant flooding in the recovery of condensate.

  10. INVESTIGATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND CONDENSATE RECOVERY FOR CONDENSATE/WATER/ETHANOL MIXTURES

    SciTech Connect

    Ramanathan Sampath

    2003-10-01

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period April 01, 2003 to September 30, 2003 which covers the second six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. During this reporting period, salinity scans were completed for 0, 5, 10, 20, 50, 100, 250, 500, and 1000 mM salt concentrations at room temperature to identify optimal salinity intervals in which all three phases coexist for this system. Temperature scans are in progress at Morehouse College to identify the optimal temperature, and the temperature intervals in which all three phases coexist for this system. Coreflooding experiments are being conducted by our industrial partner in this project, Surtek, CO, to measure the effectiveness for surfactant retention and condensate recovery in flooding processes. Review of the current literature in the subject area, and modeling efforts that were established in our previous studies to predict electrical conductivities and inversion phenomena was continued from the previous reporting period. Based on the review a computer model to predict electrical conductivities of the ethylbenzene (that has the equivalent carbon number of the condensate)/water/ethanol system is being developed.

  11. Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures

    SciTech Connect

    Ramanathan Sampath

    2003-03-31

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2002 to April 01, 2003 which covers the first six months of the project. Presently work is in progress to characterize phase and emulsion behavior for condensate/water/ethanol system. Temperature and salinity scans are planned to identify the optimal salinity and temperature, and the temperature and salinity intervals in which all three phases coexist for this system. Test matrix to perform salinity and temperature scans has been established. Supply requests to obtain hydrocarbons, surfactant, etc., were processed and supplies obtained. Current literature in the subject area, and modeling efforts that were established in our previous studies to predict electrical conductivities and inversion phenomena were reviewed. Based on the review a computer model to predict electrical conductivities of the ethylbenzene (that has the equivalent carbon number of the condensate)/water/ethanol system is being developed. These activities resulted in one published conference abstract during this reporting period.

  12. INVESTIGATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND CONDENSATE RECOVERY FOR CONDENSATE/WATER/ETHANOL MIXTURES

    SciTech Connect

    Ramanathan Sampath

    2005-12-01

    This final technical report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2002 to September 30, 2005, which covers the total performance period of the project. During this period, work was conducted to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number was used as the model condensate. Salinity scans were performed for 0, 5, 10, 20, 50, 100, 250, 500, and 1000 mM salt concentrations at room temperature to identify the optimal salinity and salinity intervals in which all phases coexisted. It was found that only two phases formed, and salinity has no significant effect in the volumes of the phases formed. Experiments were repeated at 30 C and observed salinity has no effect at higher temperatures as well. Following the salinity experiments, measurements were made with 10mM NaCl water for surfactant concentrations from 2 to 70 volume percent at room temperature. It was found that only two phases were formed upto 60 vol% concentration of the surfactant. Above 60 vol% surfactant, the mixture produced only a single phase. Experiments were repeated from 2 to 70 C and observed that temperature has no significant effect on the number of phases formed. At the temperatures and surfactant concentration tested, volume fraction of the aqueous bottom phase was found to be larger than that of the top phase. Electrical conductivity measurements were then conducted for bottom/top, and top/bottom conjugate pair phases of the ethylbenzene/water/ethanol system formed by mixing ethanol at various volume percentages including 2,10,33,and 56% while keeping the volumes of ethylbenzene and water the same in the mixture. Electrical conductivity of the bottom phase decreased as ethanol volume fraction in the mixture increased. Conductivity of the top phase was found small and remained almost the same for variations in ethanol volume fraction in the mixture. Also inversion phenomena was observed. Prediction of the conductivity data obtained was then conducted employing a theoretical model developed in this project based on Maxwell relations. Results of the comparisons for 2, 10, 33, and 56% ethanol volume in the mixture are presented here. A good agreement was obtained between the predicted emulsion conductivities and the measured values. Work was also conducted at Surtek, Golden, CO, our industrial partner in this project, to measure the effectiveness for condensate recovery employing coreflooding techniques. In Run 1 of the radial coreflooding experiments conducted, 10 mM NaCl without ethanol injection recovered 31.5% of the initial ethyl benzene saturation. Injection of ethanol following 10 mM NaCl produced a tertiary ethyl benzene bank with maximum ethyl benzene cuts of 32%. In Run 2, 50 vol% of pure (100%) ethanol was injected and flowed through the Berea sandstone after Ethyl Benzene Saturation. 69% of the initial ethyl benzene was recovered. While 50 vol% of ethanol injection does not make economic sense when injecting a large fraction of a pore volume, injection of sufficient volume to remove water and condensate from around the near well bore area of a gas well could be economic.

  13. Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction

    NASA Technical Reports Server (NTRS)

    Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.

    2001-01-01

    Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.

  14. Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures

    SciTech Connect

    Ramanathan Sampath

    2005-09-30

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period April 01, 2005 to September 30, 2005 which covers the sixth six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number is used as the model condensate. In the last reporting period, electrical conductivity measurements for bottom/top, and top/bottom conjugate pair phases of the ethylbenzene/water/ethanol system were performed for various ethanol volume percentage in the mixture: 2,10,20,33,43,50, and 56. During this reporting period, prediction of electrical conductivity data obtained in the past was conducted employing a theoretical model already developed in this project. Results of the comparisons for 2, and 10% ethanol volume in the mixture are presented here. A good agreement was obtained between the predicted emulsion conductivities and the measured values. To date about 99% of the proposed work has been completed. Conductivity prediction for 56% ethanol volume in the mixture is in progress. Following this prediction, a final report will be developed describing the research activities conducted through the entire project period including results and conclusions.

  15. Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures

    SciTech Connect

    Ramanathan Sampath

    2005-03-31

    This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2004 to March 31, 2005 which covers the fifth six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number is used as the model condensate. During this reporting period, electrical conductivity measurements for bottom, and top phases, as well as bottom/top, and top/bottom conjugate pair phases of the ethylbenzene/water/ethanol system were performed for various ethanol volume percentage of the mixtures starting from 2% to 60%. Preliminary findings are that electrical conductivity of the bottom phase decreased as ethanol volume fraction of the mixture increased. Conductivity of the top phase was small and remained almost the same for variations in ethanol volume fraction of the mixture. Conductivity of the emulsion of the conjugate pair phases decreased as the fraction of volume of the top phase was increased and vice versa. Also inversion phenomena was observed. Detailed analyses are in progress including the prediction of conductivity data using the theoretical model already developed in this project.

  16. Crude oil emulsions containing a compatible fluorochemical surfactant

    SciTech Connect

    Karydas, A.; Rodgers, J.

    1991-02-19

    This patent describes a crude oil in water emulsion, which is stable to both breakdown and phase inversion up to at least about 50{degrees} C., the emulsion containing an effective, compatible, emulsion stabilizing amount of a fluorochemical surfactant of the formula (R{sub {ital f}}){sub {ital n}}A{sub {ital m}}Q wherein R{sub {ital f}} is an inert, stable, oleophobic and hydrophobic fluoroaliphatic group having up to about 20 carbon atoms; n is an integer from 1 to 3; A is a direct bond or an organic linking group and is covalently bonded to both R{sub {ital f}} and Q; Q is an anionic, nonionic or amphoteric group; and m is an integer from 1 to 3; wherein the amount of weight of the fluorochemical surfactant present in the emulsion being between about 0.001 and 1% by weight of the emulsion, in the presence of absence of up to about 2% by weight of a crude oil emulsion promoting hydrocarbon surfactant, with the proviso that at least about 0.005% by weight total fluorochemical and hydrocarbon surfactant is present, based upon the weight of emulsion, and wherein the emulsion contains bout 15 to about 90 percent by weight water, based upon the weight of emulsion, such that the viscosity of the emulsion is less than about 50% of the viscosity of the crude oil, and wherein the emulsion spontaneously breaks down into an aqueous and crude oil phase at a temperature between about 55{degrees} and 75{degrees} C.

  17. Structure of high internal phase aqueous-in-oil emulsions and related inverse micelle solutions. 4. Surfactant mixtures.

    PubMed

    Reynolds, Philip A; Gilbert, Elliot P; Henderson, Mark J; White, John W

    2009-09-10

    The effects of combinations of surfactants on the structure and stability of high internal phase water-in-hexadecane and saturated ammonium nitrate-in-hexadecane oil-based emulsions and oil-based inverse micellar solutions are reported. The combinations were 750, 1,200, and 1,700 molecular weight monodisperse and 450 and 1,000 molecular weight polydisperse polyisobutylene acid amides, and sorbitan monooleate. The samples made from mixtures have qualitatively similar nanostructures to emulsions made from single surfactants. Again, for the emulsions, micrometer-scale aqueous droplets are dispersed in a continuous oil phase, which contains inverse spherical micelles composed of surfactant, hexadecane, and water. In quantitative terms, lower average surfactant molecular weight, lower ammonium nitrate content, and lower surfactant content increased the swelling of micelles, their water content, and the tendency of the emulsion to be unstable and form a sponge phase. This instability also allows micelle plasticity such that their geometry and content in mixed surfactant systems are not simply predictable by interpolation from single surfactant systems. An example was found of a mixed micelle 3 times larger than either single component micelle. The observed behavior suggests that mixing surfactant molecules of very different molecular weights destabilizes the emulsions, while mixing surfactants close in molecular weight has the opposite effect. The synergistic effects of surfactant molecular weight polydispersity and binary mixing are most marked for 1:1 molecular mixtures of surfactant. PMID:19681585

  18. Principles of emulsion stabilization with special reference to polymeric surfactants.

    PubMed

    Tadros, Tharwat

    2006-01-01

    This overview summarizes the basic principles of emulsion stabilization with particular reference to polymeric surfactants. The main breakdown processes in emulsions are briefly described. A section is devoted to the structure of polymeric surfactants and their conformation at the interface. Particular attention is given to two polymeric surfactants that are suitable for oil-in-water (O/W) and water-in-oil (W/O) emulsions. For O/W emulsions, a hydrophobically modified inulin (HMI), obtained by grafting several alkyl groups on the backbone of the inulin (polyfructose) chain, is the most suitable. For W/O emulsions, an A-B-A block copolymer of polydroxystearic acid (PHS), the A chains, and polyethylene oxide (PEO), the B chain, is the most suitable. The conformation of both polymeric surfactants at the O/W and W/O interfaces is described. A section is devoted to the interaction between emulsion droplets containing adsorbed polymer surfactant molecules. This interaction is referred to as steric stabilization, and it is a combination of two main effects, namely, unfavorable mixing of the A chains, referred to as the mixing interaction, Gmix, and loss of configurational entropy on significant overlap of the stabilizing chains, referred to as elastic interaction, Gel. The criteria for effective steric stabilization are summarized. O/W emulsions based on HMI are described, and their stability in water and in aqueous electrolyte solutions is investigated using optical microscopy. Very stable emulsions can be produced both at room temperature and at 50 degrees C. The reason for this high stability is described in terms of the multipoint anchoring of the polymeric surfactant (by several alkyl groups), the strong hydration of the inulin (polyfructose) chains, and the high concentration of inulin in the adsorbed layer. W/O emulsions using PHS-PEO-PHS block copolymer can be prepared at a high volume fraction of water, varphi, and these emulsions remain fluid up to high varphi values (> 0.6). These emulsions also remain stable for several months at room temperature and at 50 degrees C. The last two sections are concerned with the problems of creaming or sedimentation and phase inversion. Creaming or sedimentation can be prevented by the use of "thickeners" in the continuous phase. These molecules produce non-Newtonian systems that will have a high residual or zero shear viscosity. The latter, which may exceed 1000 Pas, can also be prevented by control of the bulk (or elastic) modulus of the system. Phase inversion in O/W emulsions can also be prevented using HMI, since this polymeric surfactant is not soluble in the oil phase. As long as coalescence and Ostwald ripening are prevented, the emulsions can remain stable for very long times both at room temperature and at 50 degrees C. PMID:16688378

  19. Stabilization of emulsions using polymeric surfactants based on inulin.

    PubMed

    Tadros, Th F; Vandamme, A; Levecke, B; Booten, K; Stevens, C V

    2004-05-20

    The use of polymeric surfactants for stabilization of emulsions is described. A brief account of general classification and description of polymeric surfactants is given. This is followed by a description of the adsorption and conformation of polymeric surfactants at interfaces. The theoretical approaches for studying polymer adsorption are briefly described. This is followed by a section on the experimental techniques that can be applied to study adsorption and conformation of polymers at the interface. Examples are given to illustrate the experimental techniques. A section is devoted to the interaction between droplets containing adsorbed polymer layers (steric stabilization). The last section gives results on oil-in-water (O/W) emulsions stabilised with a novel graft copolymeric surfactant based on inulin that has been modified by introducing alkyl groups. Two oils were used, namely Isopar M (isoparaffinic oil) and cyclomethicone. Emulsions prepared using the inulin-based surfactant have large droplets, but this could be significantly reduced by addition of a cosurfactant in the oil phase, namely Span 20. The stability of the emulsions was investigated in water, in 0.5, 1.0, 1.5 and 2 mol dm(-3) NaCl and in 0.5, 1.0, 1.5 and 2 mol dm(-3) MgSO(4). These emulsions were stable for more than 1 year up to 50 degrees C in NaCl concentrations up to 2 mol dm(-3) and 1 mol dm(-3) MgSO(4). This high stability in high electrolyte concentrations could be attributed to the nature of the hydrophilic (stabilizing) polyfructose chain. This was confirmed using cloud point measurements, which showed high hydration of the polyfructose chain in such high electrolyte concentrations. This ensured the long-term physical stability resulting from the strong steric repulsion between the polyfructose chains. PMID:15072943

  20. Optimum phase-behavior formulation of surfactant/oil/water systems for the determination of chromium in heavy crude oil and in bitumen-in-water emulsion.

    PubMed

    Burguera, Jos L; Avila-Gmez, Rita M; Burguera, Marcela; Antn de Salager, Raquel; Salager, Jean-Louis; Bracho, Carlos L; Burguera-Pascu, Margarita; Burguera-Pascu, Constantin; Brunetto, Rosario; Gallignani, Mximo; Petit de Pea, Yaneita

    2003-11-01

    An "oil in water" formulation was optimized to determine chromium in heavy crude oil (HCO) and bitumen-in-water emulsion (Orimulsion-400(R)) samples by transversally heated electrothermal atomic absorption spectrometry (TH-ET AAS) using Zeeman effect background correction. The optimum proportion of the oil-water mixture ratio was 7:3 v/v (70 ml of oil as the internal phase) with a non-ionic surfactant concentration (Intan-100) in the emulsion of 0.2% w/w. Chromium was determined in different crude oil samples after dilution of the emulsions 1:9 v/v with a 0.2% w/w solution of surfactant in order to further reduce the viscosity from 100 to 1.6 cP and at the same time to bring the concentration of chromium within the working range of the ET AAS technique. The calibration graph was linear from 1.7 to 100 mug Cr l(-1). The sensitivity was of 0.0069 s l mug(-1), the characteristic mass (m(o)) was of 5.7 pg per 0.0044 s and the detection limit (3sigma) was of 0.52 mug l(-1). The relative standard deviation of the method, evaluated by replicate analyses of three crude oil samples varied in all cases between 1.5 and 2.6%. Recovery studies were performed on four Venezuelan crude oils, and the average chromium recovery values varied between 95.9-104.8, 90.6-107.6, 95.6-104.0 and 98.8-103.9% for the Cerro Negro, Crudo Hamaca and Boscn crude oils and for the Orimulsin(R)-400, respectively. The results obtained in this work for the Cerro Negro, Crudo Hamaca and Boscn crude oils and for the Orimulsin(R)-400 following the proposed procedure were of 0.448+/-0.008, 0.338+/-0.004 0.524+/-0.021 and 0.174+/-0.008 mg Cr l(-1), respectively, which were in good agreement with the values obtained by a tedious recommended standard procedure (respectively: 0.470+/-0.05, 0.335+/-0.080, 0.570+/-0.021 and 0.173+/-0.009 mg Cr l(-1)). PMID:18969194

  1. The jamming elasticity of emulsions stabilized by ionic surfactants.

    PubMed

    Scheffold, Frank; Wilking, James N; Haberko, Jakub; Cardinaux, Frdric; Mason, Thomas G

    2014-07-28

    Oil-in-water emulsions composed of colloidal-scale droplets are often stabilized using ionic surfactants that provide a repulsive interaction between neighboring droplet interfaces, thereby inhibiting coalescence. If the droplet volume fraction is raised rapidly by applying an osmotic pressure, the droplets remain disordered, undergo an ergodic-nonergodic transition, and jam. If the applied osmotic pressure approaches the Laplace pressure of the droplets, then the jammed droplets also deform. Because solid friction and entanglements cannot play a role, as they might with solid particulate or microgel dispersions, the shear mechanical response of monodisperse emulsions can provide critical insight into the interplay of entropic, electrostatic, and interfacial forces. Here, we introduce a model that can be used to predict the plateau storage modulus and yield stress of a uniform charge-stabilized emulsion accurately if the droplet radius, interfacial tension, surface potential, Debye screening length, and droplet volume fraction are known. PMID:24913542

  2. Photoinduced demulsification of emulsions using a photoresponsive gemini surfactant.

    PubMed

    Takahashi, Yutaka; Fukuyasu, Kengo; Horiuchi, Tatsuya; Kondo, Yukishige; Stroeve, Pieter

    2014-01-14

    This Article reports on the influence of light irradiation on the stability of emulsions prepared using a photoresponsive gemini surfactant (C7-azo-C7) having an azobenzene skeleton as a spacer. When mixtures of trans C7-azo-C7 aqueous solution and n-octane are homogenized, stable emulsions are obtained in a specific region of weight fraction and surfactant concentration. Fluorescence microscopy observations using a small amount of fluorescent probes show that the stable emulsions are oil-in-water (O/W)-type. UV irradiation of stable O/W emulsions promotes the cis isomerization of trans C7-azo-C7 and leads to the coalescence of the oil (octane) droplets in the emulsions, that is, demulsification. While the equilibrated interfacial tension (IFT) between aqueous trans C7-azo-C7 solution and octane is almost the same as that between aqueous cis C7-azo-C7 and octane, the occupied area per molecule for C7-azo-C7 at octane/water interface decreases with the cis photoisomerization of trans isomer. Dynamic IFT measurement shows that UV irradiation to the interface between aqueous trans C7-azo-C7 solution and octane brings about an increase in the interfacial tension, indicating that the Gibbs free energy at the interface increases. From these results, the cis isomerization of trans C7-azo-C7 molecules at the O/W interface due to UV irradiation leads to direct contact between the water and octane phases, because of the reduction of molecular area at the interface, and subsequently makes the emulsions demulsified. PMID:24354334

  3. O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration.

    PubMed

    Pichot, R; Spyropoulos, F; Norton, I T

    2010-12-01

    The stability against coalescence of O/W emulsions in the presence of both surfactants and colloidal particles was investigated. In particular the effect of the surfactant type and concentration in these emulsifier mixtures on the O/W emulsions' stability was studied. Two types of surfactants were selected; those that have the ability to stabilise O/W emulsions on their own (O/W surfactants) and those that cannot (W/O surfactants). Tween 60 and Sodium Caseinate were selected as the O/W surfactants and lecithin as the W/O surfactant. Oil-in-water emulsions prepared with both particles and any of the three surfactants were stable against coalescence but, depending on the type of surfactant, the behaviour of the systems was found to depend on surfactant concentration. The droplet sizes of emulsions stabilised by mixed emulsifier systems containing low concentrations of O/W surfactants (Tween 60 or Sodium Caseinate) were smaller than those solely stabilised by either the surfactant or particles alone. At intermediate O/W surfactants concentrations, the droplet sizes of the emulsions increased. Further increases in the O/W surfactants' concentration, resulted in the complete removal of particles from the interface with the system now behaving as a surfactant-only stabilised emulsion. The behaviour of emulsions stabilised by emulsifier mixtures containing W/O surfactants was not dependent on the concentration of surfactant: no removal of particles was observed. PMID:20817195

  4. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.

    PubMed

    Worthen, Andrew J; Foster, Lynn M; Dong, Jiannan; Bollinger, Jonathan A; Peterman, Adam H; Pastora, Lucinda E; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-02-01

    Oil-in-water emulsions were formed and stabilized at low amphiphile concentrations by combining hydrophilic nanoparticles (NPs) (i.e., bare colloidal silica) with a weakly interacting zwitterionic surfactant, caprylamidopropyl betaine, to generate a high hydrophilic-lipophilic balance. The weak interaction of the NPs with surfactant was quantified with contact angle measurements. Emulsions were characterized by static light scattering to determine the droplet size distributions, optical photography to quantify phase separation due to creaming, and both optical and electron microscopy to determine emulsion microstructure. The NPs and surfactant acted synergistically to produce finer emulsions with a greater stability to coalescence relative to the behavior with either NPs or surfactant alone. As a consequence of the weak adsorption of the highly hydrophilic surfactant on the anionic NPs along with the high critical micelle concentration, an unusually large surfactant concentration was available to adsorb at the oil-water interface and lower the interfacial tension. The synergy for emulsion formation and stabilization for the two amphiphiles was even greater in the case of a high-salinity synthetic seawater aqueous phase. Here, higher NP adsorption at the oil-water interface was caused by electrostatic screening of interactions between (1) NPs and the anionic oil-water interface and (2) between the NPs. This greater adsorption as well as partial flocculation of the NPs provided a more efficient barrier to droplet coalescence. PMID:24409832

  5. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression.

    PubMed

    Hassan, A K

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (252), 40, 50, 60, 70 and 80. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80, in addition to, the true maximum slope is represented by the equation which has the maximum R value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility. PMID:26664063

  6. Effective Surfactants Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic Surfactants by Simple Linear Regression

    PubMed Central

    Hassan, A. K.

    2015-01-01

    In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature–conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility. PMID:26664063

  7. On the behaviour of nanoparticles in oil-in-water emulsions with different surfactants.

    PubMed

    Lacava, Johann; Ouali, Ahmed-Amine; Raillard, Brice; Kraus, Tobias

    2014-03-21

    The distribution of narrowly dispersed gold nanoparticles in hexane-in-water emulsions was studied for different surfactants. Good surfactants such as SDS and Triton X-100 block the oil-water interfaces and confine particles in the droplet. Other surfactants (Tween 85 and Span 20) form synergistic mixtures with the nanoparticles at the interfaces that lower the surface tension more than any component. Supraparticles with fully defined particle distribution form in the droplets only for surfactants that block the interface. Other surfactants promote the formation of fcc agglomerates. Nanoparticles in emulsions behave markedly different from microparticles-their structure formation is governed by free energy minimization, while microparticles are dominated by kinetics. PMID:24652036

  8. Emulsion electrospinning of polycaprolactone: influence of surfactant type towards the scaffold properties.

    PubMed

    Hu, Jue; Prabhakaran, Molamma P; Ding, Xin; Ramakrishna, Seeram

    2015-01-01

    Producing uniform nanofibers in high quality by electrospinning remains a huge challenge, especially using low concentrated polymer solutions. However, emulsion electrospinning assists to produce nanofibers from less concentrated polymer solutions compared to the traditional electrospinning process. The influence of individual surfactants towards the morphology of the emulsion electrospun poly (?-caprolactone)/bovine serum albumin (PCL/BSA) nanofibers were investigated by using (i) non-ionic surfactant sorbitane monooleate (Span80); (ii) anionic sodium dodecyl sulfate (SDS); and (iii) cationic benzyltriethylammonium chloride, and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer Pluronic F108 of different concentrations. The morphology, along with the chemical and mechanical properties of the fibers, was evaluated by field emission scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, water contact angle, and tensile tester. With the addition of surfactants, the electrospinnability of dilute PCL solution was enhanced, with either branched or uniform fibers were obtained. Electrospinning of an emulsion containing 0.4% (w/v) SDS produced the smallest and the most uniform nanofibers (16739nm), which was attributed to the high conductivity of the solution. Analysis revealed that the emulsion electrospun nanofibers containing different surfactants and surfactant concentrations differ in fiber morphology and mechanical properties. Results suggest that surfactants have the ability to modulate the fiber morphology via electrostatic and hydrogen bonding, depending on their chemical structure. PMID:25427625

  9. Active Demulsification of Photoresponsive Emulsions Using Cationic-Anionic Surfactant Mixtures.

    PubMed

    Takahashi, Yutaka; Koizumi, Nanami; Kondo, Yukishige

    2016-01-26

    The influence of ultraviolet (UV) light irradiation on the emulsification properties of mixtures of an anionic surfactant, sodium dodecyl sulfate (SDS), and a photoresponsive cationic surfactant, 2-(4-(4-butylphenyl)diazenylphenoxy)ethyltrimethylammonium bromide (C4AzoTAB), containing an azobenzene group has been investigated. When mixtures of n-octane and aqueous SDS/trans-C4AzoTAB solution are homogenized, stable emulsions are obtained in regions of specific surfactant concentrations and molar ratios of the mixed surfactants. The stable emulsions are stable for over a week and found to be of the oil-in-water (O/W) type. UV light irradiation of the stable O/W emulsions leads to the coalescence of smaller oil droplets into larger ones in the emulsions, i.e., demulsification. As a result, the oil and aqueous surfactant solution phases are fully separated by UV light irradiation for 90 min, even shorter than our previous result (6 h; Langmuir 2014 , 30 , 41 - 47 ). The use of a microreactor shortens the time required for the photoinduced demulsification into 3.5 min. When mixtures of octane and aqueous SDS/cis-C4AzoTAB solution are homogenized, no emulsions are obtained. The interfacial tension (IFT) between octane and aqueous SDS/cis-C4AzoTAB solution is higher than that between octane and aqueous SDS/trans-C4AzoTAB solution, indicating that the IFT of SDS/trans-C4AzoTAB mixtures increases with the cis photoisomerization of the trans isomer. These results suggest that cis isomerization of the SDS/trans-C4AzoTAB mixtures due to UV light irradiation causes Ostwald ripening of the octane droplets in the emulsions, thereby reducing the interfacial area between the octane and water phases as the IFT between octane and the aqueous surfactant solution increases. Subsequently, the octane and aqueous solution phases separate. PMID:26731043

  10. Measurement of the coalescence frequency in surfactant-stabilized concentrated emulsions

    NASA Astrophysics Data System (ADS)

    Schmitt, V.; Leal-Calderon, F.

    2004-08-01

    We produce different oil-in-water concentrated emulsions stabilized by surfactants and we follow their kinetic evolution. We get evidence that the size evolution is first determined by Ostwald ripening and then by coalescence. The crossover between the two regimes occurs at a well-defined droplet diameter that characterizes the surfactant monolayer. We exploit this general type of evolution to measure the characteristic coalescence frequency in the thin liquid films.

  11. Response of surfactant stabilized oil-in-water emulsions to the addition of particles in an aqueous suspension.

    PubMed

    Katepalli, Hari; Bose, Arijit

    2014-11-01

    As a model for understanding how surfactant-stabilized emulsions respond to the addition of interacting and noninteracting particles, we investigated the response of dodecane-in-water emulsions stabilized by SDS (anionic), CTAB (cationic), and Triton X-100 (nonionic) surfactants to the addition of an aqueous suspension of negatively charged fumed silica particles. The stability of the emulsion droplets and the concentration of surfactants/particles at the oil-water interfaces are sensitive to surfactant-particle interactions, mixing conditions, and the particle concentration in the bulk. Addition of the particle suspension to the SDS-stabilized emulsions showed no effect on emulsion stability. Coarsening of emulsion droplets is observed when fumed silica particles were added to emulsions stabilized by Triton X-100. Depending on the concentration of silica particles in the suspension, the addition of fumed silica particles to CTAB-stabilized emulsions resulted in droplet coalescence and phase separation of oil and water or formation of particle-coated droplets. Vigorous (vortex) mixing allows the particles to breach the oil-water interfaces and stabilize emulsions. While we have examined a specific particle suspension and a set of three surfactants, these observations can be generalized for other surfactant-particle mixtures. PMID:25312030

  12. Isothermal titration calorimetric analysis on solubilization of an octane oil-in-water emulsion in surfactant micelles and surfactant-anionic polymer complexes.

    PubMed

    Zhang, Hui; Zeeb, Benjamin; Salminen, Hanna; Weiss, Jochen

    2015-01-15

    Polymers may alter the ability of surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. In this study, isothermal titration calorimetry (ITC) was used to investigate the solubilization thermodynamics of an octane oil-in-water emulsion in anionic sodium dodecylsulphate (SDS), nonionic polyoxyethylene sorbitan monooleate (Tween 80), cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles and respective complexes formed by these micelles and an anionic polymer (carboxymethyl cellulose). Results indicated that the oil solubilization in single ionic micelles was endothermic, while in nonionic micelles or mixed ionic/nonionic micelles it was exothermic. The addition of carboxymethyl cellulose did not influence the solubilization behavior in these micelles, but affected the solubilization capacities of these systems. The solubilization capacity of cationic micelles or mixed cationic/nonionic micelles was enhanced while that of nonionic or anionic micelles was decreased. Based on the phase separation model, a molecular pathway mechanism driven by enthalpy was proposed for octane solubilization in surfactant micelles and surfactant-polymer complexes. PMID:25454419

  13. Covalent incorporation of the surfactant into high internal phase emulsion templated polymeric foams.

    PubMed

    Kova?i?, Sebastijan; Preishuber-Pflgl, Florian; Pahovnik, David; agar, Ema; Slugovc, Christian

    2015-05-01

    High internal phase emulsions of water in cyclooctene stabilised by sorbitan monooleate (Span 80) were cured by ring-opening metathesis polymerisation to release fully open macroporous polymer foams wherein the surfactant was covalently incorporated into the poly(cyclooctene) strands via chain transfer reactions. PMID:25853147

  14. Study on a new surfactant for removal of phenol from wastewater by emulsion liquid membrane.

    PubMed

    Mortaheb, Hamid R; Amini, Mohammad H; Sadeghian, Fateme; Mokhtarani, Babak; Daneshyar, Hesam

    2008-12-30

    Removal of phenol from wastewater using emulsion liquid membrane (ELM) is studied in present study. A new polyamine-type surfactant was synthesized and used for stabilizing of the emulsion phase. The results for the emulsion made by the synthesized surfactant showed much better stability and performance in the separation process compared to that by conventionally used Span 80. To determine the optimum operation conditions, the effect of several parameters such as emulsifier concentration, concentration of NaOH in the internal phase, oil to internal phase volume ratio, mixing intensity, temperature, solvent type, and stabilizer concentration have been investigated. It was found that under the optimum conditions, more than 98% of phenol can be removed in a single-stage process. The removal efficiency can be increased to 99.8% in a two-stage process. PMID:18448245

  15. Direct Numerical Simulation of Surfactant-Stabilized Emulsions Morphology and Shear Viscosity in Starting Shear Flow

    SciTech Connect

    Roar Skartlien; Espen Sollum; Andreas Akselsen; Paul Meakin

    2012-07-01

    A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it at later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous.

  16. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis.

    PubMed

    Baret, Jean-Christophe; Kleinschmidt, Felix; El Harrak, Abdeslam; Griffiths, Andrew D

    2009-06-01

    In classical emulsification processes, surfactants play two roles: first, they reduce the interfacial tension, facilitating droplet deformation and rupture, and second, they reduce droplet coalescence. Here, we use a microfluidic emulsification system to completely uncouple these two processes, allowing stabilization against coalescence to be studied quantitatively and independently of droplet formation. We demonstrate that, in addition to the classical effect of stabilization by an increase of surfactant concentration, the dynamics of adsorption of surfactant at the water-oil interface is a key element for droplet stabilization. Microfluidic emulsification devices can therefore be tailored to improve emulsification while decreasing the concentration of surfactant by increasing the time before the droplets first come into contact. PMID:19292501

  17. Comparison of Surfactants Used to Prepare Aqueous Perfluoropentane Emulsions for Pharmaceutical Applications

    PubMed Central

    Kandadai, Madhuvanthi A.; Mohan, Praveena; Lin, Genyao; Butterfield, Anthony; Skliar, Mikhail; Magda, Jules J.

    2010-01-01

    Perfluoropentane (PFP), a highly hydrophobic, non-toxic, non-carcinogenic fluoroalkane, has generated much interest in biomedical applications, including occlusion therapy and controlled drug delivery. For most of these applications, the dispersion within aqueous media of a large quantity of PFP droplets of the proper size is critically important. Surprisingly, the interfacial tension of PFP against water in the presence of surfactants used to stabilize the emulsion has rarely, if ever, been measured. In this study, we report the interfacial tension of PFP in the presence of surfactants used in previous studies to produce emulsions for biomedical applications: polyethylene oxide-co-polylactic acid (PEO-PLA, and polyethylene oxide-co-poly-?-caprolactone (PEO-PCL). Since both of these surfactants are uncharged diblock copolymers that rely on the mechanism of steric stabilization, we also investigate for comparisons sake use of the small molecule cationic surfactant cetyl trimethyl ammonium bromide (CTAB), and the much larger protein surfactant bovine serum albumin (BSA). The results presented here complement previous reports of the PFP droplet size distribution, and will be useful for determining to what extent the interfacial tension value can be used to control the mean PFP droplet size. PMID:20218695

  18. Dynamic behavior of natural sea surfactant films

    NASA Astrophysics Data System (ADS)

    Mass, John T.; Milgram, Jerome H.

    1998-07-01

    The dynamic behavior of sea surfactants is studied at timescales from 0.04 to 2 seconds by generating waves on the water containing its natural surfactants in the laboratory and comparing dynamical measurements with theoretical predictions for prescribed surfactant properties. The properties considered are film pressure, elasticity and surface viscosity. For longitudinal Marangoni waves in the frequency range of 0.5 to 4.0 Hz, time-varying film pressures are measured. For transverse waves in the frequency range of 3 to 25 Hz, spatial decay rates are measured. Prior to conducting experiments with sea water containing soluble natural surfactants, the procedures and methods of analysis are validated by experiments with clean fresh water and with an insoluble oleyl alcohol film. A notable finding is that the static film elasticity accurately predicts the dynamic behavior of both the insoluble oleyl alcohol film and the soluble natural sea surfactant films. To better understand the reasons for this finding, sea surfactant adsorption and desorption time histories were measured. The adsorption/desorption time scales ranged from 46 to 196 min. One reason for the accurate prediction of surfactant dynamic behavior by the static elasticity is that the timescales of the waves are much shorter than the adsorption/desorption timescales. The conclusion is that the static elasticity controls the interactions of surfactants with most hydrodynamic disturbances having timescales up to several min.

  19. Synthesis of poly(methyl methacrylate) nanocomposites via emulsion polymerization using a zwitterionic surfactant.

    PubMed

    Meneghetti, Paulo; Qutubuddin, Syed

    2004-04-13

    The synthesis of nanocomposites via emulsion polymerization was investigated using methyl methacrylate (MMA) monomer, 10 wt % montmorillonite (MMT) clay, and a zwitterionic surfactant octadecyl dimethyl betaine (C18DMB). The particle size of the diluted polymer emulsion was about 550 nm, as determined by light scattering, while the sample without clay had a diameter of about 350 nm. The increase in the droplet size suggests that clay was present in the emulsion droplets. X-ray diffraction indicated no peak in the nanocomposites. Transmission electron microscopy showed that emulsion polymerization of MMA in the presence of C18DMB and MMT formed partially exfoliated nanocomposites. Differential scanning calorimetry showed an increase of 18 degrees C in the glass transition temperature (Tg) of the nanocomposites. A dynamic mechanical thermal analyzer also verified a similar Tg increase, 16 degrees C, for the partially exfoliated nanocomposites over poly(methyl methacrylate) (PMMA). Thermogravimetric analysis indicated a 37 degrees C increase in the decomposition temperature for a 20 wt % loss. A PMMA nanocomposite with 10 wt % C18DMB-MMT was also synthesized via in situ polymerization. This nanocomposite was intercalated and had a Tg 10 degrees lower than the emulsion nanocomposite. The storage modulus of the partially exfoliated emulsion nanocomposite was superior to the intercalated structure at higher temperatures and to the pure polymer. The rubbery plateau modulus was over 30 times higher for the emulsion product versus pure PMMA. The emulsion technique produced nanocomposites of the highest molecular weight with a bimodal distribution. This reinstates that exfoliated structures have enhanced thermal and mechanical properties over intercalated hybrids. PMID:15875877

  20. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Daniel J; He, Jibao; Spinu, Leonard; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2016-02-01

    Magnetically responsive oil-in-water emulsions are effectively stabilized by a halloysite nanotube supported superparamagnetic iron oxide nanoparticle system. The attachment of the magnetically functionalized halloysite nanotubes at the oil-water interface imparts magnetic responsiveness to the emulsion and provides a steric barrier to droplet coalescence leading to emulsions that are stabilized for extended periods. Interfacial structure characterization by cryogenic scanning electron microscopy reveals that the nanotubes attach at the oil-water interface in a side on-orientation. The tubular structure of the nanotubes is exploited for the encapsulation and release of surfactant species that are typical of oil spill dispersants such as dioctyl sulfosuccinate sodium salt and polyoxyethylene (20) sorbitan monooleate. The magnetically responsive halloysite nanotubes anchor to the oil-water interface stabilizing the interface and releasing the surfactants resulting in reduction in the oil-water interfacial tension. The synergistic adsorption of the nanotubes and the released surfactants at the oil-water interface results in oil emulsification into very small droplets (less than 20μm). The synergy of the unique nanotubular morphology and interfacial activity of halloysite with the magnetic properties of iron oxide nanoparticles has potential applications in oil spill dispersion, magnetic mobilization and detection using magnetic fields. PMID:26555959

  1. Droplet size distributions in turbulent emulsions: Breakup criteria and surfactant effects from direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Skartlien, R.; Sollum, E.; Schumann, H.

    2013-11-01

    Lattice Boltzmann simulations of water-in-oil (W/O) type emulsions of moderate viscosity ratio (?1/3) and with oil soluble amphiphilic surfactant were used to study the droplet size distribution in forced, steady, homogeneous turbulence, at a water volume fraction of 20%. The viscous stresses internal to the droplets were comparable to the interfacial stress (interfacial tension), and the droplet size distribution (DSD) equilibrated near the Kolmogorov scale with droplet populations in both the viscous and inertial subranges. These results were consistent with known breakup criteria for W/O and oil-in-water emulsions, showing that the maximum stable droplet diameter is proportional to the Kolmogorov scale when viscous stresses are important (in contrast to the inviscid Hinze-limit where energy loss by viscous deformation in the droplet is negligible). The droplet size distribution in the inertial subrange scaled with the known power law d-10/3, as a consequence of breakup by turbulent stress fluctuations external to the droplets. When the turbulent kinetic energy was sufficiently large (with interfacial Pclet numbers above unity), we found that turbulence driven redistribution of surfactant on the interface inhibited the Marangoni effect that is otherwise induced by film draining during coalescence in more quiescent flow. The coalescence rates were therefore not sensitive to varying surfactant activity in the range we considered, and for the given turbulent kinetic energies. Furthermore, internal viscous stresses strongly influenced the breakup rates. These two effects resulted in a DSD that was insensitive to varying surfactant activity.

  2. Mixed O/W emulsions stabilized by solid particles: a model system for controlled mass transfer triggered by surfactant addition.

    PubMed

    Drelich, Audrey; Grossiord, Jean-Louis; Gomez, Franois; Clausse, Danile; Pezron, Isabelle

    2012-11-15

    This article deals with a model mixed oil-in-water (O/W) emulsion system developed to study the effect of surfactants on mass transfer between dispersed oil droplets of different composition. In this purpose, our goal was to formulate O/W emulsions without any surface active agents as stabilizer, which was achieved by replacing surfactants by a mixture of hydrophilic/hydrophobic silica particles. Then, to study the specific role of surfactants in the oil transfer process, different types and concentrations of surfactants were added to the mixed emulsion after its preparation. In such a way, the same original emulsion can be used for all experiments and the influence of various surface active molecules on the oil transfer mechanism can be directly studied. The model mixed emulsion used consists of a mixture of hexadecane-in-water and tetradecane-in-water emulsions. The transfer between tetradecane and hexadecane droplets was monitored by using differential scanning calorimetry, which allows the detection of freezing and melting signals characteristic of the composition of the dispersed oil droplets. The results obtained showed that it is possible to trigger the transfer of tetradecane towards hexadecane droplets by adding surfactants at concentrations above their critical micellar concentration, measured in presence of solid particles, through micellar transport mechanism. PMID:22909967

  3. Engineering novel topical foams using hydrofluroalkane emulsions stabilised with pluronic surfactants.

    PubMed

    Zhao, Yanjun; Brown, Marc B; Jones, Stuart A

    2009-06-28

    Aesthetics are very important for topical products and as a consequence elegant vehicles such as sprays and foams are often preferred by patients. Pressurised systems are ideal to dose foams, however, as so little is known about the influence of formulation characteristics on foam properties, the rational design of these systems difficult. This study aimed to assess the capability of pluronic surfactants to stabilise topical pressurised hydrofluoroalkane (HFA) emulsions and attempted to define the formulation characteristics that had an impact upon foam properties. In situ phase diagrams and conductivity measurements were used to characterise the HFA emulsions. Cryo-scanning electron microscopy images, collapse time (C(t)) and wetting time (W(t)) were used to assess the foams post dosing, i.e. after removal of the HFA. The results indicated that foam stability was a direct function of HFA emulsion type; HFA-in-water (HIW) emulsions generated stable foams, they had 30-100microm bubble diameter with c.a. 40 bubbles in a 0.45mmx0.40mm area; water-in-HFA (WIH) emulsions created quick-breaking foams they contained 20-200microm sized bubbles and had 20 bubbles in an area of 0.45mmx0.40mm. Therefore, the rational design of pressurised topical foams can be achieved if the formulation is analysed in situ. PMID:19491028

  4. Effect of surfactant phase behavior on emulsification.

    PubMed

    Kaizu, Kazuhiro; Alexandridis, Paschalis

    2016-03-15

    In order to improve our understanding of the effects that the equilibrium phase behavior and structure of amphiphiles have on the emulsification process and the properties of emulsions stabilized by these amphiphiles, we have exploited the known phase behavior of polyoxyethylene-polyoxypropylene-polyoxyethylene (POE-POP-POE) amphiphilic block copolymers (Pluronics) in the presence of two immiscible solvents. Specifically, we considered ternary systems consisting of Pluronic F38, L64, P84, P104, or L121 with water and p-xylene which exhibit a very rich phase behavior, including a variety of water-continuous and oil-continuous lyotropic liquid crystalline (LLC) phases. We prepared emulsions having the same (final) compositions but through different emulsification paths, and evaluated the emulsions on the basis of homogeneity and droplet size. We found finer and more homogenous emulsions to result when O/lamellar gel structures (as revealed by small-angle X-ray scattering) were formed during the emulsification process, or when the emulsification path traversed the lamellar LLC phase. This can be attributed to the favorable properties of the lamellar structure: high oil solubilization capacity with concurrent facile dispersibility in water, relatively low interfacial tension, and relatively low viscosity. The findings reported here are relevant to the preparation of emulsions for diverse applications such as skin-care products, pharmaceuticals, food products, coatings, inks, agrochemicals, oil dispersants, and nanomaterials synthesis. PMID:26724700

  5. Highly CO2/N2-switchable zwitterionic surfactant for pickering emulsions at ambient temperature.

    PubMed

    Liu, Pingwei; Lu, Weiqiang; Wang, Wen-Jun; Li, Bo-Geng; Zhu, Shiping

    2014-09-01

    Cross-linked polymer particles were prepared via surfactant-free emulsion copolymerization of 2-(diethylamino)ethyl methacrylate (DEAEMA) and sodium methacrylate (SMA) using N,N'-methylenebis(acrylamide) (MBA) as a cross-linker. Generated particles are zwitterionic, possessing unique isoelectric points in the pH range of 7.5-8.0, which is readily tunable through CO2/N2 bubbling. The particles were found to be highly responsive to CO2/N2 switching, dissolving in water with CO2 bubbling and precipitating with N2 bubbling at room temperature. Pickering emulsions of n-dodecane were prepared using these particles as the sole emulsifier. These emulsions can be rapidly demulsified with CO2 bubbling, resulting in complete oil/water phase separations. Nitrogen bubbling efficiently re-emulsifies the oil with the aid of homogenization. The rapid emulsification/demulsification using CO2/N2 bubbling at room temperature provides these cross-linked zwitterionic particles with distinct advantages as functional Pickering surfactants. PMID:25105821

  6. Droplet size distributions in turbulent emulsions: breakup criteria and surfactant effects from direct numerical simulations.

    PubMed

    Skartlien, R; Sollum, E; Schumann, H

    2013-11-01

    Lattice Boltzmann simulations of water-in-oil (W/O) type emulsions of moderate viscosity ratio (?1/3) and with oil soluble amphiphilic surfactant were used to study the droplet size distribution in forced, steady, homogeneous turbulence, at a water volume fraction of 20%. The viscous stresses internal to the droplets were comparable to the interfacial stress (interfacial tension), and the droplet size distribution (DSD) equilibrated near the Kolmogorov scale with droplet populations in both the viscous and inertial subranges. These results were consistent with known breakup criteria for W/O and oil-in-water emulsions, showing that the maximum stable droplet diameter is proportional to the Kolmogorov scale when viscous stresses are important (in contrast to the inviscid Hinze-limit where energy loss by viscous deformation in the droplet is negligible). The droplet size distribution in the inertial subrange scaled with the known power law ~d(-10/3), as a consequence of breakup by turbulent stress fluctuations external to the droplets. When the turbulent kinetic energy was sufficiently large (with interfacial Pclet numbers above unity), we found that turbulence driven redistribution of surfactant on the interface inhibited the Marangoni effect that is otherwise induced by film draining during coalescence in more quiescent flow. The coalescence rates were therefore not sensitive to varying surfactant activity in the range we considered, and for the given turbulent kinetic energies. Furthermore, internal viscous stresses strongly influenced the breakup rates. These two effects resulted in a DSD that was insensitive to varying surfactant activity. PMID:24206328

  7. Nonaqueous Dispersion Formed by an Emulsion Solvent Evaporation Method Using Block-Random Copolymer Surfactant Synthesized by RAFT Polymerization.

    PubMed

    Ezaki, Naofumi; Watanabe, Yoshifumi; Mori, Hideharu

    2015-10-27

    As surfactants for preparation of nonaqueous microcapsule dispersions by the emulsion solvent evaporation method, three copolymers composed of stearyl methacrylate (SMA) and glycidyl methacrylate (GMA) with different monomer sequences (i.e., random, block, and block-random) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Despite having the same comonomer composition, the copolymers exhibited different functionality as surfactants for creating emulsions with respective dispersed and continuous phases consisting of methanol and isoparaffin solvent. The optimal monomer sequence for the surfactant was determined based on the droplet sizes and the stabilities of the emulsions created using these copolymers. The block-random copolymer led to an emulsion with better stability than obtained using the random copolymer and a smaller droplet size than achieved with the block copolymer. Modification of the epoxy group of the GMA unit by diethanolamine (DEA) further decreased the droplet size, leading to higher stability of the emulsion. The DEA-modified block-random copolymer gave rise to nonaqueous microcapsule dispersions after evaporation of methanol from the emulsions containing colored dyes in their dispersed phases. These dispersions exhibited high stability, and the particle sizes were small enough for application to the inkjet printing process. PMID:26421355

  8. Treatment of surfactant stabilized oil-in-water emulsions by means of chemical oxidation and coagulation.

    PubMed

    Kulik, N; Trapido, M; Veressinina, Y; Munter, R

    2007-12-01

    The model wastewater samples investigated in the current study represented oil-in-water (O/W) emulsions with small oil (diesel/black oil) and high surfactant (Anrol/Decon90) concentrations generated during washing of oil tankers or tank-wagons. Coagulation with aluminium sulphate, ferric chloride and lime milk, and chemical oxidation by hydrogen peroxide catalyzed ferrous ions were applied as traditional and advanced treatment processes, respectively. Coagulation proved more feasible for oil content removal than for COD reduction. Both COD and oil content removal, were higher if Anrol was used as a surface active agent. The comparison of wastewater samples with different oil products but the same detergent showed more effective black oil removal. Coagulation was found ineffective as a pre-treatment technology for biodegradability improvement and toxicity reduction in surfactant stabilized O/W emulsion wastewater samples. The application of Fenton chemistry showed significant COD, UV absorbance and BOD removal, but no improvement in wastewater samples biodegradability. The maximum COD reduction and oil content removal from wastewater samples was above 90%. The oxidation of wastewater containing Decon90 required higher dosages of the Fenton reagent than wastewater with Anrol. Both Anrol and Decon90 contaminated wastewater samples were found to be detoxified even after moderate hydrogen peroxide dosages had been applied in the oxidation step. PMID:18341145

  9. Microwave selective heating for size effect of water droplet in W/O emulsion with sorbitan fatty acid monostearate surfactant

    NASA Astrophysics Data System (ADS)

    Sumi, Takuya; Horikoshi, Satoshi

    2015-09-01

    A stable water/oil (W/O) emulsion was prepared by adjustment with sorbitan fatty acid monoester surfactants. The prepared W/O emulsion was stable for 60 min in the atmosphere; however, the formation of non-uniform water droplets in the height of the emulsion in the quartz tube reactor were observed by the backscattering measurements with an infrared laser at 850 nm. The increase of temperature under microwave irradiation was influenced sensitively by the position of those water droplets. Those results were caused from the size and concentration of water droplets in the W/O emulsion. On the other hand, selective heating of the water droplets caused heating of the entire W/O emulsion, although the temperature difference between the water droplets and the oil phase was 20 °C.

  10. Coalescence kinetics in surfactant stabilized emulsions: Evolution equations from direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Skartlien, R.; Grimes, B.; Meakin, P.; Sjblom, J.; Sollum, E.

    2012-12-01

    Lattice Boltzmann simulations were used to study the coalescence kinetics in emulsions with amphiphilic surfactant, under neutrally buoyant conditions, and with a significant kinematic viscosity contrast between the phases (emulating water in oil emulsions). The 3D simulation domain was large enough (2563 107 grid points) to obtain good statistics with droplet numbers ranging from a few thousand at early times to a few hundred near equilibrium. Increased surfactant contents slowed down the coalescence rate between droplets due to the Gibbs-Marangoni effect, and the coalescence was driven by a quasi-turbulent velocity field. The kinetic energy decayed at a relatively slow rate at early times, due to conversion of interfacial energy to kinetic energy in the flow during coalescence. Phenomenological, coupled differential equations for the mean droplet diameter D(t) and the number density nd(t) were obtained from the simulation data and from film draining theories. Local (in time) power law exponents for the growth of the mean diameter (and for the concomitant decrease of nd) were established in terms of the instantaneous values of the kinetic energy, coalescence probability, Gibbs elasticity, and interfacial area. The model studies indicated that true power laws for the growth of the droplet size and decrease of the number of droplets with time may not be justified, since the exponents derived using the phenomenological model were time dependent. In contrast to earlier simulation results for symmetric blends with surfactant, we found no evidence for stretched logarithmic scaling of the form D [ln (ct)]? for the morphology length, or exponential scalings associated with arrested growth, on the basis of the phenomenological model.

  11. Coalescence kinetics in surfactant stabilized emulsions: Evolution equations from direct numerical simulations

    SciTech Connect

    R. Skartlien; E. Sollum; A. Akselsen; P. Meakin; B. Grimes; J. Sjoblom

    2012-12-01

    Lattice Boltzmann simulations were used to study the coalescence kinetics in emulsions with amphiphilic surfactant, under neutrally buoyant conditions, and with a significant kinematic viscosity contrast between the phases (emulating water in oil emulsions). The 3D simulation domain was large enough (256 3rd power -- 10 7th power grid points) to obtain good statistics with droplet numbers ranging from a few thousand at early times to a few hundred near equilibrium. Increased surfactant contents slowed down the coalescence rate between droplets due to the Gibbs-Marangoni effect, and the coalescence was driven by a quasi-turbulent velocity field. The kinetic energy decayed at a relatively slow rate at early times, due to conversion of interfacial energy to kinetic energy in the flow during coalescence. Phenomenological, coupled differential equations for the mean droplet diameter D(t) and the number density nd(t) were obtained from the simulation data and from film draining theories. Local (in time) power law exponents for the growth of the mean diameter (and for the concomitant decrease of nd) were established in terms of the instantaneous values of the kinetic energy, coalescence probability, Gibbs elasticity, and interfacial area. The model studies indicated that true power laws for the growth of the droplet size and decrease of the number of droplets with time may not be justified, since the exponents derived using the phenomenological model were time dependent. In contrast to earlier simulation results for symmetric blends with surfactant, we found no evidence for stretched logarithmic scaling of the formD -- [ln (ct)]a for the morphology length, or exponential scalings associated with arrested growth, on the basis of the phenomenological model.

  12. Coalescence kinetics in surfactant stabilized emulsions: evolution equations from direct numerical simulations.

    PubMed

    Skartlien, R; Grimes, B; Meakin, P; Sjblom, J; Sollum, E

    2012-12-01

    Lattice Boltzmann simulations were used to study the coalescence kinetics in emulsions with amphiphilic surfactant, under neutrally buoyant conditions, and with a significant kinematic viscosity contrast between the phases (emulating water in oil emulsions). The 3D simulation domain was large enough (256(3) ~ 10(7) grid points) to obtain good statistics with droplet numbers ranging from a few thousand at early times to a few hundred near equilibrium. Increased surfactant contents slowed down the coalescence rate between droplets due to the Gibbs-Marangoni effect, and the coalescence was driven by a quasi-turbulent velocity field. The kinetic energy decayed at a relatively slow rate at early times, due to conversion of interfacial energy to kinetic energy in the flow during coalescence. Phenomenological, coupled differential equations for the mean droplet diameter D(t) and the number density n(d)(t) were obtained from the simulation data and from film draining theories. Local (in time) power law exponents for the growth of the mean diameter (and for the concomitant decrease of n(d)) were established in terms of the instantaneous values of the kinetic energy, coalescence probability, Gibbs elasticity, and interfacial area. The model studies indicated that true power laws for the growth of the droplet size and decrease of the number of droplets with time may not be justified, since the exponents derived using the phenomenological model were time dependent. In contrast to earlier simulation results for symmetric blends with surfactant, we found no evidence for stretched logarithmic scaling of the form D ~ [ln (ct)](?) for the morphology length, or exponential scalings associated with arrested growth, on the basis of the phenomenological model. PMID:23231250

  13. Effect of surfactants on the interfacial tension and emulsion formation between water and carbon dioxide

    SciTech Connect

    Rocha, S.R.P. da; Harrison, K.L.; Johnston, K.P.

    1999-01-19

    The lowering of the interfacial tension ({gamma}) between water and carbon dioxide by various classes of surfactants is reported and used to interpret complementary measurements of the capacity, stability, and average drop size of water-in-CO{sub 2} emulsions. {gamma} is lowered from {approximately}20 to {approximately}2 mN/m for the best poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(propylene oxide) (PPO-b-PEO-b-PPO) and PeO-b-PPO-b-PEO Pluronic triblock copolymers, 1.4 mN/m for a poly(butylene oxide)-b-PEO copolymer, 0.8 mN/m for a perfluoropolyether (PEPE) ammonium carboxylate and 0.2 mN/m for PDMS{sub 24}-g-EO{sub 22}. The hydrophilic-CO{sub 2}-philic balance (HCB) of the triblock Pluronic and PDMS-g-PEO-PPO surfactants is characterized by the CO{sub 2}-to-water distribution coefficient and V-shaped plots of log {gamma} vs wt % EO. A minimum in {gamma} is observed for the optimum HCB. As the CO{sub 2}-philicity of the surfactant tail is increased, the molecular weight of the hydrophilic segment increases for an optimum HCB. The stronger interactions on both sides of the interface lead to a lower {gamma}. Consequently, more water was emulsified for the PDMS-based copolymers than either the PPO- or PBO-based copolymers.

  14. The efficient separation of surfactant-stabilized water-in-oil emulsions with a superhydrophobic filter paper

    NASA Astrophysics Data System (ADS)

    Ge, Bo; Zhu, Xiaotao; Li, Yong; Men, Xuehu; Li, Peilong; Zhang, Zhaozhu

    2015-11-01

    The filtration membranes have been acknowledged as efficient way for separation of emulsion. Nevertheless, most of the methods have limitations of high cost and complex fabrication process. Here, we present a simple method for preparing superhydrophobic/superoleophilic filter paper by solution immersion process. The superhydrophobic filter paper exhibited high selectivity for oil-water mixture. Importantly, the filter paper can be applied to separate surfactant-stabilized water-in-oil emulsion. Separation process is achieved by one step under gravity. Moreover, the superhydrophobic filter paper maintains stable superhydrophobicity and emulsion separation property after using for five cycles. We expected that this low-cost process can be used for water-in-oil emulsion separation.

  15. An Algorithm for Emulsion Stability Simulations: Account of Flocculation, Coalescence, Surfactant Adsorption and the Process of Ostwald Ripening

    PubMed Central

    Urbina-Villalba, German

    2009-01-01

    The first algorithm for Emulsion Stability Simulations (ESS) was presented at the V Conferencia Iberoamericana sobre Equilibrio de Fases y Diseo de Procesos [Luis, J.; Garca-Sucre, M.; Urbina-Villalba, G. Brownian Dynamics Simulation of Emulsion Stability In: Equifase 99. Libro de Actas, 1st Ed., Tojo J., Arce, A., Eds.; Solucions: Vigo, Spain, 1999; Volume 2, pp. 364369]. The former version of the program consisted on a minor modification of the Brownian Dynamics algorithm to account for the coalescence of drops. The present version of the program contains elaborate routines for time-dependent surfactant adsorption, average diffusion constants, and Ostwald ripening. PMID:19399220

  16. Preparation and characterization of surfactant-free polystyrene/layered double hydroxide exfoliated nanocomposite via soap-free emulsion polymerization.

    PubMed

    Qiu, Longzhen; Qu, Baojun

    2006-09-15

    The soap-free emulsion polymerization has been applied for preparing the surfactant-free polystyrene/layered double hydroxide exfoliated nanocomposite. The XRD and TEM determinations have been used to monitor the changes of interlayer spacing and morphology during polymerization. The results show that the obtained nanocomposite has the homogeneous structure of polymeric and inorganic components. Due to the absence of organic surfactant, the PS/LDH nanocomposite shows a remarked improvement on the onset decomposition temperature compared with virgin PS. PMID:16793051

  17. Chemomechanical behaviors of polymer gels by surfactant binding

    NASA Astrophysics Data System (ADS)

    Narita, Tetsuharu; Gong, Jianping; Osada, Yoshihito

    1999-05-01

    A weakly crosslinked poly(2-acrylamido-2-methylpropanesulfonic acid) immersed in cationic surfactant (N-n-alkylpyridinium chloride) shows biomimetic chemomechanical movement under dc current. The principle of the movement is based on an electrokinetic molecular assembly reaction of the surfactant onto the polymer network. In order to analyze the diffusion and binding processes which are both of importance for understanding the alkyl size dependence of the chemomechanical behavior, kinetic studies of the surfactants binding were made systematically changing the alkyl size and concentration of the surfactants and ionic strength. It was found that the driving force of the surfactant diffusion is the electrochemical potential gradient, while the surfactant binding enhances the diffusion proces. A mathematical model for the surfactant diffusion was developed taking account of the surfactant binding process and obtained results were well explained the experimental observations.

  18. Flows of Wet Foamsand Concentrated Emulsions

    NASA Technical Reports Server (NTRS)

    Nemer, Martin B.

    2005-01-01

    The aim of this project was is to advance a microstructural understanding of foam and emulsion flows. The dynamics of individual surfactant-covered drops and well as the collective behavior of dilute and concentrated was explored using numerical simulations. The long-range goal of this work is the formulation of reliable microphysically-based statistical models of emulsion flows.

  19. Adsorption of Anionic or Cationic Surfactants in Polyanionic Brushes and Its Effect on Brush Swelling and Fouling Resistance during Emulsion Filtration.

    PubMed

    Yang, Zhefei; Tarabara, Volodymyr V; Bruening, Merlin L

    2015-11-01

    Atom transfer radical polymerization of ionic monomers from membrane surfaces yields polyelectrolyte brushes that swell in water and repel oil droplets to resist fouling during filtration of oil-in-water emulsions. However, surfactant adsorption to polyelectrolyte brushes may overcome this fouling resistance. This work examines adsorption of cationic and anionic surfactants in polyanionic brushes and the effect of these surfactants on emulsion filtration. In situ ellipsometry with films on flat surfaces shows that brushes composed of poly(3-sulfopropyl methacrylate salts) (pSPMK) swell 280% in water and do not adsorb sodium dodecyl sulfate (SDS). pSPMK-modified microfiltration membranes reject >99.9% of the oil from SDS-stabilized submicron emulsions, and the specific flux through these modified membranes is comparable to that through NF270 nanofiltration membranes. Moreover, the brush-modified membranes show no decline in flux over a 12 h filtration, whereas the flux through NF270 membranes decreases by 98.7%. In contrast, pSPMK brushes adsorb large quantities of cetyltrimethylammonium bromide (CTAB), and at low chain densities the brushes collapse in the presence of this cationic surfactant. Filtration of CTAB-stabilized emulsions through pSPMK-modified membranes gives minimal oil rejection, presumably due to the brush collapse. Thus, the fouling resistance of polyelectrolyte brush-modified membranes clearly depends on the surfactant composition in a particular emulsion. PMID:26442835

  20. Preparation of CO?/N?-triggered reversibly coagulatable and redispersible polyacrylate latexes by emulsion polymerization using a polymeric surfactant.

    PubMed

    Zhang, Qi; Yu, Guoqiang; Wang, Wen-Jun; Li, Bo-Geng; Zhu, Shiping

    2012-05-29

    We report here a novel approach for making reversibly coagulatable and redispersible polyacrylate latexes by emulsion (co)polymerization of methyl methacrylate (MMA) using a polymeric surfactant, poly(2-(dimethylamino)ethyl methacrylate)(10) -block-poly(methyl methacrylate)(14) . The surfactant was protonated with HCl prior to use. The resulted PMMA latexes were readily coagulated with trace amount of caustic soda. The coagulated latex particles, after washing with deionized water, could be redispersed into fresh water to form stable latexes again by CO(2) bubbling with ultrasonication. The recovered latexes could then be coagulated by N(2) bubbling with gentle heating. These coagulation and redispersion processes were repeatable by the CO(2) /N(2) bubbling. PMID:22488642

  1. Surfactant effects on bio-based emulsions used as lubrication fluids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The successful formulation of a lubricating emulsion requires carefully balancing the mixture of base oil, water and a plethora of additives. The factors that affect the performance of lubrication emulsions range from the macroscopic stability to the microscopic surface properties of the base oil. ...

  2. Viscosity behavior of cationic gemini surfactants with long alkyl chains

    NASA Astrophysics Data System (ADS)

    Han, Lijuan; Chen, Hong; Luo, Pingya

    2004-08-01

    Viscosity experiments were carried out on aqueous micellar solutions of the cationic gemini surfactants as a function of surfactant concentration, aging time, temperature and shear rate. The viscosity behavior of cationic gemini surfactants in dilute solution is closely related to the alkyl chains and spacer groups of gemini surfactants. The viscosities of some gemini surfactants solutions vary with aging time, such as 16-4-16 and 18-4-18. For 12-2-12, the viscosity of solution decreases with the increase of temperature. But for series of 16- s-16 and 18- s-18 with s = 2 or 3, the viscosity variations of them are particularly unusual with the increasing of temperature, which increase at first, then reach a peak and decrease in the end. The effect of shear rate on the micellar solution of 22-4-22 was investigated and shear-induced thickening was not observed at the experimental shear rate ranges.

  3. Adhesion of Surfactant Layers

    NASA Astrophysics Data System (ADS)

    Poulin, P.; Bibette, J.; Roux, D.

    1997-03-01

    By contrast to the predictions of the electrostatic double layer theory we report that ionic surfactant layers can be strongly attractive. By comparing the behaviors and the structures of different systems going from soap films to lamellar phases through emulsion droplets we show that this phenomena is general and closely linked to the intrinsic nature of the surfactant. This kind of adhesion has important consequences on the colloidal stability of emulsion droplets or multilamellar spherulites. Moreover , it is shown to be useful to induce and to control the adhesion of particles onto substrates leading to new routes for the numerous applications based on colloidal deposit.

  4. Phase inversion of emulsions containing a lipophilic surfactant induced by clay concentration.

    PubMed

    Zhang, Jingchun; Li, Lu; Wang, Jun; Xu, Jian; Sun, Dejun

    2013-03-26

    Emulsions stabilized by clay particles and sorbitan monooleate (Span 80) were investigated, and an abnormal phase inversion was observed by increasing the concentration of clay particles in the aqueous phase. At a fixed concentration of Span 80 in the oil phase, the emulsions were oil-in-water (o/w) when the concentration of clay particles in the aqueous phase was low. Surprisingly, the emulsion inverted to water-in-oil (w/o) when the concentration of the hydrophilic clay particles was increased. On the basis of the results of rheological measurements and laser-induced fluorescent confocal microscopy observation, we suggest that this phase inversion is induced by the gel structures formed at high concentration of clay particles. The effects of clay concentration on the stability and the droplet size of these emulsions were also investigated. PMID:23445467

  5. Evaluation of a novel soybean oil-based surfactant for fine emulsion preparation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is currently the world’s second largest source of vegetable oil. The growth in soybean oil production and the concerns over petrochemical surfactants have promoted the development of soybean oil-based surfactants. In this paper, we briefly describe the synthesis and properties of soybean...

  6. Fischer-Tropsch diesel emulsions stabilised by microfibrillated cellulose and nonionic surfactants.

    PubMed

    Lif, Anna; Stenstad, Per; Syverud, Kristin; Nydén, Magnus; Holmberg, Krister

    2010-12-15

    Water-in-diesel emulsion fuels have been prepared with a combination of sorbitan monolaurate and glycerol monooleate as emulsifier and with microfibrillated cellulose (MFC) of different hydrophilic/hydrophobic character as stabilizer. The MFC was treated with either octadecylamine or poly(styrene-co-maleic anhydride), resulting in very hydrophobic fibrils. The most stable emulsion was achieved with a combination of hydrophilic (untreated) and hydrophobic MFC and only minute amounts of the stabilizer gave a pronounced effect. Even with the optimized formulation the lifetime of the emulsion was shorter than previously reported when a conventional polymeric stabilizer was used, however. The water drop sizes in the emulsions were determined by three methods: optical images, light scattering, and NMR diffusometry. All three methods gave water drops sizes of ca 2 μm. The NMR diffusometry indicated that besides the micrometer-sized emulsion drops a significant fraction of the water is present in small droplets of micelle size. The chemical exchange of water between these two populations of pools is believed to be the reason for the relatively low stability of the system. PMID:20864117

  7. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals.

    PubMed

    Capron, Isabelle; Cathala, Bernard

    2013-02-11

    Cellulose nanocrystals (CNCs) are rod-like colloidal particles that irreversibly adsorb at the oil-water interface to produce ultrastable emulsions. When the internal phase fraction is increased, these CNCs can produce gel-like oil-in-water high internal phase emulsions (HIPEs) in which more than 90% of the hydrophobic phase is stabilized by less than 0.1% wt. of CNCs. However, a one-step preparation of HIPEs is not possible, and incorporation of the high internal phase fraction requires the prior preparation of Pickering emulsions. We propose that this two-step process to create CNC HIPEs relies on a swelling process of the droplets that does not desorb the CNCs from the interface, decreasing the coverage ratio of the droplets and leading to coalescence. As a result, this process leads to a drops deformation and a new interfacial networking organization as revealed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) images. PMID:23289355

  8. Preparation of Inert Polystyrene Latex Particles as MicroRNA Delivery Vectors by Surfactant-Free RAFT Emulsion Polymerization.

    PubMed

    Poon, Cheuk Ka; Tang, Owen; Chen, Xin-Ming; Pham, Binh T T; Gody, Guillaume; Pollock, Carol A; Hawkett, Brian S; Perrier, Sébastien

    2016-03-14

    We present the preparation of 11 nm polyacrylamide-stabilized polystyrene latex particles for conjugation to a microRNA model by surfactant-free RAFT emulsion polymerization. Our synthetic strategy involved the preparation of amphiphilic polyacrylamide-block-polystyrene copolymers, which were able to self-assemble into polymeric micelles and "grow" into polystyrene latex particles. The surface of these sterically stabilized particles was postmodified with a disulfide-bearing linker for the attachment of the microRNA model, which can be released from the latex particles under reducing conditions. These nanoparticles offer the advantage of ease of preparation via a scaleable process, and the versatility of their synthesis makes them adaptable to a range of applications. PMID:26807678

  9. Phase behavior and formation of o/w nano-emulsion in vegetable oil/ mixture of polyglycerol polyricinoleate and polyglycerin fatty acid ester/water systems.

    PubMed

    Wakisaka, Satoshi; Nakanishi, Masami; Gohtani, Shoichi

    2014-01-01

    It is reported that mixing polyglycerol polyricinoleate (PGPR) and polyglycerol laurilester has a great emulsifying capacity, and consequently fine oil-in-water (o/w) emulsions can be formed. However, the role of PGPR is not clear. The objective of this research is to investigate the phase behavior of vegetable oil/mixture of PGPR and polyglycerol fatty acid ester/water systems, and to clarify the role of PGPR in making a fine emulsion. Phase diagrams were constructed to elucidate the optimal process for preparing fine emulsions. In all the systems examined in this study, the phases, including the liquid crystal phase (L(c)) and sponge phase (L(3)), spread widely in the phase diagrams. We examined droplet size of the emulsions prepared from each phase and found that o/w nano-emulsions with droplet sizes as small as 50 nm were formed by emulsifying either from a single L(3) phase or a two-phase region, L(c) + L(3). These results indicate that a sponge phase L(3) or liquid crystal phase L(c) or both is necessary to form an o/w nano-emulsion whose average droplet diameter is less than 50 nm for PGPR and polyglycerin fatty acid ester mixtures used as surfactant. PMID:24521844

  10. Use of Biobased Surfactants to Stabilize Emulsions Relevant for Industrial Lubrication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emulsion based lubricants are used widely in metalworking, mining, fire-resistant hydraulic applications, and more, due to their low cost high performance. Key emulsification factors, such as appearance, particle size distribution and stability, are very important to lubricant applications. Water ...

  11. The adsorption behavior of cationic surfactant onto human hair fibers.

    PubMed

    Ran, Guoxia; Zhang, Yang; Song, Qijun; Wang, Yue; Cao, Dexian

    2009-01-01

    Quaternary ammonium surfactants are important ingredients that are frequently formulated into hair care products to modify the properties of hair surface. The adsorption kinetics, isotherms and association structures of cationic surfactants on hair surface, however, are not fully understood due to the heterogeneous nature of human hair fibers. In this work, a quaternary ammonium of surfactant, dimethylpabamidopropyl laurdimonium tosylate (DDABDT) was chosen as a probe to investigate the adsorption behavior of cationic surfactant on cuticles of scalp hair. The results reveal that the adsorption kinetics fit to a pseudo-second-order kinetic model and the adsorption isotherms fit to the Freundlich adsorption model. With the increase of DDABDT adsorption, the wettability of hair fibers changes from hydrophobic to hydrophilic. The association structure could be monolayer or bilayer depending on the initial concentration of the surfactant. In the monolayer structure, the 'anchor' surfactant molecules are believed to adsorb vertically on the surface of hair fibers through electrostatic interaction. In the bilayer structure, the second layer molecules may then pile up on top of the first layer with charged groups orienting outward. The thickness of DDABDT film on hair fibers treated with 5 x 10(-4) mol/l DDABDT solution is measured to be 5.42 nm on average with a force-distance method. This figure is very close to the two times of the theoretical molecular size of the DDABDT molecule. PMID:19004622

  12. Micellization behavior of aromatic moiety bearing hybrid fluorocarbon sulfonate surfactants.

    PubMed

    Wadekar, Mohan N; Boekhoven, Job; Jager, Wolter F; Koper, Ger J M; Picken, Stephen J

    2012-02-21

    Aggregation behavior and thermodynamic properties of two novel homologous aromatic moiety bearing hybrid fluorocarbon surfactants, sodium 2-(2-(4-ethylphenyl)-1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate (1) and sodium 2-(1,1,2,2-tetrafluoro-2-(4-vinylphenyl)ethoxy)-1,1,2,2-tetrafluoroethanesulfonate (2) were studied using surface tension measurements and isothermal titration calorimetry (ITC) in dilute aqueous solutions at room temperature. Because of the aromatic group in the hydrophobic tail, both surfactants are soluble at room temperature unlike their starting precursor, 5-iodooctafluoro-3-oxapentanesulfonate as well as several other fluorocarbon sulfonic acid salts. Moreover, the surfactant 2 has the ability that it can be polymerized once microemulsions are formed with it. The ionic conductivity measurements of 1 at five different temperatures from 288 to 313 K were carried out to study the effect of temperature on the micellization and its thermodynamics. The pseudophase separation model was applied to estimate thermodynamic quantities from conductivity data. The Gibbs energy of micellization versus temperature exhibited the characteristic U-shaped behavior with a minimum at 306 K. The micellization process was found to be largely entropy driven. Because of its hybrid structure, the entropy change of micellization for 1 was larger than what is common for hydrocarbon surfactants like SDS but less than for fully fluorinated surfactants like NaPFO. The micellization process was found to be following the entropy-enthalpy compensation phenomena. PMID:22263549

  13. Coalescence behavior of oil droplets coated in irreversibly-adsorbed surfactant layers.

    PubMed

    Reichert, Matthew D; Walker, Lynn M

    2015-07-01

    Coalescence between oil caps with irreversibly adsorbed layers of nonionic surfactant is characterized in deionized water and electrolyte solution. The coalescence is characterized using a modified capillary tensiometer allowing for accurate measurement of the coalescence time. Results suggest two types of coalescence behavior, fast coalescence at low surface coverages that are independent of ionic strength and slow coalescence at high coverage. These slow coalescence events (orders of magnitude slower) are argued to be due to electric double layer forces or more complicated stabilization mechanisms arising from interfacial deformation and surface forces. A simple film drainage model is used in combination with measured values for interfacial properties to quantify the interaction potential between the two interfaces. Since this approach allows the two caps to have the same history, interfacial coverage and curvature, the results offer a tool to better understand a mechanism that is important to emulsion stability. PMID:25766654

  14. Characterization of surfactants in an oil-in-water emulsion-based vaccine adjuvant using MS and HPLC-MS: structural analysis and quantification.

    PubMed

    Cotte, Jean-Franois; Sonnery, Sylvain; Martial, Fabien; Dubayle, Jean; Dalenon, Franois; Haensler, Jean; Adam, Olivier

    2012-10-15

    Mass spectrometry (MS) and high performance liquid chromatography coupled to mass spectrometry (HPLC-MS) techniques were developed to characterize two surfactants, cetheareth-12 and sorbitan oleate, used to manufacture AF03, an emulsified oil-in-water (O/W) adjuvant. MS was first used to characterize the chemical structure and determine the composition of the two surfactants. The two surfactants appeared as complex products, in particular with respect to the nature of the fatty alcohols and the distribution of the number of ethylene oxides in cetheareth-12, and with respect to the different sorbitan-bound fatty acids (oleic, linoleic and palmitic acids) in sorbitan oleate. Subsequently, once the ions of interest were determined and selected, HPLC-MS was developed and optimized to quantify and to "quality control" the two surfactants as raw materials and as ingredients in the final O/W emulsion bulk and filled products. PMID:22713283

  15. Oscillatory, creep and steady flow behavior of xanthan-thickened oil-in-water emulsions

    SciTech Connect

    Pal, R.

    1995-04-01

    In the handling, mixing, storage, and pipeline transportation of emulsions, knowledge of rheological properties is required for the design, selection, and operation of the equipment involved. The rheological behavior of xanthan gum-thickened oil-in-water emulsions is studied with a cone-and-plate system using a constant-stress rheometer. Xanthan gum solutions and xanthan-thickened oil-in-water emulsions are strongly shear-thinning and viscoelastic in nature. The effects of polymer and oil concentrations on the rheological behavior of emulsions are investigated. The relative viscosity for the thickened emulsions, at any given oil concentration, increases with an increase in the shear rate, whereas the unthickened emulsions show the opposite trend. The theoretical models give reasonable predictions for the relative viscosity, storage modulus, and loss modulus of xanthan-thickened emulsions. The ratio of storage to loss moduli increases considerably with the increase in polymer and oil concentrations. The creep/recovery experiments confirm that the xanthan-thickened emulsions are highly viscoelastic in nature and that the degree of elasticity increases with the increase in polymer and oil concentrations.

  16. Two-way effects of surfactants on Pickering emulsions stabilized by the self-assembled microcrystals of α-cyclodextrin and oil.

    PubMed

    Li, Xue; Li, Haiyan; Xiao, Qun; Wang, Liuyi; Wang, Manli; Lu, Xiaolong; York, Peter; Shi, Senlin; Zhang, Jiwen

    2014-07-21

    The influence of surfactants on the stability of cyclodextrin (CD) Pickering emulsions is not well understood. In this study, we report two-way effects of Tween 80 and soybean lecithin (PL) on the long term stability of Pickering emulsions stabilized by the self-assembled microcrystals of α-CD and medium chain triglycerides (MCT). The CD emulsions in the absence and presence of Tween 80 or PL at different concentrations were prepared and characterized by the droplet size, viscosity, contact angle, interfacial tension and residual emulsion values. After adding Tween 80 and PL, similar effects on the size distribution and contact angle were observed. However, changes of viscosity and interfacial tension were significantly different and two-way effects on the stability were found: (i) synergistic enhancement by Tween 80; (ii) inhibition at low and enhancement at high concentrations by PL. The stability enhancement of Tween 80 was due to the interfacial tension decrease caused by the interaction of Tween 80 with CD at the o/w interface at lower concentrations, and significant viscosity increase caused by the Tween 80-CD assembly in the continuous phase. For PL at low concentrations, the replacement of α-CD/MCT by α-CD/PL particles at the o/w interface was observed, leading to inhibitory effects. High concentrations of PL resulted in an extremely low interfacial tension and stable emulsion. In conclusion, the extensive inclusion of surfactants by CD leads to their unique effects on the stability of CD emulsions, for which the changes of viscosity and interfacial tension caused by host-guest interactions play important roles. PMID:24901107

  17. Emulsion of an in-situ surfactant in petroleum. Final report

    SciTech Connect

    Not Available

    1983-12-01

    Three emulsifiers were tested for their ability to reduce the viscosity of heavy oils. A reduction of 25% viscosity is achieved using polybutene. A reduction of 50% viscosity is achieved using a concentrated ionic detergent obtained from SANDOZ. The most promising emulsifiers is a lipopeptide. Preliminary studies show this emulsifier reduces the viscosity of heavy oils by as much as 80%. It is also able to reduce the surface tension of water by 35%. This emulsifier is also biodegradable and less toxic than synthetic surfactants. (DMC)

  18. Injectable, interconnected, high-porosity macroporous biocompatible gelatin scaffolds made by surfactant-free emulsion templating.

    PubMed

    Oh, Bernice H L; Bismarck, Alexander; Chan-Park, Mary B

    2015-02-01

    High-porosity interconnected, thermoresponsive macroporous hydrogels are prepared from oil-in-water high internal phase emulsions (HIPEs) stabilized by gelatin-graft-poly(N-isopropylacrylamide). PolyHIPEs are obtained by gelling HIPEs utilizing the thermoresponsiveness of the copolymer components. PolyHIPEs properties can be controlled by varying the aqueous phase composition, internal phase volume ratio, and gelation temperature. PolyHIPEs respond to temperature changes experienced during cell seeding, allowing fibroblasts to spread, proliferate, and penetrate into the scaffold. Encapsulated cells survive ejection of cell-laden hydrogels through a hypodermic needle. This system provides a new strategy for the fabrication of safe injectable biocompatible tissue engineering scaffolds. PMID:25504548

  19. Behavior of Malondialdehyde in Oil-in-Water Emulsions.

    PubMed

    Vandemoortele, Angelique; De Meulenaer, Bruno

    2015-06-17

    The impact of temperature, emulsifier, and protein type on the reactivity of malondialdehyde in oil-in-water emulsions was elucidated. Malondialdehyde recoveries in aqueous buffer, protein solutions, saturated oil, and fully hydrogenated coconut oil-in-water emulsions stabilized by whey proteins or Tween 20 at 4 or 40 C were compared. At both temperatures, the reactivity of malondialdehyde in aqueous buffer was the same. In protein solutions, malondialdehyde concentrations were reduced further and its decrease was protein-dependent. Similar trends were found for emulsions. Surprisingly, malondialdehyde was very reactive in saturated oil because only 15% was recovered at 40 C. However, the degradation in oil proved to be strongly temperature-dependent; at 4 C, losses amounted to only 8%. This study revealed that malondialdehyde is a very reactive molecule, both in the presence and absence of proteins. Its use as a general oxidation marker should therefore be considered with care. PMID:26016781

  20. Low-temperature polymerization of methyl methacrylate emulsion gels through surfactant catalysis.

    PubMed

    Zhang, Tan; Xu, Gu; Regev, Oren; Blum, Frank D

    2016-01-01

    Poly(methyl methacrylate) (PMMA)/silica/cetyltrimethylammonium bromide (CTAB) composites were prepared through surfactant catalyzed free radical polymerizations at 40 °C. Fumed silica particles controlled the morphology of the polymeric composites producing porous structures. The internal structures of the porous composite were determined using temperature-modulated differential scanning calorimetry (TMDSC). The fumed silica particles were encapsulated by an incompletely covered CTAB monolayer, with a crystallization temperature, T(C,CTAB)=76 °C, and a mixed PMMA/CTAB shell, with T(C,CTAB)=63 °C. The fumed silica surfaces acted as inhibitors for PMMA free radical polymerizations. Much of the PMMA formed in the composites was adsorbed on the silica, as evidenced by its elevated glass transition temperature compared to bulk. The enhanced decomposition of the initiator was catalyzed by CTAB and resulted in free radical polymerization of PMMA at 40 °C, which is considerably lower than the temperatures normally used for PMMA synthesis by free radical means with thermal initiation. These lowered polymerization temperatures allow energy efficient production of composites, which can incorporate temperature sensitive materials. PMID:26397919

  1. Development of emulsion type new vehicle for soft gelatin capsule. I. Selection of surfactants for development of new vehicle and its physicochemical properties.

    PubMed

    Amemiya, T; Mizuno, S; Yuasa, H; Watanabe, J

    1998-02-01

    Screening of surfactants was carried out to develop an oil in water (o/w) emulsion type new vehicle for a soft gelatin capsule (SGC), using polyethyleneglycol 400 (PEG 400) as hydrophilic phase and medium chain triglyceride (Miglyol 810), propyleneglycol dicaprylate (Sefsol 228) or soybean oil as hydrophobic phase (PEG 400: hydrophobic phase: surfactant = 87:10:3) and by means of simple homogenization. Polyoxyethylene (20) cetylether (BC-20TX), which can form homogeneous and viscous white gels using the above hydrophilic and hydrophobic phase combination, was selected as a model surfactant for developing the new vehicle. Using Miglyol 810 as hydrophobic phase, a model new vehicle formulation (PEG 400:water:Miglyol 810: BC-20TX = 77:10:10:3) was prepared, and its physicochemical properties were evaluated. The particle size distribution of the new vehicle, after diluting about 3000 times with water, ranged from about 0.5 to 50 microns. Furthermore, the new vehicle had thixotropic property at room temperature (about 25 degrees C) and temperature-dependent gel-sol transforming property with the transformation temperature of about 37 degrees C. These properties meet the requirement for encapsulation of the new vehicle in SGC and suggest that it can be expected to form the o/w emulsion state in the aqueous environment in the stomach. The rheological properties would also make it advantageous for use in other dosage forms such as suppository, cataplasm or liniment. PMID:9501467

  2. Use of cetyltrimethylammonium bromide as surfactant for the determination of copper and chromium in gasoline emulsions by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    dos Santos, Denilson S. S.; Teixeira, Alete P.; Barbosa, Jos T. P.; Ferreira, Srgio L. C.; Korn, Maria das Graas A.; Teixeira, Leonardo S. G.

    2007-09-01

    In this work, the use of cetyltrimethylammonium bromide as surfactant for the preparation of oil-in-water emulsions for the determination of Cu and Cr in gasoline by electrothermal atomic absorption spectrometry (ET AAS) was evaluated. The surfactant amount was tested in the range of 25 to 300 mg, added to 2 ml of gasoline, and completed to 10 mL with 0.1% (v/v) nitric acid solution. 150 mg of surfactant was found optimum, and a sonication time of 10 min sufficient to form an oil-in-water emulsion that was stable for several hours. The ET AAS temperature program was established based on pyrolysis and atomization curves. The pyrolysis temperatures were set at 700 and 1300 C for Cu and Cr, respectively and the selected atomization temperatures were 2400 and 2500 C. The time and temperature of the drying stage and the atomization time were experimentally tested to provide optimum conditions. The limits of detection were found to be 5 ?g L - 1 and 1.5 ?g L - 1 for Cu and Cr, respectively in the original gasoline samples. The relative standard deviation (RSD) ranged from 4 to 9% in oil-in-water emulsions spiked with 5 ?g L - 1 and 15 ?g L - 1 of each metal, respectively. Recoveries varied from 90 to 98%. The accuracy of the proposed method was tested by an alternate procedure using complete evaporation of the gasoline sample. The method was adequate for the determination of Cu and Cr in gasoline samples collected from different gas stations in Salvador, BA, Brazil.

  3. Polymerization in emulsion microdroplet reactors

    NASA Astrophysics Data System (ADS)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to concentration and micellization of the surfactant. At the same time, the silica solidifies around the surfactant structures, forming equally sized mesoporous particles. The procedure can be tuned to produce well-separated particles or alternatively particles that are linked together. The latter allows us to create 2D or 3D structures with hierarchical porosity. Oil, water, and surfactant liquid mixtures exhibit very complex phase behavior. Depending on the conditions, such mixtures give rise to highly organized structures. A proper selection of the type and concentration of surfactants determines the structuring at the nanoscale level. In this work, we show that hierarchically bimodal nanoporous structures can be obtained by templating silica microparticles with a specially designed surfactant micelle/microemulsion mixture. Tuning the phase state by adjusting the surfactant composition and concentration allows for the controlled design of a system where microemulsion droplets coexist with smaller surfactant micellar structures. The microemulsion droplet and micellar dimensions determine the two types of pore sizes (single nanometers and tens of nanometers). We also demonstrate the fabrication of carbon and carbon/platinum replicas of the silica microspheres using a "lost-wax" approach. Such particles have great potential for the design of electrocatalysts for fuel cells, chromatography separations, and other applications. It was determined that slight variations in microemulsion mixture components (electrolyte concentration, wt% of surfactants, oil to sol ratio, etc.) produces strikingly different pore morphologies and particle surface areas. Control over the size and structure of the smaller micelle-templated pores was made possible by varying the length of the hydrocarbon block within the trimethyl ammonium bromide surfactant and characterized using X-ray diffraction. The effect of emulsion aging was studied by synthesizing particles at progressive time levels from a sample emulsion. It was discovered surface pore size increases after just a few hours, with

  4. Phase behavior and oil recovery investigations using mixed and alkaline-enhanced surfactant systems

    SciTech Connect

    Llave, F.M.; Gall, B.L.; French, T.R.; Noll, L.A.; Munden, S.A.

    1992-03-01

    The results of an evaluation of different mixed surfactant and alkaline-enhanced surfactant systems for enhanced oil recovery are described. Several mixed surfactant systems have been studies to evaluate their oil recovery potential as well as improved adaptability to different ranges of salinity, divalent ion concentrations, and temperature. Several combinations of screening methods were used to help identify potential chemical formulations and determine conditions where particular chemical systems can be applied. The effects of different parameters on the behavior of the overall surfactant system were also studied. Several commercially available surfactants were tested as primary components in the mixtures used in the study. These surfactants were formulated with different secondary as well as tertiary components, including ethoxylated and non-ethoxylated sulfonates and sulfates. Improved salinity and hardness tolerance was achieved for some of these chemical systems. The salinity tolerance of these systems were found to be dependent on the molecular weight, surfactant type, and concentration of the surfactant components.

  5. The stability behavior of sol-emulsion systems

    SciTech Connect

    Sunkel, J.M.; Berg, J.C.

    1996-05-10

    Sol-emulsion systems, i.e., colloids consisting of mixed populations of solid particles and emulsion droplets, are encountered in a number of applications, e.g., oil-assisted agglomeration for particle removal (coal fines from water). The stability characteristics of mixed aqueous dispersions of titanium dioxide and mineral oil emulsion droplets are examined as a function of pH and emulsifier type and content. Zeta potentials of both the titanium dioxide and the mineral oil particles are measured under all conditions to identify regions of expected heterocoagulation and to quantify the electrostatic boundary conditions. The latter are used in the numerical solution of the pair interaction potentials based on the recent theory of McCormack et al. The potential functions are used in a modified version of the stability model of Hogg, Healy, and Fuerstenau to calculate early-stage aggregation rates. Photon correlation spectroscopy is used to determine stability ratios for homo- and heterocoagulation, and initial results indicate good agreement between experiments and computations.

  6. Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters

    PubMed Central

    Mahdi, Elrashid Saleh; Sakeena, Mohamed HF; Abdulkarim, Muthanna F; Abdullah, Ghassan Z; Sattar, Munavvar Abdul; Noor, Azmin Mohd

    2011-01-01

    Background: The purpose of this study was to select appropriate surfactants or blends of surfactants to study the ternary phase diagram behavior of newly introduced palm kernel oil esters. Methods: Nonionic surfactant blends of Tween and Tween/Span series were screened based on their solubilization capacity with water for palm kernel oil esters. Tween 80 and five blends of Tween 80/Span 80 and Tween 80/Span 85 in the hydrophilic-lipophilic balance (HLB) value range of 10.714.0 were selected to study the phase diagram behavior of palm kernel oil esters using the water titration method at room temperature. Results: High solubilization capacity was obtained by Tween 80 compared with other surfactants of Tween series. High HLB blends of Tween 80/Span 85 and Tween 80/Span 80 at HLB 13.7 and 13.9, respectively, have better solubilization capacity compared with the lower HLB values of Tween 80/Span 80. All the selected blends of surfactants were formed as water-in-oil microemulsions, and other dispersion systems varied in size and geometrical layout in the triangles. The high solubilization capacity and larger areas of the water-in-oil microemulsion systems were due to the structural similarity between the lipophilic tail of Tween 80 and the oleyl group of the palm kernel oil esters. Conclusion: This study suggests that the phase diagram behavior of palm kernel oil esters, water, and nonionic surfactants is not only affected by the HLB value, but also by the structural similarity between palm kernel oil esters and the surfactant used. The information gathered in this study is useful for researchers and manufacturers interested in using palm kernel oil esters in pharmaceutical and cosmetic preparation. The use of palm kernel oil esters can improve drug delivery and reduce the cost of cosmetics. PMID:21792294

  7. Depletion interactions and fluid-solid equilibrium in emulsions

    NASA Astrophysics Data System (ADS)

    Bibette, J.; Roux, D.; Nallet, F.

    1990-11-01

    Silicon-oil-in-water emulsions stabilized with sodium dodecylsulfate (SDS), have been studied. They exhibit practically no coalescence, whereas for high surfactant concentrations a ``creaming'' of the emulsion is observed. We demonstrate that this behavior is related to a fluid-solid phase transition due to an attractive interaction induced by the depletion of SDS micelles. A simple model for the fluid-solid transition is proposed, in quantitative agreement with experiment.

  8. Screening of mixed surfactant systems: Phase behavior studies and CT imaging of surfactant-enhanced oil recovery experiments

    SciTech Connect

    Llave, F.M.; Gall, B.L.; Lorenz, P.B.; Cook, I.M.; Scott, L.J.

    1993-11-01

    A systematic chemical screening study was conducted on selected anionic-nonionic and nonionic-nonionic systems. The objective of the study was to evaluate and determine combinations of these surfactants that would exhibit favorable phase behavior and solubilization capacity. The effects of different parameters including (a) salinity, (b) temperature, (c) alkane carbon number, (c) hydrophilic/lipophilic balance (HLB) of nonionic component, and (d) type of surfactant on the behavior of the overall chemical system were evaluated. The current work was conducted using a series of ethoxylated nonionic surfactants in combinations of several anionic systems with various hydrocarbons. Efforts to correlate the behavior of these mixed systems led to the development of several models for the chemical systems tested. The models were used to compare the different systems and provided some guidelines for formulating them to account for variations in salinity, oil hydrocarbon number, and temperature. The models were also evaluated to determine conformance with the results from experimental measurements. The models provided good agreement with experimental results. X-ray computed tomography (CT) was used to study fluid distributions during chemical enhanced oil recovery experiments. CT-monitored corefloods were conducted to examine the effect of changing surfactant slug size injection on oil bank formation and propagation. Reducing surfactant slug size resulted in lower total oil production. Oil recovery results, however, did not correlate with slug size for the low-concentration, alkaline, mixed surfactant system used in these tests. The CT measurements showed that polymer mobility control and core features also affected the overall oil recovery results.

  9. Alkyl-imidazolium glycosides: non-ionic-cationic hybrid surfactants from renewable resources.

    PubMed

    Salman, Abbas Abdulameer; Tabandeh, Mojtaba; Heidelberg, Thorsten; Hussen, Rusnah Syahila Duali; Ali, Hapipah Mohd

    2015-08-14

    A series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably. A comparative emulsion study discourages the use of pure alkyl imidazolium glycosides owing to reduced assembly stabilities compared with APGs. However, the surfactants are believed to have potential as component in carbohydrate based surfactant mixtures. PMID:26000863

  10. Adsorption behavior of cationic and nonionic surfactant mixtures at the alumina-water interface

    SciTech Connect

    Huang, L.; Maltesh, C.; Somasundaran, P.

    1996-01-15

    The solution and interfacial behavior of surfactant mixtures was investigated using a cationic surfactant, tetradecyl trimethyl ammonium chloride (TTAC), and a nonionic surfactant, pentadecylethoxylated nonyl phenol (NP-15), with alumina as the substrate. The cationic TTAC adsorbed at the alumina-water interface as a result of electrostatic attraction at pH {approximately} 10 whereas the nonionic NP-15 did not. Interestingly, in the mixed surfactant system, the tetradecyl trimethyl ammonium chloride forced adsorption of the NP-15 as a result of hydrophobic interactions between the adsorbed surfactant chains at the alumina-water interface. The adsorption behavior was dependent upon the ratio of the two surfactants in the mixture as well as the order of addition. With an increase in TTAC content, the adsorption density of NP-15 increased and the isotherm shifted to lower surfactant concentrations. The adsorption of TTAC decreased under conditions of saturation adsorption due to the bulkiness of the coadsorbed NP-15 as well as competition for common adsorption sites. However, below saturation adsorption conditions, the adsorption of TTAC was increased due to synergistic interactions between the cationic and nonionic heads leading to reduced repulsion among the cationic headgroups. Zeta potential measurements showed that, with an increase of NP-15 in the mixtures, the positive charge of the TTAC was partially screened by the coadsorbed NP-15. Surface tension of the surfactant mixtures was also measured, and regular solution theory was used to model the interactions between the surfactants.

  11. Effect of selected non-ionic surfactants on the flow behavior of aqueous veegum suspensions.

    PubMed

    Kennedy, Ross A; Kennedy, Michelle L

    2007-01-01

    The aim of this work was to investigate the influence of some non-ionic surfactants, Tween 80 and Brij 98, on the viscosity and flow behavior of a commercial montmorillonite clay, Veegum Granules. The effect of different concentrations of the surfactants on the shear stress-shear rate rheograms of hydrated concentrated clay suspensions was determined by shear viscometry. The addition of either surfactant increased the plastic viscosity and the yield stress of the suspensions. Furthermore, both surfactants altered the thixotropy of the suspensions to an extent that depended on both the surfactant concentration and the time of equilibration of the surfactant and Veegum. Brij 98 had a greater and more rapid effect. It is proposed that the surfactant polar head-groups anchor at the tetrahedral sheet surface, leaving the alkyl chains extending away from the edges and faces. Consequently, the alkyl chains undergo hydrophobic interactions that facilitate the association between the platelets and increase the physical structure within the suspension. Stereochemical differences between the polar groups may lead to differences in the way the surfactants associate with the tetrahedral sheet and hence their ultimate effect on the rheological behavior. There is a significant interaction between these surfactants and montmorillonite clays, and the rheological changes that occur could have a major impact on any pharmaceutical formulation that uses these ingredients. PMID:17408224

  12. Multiple emulsions: an overview.

    PubMed

    Khan, Azhar Yaqoob; Talegaonkar, Sushama; Iqbal, Zeenat; Ahmed, Farhan Jalees; Khar, Roop Krishan

    2006-10-01

    Multiple emulsions are complex polydispersed systems where both oil in water and water in oil emulsion exists simultaneously which are stabilized by lipophillic and hydrophilic surfactants respectively. The ratio of these surfactants is important in achieving stable multiple emulsions. Among water-in-oil-in-water (w/o/w) and oil-in-water-in-oil (o/w/o) type multiple emulsions, the former has wider areas of application and hence are studied in great detail. Formulation, preparation techniques and in vitro characterization methods for multiple emulsions are reviewed. Various factors affecting the stability of multiple emulsions and the stabilization approaches with specific reference to w/o/w type multiple emulsions are discussed in detail. Favorable drug release mechanisms and/or rate along with in vivo fate of multiple emulsions make them a versatile carrier. It finds wide range of applications in controlled or sustained drug delivery, targeted delivery, taste masking, bioavailability enhancement, enzyme immobilization, etc. Multiple emulsions have also been employed as intermediate step in the microencapsulation process and are the systems of increasing interest for the oral delivery of hydrophilic drugs, which are unstable in gastrointestinal tract like proteins and peptides. With the advancement in techniques for preparation, stabilization and rheological characterization of multiple emulsions, it will be able to provide a novel carrier system for drugs, cosmetics and pharmaceutical agents. In this review, emphasis is laid down on formulation, stabilization techniques and potential applications of multiple emulsion system. PMID:17076645

  13. Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion

    NASA Astrophysics Data System (ADS)

    Billeter, Jeffrey L.; Pelcovits, Robert A.

    2000-07-01

    To model a nematic emulsion consisting of a surfactant-coated water droplet dispersed in a nematic host, we performed a molecular dynamics simulation of a droplet immersed in a system of 2048 Gay-Berne ellipsoids in a nematic phase. Strong radial anchoring at the surface of the droplet induced a Saturn ring defect configuration, consistent with theoretical predictions for very small droplets. A surface ring configuration was observed for lower radial anchoring strengths, and a pair of point defects was found near the poles of the droplet for tangential anchoring. We also simulated the falling ball experiment and measured the drag force anisotropy, in the presence of strong radial anchoring as well as zero anchoring strength.

  14. PHASE BEHAVIOR OF WATER/PERCHLOROETHYLENE/ANIONIC SURFACTANT SYSTEMS

    EPA Science Inventory

    Winsor Type I (o/w), Type II (w/o), and Type III (middle phase) microemulsions have been generated for water and perchloroethylene (PCE) in combination with anionic surfactants and the appropriate electrolyte concentration. The surfactant formulation was a combination of sodium d...

  15. Effect of glycation on the flocculation behavior of protein-stabilized oil-in-water emulsions.

    PubMed

    Delahaije, Roy J B M; Gruppen, Harry; van Nieuwenhuijzen, Neleke H; Giuseppin, Marco L F; Wierenga, Peter A

    2013-12-10

    Glycation of proteins by the Maillard reaction is often considered as a method to prevent flocculation of protein-stabilized oil-in-water emulsions. The effect has been suggested, but not proven, to be the result of steric stabilization, and to depend on the molecular mass of the carbohydrate moiety. To test this, the stabilities of emulsions of patatin glycated to the same extent with different mono- and oligosaccharides (xylose, glucose, maltotriose, and maltopentaose) were compared under different conditions (pH and electrolyte concentration). The emulsions with non-modified patatin flocculate under conditions in which the zeta potential is decreased (around the iso-electric point and at high ionic strength). The attachment of monosaccharides (i.e., glucose) did not affect the flocculation behavior. Attachment of maltotriose and maltopentaose (Mw > 500 Da), on the other hand, provided stability against flocculation at the iso-electric point. Since the zeta potential and the interfacial properties of the emulsion droplets are not affected by the attachment of the carbohydrate moieties, this is attributed to steric stabilization. Experimentally, a critical thickness of the adsorbed layer required for steric stabilization against flocculation was found to be 2.29-3.90 nm. The theoretical determination based on the DLVO interactions with an additional steric interaction coincides with the experimental data. Hence, it can be concluded that the differences in stability against pH-induced flocculation are caused by steric interactions. PMID:24188433

  16. Surfactant-adsorption-induced initial depinning behavior in evaporating water and nanofluid sessile droplets.

    PubMed

    Zhong, Xin; Duan, Fei

    2015-05-19

    A surfactant-induced autophobic effect has been observed to initiate an intense depinning behavior at the initial stage of evaporation in both pure water and nanofluid sessile droplets. The cationic surfactant adsorbing to the negatively charged silicon wafer makes the solid surface more hydrophobic. The autophobing-induced depinning behavior, leading to an enlarged contact angle and a shortened base diameter, takes place only when the surfactant concentration is below its critical micelle concentration (cmc). The initial spreading degree right before the droplet retraction, the retracting velocity of the contact line, and the duration of the initial droplet retraction are shown to depend negatively on the surfactant concentration below the cmc. An unexpected enhancement in the initial depinning has been found in the nanofluid droplets, possibly resulting from the hydrophilic interplay between the graphite nanoparticle deposition and the surfactant molecules. Such promotion of the initial depinning due to the nanoparticle deposition makes the droplet retract even at a surfactant concentration higher than the cmc (1.5 cmc). The resulting deposition formed in the presence of the depinning behavior has great enhancement for coffee-ring formation as compared to the one free of surfactant, implying that the formation of a coffee ring does not require the pinning of the contact line during the entire drying process. PMID:25923721

  17. High-impact polystyrene/halloysite nanocomposites prepared by emulsion polymerization using sodium dodecyl sulfate as surfactant.

    PubMed

    Lin, Yong; Ng, Kai Mo; Chan, Chi-Ming; Sun, Guoxing; Wu, Jingshen

    2011-06-15

    High-impact polystyrene (PS) nanocomposites filled with individually dispersed halloysite nanotubes (HNTs) were prepared by emulsion polymerization of styrene in the presence of HNTs with sodium dodecyl sulfate (SDS) as the emulsifier. The SDS is a good dispersing agent for HNTs in aqueous solution. The emulsion polymerization resulted in the formation of polystyrene nanospheres separating individual HNTs. Transmission electron microscopy revealed that the HNTs were uniformly dispersed in the PS matrix. Differential scanning calorimetry, Fourier-transform infrared spectroscopy and thermogravimetry were used to characterize the PS/HNT nanocomposites. The impact strength of the PS/HNTs nanocomposites was 300% higher than that of the neat PS. This paper presents a simple yet feasible method for the preparation of high-impact PS/halloysite nanocomposites. PMID:21458819

  18. Topical delivery of lipophilic drugs from o/w Pickering emulsions.

    PubMed

    Frelichowska, Justyna; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Chevalier, Yves

    2009-04-17

    Surfactant-free emulsions stabilized by solid particles (Pickering emulsions) have been evaluated in the terms of skin absorption of lipophilic drugs. The behavior of three formulations: a surfactant-based emulsion, a Pickering emulsion stabilized by silica particles and a solution in triglyceride oil, were compared in order to assess the effect of the surface coating of Pickering emulsions as new dosage forms for topical application. Such comparative investigation was performed in vitro on excised pig skin in Franz diffusion cells with all-trans retinol as model lipophilic drug. Surfactant-based (classical, CE) and Pickering (PE) oil-in-water emulsions containing retinol were prepared with the same chemical composition (except the stabilizing agent: surfactant or silica particles), the same droplet size and the same viscosity. No permeation through the skin sample was observed after 24h exposure because of the high lipophilic character of retinol. Penetration of retinol was 5-fold larger for both CE and PE than for the solution in triglyceride. The distribution of retinol inside the skin layers depended significantly on the emulsions type: the classical emulsion allowed easy diffusion through the stratum corneum, so that large amounts reached the viable epidermis and dermis. Conversely, high storage of retinol inside the stratum corneum was favored by the Pickering emulsion. The retinol content in stratum corneum evaluated by skin stripping, demonstrated the increased retinol accumulation from PE. Therefore Pickering emulsions are new drug penetration vehicles with specific behavior; they are well-suited either for targeting the stratum corneum or aimed at slow release of drug from stratum corneum used as a reservoir to the deeper layers of skin. PMID:19135516

  19. Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes.

    PubMed

    Jardak, K; Drogui, P; Daghrir, R

    2016-02-01

    Surfactants belong to a group of chemicals that are well known for their cleaning properties. Their excessive use as ingredients in care products (e.g., shampoos, body wash) and in household cleaning products (e.g., dishwashing detergents, laundry detergents, hard-surface cleaners) has led to the discharge of highly contaminated wastewaters in aquatic and terrestrial environment. Once reached in the different environmental compartments (rivers, lakes, soils, and sediments), surfactants can undergo aerobic or anaerobic degradation. The most studied surfactants so far are linear alkylbenzene sulfonate (LAS), quaternary ammonium compounds (QACs), alkylphenol ethoxylate (APEOs), and alcohol ethoxylate (AEOs). Concentrations of surfactants in wastewaters can range between few micrograms to hundreds of milligrams in some cases, while it reaches several grams in sludge used for soil amendments in agricultural areas. Above the legislation standards, surfactants can be toxic to aquatic and terrestrial organisms which make treatment processes necessary before their discharge into the environment. Given this fact, biological and chemical processes should be considered for better surfactants removal. In this review, we investigate several issues with regard to: (1) the toxicity of surfactants in the environment, (2) their behavior in different ecological systems, (3) and the different treatment processes used in wastewater treatment plants in order to reduce the effects of surfactants on living organisms. PMID:26590059

  20. The effects of oil, dispersant, and emulsions on the survival and behavior of an estuarine teleost and an intertidal amphipod

    SciTech Connect

    Butler, R.G.; Trivelpiece, W.; Miller, D.S.

    1982-04-01

    Killfish (Fundulus heteroclitus) and amphipods (Gammarus oceanicus) were exposed seperately to either a No. 2 fuel oil, AP dispersant, or emulsions of the two in a static system. Both species exhibited a concentration-dependent response to all three treatments. However, emulsification of oil with dispersant clearly increased its lethal effect on killfish survival, but did not cause a differential change in behavioral parameters such as schooling, chafing, substrate nipping, activity, or depth preference. Killfish exposed to conditions of thermal or osmotic stress were more sensitive to the lethal effects of emulsions. In contrast, emulsions caused quantitative changes in amphipod activity and precopulatory behavior, but did not increase mortality beyond that caused by exposure to oil alone. Changes in salinity had little effect on amphipod sensitivity to emulsions, but decreasing temperature did result in increased survival.

  1. Phase behavior and structures of mixtures of anionic and cationic surfactants

    SciTech Connect

    Kaler, E.W.; Herrington, K.L.; Murthy, A.K.

    1992-08-06

    This paper discusses how phase behavior and structural studies of a SDBS/CTAT mixture in H{sub 2}O reveals that vesicle formation results from an anion-cation surfactant pair that acts as a double-tailed zwitterionic surfactant. Over time, unilamellar vesicles revert to their equilibrium, multilamellar phase. These stable catanionic vesicles appear to be the equilibrium form of aggregation. 69 refs., 10 figs., 1 tab.

  2. Diffusion and Scaling Behavior of Polymer-Surfactant Aggregates

    NASA Astrophysics Data System (ADS)

    Chari, Krishnan; Antalek, Brian; Minter, John

    1995-05-01

    The self-diffusion coefficient of poly(ethyleneoxide) (PEO) in self-assembled aggregates of PEO and sodium dodecyl sulfate (SDS) in water at PEO concentrations well below the overlap point has been determined by pulse gradient spin echo NMR spectroscopy. The results show that individual polymer coils undergo significant expansion upon complexation with the surfactant. The diffusion coefficients of PEO coils saturated with SDS scale with molecular weight of the polymer as D~M?app with ?app = 0.60+/-0.02. The value of ?app in this case is different from ?app = 0.55+/-0.01 for the surfactant free coil.

  3. Polyelectrolyte/surfactant mixtures in the bulk and at water/oil interfaces.

    PubMed

    Aidarova, S; Sharipova, A; Krgel, J; Miller, R

    2014-03-01

    Stabilization of emulsions by mixed polyelectrolyte/surfactant systems is a prominent example for the application in modern technologies. The formation of complexes between the polymers and the surfactants depends on the type of surfactant (ionic, non-ionic) and the mixing ratio. The surface activity (hydrophilic-lipophilic balance) of the resulting complexes is an important quantity for its efficiency in stabilizing emulsions. The interfacial adsorption properties observed at liquid/oil interfaces are more or less equivalent to those observed at the aqueous solution/air interface, however, the corresponding interfacial dilational and shear rheology parameters differ quite significantly. The interfacial properties are directly linked to bulk properties, which support the picture for the complex formation of polyelectrolyte/surfactant mixtures, which is the result of electrostatic and hydrophobic interactions. For long alkyl chain surfactants the interfacial behavior is strongly influenced by hydrophobic interactions while the complex formation with short chain surfactants is mainly governed by electrostatic interactions. PMID:24268973

  4. Biocompatible, lactide-based surfactants for the CO2-water interface: high-pressure contact angle goniometry, tensiometry, and emulsion formation.

    PubMed

    Bharatwaj, Balaji; Wu, Libo; da Rocha, Sandro R P

    2007-11-20

    The unique properties of compressed CO2, including its low cost, nontoxicity, easily tunable solvent strength, and favorable transport properties, make it an environmentally attractive alternative to volatile organic solvents. Suitable surface-active species can be utilized to realize the full potential of clean, CO2-based technologies, by helping to overcome the low solubility typically associated with many solutes of interest in CO2. In this work we synthesize and investigate the interfacial activity of a series of nonionic amphiphiles with a biocompatible and biodegradable CO2-phile at both the CO2-water (C|W) and CO2-water-solid (C|W|S) interfaces. We developed a high-pressure pendant drop tensiometer and contact angle goniometer that allows us to measure both tension and contact angle in tandem. The tension of the C|W interface was measured in the presence of the lactide (LA)-based surface active agents with varying molecular weight and hydrophilic-to-CO2-philic ratios. Emulsion studies with an optimum balanced surfactant were performed. The contact angle of water droplets against a silane-modified (hydrophobic) substrate under CO2 atmosphere was also measured in presence of a selected LA-based amphiphile. The results demonstrate that the nonionic copolymers with the biodegradable and biocompatible LA-based group can significantly reduce the tension of the C|W interface. The LA-based surface active species are also capable of forming stable emulsions of water and CO2 and reducing the angle of the three-phase C|W|S contact line. PMID:17944497

  5. Tensiometric and Phase Domain Behavior of Lung Surfactant on Mucus-like Viscoelastic Hydrogels.

    PubMed

    Schenck, Daniel M; Fiegel, Jennifer

    2016-03-01

    Lung surfactant has been observed at all surfaces of the airway lining fluids and is an important contributor to normal lung function. In the conducting airways, the surfactant film lies atop a viscoelastic mucus gel. In this work, we report on the characterization of the tensiometric and phase domain behavior of lung surfactant at the air-liquid interface of mucus-like viscoelastic gels. Poly(acrylic acid) hydrogels were formulated to serve as a model mucus with bulk rheological properties that matched those of tracheobronchial mucus secretions. Infasurf (Calfactant), a commercially available pulmonary surfactant derived from calf lung extract, was spread onto the hydrogel surface. The surface tension lowering ability and relaxation of Infasurf films on the hydrogels was quantified and compared to Infasurf behavior on an aqueous subphase. Infasurf phase domains during surface compression were characterized by fluorescence microscopy and phase shifting interferometry. We observed that increasing the bulk viscoelastic properties of the model mucus hydrogels reduced the ability of Infasurf films to lower surface tension and inhibited film relaxation. A shift in the formation of Infasurf condensed phase domains from smaller, more spherical domains to large, agglomerated, multilayer structures was observed with increasing viscoelastic properties of the subphase. These studies demonstrate that the surface behavior of lung surfactant on viscoelastic surfaces, such as those found in the conducting airways, differs significantly from aqueous, surfactant-laden systems. PMID:26894883

  6. Effects of surfactant on bubble hydrodynamic behavior under flotation-related conditions in wastewater.

    PubMed

    Li, Yanpeng; Zhu, Tingting; Liu, Yanyan; Tian, Ye; Wang, Huanran

    2012-01-01

    Bubble behavior is fundamental to the performance of froth flotation operations used in wastewater treatment processes. To fully understand and characterize bubble behavior under flotation-related conditions in wastewater, the high-speed photographic method has been employed to examine the motion of single bubbles and size distribution of bubble swarms with intermediate sizes ranging from 1 to 4 mm in the presence of surfactants in a laboratory scale flotation column. Both distilled water and synthetic municipal wastewater have been used to make solutions as well as two types of common surfactants. The instantaneous bubble motion has been recorded by a high speed camera. Subsequently, bubble trajectory, dimensions, velocity and distribution have been determined from the recorded frames using the image analysis software. The experimental results show that the addition of surfactant into wastewater has similar effects on bubble hydrodynamic behavior as in pure water (e.g., improving trajectory stabilization, dampening bubble deformation, slowing down terminal velocity, reducing bubble size and increasing the specific surface area of bubble swarm) due to the Marangoni effect. However, it is interesting to note that surfactant effects on single bubble hydrodynamics in wastewater are slightly stronger than those in pure water while surfactant effects on size parameters of bubble swarms in wastewater are significantly stronger than those in pure water. This finding suggests that besides surfactant, inorganic salts present in synthetic wastewater have an important influence on bubble dispersion. PMID:22378003

  7. Phase behavior and molecular thermodynamics of coacervation in oppositely charged polyelectrolyte/surfactant systems: a cationic polymer JR 400 and anionic surfactant SDS mixture.

    PubMed

    Li, Dongcui; Kelkar, Manish S; Wagner, Norman J

    2012-07-17

    Coacervation in mixtures of polyelectrolytes and surfactants with opposite charge is common in nature and is also technologically important to consumer health care products. To understand the complexation behavior of these systems better, we combine multiple experimental techniques to systematically study the polymer/surfactant binding interactions and the phase behavior of anionic sodium dodecyl sulfate (SDS) surfactant in cationic JR 400 polymer aqueous solutions. The phase-behavior study resolves a discrepancy in the literature by identifying a metastable phase between the differing redissolution phase boundaries reported in the literature for the surfactant-rich regime. Isothermal titration calorimetry analyzed within the framework of the simple Satake-Yang model identifies binding parameters for the surfactant-lean phase, whereas a calculation for polymer-bound micelles coexisting with free micelles is analyzed in the surfactant-rich redissolution regime. This analysis provides a preliminary understanding of the interactions governing the observed phase behavior. The resulting thermodynamic properties, including binding constants and the molar Gibbs free energies, enthalpies, and entropies, identify the relative importance of both hydrophobic and electrostatic interactions and provide a first approximation for the corresponding microstructures in the different phases. Our study also addresses the stability and metastability of oppositely charged polyelectrolytes and surfactant mixtures. PMID:22769434

  8. Surfactant induced aggregation behavior of Merocyanine-540 adsorbed on polymer coated positively charged gold nanoparticles.

    PubMed

    Das, K; Uppal, A; Saini, R K

    2016-01-01

    Surfactant induced aggregation behavior of Merocyanine 540 adsorbed on polymer (PDD) coated gold nanoparticles (AuNP) is reported. The absorption band of the dye shifts to higher energy in the presence of free polymer and polymer coated AuNP implying aggregation. Addition of a negatively charged surfactant (SDS) induces multiple bands in the extinction spectrum of the dye adsorbed on nanoparticle surface. The highest (460nm) and lowest (564nm) energy bands of the dye become prominent at 10 and >50?M SDS concentrations respectively (dye: 10?M; AuNP: 100-200pM). Based on earlier results the high energy band is likely to originate from dye aggregates and the low energy band is likely to originate from dye monomers. This is attributed to the interplay between polymer-surfactant and polymer-dye interactions at the AuNP surface. The extinction spectra of dye adsorbed at AuNP surface remain unaffected in the presence of a positively charged (CTAB) or a neutral surfactant (Tx-100), at low surfactant concentrations. However at higher surfactant concentrations (>60?M) dye aggregation takes place which is attributed to dye-surfactant interactions. The fluorescence intensity of the dye quenched significantly but its lifetime increased in the presence of polymer coated AuNP. This is attributed to aggregation and reduction in the photoisomerization rate of the dye adsorbed on AuNP surface. PMID:26233787

  9. Surfactant induced aggregation behavior of Merocyanine-540 adsorbed on polymer coated positively charged gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, K.; Uppal, A.; Saini, R. K.

    2016-01-01

    Surfactant induced aggregation behavior of Merocyanine 540 adsorbed on polymer (PDD) coated gold nanoparticles (AuNP) is reported. The absorption band of the dye shifts to higher energy in the presence of free polymer and polymer coated AuNP implying aggregation. Addition of a negatively charged surfactant (SDS) induces multiple bands in the extinction spectrum of the dye adsorbed on nanoparticle surface. The highest (460 nm) and lowest (564 nm) energy bands of the dye become prominent at 10 and >50 μM SDS concentrations respectively (dye: 10 μM; AuNP: 100-200 pM). Based on earlier results the high energy band is likely to originate from dye aggregates and the low energy band is likely to originate from dye monomers. This is attributed to the interplay between polymer-surfactant and polymer-dye interactions at the AuNP surface. The extinction spectra of dye adsorbed at AuNP surface remain unaffected in the presence of a positively charged (CTAB) or a neutral surfactant (Tx-100), at low surfactant concentrations. However at higher surfactant concentrations (>60 μM) dye aggregation takes place which is attributed to dye-surfactant interactions. The fluorescence intensity of the dye quenched significantly but its lifetime increased in the presence of polymer coated AuNP. This is attributed to aggregation and reduction in the photoisomerization rate of the dye adsorbed on AuNP surface.

  10. Arsenic retention and transport behavior in the presence of typical anionic and nonionic surfactants.

    PubMed

    Liang, Chuan; Wang, Xianliang; Peng, Xianjia

    2016-01-01

    The massive production and wide use of surfactants have resulted in a large amount of surfactant residuals being discharged into the environment, which could have an impact on arsenic behavior. In the present study, the influence of the anionic surfactant sodium dodecyl benzene sulfonate (SDBS) and nonionic surfactant polyethylene glycol octylphenyl ether (Triton X-100) on arsenic behavior was investigated in batch and column tests. The presence of SDBS and Triton X-100 reduced arsenic retention onto ferrihydrite (FH), enhanced arsenic transport through FH coated sand (FH-sand) columns and promoted arsenic release from the FH surface. With coexisting surfactants in solution, the equilibrium adsorbed amount of arsenic on FH decreased by up to 29.7% and the adsorption rate decreased by up to 52.3%. Pre-coating with surfactants caused a decrease in the adsorbed amount and adsorption rate of arsenic by up to 15.1% and 58.3%, respectively. Because of the adsorption attenuation caused by surfactants, breakthrough of As(V) and As(III) with SDBS in columns packed with FH-sand was 23.8% and 14.3% faster than that in those without SDBS, respectively. In columns packed with SDBS-coated FH-sand, transport of arsenic was enhanced to a greater extent. Breakthrough of As(V) and As(III) was 52.4% and 43.8% faster and the cumulative retention amount was 44.5% and 57.3% less than that in pure FH-sand column systems, respectively. Mobilization of arsenic by surfactants increased with the increase of the initial adsorbed amount of arsenic. The cumulative release amount of As(V) and As(III) from the packed column reached 10.8% and 36.0%, respectively. PMID:26899663

  11. Surfactant Behavior and Application with a Brine-Based Remediation Technology

    NASA Astrophysics Data System (ADS)

    Pedit, J. A.; Sanderson, P. M.; Johnson, D. N.; Miller, C. T.

    2006-12-01

    With the general inability of existing groundwater remediation techniques to efficiently remove dense nonaqueous phase liquids (DNAPLs) from the subsurface, a novel strategy known as the Brine-Based Remediation Technology (BBRT), which relies upon a brine barrier to control downward migration of DNAPL after exposure to an interfacial tension reducing surfactant, has been proposed as a potential alternative to currently used remedial strategies. The choice of surfactants is a challenging problem and much effort has been devoted to screening of surfactants for DNAPL systems. However, due to the sensitivity of many of these surfactant solutions to electrolyte concentrations, they are unsuitable for BBRTs due to the presence of a high concentration brine. Therefore, it is necessary to characterize and evaluate potential surfactant formulations that possess favorable phase behavior, do not precipitate in the presence of high concentration brines, perform favorably in subsurface systems, (i.e., low viscosities and limited losses due to sorption), and effectively reduce interfacial tension to levels required for mobilization. Batch reactor studies were performed that identified surfactant formulations that did not precipitate in solutions containing high concentrations of calcium bromide brine and that possessed favorable phase behavior. The best behaved formulations contained a mixture of a nonionic surfactant, Triton X-100, and an anionic surfactant, Aerosol MA-80. Sorption of one of these mixtures was evaluated in experiments conducted in batch and one-dimensional column reactors. The ability of the mixture to mobilize tetrachloroethylene was evaluated in column experiments. The mixture was used in a BBRT demonstration at the Dover National Test Site in Dover, DE, where a test cell was contaminated with tetrachloroethylene.

  12. Visible light-induced surfactant-free emulsion polymerization using camphorquinone/tertiary amine as the initiating system for the synthesis of amine-functionalized colloidal nanoparticles.

    PubMed

    Ratanajanchai, Montri; Tanwilai, Dolphawan; Sunintaboon, Panya

    2013-11-01

    A visible light-induced surfactant-free emulsion polymerization (SFEP) was developed as an alternative pathway for the preparation of amine-functionalized nanoparticles by using the photo-initiating system consisting of camphorquinone coupled with tertiary amine (CQ/3-amine). Water-soluble macromolecules containing 3-amines were used as the sources of 3-amine species, which not only function with CQ to generate initiating free radicals, but also provide colloidal stabilization to the resulting colloidal products. The prepared nanoparticles showed uniformed size distribution and good colloidal stability with positively charged surface. For SFEP induced by CQ/polyethyleneimine (PEI) photo-redox couple, the polymerization of methyl methacrylate (MMA) was affected by both light intensity and initiator concentration. In addition, to obtain higher solid content products, the weight ratio of PEI:MMA=1:4 was employed. Finally, an opportunity for immobilizing various amine containing polymers by our photo-induced SFEP was evaluated. The achievement of this SFEP also depended on 3-amine content of the macromolecules used. PMID:23978285

  13. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants

    PubMed Central

    Bouchal, Roza; Hamel, Abdellah; Hesemann, Peter; In, Martin; Prelot, Bénédicte; Zajac, Jerzy

    2016-01-01

    Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group. PMID:26861309

  14. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants.

    PubMed

    Bouchal, Roza; Hamel, Abdellah; Hesemann, Peter; In, Martin; Prelot, Bénédicte; Zajac, Jerzy

    2016-01-01

    Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of ¹H and (13)C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group. PMID:26861309

  15. Growth Behavior, Geometrical Shape, and Second CMC of Micelles Formed by Cationic Gemini Esterquat Surfactants.

    PubMed

    Bergstrm, L Magnus; Tehrani-Bagha, Alireza; Nagy, Gergely

    2015-04-28

    Micelles formed by novel gemini esterquat surfactants have been investigated with small-angle neutron scattering (SANS). The growth behavior of the micelles is found to differ conspicuously depending on the length of the gemini surfactant spacer group. The gemini surfactant with a long spacer form rather small triaxial ellipsoidal tablet-shaped micelles that grow weakly with surfactant concentration in the entire range of measured concentrations. Geminis with a short spacer, on the other hand, form weakly growing oblates or tablets at low concentrations that start to grow much more strongly into polydisperse rodlike or wormlike micelles at higher concentrations. The latter behavior is consistent with the presence of a second CMC that marks the transition from the weakly to the strongly growing regime. It is found that the growth behavior in terms of aggregation number as a function of surfactant concentration always appear concave in weakly growing regimes, while switching to convex behavior in strongly growing regimes. As a result, we are able to determine the second CMC of the geminis with short spacer by means of suggesting a rather precise definition of it, located at the point of inflection of the growth curve that corresponds to the transition from concave to convex growth behavior. Our SANS results are rationalized by comparison with the recently developed general micelle model. In particular, this theory is able to explain and reproduce the characteristic appearances of the experimental growth curves, including the presence of a second CMC and the convex strongly growing regime beyond. By means of optimizing the agreement between predictions from the general micelle model and results from SANS experiments, we are able to determine the three bending elasticity constants spontaneous curvature, bending rigidity, and saddle-splay constant for each surfactant. PMID:25835031

  16. pH-Sensitive surfactants from lysine: assessment of their cytotoxicity and environmental behavior.

    PubMed

    Colomer, Aurora; Pinazo, Aurora; Garca, Maria Teresa; Mitjans, Montserrat; Vinardell, M Pilar; Infante, Maria Rosa; Martnez, Vernica; Prez, Lourdes

    2012-04-10

    The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna . All surfactants yielded EC(50) values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO(2) headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as "readily biodegradable compounds". PMID:22428847

  17. UHPH-processed O/W submicron emulsions stabilised with a lipid-based surfactant: physicochemical characteristics and behaviour on in vitro TC7-cell monolayers and ex vivo pig's ear skin.

    PubMed

    Benzaria, Amal; Grcia-Juli, Alvar; Picart-Palmade, Latitia; Hue, Pauline; Chevalier-Lucia, Dominique; Marti-Mestres, Gilberte; Hodor, Nadge; Dumay, Eliane

    2014-04-01

    Submicron O/W emulsions formulated with sesame oil plus a lipid-base surfactant, and with or without retinyl acetate (RAC) as a model hydrophobic biomolecule, were prepared by single-pass homogenisation at ? 200 MPa (UHPH) and an initial fluid temperature (Tin) of 24C. These emulsions were characterised by a monomodal distribution (peak maximum at 260 nm) and a 2-year potential physical stability at ambient temperature. Submicron droplets were investigated in term of (i) physicochemical characteristics (size distribution curves; ?-potential value), and (ii) impact on TC7-cell monolayers (MTT-assay and cell LDH-leakage). Submicron droplets RAC did not affect or increased significantly (p=0.05) TC7-cell metabolic activity after 4-24h of exposure indicating absence of cellular impairment, except when high amounts of droplets were deposed on TC7-cells. Indeed, the lipid-based surfactant deposed alone on TC7-cells at high concentration, induced some significant (p=0.05) cell LDH-leakage, and therefore cell-membrane damage. Cellular uptake experiments revealed a significant (p=0.05) time-dependent internalisation of RAC from submicron droplets, and cellular transformation of RAC into retinol. The turnover of RAC into retinol and therefore RAC bioaccessibility appeared faster for RAC-micelles of similar size-range and prepared at atmospheric pressure with polysorbate 80, than for submicron O/W emulsions. Permeation experiments using pig's ear skin mounted on Franz-type diffusion cells, revealed RAC in dermis-epidermis, in significantly (p=0.05) higher amounts for submicron than coarse pre-emulsions. However, RAC amounts remained low for both emulsion-types and RAC was not detected in the receptor medium of Franz-type diffusion cells. PMID:24480065

  18. Stability criteria for emulsions

    NASA Astrophysics Data System (ADS)

    Bibette, J.; Morse, D. C.; Witten, T. A.; Weitz, D. A.

    1992-10-01

    The coalescence of monodisperse silicone oil-in-water emulsions stabilized with sodium dodecyl sulfate has been studied. We report the existence of a sharp destabilization threshold, controlled by surfactant chemical potential, osmotic pressure, and droplet diameter, at which the rate of coalescence increases dramatically. We present evidence that the stability of the emulsions can be characterized by two microscopic parameters: a minimum stable value of the surfactant chemical potential and a maximum value of the pressure exerted upon a droplet-droplet interface.

  19. Condensation and decondensation of DNA by cationic surfactant, spermine, or cationic surfactant-cyclodextrin mixtures: macroscopic phase behavior, aggregate properties, and dissolution mechanisms.

    PubMed

    Carlstedt, Jonas; Lundberg, Dan; Dias, Rita S; Lindman, Bjrn

    2012-05-29

    The macroscopic phase behavior and other physicochemical properties of dilute aqueous mixtures of DNA and the cationic surfactant hexadecyltrimethylammounium bromide (CTAB), DNA and the polyamine spermine, or DNA, CTAB, and (2-hydroxypropyl)-?-cyclodextrin (2HP?CD) were investigated. When DNA is mixed with CTAB we found, with increasing surfactant concentration, (1) free DNA coexisting with surfactant unimers, (2) free DNA coexisting with aggregates of condensed DNA and CTAB, (3) a miscibility gap where macroscopic phase separation is observed, and (4) positively overcharged aggregates of condensed DNA and CTAB. The presence of a clear solution beyond the miscibility gap cannot be ascribed to self-screening by the charges from the DNA and/or the surfactant; instead, hydrophobic interactions among the surfactants are instrumental for the observed behavior. It is difficult to judge whether the overcharged mixed aggregates represent an equilibrium situation or not. If the excess surfactant was not initially present, but added to a preformed precipitate, redissolution was, in consistency with previous reports, not observed; thus, kinetic effects have major influence on the behavior. Mixtures of DNA and spermine also displayed a miscibility gap; however, positively overcharged aggregates were not identified, and redissolution with excess spermine can be explained by electrostatics. When 2HP?CD was added to a DNA-CTAB precipitate, redissolution was observed, and when it was added to the overcharged aggregates, the behavior was essentially a reversal of that of the DNA-CTAB system. This is attributed to an effectively quantitative formation of 1:1 2HP?CD-surfactant inclusion complexes, which results in a gradual decrease in the concentration of effectively available surfactant with increasing 2HP?CD concentration. PMID:22546152

  20. Phase behavior, formation, and rheology of cubic phase and related gel emulsion in Tween 80/water/oil systems.

    PubMed

    Alam, Mohammad Mydul; Ushiyama, Kousuke; Aramaki, Kenji

    2009-01-01

    We investigated the phase behavior, formation, and rheology of the cubic phase (I(1)) and related O/I(1) gel emulsion in water/Tween 80/oil systems using squalane, liquid paraffin (LP), and decane as oil components. In the phase behavior study, the phase sequences were similar for squalane and LP systems, while a lamellar liquid crystal (L(alpha)) was observed for decane system. In all the systems the addition of oil to W(m) or H(1) phase induced the I(1) phase, which can solubilize some amounts of oil followed by the appearance of I(1)+O phase. The formation of the O/I(1) gel emulsion has been studied at a fixed w/s (50/50) and we found that 30 wt% decane, 70 wt% squalane, and 60 wt% LP can form the gel emulsion. The water/Tween 80/squalane system has been taken as a model system to study viscoelastic properties of the I(1) phase and O/I(1) gel emulsion. The I(1) phase shows a typical hard gel cubic structure under the frequency and the values of the complex viscosity, /eta*/ and the elastic modulus, G ' increase with the addition of squalane, which could be due to the neighboring micellar interaction. On the other hand, the decreasing values of the viscoelastic parameters in the O/I(1) gel emulsion simply relate to the volume fraction of the I(1) phase in the system. PMID:19491531

  1. Re-entrant phase behavior of a concentrated anionic surfactant system with strongly binding counterions.

    PubMed

    Ghosh, Sajal Kumar; Rathee, Vikram; Krishnaswamy, Rema; Raghunathan, V A; Sood, A K

    2009-08-01

    The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (Nc) --> isotropic (I) --> nematic of disklike micelles (N(D)) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (I') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N(C) to N(D) on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N() and N(D) nematic phases in step shear experiments, they were characterized to be tumbling and flow aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions. PMID:19301881

  2. Role of poly(ethylene glycol) in surfactant-free emulsion polymerization of styrene and methyl methacrylate.

    PubMed

    Shi, Yiming; Shan, Guorong; Shang, Yue

    2013-03-01

    Through zeta potential and surface tension measurements and a series of polymerization experiments, the role of poly(ethylene glycol) (PEG) in the process of surfactant-free polymerization of styrene (St)/methyl methacrylate (MMA) has been investigated experimentally. Nanoscale and stable copolymer particles were formed after an abnormal process, in which the nucleation and growth of particles was different from that in previously proposed mechanisms. It has been observed that PEG can exist in both the monomer and the aqueous phases at high temperature. PEG in the aqueous phase could form copolymer particles with a loose structure, making them prone to enter the monomer phase. Entry of these copolymer particles into the monomer phase would introduce excess PEG. From the ternary phase diagram, a solubility curve could be delineated in the ternary system of PEG/monomer/copolymer. The system used the ternary solubility property to regenerate copolymer particles in the monomer phase, which maintained their morphology until the end of the polymerization. At the end, consumption of the monomer resulted in the volume contraction of the particles, and the surface potential increased. This increasing potential is a driving force to prevent particles from stacking, leading to the formation of nanoscale and stable particles. PMID:23432523

  3. Investigation of colloidal properties of modified silicone polymers emulsified by non-ionic surfactants.

    PubMed

    Purohit, Parag S; Kulkarni, Ravi; Somasundaran, P

    2012-10-01

    Functionalized silicones are a unique class of hybrid materials due to their simultaneous hydrophobic-oleophobic properties, which results in applications in a variety of surface modification techniques. Prior research has shown that changes in surface charge and turbidity of modified silicone emulsions as a function of pH have a marked effect on their performance in coating applications. The emulsion droplet size is also believed to play significant role in such coating applications. In this work, modified silicone polymer emulsions stabilized by non-ionic surfactants were studied using dynamic light scattering (dilute) and electroacoustic (concentrated) spectroscopy to monitor the emulsion droplet size. The dilute and concentrated regime studies showed the emulsion droplet to be in nanometer range with no appreciable change in size as a function of pH. Electroacoustic studies showed a small fraction of droplets to be present in the micron size range. The emulsions were examined using Cryo-TEM technique, and the effect of pH and dilution on hydrophobicity of nanodomains was studied by employing fluorescence spectroscopy. It is shown from pyrene excimer behavior that both the dilution and pH have an effect on emulsion stability with a presence of critical surfactant concentration after which the emulsion was destabilized. It is proposed that the emulsion stability characteristics and the particle size distribution both play a significant role in their ability to impart desired macro and nano surface properties to treated substrates through electrostatic interactions and selective binding. PMID:22796069

  4. Aggregation behavior of a fluorinated surfactant in 1-butyl-3-methylimidazolium ionic liquids.

    PubMed

    Li, Na; Zhang, Shaohua; Zheng, Liqiang; Wu, Jiapei; Li, Xinwei; Yu, Li

    2008-10-01

    The aggregation behavior of a fluorinated surfactant (FC-4) was studied by surface tension measurements in 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF 4]) and hexafluorophosphate ([bmim][PF 6]) at various temperatures. A series of surface properties, including adsorption efficiency (p C 20), effectiveness of surface tension reduction (Pi CAC), maximum surface excess concentration (Gamma max) and minimum surface area/molecule (A(min)) at the air-water interface were estimated. By comparing the fluorinated surfactant with traditional surfactants, we deduced that the surface activity of the fluorinated surfactant in ILs was superior to the activity of other surfactants. From the CAC values and their temperature dependence, we estimated the thermodynamic parameters of aggregate formation. The thermodynamic parameters indicate that the aggregate of FC-4 in [bmim][BF 4] is a traditional micelle, while the aggregate of FC-4 in [bmim][PF 6] is nanodroplets composed of FC-4 molecules segregated from the solution phase. These results were further confirmed by (1)H NMR measurements. PMID:18783195

  5. Transitional phase inversion of emulsions monitored by in situ near-infrared spectroscopy.

    PubMed

    Charin, R M; Nele, M; Tavares, F W

    2013-05-21

    Water-heptane/toluene model emulsions were prepared to study emulsion transitional phase inversion by in situ near-infrared spectroscopy (NIR). The first emulsion contained a small amount of ionic surfactant (0.27 wt % of sodium dodecyl sulfate) and n-pentanol as a cosurfactant. In this emulsion, the study was guided by an inversion coordinate route based on a phase behavior study previously performed. The morphology changes were induced by rising aqueous phase salinity in a "steady-state" inversion protocol. The second emulsion contained a nonionic surfactant (ethoxylated nonylphenol) at a concentration of 3 wt %. A continuous temperature change induced two distinct transitional phase inversions: one occurred during the heating of the system and another during the cooling. NIR spectroscopy was able to detect phase inversion in these emulsions due to differences between light scattered/absorbed by water in oil (W/O) and oil in water (O/W) morphologies. It was observed that the two model emulsions exhibit different inversion mechanisms closely related to different quantities of the middle phases formed during the three-phase behavior of Winsor type III. PMID:23656562

  6. Isotachophoresis with emulsions.

    PubMed

    Goet, G; Baier, T; Hardt, S; Sen, A K

    2013-01-01

    An experimental study on isotachophoresis (ITP) in which an emulsion is used as leading electrolyte (LE) is reported. The study aims at giving an overview about the transport and flow phenomena occurring in that context. Generally, it is observed that the oil droplets initially dispersed in the LE are collected at the ITP transition zone and advected along with it. The detailed behavior at the transition zone depends on whether or not surfactants (polyvinylpyrrolidon, PVP) are added to the electrolytes. In a system without surfactants, coalescence is observed between the droplets collected at the ITP transition zone. After having achieved a certain size, the droplets merge with the channel walls, leaving an oil film behind. In systems with PVP, coalescence is largely suppressed and no merging of droplets with the channel walls is observed. Instead, at the ITP transition zone, a droplet agglomerate of increasing size is formed. In the initial stages of the ITP experiments, two counter rotating vortices are formed inside the terminating electrolyte. The vortex formation is qualitatively explained based on a hydrodynamic instability triggered by fluctuations of the number density of oil droplets. PMID:24404037

  7. Effect of Water Content on the Behavior of Surfactants and Hydrophobic Organic Compounds in the Immobilization Zone for Contaminants Retardation

    SciTech Connect

    Park, In-Sun; Park, Jae-Woo; Cho, Jong Soo; Hwang, Inseong

    2003-03-26

    An immobilization zone can be constructed by modifying soils in the vadose zone with surfactants and, thus, can be used to promote retardation of organic contaminants in the subsurface. Column experiments were conducted to investigate the behavior of surfactants and organic contaminants in unsaturated and saturated conditions with different water contents (25%, 50%, 75%, 100%). The transport and sorption behavior of two surfactants tested (monoalkylated disulfonated diphenyl oxide, dialkylated disulfonated diphenyl oxide) in the columns containing an aluminum oxide were similar under the conditions with different water contents. However, transport of a model organic compound (naphthalene) was retarded as the water content decreased by enhanced partitioning of the compound into the surfactants that were sorbed on the aluminum oxide. This suggests that the immobilization method could well be applied to vadose zone. A transport model, CXTFIT 2.1, was also used to evaluate the behavior of the surfactants and naphthalene.

  8. Desorption behavior of surfactant mixtures at the alumina-water interface

    SciTech Connect

    Huang, L.; Shrotri, S.; Somasundaran, P.

    1997-08-01

    The desorption behavior of cationic-nonionic surfactant mixtures, tetradecyltrimethylammonium chloride (TTAC) and pentadecylethoxylated nonyl phenol (NP-15), at the alumina-water interface was studied. It has been found that while nonionic NP-15 itself does not adsorbed at alumina-water interface, it will do so with cationic TTAC preadsorbed at the interface. During the desorption process, however, the presence of NP-15 in the system was discovered to cause desorption of TTAC. This is attributed to changes in equilibrium among surfactant monomers, mixed micelles, hemimicelles, and solloids upon the addition of NP-15: the cationic TTAC species at the interface is solubilized in NP-15 rich micelles in the bulk and perturb the equilibrium. This in turn is proposed to cause the desorption of NP-15 significant. The desorption behavior in the mixed surfactant system depends on the mixing ratio of surfactants in the mixtures. In nonionic NP-15 rich mixtures, negative hysteresis is observed for the desorption of both TTAC and NP-15. In cationic TTAC rich mixtures, the effect of NP-15 on the desorption of TTAC is limited and the desorption of TTAC is similar to that in single TTAC system; in this case some positive hysteresis is observed for both TTAC and NP-15.

  9. O/W nano-emulsion formation using an isothermal low-energy emulsification method in a mixture of polyglycerol polyricinoleate and hexaglycerol monolaurate with glycerol system.

    PubMed

    Wakisaka, Satoshi; Nishimura, Takahisa; Gohtani, Shoichi

    2015-01-01

    We investigated how phase behavior changes by replacing water with glycerol in water/mixture of polyglycerol polyricinoleate (PGPR) and hexaglycerol monolaurate (HGML) /vegetable oil system, and studied the effect of glycerol on o/w nano-emulsion formation using an isothermal low-energy method. In the phase behavior study, the liquid crystalline phase (Lc) + the sponge phase (L3) expanded toward lower surfactant concentration when water was replaced with glycerol in a system containing surfactant HLP (a mixture of PGPR and HGML). O/W nano-emulsions were formed by emulsification of samples in a region of Lc + L3. In the glycerol/surfactant HLP/vegetable oil system, replacing water with glycerol was responsible for the expansion of a region containing Lc + L3 toward lower surfactant concentration, and as a result, in the glycerol/surfactant HLP/vegetable oil system, the region where o/w nano-emulsions or o/w emulsions could be prepared using an isothermal low-energy emulsification method was wide, and the droplet diameter of the prepared o/w emulsions was also smaller than that in the water/surfactant HLP/vegetable oil system. Therefore, glycerol was confirmed to facilitate the preparation of nano-emulsions from a system of surfactant HLP. Moreover, in this study, we could prepare o/w nano-emulsions with a simple one-step addition of water at room temperature without using a stirrer. Thus, the present technique is highly valuable for applications in several industries. PMID:25766932

  10. Surfactant development for enhanced oil recovery. Seventh quarterly report, July--September 1995

    SciTech Connect

    1996-06-01

    Aqueous dihexadecyldimethylammonium bromide (DHDAB) surfactant was used to form an emulsion with samples of crude oil (Burbank Crude Oil) supplied by Phillips Petroleum Company. Influence of the surfactant concentration in the uptake of the oil in the aqueous phase was studied. It was observed that as weight of the surfactant solubilized in the oil-water system increases the volume of oil solubilized in the aqueous phase increases. Viscosity of the emulsion was also observed to increase with an increase in the weight of surfactant added. A co-surfactant, n-butyl alcohol was added and its effect was to reverse the observation described above. The uptake of aqueous surfactant into the oil phase was very evident. Salinity scan of this system showed that the addition of sodium chloride, NaCl, produced a middle phase whose volume increased with an increase in the amount of salt added. Also there was observed, a remarkable high salinity tolerance. Rheology of the emulsion showed typical non-Newtonian behavior. The emulsion was observed to exhibit a pseudoplastic profile. The shear-thinning profile was evident from the observed viscosity-shear rate experiment.

  11. Using tracer technique to study the flow behavior of surfactant foam.

    PubMed

    Tsai, Yih-Jin; Chou, Feng-Chih; Cheng, Shin-Jen

    2009-07-30

    Surfactant foam was used to remove absorbed hydrocarbons from soils. The nature and extent of the foam pathway decide the efficiency of this technology. The characteristics and behavior of foam flow are difficult to visually observe. In this study, laboratory sandbox experiments were performed to estimate the flow behavior of surfactant foam and thus elucidate the properties and flow behavior of surfactant foam. To quantitatively determine the distribution of foam and evaluate accurately the flow field of foam in the soil, this study designed a special technique, applying micro-scale iron powder as a tracer. The foam generated with 4% (w/v) mixed solution of Span 60 and sodium dodecyl sulfate (SDS) showed an excellent stability and quality, which made it particularly apt for this study. The results indicated that the foam flows through the zone above the clay planes and also flows through the zone between the clay planes. The heterogeneous sand does not inhibit the invasion of foam flow. Moreover, the results of tracer tests and photographs of the foam distributions in sandbox were identical in the behavior of foam flow. This knowledge is valuable for providing insight into the foam remediation of contaminated soil. PMID:19157697

  12. Pressure effects on the phase behavior of a propylene/water/surfactant mixture

    SciTech Connect

    Beckman, E.J. ); Smith, R.D. )

    1991-04-18

    The phase behavior of the propylene/water/Tergitol 7 surfactant ternary mixture has been examined as a function of pressure at 25.5C. Unlike conventional liquid alkane based systems, a three-phase region is obtained in the absence of added electrolyte. This is likely due to a higher upper critical solution temperature for the propylene/Tergitol 7 binary mixture, in comparison to that for mixtures of various anionic surfactants and liquid alkanes. The effect of increasing pressure is similar to the effect of decreasing temperature or increasing electrolyte concentration, according to the Kahlweit phenomenological model for amphiphile/water/oil phase behavior (as well as models describing effects on interfacial curvature, such as the R ratio). The conductivities of the nominally propylene-continuous upper phases in the systems examined are high enough to suggest electrical percolation, implying the presence of significant volume fractions of micelles in these phases.

  13. Investigating the Effect of Particle Size on Pulmonary Surfactant Phase Behavior

    PubMed Central

    Kodama, AkihisaT.; Kuo, Chin-Chang; Boatwright, Thomas; Dennin, Michael

    2014-01-01

    We study the impact of the addition of particles of a range of sizes on the phase transition behavior of lung surfactant under compression. Charged particles ranging from micro- to nanoscale are deposited on lung surfactant films in a Langmuir trough. Surface area versus surface pressure isotherms and fluorescent microscope observations are utilized todetermine changes in the phase transition behavior. We find that the deposition of particles close to 20nm in diameter significantly impacts the coexistence of the liquid-condensed phase and liquid-expanded phase. This includes morphological changes of the liquid-condensed domains and the elimination of the squeeze-out phase in isotherms. Finally, a drastic increase of the domain fraction of the liquid-condensed phase can be observed for the deposition of 20-nm particles. As the particle size is increased, we observe a return to normal phase behavior. The net result is the observation of a critical particle size that may impact the functionality of the lung surfactant during respiration. PMID:25296309

  14. Formation of thermally reversible optically transparent emulsion-based delivery systems using spontaneous emulsification.

    PubMed

    Saberi, Amir Hossein; Fang, Yuan; McClements, David Julian

    2015-12-01

    Transparent emulsion-based delivery systems suitable for encapsulating lipophilic bioactive agents can be fabricated using low-energy spontaneous emulsification methods. These emulsions are typically fabricated from non-ionic surfactants whose hydrophilic head groups are susceptible to dehydration upon heating. This phenomenon may promote emulsion instability due to enhanced droplet coalescence at elevated temperatures. Conversely, the same phenomenon can be used to fabricate optically transparent emulsions through the phase inversion temperature (PIT) method. The purpose of the current study was to examine the influence of oil phase composition and surfactant-to-oil ratio on the thermal behavior of surfactant-oil-water systems containing limonene, medium chain triglycerides (MCT), and Tween 60. Various types of thermal behavior (turbidity versus temperature profiles) were exhibited by these systems depending on their initial composition. For certain compositions, thermoreversible emulsions could be formed that were opaque at high temperatures but transparent at ambient temperatures. These systems may be particularly suitable for the encapsulation of bioactive agents in applications where optical clarity is important. PMID:26431057

  15. Surfactant-free alternative fuel: Phase behavior and diffusion properties.

    PubMed

    Kayali, Ibrahim; Jyothi, Chemboli K; Qamhieh, Khawla; Olsson, Ulf

    2016-02-01

    Phase behavior of the three components, 1-propanol, water and oil is studied at 10, 25, and 40C. Biodiesel, limonene and diesel are used as oil phases. NMR self-diffusion measurements are performed to investigate the microstructure of the one-phase regions. Tie lines in the two-phase regions are determined both by proton NMR analysis and compared with theoretical calculations. NMR self-diffusion results for the different components in these systems do not show any sign of confinement or obstructions, demonstrating these mixtures to be structureless solutions. A good agreement between the experimental and calculated phase behavior is obtained. The determined tie lines in the two-phase regions show higher affinity of 1-propanol to water than to oil. PMID:26520824

  16. Scaling behavior of delayed demixing, rheology, and microstructure of emulsions flocculated by depletion and bridging.

    PubMed

    Blijdenstein, Theo B J; van der Linden, Erik; van Vliet, Ton; van Aken, George A

    2004-12-21

    This paper describes an experimental comparison of microstructure, rheology, and demixing of bridging- and depletion-flocculated oil-in-water emulsions. Confocal scanning laser microscopy imaging showed that bridging-flocculated emulsions were heterogeneous over larger length scales than depletion-flocculated emulsions. As a consequence, G' as determined from diffusing wave spectroscopy (DWS) corresponded well with G' as measured macroscopically for the depletion-flocculated emulsions, but this correspondence was not found for the bridging-flocculated emulsions. The heterogeneity of bridging-flocculated emulsions was confirmed by DWS-echo measurements, indicating that their structure breaks up into large fragments upon oscillatory shear deformation larger than 1%. Depletion- and bridging-flocculated emulsions showed a different scaling of the storage modulus with the volume fraction of oil and a difference in percolation threshold volume fraction. These differences will be discussed on the basis of the two types of droplet-droplet interactions studied. Gravity-induced demixing occurred in both emulsions, but the demixing processes differed. After preparation of bridging-flocculated emulsions, serum immediately starts to separate, whereas depletion-flocculated systems at polysaccharide concentrations in the overlap regime usually showed a delay time before demixing. The delay time was found to scale with the network permeability, B; the viscosity, eta, of the aqueous phase; and the density difference between oil and water, Deltarho, as tdelay approximately B(-1)etaDeltarho(-1). The results are in line with the mechanism proposed by Starrs et al. (J. Phys.: Condens. Matter 2002, 14, 2485-2505), where erosion of the droplet network leads to widening of the channels within the droplet networks, facilitating drainage of liquid. PMID:15595753

  17. Behavior of DNAPL mixture of organometallic and chlorinated solvent in the presence of surfactants and alcohols as density modifying agents.

    PubMed

    Talawat, Jaruwan; Sabatini, David A; Tongcumpou, Chantra

    2013-01-01

    This work evaluates the behavior of surfactant and alcohols in combination with a mixture of tributyltinchloride (TBT) and tetrachloroethylene (PCE) with the goal of modifying the mixed oil from being a dense non-aqueous phase liquid (DNAPL) to a light non-aqueous phase liquid (LNAPL). Phase behavior of the mixed oil was studied under various combinations of surfactant, alcohol, and salinity. Phase density conversion was examined using pseudo-ternary phase diagrams constructed between the mixed oil, surfactant solution (4wt%), and two types of alcohols (n-butyl alcohol (BuOH) and tert-butyl alcohol (TBA)). Aqueous phase solubilization and oil phase density modification were studied at varying alcohol to surfactant (A/S) ratios. The results showed that the optimum surfactant system was sodium dihexylsulfosuccinate (SDHS) and hexadecyl diphenyloxidedisulfonate (C16DPDS) (3.6wt% and 0.4wt%, respectively) with salt (NaCl) of 3wt%. From pseudo-ternary phase diagrams, BuOH was found to produce a larger LNAPL region than TBA. From solubilization studies, the surfactant system plus either TBA or BuOH caused PCE preferential solubilization and this preference was more pronounced at higher total surfactant concentration in the system with TBA addition. In terms of density modification, BuOH produced lower oil density than TBA at high A/S ratio. This phase behavior knowledge can be used to optimize site remediation of organometallic DNAPLs. PMID:23947699

  18. Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.

    PubMed

    Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J

    2015-12-01

    Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration. PMID:26540438

  19. Thermotropic behavior of asymmetric chain length catanionic surfactants: the influence of the polar head group.

    PubMed

    Silva, Bruno F B; Marques, Eduardo F

    2005-10-01

    Catanionic surfactants formed by the pairing of two ionic amphiphilic chains of opposite charge are now recognized as an important class of amphiphiles. Many aspects of their phase behavior have yet to be explored. In this work, two homologous series of catanionic surfactants were synthesized, based on the cationic headgroups trimethylammonium and pyridinium. Within each series, the headgroup and chain length of the cationic counterpart remains constant while for the anionic counterpart the headgroup is varied, while its alkyl chain length is also kept constant. Thus, one can directly monitor the influence of headgroup chemistry on the thermal behavior of these compounds. Differential scanning calorimetry (DSC) and polarizing light microscopy show that these compounds bear a rich and often complex thermotropic behavior, with the headgroup chemistry in some instances having a rather dramatic influence on phase behavior. Several liquid crystalline phases appear between the solid crystalline phase and the isotropic liquid phase. A qualitative correlation between the observed thermotropic behavior and the chemical nature of headgroup is presented. PMID:15936766

  20. Microemulsion formation and phase behavior of anionic and cationic surfactants with sodium dodecyl sulfate and cetyltrimethylammonium bromide

    SciTech Connect

    Li, X.; Lin, E.; Zhao, G.; Xiao, T.

    1996-12-01

    The phase behavior and solubilization of multiphase microemulsions in mixed anionic-cationic surfactant systems were studied for fixed ratio of water-to-oil and surfactant-to-alcohol. In the mixed surfactants (sodium dodecyl sulfate + cetyltrimethylammonium bromide)/heptane/alcohol/water systems, microemulsions and birefringement phases are formed by adjusting the surfactant ratio {epsilon} and the cationic weight fraction {delta}. The bicontinuous (or w/o microemulsion) {yields} birefringement o/w microemulsion transition takes place and microemulsion domain enlarges with increasing {epsilon}. The optimum surfactant concentration {gamma} increases and the corresponding optimum {delta} decreases with increasing {epsilon} and both of them decrease with increasing the alcohol chain length butanol to hexanol. The birefringent region shrinks rapidly with increasing alcohol and/or CTAB weight fractions in total surfactant concentration. Conductivity measurements have been performed in the single-phase region of the system containing mixed surfactants and alcohols at 25 C. The conductivity results indicate where a transition takes place and which of these different types of phase structures may be in the single-phase of the system containing anionic-cationic mixed surfactants.

  1. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    P. Somasundaran

    2004-11-20

    The aim of the project is to develop a knowledge base to help the design of enhanced processes for mobilizing and extracting untrapped oil. We emphasize evaluation of novel surfactant mixtures and obtaining optimum combinations of the surfactants for efficient chemical flooding EOR processes. In this regard, an understanding of the aggregate shape, size and structure is crucial since these properties govern the crude oil removal efficiency. During the three-year period, the adsorption and aggregation behavior of sugar-based surfactants and their mixtures with other types of surfactants have been studied. Sugar-based surfactants are made from renewable resources, nontoxic and biodegradable. They are miscible with water and oil. These environmentally benign surfactants feature high surface activity, good salinity, calcium and temperature tolerance, and unique adsorption behavior. They possess the characteristics required for oil flooding surfactants and have the potential for replacing currently used surfactants in oil recovery. A novel analytical ultracentrifugation technique has been successfully employed for the first time, to characterize the aggregate species present in mixed micellar solution due to its powerful ability to separate particles based on their size and shape and monitor them simultaneously. Analytical ultracentrifugation offers an unprecedented opportunity to obtain important information on mixed micelles, structure-performance relationship for different surfactant aggregates in solution and their role in interfacial processes. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. Four softwares: OptimaTM XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The results have been compared to that from Light Scattering. Based on the tests, Svedberg and SEDFIT analysis were chosen for further studies.

  2. Influence of surfactant amphiphilicity on the phase behavior of IL-based microemulsions.

    PubMed

    Harrar, Agnes; Zech, Oliver; Klaus, Angelika; Bauduin, Pierre; Kunz, Werner

    2011-10-15

    In this work, we report on the phase behavior of 1-ethyl-3-methyl-imidazolium-ethylsulfate ([emim][etSO(4)])/limonene/polyethylene glycol tert-octylphenyl ether (Triton X-114 or TX-114) microemulsions as a function of ionic liquid (IL) content and temperature. Phase diagrams, conductivity measurements, and small angle X-ray scattering (SAXS) experiments will be presented. A hydrophilic IL, instead of water is used with the goal to enlarge the temperature range on which stable microemulsions can be formed. Indeed, the system shows remarkably large temperature stability, in particular down to -35 °C. We will emphasize on a comparison with a recently published work about microemulsions composed of [emim][etSO(4)], limonene, and Triton X-100 that to some extent are stable at temperatures well below the freezing point of water. The key parameter responsible for the difference in phase behavior, microstructure, and temperature stability is the average repeating number of ethylene oxide units in the surfactant head group, which is smaller for Triton X-114 compared to Triton X-100. Among the fundamental interest, how the amphiphilicity of the surfactant influences the phase diagram and phase behavior of IL-based microemulsions, the exchange of Triton X-100 by Triton X-114 results in one main advantage: along the experimental path the temperature where phase segregation occurs is significantly lowered leading to single phase microemulsions that exist at temperatures beneath 0 °C. PMID:21784427

  3. Unique aggregation behavior of a carboxylate gemini surfactant with a long rigid spacer in aqueous solution.

    PubMed

    Xie, Dan Hua; Zhao, Jianxi

    2013-01-15

    A new gemini surfactant with a long and rigid spacer, O,O'-bis(sodium 2-dodecylcarboxylate)-p-dibenzenediol (referred to as C(12)φ(2)C(12)), has been synthesized. Its aggregation in aqueous solution has been studied using static and dynamic light scattering measurements. The homologue O,O'-bis(sodium 2-dodecylcarboxylate)-p-benzenediol (C(12)φC(12)) whose spacer only contains a single phenyl group was also examined for comparison. Dynamic light scattering (DLS) revealed the unexpected existence of large aggregates in the solution of C(12)φ(2)C(12). However, C(12)φC(12) showed rather normal aggregation behavior. Both the results of intrinsic viscosity and light scattering demonstrated a loose structure for the large aggregates of C(12)φ(2)C(12). This behavior was attributed to an extending configuration of C(12)φ(2)C(12) with the two alkyl tails stretching toward the solution due to the rigidity of the long spacer. The large network-like aggregate formation was an inevitable outcome of spontaneously reducing the energy of the system. Freeze-fracture transmission electron microscopy (FF-TEM) images and (1)H NMR measurements supported this speculation. Due to the columnar-like molecular geometry, the large network-like aggregates were directly transformed into rodlike micelles with increasing surfactant concentration. Depending on further micellar growth, the wormlike micelles were finally formed as confirmed by rheological measurements. PMID:23244594

  4. Effect of calcium salts and surfactant concentration on the stability of water-in-oil (w/o) emulsions prepared with polyglycerol polyricinoleate.

    PubMed

    Mrquez, Andrs L; Medrano, Alejandra; Panizzolo, Luis A; Wagner, Jorge R

    2010-01-01

    The objective of this work was to obtain water-in-oil (w/o) emulsions with polyglycerol polyricinoleate (PGPR) as emulsifier and to study the effect of the addition of calcium in the dispersed aqueous phase on the stability of these systems. Emulsions were formulated with 0.2, 0.5 and 1.0% w/w PGPR and 10% w/w water containing calcium chloride at varied concentrations or other salts (calcium lactate or carbonate; sodium, magnesium or potassium chloride). The stability of these systems was studied with a vertical scan analyzer during 15 days; coalescence and sedimentation were observed as simultaneous destabilization processes. The increase of PGPR concentration and/or calcium chloride content gave more stable emulsions. The stabilizing effect of calcium salt was attributed to the diminution of the water droplets size, the decrease of the attractive force between water droplets and the increase of the adsorption density of the emulsifier. The viscoelastic parameters of the interfacial film were decreased with increasing calcium and PGPR concentrations. Calcium chloride produced a higher increase of stability than calcium salts with lower dissociation degree. The presence of any assayed salt in the aqueous phase also allowed the stabilization of w/o emulsions with higher water contents. PMID:19822323

  5. Drops and emulsions with complex interfaces

    NASA Astrophysics Data System (ADS)

    Erni, Philipp; Windhab, Erich J.; Fischer, Peter

    2007-11-01

    We study the behavior of emulsion drops in external flow fields, focusing on recent experimental work involving liquid interfaces covered with surface-active species, in particular adsorbed proteins and particles. Three different length scales are considered: (i) the rheology of complex interfaces is discussed for adsorbed polyelectrolyte surfactants with different molecular structure (compact and globular vs. random coil); (ii) the flow of single drops with macromolecular adsorption layers is studied in optical flow cells; (iii) dilute emulsions of drops are investigated using rheo-small angle light scattering (rheo-SALS). We discuss the results in the context of emulsion and drop models accounting for interfacial viscoelasticity, as well as with capsule suspension models for the case of rigid interfacial layers. Drops stabilized by adsorbed particles or globular proteins can be understood as capsules surrounded by a soft shell; their behavior on the single drop level is in many ways reminiscent of phenomena observed with red blood cells or vesicles, including non-linear drop shape fluctuations under creeping flow conditions. References: [1] Fischer P, Erni P. Curr Opin Colloid Interface Sci (2007, accepted) [2] Erni P et al., Appl Phys Lett 87, 244104 (2007)

  6. Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions.

    PubMed

    Briggs, Nicholas M; Weston, Javen S; Li, Brian; Venkataramani, Deepika; Aichele, Clint P; Harwell, Jeffrey H; Crossley, Steven P

    2015-12-01

    Carbon nanotubes exhibit very unique properties in biphasic systems. Their interparticle attraction leads to reduced droplet coalescence rates and corresponding improvements in emulsion stability. Here we use covalent and noncovalent techniques to modify the hydrophilicity of multiwalled carbon nanotubes (MWCNTs) and study their resulting behavior at an oil-water interface. By using both paraffin wax/water and dodecane/water systems, the thickness of the layer of MWNTs at the interface and resulting emulsion stability are shown to vary significantly with the approach used to modify the MWNTs. Increased hydrophilicity of the MWNTs shifts the emulsions from water-in-oil to oil-in-water. The stability of the emulsion is found to correlate with the thickness of nanotubes populating the oil-water interface and relative strength of the carbon nanotube network. The addition of a surfactant decreases the thickness of nanotubes at the interface and enhances the overall interfacial area stabilized at the expense of increased droplet coalescence rates. To the best of our knowledge, this is the first time the interfacial thickness of modified carbon nanotubes has been quantified and correlated to emulsion stability. PMID:26549532

  7. Persurf, a New Method to Improve Surfactant Delivery: A Study in Surfactant Depleted Rats

    PubMed Central

    Ochs, Matthias; Proquitté, Hans; Mense, Lars; Rüdiger, Mario

    2012-01-01

    Purpose Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC) can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf) and to test in surfactant depleted Wistar rats whether Persurf achieves I.) a more homogenous pulmonary distribution and II.) a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. Methods Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye) Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. Results Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. Conclusions In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone. PMID:23082229

  8. Spontaneous formation of gel emulsions in organic solvents and commercial fuels induced by a novel class of amino acid derivatized surfactants.

    PubMed

    Khatua, Dibyendu; Dey, Joykrishna

    2005-01-01

    A novel class of amphiphiles, sodium N-(n-dodecyl-2-aminoethanoyl)-l-amino acidate, have been synthesized. These amphiphiles have been shown to form oil-in-water-type gel emulsions with a high internal-phase ratio in organic solvents as well as in commercial fuels simply by agitation. No heating and cooling cycle was required for the formation of gels. The amphiphiles also showed efficient phase-selective gelation in the presence of excess water. The minimum gelator concentrations for the amphiphiles in the solvents employed have been determined. The effects of the chain length of the hydrocarbon tail and the chirality of a representative amphiphile on its ability to promote gelation in a given organic solvent have been investigated. Also, the effect of acid and alkali on the gelation has been examined. The optical microscopic picture of the gel emulsion showed foamlike structures with oil compartments separated by the continuous aqueous phase. The mechanism of the formation of gel emulsions has been discussed. PMID:15620291

  9. The effect of oil components on the physicochemical properties and drug delivery of emulsions: tocol emulsion versus lipid emulsion.

    PubMed

    Hung, Chi-Feng; Fang, Chia-Lang; Liao, Mei-Hui; Fang, Jia-You

    2007-04-20

    An emulsion system composed of vitamin E, coconut oil, soybean phosphatidylcholine, non-ionic surfactants, and polyethylene glycol (PEG) derivatives (referred to as the tocol emulsion) was characterized in terms of its physicochemical properties, drug release, in vivo efficacy, toxicity, and stability. Systems without vitamin E (referred to as the lipid emulsion) and without any oils (referred to as the aqueous micelle system) were prepared for comparison. A lipophilic antioxidant, resveratrol, was used as the model drug for emulsion loading. The incorporation of Brij 35 and PEG derivatives reduced the vesicle diameter to <100nm. The inclusion of resveratrol into the emulsions and aqueous micelles retarded the drug release. The in vitro release rate showed a decrease in the order of aqueous micelle system>tocol emulsion>lipid emulsion. Treatment of resveratrol dramatically reduced the intimal hyperplasia of the injured vascular wall in rats. There was no significant difference in this reduction when resveratrol was delivered by either emulsion or the aqueous micelle system. The percentages of erythrocyte hemolysis by the emulsions and aqueous micelle system were approximately 0 and approximately 10%, respectively. Vitamin E prevented the aggregation of emulsion vesicles. The mean vesicle size of the tocol emulsion remained unchanged during 30 days at 37 degrees C. The lipid emulsion and aqueous micelle system, respectively, showed 11- and 16-fold increases in vesicle size after 30 days of storage. PMID:17129692

  10. Interfacial mechanisms in active emulsions.

    PubMed

    Herminghaus, Stephan; Maass, Corinna C; Krüger, Carsten; Thutupalli, Shashi; Goehring, Lucas; Bahr, Christian

    2014-09-28

    Active emulsions, i.e., emulsions whose droplets perform self-propelled motion, are of tremendous interest for mimicking collective phenomena in biological populations such as phytoplankton and bacterial colonies, but also for experimentally studying rheology, pattern formation, and phase transitions in systems far from thermal equilibrium. For fuelling such systems, molecular processes involving the surfactants which stabilize the emulsions are a straightforward concept. We outline and compare two different types of reactions, one which chemically modifies the surfactant molecules, the other which transfers them into a different colloidal state. While in the first case symmetry breaking follows a standard linear instability, the second case turns out to be more complex. Depending on the dissolution pathway, there is either an intrinsically nonlinear instability, or no symmetry breaking at all (and hence no locomotion). PMID:24924906

  11. Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties.

    PubMed

    Tu, Fuquan; Lee, Daeyeon

    2014-07-16

    Janus particles are biphasic colloids that have two sides with distinct chemistry and wettability. Because of their amphiphilicity, Janus particles present a unique opportunity for stabilizing multiphasic fluid mixtures such as emulsions. Our work is motivated by one class of molecular amphiphiles that change their surfactant properties in response to environmental stimuli. Depending on the environmental conditions, these stimuli-responsive molecular amphiphiles are able to assemble into different structures, generate emulsions with different morphologies, and also induce phase inversion emulsification. We present a new synthesis method utilizing a combination of polymerization-induced phase separation and seeded emulsion polymerization, which allows for the bulk synthesis of highly uniform pH-responsive Janus particles that are able to completely reverse their surfactant properties in response to solution pH. One side of these Janus particles is rich in a hydrophobic monomer, styrene, whereas the other side is rich in a pH-sensitive hydrophilic repeating unit, acrylic acid. These Janus particles change their aggregation/dispersion behavior and also transform into different shapes in response to pH changes. Furthermore, we demonstrate that these Janus particles can stabilize different types of emulsions (oil-in-water and water-in-oil) and, more importantly, induce phase inversion of emulsions in response to changes in solution pH. The pH-responsive aggregation/dispersion behavior of these Janus particles also allows us to tune the interactions between oil-in-water emulsion droplets without inducing destabilization; that is, emulsion drops with attractive or repulsive interactions can be generated by changing the pH of the aqueous phase. Our study presents a new class of colloidal materials that will further widen the functionality and properties of Janus particles as dynamically tunable solid surfactants. PMID:24791976

  12. Interfacial layers of complex-forming ionic surfactants with gelatin.

    PubMed

    Derkach, Svetlana R

    2015-08-01

    This review is devoted to discussing the results of studies of the influence of low-molecular weight surfactant additions on the composition and properties of gelatin adsorbed layers which are spontaneously created at water/air and water/non-polar-liquid interfaces. The interaction of surfactant with gelatin leads to the formation of complexes of variable content in the bulk of the aqueous phase. The composition content is determined by the component ratio and concentration of the added surfactant. The role of surfactants (anionic, cationic, non-ionic) capable of forming complexes with gelatin due to electrostatic and hydrophobic interactions is considered. Analysis of the interfacial layer properties is based on literature information, as well as the own author's data. These data include the results of measuring thermodynamic properties (interface tension), laws of formation (adsorption kinetics and thickness), and rheological properties of the layers, which are considered to be dependent on gelatin and surfactant concentration, pH, and temperature. The evolution of the interfacial layers' properties (with increasing surfactant concentration) is discussed in connection with the properties and content of gelatin-surfactant complexes appearing in the aqueous phase. Such an approach allows us to explain the main peculiarities of the layers' behavior including their stabilizing activity in relation to bilateral foam and emulsion films. PMID:24970019

  13. Thermally cleavable surfactants

    SciTech Connect

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  14. Thermally cleavable surfactants

    SciTech Connect

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  15. Thermally cleavable surfactants

    SciTech Connect

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  16. Investigation of the wetting behavior of coal tar in three phase systems and its modification by poloxamine block copolymeric surfactants.

    PubMed

    Dong, Jingfeng; Chowdhry, Babur; Leharne, Stephen

    2004-01-15

    The removal of dense nonaqueous phase liquid mixtures (DNAPLs) from rocks and subsurface soils is an ongoing remedial challenge. Very often the wetting preferences of the system are not altered by exposure to the DNAPL. However, there are systems where the wetting properties of the solid phase have been altered from strongly water wetting by exposure to the DNAPL. In these cases some technique is necessary for reducing the work of adhesion between the DNAPL and the mineral surface. The focus of this report is the problems posed by coal tar in unconsolidated sands. It is shown that coal tar can alter the wetting properties of quartz, the principal component of sands, and is thus capable of adhering to the surface. In this investigation the ability of several members of the poloxamine family of polymeric surfactants to aid in the removal of coal tar from sand was evaluated. The poloxamines are tetrafunctional block copolymeric surfactants, which contain four poly(ethylene oxide)-block-poly(propylene oxide) chains joined to a central ethylenediamine moiety via the nitrogen atoms. Contact angle measurements of coal tar on a quartz surface immersed in aqueous surfactant solution and the interfacial tension between coal tar and aqueous surfactant solution have been measured. Coal tar/water interfacial tensions are reduced to values in the region of 2 mN m(-1) at surfactant concentrations of approximately 0.1 w/v %. Poloxamine surfactant impact on the static contact angle is more complex. In some cases the polymeric surfactants alter the wetting behavior from strongly water wetting to weakly water wetting. However, other poloxamines appear to have little if any impact on the contact angle, which remains strongly water wetting. The foregoing measurements have then been used to calculate the work of adhesion of the coal tar to quartz and the results qualitatively compared with the concentration of surfactant solution required to visually demonstrate the complete de-adhesion of coal tar to the quartz. It is shown that at surfactant concentrations below the critical micelle concentration (cmc) of the surfactant, the work of adhesion can be reduced sufficiently to ensure complete removal of coal tar from both quartz and sand. PMID:14750737

  17. Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion.

    PubMed

    Anton, Nicolas; Gayet, Pascal; Benoit, Jean-Pierre; Saulnier, Patrick

    2007-11-01

    This paper focuses on the phenomenological understanding of temperature cycling process, applied to the phase inversion temperature (PIT) method. The role of this particular thermal treatment on emulsions phase inversion, as well as its ability to generate nano-emulsions have been investigated. In order to propose a general study, we have based our investigations on a given formulation of nano-emulsions classically proposed in the literature [Heurtault, B., Saulnier, P., Pech, B., Proust, J. E., Benoit, J.P., 2002. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm. Res. 19, 875; Lamprecht, A., Bouligand, Y, Benoit, J.P., 2002. New lipid nanocapsules exhibit sustained release properties for amiodarone. J. Control. Release 84, 59-68], using a polyethoxylated model nonionic surfactant, a polyoxyehtylene-660-12-hydroxy stearate, stabilizing the emulsion composed of caprilic triglycerides (triglycerides medium chains), salt water (and also phospholipidic amphiphiles neutral for the formulation). Characterization of nano-emulsions was performed by dynamic light scattering (DLS) which provides the hydrodynamic diameter, but also the polydispersity index (PDI), as a fundamental criteria to judge the quality of the dispersion. Another aspect of the characterization was done following the emulsion inversion and structure by electrical conductivity through the temperature scan. Overall, the role such a temperature cycling process on the formulation of nano-emulsions appears to be relatively important, and globally enhanced as the surfactant concentration is lowered. Actually, both the hydrodynamic diameter and the PDI decrease as a function of the number and temperature cycles up to stabilize a steady state. Eventually, such a cycling process allows the generation of nano-emulsions in ranges of compositions largely expanded when compared with the classical PIT method. These general and interesting trends emerge from the results, are discussed and essentially explained by regarding the behavior of the nonionic surfactants towards the water/oil interface, linking partitioning coefficients, temperature variation, and surfactant water/oil interfacial concentration. In that way, this paper proposes new insights into the phenomena governing the PIT method, by originally investigating the temperature cycling process. PMID:17592746

  18. Emulsifying properties of legume proteins compared to ?-lactoglobulin and Tween 20 and the volatile release from oil-in-water emulsions.

    PubMed

    Benjamin, O; Silcock, P; Beauchamp, J; Buettner, A; Everett, D W

    2014-10-01

    The emulsifying properties of plant legume protein isolates (soy, pea, and lupin) were compared to a milk whey protein, ?-lactoglobulin (?-lg), and a nonionic surfactant (Tween 20). The protein fractional composition was characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The following emulsion properties were measured: particle diameter, shear surface ?-potential, interfacial tension (IT), and creaming velocity. The effect of protein preheat treatment (90 C for 10 min) on the emulsifying behavior and the release of selected volatile organic compounds (VOCs) from emulsions under oral conditions was also investigated in real time using proton transfer reaction-mass spectrometry. The legume proteins showed comparable results to ?-lg and Tween 20, forming stable, negatively charged emulsions with particle diameter d3,2 < 0.4 ?m, and maintained stability over 50 d. The relatively lower stability of lupin emulsions was significantly correlated with the low protein surface hydrophobicity and IT of the emulsion. After heating the proteins, the droplet size of pea and lupin emulsions decreased. The VOC release profile was similar between the protein-stabilized emulsions, and greater retention was observed for Tween 20-stabilized emulsions. This study demonstrates the potential application of legume proteins as alternative emulsifiers to milk proteins in emulsion products. PMID:25212592

  19. Magnetically Targeted Nanocapsules for PAA-Cisplatin-Conjugated Cores in PVA/SPIO Shells via Surfactant-Free Emulsion for Reduced Nephrotoxicity and Enhanced Lung Cancer Therapy.

    TOXLINE Toxicology Bibliographic Information

    Chiang CS; Tseng YH; Liao BJ; Chen SY

    2015-05-01

    Cis-diamminedichloroplatinum (II) (cisplatin, CDDP) is one of the most potent chemotherapy agents, but its side effects toward normal tissues, particularly toxicity in the kidney and nonspecific biodistribution, limit its ability to have significant clinical activity against a variety of solid tumors. A magnetic CDDP-encapsulated nanocapsule (CDDP-PAA-NC) with CDDP-polyacrylic acid (PAA) core in amphiphilic polyvinyl alcohol/superparamagnetic iron oxide nanoparticles shell is synthesized through a double emulsion to provide both high loading efficiency and controlled drug release. The CDDP-PAA-NCs significantly increase the blood circulation time of CDDP in vivo, with nearly 100-fold higher concentration, and drastically reduce side effects, including nephrotoxicity and hepatotoxicity, compared with the delivery of free CDDP. Furthermore, with a magnetic targeting effect, the CDDP-PAA-NCs show ninefold higher level accumulation in tumor tissue than the free CDDP treatment when administered at the equivalent dose, and mice treated with the CDDP-PAA-NCs display approximately 3.5-fold lower tumor volume than those of the control group on day 24. This result demonstrates that the magnetic CDDP-PAA-NCs, which are synthesized using a facile emulsion process, can significantly reduce toxicity and exhibit anticancer activity in A549-tumor bearing mice with negligible side effects.

  20. Magnetically Targeted Nanocapsules for PAA-Cisplatin-Conjugated Cores in PVA/SPIO Shells via Surfactant-Free Emulsion for Reduced Nephrotoxicity and Enhanced Lung Cancer Therapy.

    PubMed

    Chiang, Chih-Sheng; Tseng, Yi-Hsuan; Liao, Bang-Jie; Chen, San Yuan

    2015-05-01

    Cis-diamminedichloroplatinum (II) (cisplatin, CDDP) is one of the most potent chemotherapy agents, but its side effects toward normal tissues, particularly toxicity in the kidney and nonspecific biodistribution, limit its ability to have significant clinical activity against a variety of solid tumors. A magnetic CDDP-encapsulated nanocapsule (CDDP-PAA-NC) with CDDP-polyacrylic acid (PAA) core in amphiphilic polyvinyl alcohol/superparamagnetic iron oxide nanoparticles shell is synthesized through a double emulsion to provide both high loading efficiency and controlled drug release. The CDDP-PAA-NCs significantly increase the blood circulation time of CDDP in vivo, with nearly 100-fold higher concentration, and drastically reduce side effects, including nephrotoxicity and hepatotoxicity, compared with the delivery of free CDDP. Furthermore, with a magnetic targeting effect, the CDDP-PAA-NCs show ninefold higher level accumulation in tumor tissue than the free CDDP treatment when administered at the equivalent dose, and mice treated with the CDDP-PAA-NCs display approximately 3.5-fold lower tumor volume than those of the control group on day 24. This result demonstrates that the magnetic CDDP-PAA-NCs, which are synthesized using a facile emulsion process, can significantly reduce toxicity and exhibit anticancer activity in A549-tumor bearing mice with negligible side effects. PMID:25656800

  1. Comparison of aggregation behaviors of a phytosterol ethoxylate surfactant in protic and aprotic ionic liquids.

    PubMed

    Yue, Xiu; Chen, Xiao; Li, Qintang

    2012-08-01

    Two different room-temperature ionic liquids (ILs), the protic ethylammonium nitrate (EAN) and the aprotic 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF(4)), have been employed to investigate the solvent protonation effect on aggregation behaviors of a phytosterol ethoxylate surfactant (BPS-10). The calculated thermodynamic parameters based on surface tension measurements present a stronger solvophobic interaction in EAN than that in [Bmim]BF(4) and disclose different driving forces for micelle formation. In addition, the polarized optical microscopy and small-angle X-ray scattering techniques are used to characterize the phase structures formed in both systems at 25 C. Due to the H-bonding networks in protic EAN, BPS-10 exhibits a lyotropic liquid-crystalline behavior different from that in [Bmim]BF(4). Results obtained from the rheological measurements reflect a more viscoelastic nature of lyotropic liquid-crystalline phases in EAN. The obtained results indicate that the protic EAN behaves more effective than [Bmim]BF(4) to promote the nonionic BPS-10 aggregation. PMID:22793994

  2. On the transport of emulsions in porous media

    SciTech Connect

    Cortis, Andrea; Ghezzehei, Teamrat A.

    2007-06-27

    Emulsions appear in many subsurface applications includingbioremediation, surfactant-enhanced remediation, and enhancedoil-recovery. Modeling emulsion transport in porous media is particularlychallenging because the rheological and physical properties of emulsionsare different from averages of the components. Current modelingapproaches are based on filtration theories, which are not suited toadequately address the pore-scale permeability fluctuations and reductionof absolute permeability that are often encountered during emulsiontransport. In this communication, we introduce a continuous time randomwalk based alternative approach that captures these unique features ofemulsion transport. Calculations based on the proposed approach resultedin excellent match with experimental observations of emulsionbreakthrough from the literature. Specifically, the new approach explainsthe slow late-time tailing behavior that could not be fitted using thestandard approach. The theory presented in this paper also provides animportant stepping stone toward a generalizedself-consistent modeling ofmultiphase flow.

  3. Preparation of microemulsions with soybean oil-based surfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  4. Mathematical modeling of a water-in-oil emulsion droplet behavior under the microwave impact

    NASA Astrophysics Data System (ADS)

    Fatkhullina, Y. I.; Musin, A. A.; Kovaleva, L. A.; Akhatov, I. S.

    2015-01-01

    The problem of microwave (MW) electromagnetic radiation impact on a single water-in-oil droplet is considered. The system of heat equations within the droplet and in the surrounding liquid, incompressible Navier-Stokes equations within the droplet and in the surrounding liquid, and equation of state are considered. The formulated problem is solved numerically using TDMA (Tri-diagonal-matrix algorithm), SIMPLE algorithm and VOF method (volume of fluid method for the dynamics of free boundaries) in Euler coordinates. The results in the form of the dependence of the temperature within the droplet and in the surrounding liquid on the time of microwave impact and streamlines thermal convection are represented; dependence of the velocity of droplet's moving on the power of the of the microwave impact is shown. The obtained results can help to establish criteria for the efficient applicable of the microwave method for the water-in-oil emulsions destruction.

  5. Molecular interactions at the hexadecane/water interface in the presence of surfactants studied with second harmonic generation

    NASA Astrophysics Data System (ADS)

    Sang, Yajun; Yang, Fangyuan; Chen, Shunli; Xu, Hongbo; Zhang, Si; Yuan, Qunhui; Gan, Wei

    2015-06-01

    It is important to investigate the influence of surfactants on structures and physical/chemical properties of oil/water interfaces. This work reports a second harmonic generation study of the adsorption of malachite green (MG) on the surfaces of oil droplets in a hexadecane/water emulsion in the presence of surfactants including sodium dodecyl sulfate, polyoxyethylene-sorbitan monooleate (Tween80), and cetyltrimethyl ammonium bromide. It is revealed that surfactants with micromolar concentrations notably influence the adsorption of MG at the oil/water interface. Both competition adsorption and charge-charge interactions played very important roles in affecting the adsorption free energy and the surface density of MG at the oil/water interface. The sensitive detection of the changing oil/water interface with the adsorption of surfactants at such low concentrations provides more information for understanding the behavior of these surfactants at the oil/water interface.

  6. Molecular interactions at the hexadecane/water interface in the presence of surfactants studied with second harmonic generation.

    PubMed

    Sang, Yajun; Yang, Fangyuan; Chen, Shunli; Xu, Hongbo; Zhang, Si; Yuan, Qunhui; Gan, Wei

    2015-06-14

    It is important to investigate the influence of surfactants on structures and physical/chemical properties of oil/water interfaces. This work reports a second harmonic generation study of the adsorption of malachite green (MG) on the surfaces of oil droplets in a hexadecane/water emulsion in the presence of surfactants including sodium dodecyl sulfate, polyoxyethylene-sorbitan monooleate (Tween80), and cetyltrimethyl ammonium bromide. It is revealed that surfactants with micromolar concentrations notably influence the adsorption of MG at the oil/water interface. Both competition adsorption and charge-charge interactions played very important roles in affecting the adsorption free energy and the surface density of MG at the oil/water interface. The sensitive detection of the changing oil/water interface with the adsorption of surfactants at such low concentrations provides more information for understanding the behavior of these surfactants at the oil/water interface. PMID:26071724

  7. Manipulation of the gel behavior of biological surfactant sodium deoxycholate by amino acids.

    PubMed

    Sun, Xiaofeng; Xin, Xia; Tang, Na; Guo, Liwen; Wang, Lin; Xu, Guiying

    2014-01-23

    Supramolecular hydrogels were prepared in the mixtures of biological surfactant sodium deoxycholate (NaDC) and halide salts (NaCl and NaBr) in sodium phosphate buffer. It is very interesting that with the addition of two kinds of amino acids (L-lysine and L-arginine) to NaDC/NaX hydrogels, the gel becomes solution at room temperature. We characterized this performance through phase behavior observation, transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectra, and rheological measurements. The results demonstrate that the gels are formed by intertwined fibrils, which are induced by enormous cycles of NaDC molecules driven by comprehensive noncovalent interactions, especially the hydrogen bonds. Our conclusion is that the presence of halide salts (NaCl and NaBr) enhances the formation of the gels, while the addition of amino acids (L-lysine and L-arginine) could make the breakage of the hydrogen bonds and weaken the formation of the gels. Moreover, its fast disassembly in the presence of amino acids allows for the release of substances (i.e., the dye methylene blue) entrapped within the gel network. The tunable gel morphology, microstructure, mechanical strength, and anisotropy verify the role of halide salts and amino acids in altering the properties of the gels, which can probably be exploited for a variety of applications in future. PMID:24393042

  8. Analysis of emulsion stability in acrylic dispersions

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2012-02-01

    Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (?-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.

  9. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties.

    PubMed

    Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne M

    2016-03-01

    Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting. PMID:26389817

  10. Effect of shear flow on the phase behavior of an aqueous gelatin-dextran emulsion.

    PubMed

    Antonov, Y A; Van Puyvelde, P; Moldenaers, P; Leuven, K U

    2004-01-01

    A rheo-optical methodology, based on small angle light scattering and transmitted light intensity measurements, has been used to study in situ and on a time resolved basis the shear induced morphology in ternary two-phase water-gelatin-dextran mixtures. Emulsions close to the binodal line as well as far from it have been investigated. It is shown that above a critical shear rate, shear-induced mixing occurs at the length scales probed by the laser light. It is hypothesized that the shear-induced homogenization is due to the shear forces that exceed the intermolecular forces of the self-association process of the gelatin. The isothermal phase diagram at a fixed shear rate has been determined. In addition, the structure evolution after cessation of flow has been studied. When flow is stopped after homogenization, phase separation occurs almost instantaneously. When subsequently applying a low shear rate, the structure coarsens due to coalescence of the dispersed droplets. The kinetics of this coalescence process is strain controlled. PMID:15002985

  11. Release behavior and stability of encapsulated D-limonene from emulsion-based edible films.

    PubMed

    Marcuzzo, Eva; Debeaufort, Frdric; Sensidoni, Alessandro; Tat, Lara; Beney, Laurent; Hambleton, Alicia; Peressini, Donatella; Voilley, Andre

    2012-12-12

    Edible films may act as carriers of active molecules, such as flavors. This possibility confers to them the status of active packaging. Two different film-forming biopolymers, gluten and ?-carrageenans, have been compared. D-Limonene was added to the two film formulations, and its release kinetics from emulsion-based edible films was assessed with HS-SPME. Results obtained for edible films were compared with D-limonene released from the fatty matrix called Grindsted Barrier System 2000 (GBS). Comparing ?-carrageenans with gluten-emulsified film, the latter showed more interesting encapsulating properties: in fact, D-limonene was retained by gluten film during the process needed for film preparation, and it was released gradually during analysis time. D-Limonene did not show great affinity to ?-carrageenans film, maybe due to high aroma compound hydrophobicity. Carvone release from the three different matrices was also measured to verify the effect of oxygen barrier performances of edible films to prevent D-limonene oxidation. Further investigations were carried out by FT-IR and liquid permeability measurements. Gluten film seemed to better protect D-limonene from oxidation. Gluten-based edible films represent an interesting opportunity as active packaging: they could retain and release aroma compounds gradually, showing different mechanical and nutritional properties from those of lipid-based ingredients. PMID:23163743

  12. One F-octyl versus two F-butyl chains in surfactant aggregation behavior.

    PubMed

    Dram, Abdoulaye; Taffin de Givenchy, Elisabeth; Dieng, Samba Yand; Amigoni, Sonia; Oumar, Mamadou; Diouf, Alioune; Darmanin, Thierry; Guittard, Frdric

    2013-12-01

    An easy synthetic procedure in two or three steps from perfluoroalkylethyl iodide derivatives led to six novel fluorinated carboxylates monomeric and gemini surfactants with one or two hydrophobic tails, respectively: RF(C2H4)CH(CO2(-))2,2Na(+) and [RF(C2H4)]2C(CO2(-)),Na(+), where RF = C4F9, C6F13, and C8F17. These anionic surfactants exhibited very low surface tension from 15 to 33 mN/m as well as low critical micelle concentration until 1.3 10(-4) mol/L. Furthermore, the surface properties of the gemini compound with two short fluoroalkyl chains (RF = C4F9) were found to be almost equal to those of the monomeric surfactant with one long fluoroalkyl chain (RF = C8F17), which could provide an interesting alternative to the bioaccumulative long-chain perfluorinated surfactant. PMID:24188050

  13. Stimuli-responsive Pickering emulsions: recent advances and potential applications.

    PubMed

    Tang, Juntao; Quinlan, Patrick James; Tam, Kam Chiu

    2015-05-14

    Pickering emulsions possess many advantages over traditional surfactant stabilized emulsions. For example, Pickering emulsions impart better stability against coalescence and, in many cases, are biologically compatible and environmentally friendly. These characteristics open the door for their use in a variety of industries spanning petroleum, food, biomedicine, pharmaceuticals, and cosmetics. Depending on the application, rapid, but controlled stabilization and destabilization of an emulsion may be necessary. As a result, Pickering emulsions with stimuli-responsive properties have, in recent years, received a considerable amounts of attention. This paper provides a concise and comprehensive review of Pickering emulsion systems that possess the ability to respond to an array of external triggers, including pH, temperature, CO2 concentration, light intensity, ionic strength, and magnetic field. Potential applications for which stimuli-responsive Pickering emulsion systems would be of particular value, such as emulsion polymerization, enhanced oil recovery, catalyst recovery, and cosmetics, are discussed. PMID:25864383

  14. Synthesis, micellization behavior and alcohol induced amphipathic cellulose film of cellulose-based amphiphilic surfactant

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Liu, Ya-nan; Yu, Jian-ling; Li, Hai-peng; Li, Gang

    2015-08-01

    This paper presented a novel preparation method of the cellulose-based amphiphilic surfactant, and the surfactant was used to prepare amphipathic cellulose membrane. The native cotton cellulose was tailored to cellulose segments in ionic liquid 1-butyl-3-methylimidazolium chloride. Then, the hydrophobic and hydrophilic modification of cellulose segments were carried out by esterification and graft polymerization of the ɛ-caprolactone (ɛ-CL) monomer onto the hydroxyl group of cellulose as well as sulphonation with sulfamic acid. The amphipathic cellulose membrane was made by cellulose-based amphiphilic surfactant cross-linking with glutaraldehyde. The molecular structure of amphipathic cellulose surfactant was confirmed by FT-IR, and its surface active properties were investigated by Wilhelmy plate method and Steady-state fluorescence probe method, respectively. Experimental results showed that cellulose-based amphiphilic surfactant caused low interfacial tension of 48.62 mN/m and its critical micelle concentration (cmc) value was 0.65 wt% when the grafting ratio of cellulose-g-PCL (poly-caprolactone) was 25.40%. The contact angle between a droplet of water and the surface of membrane was 90.84o, and the surface free energy of the alcohol induced cellulose membrane was 15.7 mJ/m2. This study may help increase using natural and biodegradable surface-activity materials with improved properties as surfactants.

  15. Aggregation behaviors of gelatin with cationic gemini surfactant at air/water interface.

    PubMed

    Wu, Dan; Xu, Guiying; Feng, Yujun; Li, Yiming

    2007-03-10

    The dilational rheological properties of gelatin with cationic gemini surfactant 1,2-ethane bis(dimethyl dodecyl ammonium bromide) (C(12)C(2)C(12)) at air/water interface were investigated using oscillating barriers method at low frequency (0.005-0.1 Hz), which was compared with single-chain surfactant dodecyltrimethyl ammonium bromide (DTAB). The results indicate that the maximum dilational modulus and the film stability of gelatin-C(12)C(2)C(12) are higher than those of gelatin-DTAB. At high concentration of C(12)C(2)C(12) or DTAB, the dilational modulus of gelatin-surfactant system becomes close to that corresponding to pure surfactant, suggesting gelatin at interface is replaced by surfactant. This replacement is also observed by surface tension measurement. However, it is found that gelatin-C(12)C(2)C(12) system has two obvious breaks but gelatin-DTAB has not in surface tension isotherms. These phenomena are ascribed to the double charges and strong hydrophobicity of C(12)C(2)C(12). Based on these experimental results, a mechanism of gelatin-surfactant interaction at air/water interface is proposed. PMID:17055045

  16. Tuning Lyotropic Liquid Crystalline Phase Behavior of Gemini Surfactants by Linker Parity

    NASA Astrophysics Data System (ADS)

    Perroni, Dominic; Baez-Cotto, Carlos; Mantha, Sriteja; Sorenson, Gregory; Yethiraj, Arun; Mahanthappa, Mahesh

    2015-03-01

    Aqueous bicontinuous lyotropic liquid crystals (LLCs) derived from small molecule surfactants are useful nanostructured materials with myriad applications, in fields ranging from structural biology to membrane science. However, access to these coveted phases is limited by the fact that few surfactant platforms readily stabilize these network phases over the wide amphiphile concentration and temperature phase windows necessary for their widespread applications. We have recently shown that gemini (``twin tail'') dicarboxylate surfactants, comprising two single tail amphiphiles covalently linked near the headgroup by a hydrophobic bridge, exhibit a greatly increased propensity to form stable double gyroid LLC phases. In this presentation, we will demonstrate the unusual sensitivity of gemini dicarboxylate surfactant lyotropic self-assembly to the length of the hydrophobic bridge: odd-carbon linkers produce stable double gyroid phases over amphiphile composition windows as wide as 40 wt% that are stable between T = 22-100 °C. We rationalize these results in terms of the detailed molecular conformations of the surfactants that stem from the length of the bridging moiety, which suggests that this molecular design strategy may generally extend to other surfactant classes.

  17. Unique Phase Behaviors in the Gemini Surfactant/EAN Binary System: The Role of the Hydroxyl Group.

    PubMed

    Li, Qintang; Wang, Xudong; Yue, Xiu; Chen, Xiao

    2015-12-22

    The hydroxyl group in the spacer of a cationic Gemini surfactant (12-3OH-12) caused dramatic changes of the phase behaviors in a protic ionic liquid (EAN). Here, the effects of the hydroxyl group on micellization and lyotropic liquid crystal formation were investigated through the surface tension, small-angle X-ray scattering, polarized optical microscopy, and rheological measurements. With the hydroxyl group in the spacer, the critical micellization concentration of 12-3OH-12 was found to be lower than that of the homologue without hydroxyl (12-3-12) and the 12-3OH-12 molecules packed more densely at the air/EAN interface. It was then interesting to observe a coexistence of two separated phases at wide concentration and temperature ranges in this 12-3OH-12/EAN system. Such a micellar phase separation was rarely observed in the ionic surfactant binary system. With the increase of surfactant concentration, the reverse hexagonal and bicontinuous cubic phases appeared in sequence, whereas only a reverse hexagonal phase was found in 12-3-12/EAN system. But, the hexagonal phases formed with 12-3OH-12 exhibited lower viscoelasticity and thermostability than those observed in 12-3-12/EAN system. Such unique changes in phase behaviors of 12-3OH-12 were ascribed to their enhanced solvophilic interactions of 12-3OH-12 and relatively weak solvophobic interactions in EAN. PMID:26634877

  18. Phase behavior of a water/nonionic surfactant/oil ternary system in the presence of polymer oil

    SciTech Connect

    John, A.C.; Kunieda, Hironobu; Uchiyama, Hirotaka; Nakamura, Kazuyoshi

    1997-02-15

    The effect of a polymer oil, polydimethyl siloxane, on the phase behavior of the water/C{sub 12}EO{sub 6}/isopropyl myristate (IPM) system has been studied. Since the polymer oil is completely soluble in IPM, it was dissolved in IPM and the solutions were used as the oil phase to study its effect. The presence of polymer increases the hydrophobic nature of IPM and thereby decreases the solubilization of oil into the surfactant phase (microemulsion). Moreover, at a certain range of silicone oil concentration in the IPM, a four-phase body consisting of excess water, excess oil, and two surfactant phases is formed within the ternary system. The two surfactant phases are designated as D (with bicontinuous type or structure) and D{prime} (with L{sub 3} type of structure). Careful phase behavioral studies revealed that, with increasing silicone oil concentration, a three-phase region containing water phase, D{prime} phase, and an oil-rich D phase develops within the system and this region overlaps with the normal three-phase region of the system containing the water, D, and oil phases to give a four-phase body. The order of various phases from top to bottom in the four-phase body is oil, D, D{prime}, and water.

  19. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  20. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  1. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  2. Dispersion behavior and aqueous foams in mixtures of a vesicle-forming surfactant and edible nanoparticles.

    PubMed

    Binks, Bernard P; Campbell, Shawn; Mashinchi, Saeed; Piatko, Michael P

    2015-03-17

    In an attempt to prepare ultrastable aqueous foams composed entirely of food-grade ingredients, we describe the foamability and foam stability of aqueous phases containing either calcium carbonate particles (CaCO3), sodium stearoyl lactylate surfactant (SSL), or their mixtures. Techniques including zeta potential measurements, adsorption isotherm determination, contact angles and optical and cryo-scanning electron microscopy are used to probe the interaction between particles and surfactant molecules. Aqueous dispersions of inherently hydrophilic cationic CaCO3 nanoparticles do not foam to any great extent. By contrast, aqueous dispersions of anionic SSL, which forms a lamellar phase/vesicles, foam progressively on increasing the concentration. Despite their foamability being low compared to that of micelle-forming surfactant sodium dodecyl sulfate, they are much more stable to collapse with half-lives (of up to 40 days) of around 2 orders of magnitude higher above the respective aggregation concentrations. We believe that, in addition to surfactant lamellae around bubbles, the bilayers within vesicles contain surfactant chains in a solidlike state yielding indestructible aggregates that jam the aqueous films between bubbles, reducing the drainage rate and both bubble coalescence and gas-transfer between bubbles. In mixtures of particles and surfactant, the adsorption of SSL monomers occurs on particle surfaces, leading to an increase in their hydrophobicity, promoting particle adsorption to bubble surfaces. Ultrastable foams result with half-lives of around an order of magnitude higher again at low concentrations and foams which lose only around 30% of their volume within a year at high concentrations. In the latter case, we evidence a high surface density of discrete surfactant-coated particles at bubble surfaces, rendering them stable to coalescence and disproportionation. PMID:25734773

  3. Spreading of Emulsions on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Kavehpour, Pirouz

    2012-11-01

    The wettability of emulsions is an important factor with explicit influence in an extensive variety of industrial applications ranging from the petroleum to food industries. Surprisingly, there is no comprehensive study of emulsion spreading to date; this is due to the complexity of the structure of the emulsions and non-homogeneity of the dispersed phase bubbles in size as well as distribution through the emulsion. The spreading of water/silicone oil emulsions on glass substrates was investigated. The emulsions were prepared with varying volume fractions of water dispersed in silicone oil, with addition of small amounts of surfactant to stabilize the emulsion structure. The time dependent variation of dynamic contact angle, base diameter, and the spreading rate of the droplets of an emulsion are different from a pure substance. The effect of water/silicone oil weight percentage as well as the droplet size and dispersed phase bubble size were also investigated. The weight percentage of water/silicone oil emulsion and droplet size did not have significant influence on the spreading dynamics; however the dispersed phase drop size affected the spreading dynamics substantially.

  4. Effect of surfactants on single bubble sonoluminescence behavior and bubble surface stability

    NASA Astrophysics Data System (ADS)

    Leong, Thomas; Yasui, Kyuichi; Kato, Kazumi; Harvie, Dalton; Ashokkumar, Muthupandian; Kentish, Sandra

    2014-04-01

    The effect of surfactants on the radial dynamics of a single sonoluminescing bubble has been investigated. Experimentally, it is observed that an increase in the surfactant concentration leads to a decline in the oscillation amplitude and hence light emission intensity. Numerical simulations support this result, showing that under the driving pressures required to achieve single bubble sonoluminescence (SBSL), the surface properties, namely, the surface elasticity and dilatational viscosity, contribute to the damping of the radial amplitude in the bubble oscillation. In most cases this stabilizes the bubble surface, and contributes to a decreased light intensity. A stronger driving pressure is necessary to achieve equivalent light emission to a surfactant-free bubble. However, as the driving pressure is increased, the surface stability also decreases, making it practically very difficult for a bubble to achieve high SBSL intensities in concentrated surfactant solutions. Although more stable owing to more mild pulsations, the instability mechanism for a surfactant-coated bubble at higher ambient radii is more likely to be of the Rayleigh-Taylor type than that of a clean bubble at the same given acoustic parameters, which can lead to bubble disintegration before correcting mechanisms can bring the bubble back into the stable sonoluminescence regime.

  5. Effect of surfactants on single bubble sonoluminescence behavior and bubble surface stability.

    PubMed

    Leong, Thomas; Yasui, Kyuichi; Kato, Kazumi; Harvie, Dalton; Ashokkumar, Muthupandian; Kentish, Sandra

    2014-04-01

    The effect of surfactants on the radial dynamics of a single sonoluminescing bubble has been investigated. Experimentally, it is observed that an increase in the surfactant concentration leads to a decline in the oscillation amplitude and hence light emission intensity. Numerical simulations support this result, showing that under the driving pressures required to achieve single bubble sonoluminescence (SBSL), the surface properties, namely, the surface elasticity and dilatational viscosity, contribute to the damping of the radial amplitude in the bubble oscillation. In most cases this stabilizes the bubble surface, and contributes to a decreased light intensity. A stronger driving pressure is necessary to achieve equivalent light emission to a surfactant-free bubble. However, as the driving pressure is increased, the surface stability also decreases, making it practically very difficult for a bubble to achieve high SBSL intensities in concentrated surfactant solutions. Although more stable owing to more mild pulsations, the instability mechanism for a surfactant-coated bubble at higher ambient radii is more likely to be of the Rayleigh-Taylor type than that of a clean bubble at the same given acoustic parameters, which can lead to bubble disintegration before correcting mechanisms can bring the bubble back into the stable sonoluminescence regime. PMID:24827332

  6. Polymerizable anionic gemini surfactants: physicochemical properties in aqueous solution and polymerization behavior.

    PubMed

    Sakai, Kenichi; Wada, Miyuki; Matsuda, Wataru; Tsuchiya, Koji; Takamatsu, Yuichiro; Tsubone, Kazuyuki; Endo, Takeshi; Torigoe, Kanjiro; Sakai, Hideki; Abe, Masahiko

    2009-01-01

    A novel polymerizable anionic gemini surfactant has been synthesized and the physicochemical properties in aqueous solution have been studied with a combination of various analytical techniques. The surfactant (PA12-2-12) contains two anionic monomeric parts linked with an ethylene spacer and polymerizable methacryloxy groups covalently bound to the terminal of the hydrocarbon chains. The static surface tension data suggest that, when compared with a conventional (non-polymerizable) anionic gemini surfactant (A12-2-12), (i) the interfacial adsorption of PA12-2-12 occurs more effectively from low surfactant concentrations, whereas (ii) a weak interaction of the polymerizable terminal groups with water molecules (and/or the steric hindrance of the polymerizable groups) plays a significant role in the subsequent molecular packing at the air/aqueous solution interface. The latter effect (as well as the electrostatic repulsion between the anionic headgroups) results in a relatively less packed monolayer film, overcoming the strong intermolecular attractive interaction that is frequently seen for gemini surfactant systems. In the region of low added electrolyte concentrations, PA12-2-12 spontaneously forms spherical micelles in aqueous solution, which is confirmed with the Corrin-Harkins analysis (critical micelle concentration (cmc) vs. total counter-ion concentration) and cryogenic transmission electron microscopy (cryo-TEM). The spherical micelles have been polymerized under UV light irradiation in the absence of added electrolytes. Cryo-TEM measurements confirm that no significant change in the original micelle morphology occurs during the polymerization. This offers a possibility that the polymerizable anionic gemini surfactant should be useful as nano-structural organic templates and/or interfacial stabilizers in aqueous solution. PMID:19584566

  7. Effects of structure dissymmetry on aggregation behaviors of quaternary ammonium Gemini surfactants in a protic ionic liquid EAN.

    PubMed

    Wang, Xudong; Li, Qintang; Chen, Xiao; Li, Zhihong

    2012-12-01

    The aggregation behaviors of a series of dissymmetric cationic Gemini surfactants, [C(m)H(2m+1)(CH(3))(2)N(CH(2))(2)N(CH(3))(2)C(n)H(2n+1)]Br(2), designated as m-2-n (with a fixed m + n = 24, m = 16, 14, 12) have been investigated in a protic ionic liquid, ethylammonium nitrate (EAN). Surface tension, polarized optical microscopy (POM), small-angle X-ray scattering (SAXS), and rheological measurements are adopted to investigate the micellization and lyotropic liquid crystal (LLC) formation. The obtained results indicate that the structure dissymmetry plays an important role in aggregation process of m-2-n. With increasing degree of dissymmetry, the critical micellization concentration, the maximum reduction of solvent surface tension, and the minimum area occupied per surfactant molecule at the air/EAN interface all become smaller. The thermostability of formed LLCs is therefore improved because of the more compact molecules. These characteristics can be explained by the enhancement of solvophobic effect due to the increased structure dissymmetry of Gemini surfactants. PMID:23140416

  8. A cationic azobenzene-surfactant-modified graphene hybrid: unique photoresponse and electrochemical behavior

    NASA Astrophysics Data System (ADS)

    Chen, Shu; Bao, Lin; Ou, Encai; Peng, Chang; Wang, Weimao; Xu, Weijian

    2015-11-01

    Surfactant-modified graphene hybrids containing azobenzene groups were for the first time prepared, and the electrochemical performance was investigated. The hybrids were obtained by electrostatic interactions between cationic azobenzene-surfactants and negatively charged graphene oxide in water. The electrostatic interactions, chemical structure and photoresponse of the hybrids were measured by using zeta potential values, fluorescence spectra, FTIR, XPS, XRD, SEM, UV-Vis absorption, AFM and Raman spectra. The electrochemical performance was estimated using cyclic voltammetry. The results show that strong electrostatic interactions exist between the azobenzene surfactants and graphene oxide. Notably, this azobenzene-graphene hybrid can self-assemble into aggregation structures in aqueous solution. Besides, the self-assembly can be reversibly controlled by ultraviolet light (365 nm) and blue light (455 nm) irradiation. This process is driven by the photoinduced polarity change of the cationic azobenzene surfactant and is responsible for the graphene hybrids' electrochemical performance. It is the first example of the reversible self-assembly of graphene driven by light irradiation.Surfactant-modified graphene hybrids containing azobenzene groups were for the first time prepared, and the electrochemical performance was investigated. The hybrids were obtained by electrostatic interactions between cationic azobenzene-surfactants and negatively charged graphene oxide in water. The electrostatic interactions, chemical structure and photoresponse of the hybrids were measured by using zeta potential values, fluorescence spectra, FTIR, XPS, XRD, SEM, UV-Vis absorption, AFM and Raman spectra. The electrochemical performance was estimated using cyclic voltammetry. The results show that strong electrostatic interactions exist between the azobenzene surfactants and graphene oxide. Notably, this azobenzene-graphene hybrid can self-assemble into aggregation structures in aqueous solution. Besides, the self-assembly can be reversibly controlled by ultraviolet light (365 nm) and blue light (455 nm) irradiation. This process is driven by the photoinduced polarity change of the cationic azobenzene surfactant and is responsible for the graphene hybrids' electrochemical performance. It is the first example of the reversible self-assembly of graphene driven by light irradiation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04646g

  9. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery

    SciTech Connect

    Somasundaran, Prof. P.

    2002-03-04

    The objective of this project was to develop a knowledge base that is helpful for the design of improved processes for mobilizing and producing oil left untapped using conventional techniques. The main goal was to develop and evaluate mixtures of new or modified surfactants for improved oil recovery. In this regard, interfacial properties of novel biodegradable n-alkyl pyrrolidones and sugar-based surfactants have been studied systematically. Emphasis was on designing cost-effective processes compatible with existing conditions and operations in addition to ensuring minimal reagent loss.

  10. Surfactant mixing rules applied to surfactant enhanced alkaline flooding

    SciTech Connect

    Taylor, K.C. )

    1992-01-01

    This paper discusses surfactant mixing rules which have been used to describe crude oil/alkali/surfactant phase behavior, using David Lloydminster crude oil and the surfactant Neodol 25-3S. It was found that at a fixed salinity and alkali concentration, a specific mole fraction of synthetic surfactant to petroleum soap was required to produce optimal phase behavior as the water-to-oil ratio varied. This methodology is useful in understanding the relationship between the variables of water-to-oil ratio and synthetic surfactant concentration in phase behavior systems that produce a petroleum soap.

  11. Factors controlling the stability of colloid-stabilized emulsions. 3: Measurement of the rheological properties of colloid-laden interfaces

    SciTech Connect

    Tambe, D.E.; Sharma, M.M.

    1995-05-01

    Finely divided insoluble solid particles constitute an important class of emulsifying agents. Colloidal particles that are partially wetted by both the aqueous and the oleic phases are capable of effectively stabilizing emulsions. The authors have shown in the past that emulsion stability is controlled primarily by the concentration of particles adsorbed at the oil-water interface. At sufficiently high concentrations of particles, colloid-laden oil-water interfaces tend to exhibit non-Newtonian behavior. In Part 2 of this series, the authors presented a model to show that colloid-laden oil-water interfaces behave viscoelastically. Here they present an experimental setup that they have designed and built to measure the dilational rheological properties of surfactant and/or colloid-laden oil-water interfaces. Measurements of the interfacial dilational properties of such colloid-laden oil-water interfaces are also presented. The results clearly show that oil-water interfaces containing adsorbed surfactants and/or colloidal particles exhibit viscoelastic behavior. Such viscoelastic interfaces enhance emulsion stability by increasing the magnitude of steric hindrance (i.e., the energy required to displace particles away from the drop-drop contact region) and by decreasing the rate of film thinning between coalescing emulsion droplets.

  12. Evaluation of the Transwell System for Characterization of Dissolution Behavior of Inhalation Drugs: Effects of Membrane and Surfactant.

    PubMed

    Rohrschneider, Marc; Bhagwat, Sharvari; Krampe, Raphael; Michler, Victoria; Breitkreutz, Jrg; Hochhaus, Gnther

    2015-08-01

    Assessing the dissolution behavior of orally inhaled drug products (OIDs) has been proposed as an additional in vitro test for the characterization of innovator and generic drug development. A number of suggested dissolution methods (e.g., commercially available Transwell or Franz cell systems) have in common a membrane which provides the separation between the donor compartment, containing nondissolved drug particles, and an acceptor (sampling) compartment into which dissolved drug will diffuse. The goal of this study was to identify and overcome potential pitfalls associated with such dissolution systems using the inhaled corticosteroids (ICS), viz., budesonide, ciclesonide, and fluticasone propionate, as model compounds. A respirable fraction (generally stage 4 of a humidity, flow, and temperature controlled Andersen Cascade Impactor (ACI) or a Next Generation Impactor (NGI)) was collected for the tested MDIs. The dissolution behavior of these fractions was assessed employing the original and an adapted Transwell system using dissolution media which did or did not contain surfactant (0.5% sodium dodecyl sulfate). The rate with which the ICS transferred from the donor to the acceptor compartment was assessed by HPLC. Only a modified system that incorporated faster equilibrating membranes instead of the original 0.4 ?m Transwell membrane resulted in dissolution and not diffusion being the rate-limiting step for the transfer of drug from the donor to the acceptor compartment. Experiments evaluating the nature of the dissolution media suggested that the presence of a surfactant (e.g., 0.5% SDS) is essential to obtain rank order of dissolution rates (e.g., for budesonide, fluticasone propionate, and ciclesonide) that is in agreement with absorption rates of these ICS obtained in studies of human pharmacokinetics. Using the optimized procedure, the in vitro dissolution behavior of budesonide, ciclesonide, and fluticasone propionate agreed approximately with descriptors of in vivo absorption. The optimized procedure, using membranes with increased permeability and surfactant containing dissolution medium, represents a good starting point to further evaluate in vitro/in vivo correlations. PMID:26091361

  13. Mixed surfactant systems for enhanced oil recovery

    SciTech Connect

    Llave, F.M.; Gall, B.L.; Noll, L.A.

    1990-12-01

    The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

  14. Preparation of emulsions by rotor-stator homogenizer and ultrasonic cavitation for the cosmeceutical industry.

    PubMed

    Han, Ng Sook; Basri, Mahiran; Abd Rahman, Mohd Basyaruddin; Abd Rahman, Raja Noor Zaliha Raja; Salleh, Abu Bakar; Ismail, Zahariah

    2012-01-01

    Oil-in-water (O/W) nanoemulsions play an important key role in transporting bioactive compounds into a range of cosmeceutical products to the skin. Small droplet sizes have an inherent stability against creaming, sedimentation, flocculation, and coalescence. O/W emulsions varying in manufacturing process were prepared. The preparation and characterization of O/W nanoemulsions with average diameters of as low as 62.99 nm from palm oil esters were carried out. This was achieved using rotor-stator homogenizer and ultrasonic cavitation. Ultrasonic cell was utilized for the emulsification of palm oil esters and water in the presence of mixed surfactants, Tween 80 and Span 80 emulsions with a mean droplet size of 62.99 nm and zeta potential value at -37.8 mV. Results were comparable with emulsions prepared with rotor-stator homogenizer operated at 6000 rpm for 5 min. The stability of the emulsions was evaluated through rheology measurement properties. This included non-Newtonian viscosity, elastic modulus G', and loss modulus G″. A highly stable emulsion was prepared using ultrasonic cavitation comprising a very small particle size with higher zeta potential value and G' > G″ demonstrating gel-like behavior. PMID:23089355

  15. A cationic azobenzene-surfactant-modified graphene hybrid: unique photoresponse and electrochemical behavior.

    PubMed

    Chen, Shu; Bao, Lin; Ou, Encai; Peng, Chang; Wang, Weimao; Xu, Weijian

    2015-11-19

    Surfactant-modified graphene hybrids containing azobenzene groups were for the first time prepared, and the electrochemical performance was investigated. The hybrids were obtained by electrostatic interactions between cationic azobenzene-surfactants and negatively charged graphene oxide in water. The electrostatic interactions, chemical structure and photoresponse of the hybrids were measured by using zeta potential values, fluorescence spectra, FTIR, XPS, XRD, SEM, UV-Vis absorption, AFM and Raman spectra. The electrochemical performance was estimated using cyclic voltammetry. The results show that strong electrostatic interactions exist between the azobenzene surfactants and graphene oxide. Notably, this azobenzene-graphene hybrid can self-assemble into aggregation structures in aqueous solution. Besides, the self-assembly can be reversibly controlled by ultraviolet light (365 nm) and blue light (455 nm) irradiation. This process is driven by the photoinduced polarity change of the cationic azobenzene surfactant and is responsible for the graphene hybrids' electrochemical performance. It is the first example of the reversible self-assembly of graphene driven by light irradiation. PMID:26553111

  16. Aggregation behavior of fluorocarbon and hydrocarbon cationic surfactant mixtures: a study of 1H NMR and 19F NMR.

    PubMed

    Dong, Shuli; Xu, Guiying; Hoffmann, Heinz

    2008-08-01

    The aggregation behavior and the interaction of four mixed systems for a cationic fluorocarbon surfactant, diethanolheptadecafluoro-2-undecanolmethylammonium chloride (DEFUMACl), mixing with cationic hydrocarbon surfactants, alkyltrimethylammonium chloride, CnTACl (n=12, 14, 16, and 18; where n=12 is DTACl, n=14 is TTACl, n=16 is CTACl, and n=18 is OTACl), were studied by 1H and 19F NMR in more detail. The results of 19F NMR measurements strongly indicate that in the three mixed systems of DEFUMACl/DTACl, DEFUMACl/TTACl, and DEFUMACl/CTACl at different molar fractions of fluorocarbon surfactant (alphaF=(cDEFUMACl/cDEFUMACl+cCnTACl)), with an increase of the total concentration of fluorocarbon and hydrocarbon surfactants (cT=cF+cH), the mixed micelles at the first break point and the individual DEFUMACl micelles at the second break point form. However, three different types of micelles were determined in DEFUMACl/OTACl mixtures by 19F NMR measurements, OTACl-rich and DEFUMACl-rich mixed micelles and individual DEFUMACl micelles, respectively. The chemical shifts of proton Deltadelta (1H) for -CH3 in the mixed systems of DEFUMACl/CnTACl (n=12, 14, 16, and 18) have different variation trends from the 19F NMR measurements. For the two systems of DEFUACl/DTACl and DEFUMACl/TTACl, the mixed micelles form at the first break point. At the second break point, for lower alpha F values the DTACl-rich and TTACl-rich mixed micelles form with a strong downfield shift and for higher alpha F values DEFUMACl-rich mixed micelles form with a strong upfield. For the other two systems of DEFUMACl/CTACl and DEFUMAC/OTACl, the chemical shifts of proton Deltadelta (1H) of -CH3 increase with an increase of the total concentration of DEFUMACl/CTACl or OTACl, and mixed CH- and CF-surfactant micelles form. At higher total concentration, the greater effect of fluorinated chains of DEFUMACl on CH-chains was obvious, resulting in the strong upfield chemical shifts. In cationic fluorocarbon and hydrocarbon surfactant mixtures, the different kinds of micelles observed by 19F and 1H NMR measurements could be caused by the increase in alkyl chain length of hydrocarbon surfactants with different critical micelle concentrations. Combining two theoretical models for mixing, for the four different chain-length hydrocarbon surfactants studied, one can conclude that the two components of mixtures interact with each other and form mixed micelles in two completely different ways according to their molecular properties and cmc values in a certain range of total concentrations. One is close to an ideal mixing case with the formation of one type of mixed micelles, such as the DEFUMACl/DTACl and DEFUMACl/TTACl systems. The other is a demixing case with the formation of two types of micelles, i.e., fluorocarbon-rich and hydrocarbon-rich mixed micelles, such as DEFUMACl/CTACl and DEFUMACl/OTACl systems. However, as the total concentrations of the mixed systems are high enough, the four systems tend to demix and to form individual micelles of corresponding components due to the initial respective interaction between fluorocarbon and hydrocarbon chains. That is to say, at high total concentration, the individual DEFUMACl micelles in all four systems could form. These results may be primarily directed toward acquiring an understanding of the mechanism of CF-CH mixtures in aqueous solution and secondarily directed toward providing more detailed information on nonideal mixing. PMID:18613719

  17. Crocin loaded nano-emulsions: Factors affecting emulsion properties in spontaneous emulsification.

    PubMed

    Mehrnia, Mohammad-Amin; Jafari, Seid-Mahdi; Makhmal-Zadeh, Behzad S; Maghsoudlou, Yahya

    2016-03-01

    Spontaneous emulsification may be used for encapsulating bioactive compounds in food and pharmaceutical industry. It has several advantages over high energy and other low energy methods including, protecting sensitive compounds against severe conditions of high energy method and its ability to minimize surfactant, removal of cosurfactant and thermal stability compared with other low energy methods. In this study, we examined possibility of encapsulating highly soluble crocin in W/O micro-emulsions using spontaneous method which further could be used for making double emulsions. Nonionic surfactants of Span 80 and polyglycerol polyricinoleate (PGPR) were used for making micro-emulsions that showed the high potential of PGPR for spontaneous method. Surfactant to water ratio (SWR%) was evaluated to find the highest amount of aqueous phase which can be dispersed in organic phase. Droplet size decreased by increasing SWR toward the SWR=100% which had the smallest droplet size and then increased at higher levels of surfactant. By increasing SWR, shear viscosity increased which showed the high effect of PGPR on rheological properties. This study shows in addition to W/O micro-emulsions, spontaneous method could be used for preparing stable O/W micro-emulsions. PMID:26708427

  18. Nanoscopic surfactant behavior of the porin MspA in aqueous media

    PubMed Central

    Wang, Hongwang; Shrestha, Tej B; Troyer, Deryl L

    2013-01-01

    Summary The mycobacterial porin MspA is one of the most stable channel proteins known to date. MspA forms vesicles at low concentrations in aqueous buffers. Evidence from dynamic light scattering, transmission electron microscopy and zeta-potential measurements by electrophoretic light scattering indicate that MspA behaves like a nanoscale surfactant. The extreme thermostability of MspA allows these investigations to be carried out at temperatures as high as 343 K, at which most other proteins would quickly denature. The principles of vesicle formation of MspA as a function of temperature and the underlying thermodynamic factors are discussed here. The results obtained provide crucial evidence in support of the hypothesis that, during vesicle formation, nanoscopic surfactant molecules, such as MspA, deviate from the principles underlined in classical surface chemistry. PMID:23766950

  19. Solubilization of octane in electrostatically-formed surfactant-polymer complexes.

    PubMed

    Zhang, Hui; Zeeb, Benjamin; Salminen, Hanna; Feng, Fengqin; Weiss, Jochen

    2014-03-01

    Polymers can be used to modulate the stability and functionality of surfactant micelles. The purpose of this study was to investigate the solubilization of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and anionic sodium dodecylsulphate (SDS), nonionic polyoxyethylene sorbitan monooleate (Tween 80) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using dynamic light scattering, microelectrophoresis and turbidity measurements. The results showed that the addition of anionic carboxymethyl cellulose accelerated octane solubilization in cationic CTAB and CTAB-Tween 80 micelles, but did not affect the solubilization behaviors of micelles that were nonionic and anionic. The surfactant-polymer interactions were also studied using isothermal titration calorimetry (ITC) to characterize different physiochemical interaction regions depending on surfactant concentration in surfactant-polymer systems. Upon octane solubilization in CTAB-carboxymethyl cellulose mixtures, shape transitions of polymer-micelle complexes may have taken place that altered light scattering behavior. Based on these results, we suggest a mechanism for oil solubilization in electrostatically-formed surfactant-polymer complexes. PMID:24407654

  20. Aggregation behavior of amino acid ionic liquid surfactants in aqueous media.

    PubMed

    Rao, K Srinivasa; Singh, Tejwant; Trivedi, Tushar J; Kumar, Arvind

    2011-12-01

    Self-aggregation of amino acid ionic liquid surfactants (AAILSs) in aqueous solution has been investigated through surface tension, conductivity, steady-state fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM). The critical aggregation concentration (cac) of AAILSs obtained from different techniques showed fairly good agreement. Surface tension measurements have been used to derive surface adsorption properties such as adsorption efficiency (pC(20), effectiveness of surface tension reduction (?(cac)), and minimum surface area per molecule (A(min)) at the air-water interface. Temperature-dependent conductivity measurements have been used to obtain the degree of counterion binding (?), and the thermodynamic parameters such as standard free energy (?G(agg)(0)), enthalpy (?H(agg)(0)), and entropy (?S(agg)(0)) of aggregation. The aggregation number (N(agg)) for various AAILSs has been derived by using the fluorescence quenching technique. Size of the aggregates has been obtained from DLS and TEM measurements. The aggregation properties of AAILSs have been analyzed as a function of structure of amino acids and compared with those of analogous ionic liquids (ILs) and conventional ionic surfactants. Surface activity of the AAILSs has been found superior to that of analogous ILs and conventional ionic surfactants of the same alkyl chain length. PMID:22029384

  1. Performance evaluation of organic emulsion liquid membrane on phenol removal.

    PubMed

    Ng, Y S; Jayakumar, N S; Hashim, M A

    2010-12-15

    The percentage removal of phenol from aqueous solution by emulsion liquid membrane and emulsion leakage was investigated experimentally for various parameters such as membrane:internal phase ratio, membrane:external phase ratio, emulsification speed, emulsification time, carrier concentration, surfactant concentration and internal agent concentration. These parameters strongly influence the percentage removal of phenol and emulsion leakage. Under optimum membrane properties, the percentage removal of phenol was as high as 98.33%, with emulsion leakage of 1.25%. It was also found that the necessity of carrier for enhancing phenol removal was strongly dependent on the internal agent concentration. PMID:20832168

  2. Influence of extraction parameters on dispersity of hydrocarbon emulsions from tar sands

    SciTech Connect

    Nadirov, N.K.; Bishimbaev, V.K.; Burkitbaev, S.M.; Kenzhebaev, A.B.; Khodzhanazarov, A.T.

    1988-05-01

    The dependence of hydrocarbon emulsion particle size distribution on the extraction parameters of temperature, surfactant concentration, and mixing intensity was investigated. The water-bitumen solution, with an organic matter content of 14-17% by weight, was obtained from tar sands of the Iman-Kara deposit and emulsified by vigorous mixing in an aqueous surfactant to promote effective precipitation of the washed sand and clay and to suppress flotation. Emulsion particle size distribution was assessed by laser correlation spectroscopy. Correlation and distribution functions were determined. Higher temperatures were found to promote surfactant activity and stabilize the emulsion; at approximately 80 C, with an emulsion concentration of 8-11%, washing efficiency reached 92-95%. Optimal surfactant concentration was determined to be no higher than approximately 3% by weight and mixer speed was found to be optimal at 2000-2500 rpm. The procedure can be used to optimize equipment efficiency and emulsion quality.

  3. Sorption/desorption behavior of oxytetracycline and sulfachloropyridazine in the soil water surfactant system.

    PubMed

    ElSayed, Eman M; Prasher, Shiv O

    2014-03-01

    Sorption/desorption of antibiotics, oxytetracycline (OTC), and sulfachloropyridazine (SCP) was investigated in the presence of a nonionic surfactant Brij35. Batch sorption experiments indicated that Freundlich equation fits sorption isotherms well for OTC. The sorption coefficients, KF, values were computed as 23.55 mL g(?1) in the absence of Brij35 and 25.46 mL g(?1) in the presence of Brij35 in the monomer form (below critical micelle concentration CMC, of 74 mg L(?1)). However, the KF values reduced to 12.76 mL g(?1) in the presence of Brij35 at 2.5 g L(?1). Therefore, irrigation with surfactant-rich water may increase the leaching potential of OTC. In the case of SCP, the KF value, in the absence of Brij35, was 19.95 mL g(?1). As a result of increasing the concentration of Brij35 to 0.25 g L(?1) (about 2.5 CMC), KF values first increased and reached a maximum value of 95.49 mL g(?1) and then reduced to 66.06 mL g(?1), at surfactant concentration of 5 g L(?1). Unlike OTC, the presence of surfactant in irrigation water is likely to decrease SCP leaching. In the case of OTC, hysteresis was found at Brij35 concentrations below CMC. However, OTC desorbed readily from soil (no hysteresis) at Brij35 concentrations above CMC. In the case of SCP, no hysteresis was found in the presence of the surfactant, both below and above CMC. Further, the obtained values of the efficiency coefficient (E), reveals that Brij35 had the potential to release more OTC from the soil (E?>?1) as compared to SCP (E?

  4. Protein Fibrils Induce Emulsion Stabilization.

    PubMed

    Peng, Jinfeng; Simon, Joana Ralfas; Venema, Paul; van der Linden, Erik

    2016-03-01

    The behavior of an oil-in-water emulsion was studied in the presence of protein fibrils for a wide range of fibril concentrations by using rheology, diffusing wave spectroscopy, and confocal laser scanning microscopy. Results showed that above a minimum fibril concentration depletion flocculation occurred, leading to oil droplet aggregation and enhanced creaming of the emulsion. Upon further increasing the concentration of the protein fibrils, the emulsions were stabilized. In this stable regime both aggregates of droplets and single droplets are present, and these aggregates are smaller than the aggregates in the flocculated emulsion samples at the lower fibril concentrations. The size of the droplet aggregates in the stabilized emulsions is independent of fibril concentration. In addition, the droplet aggregation was reversible upon dilution both by a pH 2 HCl solution and by a fibril solution at the same concentration. The viscosity of the emulsions containing fibrils was comparable to that of the pure fibril solution. Neither fibril networks nor droplet gel networks were observed in our study. The stabilization mechanism of emulsions containing long protein fibrils at high protein fibril concentrations points toward the mechanism of a kinetic stabilization. PMID:26882086

  5. Liquid crystal Janus emulsion droplets: preparation, tumbling, and swimming.

    PubMed

    Jeong, Joonwoo; Gross, Adam; Wei, Wei-Shao; Tu, Fuquan; Lee, Daeyeon; Collings, Peter J; Yodh, A G

    2015-09-14

    This study introduces liquid crystal (LC) Janus droplets. We describe a process for the preparation of these droplets, which consist of nematic LC and polymer compartments. The process employs solvent-induced phase separation in emulsion droplets generated by microfluidics. The droplet morphology was systematically investigated and demonstrated to be sensitive to the surfactant concentration in the background phase, the compartment volume ratio, and the possible coalescence of multiple Janus droplets. Interestingly, the combination of a polymer and an anisotropic LC introduces new functionalities into Janus droplets, and these properties lead to unusual dynamical behaviors. The different densities and solubilities of the two compartments produce gravity-induced alignment, tumbling, and directional self-propelled motion of Janus droplets. LC Janus droplets with remarkable optical properties and dynamical behaviors thus offer new avenues for applications of Janus colloids and active soft matter. PMID:26171829

  6. Surfactant reduction of cerebral infarct size and behavioral deficit in a rat model of cerebrovascular arterial gas embolism

    PubMed Central

    Armstead, Stephen C.

    2013-01-01

    Gas embolism occurs commonly in cardiac and vascular surgery and decompression sickness. The goals of this study were to develop a new in vivo rat model of cerebrovascular arterial gas embolism and to determine the effects of exogenous surfactants on resultant brain infarct volume and accompanying long-term neurological dysfunction using the model. Unilateral cerebral arterial gas embolism was induced in Sprague Dawley rats, including groups receiving intravenous Pluronic F-127 (PF-127) and Oxycyte perflourocarbon surfactant pretreatment. Magnetic resonance imaging (MRI) was performed at 24 and 72 h postembolism to determine infarct volume. The elevated body swing test (EBST), limb-placement test, proprioception forelimb and hindlimb tests, whisker tactile test, and Morris Water Maze test were performed to assess motor behavior, somatosensory deficit, and spatial cognitive function out to 29 days after embolization. A stable stroke model was developed with MRI examination revealing infarction in the ipsilateral cerebral hemisphere. Gas embolized rats had significant cognitive and sensorimotor dysfunction, including approximately threefold increase in Morris Water Maze latency time, ?20% left-sided biasing in EBST performance, 0.5 to 1.5 (mean) point score elevations in the proprioception and whisker tactile tests, and 3.0 point (mean) elevation in the limb-placement test, all of which were persistent throughout the postembolic period. Surfactant prophylaxis with either PF-127 or Oxycyte rendered stroke undetectable by MRI scanning and markedly reduced the postembolic deficits in both cognitive and sensorimotor performance in treated rats, with normalization of EBST and whisker tactile tests within 7 days. PMID:23845977

  7. Characterizing the acid/base behavior of oil-soluble surfactants at the interface of nonpolar solvents with a polar phase.

    PubMed

    Lee, Joohyung; Zhou, Zhang-Lin; Behrens, Sven Holger

    2015-06-01

    We propose a simple method of characterizing the (Lewis) acid/base behavior of oil-soluble nonionic surfactants at the interface of nonpolar solvents with a polar phase. Using interfacial tensiometry, we probe the effective acidic and basic response of nonpolar surfactant solutions to contact with a variety of polar reference liquids. The measured interfacial tensions are used as experimental coefficients in a set of equations borrowed from the thermodynamic "surface energy component model" of van Oss, Chaudhury, and Good (vOCG), but used here in a more heuristic fashion and with a revised interpretation of the parameters extracted to describe the dispersive, acidic, and basic character of the sample. We test the proposed characterization method using alkane solutions of purified polyisobutylene succinimide (PIBS) surfactants with systematic structural variations, and observe that the inferred parameter values are consistent with, and sensitive to, subtle differences in the surfactant chemistry. This suggests the possibility to compare different surfactant solutions semiquantitatively with regard to their acidic and basic character. In a further illustration of the proposed analysis, we characterize a solution of commercial PIBS surfactant in hexane, and find that the parameters obtained by the proposed method correctly predict the solution interfacial tension with a polar liquid not included among the chosen reference liquids. PMID:25978798

  8. An alkyl polyglucoside-mixed emulsifier as stabilizer of emulsion systems: the influence of colloidal structure on emulsions skin hydration potential.

    PubMed

    Savic, Snezana; Lukic, Milica; Jaksic, Ivana; Reichl, Stephan; Tamburic, Slobodanka; Mller-Goymann, Christel

    2011-06-01

    To be considered as a suitable vehicle for drugs/cosmetic actives, an emulsion system should have a number of desirable properties mainly dependent on surfactant used for its stabilization. In the current study, C(12-14) alkyl polyglucoside (APG)-mixed emulsifier of natural origin has been investigated in a series of binary (emulsifier concentration 10-25% (w/w)) and ternary systems with fixed emulsifier content (15% (w/w)) with or without glycerol. To elucidate the systems' colloidal structure the following physicochemical techniques were employed: polarization and transmission electron microscopy, X-ray diffraction (WAXD and SAXD), thermal analysis (DSC and TGA), complex rheological, pH, and conductivity measurements. Additionally, the emulsion vehicles' skin hydration potential was tested in vivo, on human skin under occlusion. In a series of binary systems with fixed emulsifier/water ratios ranging from 10/90 to 25/75 the predominance of a lamellar mesophase was found, changing its character from a liquid crystalline to a gel crystalline type. The same was observed in gel emulsions containing equal amounts of emulsifier and oil (15% (w/w)), but varying in glycerol content (0-25%). Different emulsion samples exhibited different water distribution modes in the structure, reflecting their rheological behavior and also their skin hydration capacity. PMID:21421214

  9. Double inversion of emulsions induced by salt concentration.

    PubMed

    Zhang, Jingchun; Li, Lu; Wang, Jun; Sun, Haigang; Xu, Jian; Sun, Dejun

    2012-05-01

    The effects of salt on emulsions containing sorbitan oleate (Span 80) and Laponite particles were investigated. Surprisingly, a novel double phase inversion was induced by simply changing the salt concentration. At fixed concentration of Laponite particles in the aqueous phase and surfactant in paraffin oil, emulsions are oil in water (o/w) when the concentration of NaCl is lower than 5 mM. Emulsions of water in oil (w/o) are obtained when the NaCl concentration is between 5 and 20 mM. Then the emulsions invert to o/w when the salt concentration is higher than 50 mM. In this process, different emulsifiers dominate the composition of the interfacial layer, and the emulsion type is correspondingly controlled. When the salt concentration is low in the aqueous dispersion of Laponite, the particles are discrete and can move to the interface freely. Therefore, the emulsions are stabilized by particles and surfactant, and the type is o/w as particles are in domination. At intermediate salt concentrations, the aqueous dispersions of Laponite are gel-like, the viscosity is high, and the transition of the particles from the aqueous phase to the interface is inhibited. The emulsions are stabilized mainly by lipophilic surfactant, and w/o emulsions are obtained. For high salt concentration, flocculation occurs and the viscosity of the dispersion is reduced; thus, the adsorption of particles is promoted and the type of emulsions inverts to o/w. Laser-induced fluorescent confocal micrographs and cryo transmission electron microscopy clearly confirm the adsorption of Laponite particles on the surface of o/w emulsion droplets, whereas the accumulation of particles at the w/o emulsion droplet surfaces was not observed. This mechanism is also supported by the results of rheology and interfacial tension measurements. PMID:22475400

  10. Adsorption and Corrosion Inhibition Behavior of Polyethylene Glycol and Surfactants Additives on Mild Steel in H2SO4

    NASA Astrophysics Data System (ADS)

    Mobin, M.; Khan, M. A.

    2014-01-01

    The adsorption and corrosion inhibition behaviors of polyethylene glycol (PEG) alone and in the presence of surfactants sodium dodecyl benzene sulfonate and cetyltrimethyl ammonium bromide on mild steel in 0.1 M H2SO4 in temperature range of 30-60 C was investigated using weight loss method, solvent analysis of iron ions, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX), atomic force microscopy (AFM) and determination of kinetic/thermodynamic parameters. The inhibition efficiency (IE) of PEG increased with increasing concentration showing a maximum IE of 86.91% at 30 C at 25 ppm but decreased with increasing temperature. Inhibiting action of PEG is synergistically enhanced on addition of small amount of surfactants. Surface morphology of the corroded mild steel specimen as evaluated by SEM, EDAX and AFM confirmed the existence of an adsorbed protective film on the mild steel surface. The calculated thermodynamic/kinetic parameters reveal that adsorption process is spontaneous and obey Langmuir adsorption isotherm.

  11. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery

    SciTech Connect

    Somasundaran, Prof. P.

    2001-02-27

    The goal of this report is to develop improved extraction processes to mobilize and produce the oil left untapped using conventional techniques. Current chemical schemes for recovering the residual oil have been in general less than satisfactory. High cost of the processes as well as significant loss of chemicals by adsorption on reservoir materials and precipitation has limited the utility of chemical-flooding operations. There is a need to develop cost-effective, improved reagent schemes to increase recovery from domestic oil reservoirs. The goal of the report was to develop and evaluate novel mixtures of surfactants for improved oil recovery.

  12. Probing the conformational behavior of a monoclonal antibody with surfactant affinity capillary electrophoresis (SurfACE).

    PubMed

    Cooper, Brian T; Sanzgiri, Rohan D; Maxey, Sarah B

    2012-12-21

    Multiple peaks are observed for a monoclonal antibody (mAb) when analyzed by "protein MEKC" (micellar electrokinetic capillary chromatography) using SDS-containing run buffers. We present our efforts to understand the mechanism of peak formation and the factors that affect the distribution of the mAb between these peaks. We used "intrinsic" charge ladders of the mAb to determine that peak-to-peak differences in the amount of bound surfactant are comparable to the aggregation numbers of protein-bound micelles. This suggests that the peaks represent sequential unfolding intermediates formed after collisions with micelles. Since this mechanism differs from that of small-molecule MEKC, we prefer to view this technique as a variant of affinity capillary electrophoresis and call it "SurfACE." We also find that the peak distribution is highly sensitive to pH. Lower pH favors the formation of more highly bound complexes, probably through an electrostatic effect on the kinetics. If the run buffer pH is high enough, the peak distribution appears to be set during the post-injection mixing process, as the mAb encounters surfactant during its transition from the lower-pH sample environment. Analysts who wish to interpret "protein MEKC" electropherograms should take note of these effects. PMID:23096023

  13. Transient behavior of simultaneous flow of gas and surfactant solution in consolidated porous media

    SciTech Connect

    Baghdikian, S.Y.; Handy, L.L.

    1991-07-01

    The main objective of this experimental research was to investigate the mechanisms of foam generation and propagation in porous media. Results obtained give an insight into the conditions of foam generation and propagation in porous media. The rate of propagation of foam is determined by the rates of lamellae generation, destruction, and trapping. Several of the factors that contribute to foam generation have studied with Chevron Chaser SD1000 surfactant. Interfacial tension (IFT) measurements were performed using a spinning drop apparatus. The IFT of two surfactant samples of different concentrations were measured with dodecane and crude oil from the Huntington Beach Field as a function of temperature and time. Foam was used as an oil-displacing fluid. However, when displacing oil, foam was not any more effective than simultaneous brine and gas injection. A series of experiments was performed to study the conditions of foam generation in Berea sandstone cores. Results show that foam may be generated in sandstone at low flow velocities after extended incubation periods. The effect of pregenerating foam before injection into the sandstone was also studied. The pressure profiles in the core were monitored using three pressure taps along the length of the core. A systematic study of foaming with different fluid velocities and foam qualities provides extensive data for foam flow conditions. 134 refs., 57 figs., 2 tabs.

  14. Dynamical and rheological properties of fluorinated surfactant films adsorbed at the pressurized CO2-H2O interface.

    PubMed

    Tewes, Frederic; Krafft, Marie Pierre; Boury, Frank

    2011-07-01

    The dynamics of adsorption, interfacial tension, and rheological properties of two phosphocholine-derived partially fluorinated surfactants FnHmPC, designed to compensate for the weak CO(2)-surfactant tail interactions, were determined at the pressurized CO(2)-H(2)O interface. The two surfactants differ only by the length of the hydrocarbon spacer (5 CH(2) in F8H5PC and 11 CH(2) in F8H11PC) located between the terminal perfluoroalkyl chain and the polar head. The length of this spacer was found to have a critical impact on the adsorption kinetics and elasticity of the interfacial surfactant film. F8H5PC is soluble in both water and CO(2) phases and presents several distinct successive interfacial behaviors when bulk water concentration (C(W)) increases and displays a nonclassical isotherm shape. The isotherms of F8H5PC are similar for the three CO(2) pressures investigated and comprise four regimes. In the first regime, at low C(W), the interfacial tension is controlled by the organization that occurs between H(2)O and CO(2). The second regime corresponds to the adsorption of the surfactant as a monolayer until the CO(2) phase is saturated with F8H5PC, resulting in a first inflection point. In this regime, F8H5PC molecules reach maximal compaction and display the highest apparent interfacial elasticity. In the third regime, a second inflection is observed that corresponds to the critical micelle concentration of the surfactant in water. At the highest concentrations (fourth regime), the interfacial films are purely viscous and highly flexible, suggesting the capacity for this surfactant to produce water-in-CO(2) microemulsion. In this regime, surfactant adsorption is very fast and equilibrium is reached in less than 100 s. The behavior of F8H11PC is drastically different: it forms micelles only in the water phase, resulting in a classical Gibbs interface. This surfactant decreases the interfacial tension down to 1 mN/m and forms a strongly elastic interface. As this surfactant forms a very cohesive interface, it should be suitable for formulating stable water-in-CO(2) emulsions. The finding that the length of the hydrocarbon spacer in partially fluorinated surfactants can drastically influence film properties at the CO(2)-H(2)O interface should help control the formation of microemulsions versus emulsions and help elaborate a rationale for the design of surfactants specifically adapted to pressurized CO(2). PMID:21630699

  15. Phase behavior and interfacial properties of a switchable ethoxylated amine surfactant at high temperature and effects on CO2-in-water foams.

    PubMed

    Chen, Yunshen; Elhag, Amro S; Reddy, Prathima P; Chen, Hao; Cui, Leyu; Worthen, Andrew J; Ma, Kun; Quintanilla, Heriberto; Noguera, Jose A; Hirasaki, George J; Nguyen, Quoc P; Biswal, Sibani L; Johnston, Keith P

    2016-05-15

    The interfacial properties for surfactants at the supercritical CO2-water (C-W) interface at temperatures above 80°C have very rarely been reported given limitations in surfactant solubility and chemical stability. These limitations, along with the weak solvent strength of CO2, make it challenging to design surfactants that adsorb at the C-W interface, despite the interest in CO2-in-water (C/W) foams (also referred to as macroemulsions). Herein, we examine the thermodynamic, interfacial and rheological properties of the surfactant C12-14N(EO)2 in systems containing brine and/or supercritical CO2 at elevated temperatures and pressures. Because the surfactant is switchable from the nonionic state to the protonated cationic state as the pH is lowered over a wide range in temperature, it is readily soluble in brine in the cationic state below pH 5.5, even up to 120°C, and also in supercritical CO2 in the nonionic state. As a consequence of the affinity for both phases, the surfactant adsorption at the CO2-water interface was high, with an area of 207Å(2)/molecule. Remarkably, the surfactant lowered the interfacial tension (IFT) down to ∼5mN/m at 120°C and 3400 psia (23MPa), despite the low CO2 density of 0.48g/ml, indicating sufficient solvation of the surfactant tails. The phase behavior and interfacial properties of the surfactant in the cationic form were favorable for the formation and stabilization of bulk C/W foam at high temperature and high salinity. Additionally, in a 1.2 Darcy glass bead pack at 120°C, a very high foam apparent viscosity of 146 cP was observed at low interstitial velocities given the low degree of shear thinning. For a calcium carbonate pack, C/W foam was formed upon addition of Ca(2+) and Mg(2+) in the feed brine to keep the pH below 4, by the common ion effect, in order to sufficiently protonate the surfactant. The ability to form C/W foams at high temperatures is of interest for a variety of applications in chemical synthesis, separations, materials science, and subsurface energy production. PMID:26930543

  16. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions.

    PubMed

    Assadpour, Elham; Maghsoudlou, Yahya; Jafari, Seid-Mahdi; Ghorbani, Mohammad; Aalami, Mehran

    2016-05-01

    Due to susceptibility of folic acid like many other vitamins to environmental and processing conditions, it is necessary to protect it by highly efficient methods such as micro/nano-encapsulation. Our aim was to prepare and optimize real water in oil nano-emulsions containing folic acid by a low energy (spontaneous) emulsification technique so that the final product could be encapsulated within maltodextrin-whey protein double emulsions. A non ionic surfactant (Span 80) was used for making nano-emulsions at three dispersed phase/surfactant ratios of 0.2, 0.6, and 1.0. Folic acid content was 1.0, 2.0, and 3.0mg/mL of dispersed phase by a volume fraction of 5.0, 8.5, and 12%. The final optimum nano-emulsion formulation with 12% dispersed phase, a water to surfactant ratio of 0.9 and folic acid content of 3mg/mL in dispersed phase was encapsulated within maltodextrin-whey protein double emulsions. It was found that the emulsification time for preparing nano-emulsions was between 4 to 16h based on formulation variables. Droplet size decreased at higher surfactant contents and final nano-emulsions had a droplet size<100nm. Shear viscosity was higher for those formulations containing more surfactant. Our results revealed that spontaneous method could be used successfully for preparing stable W/O nano-emulsions containing folic acid. PMID:26806649

  17. Evidence for Newton Black Films between Adhesive Emulsion Droplets

    NASA Astrophysics Data System (ADS)

    Poulin, Philippe; Nallet, Frdric; Cabane, Bernard; Bibette, Jrme

    1996-10-01

    A soap film (made of two air/water interfaces covered by surfactant) may turn into a so-called Newton black film (NBF) which essentially consists in a surfactant bilayer. Oil-in-water emulsion droplets covered with surfactant (oil/water interfaces) may become adhesive in similar conditions. We show by analyzing the neutron scattering pattern from a collection of submicronic oil-in-water adhesive droplets that the thin film that forms between them is structurally identical to the NBF. As a consequence, the formation of NBF is a general property of ionic surfactants.

  18. Dynamics of oppositely charged emulsion droplets

    NASA Astrophysics Data System (ADS)

    Liu, Zhou; Wyss, Hans M.; Fernandez-Nieves, Alberto; Shum, Ho Cheung

    2015-08-01

    We study the dynamics of two pinned droplets under the influence of an applied electric stress. We find that at a sufficiently strong field, this stress is sufficient to induce contact of the droplets. Interestingly, upon such contact, the dynamic behavior sensitively depends on the separation distance between the droplets. Besides the classical "coalescence" regime, we identify two other dynamic regimes: "fuse-and-split" and "periodic non-coalescence." In the "fuse-and-split" regime, the droplets first fuse to form a jet, which subsequently breaks up into two droplets. In the "periodic non-coalescence" regime, the droplets contact and bounce away periodically without coalescence. Further analysis indicates that while the electric stress stretches the droplets into shapes that depend on the initial droplet separation, the surface tension stress dominates over the electric stress as soon as the droplets touch. We show that the shapes of the contacting droplets determine their subsequent dynamics. Our work provides a rationale for understanding the interplay between surface tension and electric stresses that govern the behavior of charged droplets and could inspire new methods for characterizing emulsion stability and surfactant performance.

  19. Nanoscale and Microscale Iron Emulsions for Treating DNAPL

    NASA Technical Reports Server (NTRS)

    Geiger, Cherie L.

    2002-01-01

    This study demonstrated the feasibility of using emulsified nanoscale and microscale iron particles to enhance dehalogenation of (Dense Non-Aqueous Phase Liquid) DNAPL free-phase. The emulsified system consisted of a surfactant-stabilized, biodegradable oil-in-water emulsion with nanoscale or microscale iron particles contained within the emulsion droplets. It was demonstrated that DNAPLs, such as trichloroethene (TCE), diffuse through the oil membrane of the emulsion particle whereupon they reach an aqueous interior and the surface of an iron particle where dehalogenation takes place. The hydrocarbon reaction by-products of the dehalogenation reaction, primarily ethene (no chlorinated products detected), diffuse out of the emulsion droplet. This study also demonstrated that an iron-emulsion system could be delivered in-situ to the DNAPL pool in a soil matrix by using a simulated push well technique. Iron emulsions degraded pure TCE at a rate comparable to the degradation of dissolved phase TCE by iron particles, while pure iron had a very low degradation rate for free-phase TCE. The iron-emulsion systems can be injected into a sand matrix where they become immobilized and are not moved by flowing water. It has been documented that surfactant micelles possess the ability to pull pooled TCE into emulsion droplets where degradation of TCE takes place.

  20. Morphology and stability of CO2-in-water foams with nonionic hydrocarbon surfactants.

    PubMed

    Adkins, Stephanie S; Chen, Xi; Chan, Isabel; Torino, Enza; Nguyen, Quoc P; Sanders, Aaron W; Johnston, Keith P

    2010-04-20

    The morphologies, stabilities, and viscosities of high-pressure carbon dioxide-in-water (C/W) foams (emulsions) formed with branched nonionic hydrocarbon surfactants were investigated by in situ optical microscopy and capillary rheology. Over two dozen hydrocarbon surfactants were shown to stabilize C/W foams with Sauter mean bubble diameters as low as 1 to 2 microm. Coalescence of the C/W foam bubbles was rare for bubbles larger than about 0.5 microm over a 60 h time frame, and Ostwald ripening became very slow. By better blocking of the CO(2) and water phases with branched and double-tailed surfactants, the interfacial tension decreases, the surface pressure increases, and the C/W foams become very stable. For branched surfactants with propylene oxide middle groups, the stabilities were markedly lower for air/water foams and decane-water emulsions. The greater stability of the C/W foams to coalescence may be attributed to a smaller capillary pressure, lower drainage rates, and a sufficient surface pressure and thus limiting surface elasticity, plus small film sizes, to hinder spatial and surface density fluctuations that lead to coalescence. Unexpectedly, the foams were stable even when the surfactant favored the CO(2) phase over the water phase, in violation of Bancroft's rule. This unusual behavior is influenced by the low drainage rate, which makes Marangoni stabilization of less consequence and the strong tendency of emerging holes in the lamella to close as a result of surfactant tail flocculation in CO(2). The high distribution coefficient toward CO(2) versus water is of significant practical interest for mobility control in CO(2) sequestration and enhanced oil recovery by foam formation. PMID:20345107

  1. Synthesis of Fluorosurfactants for Emulsion-Based Biological Applications

    PubMed Central

    2015-01-01

    Microemulsion represents an attractive platform for fundamental and applied biomedical research because the emulsified droplets can serve as millions of compartmentalized micrometer-sized reactors amenable to high-throughput screening or online monitoring. However, establishing stable emulsions with surfactants that are compatible with biological applications remains a significant challenge. Motivated by the lack of commercially available surfactants suitable for microemulsion-based biological assays, this study describes the facile synthesis of a biocompatible fluorosurfactant with nonionic tris(hydroxymethyl)methyl (Tris) polar head groups. We have further demonstrated compatibility of the developed surfactant with diverse emulsion-based applications, including DNA polymeric nanoparticle synthesis, enzymatic activity assay, and bacterial or mammalian cell culture, in the setup of both double- and multiphases of emulsions. PMID:24646088

  2. Self-limiting droplet fusion in ionic emulsions.

    PubMed

    Fryd, Michael M; Mason, Thomas G

    2014-07-14

    We make an oil-in-water emulsion, which is initially stabilized using a first ionic surfactant, and mix it with a solution of a second ionic surfactant having the opposite charge, thereby inducing massively parallel droplet fusion. A transient disruption of the screened-charge repulsive barrier between interacting droplets, caused by the second ionic surfactant, arises from significant yet temporary charge neutralization of the first ionic surfactant on the surfaces of the oil droplets while mixing occurs. Interestingly, if a moderate molar excess of one surfactant exists, then the resulting emulsion re-stabilizes after limited droplet fusion. By adjusting the droplet volume fraction, concentrations of first and second surfactants, and volumes of the emulsion and the solution of the second surfactant, we control the degree of droplet coalescence and achieve a self-limiting droplet fusion process. Using optical microscopy, we observe that flat, thin, crystalline films can form between the two oil compartments after fusion of two or more immiscible microscale droplets. However, no such crystalline films are seen on the highly curved oil-oil interfaces inside nanoscale droplets that are composed of two or more immiscible oils and have been fused in the same manner, as revealed by cryogenic transmission electron microscopy. PMID:24839170

  3. Reversible assembly of pH responsive branched copolymer-stabilised emulsion via electrostatic forces.

    PubMed

    Maon, Anthony L B; Rehman, Saif Ur; Bell, Robert V; Weaver, Jonathan V M

    2015-12-15

    The judicious compositional and structural design of a branched co-polymeric surfactant allows for the production of highly stable oil in water emulsion droplets with reversible electrostatic aggregation behaviour. PMID:26503757

  4. Effect of Surface Tension Variations on the Pinch-Off Behavior of Small Fluid Drops in the Presence of Surfactants

    NASA Astrophysics Data System (ADS)

    Roch, M.; Aytouna, M.; Bonn, D.; Kellay, H.

    2009-12-01

    It is shown experimentally that surfactants can change the thinning rate of fluid necks undergoing rupture. In the case of two-fluid pinch-off, two or three linear regimes are observed for the variation of the neck radius versus time. The surface tension in the neck region changes with time, as a result of surfactant depletion. Similar results are obtained for the case of a single fluid pinching in air. The depletion of surfactant can be either partial or complete depending on the rate of transport of the surfactant from the bulk to the surface.

  5. Adsorption behavior of DNA onto a cationic surfactant monolayer at the air-water interface

    NASA Astrophysics Data System (ADS)

    Hansda, Chaitali; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kr.

    2013-11-01

    This communication reports the adsorption of DNA to the preformed Langmuir monolayer of cationic surfactant Octadecylamine (ODA) at the air-water interface and thereby formation of ODA/DNA complex monolayer at the interface. Effect of concentration of DNA in the subphase as well as subphase pH on the adsorption of DNA onto ODA monolayer assemblies have been studied by monitoring the change in surface pressure of ODA/DNA complex monolayer as a function of time. The complex monolayer was also transferred onto solid substrate to prepare ODA/DNA Langmuir-Blodgett films which were analyzed by UV-vis absorption, ATR-FTIR spectroscopic techniques. The most significant observations is that the extent of interactions between ODA and DNA at the air-water interface increases with increasing concentration of DNA in the subphase and also subphase pH. At higher pH, hydrophobic interaction dominates over electrostatic interaction between DNA and ODA in the aqueous subphase. DNA immobilized in the backbone of ODA lies almost flat or extended onto solid substrate at neutral pH whereas, they lie aggregated and compacted coil rather than flat when adsorbed from high pH namely, 11.5 of the subphase. This was confirmed by atomic force microscopy of these complex LB films onto solid substrate.

  6. Understanding and exploiting the phase behavior of mixtures of oppositely charged polymers and surfactants in water.

    PubMed

    Piculell, Lennart

    2013-08-20

    Complexes of oppositely charged polymers and surfactants (OCPS) in water come in many varieties, including liquid-crystalline materials, soluble complexes, structured nanoparticles, and water-insoluble surface layers. The range of available structures and properties increases even further with the addition of other amphiphilic substances that may enter, or even dissolve, the complexes, depending on the nature of the additive. Simple operations may change the properties of OCPS systems dramatically. For instance, dilution with water can induce a phase separation in an initially stable OCPS solution. More complicated processes, involving chemical reactions, can be used to either create or disintegrate OCPS particles or surface layers. The richness of their properties has made OCPS mixtures ubiquitous in everyday household products, such as shampoos and laundry detergents, and also attractive ingredients in the design of new types of responsive particles, surfaces, and delivery agents of potential use in future applications. A challenge for the rational design of an OCPS system is, however, to obtain a good fundamental understanding of how to select molecular shapes and sizes and how to tune the hydrophobic and electrostatic interactions such that the desired properties are obtained. Recent studies of OCPS phase equilibria, using a strategy where the minimum number of components is always used to address a particular question, have brought out general rules and trends that can be used for such a rational design. Those fundamental studies are reviewed here, together with more application-oriented studies where fundamental learning has been put to use. PMID:23701384

  7. CHARACTERISTICS OF SURFACTANTS IN TOXICITY IDENTIFICATION EVALUATIONS

    EPA Science Inventory

    The behavior of a number of anionic, nonionic and cationic surfactants in manipulations associated with toxicity identification evaluations was studied. t was found that toxicity of the surfactants could be removed from aqueous samples via aeration, apparently through sublation. ...

  8. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2002-09-30

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Surfactant loss by adsorption or precipitation depends to a great extent on the type of surfactant complexes and aggregates formed. Such information as well as techniques to generate the information is lacking currently particularly for surfactant mixtures and surfactant/polymer systems. A novel analytical centrifuge application is explored during the last period to generate information on structures-performance relationship for different surfactant aggregates in solution and, in turn, at interfaces. To use analytical untracentrifuge for surfactant mixtures, information on partial specific volumes of single surfactants and their mixtures is required. Towards this purpose, surface tension and density measurements were performed to determine critical micellar concentrations (cmc), partial specific volumes of n-dodecyl-{beta}-Dmaltoside (DM), nonyl phenol ethoxylated decyl ether (NP-10) and their 1:1 mixtures at 25 C. Durchschlag's theoretical calculation method was adopted to calculate the partial specific volumes. Effects of temperature and mixing, as well as methods used for estimation on micellization and partial specific volumes were studied during the current period. Surface tension results revealed no interaction between the two surfactants in mixed micelles. Partial specific volume measurements also indicated no interaction in mixed micelles. Maximum adsorption density, area per molecule and free energy of micellization were also calculated. Partial specific volumes were estimated by two experimental methods: d{sub {rho}}/dc and V{sub {sigma}}. The difference between the results of using the two methods is within 0.5% deviation. It was found that the partial specific volume is concentration dependent and sensitive to changes in temperature. The information generated in this study will be used for the study of surfactant aggregate mass distribution in mixed systems. Such information will in future be used to identify optimum surfactant.

  9. Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: relevance of their surface active properties and of the type of emulsifier.

    PubMed

    Gonzlez, Mara J; Medina, Isabel; Maldonado, Olivia S; Lucas, Ricardo; Morales, Juan C

    2015-09-15

    The antioxidant activity of gallic acid and a series of alkyl gallates (C4-C18) and glycosylated alkyl gallates (C4-C18) on fish oil-in-water emulsions was studied. Three types of emulsifiers, lecithin, Tween-20 and sodium dodecyl sulphate (SDS) were tested. A nonlinear behavior of the antioxidant activity of alkyl gallates when increasing alkyl chain length was observed for emulsions prepared with lecithin. Medium-size alkyl gallates (C6-C12) were the best antioxidants. In contrast, for emulsions prepared with Tween-20, the antioxidants seem to follow the polar paradox. Glucosyl alkyl gallates were shown previously to be better surfactants than alkyl gallates. Nevertheless, they exhibited a worse antioxidant capacity than their corresponding alkyl gallates, in emulsions prepared with lecithin or Tween-20, indicating the greater relevance of having three OH groups at the polar head in comparison with having improved surfactant properties but just a di-ortho phenolic structure in the antioxidant. PMID:25863628

  10. Optical diffusers based on silicone emulsions

    NASA Astrophysics Data System (ADS)

    Wang, Jui-Hao; Lien, Shui-Yang; Ho, Jeng-Rong; Shih, Teng-Kai; Chen, Chia-Fu; Chen, Chien-Chung; Whang, Wha-Tzong

    2009-12-01

    The present study provides an experimental approach for fabricating optical diffuser films based on silicone emulsions. The silicone emulsion consisting of silicone polymer (Sylgard 184) and NaCl aq. solution was used as the optical material of diffusers, wherein NaCl aq. solution was severed as surfactant to stabilize the emulsions. After stirring mechanically, microscaled water drop with various sizes distributed randomly in silicone polymer, wherein water drop was used as scattering diffusion particles. To modulate the volume of NaCl aq. solution, the diffusing performance of diffusers could be change by different amount drop particles. Thereafter, an optical examination was carried out to characterize optical properties, transmittance, and light diffusivity of volumetric diffuser films.

  11. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2003-03-31

    The aim of the project is to develop a knowledge base to help with the design of enhanced process for mobilizing and extracting untrapped oil. We emphasize on evaluating novel surfactant mixtures and on obtaining optimum combinations of the surfactants in chemical flooding EOR process. An understanding of the micellar shape and size is crucial since these physical properties directly determine the crude oil removal efficiency. Analytical ultracentrifugation experiments were used to test the multi-micelle model proposed earlier and formulate the relationships between mixed micelle formation and the surfactant structure. Information on partial specific volume of surfactants and their mixtures is required to treat analytical ultracentrifuge data. In the last report, it was noted that the partial specific volumes of the sugar-based surfactants obtained experimentally did not agree with those from theoretical calculations. A scrutiny of partial specific volumes of the four sugar-based surfactants revealed that conformational changes upon micelle formation are responsible for the large deviation. From sedimentation equilibrium experiments, two types of micelles were identified for the nonionic polyethylene surfactant and its mixtures with the sugar-based surfactant, dodecyl maltoside. The average aggregation numbers of n-dodecyl-{beta}-D-maltoside and nonyl phenol ethoxylated decyl ether agreed with those reported in literature using other techniques. Our study displayed, for the first time, that small micelles might coexist with large micelles at high concentrations due to unique structures of the surfactant although classical thermodynamic theory supports only one type of micelle. Initial dynamic light scattering results support the results for the same mixed surfactant system from analytical ultracentrifuge equilibrium technique. The implication of this finding lies in the fact that efficiency of oil recovery will be improved due to the large micellar size, its polymer-like fluidity and possible reduced adsorption on solids.

  12. Texture optimization of water-in-oil emulsions.

    PubMed

    Lemaitre-Aghazarian, V; Piccerelle, P; Reynier, J P; Joachim, J; Phan-Tan-Luu, R; Sergent, M

    2004-01-01

    The aim of this research is to demonstrate the effect of variations in certain parameters of the oily phase (OP) in water-in-oil (W/O) emulsions on rheological and texture properties of finished products. The formulated emulsions were selected according to an optimal experimental procedure. The applied variations were nature of the OP, its volume fraction, the hydrophilic-lipophilic balance (HLB) value, and the surfactant proportion. Results are presented for the followed tests carried out on the emulsions: texture analysis, rheology, and particle size analysis. The oils used in the study were sweet almond oil, liquid paraffin, maize oil, cyclomethicone, dimethicone, and wheat germ oil. The resulting data demonstrate a notable influence of the volume fraction oil on hardness, viscosity, adhesiveness, and cohesiveness of W/O emulsions. Emulsion hardness and viscosity increased as the OP percentage increased; this effect being even more pronounced for the vegetable oils. In contrast, emulsion adhesiveness and cohesiveness decreased as the volume fraction oil increased. The HLB value of the surfactant mixture of the emulsion also influenced hardness, adhesiveness, and elasticity, increasing or decreasing as HLB value did. PMID:15202571

  13. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  14. Molecular-thermodynamic framework to predict the micellization behavior of mixtures of fluorocarbon-based and hydrocarbon-based surfactants.

    PubMed

    Iyer, Jaisree; Blankschtein, Daniel

    2014-03-01

    We present a molecular-thermodynamic (MT) framework to predict the micellization properties of mixtures of fluorocarbon-based and hydrocarbon-based surfactants. Practically, this mixing reduces the use of fluorinated surfactants in the surfactant formulation, thereby addressing environmental concerns associated with the non-biodegradability and toxicity of fluorinated surfactants. The micellization properties of these mixtures are affected by the enthalpic interactions between the fluorocarbon and hydrocarbon surfactant tails. Consequently, the MT framework incorporates an enthalpy of mixing contribution estimated using regular solution theory (RST). The RST interaction parameter is estimated on the basis of phase equilibrium data. The MT framework also makes allowance for the coexistence of two types of micelles in solution to account for experimental findings which suggest that mixtures of fluorocarbon-based and hydrocarbon-based surfactants can form two types of micelles. Furthermore, the model used to calculate the packing free energy of binary mixtures of surfactant tails is generalized to incorporate the difference in the tail volumes, tail lengths, and conformational energies of the fluorocarbon and hydrocarbon tails. The MT framework is then used to predict micelle population distributions, critical micelle concentrations, and optimal micelle compositions for various mixtures of fluorocarbon-based and hydrocarbon-based surfactants, and the predictions are compared with the corresponding experimental values. While many of the predictions compare well with experiment, some of the experimentally observed trends are not reproduced by the MT framework. Ways to eliminate the discrepancy between theory and experiment are discussed. We also find that prediction of the micelle population distribution is very sensitive to the magnitude of the RST interaction parameter used to calculate the enthalpy of mixing, where an increase in the RST interaction parameter results in sharper peaks in the predicted bimodal micelle population distribution. In addition to the quantitative prediction of micellization properties, the MT framework provides useful physical insight about the reasons behind the differences in the micellization properties of various surfactant mixtures. PMID:24512047

  15. Oil banking phenomena in surfactant/polymer and caustic flooding: droplet coalescence and entrapment processes

    SciTech Connect

    Wasan, D.T; Milos, F.S.; DiNardo, P.E.

    1982-01-01

    This paper summarizes results of our basic study of coalescence phenomena, emulsion formation and stability, and dynamic interfacial properties when crude oils are contacted with aqueous solutions of surfactant/polymer and alkaline agents. These measurements are correlated with each other and with observations on oil bank formation and displacement and recovery efficiency by chemical flooding in microwave monitored core flooding experiments using the soluble oil and the aqueous surfactant systems. Cinephotomicrographic observations into the mechanism of tertiary oil displacement were conducted in a model porous medium. These observations suggest that in situ formation of stable emulsions severely detracts from a successful surfactant/polymer recovery process and that the slowly coalescing system leaves more reentrapped oil behind. The beneficial role of alcohols or cosolvents in tertiary oil recovery is discussed. The acidic crude oil from California has been fractionated, and the dynamic interfacial behavior of each fraction has been examined and compared with that of the whole crude. Acidic resins naturally occurring in crudes have been found to be responsible for a variety of interfacial phenomena in acidic oil-aqueous alkaline systems. Microwave monitored core flooding tests have been conducted using the two acidic crude oils versus sodium hydroxide and sodium orthosilicate systems. In addition, microvisual observations of the mechanisms of tertiary oil displacement have been made. It has been concluded that oil swelling in addition to interfacial tension, emulsification phenomena and wettability reversal may be a major contributing factor in the alkaline stimulated oil recovery processes. 9 figures, 2 tables.

  16. Emulsion steam blocking processes: Final report

    SciTech Connect

    French, T.R.

    1987-02-01

    Emulsion blocking experiments were conducted in cores, sandpacks, a slimtube, and two types of micromodels. The reservoir materials tested were predominantly from the Kern River, California, field. The best (and most cost-effective) emulsification agent for the Kern River crude oil was sodium hydroxide, although one cationic surfactant was also extremely effective. In situ emulsification also proved effective, but the exact mechanisms responsible for incremental oil production are difficult to quantify because of the increased mobilization of oil which results from lowered interfacial tension. Surfactants were screened for adsorption on the Kern River sand, and caustic was tested for reactivity (losses) with the sand. Sodium hydroxide loss was less than expected, presumably because of the low clay content of the Kern River sand. Surfactant adsorption was similar to that measured on crushed Berea sandstone. 38 refs., 7 figs., 20 tabs.

  17. Behavior of asphaltene model compounds at w/o interfaces.

    PubMed

    Nordgård, Erland L; Sørland, Geir; Sjöblom, Johan

    2010-02-16

    Asphaltenes, present in significant amounts in heavy crude oil, contains subfractions capable of stabilizing water-in-oil emulsions. Still, the composition of these subfractions is not known in detail, and the actual mechanism behind emulsion stability is dependent on perceived interfacial concentrations and compositions. This study aims at utilizing polyaromatic surfactants which contains an acidic moiety as model compounds for the surface-active subfraction of asphaltenes. A modified pulse-field gradient (PFG) NMR method has been used to study droplet sizes and stability of emulsions prepared with asphaltene model compounds. The method has been compared to the standard microscopy droplet counting method. Arithmetic and volumetric mean droplet sizes as a function of surfactant concentration and water content clearly showed that the interfacial area was dependent on the available surfactant at the emulsion interface. Adsorption of the model compounds onto hydrophilic silica has been investigated by UV depletion, and minor differences in the chemical structure of the model compounds caused significant differences in the affinity toward this highly polar surface. The cross-sectional areas obtained have been compared to areas from the surface-to-volume ratio found by NMR and gave similar results for one of the two model compounds. The mean molecular area for this compound suggested a tilted geometry of the aromatic core with respect to the interface, which has also been proposed for real asphaltenic samples. The film behavior was further investigated using a liquid-liquid Langmuir trough supporting the ability to form stable interfacial films. This study supports that acidic, or strong hydrogen-bonding fractions, can promote stable water-in-oil emulsion. The use of model compounds opens up for studying emulsion behavior and demulsifier efficiency based on true interfacial concentrations rather than perceived interfaces. PMID:19852481

  18. Fine-tuning the nonequilibrium behavior of oppositely charged macromolecule/surfactant mixtures via the addition of nonionic amphiphiles.

    PubMed

    Fegyver, Edit; Mszros, Rbert

    2014-12-23

    The various commercial applications of oppositely charged polyelectrolytes (P) and ionic surfactants (S) with added nonionic amphiphiles initiated intensive research on the polyion/mixed surfactant interaction. A large group of earlier studies revealed that one of the major effects of the nonionic cosurfactants is the suppression of the associative phase separation of P/S systems. In contrast, recent studies indicated that in the dilute surfactant concentration range the added uncharged amphiphile enhances the precipitation concentration range. In order to rationalize these observations, the mixtures of poly(diallyldimethylammonium chloride) (PDADMAC), sodium dodecyl sulfate (SDS), and dodecyl maltoside (C12G2) are investigated using a variety of experimental methods. It is shown that the nonionic cosurfactant has two distinct and competing impacts on the mixed surfactant binding onto the polyions. The composition dependent variation of the chemical potentials of the amphiphiles determines which of these effects is the dominant one, explaining the seemingly diverse earlier observations and their interpretations. We also demonstrate that the nonionic amphiphile affects considerably the nonequilibrium features of polyion/ionic surfactant complexation. Namely, the presence of the uncharged surfactant can destabilize the colloidal dispersion of P/S nanoparticles formed in the two-phase composition range. However, at the same concentration range highly stable dispersions of polyion/mixed surfactant nanoparticles can be produced through the application of a new two-step solution preparation technique. This method is based on the order of addition effect of the two surfactants which can be utilized in future scientific and industrial applications. PMID:25469711

  19. Comparison of phase behavior between water soluble and insoluble surfactants at the air-water interface

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Mufazzal; Iimura, Kenichi; Kato, Teiji

    2010-11-01

    The surface phase behavior of 2-hydroxyethyl myristate (2-HEM) has been studied in Langmuir monolayers by measuring surface pressure ( ?)-area ( A) isotherms with a film balance and observing monolayer morphology with a Brewster angle microscope (BAM). These results are compared with the phase behavior of 2-hydroxyethyl laurate (2-HEL) in Gibbs monolayers studied by measuring ?-time ( t) curves and observing monolayer morphology. The ?- A isotherms of 2-HEM show a first-order phase transition from a liquid expanded (LE) phase to a liquid condensed (LC) phase in the temperature range between 5 and 35 C whereas the ?- t curves of 2-HEL represent a similar phase transition in the temperature range between 2 and 25 C. The critical surface pressure, ?c necessary for the phase transitions increases with increasing temperature in both the cases. The LC domains formed in 2-HEM show circular shapes, which are independent of the temperature. In contrast, the circular domains having stripe texture formed at lower temperatures show a shape transition to fingering domains with uniform brightness at 15 C. The amphiphile, 2-HEM having 13-carbon chain has higher line tension than 2-HEL that has 11-carbon chain as tail. Thus, for 2-HEM, this high line tension always dominates over other factors giving rise to circular domains at the all studied temperatures.

  20. Electrochemistry of a single attoliter emulsion droplet in collisions.

    PubMed

    Kim, Byung-Kwon; Kim, Jiyeon; Bard, Allen J

    2015-02-18

    We report here the electrochemistry of emulsion droplets by observing single emulsion droplet collisions with selective electrochemical reduction on an ultramicroelectrode (UME). With appropriately applied potentials at an UME, we can observe the electrochemical effects of single collision signals from the complete electrolysis of single emulsion droplets, or selective electrolysis of redox species in single emulsion droplets. This was observed with nitrobenzene (NB), 7,7,8,8-tetracyanoquinodimethane (TCNQ), and ionic liquid. The NB, TCNQ, and ionic liquid act as emulsion material, redox specie, and emulsifier (and electrolyte), respectively. NB emulsions and NB (TCNQ) emulsions were made by ultrasonic processing. During the amperometric current-time (i-t) curve measurement with NB/water emulsion at -0.65 V, reduction of NB emulsion droplets was measured. In the case of less negative potentials, e.g., at -0.45 V with a NB (TCNQ) emulsion, selective reduction of TCNQ in NB droplet was measured. Spike-like responses from electrolysis of NB or TCNQ in each experiment were observed. From these single-particle collision results of NB and NB (TCNQ) emulsions, the collision frequency, size distribution, i-t decay behavior of emulsion droplets, and possible mechanisms are discussed. PMID:25616104

  1. The vaporizing behavior of the fuel droplet of water-in-oil emulsions on the hot surface

    NASA Astrophysics Data System (ADS)

    Kimoto, Kyoji; Owashi, Yukio; Omae, Yoshihiro

    1986-12-01

    Experiments were carried out to investigate qualitatively the effects of the emulsion internal phase structure, such as the size distribution of water droplets, on the microexplosion phenomena of water-in-'A'-heavy-oil emulsified droplets vaporizing on a hot surface. The results confirm that the size distribution of water droplets in the emulsified fuels plays a very important role in the boilng phenomena, in spite of the same water content included in the fuels. That is, emulsified fuel 1 with fine- and uniform-size distribution of the internal water droplets has a longer life time than the neat fuel ('A' heavy oil) due to a distinctive feature such as 'two stage vaporization'. In contrast, emulsified fuel 2 with coarse droplets has a life time less than a half of the neat fuel in the film boiling region. High-speed motion analyses revealed that such a remarkable promotion effect of vaporization was caused by the destruction of the vapor film due to the 'violent microexplosion' of coarse-coalescent water droplets.

  2. Recovery of phenols using liquid surfactant membranes prepared with newly synthesized surfactants

    SciTech Connect

    Kakoi, Takahiko; Goto, Masahiro; Natsukawa, Soichi

    1996-01-01

    Extraction and stripping equilibrium of phenol, p-cresol, and p-chlorophenol were studied with an organic solution containing a newly synthesized surfactant and an aqueous alkaline solution as a stripping phase. A cationic surfactant showed the highest extraction ratio of phenol among several surfactants used in this study. The magnitude of phenol extracted from water was in the order phenol < p-chlorophenol < p-cresol. The stripping of phenol extracted in the organic solution was quantitatively accomplished with an alkaline solution of high concentration except for the case of cationic surfactants. Extraction of phenol and its derivatives by liquid surfactant membranes containing a newly synthesized surfactant as an emulsifier was carried out in a stirred cell. The effects of various parameters (such as a surfactant and alkaline concentration, the kind of surfactant, and the alkali composition) on the extraction efficiency of phenol were examined along with demulsification of W/O emulsions. On the basis of the stability of surfactants against alkaline solutions used as a receiving phase, cationic surfactants which did not involve an ester or amide bond in their molecule appeared to be among the best surfactants available for phenol removal in liquid membrane operations. The efficiency of phenol recovery with sodium hydroxide as a stripping agent was much higher than that with sodium carbonate; however the efficiency of the emulsions decreased with an increase in the content of sodium hydroxide in the mixed alkaline solutions of sodium hydroxide and sodium carbonate. In the design of an efficient recovery process of phenols by LSMs, the composition of the alkaline solution was one of the key factors. Under optimal conditions, phenolic derivates could be recovered in a few minutes.

  3. High acyl gellan as an emulsion stabilizer.

    PubMed

    Vilela, Joice Aline Pires; Cunha, Rosiane Lopes da

    2016-03-30

    High acyl gellan (0.01-0.2% w/w) was used as stabilizer in oil in water emulsions containing 30% (w/w) of sunflower oil and prepared under different process conditions. Stable emulsions to phase separation could be obtained using high acyl gellan (HA) content above 0.05% (w/w), while low acyl gellan (LA) prepared at the same conditions could not stabilize emulsions. Emulsions properties depended on the process used to mix the oil and gellan dispersion since high pressure homogenization favored stabilization while very high energy density applied by ultrasound led to systems destabilization. Emulsions prepared using high pressure homogenization showed zeta potential values ranging from -50 up to -59mV, suggesting that electrostatic repulsion could be contributing to the systems stability. Rheological properties of continuous phase were also responsible for emulsions stabilization, since HA gellan dispersions showed high viscosity and gel-like behavior. The high viscosity of the continuous phase could be associated to the presence of high acyl gellan microgels/aggregates. Disentanglement of these aggregates performed by ultrasound strongly decreased the viscosity and consequently affected the emulsions behavior, reducing the stability to phase separation. PMID:26794954

  4. Hexagonal phase based gel-emulsion (O/H1 gel-emulsion): formation and rheology.

    PubMed

    Alam, Mohammad Mydul; Aramaki, Kenji

    2008-11-01

    The formation, stability, and rheological behavior of a hexagonal phase based gel-emulsion (O/H1 gel-emulsion) have been studied in water/C12EO8/hydrocarbon oil systems. A partial phase behavior study indicates that the oil nature has no effect on the phase sequences in the ternary phase diagram of water/C12EO8/oil systems but the domain size of the phases or the oil solubilization capacity considerably changes with oil nature. Excess oil is in equilibrium with the hexagonal phase (H1) in the ternary phase diagram in the H1+O region. The O/H1 gel-emulsion was prepared (formation) and kept at 25 degrees C to check stability. It has been found that the formation and stability of the O/H1 gel-emulsion depends on the oil nature. After 2 min observation (formation), the results show that short chain linear hydrocarbon oils (heptane, octane) are more apt to form a O/H1 gel-emulsion compared to long chain linear hydrocarbon oils (tetradecane, hexadecane), though the stability is not good enough in either system, that is, oil separates within 24 h. Nevertheless, the formation and stability of the O/H1 gel-emulsion is appreciably increased in squalane and liquid paraffin. It is surmised that the high transition temperature of the H1+O phase and the presence of a bicontinuous cubic phase (V1) might hamper the formation of a gel-emulsion. It has been pointed out that the solubilization of oil in the H1 phase could be related to emulsion stability. On the other hand, the oil nature has little or no effect on the formation and stability of a cubic phase based gel-emulsion (O/I1 gel-emulsion). From rheological measurements, it has found that the rheogram of the O/H1 gel-emulsion indicates gel-type structure and shows shear thinning behavior similar to the case of the O/I1 gel-emulsion. Rheological data infer that the O/I1 gel-emulsion is more viscous than the O/H1 gel-emulsion at room temperature but the O/H1 gel-emulsion shows consistency at elevated temperature. PMID:18847293

  5. Controlling the fluorescence behavior of 1-pyrenesulfonate by cointercalation with a surfactant in a layered double hydroxide.

    PubMed

    Costa, Ana L; Gomes, Ana C; Pillinger, Martyn; Gonalves, Isabel S; Seixas de Melo, J Srgio

    2015-04-28

    Zn-Al layered double hydroxides (LDHs) containing solely 1-pyrenesulfonate (PS) or 1-heptanesulfonate (HS) anions, or a mixture of the two with HS/PS molar ratios ranging between ca. 7.5 and 82, were prepared by the direct synthesis method and characterized by powder X-ray diffraction, thermal and elemental analyses, scanning electron microscopy, and FT-IR, FT-Raman, and (13)C{(1)H} CP MAS NMR spectroscopies. Well-ordered intercalates were obtained with basal spacings of 18.8 for the LDH intercalated by PS and 19.2-19.4 for the other materials containing HS. The photophysics of the solids, as well as the PS probe dissolved in water and common organic solvents (aiming to compare the behavior of the "isolated" molecule with that in the solid), were investigated by steady-state and time-resolved fluorescence techniques. The fluorescence spectra of the solid samples display two bands with maxima at 376 and 495 nm. Depending on the HS/PS ratios, the band intensity ratio (obtained at 375 and 520 nm) changes, reflecting different contributions from monomer and dimer species. The decays collected at 375 nm are biexponentials with a major component (?97% of the total fluorescence) of 105 ns for the highest HS/PS ratio, which further loses importance with an increase in the PS content. When the decays are collected at 480 and 520 nm, the fits are triexponentials with a major component varying from 108 to 124 ns, attributed to an excimer. Steady-state and time-resolved measurements with PS in solution (ethanol, methanol, DMF, DMSO, and water) were also measured, and a comparison of the vibronic I1/I3 ratio and lifetimes in water (65 ns) with those in the LDHs indicates that the PS probe in the cointercalated LDHs is surrounded by the HS surfactant. PMID:25848919

  6. Emulsion separation rate enhancement with high frequency energy

    SciTech Connect

    Peterson, E.R.

    1997-06-01

    The preponderance of stable oil/water emulsions, commonly encountered as pit oils or tank bottoms and known as sludges, presents an ever worsening remediation problem to oil producers and refiners. As the world`s crudes become heavier, the problem of emulsion generation becomes larger. Increasing regulatory and worldwide environmental controls also drive the need for cost effective reclamation of emulsions and sludges. Traditional methods of heating emulsions to force them to separate are difficult to practice. Emulsions can be hard to pump or may leave residue on heat transfer surfaces. High temperature processing can lead to loss of valuable volatiles. Revolutionary, cost effect technology for high frequency (RFM) energy separation of oil emulsions has been developed by Imperial Petroleum Recovery Corporation. RFM energy energizes the aqueous, surfactant and solid particulate components selectively, providing differential energy input. Proper choice of frequency provides dynamic coupling of the energy field to the natural frequency of the water component of the emulsion, accelerating coalescence of the water droplets into a separated phase. Field results have demonstrated the unique capabilities of RFM energy to accelerate separation of oil/water emulsions.

  7. Interfacial behavior and film patterning of redox-active cationic copper(II)-containing surfactants.

    PubMed

    Driscoll, Jeffery A; Allard, Marco M; Wu, Libo; Heeg, Mary Jane; da Rocha, Sandro R P; Verani, Cludio N

    2008-01-01

    Herein, we describe the synthesis and characterization of a novel series of single-tail amphiphiles LPyCn (Py=pyridine, Cn=C18, C16, C14, C10) and their copper(II)-containing complexes, which are of relevance for patterned films. The N-(pyridine-2-ylmethyl)alkyl-1-amine ligands and their complexes [CuIICl2(LPyC18)] (1), [CuIICl2(LPyC16)] (2), [CuIICl2(LPyC14)] (3), [CuIIBr2(LPyC18)] (4), [CuIIBr2(LPyC16)] (5), and [CuIIBr2(LPyC10)] (6) were synthesized, isolated, and characterized by means of mass spectrometry, IR and NMR spectroscopies, and elemental analysis. Complexes 1, 2, 3, and 6 had their molecular structure solved by X-ray diffraction methods, which showed that the local geometry around the metal center is distorted square planar. With the aim of using these species as precursors for redox-responsive films, an assessment of their electrochemical properties involved cyclic voltammetry in different solvents, with different supporting electrolytes and scan rates. Density functional theory calculations of relevant species in bulk and at interfaces were used to evaluate their electronic structure and dipole moments. The morphology and order of the resulting films at the air/water interface were studied by isothermal compression and Brewster angle microscopy. Biphasic patterned Langmuir films were observed for all complexes except 3 and 6, and dependence on the chain length and the nature of the halogen coligand determine the characteristics of the isotherms and their intricate topology. Complexes 3 and 6, which have shorter chain lengths, failed to exhibit organization. These results exemplify the first comprehensive study of the behavior of single-tail metallosurfactants, which are likely to lead to high-end technological applications based on their patterned films. PMID:18792023

  8. Recent Emulsion Technologies

    SciTech Connect

    Ariga, A.

    2011-10-06

    Emulsion technologies are very much developed in the last decade and still developing in both the emulsion gel and the data taking. Emulsion detectors are suitable for the neutrino experiments because they can distinguish all 3 flavors of neutrino. The OPERA experiment, a recent pillar in the emulsion experiments aiming at the first observation of the neutrino oscillation in CNGS beam in appearance mode, is running, showing the good capability to separate 3 flavor neutrino interactions. In this poster, the recent developments and prospects of the emulsions for the next generation experiments are reported.

  9. Liquid films, foams and emulsions

    NASA Astrophysics Data System (ADS)

    Langevin, D.

    1999-06-01

    Studies of thin liquid films, made from surfactant solutions, are presented. The film drainage and the interaction between film surfaces are characterized with an experimental device called "Thin Film Balance". Cases where film stratification is observed will be discussed. These experiments allow to model thin films which form between bubbles and drops in foams and emulsions respectively. Nous prsentons des tudes de films liquides forms partir de solutions de tensioactifs. Nous avons tudi le drainage et les forces entre surfaces l'aide d'un dispositif exprimental appel "Balance Films". Dans certains cas, on observe des phnomnes de stratification que l'on dcrira. Ces expriences permettent de modliser les films entre bulles et gouttes que l'on rencontre dans les mousses et les mulsions respectivement.

  10. Flow of Super-Concentrated Emulsions

    NASA Astrophysics Data System (ADS)

    Masalova, Irina; Malkin, Alexander Ya.

    2006-05-01

    Super concentrated emulsions, e.g., emulsion explosives, are two-phase systems consisting of aqueous droplets dispersed in an oil phase. The concentration of the disperse phase is 92-96 w.%, liquid droplets, containing a supersaturated aqueous solution of inorganic oxidizer salts. The flow of such emulsions is determined by their Theological properties as well as the time-dependent processes of "aging" which take place due to the thermodynamic instability of these emulsions. This work presents the results of experimental studies of the main effects that accompany the flow of such materials: non-Newtonian flow behavior, rheopexy which manifests as a slow increase of viscosity in the low shear rate domain, linear viscoelastic behavior, and the transition of elastic modulus to non-linearity at high amplitudes of deformation. The emulsions under study are non-Newtonian liquids. Experiments with the shear rate sweep demonstrate that the upward and downward branches of the flow curves coincide above some specific shear rate value. The upward experiments show the existence of a Newtonian section of the flow curve in the low-shear-rate domain, while the effect of yielding is observed on the downward curve. The wall slip in the flow of the emulsions under study is negligible. The elastic modulus is constant over a wide frequency range. Hence, viscoelastic relaxation processes might be expected at characteristic times of either >>100s or <0.01s. Strong non-linear behavior was observed in high amplitude experiments. The elastic modules (measured in oscillating testing and in elastic recovery) as well as the yield stress are proportional to D-2, while the Newtonian viscosity is proportional to D-1. Concentration dependence of rheological parameters is also discussed. The possible mechanism of emulsion flow is proposed. Aging leads to enhancement of the solid-like properties of emulsions, which can be treated as an "emulsion-to-suspension transition". However, this transition is incomplete because dispersions retain an ability to flow at stresses exceeding the yield stress value. It is shown that the aging of emulsions is caused by the slow crystallization of a supercooled salt solution without any noticeable coalescence effect. The evolution of mechanical properties of emulsions is correlated with the kinetics of structural changes during aging. The problem of transport characteristics of such emulsions is also discussed. It is shown that the choice of the flow curve fitting equation is not crucial for pipe flow design. The result can be used for practical applications in designing pipe transportation systems.

  11. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, July 1--September 30, 1995

    SciTech Connect

    Wasan, D.T.

    1995-12-01

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested. The problem of characterizing emulsions in porous media is very important in enhanced oil recovery applications. This is usually accomplished by externally added or in situ generated surfactants that sweep the oil out of the reservoir. Emulsification of the trapped oil is one of the mechanisms of recovery. The ability to detect emulsions in the porous medium is therefore crucial to designing profitable flood systems. The capability of microwave dielectric techniques to detect emulsions in porous medium is demonstrated by mathematical modeling and by experiments. This quarter the shape dependence of the complex dielectric properties of W/O and O/W type dispersions in the microwave frequency region were analyzed using the generalized effective medium theory of Hanai. The computations show that the authors earlier finding for spherical dispersions can now be extended to include nonspherical geometries. The computed results show that the difference in dielectric behavior of the two emulsion types are a strong function of the shape of the dispersions, with the differences vanishing when the two phases are oriented as layers parallel and perpendicular to the electromagnetic field.

  12. Synthesis of amphipathic block copolymers based on polyisobutylene and polyoxyethylene and their application in emulsion polymerization

    SciTech Connect

    Sar, B.

    1992-12-31

    Polymer colloids stabilized by polymeric surfactants are of great interest both commercially and academically. It has been found that these materials enhance latex stabilization in a number of applications. The polymeric surfactants are amphipathic block and graft copolymers containing both hydrophilic and hydrophobic moieties. The current study involved the synthesis of a series of amphipathic triblock copolymers, polyisobutylene-block-polyoxyethylene-block-polyisobutylene (PIB-b-POE-b-PIB), for use in the emulsion polymerization of styrene (STY), methyl methacrylate (MMA), and vinyl acetate (VAc). The stabilizing effectiveness of these triblock copolymers was studied as a function of their blocklength. When the molecular weight of the POE center block was changed from M{sub n} = 2,000 to 20,000 g/mole, stable lattices were obtained in emulsion polymerization with MMA, STY, and VAc as the monomers. In all cases, the polymerization rates remained constant, while the number of particles/volume decreased with increasing POE chain length. When the molecular weight of the PIB end blocks was changed from M{sub n} = 400 to 2,600 g/mole keeping the molecular weight of the POE center block constant at M{sub n} = 20,000 g/mole, the poly(methyl methacrylate) and poly(vinyl acetate) lattices exhibited similar behavior, i.e., the number of particles and particle sizes remained the same, but the rate of polymerization reached a maximum at 87 wt% POE content. In the case of poly(styrene) both the rate of polymerization and the number of particles remained constant. The emulsion polymerization of other monomers such as butadiene, acrylonitrile, methyl acrylate, ethyl acrylate, and butyl acrylate was carried out by using one triblock copolymer, i.e., PIB(400)-b-POE (8,000)-b-PIB-(400). Stable lattices were also formed in all cases.

  13. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers.

    PubMed

    Carrillo, Carlos A; Nypelö, Tiina; Rojas, Orlando J

    2016-03-14

    A route for the compatibilization of aqueous dispersions of cellulose nanofibrils (CNFs) with a non-polar polymer matrix is proposed to overcome a major challenge in CNF-based material synthesis. Non-ionic surfactants were used in CNF aqueous dispersions equilibrated with an organic phase (for demonstration, a polystyrene solution, PS, was used). Stable water-in-oil-in-water (W/O/W) double emulsions were produced as a result of the compromise between composition and formulation variables. Most remarkably, the proposed route for CNF integration with hydrophobic polymers removed the need for drying or solvent-exchange of the CNF aqueous dispersion prior to processing. The rheological behavior of the double emulsions showed strong shear thinning behavior and facilitated CNF-PS co-mixing in solid nanofibers upon electrospinning. The morphology and thermal properties of the resultant nanofibers revealed that CNFs were efficiently integrated in the hydrophobic matrix which was consistent with the high interfacial area of the precursor double emulsion. In addition, the morphology and quality of the composite nanofibers can be controlled by the conductivity (ionic strength) of the CNF dispersion. Overall, double emulsion systems are proposed as a novel, efficient and scalable platform for CNF co-processing with non-polar systems and they open up the possibility for the redispersion of CNFs after removal of the organic phase. PMID:26876673

  14. Static quasi-2D emulsion as a granular system

    NASA Astrophysics Data System (ADS)

    Wu, Rui; Orellana, Carlos; Hong, Xia; Desmond, Kenneth; Weeks, Eric

    2014-03-01

    We study the forces between emulsion droplets and the properties of force chains in a static oil-in-water emulsion system near jamming. The emulsion is confined between two parallel glass plates in order to construct a quasi-2D system. Quasi-2D emulsion systems are somewhat analogous to 2D granular disks, except for the absence of static friction between the droplets. We focus on samples at an area fraction ϕ that is higher than the jamming point, ϕc, and test the robustness of the power law dependence of pressure and the contact numbers on ϕ -ϕc . Specifically, we vary the surface tension by adding surfactants in the water, and examine the power law relationship under such variations. We also compare our result to simulations as well as established experimental results of true granular systems.

  15. Effect of cationic surfactants on characteristics and colorimetric behavior of polydiacetylene/silica nanocomposite as time-temperature indicator

    NASA Astrophysics Data System (ADS)

    Nopwinyuwong, Atchareeya; Kitaoka, Takuya; Boonsupthip, Waraporn; Pechyen, Chiravoot; Suppakul, Panuwat

    2014-09-01

    Polydiacetylene (PDA)/silica nanocomposites were synthesized by self-assembly method using polymerizable amphiphilic diacetylene monomers, 10,12-pentacosadiynoic acid (PCDA). Addition of cationic surfactants (PDADMAC and CTAB) to PDA/SiO2 nanocomposites induced higher intermolecular force which affected their size, shape and color transition. Pure PDA, PDA/SiO2, PDA/SiO2/PDADMAC and PDA/SiO2/CTAB were investigated by particle size analysis, TEM, SEM, UV-vis spectroscopy and FT-IR. It was found that the PDA/SiO2 nanocomposites exhibited slightly larger particle sizes than those of other samples. The PDA/SiO2 nanocomposites with a core-shell structure were almost regarded as spherical-shaped particles. Cationic surfactants, especially CTAB, presumably affected the particle size and shape of PDA/SiO2 nanocomposites due to the disruption of hydrogen bonding between PDA head group and ammonium group. The colorimetric response of both PDA/SiO2/surfactant and surfactant-free PDA/SiO2 aqueous solutions directly changed in relation to time and temperature; thus they were expected to be applied as a new polymer-based time-temperature indicator (TTI).

  16. Solubilization of octane in cationic surfactant-anionic polymer complexes: effect of polymer concentration and temperature.

    PubMed

    Zhang, Hui; Deng, Lingli; Zeeb, Benjamin; Weiss, Jochen

    2015-07-15

    Polymers may alter the ability of oppositely charged surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. This study was conducted to investigate the effects of polymer concentration and temperature on the solubilization thermodynamics of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using isothermal titration calorimetry (ITC). Results showed that the CTAB binding capacity of carboxymethyl cellulose increased with increasing temperature from 301 to 323 K, and correspondingly the thermodynamic behavior of octane solubilization in CTAB micelles, either in the absence or presence of polymer, was found to depend on temperature. The addition of carboxymethyl cellulose caused the solubilization in CTAB micelles to be less endothermic, and increased the solubilization capacity. Based on the phase separation model, the solubilization was suggested to be mainly driven by enthalpy gains. Results suggest that increasing concentrations of the anionic polymer gave rise to a larger Gibbs energy decrease and a larger unfavorable entropy increase for octane solubilization in cationic surfactant micelles. PMID:25841059

  17. Solubilization of octane in cationic surfactant-anionic polymer complexes: Effect of ionic strength.

    PubMed

    Zhang, Hui; Deng, Lingli; Sun, Ping; Que, Fei; Weiss, Jochen

    2016-01-01

    Polymers may alter the ability of oppositely charged surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. This study was conducted to investigate the effect of ionic strength on the solubilization thermodynamics of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using isothermal titration calorimetry (ITC). Results indicated that the CTAB binding capacity of carboxymethyl cellulose increased with increasing NaCl concentrations up to 100 mM, and the thermodynamic behavior of octane solubilization in CTAB micelles, either in the absence or presence of polymer, was found to have a strong dependence on ionic strength. The increasing ionic strength caused the solubilization in CTAB micelles to be less endothermic or even exothermic, but increased the solubilization capacity. Based on the phase separation model, the solubilization was suggested to be driven by enthalpy. It is indicated that increasing ionic strength gave rise to a larger Gibbs energy decrease but a smaller unfavorable entropy increase for octane solubilization in cationic surfactant micelles. PMID:26397914

  18. Solution Behavior and Interaction of Pepsin with Carnitine Based Cationic Surfactant: Fluorescence, Circular Dichroism, and Calorimetric Studies.

    PubMed

    Ghosh, Subhajit; Dolai, Subhrajyoti; Patra, Trilochan; Dey, Joykrishna

    2015-10-01

    The present work reports the pH-induced conformational changes of pepsin in solution at room temperature. The conformational change makes the protein surface active. The protein was found to be present in the partially denatured state at pH 8 as well as at pH 2. The fluorescence probe and circular dichroism (CD) spectra suggested that the most stable state of pepsin exists at pH 5. The binding affinities of pepsin in its native and denatured states for a D,L-carnitine-based cationic surfactant (3-hexadecylcarbamoyl-2-hydroxypropyl)trimethylammonium chloride (C16-CAR) were examined at very low concentrations of the surfactant. The thermodynamics of the binding processes were investigated by use of isothermal titration calorimetry. The results were compared with those of (3-hexadecylcarbamoylpropyl)trimethylammonium chloride (C16-PTAC), which is structurally similar to C16-CAR, but without the secondary -OH functionality near the headgroup. None of the surfactants were observed to undergo binding with pepsin at pH 2, in which it exists in the acid-denatured state. However, both of the surfactants were found to spontaneously bind to the most stable state at pH 5, the partially denatured state at pH 8, and the alkaline denatured state at pH 11. Despite the difference in the headgroup structure, both of the surfactants bind to the same warfarin binding site. Interestingly, the driving force for binding of C16-CAR was found to be different from that of C16-PTC at pH ? 5. The steric interaction of the headgroup in C16-CAR was observed to have a significant effect on the binding process. PMID:26348532

  19. Surfactants in droplet-based microfluidics.

    PubMed

    Baret, Jean-Christophe

    2012-02-01

    Surfactants are an essential part of the droplet-based microfluidic technology. They are involved in the stabilization of droplet interfaces, in the biocompatibility of the system and in the process of molecular exchange between droplets. The recent progress in the applications of droplet-based microfluidics has been made possible by the development of new molecules and their characterizations. In this review, the role of the surfactant in droplet-based microfluidics is discussed with an emphasis on the new molecules developed specifically to overcome the limitations of 'standard' surfactants. Emulsion properties and interfacial rheology of surfactant-laden layers strongly determine the overall capabilities of the technology. Dynamic properties of droplets, interfaces and emulsions are therefore very important to be characterized, understood and controlled. In this respect, microfluidic systems themselves appear to be very powerful tools for the study of surfactant dynamics at the time- and length-scale relevant to the corresponding microfluidic applications. More generally, microfluidic systems are becoming a new type of experimental platform for the study of the dynamics of interfaces in complex systems. PMID:22011791

  20. Exploring the charging mechanisms in non-aqueous multiphase surfactant solutions, emulsions and colloidal systems via conductivity behaviors predicted with eyring's rate process theory.

    PubMed

    Hao, Tian

    2016-01-01

    The common charging agents and charging mechanisms in non-aqueous multiphase systems available in the literature are analyzed, and the conductivity equations derived on the basis of the charging mechanisms with the Eyring's rate process theory are compared with experimental observations. The popular charging mechanisms in non-aqueous systems, such as the ion preferential absorption, ion pair dissociation, and micelle disproportionation/fluctuation models, are found to be incapable of explaining all experimental evidences. Particularly, the ion pair dissociation and micelle disproportionation/fluctuation models apparently suffer a major drawback: how charges are separated and most importantly how charging entities are stabilized in non-aqueous systems, are not adequately addressed; in low dielectric constant non-aqueous media separated ions tend to bind together rather than stay separately. A new charging mechanism incorporating an electric field internally available or externally applied into the charging process is proposed to explain charge separations and stabilizations. The conductivity equations derived on the basis of this new mechanism predict that conductivity should linearly increase with both the electric field and the concentrations of inverse micelles in very low concentration regions, which is consistent with experimental evidences. PMID:26617064

  1. Microscopic characterization of oil sands processing emulsions

    SciTech Connect

    Mikula, R.J.; Munoz, V.A.; Axelson, D.E.

    1988-06-01

    Microscopic characterization of oil sands emulsions can be important in the prediction of processing characteristics and process yields in the extraction of oil from oil sands. The size distribution of the process emulsion can determine how efficiently the oil can be separated from the water and by what means: mechanically or chemically. Optical and scanning electron microscopy coupled with automated image analysis can be applied to characterization of the size distribution of the dispersed phase in emulsion systems. In addition, it is possible to characterize the nature of the dispersed phase by using fluorescence behavior in the optical system or via X-ray analysis with the scanning electron microscope. In certain cases it is possible to characterize the interface between the dispersed and continuous phases. This paper presents results from our laboratory using microscopic techniques, not only for characterizing the morphology of these economically important emulsions, but also for compositional determinations of the interface itself.

  2. Stretching and colliding surfactant-coated drops

    NASA Astrophysics Data System (ADS)

    Hudson, Steven

    2005-03-01

    Equilibrium and kinetic properties of interfacial tension govern the structure, dynamics, stability and performance of immiscible fluids, such as polymer blends, detergents and reaction and separation media. These properties also play a substantial role in microcapillary devices. Using extension flow to stretch drops, we develop a microfluidic approach to probe equilibrium and kinetic surfactant adsorption. We also monitor drop population dynamics in simple shear (over a wide range of capillary number) and identify surfactant properties and mechanisms that regulate the coalescence of drops in emulsions.

  3. Controlling phospholipid self-assembly and film properties using highly fluorinated components--fluorinated monolayers, vesicles, emulsions and microbubbles.

    PubMed

    Krafft, Marie Pierre

    2012-01-01

    Use of fluorinated components instead or along with standard phospholipids in film, vesicle, bubble and emulsion engineering, can cause drastic modifications of the formation processes, structure and dynamics, and functional behavior of these systems. Perfluoroalkyl chains provide a powerful driving force for self-assembly and ordering. They allow, for example, obtainment of thermally stable vesicles from single-chain phosphocholine derivatives, tubules from non-chiral amphiphiles, faceted vesicles with fluid bilayer membranes, exceptionally stable and narrowly dispersed emulsions and microbubbles. Contact of a monolayer of DPPC with a fluorocarbon gas modifies the monolayer's phase behavior, suppressing the liquid expanded/liquid condensed transition. Phospholipid absorption kinetics at an air/water interface can be substantially accelerated, and the equilibrium interfacial tension reduced by exposure to a fluorocarbon gas. Perfluoroalkyl chains induce nanocompartmentation in films and membranes, allowing, for example, polymerization within vesicular membranes. Vesicles involving highly fluorinated components generally exhibit stability, permeability, fusion and recognition characteristics, different from those of their hydrogenated analogues. Drastic stabilization can be gained for phospholipid-coated emulsions through a co-surfactant effect of (perfluoroalkyl)alkyl diblocks. Stable, size-controlled, narrowly dispersed populations of microbubbles have been obtained using fluorinated wall and/or internal gas components, allowing progress in the understanding of microbubble physics, and open new application perspectives. PMID:21816205

  4. Demulsification of bitumen emulsions

    SciTech Connect

    Gipson, R.M.; Laberge, C.L.; Mccoy, D.R.; Young, K.B.

    1982-03-23

    A process for recovering bitumen from oil-in-water (o/w) emulsions is disclosed wherein water soluble demulsifiers are used. These demulsifiers are hydrophilic polyurethanes wherein the ethylene oxide content of the polyol portion of the polyurethane is greater than about 70% by weight. To resolve the bituminous petroleum emulsions, the process is carried out between 25 and 1200 C wherein the demulsifier of the invention is contacted with the bituminous emulsion.

  5. Demulsification of bitumen emulsions

    SciTech Connect

    McCoy, D.R.; McEntire, E.E.

    1983-09-20

    A process for recovering bitumen from oil-in-water (O/W) emulsions is disclosed wherein water-soluble demulsifiers are used. These demulsifiers are salts of polymers and/or co-polymers of specific cationic monomers. To resolve the bituminous petroleum emulsions, the process is carried out between 25/sup 0/ and 160/sup 0/C. wherein the demulsifier of the invention is contacted with the bituminous emulsion.

  6. Gemini Surfactants.

    PubMed

    Menger; Keiper

    2000-06-01

    How easy it is to dismiss the humdrum surfactant! After all, its structure is unglamorous by present-day norms. And the surfactant has been entrenched in so many areas of commerce for so many decades that its chemistry might seem old and tired. The purpose of this review is to persuade the reader otherwise, all the while focusing on a remarkable new surfactant, the gemini. Geminis, the common name for "bis-surfactants", can self-assemble at concentrations almost a hundredfold lower than for corresponding conventional surfactants. Surface activity can be improved a thousandfold. Geminis have already shown promise in skin care, antibacterial regimens, construction of high-porosity materials, analytical separations, and solubilization processes. Scores of patents dealing with geminis have appeared in the last few years. Indeed, geminis might well turn out, in the opinion of some, to be more useful to "l'homme de la rue" than crown ethers or fullerenes. This review delves into such topics as synthesis, critical micellization concentration, aggregate size and shape, gels, vesicles, and films. The information comes from scientists all over the world; one might say that gemini research is bathed in a continuous sunlight or summer. No prior knowledge of colloid chemistry is presupposed in this article. PMID:10940980

  7. Oil emulsions of fluorosilicone fluids

    SciTech Connect

    Keil, J. W.

    1985-08-27

    Emulsions of fluorosilicone fluids in mineral oil are disclosed. These emulsions are stabilized by a polydimethylsiloxane-polybutadiene copolymer or a polydimethylsiloxane-hydrogenated polybutadiene copplymer. The emulsions are an effective foam suppressant for organic liquids, especially crude petroleum.

  8. Oil-in-alcohol highly concentrated emulsions as templates for the preparation of macroporous materials.

    PubMed

    Vílchez, Susana; Pérez-Carrillo, Lourdes A; Miras, Jonathan; Solans, Conxita; Esquena, Jordi

    2012-05-22

    New oil-in-alcohol highly concentrated emulsions were formulated and were used as a templates to obtain macroporous poly(furfuryl alcohol) monoliths by a one-step method. The oil-in-alcohol highly concentrated emulsions were prepared by stepwise addition of the oil phase to the surfactant-alcohol solution and were characterized by optical microscopy and by laser diffraction. The typical structure of highly concentrated emulsions, with close-packed polyhedral droplets, has been observed. Poly(furfuryl alcohol) monoliths were obtained by polymerizing in the external phase of these emulsions. These materials are mainly macroporous and retain the size distribution and morphology from the highly concentrated emulsions. The internal structure of the monoliths was observed by scanning electron microscopy. The images showed an interconnected network with pore size similar to the droplet size of the highly concentrated emulsions used as templates. PMID:22489569

  9. Solids-free brine-in-oil emulsions for well completion

    SciTech Connect

    Ezzat, A.M. ); Blattel, S.R. )

    1989-12-01

    An invert emulsion fluid composed of brine (e.g., NaCl, NaBr, CaCl{sub 2}, CaBr{sub 2}, and ZnBr{sub 2}) emulsified into hydrocarbon oil (e.g., diesel, crude, or mineral) was formulated with a mixture of nonionic surfactant emulsifiers. This paper describes laboratory investigations conducted to define the emulsion characteristics and to develop methods for controlling the fluid's rheological properties and emulsion stability at elevated temperatures. This system has oil as the external phase, and the stability of the emulsion in most cases is linked to the homogeneity and fineness of the brine-dispersed droplets. The emulsion stability is also related to its viscosity and to the strength of the interfacial film formed by the emulsifiers that coat the brine droplets. For packer-fluid applications, the solids-free invert emulsions offer several advantages over conventional oil- and water-based muds.

  10. Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.

    PubMed

    Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-07-23

    Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills. PMID:24932773

  11. Phase behavior, small-angle neutron scattering and rheology of ternary nonionic surfactant-oil-water systems: a comparison of oils.

    PubMed

    Tabor, Rico F; Zaveer, Md Imran; Dagastine, Raymond R; Grillo, Isabelle; Garvey, Christopher J

    2013-03-19

    The phase behavior of the nonionic surfactant Triton X-100 (polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether) was studied in two three-component systems: Triton-water-p-xylene and Triton-water-trichloroethylene. It was found that the aromatic solvent was able to produce monophasic soft matter systems at a significantly greater range of compositions. The structural characteristics of the phases generated were analyzed by small-angle neutron scattering, showing evidence for microemulsion, lamellar, and reverse-microemulsion phases. In addition, for the Triton-water-p-xylene system, an L3 "sponge" phase was found in a water-rich region of the phase diagram and the properties of this were examined using rheological measurements. The differences in phase behavior are discussed in light of the solvation properties of the surfactant in the different solvents studied. Most notably, xylene appears to favor phases with low-curvature interfaces, suggesting preferential solvation of the central phenyl group of Triton. PMID:23418937

  12. Blend of alkyl phenol ethoxylates and alkyl phenol glycoxylates and their use as surfactants

    SciTech Connect

    Grolitzer, M. A.

    1985-11-12

    Nonionic surfactant compositions useful in forming stable emulsions with oil in saline solutions comprising a blend of: at least one alkyl phenol ethoxylate and at least one alkyl phenol glycoxylate. These surfactant compositions may be employed in enhanced oil recovery processes and other applications where good emulsification and high salinity tolerances are required such as textiles, leather, dairy, concrete grinding aids and drilling muds.

  13. Effect of polymer-surfactant association on colloidal force

    NASA Astrophysics Data System (ADS)

    Philip, John; Jaykumar, T.; Kalyanasundaram, P.; Raj, Baldev; Mondain-Monval, O.

    2002-07-01

    We investigate the forces between emulsion droplets in the presence of neutral polymer-surfactant complexes. The polymer used in our experiment was statistical copolymer of polyvinyl alcohol. The anionic surfactant used is sodiumdodecyl sulphate, the cationic surfactants are cetyltrimethylammonium bromide and tetradecyltrimethylammonium bromide, and the nonionic surfactant is nonylphenol ethoxylate (NP10). It has been found that the force profiles in the presence of surfactant-polymer complexes follow an exponential scaling with a characteristic decay length, close to the radius of gyration of the polymer alone. A continuous increase in the onset of repulsion is observed in the case of all three ionic surfactants, whereas no such variation was noticed in the case of nonionic surfactant, NP10. The experimental observations suggest that in the presence of charged surfactant molecules or micelles, the neutral polymer chain at the interface is converted into partial polyelectrolytes, where the charges on the chain repel each other and the electrostatic repulsion collectively leads to chain stretching. These results suggest that the associative polymers can be potential candidates for making the emulsions stable for a sufficiently long period.

  14. Microemulsion versus emulsion as effective carrier of hydroxytyrosol.

    PubMed

    Chatzidaki, Maria D; Arik, Nehir; Monteil, Julien; Papadimitriou, Vassiliki; Leal-Calderon, Fernando; Xenakis, Aristotelis

    2016-01-01

    Two edible Water-in-Oil (W/O) dispersions, an emulsion that remains kinetically stable and a microemulsion which is spontaneously formed, transparent and thermodynamically stable, were developed for potential use as functional foods, due to their ability to be considered as matrices to encapsulate biologically active hydrophilic molecules. Both systems contained Medium Chain Triglycerides (MCT) as the continuous phase and were used as carriers of Hydroxytyrosol (HT), a hydrophilic antioxidant of olive oil. A low energy input fabrication process of the emulsion was implemented. The obtained emulsion contained 1.3% (w/w) of surfactants and 5% (w/w) aqueous phase. The spontaneously formed microemulsion contained 4.9% (w/w) of surfactants and 2% (w/w) aqueous phase. A comparative study in terms of structural characterization of the systems in the absence and presence of HT was carried out. Particle size distribution obtained by Dynamic Light Scattering (DLS) technique and interfacial properties of the surfactants' layer, examined by Electron Paramagnetic Resonance (EPR) spectroscopy indicated the involvement of HT in the surfactant membrane. Finally, the proposed systems were studied for the scavenging activity of the encapsulated antioxidant toward galvinoxyl stable free radical showing a high scavenging activity of HT in both systems. PMID:25999235

  15. BEHAVIOR OF SURFACTANT MIXTURE AT SOLID/LIQUID AND OIL/LIQUID INTERFACE IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect

    Prof. P. Somasundaran

    2002-03-01

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analytical ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.

  16. Study of O/W micro- and nano-emulsions based on propylene glycol diester as a vehicle for geranic acid.

    PubMed

    Jaworska, Ma?gorzata; Sikora, El?bieta; Ogonowski, Jan; Konieczna, Monika

    2015-01-01

    Nano- and microemulsions containing as the oil phase caprylic/capric propylene glycol diesters (Crodamol PC) were investigated as potential vehicle for controlled release of geranic acid. The influence of emulsifiers and co-surfactants on stability of the emulsions was investigated. Different kind of polysorbates (ethoxylated esters of sorbitan and fatty acids) were applied as the emulsifiers. The short-chain alcohols (ethanol, 1-propanol, 1-butanol) were used as co-surfactants. The emulsions were prepared at ambient temperature (25C), by the phase inversion composition method (PIC). The stable O/W high dispersed emulsion systems based on Crodamol PC, of mean droplets size less than 200 nm, were prepared. Microemulsions stabilized by the mixture of Polisorbat 80 and 1-butanol were characterized by the largest degree of dispersion (137 nm) and the lowest PDI value (0.094), at surfactant/co-surfactant: oil weight ratio 90:10. The stable nano-emulsion (mean droplet size of 33 nm) was obtained for surfactant: oil (S:O) weight ratio 90:10, without co-surfactant addition. This nano-emulsion was chosen to release studies. The obtained results showed that the prepared stable nano-emulsion can be used as a carrier for controlled release of geranic acid. The active substance release from the nano-emulsion and the oil solution, after 24 hours was 22%. PMID:25856560

  17. Method of breaking and emulsion and an emulsion-emulsion breaker composition

    SciTech Connect

    Salathiel, W. M.

    1985-05-14

    This invention relates to a composition of matter and to a method for producing a controllable, residue-free break of an emulsion or a dispersion of a water-in-oil emulsion. An emulsion breaker is incorporated into the emulsion. It is temporarily-protected (deactivated) so that breaking of the emulsion is initially avoided. By removing the protection, the breaker becomes active, and it acts to break the emulsion into its separate phases.

  18. Flocculation of deformable emulsion droplets. 2: Interaction energy

    SciTech Connect

    Petsev, D.N.; Denkov, N.D.; Kralchevsky, P.A.

    1995-12-01

    The effect of different factors (drop radius, interfacial tension, Hamaker constant, electrolyte, micellar concentrations, etc.) on the interaction energy of emulsion droplets is studied theoretically. It is demonstrated that the deformation of the colliding droplets considerably affects the interaction energy. The contributions of the electrostatic, van der Waals, depletion, steric, and oscillatory surface forces, as well as for the surface stretching and bending energies, are estimated and discussed. The calculations show that the droplets interact as nondeformed spheres when the attractive interactions are weak. At stronger attractions an equilibrium plane parallel film is formed between the droplets, corresponding to minimum interaction energy of the system. For droplets in concentrated micellar surfactant solutions the oscillatory surface forces become operative and one can observe several minima of the energy surface,each corresponding to a metastable state with a different number of micellar layers inside the film formed between the droplets. The present theoretical analysis can find applications in predicting the behavior and stability of miniemulsions (containing micrometer and submicrometer droplets), as well as in interpretation of data obtained by light scattering, phase behavior, rheological and osmotic pressure measurements, etc.

  19. Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications.

    PubMed

    Fraker, Christopher A; Mendez, Armando J; Inverardi, Luca; Ricordi, Camillo; Stabler, Cherie L

    2012-10-01

    Nano-scale emulsification has long been utilized by the food and cosmetics industry to maximize material delivery through increased surface area to volume ratios. More recently, these methods have been employed in the area of biomedical research to enhance and control the delivery of desired agents, as in perfluorocarbon emulsions for oxygen delivery. In this work, we evaluate critical factors for the optimization of PFC emulsions for use in cell-based applications. Cytotoxicity screening revealed minimal cytotoxicity of components, with the exception of one perfluorocarbon utilized for emulsion manufacture, perfluorooctylbromide (PFOB), and specific w% limitations of PEG-based surfactants utilized. We optimized the manufacture of stable nano-scale emulsions via evaluation of: component materials, emulsification time and pressure, and resulting particle size and temporal stability. The initial emulsion size was greatly dependent upon the emulsion surfactant tested, with pluronics providing the smallest size. Temporal stability of the nano-scale emulsions was directly related to the perfluorocarbon utilized, with perfluorotributylamine, FC-43, providing a highly stable emulsion, while perfluorodecalin, PFD, coalesced over time. The oxygen mass transfer, or diffusive permeability, of the resulting emulsions was also characterized. Our studies found particle size to be the critical factor affecting oxygen mass transfer, as increased micelle size resulted in reduced oxygen diffusion. Overall, this work demonstrates the importance of accurate characterization of emulsification parameters in order to generate stable, reproducible emulsions with the desired bio-delivery properties. PMID:22652356

  20. Microfluidics with Gel Emulsions

    NASA Astrophysics Data System (ADS)

    Priest, Craig; Surenjav, Enkhtuul; Herminghaus, Stephan; Seemann, Ralf

    2006-03-01

    Microfluidic processing is usually achieved using single phase liquids. Instead, we use monodisperse emulsions to compartment liquids within microchannel geometries. At low continuous phase volume fractions, droplets self-organize to form well-defined arrangements, analogous to foam. While it is well-known that confined geometries can induce rearrangement of foam compartments at the millimeter-scale, similar dynamics are also expected for gel emulsions. We have studied online generation, organization and manipulation of gel emulsions using a variety of microchannel geometries. ``Passive'' reorganization, based on fixed channel geometries, can be supplemented by ``active'' manipulation by incorporating a ferrofluid phase. A ferromagnetic phase facilitates reorganization of liquid compartments on demand using an electromagnetic trigger. Moreover, coalescence between adjacent compartments within a gel emulsion can be induced using electrical potential. Microfluidics using gel emulsions will be well-suited for combinatorial chemistry, DNA sequencing, drug screening and protein crystallizations.

  1. Influence of thickness in the holographic emulsion composed by rosin and BPB dye

    NASA Astrophysics Data System (ADS)

    Ibarra, Juan C.; Ortiz-Gutierrez, Mauricio; Olivares-Perez, Arturo; Perez-Cortes, Mario

    2004-10-01

    We analyze diffraction gratings behavior recorded on a phase holographic emulsion. This emulsion is composed with resin and bromophenol blue dye (BPB) they have a diffraction efficiency (?) from 0.22 to 0.615% order, and their thickness are different in the holographic emulsion.

  2. Rapid crystallization and morphological adjustment of zeolite ZSM-5 in nonionic emulsions

    SciTech Connect

    Zhang Ying; Jin Chao

    2011-01-15

    Zeolite ZSM-5 was synthesized for the first time in a nonionic emulsion composed of polyoxyethylated alkylphenol, butanol, cyclohexane and tetraethylammonium hydroxide (TEAOH)-containing zeolite synthesis mixture. The crystallization kinetics in the emulsion was investigated and the ZSM-5 product was characterized in detail by XRD, SEM, FT-IR, TG, N{sub 2} adsorption and CHN analysis techniques. Compared with the conventionally hydrothermal synthesis with the same structure directing agent TEAOH, the emulsion system allows rapid crystallization of ZSM-5. The ZSM-5 product exhibits unusual agglomerated structure and possesses larger specific surface area. The FT-IR, TG results plus CHN analysis show the encapsulation of a trace of emulsion components in the emulsion ZSM-5. Control experiments show the emulsion system exerts the crystallization induction and morphological adjustment effects mainly during the aging period. The effects are tentatively attributed to the confined space domains, surfactant-water interaction as well as surfactant-growing crystals interaction existing in the emulsion. -- Graphical abstract: The nonionic emulsion synthesis allows rapid crystallization and morphological adjustment of zeolite ZSM-5 compared with the conventional hydrothermal synthesis. Display Omitted

  3. Dynamically reconfigurable complex emulsions via tunable interfacial tensions

    PubMed Central

    Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.

    2015-01-01

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including multiple emulsions and Janus droplets which contain hemispheres of differing material, are of increasing importance1 in pharmaceuticals and medical diagnostics2, in the fabrication of microparticles and capsules3–5 for food6, in chemical separations7, in cosmetics8, and in dynamic optics9. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets’ physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes10, to small-volume but more precise microfluidic methods11,12. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have greatly increased utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials. PMID:25719669

  4. Dynamically reconfigurable complex emulsions via tunable interfacial tensions.

    PubMed

    Zarzar, Lauren D; Sresht, Vishnu; Sletten, Ellen M; Kalow, Julia A; Blankschtein, Daniel; Swager, Timothy M

    2015-02-26

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials. PMID:25719669

  5. Dynamically reconfigurable complex emulsions via tunable interfacial tensions

    NASA Astrophysics Data System (ADS)

    Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.

    2015-02-01

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials.

  6. To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions.

    PubMed

    Bravo-Daz, Carlos; Romsted, Laurence Stuart; Liu, Changyao; Losada-Barreiro, Sonia; Pastoriza-Gallego, Maria Jos; Gao, Xiang; Gu, Qing; Krishnan, Gunaseelan; Snchez-Paz, Vernica; Zhang, Yongliang; Dar, Aijaz Ahmad

    2015-08-25

    Two important and unsolved problems in the food industry and also fundamental questions in colloid chemistry are how to measure molecular distributions, especially antioxidants (AOs), and how to model chemical reactivity, including AO efficiency in opaque emulsions. The key to understanding reactivity in organized surfactant media is that reaction mechanisms are consistent with a discrete structures-separate continuous regions duality. Aggregate structures in emulsions are determined by highly cooperative but weak organizing forces that allow reactants to diffuse at rates approaching their diffusion-controlled limit. Reactant distributions for slow thermal bimolecular reactions are in dynamic equilibrium, and their distributions are proportional to their relative solubilities in the oil, interfacial, and aqueous regions. Our chemical kinetic method is grounded in thermodynamics and combines a pseudophase model with methods for monitoring the reactions of AOs with a hydrophobic arenediazonium ion probe in opaque emulsions. We introduce (a) the logic and basic assumptions of the pseudophase model used to define the distributions of AOs among the oil, interfacial, and aqueous regions in microemulsions and emulsions and (b) the dye derivatization and linear sweep voltammetry methods for monitoring the rates of reaction in opaque emulsions. Our results show that this approach provides a unique, versatile, and robust method for obtaining quantitative estimates of AO partition coefficients or partition constants and distributions and interfacial rate constants in emulsions. The examples provided illustrate the effects of various emulsion properties on AO distributions such as oil hydrophobicity, emulsifier structure and HLB, temperature, droplet size, surfactant charge, and acidity on reactant distributions. Finally, we show that the chemical kinetic method provides a natural explanation for the cut-off effect, a maximum followed by a sharp reduction in AO efficiency with increasing alkyl chain length of a particular AO. We conclude with perspectives and prospects. PMID:25805058

  7. Cationic bituminous emulsions and emulsion aggregate slurries

    SciTech Connect

    Schilling, P.

    1986-07-01

    A cationic bituminous emulsion is described which consists of from about 30% to about 80% by weight of bitumen, from about 0.1% to about 10% by weight of an emulsifier selected from the group consisting of reaction products of a polyamine reacted with a member of the group consisting of epoxidized unsaturated fatty acids of chain lengths between C/sub 8/ and C/sub 22/ and the esters thereof and adding water to make up 100% by weight, the emulsion having a pH in the range of from 2-7.

  8. Mechanism of oil-bank formation, coalescence in porous media, and emulsion stability. Third annual report, June 1980-September 1981

    SciTech Connect

    Wasan, D.T.

    1983-09-01

    In this report we present results of a basic study of the various mechanisms of oil bank formation and propagation in chemical flooding processes involving surfactants and alkaline agents. Also presented are the results of modeling and simulation studies of our microwave monitored laboratory core flooding experiments in alkaline flooding and in drainage and stability of thin surfactant films associated with foam and emulsion systems. This work encompasses two topics: 1) Alkaline Flooding, and 2) Surfactant Flooding. 59 references, 63 figures, 19 tables.

  9. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery, Annual Report, September 30, 1999-September 30, 2000

    SciTech Connect

    Somasundaran, Prof. P.

    2001-04-04

    The goal of this report is to develop improved extraction processes to mobilize and produce the oil left untapped using conventional techniques. Current chemical schemes for recovering the residual oil have been in general less than satisfactory. High cost of the processes as well as significant loss of chemicals by adsorption on reservoir materials and precipitation has limited the utility of chemical-flooding operations. There is a need to develop cost-effective, improved reagent schemes to increase recovery from domestic oil reservoirs. The goal of the report was to develop and evaluate novel mixtures of surfactants for improved oil recovery.

  10. Synthesis of nanocrystalline CeO{sub 2} particles by different emulsion methods

    SciTech Connect

    Supakanapitak, Sunisa; Boonamnuayvitaya, Virote; Jarudilokkul, Somnuk

    2012-05-15

    Cerium oxide nanoparticles were synthesized using three different methods of emulsion: (1) reversed micelle (RM); (2) emulsion liquid membrane (ELM); and (3) colloidal emulsion aphrons (CEAs). Ammonium cerium nitrate and polyoxyethylene-4-lauryl ether (PE4LE) were used as cerium and surfactant sources in this study. The powder was calcined at 500 Degree-Sign C to obtain CeO{sub 2}. The effect of the preparation procedure on the particle size, surface area, and the morphology of the prepared powders were investigated. The obtained powders are highly crystalline, and nearly spherical in shape. The average particle size and the specific surface area of the powders from the three methods were in the range of 4-10 nm and 5.32-145.73 m{sup 2}/g, respectively. The CeO{sub 2} powders synthesized by the CEAs are the smallest average particle size, and the highest surface area. Finally, the CeO{sub 2} prepared by the CEAs using different cerium sources and surfactant types were studied. It was found that the surface tensions of cerium solution and the type of surfactant affect the particle size of CeO{sub 2}. - Graphical Abstract: The emulsion droplet size distribution and the TEM images of CeO{sub 2} prepared by different methods: reversed micelle (RM), emulsion liquid membrane (ELM) and colloidal emulsion aphrons (CEAs). Highlights: Black-Right-Pointing-Pointer Nano-sized CeO{sub 2} was successfully prepared by three different emulsion methods. Black-Right-Pointing-Pointer The colloidal emulsion aphrons method producing CeO{sub 2} with the highest surface area. Black-Right-Pointing-Pointer The surface tensions of a cerium solution have slightly effect on the particle size. Black-Right-Pointing-Pointer The size control could be interpreted in terms of the adsorption of the surfactant.

  11. Droplet-based microfluidics and the dynamics of emulsions

    NASA Astrophysics Data System (ADS)

    Baret, Jean-Christophe; Brosseau, Quentin; Semin, Benoit; Qu, Xiaopeng

    2012-02-01

    Emulsions are complex fluids already involved for a long time in a wide-range of industrial processes, such as, for example, food, cosmetics or materials synthesis [1]. More recently, applications of emulsions have been extended to new fields like biotechnology or biochemistry where the compartmentalization of compounds in emulsion droplets is used to parallelise (bio-) chemical reactions [2]. Interestingly, these applications pinpoint to fundamental questions dealing with surfactant dynamics, dynamic surface tension, hydrodynamic interactions and electrohydrodynamics. Droplet-based microfluidics is a very powerful tool to quantitatively study the dynamics of emulsions at the single droplet level or even at the single interface level: well-controlled emulsions are produced and manipulated using hydrodynamics, electrical forces, optical actuation and combination of these effects. We will describe here how droplet-based microfluidics is used to extract quantitative informations on the physical-chemistry of emulsions for a better understanding and control of the dynamics of these systems [3].[4pt] [1] J. Bibette et al. Rep. Prog. Phys., 62, 969-1033 (1999)[0pt] [2] A. Theberge et al., Angewandte Chemie Int. Ed. 49, 5846 (2010)[0pt] [3] J.-C. Baret et al., Langmuir, 25, 6088 (2009)

  12. Surfactants in vaccine adjuvants: description and perspectives.

    PubMed

    Ascarateil, Stephane; Dupuis, Laurent

    2006-04-12

    Amphiphilic molecules, called surfactants, are made of a lipophilic part linked to a hydrophilic part. These substances have physicochemical properties of self-aggregation, solubilisation or emulsification. Their ability to be attracted at the same time by polar and non-polar compounds forces them to be at the interface. Surfactants most frequently used in vaccines can be of natural or synthetic origin, non-ionic, cationic or amphoteric with a formula weight between 600 and 4000 g/mol. They can be used as adjuvants, solubilisers or stabilisers of emulsions. Physicochemical properties are defined through solubility parameters or solution behaviours and hydrophilic lipophilic balance (HLB). Application properties are assessed through placebo formulations simulating the final use. Synthetic products are preferred to products of natural origin for quality reasons. Development of a new generation of surfactant with precise chemical definition and consistency may generate new candidates for potential vaccine adjuvants. PMID:16823939

  13. Modulating self-assembly behavior of a salt-free peptide amphiphile (PA) and zwitterionic surfactant mixed system.

    PubMed

    Zhang, Han; Sun, Jichao; Xin, Xia; Xu, Wenlong; Shen, Jinglin; Song, Zhaohua; Yuan, Shiling

    2016-04-01

    A salt-free surfactant system formed by a peptide amphiphile with short headgroup (PA,C16-GK-3) and a zwitterionic surfactant (dodecyldimethylamine oxide, C12DMAO) in water has been systematically investigated. The microstructures and properties of C16-GK-3/C12DMAO mixed system were characterized using a combination of microscopic, scattering and spectroscopic techniques, including transmission electron microscopy (TEM), field emission-scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), circular dichroism (CD) and rheological measurements. Rich phase transitions have been observed by adjusting the concentration of C16-GK-3. Investigation of the hydrogels of C16-GK-3/C12DMAO with TEM, SEM and AFM showed that all of these hydrogels form nanobelts. The nanobelt formation is performed in a hierarchical manner: β-sheet peptides and C12DMAO first interact each other to form small aggregates, which then arrange themselves to form one dimensional (1D) left-handed ribbons. The ribbons further aggregated into flat and rigid nanobelts. We proposed a mechanism to interpret the self-assembly process according to the specific peptide structure as well as multiple equilibria between the hydrogen bonding interactions between the headgroups of C16-GK-3, between C12DMAO molecules and the headgroups of C16-GK-3, chirality of the amino acid residues and hydrophobic interactions of the alkyl chains. PMID:26773608

  14. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-01

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs = 34.10 ?M, T = 50 C, pH = 3.5, and CCR = 160 mg/L for the congo red system, and Cs = 34.10 ?M, T = 50 C, pH = 6.1, and CDR80 = 110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model.

  15. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: process optimization, kinetics and equilibrium.

    PubMed

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-25

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs=34.10 ?M, T=50C, pH=3.5, and CCR=160 mg/L for the congo red system, and Cs=34.10 ?M, T=50C, pH=6.1, and CDR80=110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model. PMID:25305604

  16. Surfactant compositions

    SciTech Connect

    Novakovic, M.; Abend, P.G.

    1987-09-29

    A surfactant composition is described for subsequent addition to a soap slurring comprising an acyloxy alkane sulfonate salt. The sulfonate salt is present in an amount by weight of about 44 percent of about 56 percent. The polyol is present in an amount by weight of about 2 percent to about 6 percent, and water is present in an amount by weight of 26 to 36 percent. The composition constituting a solid reversible solution at ambient temperature and having a solids content of about 58 to 72 percent, whereby subsequent addition of the surfactant composition to a soap slurry results in formation of a soap/detergent bar having a smooth texture, uniform wear properties and a lack of grittiness.

  17. The development of self-emulsifying oil-in-water emulsion adjuvant and an evaluation of the impact of droplet size on performance.

    PubMed

    Shah, Ruchi R; Dodd, Stephanie; Schaefer, Mary; Ugozzoli, Mildred; Singh, Manmohan; Otten, Gillis R; Amiji, Mansoor M; O'Hagan, Derek T; Brito, Luis A

    2015-04-01

    Microfluidization is an established technique for preparing emulsion adjuvant formulations for use in vaccines. Although this technique reproducibly yields high-quality stable emulsions, it is complex, expensive, and requires proprietary equipment. For this study, we developed a novel and simple low shear process to prepare stable reproducible emulsions without the use of any proprietary equipment. We found this process can produce a wide range of differently sized emulsions based on the modification of ratios of oil and surfactants. Using this process, we prepared a novel 20-nm-sized emulsion that was stable, reproducible, and showed adjuvant effects. During evaluation of this emulsion, we studied a range of emulsions with the same composition all sized below 200; 20, 90, and 160 nm in vivo and established a correlation between adjuvant size and immune responses. Our studies indicate that 160-nm-sized emulsions generate the strongest immune responses. PMID:25600347

  18. Design and development of multiple emulsion for enhancement of oral bioavailability of acyclovir.

    PubMed

    Paul, Sumita; Kumar, Abhinesh; Yedurkar, Pramod; Sawant, Krutika

    2013-11-01

    The objective of this investigation was to design and develop water-in-oil-in-water type multiple emulsions (w/o/w emulsions) entrapping acyclovir for improving its oral bioavailability. Multiple emulsions (MEs) were prepared and optimized using Span-80 and Span-83 as lipophilic surfactant and Brij-35 as hydrophilic surfactant. The physio-chemical properties of the w/o/w emulsions - particle size, viscosity, phase separation (centrifugation test) and entrapment efficiency were measured and evaluated along with macroscopic and microscopic observations to confirm multiple nature, homogeneity and globule size. Stability study, in vitro and ex vivo release studies were performed followed by in vivo studies in rats. Stable w/o/w emulsions with a particle size of 33.098 ± 2.985 µm and 85.25 ± 4.865% entrapment efficiency were obtained. Stability studies showed that the concentration of lipophilic surfactant was very important for stability of MEs. Drug release from the prepared formulations showed initial rapid release followed by a much slower release. In vivo studies in rats indicated prolonged release and better oral bioavailability as compared to drug solution. The overall results of this study show the potential of the w/o/w emulsions as promising drug delivery systems for acyclovir. PMID:23281917

  19. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    NASA Astrophysics Data System (ADS)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the discussion of emulsion stabilization and preparation. A historical review of multiple emulsions is presented subsequently and the stability mechanism is discussed in details with regard to the transportation kinetics of small molecules through the separating membrane of double emulsions. The principle, property and applications of liquid marbles are then summarized. Secondly, the preparation of monodisperse Pickering emulsions stabilized by soft PNIPAM-co-MAA microgels through SPG membrane emulsification is described. The influence of the membrane pore size, pH of the particle dispersion, particle size and the operating parameters of the membrane emulsification device on the size of the emulsion droplets was investigated systematically. The improvement in monodispersity of the emulsion droplets allows us to measure the release profiles of a small molecular dye and a larger nanoparticle through the colloidosomes. It is further demonstrated that the preparation of monodisperse emulsions stabilized by other types of soft particles allows us control the stability of the emulsion with a pH trigger and improved biocompatibility. Thirdly, the preparation of multiple emulsions stabilized by a special designed PEG-b-PS diblock copolymer with desired hydrophobicity by one-step method was presented. The ultra-stability of the as-obtained multiple emulsions was ascribed to the effective steric stabilization of the two interfaces with different polymer configurations at the interfaces. A series of diblock copolymer with increasing PS chain length was then synthesized to investigate the influence of asymmetry ratio on the type of emulsions prepared. It is found that the diblock copolymers with the asymmetry ratio of approximately 1 had the highest power to stabilize multiple emulsions. The multiple emulsions were demonstrated to be a promising platform for controlled release. In the end, particle-stabilized water-in-air liquid marbles were investigated. PSco-MAA nanoparticles synthesized from surfactant-free emulsion polymerization were proved to be effective liquid marble stabilizers. The influence of drying conditions on the properties of liquid marbles was investigated through a macroscopic way. The pH value of the particle dispersion, which influences the protonation states of the particles before freeze-drying, has a profound influence on the property of the stabilized liquid marbles. A brief comment to the future of work of these investigated systems is delivered in the last part.

  20. Structures of octenylsuccinylated starches: effects on emulsions containing ?-carotene.

    PubMed

    Sweedman, Michael C; Hasjim, Jovin; Schfer, Christian; Gilbert, Robert G

    2014-11-01

    Starches with different amylopectin contents and different molecular sizes prepared using acid hydrolysis were hydrophobically modified using octenylsuccinic anhydride (OSA). The OSA-modified starches were used as surfactants to stabilize emulsions of ?-carotene and canola oil dispersed in water. The objective of this study is to investigate the relationship between starch molecular structure and the chemical stability of the emulsified ?-carotene, as well as the colloidal stability of emulsion droplets during storage. The oil droplet size in emulsions was smaller when starch had (a) lower hydrodynamic volume (Vh) and (b) higher amylopectin content. The oxidative stability of ?-carotene was similar across samples, with higher results at increased amylopectin content but higher Vh. Steric hindrance to coalescence provided by adsorbed OSA-modified starches appears to be improved by more rigid molecules of higher degree of branching. PMID:25129720

  1. The effect of different surfactants/plastisizers on the electrical behavior of CNT nano-modified cement mortars

    NASA Astrophysics Data System (ADS)

    Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.

  2. Smart enrichment and facile separation of oil from emulsions and mixtures by superhydrophobic/superoleophilic particles.

    PubMed

    Duan, Chunting; Zhu, Tang; Guo, Jing; Wang, Zhen; Liu, Xiaofang; Wang, Hao; Xu, Xun; Jin, Yan; Zhao, Ning; Xu, Jian

    2015-05-20

    The separation and removal of oil or organic pollutants from water is highly imperative. The oil phases in surfactant-free oil-in-water emulsions or in free oil/water mixtures can be smartly enriched and transported by using superhydrophobic/superoleophilic iron particles (SHIPs) under a magnetic field. For water-in-oil emulsion, SHIPs-based composite membranes selectively allow the oil to pass through. Their convenient and scalable preparation, excellent separation performance, and good reusability are of great advantages for practical applications in wastewater treatment, the cleanup of oil spills, emulsion concentration, and fuel purification. PMID:25918874

  3. Water-oil Janus emulsions: microfluidic synthesis and morphology design.

    PubMed

    Ge, Xue-Hui; Huang, Jin-Pei; Xu, Jian-Hong; Chen, Jian; Luo, Guang-Sheng

    2016-04-14

    In this work we developed a facile method to prepare water-oil Janus emulsions in situ with tunable morphologies by using a double-bore capillary microfluidic device. In addition, by combining the theory model and our liquids' properties, we propose a method to design the morphology of water-oil Janus emulsions. To systematically research Janus morphologies we combined the theory model and the fluids' properties. Under the model guidance, we carefully selected the liquids system where only the interfacial tension between the water phase and the continuous phase changed while keeping the other two interfacial tensions unchanged. Thus we could adjust the Janus morphology by changing the surfactant mass fraction in the continuous phase. In addition, with the double-bore capillary, we prepared water-oil Janus emulsions with a large flow ratio range. By adjusting the flow ratio and the surfactant mass fraction, we successfully prepared Janus emulsions with gradual morphology changes, which would be meaningful in fields that have a high demand for morphology designing of amphiphilic Janus particles. PMID:26947622

  4. Fluoropolymer-Based Emulsions for the Intravenous Delivery of Sevoflurane

    PubMed Central

    Fast, Jonathan P.; Perkins, Mark G.; Pearce, Robert A.; Waters, Ralph M.; Mecozzi, Sandro

    2009-01-01

    Background The intravenous delivery of halogenated volatile anesthetics has been previously achieved using phospholipid-stabilized emulsions, e.g. Intralipid. However, fluorinated volatile anesthetics, such as sevoflurane, are partially fluorophilic and do not mix well with classic non-fluorinated lipids. This effect limits the maximum amount of sevoflurane that can be stably emulsified in Intralipid to 3.5% v/v. This is a significant limitation to the potential clinical use of Intralipid-based emulsions. Methods The authors prepared a 20% v/v sevoflurane emulsion using a novel fluorinated surfactant and tested its effectiveness and therapeutic index by administering it to male Sprague-Dawley rats via intravenous injection into the jugular vein. The median effective dose to induce anesthesia (ED50), median lethal dose (LD50), and therapeutic index (LD50 / ED50) were determined. Anesthesia was measured by loss of the forepaw righting reflex. Results The ED50 and LD50 values were found to be 0.41 and 1.05 mL emulsion / kg body weight, respectively. These lead to a therapeutic index of 2.6, which compares favorably to previously determined values of emulsified isoflurane, as well as values for propofol and thiopental. Conclusions A novel semi-fluorinated surfactant was able to considerably increase the maximum amount of stably emulsified sevoflurane compared to Intralipid. These formulations can be used to rapidly induce anesthesia with bolus dosing from which recovery is smooth and rapid. PMID:18813044

  5. Flotation of coal with latex emulsions of hydrocarbon animal or vegetable based oil

    SciTech Connect

    Scanlon, M.J.; Wang, S.S.

    1982-07-20

    Employment of a latex emulsion prepared from a hydrocarbon, animal or vegetable based oil with a hydrophobic water-in-oil emulsifier and a hydrophilic surfactant in the froth flotation of coal improves coal recovery without increasing the ash content. The emulsifier employed should have an hlb value of 5.0 or less while the surfactant should have an hlb value of 9.0 or higher.

  6. Development and rheological properties of ecological emulsions formulated with a biosolvent and two microbial polysaccharides.

    PubMed

    Trujillo-Cayado, L A; Alfaro, M C; Muñoz, J; Raymundo, A; Sousa, I

    2016-05-01

    The influence of gum concentration and rhamsan/welan gum ratio on rheological properties, droplet size distribution and physical stability of eco-friendly O/W emulsions stabilized by an ecological surfactant were studied in the present work. The emulsions were prepared with 30wt% α-pinene, a terpenic solvent and an ecological alternative for current volatile organic compounds. Rheological properties of emulsions showed an important dependence on the two studied variables. Flow curves were fitted to the Cross model and no synergistic effect between rhamsan and welan gums was demonstrated. Emulsions with submicron mean diameters were obtained regardless of the gum concentration or the rhamsan/welan ratio used. Multiple light scattering illustrated that creaming was practically eliminated by the incorporation of polysaccharides. The use of rhamsan and welan gums as stabilizers lead to apparent enhancements in emulsion rheology and physical stability. PMID:26826979

  7. Sensory evaluation of sodium chloride-containing water-in-oil emulsions.

    PubMed

    Rietberg, Matthew R; Rousseau, Drick; Duizer, Lisa

    2012-04-25

    The sensory perception of water-in-oil emulsions containing a saline-dispersed aqueous phase was investigated. Manipulating saltiness perception was achieved by varying the mass fraction aqueous phase (MFAP), initial salt load, and surfactant concentration [(polyglycerol polyricinoleate (PgPr)] of the emulsions, with formulations based on a central composite design. Saltiness and emulsion thickness were evaluated using a trained sensory panel, and collected data were analyzed using response surface analysis. Emulsion MFAP was the most important factor correlated with increased salt taste intensity. Emulsifier concentration and interactions between NaCl and PgPr had only minor effects. Emulsions more prone to destabilization were perceived as saltier irrespective of their initial salt load. The knowledge gained from this study provides a powerful tool for the development of novel sodium-reduced liquid-processed foods. PMID:22463684

  8. Solvent-free formation of hydroxyapatite coated biodegradable particles via nanoparticle-stabilized emulsion route

    NASA Astrophysics Data System (ADS)

    Okada, Masahiro; Fujii, Syuji; Nishimura, Taiki; Nakamura, Yoshinobu; Takeda, Shoji; Furuzono, Tsutomu

    2012-12-01

    Hydroxyapatite (HAp) nanoparticle-coated biodegradable polymer particles were fabricated from a nanoparticle-stabilized emulsion in the absence of any molecular surfactants or organic solvents. First, a polymer melt-in-water emulsion was prepared by mixing a water phase containing nanosized HAp particles as a particulate emulsifier and an oil phase consisting of poly(?-caprolactone) (PCL) or poly(L-lactide-co-?-caprolactone) (P(LLA-CL)) above its melting point. It was clarified that the interaction between ester/carboxyl groups of the polymers and the HAp nanoparticles at the polymer-water interface played a crucial role to prepare the nanoparticle-stabilized emulsion. The HAp nanoparticle-coated biodegradable polymer particle (a polymer solid-in-water emulsion) was fabricated by cooling the emulsion. The particle morphology and particle size were evaluated using scanning electron microscope.

  9. Influence of formulation on the oxidative stability of water-in-oil emulsions.

    PubMed

    Dridi, Wafa; Essafi, Wafa; Gargouri, Mohamed; Leal-Calderon, Fernando; Cansell, Maud

    2016-07-01

    The oxidation of water-in-oil (W/O) emulsions was investigated, emphasizing the impact of compositional parameters. The emulsions had approximately the same average droplet size and did not show any physical destabilization throughout the study. In the absence of pro-oxidant ions in the aqueous phase, lipid oxidation of the W/O emulsions was moderate at 60°C and was in the same range as that measured for the neat oils. Oxidation was significantly promoted by iron encapsulation in the aqueous phase, even at 25°C. However, iron chelation reduced the oxidation rate. Emulsions based on triglycerides rich in polyunsaturated fatty acids were more prone to oxidation, whether the aqueous phase encapsulated iron or not. The emulsions were stabilized by high- and low-molecular weight surfactants. Increased relative fractions of high molecular weight components reduced the oxidation rate when iron was present. PMID:26920286

  10. Starch-based Pickering emulsions for topical drug delivery: A QbD approach.

    PubMed

    Marto, J; Gouveia, L; Jorge, I M; Duarte, A; Gonalves, L M; Silva, S M C; Antunes, F; Pais, A A C C; Oliveira, E; Almeida, A J; Ribeiro, H M

    2015-11-01

    Pickering emulsions are stabilized by solid particles instead of surfactants and have been widely investigated in pharmaceutical and cosmetic fields since they present less adverse effects than the classical emulsions. A quality by design (QbD) approach was applied to the production of w/o emulsions stabilized by starch. A screening design was conducted to identify the critical variables of the formula and the process affecting the critical quality properties of the emulsion (droplet size distribution). The optimization was made by establishing the Design Space, adjusting the concentration of starch and the quantity of the internal aqueous phase. The emulsion production process was, in turn, adjusted by varying the time and speed of stirring, to ensure quality and minimum variability. The stability was also investigated, demonstrating that an increase in starch concentration improves the stability of the emulsion. Rheological and mechanical studies indicated that the viscosity of the emulsions was enhanced by the addition of starch and, to a higher extent, by the presence of different lipids. The developed formulations was considered non-irritant, by an in vitro assay using human cells from skin (Df and HaCat) with the cell viability higher than 90% and, with self-preserving properties. Finally, the QbD approach successfully built quality in Pickering emulsions, allowing the development of hydrophilic drug-loaded emulsions stabilized by starch with desired organoleptic and structural characteristics. The results obtained suggest that these systems are a promising vehicle to be used in products for topical administration. PMID:26263210

  11. DNA interaction with cis- and trans- isomers of photosensitive surfactant

    NASA Astrophysics Data System (ADS)

    Unksov, I. N.; Kasyanenko, N. A.

    2014-12-01

    Interaction between DNA and photosensitive cationic surfactant in a solution is studied. Studies were conducted to examine the impact of the surfactant in its cis- conformation on the size of DNA molecule and also to investigate the phase behavior of the system depending on DNA and surfactant concentration. We conclude that trans- isomer of surfactant requires its smaller concentration to reach the DNA compaction compared with cis- isomer received by UV radiation of solutions. Studies of DNA-surfactant systems were performed by means of spectrophotometry and viscometry. Variation of surfactant concentration enables us to determine the precipitation zone on phase diagram. From the viscosity study it can be indicated that precipitation zone is narrower for UV-radiated surfactant and it shifts to higher surfactant concentration. Also we examine the reversibility of DNA compaction in systems with the surfactant in its trans- form.

  12. Structure and Rheology of Concentrated Emulsions

    NASA Astrophysics Data System (ADS)

    Huang, Jung-Ren; Lai, Yi-Cian; Ou, Che-Hao; Tsai, Jih-Chiang

    2015-03-01

    We construct a shearing apparatus combining light scattering and stress measurement to study the structure and rheology of concentrated monodisperse emulsions. The emulsions are subjected to oscillatory shear of variable amplitude and frequency. The light scattering data reflect droplet deformation as well as shear history-dependent inter-droplet structures. The stress measurements display pseudoplasticity near zero shear rate and shear-thinning behavior at finite shear rates. In addition, the time-resolved, synchronous measurement of light scattering and rheology reveal detailed information about the complex structure-rheology relationship of emulsions. Shear disorders the droplets at low and high shear rates but induces order at medium shear rates. Furthermore, the effective viscosity increases as the degree of inter-droplet order decreases. This work is supported by Taiwan MOST Grant 100-2112-M-003-001-MY3.

  13. Rheology and stability of oil-in-water nanoemulsions stabilised by anionic surfactant and gelatin 2) addition of homologous series of sugar-based co-surfactants.

    PubMed

    Howe, Andrew M; Pitt, Alan R

    2008-12-01

    The oil-in-water emulsions used in silver-halide photographic coatings are stabilised with anionic surfactants and made in the presence of excess gelatin, which acts as an electrosteric stabilising agent and continuous phase viscosifier. The oil droplet sizes are close to 100 nm but the adsorbed gelatin increases the effective volume of the droplets significantly. These nanoemulsions are manufactured and coated at temperatures in excess of 40 degrees C, where gelatin adopts a random coil structure. At oil concentrations above 15% by volume, the emulsions are viscoelastic liquids with a high low-shear viscosity and strong shear-thinning. The viscosity and shear-thinning can be decreased by reducing the adsorption of gelatin, which can be achieved by addition of nonionic surfactants. This is a rheological study of the effects of adding novel, nonionic sugar-based surfactants on the rheology of photographic nanoemulsions, with additional measurements of static and dynamic surface tension. These surfactants have two sugar (gluconamide) heads and either one or two alkyl tails. Homologous series of each type of sugar surfactant were investigated over a wide range of alkyl tail length. The optimum surfactant choice for commercial applications depends not only on rheological effects but also on ease of synthesis, purification and dissolution, and of course, cost. The dynamic surface tension of the emulsion containing the anionic-nonionic surfactant mixture must also be compatible with the multilayer coating process. PMID:18842252

  14. Semi-solid Sucrose Stearate-Based Emulsions as Dermal Drug Delivery Systems

    PubMed Central

    Klang, Victoria; Schwarz, Julia C.; Matsko, Nadejda; Rezvani, Elham; El-Hagin, Nivine; Wirth, Michael; Valenta, Claudia

    2011-01-01

    Mild non-ionic sucrose ester surfactants can be employed to produce lipid-based drug delivery systems for dermal application. Moreover, sucrose esters of intermediate lipophilicity such as sucrose stearate S-970 possess a peculiar rheological behavior which can be employed to create highly viscous semi-solid formulations without any further additives. Interestingly, it was possible to develop both viscous macroemulsions and fluid nanoemulsions with the same chemical composition merely by slight alteration of the production process. Optical light microscopy and cryo transmission electron microscopy (TEM) revealed that the sucrose ester led to the formation of an astonishing hydrophilic network at a concentration of only 5% w/w in the macroemulsion system. A small number of more finely structured aggregates composed of surplus surfactant were likewise detected in the nanoemulsions. These discoveries offer interesting possibilities to adapt the low viscosity of fluid O/W nanoemulsions for a more convenient application. Moreover, a simple and rapid production method for skin-friendly creamy O/W emulsions with excellent visual long-term stability is presented. It could be shown by franz-cell diffusion studies and in vitro tape stripping that the microviscosity within the semi-solid formulations was apparently not influenced by their increased macroviscosity: the release of three model drugs was not impaired by the complex network-like internal structure of the macroemulsions. These results indicate that the developed semi-solid emulsions with advantageous application properties are highly suitable for the unhindered delivery of lipophilic drugs despite their comparatively large particle size and high viscosity. PMID:24310496

  15. Preparation and physical characterization of a novel marine oil emulsion as a potential new formulation vehicle for lipid soluble drugs.

    PubMed

    Cui, Guohui; Wang, Lili; Davis, Philip J; Kara, Mohameditaki; Liu, Hu

    2006-11-15

    Emulsions often contain vegetable oils such as soybean oil. In this study, a 10% (w/w) of marine mammal oil emulsion was prepared. The effect of a group of emulsifying agents on the stability of the 10% of seal oil emulsion was examined. The emulsifying agents studied were hydrogenated castor oil coated with various polyoxyethylene derivatives. It was found that 2.5% of HCO-40 resulted in the most stable seal oil emulsion. The size of the emulsified droplets defined by their diameters was found to be around 240-270 nm. The initial zeta-potential and pH value of the emulsion were found to be around -27 mV and 3.5, respectively, which decreased over time, to about -31 mV and 2.4, respectively. This is believed to be a result of the hydrolysis of triacylglycerides into free fatty acids in the emulsion. The effect of various amounts of Crodasinic LS-30, a negatively charged surfactant, and Incroqal Behenyl TMS, a positively charged surfactant, on the emulsion was investigated. It was shown that Crodasinic LS-30 had very little effect on the particle size, zeta-potential and pH, while the effect of Incroquat Benhenyl TMS was found to be dependent upon the concentration of the surfactant used. PMID:16901663

  16. Study of the binding between lysozyme and C10-TAB: determination and interpretation of the partial properties of protein and surfactant at infinite dilution.

    PubMed

    Morgado, Jorge; Aquino-Olivos, Marco Antonio; Martnez-Hernndez, Ranulfo; Corea, Mnica; Grolier, Jean Pierre E; del Ro, Jos Manuel

    2008-06-01

    This work examines the binding in aqueous solution, through the experimental determination of specific volumes and specific adiabatic compressibility coefficients, of decyltrimethylammonium bromide to lysozyme and to non-charged polymeric particles (which have been specially synthesized by emulsion polymerization). A method was developed to calculate the specific partial properties at infinite dilution and it was shown that a Gibbs-Duhem type equation holds at this limit for two solutes. With this equation, it is possible to relate the behavior of the partial properties along different binding types at a constant temperature. It was found that the first binding type, specific with high affinity, is related to a significant reduction of surfactant compressibility. The second binding type is accompanied by the unfolding of the protein and the third one is qualitatively identical to the binding of the surfactant to non-charged polymeric particles. PMID:18433980

  17. Surfactant concentration regime in miniemulsion polymerization for the formation of MMA nanodroplets by high-pressure homogenization.

    PubMed

    Hecht, Lena L; Wagner, Caroline; Landfester, Katharina; Schuchmann, Heike P

    2011-03-15

    This article focuses on the adequate surfactant concentration regime in which MMA droplets are stabilized sufficiently against coalescence during high-pressure homogenization but still no diffusion processes from droplets to micelles take place in the polymerization. Monomer miniemulsions with different surfactant concentrations were prepared with different energy inputs. Emulsions result that depend either on the surfactant concentration or on the energy input of the homogenization process. For both cases, the occupancy of the interface is compared as a function of the droplet size. It is shown that the surfactant concentration needed for the stabilization of a specified interface area decreases with increasing droplet size. For the dependence of droplet size on the energy input, it is shown that more surfactant can be applied before emulsion polymerization starts, but the applicable surfactant concentration is lower than the cmc and also depends on droplet size. PMID:21314152

  18. Surfactant Concentration Regime in Miniemulsion Polymerization for the Formation of MMA Nanodroplets by High-Pressure Homogenization

    PubMed Central

    2011-01-01

    This article focuses on the adequate surfactant concentration regime in which MMA droplets are stabilized sufficiently against coalescence during high-pressure homogenization but still no diffusion processes from droplets to micelles take place in the polymerization. Monomer miniemulsions with different surfactant concentrations were prepared with different energy inputs. Emulsions result that depend either on the surfactant concentration or on the energy input of the homogenization process. For both cases, the occupancy of the interface is compared as a function of the droplet size. It is shown that the surfactant concentration needed for the stabilization of a specified interface area decreases with increasing droplet size. For the dependence of droplet size on the energy input, it is shown that more surfactant can be applied before emulsion polymerization starts, but the applicable surfactant concentration is lower than the cmc and also depends on droplet size. PMID:21314152

  19. Dynamic film and interfacial tensions in emulsion and foam systems

    SciTech Connect

    Kim, Y.H.; Koczo, K.; Wasan, D.T.

    1997-03-01

    In concentrated fluid dispersions the liquid films are under dynamic conditions during film rupture or drainage. Aqueous foam films stabilized with sodium decylsulfonate and aqueous emulsion films stabilized with the nonionic Brij 58 surfactant were formed at the tip of a capillary and the film tension was measured under static and dynamic conditions. In the stress relaxation experiments the response of the film tension to a sudden film area expansion was studied. These experiments also allowed the direct measurement of the Gibbs film elasticity. In the dynamic film tension experiments, the film area was continuously increased by a constant rate and the dynamic film tension was monitored. The measured film tensions were compared with the interfacial tensions of the respective single air/water and oil/water interfaces, which were measured using the same radius of curvature, relative expansion, and expansion rate as in the film studies. It was found that under dynamic conditions the film tension is higher than twice the single interfacial tension (IFT) and a mechanism was suggested to explain the difference. When the film, initially at equilibrium, is expanded and the interfacial area increases, a substantial surfactant depletion occurs inside the film. As a result, the surfactant can be supplied only from the adjoining meniscus (Plateau border) by surface diffusion, and the film tension is controlled by the diffusion and adsorption of surfactant in the meniscus. The results have important implications for the stability and rheology of foams and emulsions with high dispersed phase ratios (polyhedral structure).

  20. Adsorption behavior of light green anionic dye using cationic surfactant-modified wheat straw in batch and column mode.

    PubMed

    Su, Yinyin; Zhao, Binglu; Xiao, Wei; Han, Runping

    2013-08-01

    An agricultural by-product, natural wheat straw (NWS), was soaked in 1 % cationic surfactant (hexadecylpyridinium bromide, CPB) solution for 24 h (at 293 K), and modified wheat straw (MWS) was obtained. Analysis of FTIR, XFR, and nitrogen element showed that CPB was adsorbed onto surface of NWS. Then, MWS was used as adsorbent for the removal of light green dye (LG, anionic dye) from aqueous solution. The experiment was performed in batch and column mode at room temperature (293 K). Sodium chloride (up to 0.1 mol/L) existed in solution was not favor of LG dye adsorption. The equilibrium data were better described by Langmuir isotherm, and adsorption capacity of q m from Langmuir model was 70.01 3.39 mg/g. In fixed-bed column adsorption mode, the effects of initial LG concentration (30, 50, 70 mg/L) and flow rate (6.5, 9.0, 14.5 mL/min) on adsorption were presented. Thomas and modified dose-response models were used to predict the breakthrough curves using nonlinear analysis method, and both models can fit the breakthrough curves. Theoretical and experimental breakthrough curves were drawn and compared. The results implied that MWS can be used as adsorbent material to remove LG from aqueous solution. PMID:23440440

  1. Surface shear inviscidity of soluble surfactants

    PubMed Central

    Zell, Zachary A.; Nowbahar, Arash; Mansard, Vincent; Leal, L. Gary; Deshmukh, Suraj S.; Mecca, Jodi M.; Tucker, Christopher J.; Squires, Todd M.

    2014-01-01

    Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 ?Ns/m. This conflicts directly with almost all previous studies, which reported values up to 103104 times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants. PMID:24563383

  2. Separation of cobalt and nickel by liquid surfactant membranes containing a synthesized cationic surfactant

    SciTech Connect

    Kakoi, Takahiko; Ura, Tsuyoshi; Kasaini, H.; Goto, Masahiro; Nakashio, Fumiyuki

    1998-06-01

    Separation of cobalt(II) and nickel(II) by using a hydroxyoxime extractant has been investigated both in liquid-liquid equilibrium extraction studies, hydroxyoximes showed significant extractability for nickel ions, although LIX 84 was found to have exceptional chelating affinity for nickel ions. In the LSM system functionalized by hydroxyoxime, the cobalt ions were efficiently separated from nickel ions as a result of slower permeation of nickel chelates across the emulsion membrane. More complete cobalt recovery was achieved in the LSMs dosed with LIX 860 than when the same carrier was applied to the liquid-liquid extraction system. Furthermore, cobalt permeation rate was enhanced threefold when a quaternary ammonium type of cationic surfactant was used as an emulsifier due to carrier interaction with surfactant at the reaction interface. The permeation mechanism of ions in LSMs was elucidated by an interfacial reaction model which took into account the adsorption of the carrier and surfactant at the reaction interface.

  3. Designing excipient emulsions to increase nutraceutical bioavailability: emulsifier type influences curcumin stability and bioaccessibility by altering gastrointestinal fate.

    PubMed

    Zou, Liqiang; Liu, Wei; Liu, Chengmei; Xiao, Hang; McClements, David Julian

    2015-08-01

    The influence of emulsifier type on the ability of excipient emulsions to improve the solubility, stability, and bioaccessibility of powdered curcumin was examined. Oil-in-water emulsions prepared using three different emulsifiers (whey protein isolate, caseinate, or Tween 80) were mixed with curcumin powder and then incubated at either 30 C (to simulate applications of salad dressings) or 100 C (to simulate applications of cooking sauces). The transfer of curcumin into the excipient emulsions was appreciably higher for excipient emulsions held at 100 C than those held at 30 C, and was appreciably higher for surfactant-stabilized emulsions than protein-stabilized emulsions. For example, the amounts of curcumin transferred into emulsions held at 30 and 100 C were 66 and 280 ?g mL(-1) for Tween 80, but only 17 and 208 ?g mL(-1) for caseinate. The total curcumin concentration in the digesta and mixed micelle phases collected after excipient emulsions were exposed to a simulated gastrointestinal tract (mouth, stomach, and small intestine) depended on emulsifier type. The total amount of curcumin within the digesta was higher for protein-stabilized emulsions than surfactant-stabilized ones, which was attributed to the ability of the proteins to protect curcumin from chemical degradation. For example, the digesta contained 204 ?g mL(-1) curcumin for caseinate emulsions, but only 111 ?g mL(-1) for Tween 80 emulsions. This study shows the potential of designing excipient emulsions to increase the oral bioavailability of curcumin for food and pharmaceutical applications. PMID:26165514

  4. Freeze-thaw stability of water-in-oil emulsions.

    PubMed

    Ghosh, S; Rousseau, D

    2009-11-01

    Factors influencing water-in-oil emulsion stability during freeze/thaw-cycling, namely interfacial crystallization vs. network crystallization and the sequence of crystallization events (i.e., dispersed vs. continuous phase or vice versa), are assessed. We show that destabilization is most apparent with a liquid-state emulsifier and a continuous oil phase that solidifies prior to the dispersed phase. Emulsions stable to F/T-cycling are obtained when the emulsifier crystallizes at the oil-water interface or in emulsions where the continuous phase crystallizes after the dispersed aqueous phase. The materials used are two food-grade oil-soluble emulsifiers - polyglycerol polyricinoleate (PGPR) and glycerol monostearin (GMS) and two continuous oil phases with differing crystallization temperatures - canola oil and coconut oil. Emulsion stability is assessed with pulsed field gradient NMR droplet size analysis, sedimentation, microscopy and differential scanning calorimetry. This study demonstrates the sequence of crystallization events and the physical state of the surfactant at the oil-water interface strongly impact the freeze-thaw stability of water-in-oil emulsions. PMID:19683718

  5. Properties and oxidative stability of emulsions prepared with myofibrillar protein and lard diacylglycerols.

    PubMed

    Diao, Xiaoqin; Guan, Haining; Zhao, Xinxin; Chen, Qian; Kong, Baohua

    2016-05-01

    The objective of this study was to investigate the emulsifying properties and oxidative stability of emulsions prepared with porcine myofibrillar proteins (MPs) and different lipids, including lard, glycerolized lard (GL) and purified glycerolized lard (PGL). The GL and PGL emulsions had significantly higher emulsifying activity indices and emulsion stability indices than the lard emulsion (P<0.05). The PGL emulsion presented smaller droplet sizes, thus decreasing particle aggregation and improving emulsion stability. The static and dynamic rheological observations of the emulsions showed that the emulsions had pseudo-plastic behavior, and the PGL emulsion presented a larger viscosity and a higher storage modulus (G') and loss modulus (G'') compared with the other two emulsions (P<0.05). The formation of thiobarbituric acid-reactive substances, carbonyl contents and total sulfhydryl contents was not significantly different between the emulsions with PGL, GL and lard (P<0.05). In general, lard diacylglycerols enhanced emulsifying abilities and had no adverse effects on the oxidation stability of the emulsions prepared with MPs. PMID:26775153

  6. Emulsions for interfacial filtration.

    SciTech Connect

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

    2006-11-01

    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  7. Magnetofluid emulsion: New magnetocontrolled media

    NASA Astrophysics Data System (ADS)

    Bashtovoi, Victor G.; Yarmolchik, Yuri P.

    1994-03-01

    This study has shown that flow dynamics of emulsion consisting of magnetic and nonmagnetic fluids depends on applied magnetic field. So these emulsions may be considered as a magnetic field controlled medium, and in particular as a magnetic field controlled heat carrier. The new dates on rheological properties of these emulsions in the presence of magnetic field are described.

  8. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil-wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate-wet for many surfactants and water-wet for one surfactant. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting core adsorption, phase behavior, wettability and mobilization studies.

  9. Novel stabilization of emulsions via the heteroaggregation of nanoparticles.

    PubMed

    Binks, Bernard P; Liu, Wenhui; Rodrigues, Jhonny A

    2008-05-01

    The stabilization of emulsions by a mixture of oppositely charged nanoparticles is investigated in relation to their behavior in water before emulsification. No emulsion can be prepared using either negatively or positively charged silica particles alone because the particles are too hydrophilic. Certain mixtures of the two particle types lead to heteroaggregation and a lowering of the net charge. Such mixtures, of increased hydrophobicity as verified by contact angle measurements, are capable of forming stable oil-in-water emulsions of excellent coalescence stability. The increased viscosity of the continuous phase also contributes to such stability. PMID:18361536

  10. Viscoelastic properties of sterically stabilised emulsions and their stability.

    PubMed

    Tadros, Tharwat

    2015-08-01

    The interaction forces between emulsion droplets containing adsorbed polymeric surfactants and the theory of steric stabilisation are briefly described. The results for the viscoelastic properties of O/W emulsions that are stabilised with partially hydrolysed poly(vinyl acetate) that is commonly referred to as poly(vinyl alcohol) (PVA) with 4% vinyl acetate are given. The effect of the oil volume fraction, addition of electrolytes and increasing temperature is described. This allows one to obtain various parameters such as the adsorbed layer thickness, the critical flocculation concentration of electrolyte (CFC) and critical flocculation temperature (CFT) at constant electrolyte concentration. The viscoelastic properties of O/W emulsions stabilised with an A-B-A block copolymer of polyethylene oxide (A) and polypropylene oxide (B) are described. These emulsions behave as viscoelastic liquids showing a cross-over-point between G' (the elastic component of the complex modulus) and G″ (the viscous component of the complex modulus) at a characteristic frequency. Plots of G' and G″ versus oil volume fraction ϕ show the transition from predominantly viscous to predominantly elastic response at a critical volume fraction ϕ(c). The latter can be used to estimate the adsorbed layer thickness of the polymeric surfactants. Results are also shown for W/O emulsions stabilised with an A-B-A block copolymer of polyhydroxystearic acid (PHS, A) and polyethylene oxide (PEO, B). The viscosity volume fraction curves could be fitted to the Dougherty-Krieger equation for hard-spheres. The results could be applied to give an estimate of the adsorbed layer thickness Δ which shows a decrease with increase of the water volume fraction. This is due to the interpenetration and/or compression of the PHS layers on close approach of the water droplets on increasing the water volume fraction. The last section of the review gives an example of O/W emulsion stability using an AB(n) graft copolymer of polyfructose (A) to which several C12 alkyl chains are grafted. The emulsions are stable both at high temperature and in the presence of high electrolyte concentrations (2 mol dm(-3) NaCl). This high stability is due to the strong adsorption ("anchoring") of the graft copolymer with several C12 alkyl chains and the strong hydration of the polyfructose chains both in water and in the presence of high electrolyte concentrations and temperature. Evidence for this high stability is obtained using disjoining pressure measurements which show a highly stable film between the emulsion droplets and absence of its rupture up to high pressures. PMID:25900262

  11. Partitioning behavior of an acid-cleavable, 1,3-dioxolane alkyl ethoxylate, surfactant in single and binary surfactant mixtures for 2- and 3-phase microemulsion systems according to ethoxylate head group size

    SciTech Connect

    Gomez Del Rio, Javier A; Hayes, Douglas G; Urban, Volker S

    2010-01-01

    Partition coefficients for a pH-degradable 1,3-dioxolane alkyl ethoxylate surfactant, 4-CH{sub 3}O (CH{sub 2}CH{sub 2}O){sub 5.6}-CH{sub 2}, 2,2-(CH{sub 2}){sub 12}CH{sub 3}, 2-(CH{sub 2}) CH{sub 3}, 1,3-dioxolane or ''cyclic ketal'' surfactant, CK-2,13-E{sub 5.6,ave}, between isooctane- and water-rich phases of 2- and 3-phase microemulsion systems (K{sub n}) were determined as functions of the ethoxylate size, n, and temperature for the neat surfactant and its binary surfactant mixtures, to understand the partitioning of alkyl ethoxylates possessing a broad distribution of ethoxylate size and to determine conditions required for formation of 3-phase microemulsion systems at an optimal temperature where phase separation occurs rapidly, important for protein purification via proteins selective partitioning to the middle phase, driven by affinity to the second surfactant of the binary mixture. A semi-empirical thermodynamic mathematical model described the partitioning data well, provided optimal temperature values consistent with phase diagrams and theory, and demonstrated that the tail region of CK-2,13-E{sub 5.6,ave} is more polar than the hydrophobes of fatty alcohol ethoxylates. The addition of Aerosol-OT (AOT) removed the temperature sensitivity of CK-2,13-E{sub 5.6,ave}s partitioning, producing 3-phase microemulsion systems between 20 C and 40 C. Analysis of the bottom phases of the 2- and 3-phase microemulsion systems formed by CK-2,13-E{sub 5.6,ave} via small-angle neutron scattering demonstrated the presence of spherical, monodisperse oil-in-water microemulsions.

  12. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    NASA Astrophysics Data System (ADS)

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-08-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

  13. Pickering emulsions: what are the main parameters determining the emulsion type and interfacial properties?

    PubMed

    Destribats, Mathieu; Gineste, Stphane; Laurichesse, Eric; Tanner, Hugo; Leal-Calderon, Fernando; Hroguez, Valrie; Schmitt, Vronique

    2014-08-12

    We synthesized surface-active lipophilic core-hydrophilic shell latex particles, and we probed their efficiency as emulsion stabilizers. The relative weight percentage of the shell, RS/P, was varied to trigger the balance between lipophilicity and hydrophilicity of the particles. Particle wettability could concomitantly be tuned by the pH of the aqueous phase determining the surface charge. Emulsions covering a wide range of RS/P and pH values were fabricated, and their type, oil-in-water (O/W) or water-in-oil (W/O), and kinetic stability were systematically assessed. By adapting the particle gel trapping technique to pH-variable systems and by exploiting the limited coalescence process, we were able to determine the proportion of oil/water interfacial area, C, covered by the particles as well as their contact angle, ?. All of these data were gathered into a single generic diagram showing good correlation between the emulsion type and the particle contact angle (O/W for ? < 90 and W/O for ? > 90) in agreement with the empirical Finkle rule. Interestingly, no stable emulsion could be obtained when the wettability was nearly balanced and a "bipolar"-like behavior was observed, with the particles adopting two different contact angles whose average value was close to 90. For particles such that ? < 90, O/W emulsions were obtained, and, depending on the pH of the continuous phase, the same type of particles and the same emulsification process led to emulsions characterized either by large drops densely covered by the particles or by small droplets that were weakly covered. The two metastable states were also accessible to emulsions stabilized by particles of variable origins and morphologies, thus proving the generality of our findings. PMID:25055160

  14. Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene.

    PubMed

    Pérez-Mosqueda, Luis M; Trujillo-Cayado, Luis A; Carrillo, Francisco; Ramírez, Pablo; Muñoz, José

    2015-04-01

    d-Limonene is a natural occurring solvent that can replace more pollutant chemicals in agrochemical formulations. In the present work, a comprehensive study of the influence of dispersed phase mass fraction, ϕ, and of the surfactant/oil ratio, R, on the emulsion stability and droplet size distribution of d-limonene-in-water emulsions stabilized by a non-ionic triblock copolymer surfactant has been carried out. An experimental full factorial design 3(2) was conducted in order to optimize the emulsion formulation. The independent variables, ϕ and R were studied in the range 10-50 wt% and 0.02-0.1, respectively. The emulsions studied were mainly destabilized by both creaming and Ostwald ripening. Therefore, initial droplet size and an overall destabilization parameter, the so-called turbiscan stability index, were used as dependent variables. The optimal formulation, comprising minimum droplet size and maximum stability was achieved at ϕ=50 wt%; R=0.062. Furthermore, the surface response methodology allowed us to obtain the formulation yielding sub-micron emulsions by using a single step rotor/stator homogenizer process instead of most commonly used two-step emulsification methods. In addition, the optimal formulation was further improved against Ostwald ripening by adding silicone oil to the dispersed phase. The combination of these experimental findings allowed us to gain a deeper insight into the stability of these emulsions, which can be applied to the rational development of new formulations with potential application in agrochemical formulations. PMID:25734966

  15. Self-emulsifying pellets: relations between kinetic parameters of drug release and emulsion reconstitution-influence of formulation variables.

    PubMed

    Nikolakakis, Ioannis; Malamataris, Stavros

    2014-05-01

    The effects of surfactant type and content on the kinetics of emulsion reconstitution and release of drugs differing in lipophilicity from self-emulsifying microcrystalline cellulose pellets were studied. Furosemide and propranolol were the drugs, medium-chain triglyceride was the oil, and Cremophors ELP, RH40, and RH60 were the surfactants. Pellets were prepared by extrusion/spheronization with emulsions (75% water and 25%, w/w, oil/surfactant/drug). Stability of the emulsions was evaluated from changes in the back-scattered light, and re-emulsification and drug release from light transmittance and UV spectroscopy, respectively. Emulsion stability increased because of the incorporation of the drugs. Re-emulsification depended only on the surfactant content and was expressed by a simple power equation (Ra2 > 0.945, Q(2) > 0.752). Drug release was expressed by two biexponential equations (Ra2 > 0.989, Q(2) > 0.699 and Ra2 > 0.947, Q(2) > 0.693) implying initial burst and terminal slow release phase and by the linear form (Lineweaver-Burke) of Michaelis-Menten equation (Ra2 > 0.726, Q(2) > 0.397). Relationships exist between the rate constants of the equations describing emulsion reconstitution and drug release, for propranolol compositions (R(2) = 0.915), and for compositions of both drugs with less hydrophilic ELP and RH40 (R(2) = 0.511), and also, among dissolution efficiency, drug solubility in oil/surfactant, and emulsion reconstitution ability, indicating the importance of drug solubilization in oil/surfactant and re-emulsification ability on drug release. PMID:24596121

  16. Precipitation of mixtures of anionic and cationic surfactants; 3: Effect of added nonionic surfactant

    SciTech Connect

    Shiau, B.J.; Harwell, J.H.; Scamehorn, J.F. . Inst. for Applied Surfactant Research)

    1994-10-15

    The precipitation of an anionic surfactant by a cationic surfactant in the presence of a nonionic surfactant is examined. The precipitation domains for sodium dodecyl sulfate/dodecyl-pyridinium chloride were measured over a wide range of surfactant concentrations as a function of nonylphenol polyethoxylate concentration. Increasing the nonylphenol polyethoxylate concentration decreases the tendency for precipitation to occur. A model for predicting precipitation domains in ternary surfactant mixtures has been developed and verified experimentally. The model allows the nonionic surfactant to affect the precipitation behavior only by lowering the critical micelle concentration of the mixture. Small deviations between theory and experiments along part of the anionic-rich micelle boundary result from adsorption of SDS on the precipitate which gives the microcrystals a negative charge and prevents their growth to a visible size.

  17. Stability of cellulose lyotropic liquid crystal emulsions

    NASA Astrophysics Data System (ADS)

    Tixier, T.; Heppenstall-Butler, M.; Terentjev, E. M.

    2005-12-01

    We studied a new kind of W/O emulsions based on a lyotropic liquid crystal as the aqueous droplet phase. The cholesteric phase, a solution hydroxypropyl cellulose in water was dispersed in the continuous oil matrix, paraffin oil or heptane. We made a specific choice of surfactant in order to impose director anchoring conditions at the oil-water interface and orient the liquid crystal inside the droplet. The strong anchoring conditions resulted in a topological defect inside the droplets of size above the critical value R^*. The defect elastic energy creates a barrier against droplet coalescence, the effect of topological size selection. We have studied the orientation of the director inside the droplets and their size distribution.

  18. Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Samantha J; He, Jibao; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2014-11-18

    Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation. PMID:25346266

  19. Characteristic features of heterophase polymerisation of styrene with simultaneous formation of surfactants at the interface

    NASA Astrophysics Data System (ADS)

    Prokopov, Nikolai I.; Gritskova, Inessa A.

    2001-09-01

    Data on the heterophase polymerisation of styrene under conditions of surfactant formation at the monomer-water interface are generalised. A new, in principle, approach is proposed the essence of which is to obtain a monomer emulsion simultaneously with the synthesis of an emulsifier at the monomer-water interface and with initiation of the polymerisation in the interfacial layer. The preparation of surfactants at the interface allows one to control efficiently the degree of dispersion and the stability of the emulsions formed. By varying the nature of the acid and the metal counter-ion used in the surfactant synthesis at the interface, it is possible to change the interfacial tension, to influence the microemulsification, disintegration of the monomer, and the formation of structure of interfacial adsorption layers. The mechanism of formation of polymer-monomeric particles as well as their diameter and size distribution depend substantially on the solubility of the resulting surfactants in water. The bibliography includes 47 references.

  20. Evaluation of mixed surfactants for improved chemical flooding

    SciTech Connect

    Llave, F.M.; French, T.R.; Lorenz, P.B.

    1993-02-01

    Phase behavior studies were conducted using combinations of a primary surfactant component and several ethoxylated surfactants. The objective of the study is to evaluate combinations of surfactants, anionic-nonionic and anionic-anionic mixtures, that would yield favorable phase behavior and solubilization capacity. The dependence of the solution behavior on the additive surfactant structure, surfactant type, oil, surfactant proportion, salinity, HLB, and temperature was observed. The results showed that the ethoxylated surfactants can improve the solution behavior of the overall system. The increase in optimum salinity range of these solutions corresponded to an increase in the degree of ethoxylation of additive surfactant, up to a certain limit. The nonionic surfactant additives yielded much higher salinities compared to the results from the ethoxylated anionics tested. The proportion of surfactant component in solution was critical in achieving a balance between the solubilization capacity and the enhancement in the system's salinity tolerance. Some combinations of these types of surfactants showed improved solution behavior with favorable solubilization capacity. The phase inversion temperature (PIT) method has been shown to be a relatively fast method for screening candidate surfactant systems. Comparisons were made using both the conventional salinity scan and the PIT method on selected chemical systems. The results showed good agreement between the salinity regions determined using both methods. A difference in the dependence of optimal salinity on HLB was observed for the different nonionics tested. The linear alkyl alcohol ethoxylates exhibited a behavior distinct from the dialkyl phenols at similar HLB levels with and without the primary sulfonate component in the solution. Other experiments performed at NIPER have shown that surfactant-enhanced alkaline flooding has good potential for the recovery of oil from Naval Petroleum Reserve Number 3 (NPR No. 3).

  1. Evaluation of mixed surfactants for improved chemical flooding

    SciTech Connect

    Llave, F.M.; French, T.R.; Lorenz, P.B.

    1993-02-01

    Phase behavior studies were conducted using combinations of a primary surfactant component and several ethoxylated surfactants. The objective of the study is to evaluate combinations of surfactants, anionic-nonionic and anionic-anionic mixtures, that would yield favorable phase behavior and solubilization capacity. The dependence of the solution behavior on the additive surfactant structure, surfactant type, oil, surfactant proportion, salinity, HLB, and temperature was observed. The results showed that the ethoxylated surfactants can improve the solution behavior of the overall system. The increase in optimum salinity range of these solutions corresponded to an increase in the degree of ethoxylation of additive surfactant, up to a certain limit. The nonionic surfactant additives yielded much higher salinities compared to the results from the ethoxylated anionics tested. The proportion of surfactant component in solution was critical in achieving a balance between the solubilization capacity and the enhancement in the system`s salinity tolerance. Some combinations of these types of surfactants showed improved solution behavior with favorable solubilization capacity. The phase inversion temperature (PIT) method has been shown to be a relatively fast method for screening candidate surfactant systems. Comparisons were made using both the conventional salinity scan and the PIT method on selected chemical systems. The results showed good agreement between the salinity regions determined using both methods. A difference in the dependence of optimal salinity on HLB was observed for the different nonionics tested. The linear alkyl alcohol ethoxylates exhibited a behavior distinct from the dialkyl phenols at similar HLB levels with and without the primary sulfonate component in the solution. Other experiments performed at NIPER have shown that surfactant-enhanced alkaline flooding has good potential for the recovery of oil from Naval Petroleum Reserve Number 3 (NPR No. 3).

  2. Potential commercial applications of microbial surfactants.

    PubMed

    Banat, I M; Makkar, R S; Cameotra, S S

    2000-05-01

    Surfactants are surface-active compounds capable of reducing surface and interfacial tension at the interfaces between liquids, solids and gases, thereby allowing them to mix or disperse readily as emulsions in water or other liquids. The enormous market demand for surfactants is currently met by numerous synthetic, mainly petroleum-based, chemical surfactants. These compounds are usually toxic to the environment and non-biodegradable. They may bio-accumulate and their production, processes and by-products can be environmentally hazardous. Tightening environmental regulations and increasing awareness for the need to protect the ecosystem have effectively resulted in an increasing interest in biosurfactants as possible alternatives to chemical surfactants. Biosurfactants are amphiphilic compounds of microbial origin with considerable potential in commercial applications within various industries. They have advantages over their chemical counterparts in biodegradability and effectiveness at extreme temperature or pH and in having lower toxicity. Biosurfactants are beginning to acquire a status as potential performance-effective molecules in various fields. At present biosurfactants are mainly used in studies on enhanced oil recovery and hydrocarbon bioremediation. The solubilization and emulsification of toxic chemicals by biosurfactants have also been reported. Biosurfactants also have potential applications in agriculture, cosmetics, pharmaceuticals, detergents, personal care products, food processing, textile manufacturing, laundry supplies, metal treatment and processing, pulp and paper processing and paint industries. Their uses and potential commercial applications in these fields are reviewed. PMID:10855707

  3. Emulsion polymerization by using chemocleavable emulsifiers derived from 1-o-alkylglycerols.

    PubMed

    Ono, Daisuke; Takahashi, Yuta; Sato, Hirofumi; Shizuma, Motohiro; Araki, Masuyama; Nakamura, Masaki

    2011-01-01

    Poly(butyl methacrylate) and polystyrene were synthesized by emulsion polymerization using chemocleavable anionic surfactants (1a and 2a) derived from 1-O-alkylglycerols in order to resolve the problem that it is generally difficult to isolate the desired product from persistent emulsions. It has been previously determined that 1a decomposes completely under acidic conditions whereas 2a decomposes completely under both acidic and alkaline conditions. After emulsion polymerization, the emulsions could be easily broken by adding either HCl or NaOH. Further, the polymers could be filtered off very quickly. The polydispersities of these polymers were lower than those of the polymers synthesized by conventional emulsifiers. Further, the Na content values of the former were lower than those of the latter. PMID:21343663

  4. Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil.

    PubMed

    Carrillo, Carlos A; Nypel, Tiina E; Rojas, Orlando J

    2015-05-01

    Cellulose nanofibrils (CNF) were incorporated in water-in-oil (W/O) microemulsions and emulsions, as well as water-in-oil-in-water (W/O/W) multiple emulsions using soybean oil. The addition of CNF to the aqueous phase expanded the composition range to obtain W/O/W emulsions. CNF also increased the viscosity of the continuous phase and reduced the drop size both of which increased the stability and effective viscosity of the emulsions. The effects of oil type and polarity on the properties of the W/O/W emulsions were tested with limonene and octane, which compared to soybean oil produced a smaller emulsion drop size, and thus a higher emulsion viscosity. Overall, CNF are a feasible alternative to conventional polysaccharides as stability enhancers for normal and multiple emulsions that exhibit strong shear thinning behavior. PMID:25617611

  5. Spreading of an Oil-in-Water Emulsion on a Glass Plate: Phase Inversion and Pattern Formation.

    PubMed

    Deblais, A; Harich, R; Bonn, D; Colin, A; Kellay, H

    2015-06-01

    Rigid blade coating of glass plates by oil-in-water emulsions stabilized by surfactants is studied. Complete surface coverage is obtained only for speeds exceeding a threshold velocity dependent on the height between the blade end and the surface. Below this threshold, the emulsion can be inverted in the vicinity of the blade. The inversion dynamics of the oil-in-water emulsion and the deposition patterns induced by this phase inversion are studied using a microscope mounted set up. We show that these dynamics are universal for different volume fractions and deposition velocities. This inversion as well as the destabilization of the emulsion film deposited at high speeds gives rise to different patterns on the glass surface. These patterns are discussed in terms of the emulsion characteristics as well as the deposition velocity. PMID:26000801

  6. Micellization of true amphoteric surfactants.

    PubMed

    Li, Yunxiang; Holmberg, Krister; Bordes, Romain

    2013-12-01

    The physical chemical behavior of a series of N-alkyl amino acid-based surfactants has been investigated. The series comprises four different types of amino acids as polar headgroups: glycine, aminomalonic acid, aspartic acid and glutamic acid, and for each type three homologues were synthesized: the octyl, decyl and dodecyl derivative. Aminomalonic acid, aspartic acid and glutamic acid are dicarboxylic amino acids with one, two and three methylene groups as spacer between the carboxylic groups, respectively. Compared with the more common N-acyl surfactants based on the same amino acids, many of the N-alkyl derivatives exhibited relatively high Krafft temperatures. The N-alkyl derivatives also had considerably lower critical micelle concentrations (CMCs) and they gave low values of surface tension at the CMC. The length of the spacer between the two carboxylic groups did not much influence the micellization. Some of the surfactants, in particular the lower homologues of N-alkylglycinate surfactants, gave unusually low surface tension values. The low values are most likely due to formation of a mixed monolayer at the surface, comprising of alternating anionic N-alkylglycinate and cationic N-protonated-N-alkylglycine. In a plot of conductivity vs. surfactant concentration there was no kink on the curve around the CMC, as determined by tensiometry. The absence of such a kink is in accordance with the view that self-assembly of the N-alkyl amino acid-based surfactants involves formation of mixed micelles consisting of alternating N-alkyl amino acid anion and N-protonated-N-alkyl amino acid also in the bulk solution. The protonation of the N-alkyl amino acid anion, which generates hydroxyl ions, is driven by the energetically favorable formation of mixed micelles consisting of anionic and cationic amphiphiles. PMID:24112839

  7. Double Emulsion Templated Celloidosomes

    NASA Astrophysics Data System (ADS)

    Arriaga, Laura R.; Marquez, Samantha M.; Kim, Shin-Hyun; Chang, Connie; Wilking, Jim; Monroy, Francisco; Marquez, Manuel; Weitz, David A.

    2012-02-01

    We present a novel approach for fabricating celloidosomes, which represent a hollow and spherical three-dimensional self-assembly of living cells encapsulating an aqueous core. Glass- capillary microfluidics is used to generate monodisperse water-in-oil-in-water double emulsion templates using lipids as stabilizers. Such templates allow for obtaining single but also double concentric celloidosomes. In addition, after a solvent removal step the double emulsion templates turn into monodisperse lipid vesicles, whose membrane spontaneously phase separates when choosing the adequate lipid composition, providing the adequate scaffold for fabricating Janus-celloidosomes. These structures may find applications in the development of bioreactors in which the synergistic effects of two different types of cells selectively adsorbed on one of the vesicle hemispheres may be exploited.

  8. Dynamics of Unjammed Emulsions

    NASA Astrophysics Data System (ADS)

    Guerra, Rodrigo; Kodger, Thomas; Weitz, David

    2014-03-01

    Light scattering and NMR densitometry measurements of quiescent emulsions have shown that amorphous packings of soft, repulsive droplets unjam at osmotic pressures 105 times larger than the typical droplet thermal energy density: 3kB/T 4 ?R3. This transition corresponds to the pressure at which the thermal fluctuations of individual droplet positions match the yield strain of the packing and drive the fluidization of the material. We use confocal microscopy to investigate the microscopic dynamics of this fluid-like phase and find them to be fundamentally different from those of conventional glass-forming liquids; cage-breaking dynamics are not evident from droplet mean squared displacements and the effective viscosity of the emulsion, though 105 larger than the background fluid, appears largely insensitive to the confining pressure.

  9. Aqueous rubberized coal tar emulsion

    SciTech Connect

    Ladish, D.J.

    1985-10-01

    An aqueous rubberized coal tar emulsion composition especially suitable for coating and sealing bituminous substrates containing asphalt such as asphalt pavement and the like, the coal tar emulsion composition comprising a major portion of commercial coal tar emulsion and water admixed with a small amount of a carboxylated butadiene/styrene/acid copolymer latex having a particular particle size. The emulsion composition may additionally include a fine aggregate filler material such as sand. The coal tar emulsion composition according to the invention is of a thixotropic nature and has the ability to maintain the fine aggregate when added and mixed therein in a homogeneous-like suspension. The emulsion composition when spread on an asphalt surface exhibits a high degree of spreadability and provides a sealing coating that has a long life.

  10. Helix aspersa gelatin as an emulsifier and emulsion stabilizer: functional properties and effects on pancreatic lipolysis.

    PubMed

    Zarai, Zied; Balti, Rafik; Sila, Assad; Ben Ali, Yassine; Gargouri, Youssef

    2016-01-20

    Emulsions are widely used in food and pharmaceutical applications for the encapsulation, solubilization, entrapment, and controlled delivery of active ingredients. In order to fulfill the increasing demand for clean label excipients, natural polymers could be used to replace the potentially irritative synthetic surfactants used in emulsion formulation. In the present study, we have studied the properties of oil-in-water emulsions prepared with land snail gelatin (LSG) as the sole emulsifying agent, extracted and described for the first time. LSG was evaluated in terms of proximate composition, oil and water holding capacity, emulsifying and foaming properties, color and amino acid composition. Emulsions of trioctanoylglycerol (TC8) and olive oil were made at different gelatin/oil ratios and changes in droplet-size distribution were determined. The superior emulsifying properties of LSG, the susceptibility of gelatin protein emulsions increasing flocculation on storage, and the coalescence of gelatin emulsions following centrifugation were demonstrated. Furthermore, the effect of LSG on the activity of turkey pancreatic lipase (TPL) was evaluated through the pH-stat methodology with TC8 and olive oil emulsions. The LSG affected the TPL activity in a concentration-dependent way. Our results showed that LSG, comparably to gum arabic, increases the pancreatic lipase activity and improves its stability at the oil-water interface. PMID:26487504

  11. Preparation and in vitro evaluation of Nystatin micro emulsion based gel.

    PubMed

    Maqsood, Iram; Masood, Muhammad Irfan; Bashir, Sajid; Nawaz, Hafiz Muhammad Awais; Anjum, Aftab Ahmad; Shahzadi, Iram; Ahmad, Mahmood; Imran Masood, Imran Masood

    2015-09-01

    Nystatin is a polyene antimycotic obtained from Streptomyces noursei used in the treatment of topical and transdermal fungal infection. Nystatin is nearly insoluble in water (<0.1) and it is amphoteric in nature. The aim of the present study was to design and develop Nystatin micro emulsion based gel for efficient delivery of drug to the skin by water titration method. The Pseudoternary phase diagrams 1:2, 1:1 and 2:1 were constructed by water titration method. Micro emulsion based gel was prepared by using oleic acid, Tween 20, propylene glycol as an oil phase, surfactant and cosurfactant respectively. Cabopol 940 was used as a gelling agent. In vitro evaluation of micro emulsion based gel was done for pH, Viscosity, spreadability and droplet size. Micro emulsion based gel showed greater antifungal activity against Candida albicansas compared to control formulations. In vitro drug release studies were conducted for micro emulsion based gel and control formulation using Franz diffusion cell. Drug penetration through synthetic skin followed Zero order model as the values for R2 higher in case of zero order equation. The optimized micro emulsion based gel was found to be stable and showed no physical changes when exposed to different temperatures for a period of 4 week. The results indicated that the micro emulsion based gel system studied would be a promising tool for enhancing the percutaneous delivery of Nystatin. PMID:26408879

  12. Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance

    NASA Astrophysics Data System (ADS)

    Sung, Meagan

    Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.

  13. Formation, antioxidant property and oxidative stability of cold pressed rice bran oil emulsion.

    PubMed

    Thanonkaew, Amonrat; Wongyai, Surapote; Decker, Eric A; McClements, David J

    2015-10-01

    Cold pressed rice bran oil (CPRBO) is used in foods, cosmetics, and pharmaceuticals due to its desirable health and functional attributes. The purpose of this work was to study the formation, antioxidant property and oxidative stability of oil-in-water emulsion of CPRBO. The influence of oil (10-40% CPRBO) and surfactant (1-5% glyceryl monostearate (GMS)) concentration on the properties of emulsions were studied. The lightness (L*) and yellowness (b*) of CPRBO emulsions decreased as GMS concentration increased, which was attributed to a decrease in droplet size after homogenization. The CPRBO emulsion was stable during storage at room temperature for 30days. Increasing the oil concentration in the CPRBO emulsions increased their antioxidant activity, which can be attributed to the corresponding increase in phytochemical content. However, GMS concentration had little impact on the antioxidant activity of CPRBO emulsions. The storage of CPRBO emulsion at room temperature showed that lipid oxidation markers gradually increased after 30days of storage, which was correlated to a decrease in gamma oryzanol content and antioxidant activity. These results have important implications for the utilization of rice bran oil (RBO) as a function ingredient in food, cosmetic, and pharmaceutical products. PMID:26396397

  14. Benzene removal from waste water using aqueous surfactant two-phase extraction with cationic and anionic surfactant mixtures.

    PubMed

    Weschayanwiwat, Punjaporn; Kunanupap, Onanong; Scamehorn, John F

    2008-07-01

    A novel separation technique known as an aqueous surfactant two-phase (ASTP) extraction is a promising method to remove organic contaminants from wastewater. When cationic and anionic surfactants are mixed at certain surfactant concentrations and compositions, the solution separates into two immiscible aqueous phases. One is the surfactant-rich and the other is the surfactant-dilute phase. The organic contaminants will solubilize into the surfactant aggregates and concentrate in the small volume surfactant-rich phase. The other phase contains only small amount of surfactants and contaminants as the treated water. Most ASTP studies have used nonionic surfactants above the cloud point. Mixtures of anionic and cationic surfactants can also exhibit aqueous-aqueous phase separation and can be used in the ASTP extraction process. The phase behavior and performance of ASTP extraction using cationic surfactant dodecyltrimethylammonium bromide (DTAB) and anionic surfactant alkyldiphenyloxide di-sulfonate (DPDS) to extract benzene from wastewater was investigated in batch experiments. It was found that phase separation only occurs over a narrow range of molar ratios of DTAB:DPDS from 1.6:1 to 2.4:1. In this study, a 2:1 molar ratio of DTAB:DPDS at which there is no net charge in the surfactant aggregates show the highest extraction efficiency and lowest critical micelle concentration value with greatest synergism (highest negative values of the micellar interaction parameter). At a total surfactant concentration of 50mM, the benzene partition ratio is 48 and 72% of the benzene is extracted into the surfactant-rich phase solution in a single stage extraction, which is superior performance compared to ASTP extraction using nonionic surfactants. PMID:18514760

  15. Enzymatically activated emulsions stabilised by interfacial nanofibre networks.

    PubMed

    Moreira, Ins P; Sasselli, Ivan Ramos; Cannon, Daniel A; Hughes, Meghan; Lamprou, Dimitrios A; Tuttle, Tell; Ulijn, Rein V

    2016-03-01

    We report on-demand formation of emulsions stabilised by interfacial nanoscale networks. These are formed through biocatalytic dephosphorylation and self-assembly of Fmoc(9-fluorenylmethoxycarbonyl)dipeptide amphiphiles in aqueous/organic mixtures. This is achieved by using alkaline phosphatase which transforms surfactant-like phosphorylated precursors into self-assembling aromatic peptide amphiphiles (Fmoc-tyrosine-leucine, Fmoc-YL) that form nanofibrous networks. In biphasic organic/aqueous systems, these networks form preferentially at the interface thus providing a means of emulsion stabilisation. We demonstrate on-demand emulsification by enzyme addition, even after storage of the biphasic mixture for several weeks. Experimental (Fluorescence, FTIR spectroscopy, fluorescence microscopy, electron microscopy, atomic force microscopy) and computational techniques (atomistic molecular dynamics) are used to characterise the interfacial self-assembly process. PMID:26905042

  16. Amphoteric water-in-oil self-inverting polymer emulsion

    SciTech Connect

    Lipowski, S. A.

    1985-11-12

    An amphoteric water-in-oil self-inverting polymer emulsion is prepared which contains a copolymer of a nonionic vinyl monomer and an amphoteric vinyl monomer or a terpolymer of a nonionic vinyl monomer, an anionic vinyl monomer and a cationic vinyl monomer in the aqueous phase, a hydrocarbon oil for the oil phase, a water-in-oil emulsifying agent and an inverting surfactant. An example of a copolymer is a copolymer of a nonionic vinyl monomer such as acrylamide or methacrylamide and an amphoteric vinyl monomer such as a reaction product of dimethylaminoethyl methacrylate and monochloracetic acid. An example of a terpolymer is a terpolymer of a nonionic vinyl monomer such as acrylamide or methacrylamide, an anionic vinyl monomer such as sodium acrylate and a cationic vinyl monomer such as triethyl ammonium ethyl methacrylate methosulfate salt. The emulsion is useful in papermaking, treatment of sewage and industrial wastes, drilling muds and secondary and tertiary recovery of petroleum by water flooding.

  17. Emulsion ripening through molecular exchange at droplet contacts.

    PubMed

    Roger, Kevin; Olsson, Ulf; Schweins, Ralf; Cabane, Bernard

    2015-01-26

    Two coarsening mechanisms of emulsions are well established: droplet coalescence (fusion of two droplets) and Ostwald ripening (molecular exchange through the continuous phase). Here a third mechanism is identified, contact ripening, which operates through molecular exchange upon droplets collisions. A contrast manipulated small-angle neutron scattering experiment was performed to isolate contact ripening from coalescence and Ostwald ripening. A kinetic study was conducted, using dynamic light scattering and monodisperse nanoemulsions, to obtain the exchange key parameters. Decreasing the concentration or adding ionic repulsions between droplets hinders contact ripening by decreasing the collision frequency. Using long surfactant chains and well-hydrated heads inhibits contact ripening by hindering fluctuations in the film. Contact ripening can be controlled by these parameters, which is essential for both emulsion formulation and delivery of hydrophobic ingredients. PMID:25504340

  18. Preparation and Thermal Properties of Fatty Alcohol/Surfactant/Oil/Water Nanoemulsions and Their Cosmetic Applications.

    PubMed

    Okamoto, Toru; Tomomasa, Satoshi; Nakajima, Hideo

    2016-01-01

    Physicochemical properties of oil-in-water (O/W) emulsions containing fatty alcohols and surfactants have been investigated with the aim of developing new formulations that are less viscous and more transparent than conventional milky lotions, as well as for providing greater skin-improving effects. O/W-based creams can be converted to low viscosity milky lotions following their emulsification with a homogenizer at temperatures greater than the transition temperatures of their molecular assemblies (?-gel). The stability of the O/W emulsions evaluated in the current study increased as the transition temperatures of the molecular assemblies formed from their fatty alcohol and surfactant constituents increased. A decrease in the emulsion droplet size led to the formation of a new formulation, which was transparent in appearance and showed a very low viscosity. The absence of a molecular assembly (?-gel) formed by the fatty alcohol and surfactant molecules in the aqueous phase allowed for the formation of a stable transparent and low viscosity nanoemulsion. Furthermore, this decrease in droplet size led to an increase in the interfacial area of the emulsion droplets, with almost all of the fatty alcohol and surfactant molecules being adsorbed on the surfaces of the emulsion droplets. This was found to be important for preparing a stable transparent formulation. Notably, this new formulation exhibited high occlusivity, which was equivalent to that of an ordinary cosmetic milky lotion, and consequently provided high skin hydration. The nanoemulsion was destroyed following its application to the skin, which led to the release of the fatty alcohol and surfactant molecules from the surface of the nanoemulsion into the aqueous phase. These results therefore suggest that the fatty alcohol and surfactant molecules organized the molecular assembly (?-gel) and allowed for the reconstruction of the network structure. PMID:26743668

  19. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing.

    PubMed

    Ma, Shaohua; Huck, Wilhelm T S; Balabani, Stavroula

    2015-10-27

    Water-in-oil-in-water (w/o/w) microfluidics double emulsions offer a new route to compartmentalise reagents into isolated aqueous microenvironments while maintaining an aqueous carrier fluid phase; this enables compatibility with commercial flow cytometry systems such as fluorescence-activated cell sorting (FACS). Double emulsion (inner core) deformation under hydrodynamic focusing conditions that mimic the environment double emulsions experience in flow cytometry applications is of particular importance for droplet stability and cell viability. This paper reports on an experimental study of the dynamic deformation of aqueous cores of w/o/w double emulsions under hydrodynamic focusing, with the sheath flow directed at 45 to the sample flow. A number of factors affecting the inner core deformation and recovery were examined. Deformation was found to depend significantly on the core or shell viscosity, the droplet-to-sheath flow velocity ratio, and core and shell sizes. Core deformation was found to depend more on the type of surfactant rather concentration with high molecular weight surfactant exhibiting a negligible effect on deformation whereas low molecular weight surfactant enhancing deformation at low concentrations due to their lateral mobility at the interface. PMID:26394745

  20. Status of surfactants as penetration enhancers in transdermal drug delivery

    PubMed Central

    Som, Iti; Bhatia, Kashish; Yasir, Mohd.

    2012-01-01

    Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs. PMID:22368393

  1. Droplet coalescence and clustering behavior in microsphere-filled polymeric emulsions under shear flow: the key role of asymmetric interfacial affinities.

    PubMed

    Mao, Chaoying; Kong, Miqiu; Yang, Qi; Li, Guangxian; Huang, Yajiang

    2016-02-01

    The flow-induced spatial organization of the droplet phase in ternary polymeric emulsions consisting of two Newtonian fluids, namely polyisobutylene (PIB) and polydimethylsiloxane (PDMS), in the presence of a small amount of solid polystyrene (PS) microspheres are explored by direct flow visualization. The results suggest that the asymmetric affinities of interfacially located PS microspheres to two fluid components lead to diverse flow-induced morphologies in PIB/PDMS blends with different compositions. In 10/90 blends where microspheres are preferentially wetted by the PIB droplets, significantly promoted coalescence of PIB droplets is observed. Increasing the loading of microspheres or changing the shear rate will alter the size and spatial distribution of PIB droplets. In contrast, in the inverse 90/10 blends where microspheres are wetted by the continuous PIB phase, bridging of PDMS droplets is found, leading to the generation of string-like or grape-like clusters. These results indicate that the flow-induced morphology of PIB/PDMS blends in the presence of PS microspheres is not only determined by the experimental conditions such as shear rate but also to a large extent by the asymmetric interfacial affinities of microspheres for fluid components. PMID:26791278

  2. Partition behavior of surfactants, butanol, and salt during application of density-modified displacement of dense non-aqueous phase liquids.

    PubMed

    Damrongsiri, S; Tongcumpou, C; Sabatini, D A

    2013-03-15

    Density-modified displacement (DMD) is a recent approach for removal of trapped dense NAPL (DNAPL). In this study, butanol and surfactant are contacted with the DNAPL to both reduce the density as well as release the trapped DNAPL (perchloroethylene: PCE). The objective of the study was to determine the distribution of each component (e.g., butanol, surfactant, water, PCE) between the original aqueous and PCE phases during the application of DMD. The results indicated that the presence of the surfactant increased the amount of n-butanol required to make the NAPL phase reach its desired density. In addition, water and anionic surfactant were found to partition along with the BuOH into the PCE phase. The water also found partitioned to reverse micelles in the modified phase. Addition of salt was seen to increase partitioning of surfactant to BuOH containing PCE phase. Subsequently, a large amount of water was solubilized into reverse micelles which lead to significantly increase in volume of the PCE phase. This work thus demonstrates the role of each component and the implications for the operation design of an aquifer treatment using the DMD technique. PMID:23385206

  3. Anisotropic microparticles created by phase separation of polymer blends confined in monodisperse emulsion drops.

    PubMed

    Min, Nam Gi; Kim, Bomi; Lee, Tae Yong; Kim, Dahin; Lee, Doh C; Kim, Shin-Hyun

    2015-01-27

    Anisotropic microparticles are promising as a new class of colloidal or granular materials due to their advanced functionalities which are difficult to achieve with isotropic particles. However, synthesis of the anisotropic microparticles with a highly controlled size and shape still remains challenging, despite their intense demands. Here, we report a microfluidic approach to create uniform anisotropic microparticles using phase separation of polymer blends confined in emulsion drops. Two different polymers are homogeneously dissolved in organic solvent at low concentration, which is microfluidically emulsified to produce oil-in-water emulsion drops. As the organic solvent diffuses out, small domains are formed in the emulsion drops, which are then merged, forming only two distinct domains. After the drops are fully consolidated, uniform anisotropic microparticles with two compartments are created. The shape of the resulting microparticles is determined by combination of a pair of polymers and type of surfactant. Spherical microparticles with eccentric core and incomplete shell are prepared by consolidation of polystyrene (PS) and poly(lactic acid) (PLA), and microparticles with single crater are formed by consolidation of PS and poly(methyl methacrylate) (PMMA); both emulsions are stabilized with poly(vinyl alcohol) (PVA). With surfactants of triblock copolymer, acorn-shaped Janus microparticles are obtained by consolidating emulsion drops containing PS and PLA. This microfluidic production of anisotropic particles can be further extended to any combination of polymers and colloids to provide a variety of structural and chemical anisotropy. PMID:25549662

  4. Unique crystal morphologies of glycine grown from octanoic acid-in-water emulsions.

    PubMed

    Nicholson, Catherine E; Cooper, Sharon J; Jamieson, Matthew J

    2006-06-21

    We have obtained both porous and dendritic, intricate morphology crystals of beta-glycine by the novel and simple method of emulsion droplet adhesion and encapsulation. By using octanoic acid emulsified with nonionic surfactants, the adhesion of the emulsion droplets can be so strong that, remarkably, crystal growth often proceeds around the droplets, leading to their inclusion within the single crystals. Consequently, porous single crystals can be produced with the pore diameters ( approximately 10-25 mum) corresponding to the emulsion droplet sizes. Highly intricate, dendritic morphologies for glycine were obtained by increasing the surfactant concentration in the emulsions to 50%. In this case, partial droplet encapsulation results in crystal dendrites growing on either side of adsorbed droplets, with the complex morphologies developing due to the high density of dendritic branches that can occur. These intricate morphologies are in stark contrast to the facetted crystals that normally develop at these low supersaturations in the absence of octanoic acid droplets. This study demonstrates that complex architectures can be attained by using simple emulsion systems and tuning the degree of droplet adhesion. PMID:16771468

  5. Aggregate and emulsion properties of enzymatically-modified octenylsuccinylated waxy starches.

    PubMed

    Sweedman, Michael C; Schfer, Christian; Gilbert, Robert G

    2014-10-13

    Sorghum and maize waxy starches were hydrophobically modified with octenylsuccinic anhydride (OSA) and treated with enzymes before being used to emulsify ?-carotene (beta,beta-carotene) and oil in water. Enzyme treatment with ?-amylase resulted in emulsions that were broken (separated) earlier and suffered increased degradation of ?-carotene, whereas treatment with pullulanase had little effect on emulsions. Combinations of surfactants with high and low hydrodynamic volume (V(h)) indicated that there is a relationship between V(h) and emulsion stability. Degree of branching (DB) had little direct influence on emulsions, though surfactants with the highest DB were poor emulsifiers due to their reduced molecular size. Results indicate that V(h) and branch length (including linear components) are the primary influences on octenylsuccinylated starches forming stable emulsions, due to the increased steric hindrance from short amphiphilic branches, consistent with current understanding of electrosteric stabilization. The success of OSA-modified sorghum starch points to possible new products of interest in arid climates. PMID:25037432

  6. Phase diagram approach to evaporation from emulsions with n oil compounds.

    PubMed

    Friberg, Stig E

    2009-03-26

    The initial evaporation path was calculated for an emulsion of water and a multicomponent oil phase under the following conditions. The computations were based on the phase diagram of the emulsion system combined with an algebraic system to extract information from phase diagrams to facilitate the mathematical treatment. An inherent consequence of the use of the phase diagram as a basis to calculate an evaporation path is the condition of equilibrium between the phases in the emulsion as well as between the vapor and the condensed phases. In addition to this fundamental limitation, the features of the phase diagram of the actual emulsion were restricted as follows. There is no solubility of significance in the water of either the oil or of the surfactant. The nonaqueous compounds display extensive mutual solubility with the solutions being close to ideal. This solution of the nonaqueous compounds does not dissolve nor solubilize water to a degree to affect the calculations in the stage of evaporation treated; an emulsion in the two-phase region of lowest surfactant content. PMID:19673136

  7. Bituminous emulsions and their characterization by atomic force microscopy

    PubMed

    Loeber; Alexandre; Muller; Triquigneaux; Jolivet; Malot

    2000-04-01

    We present a new method for observing oil-in-water emulsions with a continuous water phase and a dispersed bitumen phase. The fine polydispersed bitumen micelles were adsorbed to an atomically smooth mica substrate and imaged in solution by atomic force microscopy in a liquid cell. The height of the adsorbed bitumen sheet in wet and dry states can be measured and the homogeneity of film formation by coalescence can be determined. Localization of surfactant onto and between bitumen micelles is also visualized. PMID:10781204

  8. Formation of Oil-in-Water Emulsions from Natural Emulsifiers Using Spontaneous Emulsification: Sunflower Phospholipids.

    PubMed

    Komaiko, Jennifer; Sastrosubroto, Ashtri; McClements, David Julian

    2015-11-18

    This study examined the possibility of producing oil-in-water emulsions using a natural surfactant (sunflower phospholipids) and a low-energy method (spontaneous emulsification). Spontaneous emulsification was carried out by titrating an organic phase (oil and phospholipid) into an aqueous phase with continuous stirring. The influence of phospholipid composition, surfactant-to-oil ratio (SOR), initial phospholipids location, storage time, phospholipid type, and preparation method was tested. The initial droplet size depended on the nature of the phospholipid used, which was attributed to differences in phospholipid composition. Droplet size decreased with increasing SOR and was smallest when the phospholipid was fully dissolved in the organic phase rather than the aqueous phase. The droplets formed using spontaneous emulsification were relatively large (d > 10 ?m), and so the emulsions were unstable to gravitational separation. At low SORs (0.1 and 0.5), emulsions produced with phospholipids had a smaller particle diameter than those produced with a synthetic surfactant (Tween 80), but at a higher SOR (1.0), this trend was reversed. High-energy methods (microfluidization and sonication) formed significantly smaller droplets (d < 10 ?m) than spontaneous emulsification. The results from this study show that low-energy methods could be utilized with natural surfactants for applications for which fine droplets are not essential. PMID:26528859

  9. Changes of the diffraction efficiency due to emulsions thicknesses in holographic gratings

    NASA Astrophysics Data System (ADS)

    Ibarra, J. C.; Ortiz-Gutirrez, M.; Olivares-Prez, A.; Obregn-Pulido, G.; Prez-Corts, M.

    2007-10-01

    We analyze the behavior of the diffraction efficiency as a function of the thickness of the relief holographic grating recorded on a phase emulsion composed by rosin and bromophenol blue (BPB) dye. The emulsions thicknesses are mainly due to the rosin quantity deposited on a substrate. We record holographic gratings on each emulsion using the spectral line ? = 457 nm of an argon laser, after this we developed the emulsion with a quick process. The diffraction efficiencies for each grating vary from 0.25% to 0.62%.

  10. Membrane-Integrated Glass Capillary Device for Preparing Small-Sized Water-in-Oil-in-Water Emulsion Droplets.

    PubMed

    Akamatsu, Kazuki; Kanasugi, Shosuke; Nakao, Shin-ichi; Weitz, David A

    2015-06-30

    In this study, a membrane-integrated glass capillary device for preparing small-sized water-in-oil-in-water (W/O/W) emulsion droplets is demonstrated. The concept of integrating microfluidics to prepare precise structure-controlled double emulsion droplets with the membrane emulsification technique provides a simple method for preparing small-sized and structure-controlled double emulsion droplets. The most important feature of the integrated device is the ability to decrease droplet size when the emulsion droplets generated at the capillary pass through the membrane. At the same time, most of the oil shell layer is stripped away and the resultant double emulsion droplets have thin shells. It is also demonstrated that the sizes of the resultant double emulsion droplets are greatly affected by both the double emulsion droplet flux through membranes and membrane pore size; when the flux is increased and membrane pore size is decreased, the generated W/O/W emulsion droplets are smaller than the original. In situ observation of the permeation behavior of the W/O/W emulsion droplets through membranes using a high-speed camera demonstrates (1) the stripping of the middle oil phase, (2) the division of the double emulsion droplets to generate two or more droplets with smaller size, and (3) the collapse of the double emulsion droplets. The first phenomenon results in a thinner oil shell, and the second division phenomenon produces double emulsion droplets that are smaller than the original. PMID:26057203

  11. Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant.

    PubMed

    Wei, Dai-Xu; Chen, Chong-Bo; Fang, Guo; Li, Shi-Yan; Chen, Guo-Qiang

    2011-08-01

    PhaP or phasin is an amphiphilic protein located on surfaces of microbial storage polyhydroxyalkanoates granules. This study aimed to explore amphiphilic properties of PhaP for possible application as a protein surfactant. Following agents were used to conduct this study as controls including bovine serum albumin, sodium dodecyl sulfate (SDS), Tween 20, sodium oleate, a commercial liquefied detergent together with the same amount of PhaP. Among all these tested control surfactants, PhaP showed the strongest effect to form emulsions with lubricating oil, diesel, and soybean oil, respectively. PhaP emulsion stability study compared with SDS revealed that PhaP had a stronger capability to maintain a very stable emulsion layer after 30 days while SDS lost half and two-thirds of its capacity after 2 and 30 days, respectively. When PhaP was more than 200 ?g/ml in the water, all liquids started to exhibit stable emulsion layers. Similar to SDS, PhaP significantly reduced the water contact angles of water on a hydrophobic film of biaxially oriented polypropylene. PhaP was thermally very stable, it showed ability to form emulsion and to bind to the surface of polyhydroxybutyrate nanoparticles after a 60-?min heating process at 95 C. It is therefore concluded that PhaP is a protein with thermally stable property for application as natural and environmentally friendly surfactant for food, cosmetic, and pharmaceutical usages. PMID:21590291

  12. Experiments and network model of flow of oil-water emulsion in porous media

    NASA Astrophysics Data System (ADS)

    Romero, Mao Illich; Carvalho, Marcio S.; Alvarado, Vladimir

    2011-10-01

    Transport of emulsions in porous media is relevant to several subsurface applications. Many enhanced oil recovery (EOR) processes lead to emulsion formation and as a result conformance originating in the flow of a dispersed phase may arise. In some EOR processes, emulsion is injected directly as a mobility control agent. Modeling the flow of emulsion in porous media is extremely challenging due to the complex nature of the associated flows and numerous interfaces. The descriptions based on effective viscosity are not valid when the drop size is of the same order of magnitude as the pore-throat characteristic length scale. An accurate model of emulsion flow through porous media should describe this local change in mobility. The available filtration models do not take into account the variation of the straining and capturing rates with the local capillary number. In this work, we present experiments of emulsion flow through sandstone cores of different permeability and a first step on a capillary network model that uses experimentally determined pore-level constitutive relationships between flow rate and pressure drop in constricted capillaries to obtain representative macroscopic flow behavior emerging from microscopic emulsion flow at the pore level. A parametric analysis is conducted to study the effect of the permeability and dispersed phase droplet size on the flow response to emulsion flooding in porous media. The network model predictions qualitatively describe the oil-water emulsion flow behavior observed in the experiments.

  13. Analyzing Benzene and Cyclohexane Emulsion Droplet Collisions on Ultramicroelectrodes.

    PubMed

    Li, Yan; Deng, Haiqiang; Dick, Jeffrey E; Bard, Allen J

    2015-11-01

    We report the collisions of single emulsion oil droplets with extremely low dielectric constants (e.g., benzene, ? of 2.27, or cyclohexane, ? of 2.02) as studied via emulsion droplet reactor (EDR) on an ultramicroelectrode (UME). By applying appropriate potentials to the UME, we observed the electrochemical effects of single-collision signals from the bulk electrolysis of single emulsion droplets. Different hydrophobic redox species (ferrocene, decamethyl-ferrocene, or metalloporphyrin) were trapped in a mixed benzene (or cyclohexane) oil-in-water emulsion using an ionic liquid as the supporting electrolyte and emulsifier. The emulsions were prepared using ultrasonic processing. Spike-like responses were observed in each i-t response due to the complete electrolysis of all of the above-mentioned redox species within the droplet. On the basis of these single-particle collision results, the collision frequency, size distribution, i-t decay behavior of the emulsion droplets, and possible mechanisms are analyzed and discussed. This work demonstrated that bulk electrolysis can be achieved in a few seconds in these attoliter reactors, suggesting many applications, such as analysis and electrosynthesis in low dielectric constant solvents, which have a much broader potential window. PMID:26461801

  14. Electromagnetic scale models using emulsions

    NASA Astrophysics Data System (ADS)

    Smith, Glenn S.; Scott, Waymond R., Jr.

    1989-04-01

    The electrical constitutive parameters of materials in a scale model and the corresponding full-sized system must satisfy certain relationships. Thus, it is desirable to have a series of materials with a range of electrical parameters or mixtures of materials with adjustable electrical parameters for use in scale models. Simple emulsions are examined as materials with adjustable electrical constitutive parameters. These emulsions are mixtures of soil, saline solution, and a suitable stabilizing agency (emulsifier). Since the relative permittivities of oil and water are around two and eighty, respectively, a large range of permittivity can be obtained for the emulsions. The conductivity of the emulsions can be adjusted by changing the normality of the saline solution. A series of oil-in-water emulsions (oil droplets in water), suitable for use in scale models, is developed; this includes the selection of an appropriate emulsifier. The electrical constitutive parameters of these emulsions are adjustable over wide ranges, and are predictable from a simple formula. As an example, an emulsion that is a scale model for red clay earth is described. This emulsion matches the electrical constitutive parameters of the clay, including the dispersion in the conductivity, over a ten-to-one frequency range.

  15. Rubberized asphalt emulsion

    SciTech Connect

    Wilkes, E.

    1986-09-02

    A method is described of making a rubberized asphalt composition which comprises the steps of: (a) combining asphalt with a hydrocarbon oil having a flash point of 300/sup 0/F. or more to provide a homogenous asphalt-oil mixture or solution, (b) then combining the asphalt-oil mixture with a particulate rubber at a temperature sufficient to provide a homogenous asphalt-rubber-oil gel, and (c) emulsifying the asphalt-rubber-oil gel by passing the gel, water, and an emulsifying agent through a colloid mill to provide an emulsion.

  16. Tunable Pickering emulsions with polymer-grafted lignin nanoparticles (PGLNs).

    PubMed

    Silmore, Kevin S; Gupta, Chetali; Washburn, Newell R

    2016-03-15

    Lignin is an abundant biopolymer that has native interfacial functions but aggregates strongly in aqueous media. Polyacrylamide was grafted onto kraft lignin nanoparticles using reversible addition-fragmentation chain transfer (RAFT) chemistry to form polymer-grafted lignin nanoparticles (PGLNs) that tune aggregation strength while retaining interfacial activities in forming Pickering emulsions. Polymer graft density on the particle surface, ionic strength, and initial water and cyclohexane volume fractions were varied and found to have profound effects on emulsion characteristics, including emulsion volume fraction, droplet size, and particle interfacial concentration that were attributed to changes in lignin aggregation and hydrophobic interactions. In particular, salt concentration was found to have a significant effect on aggregation, zeta potential, and interfacial tension, which was attributed to changes in solubility of both the kraft lignin and the polyacrylamide grafts. Dynamic light scattering, UV-vis spectroscopy, optical microscopy, and tensiometry were used to quantify emulsion properties and nanoparticle behavior. Under all conditions, the emulsions exhibited relatively fast creaming but were stable against coalescence and Ostwald ripening for a period of months. All emulsions were also oil-in-water (o/w) emulsions, as predicted by the Bancroft rule, and no catastrophic phase inversions were observed for any nanoparticle compositions. We conclude that lower grafting density of polyacrylamide on a lignin core resulted in high levels of interfacial activity, as characterized by higher concentration at the water-cyclohexane interface with a corresponding decrease in interfacial tension. These results indicate that the interfacial properties of polymer-grafted lignin nanoparticles are primarily due to the native hydrophobic interactions of the lignin core. These results suggest that the forces that drive aggregation are also correlated with interfacial activities, and polymer-nanoparticle interactions are critical for optimizing interfacial activities. Controlled radical polymerization is a powerful tool for polymer grafting that can leverage the intrinsic interfacial functions of lignin for the formation of Pickering emulsions. PMID:26707776

  17. Development of stable flaxseed oil emulsions as a potential delivery system of ?-3 fatty acids.

    PubMed

    Goyal, Ankit; Sharma, Vivek; Upadhyay, Neelam; Singh, A K; Arora, Sumit; Lal, Darshan; Sabikhi, Latha

    2015-07-01

    The objective of the present study was to develop a stable flaxseed oil emulsion for the delivery of omega-3 (?-3) fatty acids through food fortification. Oil-in-water emulsions containing 12.5% flaxseed oil, 10% lactose and whey protein concentrate (WPC)-80 ranging from 5 to 12.5% were prepared at 1,500, 3,000 and 4,500psi homogenization pressure. Flaxseed oil emulsions were studied for its physical stability, oxidative stability (peroxide value), particle size distribution, zeta (?)-potential and rheological properties. Emulsions homogenized at 1,500 and 4,500psi pressure showed oil separation and curdling of WPC, respectively, during preparation or storage. All the combinations of emulsions (homogenized at 3,000psi) were physically stable for 28days at 4-7?C temperature and did not show separation of phases. Emulsion with 7.5% WPC showed the narrowest particle size distribution (190 to 615nm) and maximum zeta (?)-potential (-33.5mV). There was a slight increase in peroxide value (~20.98%) of all the emulsions (except 5% WPC emulsion), as compared to that of free flaxseed oil (~44.26%) after 4weeks of storage. Emulsions showed flow behavior index (n) in the range of 0.206 to 0.591, indicating higher shear thinning behavior, which is a characteristic of food emulsions. Results indicated that the most stable emulsion of flaxseed oil (12.5%) can be formulated with 7.5% WPC-80 and 10% lactose (filler), homogenized at 3,000psi pressure. The formulated emulsion can be used as potential omega-3 (?-3) fatty acids delivery system in developing functional foods such as pastry, ice-creams, curd, milk, yogurt, cakes, etc. PMID:26139890

  18. Multi-scale approach for the rheological characteristics of emulsions using molecular dynamics and lattice Boltzmann method

    PubMed Central

    Choi, Se Bin; Yoon, Hong Min; Lee, Joon Sang

    2014-01-01

    An emulsion system was simulated under simple shear rates to analyze its rheological characteristics using a hierarchical multi-scale approach. The molecular dynamics (MD) simulation was used to describe the interface of droplets in an emulsion. The equations derived from the MD simulation relative to interfacial tension, temperature, and surfactant concentration were applied as input parameters within lattice Boltzmann method (LBM) calculations. In the LBM simulation, we calculated the relative viscosity of an emulsion under a simple shear rate along with changes in temperature, shear rate, and surfactant concentration. The equations from the MD simulation showed that the interfacial tension of the droplets tended to decrease with an increase in temperature and surfactant concentration. The relative viscosity from the LBM simulation decreased with an increase in temperature. The shear thinning phenomena explaining the inverse proportion between shear rate and viscosity were observed. An increase in the surfactant concentration caused an increase in the relative viscosity for a decane-in-water emulsion, because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress. PMID:25332732

  19. Surfactant and noninvasive ventilation.

    PubMed

    Blennow, Mats; Bohlin, Kajsa

    2015-01-01

    There is mounting evidence that early continuous positive airway pressure (CPAP) from birth is feasible and safe even in very preterm infants. However, many infants will develop respiratory distress syndrome (RDS) and require surfactant treatment. Combining a noninvasive ventilation approach with a strategy for surfactant administration is important to ensure optimal outcome, but questions remain about the optimal timing, mode of delivery and value of predictive tests for surfactant deficiency. Key findings in this review include the following: (1) a noninvasive ventilation strategy with CPAP from birth has a similar outcome to routine intubation in the delivery room; (2) prophylactic surfactant treatment has no advantage over early CPAP with selective surfactant administration; (3) surfactant during CPAP can be safely administered by rapid intubation-extubation (the INSURE method or via tracheal placement of a thin catheter), and (4) predictive tests for surfactant deficiency are being developed and might in future aid in directing surfactant treatment to infants at risk of developing severe RDS. A strategy for surfactant administration should be part of a noninvasive ventilation approach for preterm infants at risk of developing significant RDS. The different methods for surfactant administration during CPAP are reviewed here. PMID:26044100

  20. Synthesis and surface and antimicrobial properties of novel cationic surfactants.

    PubMed

    Viscardi, G; Quagliotto, P; Barolo, C; Savarino, P; Barni, E; Fisicaro, E

    2000-12-01

    A series of surfactants with tuned polarity were prepared, including a new class of compounds: gluco-pyridinium surfactants. Pure anomers were obtained by chromatographic separation. The conductivity and surface tension of surfactant solutions in water were measured, and provided interesting information regarding their aggregation behavior. Peculiarities were observed in the premicellar range. Tensidic parameters correlated with antimicrobial activity. A few parameters, mainly the hydrophobicity of the headgroup, may play a role in finding more efficient antimicrobial structures. PMID:11101373

  1. Modeling cationic surfactant transport in porous media

    SciTech Connect

    Hayworth, J.S.; Burris, D.R.

    1996-03-01

    Laboratory and field experiments have shown that cationic surfactants can be used to modify aquifer materials, and thereby form zones of enhanced sorption for hydrophobic organic contaminants (HOCs) migrating in ground water. Coupled to a contaminant degradation or removal process, this concept has potential as a remediation technology. In order to apply enhanced sorption in a remediation scheme, an ability to predict the transport and partitioning behavior of cationic surfactants in the subsurface is necessary. In this paper the authors present the results of a numerical modeling study in which the transport and partitioning behavior of the cationic surfactant hexadecyltrimethylammonium chloride (HDTMA) in porous media is investigated. Modeling of previously published batch and column HDTMA sorption experimental results for Columbus Air Force Base aquifer material indicates that, under certain conditions, kinetic effects will dominate the transport process with slow desorption of HDTMA being the likely rate-controlling step. The results suggest that a significant departure from equilibrium will exist under natural gradient conditions for the Columbus aquifer material. Low aqueous surfactant concentrations can be expected to persist within a surfactant-enhanced sorption zone, even after considerable flushing with surfactant-free ground water. The low aqueous concentration may have implications in terms of toxicity to microorganisms.

  2. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  3. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2003-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate wettability. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting adsorption, phase behavior and wettability studies.

  4. Effects of enzymatically modified starch on the encapsulation efficiency and stability of water-in-oil-in-water emulsions.

    PubMed

    Mun, Saehun; Choi, Yongdoo; Shim, Jae-Yong; Park, Kwan-Hwa; Kim, Yong-Ro

    2011-09-15

    The present study was performed to investigate the possibility of using 4-?-glucanotransferase (4?GTase)-treated starch in W/O/W emulsions to increase their encapsulation efficiency (EE) and stability. Emulsions were prepared using soybean oil, polyglycerol polyricinoleate (PGPR), 4?GTase-treated starch and Tween 20. The mean diameter of W/O/W droplets ranged from 4 to 10?m depending on the sonication time. When the dye was loaded in the internal water phase, the emulsion prepared by sonication for 1 and 2min showed a high EE of the dye (>90%). The W/O/W emulsion prepared by sonication for 3min showed an EE of<90%, but this EE was improved by adding 4?GTase-treated starch to the internal water phase. 4?GTase-treated starch was added to the internal water phase of W/O/W emulsions prepared with a low concentration of PGPR, and the PGPR concentration required to maintain an EE>90% was reduced. W/O/W emulsions containing 4?GTase-treated starch also showed better stability against heating and shearing stresses. These results indicated that 4?GTase-treated starch could be used in the preparation of W/O/W emulsions, which would allow the formulation of W/O/W emulsions with a reduced surfactant concentration. PMID:25212131

  5. Programmed emulsions for sodium reduction in emulsion based foods.

    PubMed

    Chiu, Natalie; Hewson, Louise; Fisk, Ian; Wolf, Bettina

    2015-05-01

    In this research a microstructure approach to reduce sodium levels in emulsion based foods is presented. If successful, this strategy will enable reduction of sodium without affecting consumer satisfaction with regard to salty taste. The microstructure approach comprised of entrapment of sodium in the internal aqueous phase of water-in-oil-in-water emulsions. These were designed to destabilise during oral processing when in contact with the salivary enzyme amylase in combination with the mechanical manipulation of the emulsion between the tongue and palate. Oral destabilisation was achieved through breakdown of the emulsion that was stabilised with a commercially modified octenyl succinic anhydride (OSA)-starch. Microstructure breakdown and salt release was evaluated utilising in vitro, in vivo and sensory methods. For control emulsions, stabilised with orally inert proteins, no loss of structure and no release of sodium from the internal aqueous phase was found. The OSA-starch microstructure breakdown took the initial form of oil droplet coalescence. It is hypothesised that during this coalescence process sodium from the internalised aqueous phase is partially released and is therefore available for perception. Indeed, programmed emulsions showed an enhancement in saltiness perception; a 23.7% reduction in sodium could be achieved without compromise in salty taste (p < 0.05; 120 consumers). This study shows a promising new approach for sodium reduction in liquid and semi-liquid emulsion based foods. PMID:25865459

  6. Fluorinated Pickering Emulsions with Nonadsorbing Interfaces for Droplet-based Enzymatic Assays.

    PubMed

    Pan, Ming; Lyu, Fengjiao; Tang, Sindy K Y

    2015-08-01

    This work describes the use of fluorinated Pickering emulsions with nonadsorbing interfaces in droplet-based enzymatic assays. State-of-the-art droplet assays have relied on one type of surfactants consisting of perfluorinated polyether and polyethylene glycol (PFPE-PEG). These surfactants are known to have limitations including the tedious synthesis and interdrop molecular transport which leads to the cross-contamination of droplet contents. Previously we have shown that replacing surfactants with nanoparticles as droplet stabilizers mitigate interdrop transport of small molecules. The nonspecific adsorption of enzymes on nanoparticle surface, however, could cause structural changes in enzymes and consequently the loss of enzymatic activity. To overcome such challenge, we render nanoparticle surface nonadsorbing to enzymes by in situ adsorption of polyethylene glycol (PEG) on particle surfaces. We show that enzyme activities are preserved in droplets stabilized by PEG-adsorbed nanoparticles, and are comparable with those in drops stabilized by PFPE-PEG surfactants. In addition, our nonadsorbing Pickering emulsions successfully prevent interdrop molecular transport, thereby maintaining the accuracy of droplet assays. The particles are also simple and economical to synthesize. The PEG-adsorbed nanoparticles described in this work are thus a competitive alternative to the current surfactant system, and can potentially enable new droplet-based biochemical assays. PMID:26153615

  7. Influence of nonionic branched-chain alkyl glycosides on a model nano-emulsion for drug delivery systems.

    PubMed

    Ahmad, Noraini; Ramsch, Roland; Llins, Meritxell; Solans, Conxita; Hashim, Rauzah; Tajuddin, Hairul Anuar

    2014-03-01

    The effect of incorporating new nonionic glycolipid surfactants on the properties of a model water/nonionic surfactant/oil nano-emulsion system was investigated using branched-chain alkyl glycosides: 2-hexyldecyl-?(/?)-D-glucoside (2-HDG) and 2-hexyldecyl-?(/?)-D-maltoside (2-HDM), whose structures are closely related to glycero-glycolipids. Both 2-HDG and 2-HDM have an identical hydrophobic chain (C16), but the former consists a monosaccharide glucose head group, in contrast to the latter which has a disaccharide maltose unit. Consequently, their hydrophilic-lipophilic balance (HLB) is different. The results obtained have shown that these branched-chain alkyl glycosides affect differently the stability of the nano-emulsions. Compared to the model nano-emulsion, the presence of 2-HDG reduces the oil droplet size, whereas 2-HDM modify the properties of the model nano-emulsion system in terms of its droplet size and storage time stability at high temperature. These nano-emulsions have been proven capable of encapsulating ketoprofen, showing a fast release of almost 100% in 24h. Thus, both synthetically prepared branched-chain alkyl glycosides with mono- and disaccharide sugar head groups are suitable as nano-emulsion stabilizing agents and as drug delivery systems in the future. PMID:24384142

  8. A Catalyst Platform for Unique Cationic (Co)Polymerization in Aqueous Emulsion.

    PubMed

    Vasilenko, Irina V; Yeong, Hui Yee; Delgado, Marco; Ouardad, Samira; Peruch, Frdric; Voit, Brigitte; Ganachaud, Franois; Kostjuk, Sergei V

    2015-10-19

    Sodium dodecyl benzene sulfonate (DBSNa) surfactants, with a polydisperse and hyperbranched structure, combined with different rare earth metal salts generate highly water-dispersible Lewis acid surfactant combined catalysts (LASCs). This platform of new complexes promotes fast, efficient cationic polymerization of industrially relevant monomers in direct emulsion at moderate temperature. The process described here does not require high shearing, long polymerization time, or large catalyst content. It allows the reproducible generation of high-molar-mass homopolymers of pMOS, styrene, and isoprene, as well as random or multiblock copolymers of the latter two, in a simple and straightforward one-pot reaction. PMID:26013180

  9. Preparation of polystyrene latex particles by ?-rays-induced emulsifier-free emulsion polymerization

    NASA Astrophysics Data System (ADS)

    Wang, Xinbo; Zhang, Zhicheng

    2006-09-01

    Monodisperse polystyrene latex particles were prepared by 60Co- ?-ray radiation-induced emulsifier-free emulsion polymerization with the use of surfactant monomer at room temperature. The surfactant monomer 10(9)-hydroxyl-9(10)-allyl ether octadecanoic acid (HAEOA) was synthesized and characterized by FT-IR and 1H-NMR spectra. TEM was used to characterize the polystyrene latex particles. HAEOA acted as not only a comonomer but also a stabilizer to copolymerize with styrene and stabilize the polystyrene latex particles. Kinetics analysis shows that there is no constant rate stage which seems to indicate a droplet nucleation mechanism.

  10. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOEpatents

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  11. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOEpatents

    Johnson, Jr., James S. (Oak Ridge, TN); Westmoreland, Clyde G. (Rockwood, TN)

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  12. Aqueous surfactant two-phase systems in a mixture of cationic gemini and anionic surfactants.

    PubMed

    Lu, Ting; Li, Zihui; Huang, Jianbin; Fu, Honglan

    2008-10-01

    The phase behavior as well as the microstructures of the cationic gemini surfactant and anionic conventional surfactant aqueous two-phase system (ASTP) have been studied. The ASTP formation can be attributed to the coexistence of different kinds of aggregates in the upper and lower phases. The effects of temperature, shearing, surfactant concentration and mixing molar ratio on the phase separation of the ASTP-forming systems are systematically investigated. The ASTP can be destroyed by applying shear and increasing temperature. In this process, the lamellar structures (flat bilayers) in the ASTP are transformed into vesicles. Variation of surfactant structure also affects the phase behavior and the aggregates transformation. Appropriate molecular packing is crucial for the formation of ASTP. PMID:18720962

  13. Emulsions of oil from Adenanthera pavonina L. seeds and their protective effect.

    PubMed

    Jaromin, Anna; Zarnowski, Robert; Kozubek, Arkadiusz

    2006-01-01

    In our previous study, we developed very stable formulations of submicron oil-in-water emulsions from Adenanthera pavonina L. (family Leguminosae, subfamily Mimosoideae) seed oil, stabilised with soybean lecithin (SPC). Continuing our research, we introduced an additional co-emulsifier, Tween 80, to those formulations in order to decrease the size of the emulsion particles and improve their stability. Formulations with a mean particle size ranging from 43.6 to 306.5 nm and a negative surface charge from -45.3 to -28.5 mV were obtained. Our stability experiments also revealed that most of the tested formulations had a very good degree of stability over a 3-month storage period, both at 4 degrees C and at room temperature. Since many intravenous injectable drugs exhibit lytic activity against erythrocytes, we examined this activity for the emulsion form of cardol, a natural compound with already proven hemolytic properties. The incorporation of this agent into the emulsion caused an evident decrease in hemolytic activity (97-99%). This highly protective effect, observed against sheep erythrocytes, was independent of both the composition and the particle size of the emulsions used. Our studies suggest that nonionic surfactant/phospholipid-based emulsions containing this edible oil of A. pavonina L. may be useful as an alternative formulation matrix for pharmaceutical, nutritional or cosmetic applications of otherwise membrane-acting components. PMID:16874455

  14. Development of eco-friendly submicron emulsions stabilized by a bio-derived gum.

    PubMed

    Pérez-Mosqueda, Luis María; Ramírez, Pablo; Trujillo-Cayado, Luis Alfonso; Santos, Jenifer; Muñoz, José

    2014-11-01

    Many traditional organic solvents are being gradually replaced by ecofriendly alternatives. D-Limonene is a terpenic (bio)-solvent that fulfils the requirements to be considered a green solvent. D-Limonene sub-micron emulsions suffer from Ostwald ripening destabilization. In this study, we examined the influence of the addition of a natural gum (rosin gum) to D-limonene in order to prevent Ostwald ripening. This contribution deals with the study of emulsions formulated with a mixture of D-limonene and rosin gum as dispersed phase and Pluronic PE9400 as emulsifier. The procedure followed for the development of these formulations was based on the application of product design principles. This led to the optimum ratio rosin gum/D-limonene and subsequently to the optimum surfactant concentration. The combination of different techniques (rheology, laser diffraction and multiple light scattering) was demonstrated to be a powerful tool to assist in the prediction of the emulsions destabilization process. Not only did the addition of rosin gum highly increase the stability of these emulsions by inhibiting the Ostwald ripening, but it also reduced the emulsions droplet size. Thus, we found that stable sub-micron D-limonene-in-water emulsions have been obtained in the range 3-6 wt% Pluronic PE-9400 by means of a single-step rotor/stator homogenizing process. PMID:25454661

  15. Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.

    PubMed

    Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S

    2013-02-13

    There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner. PMID:23331034

  16. Emulsion-liquid-membrane extraction of copper using a hollow-fiber contactor

    SciTech Connect

    Hu, S.Y.B.; Wiencek, J.M.

    1998-03-01

    A novel extraction technique using an emulsion liquid membrane within a hollow-fiber contactor was developed and utilized to extract copper using LIX 84 extractant. Emulsion liquid membranes are capable of extracting metals from dilute waste streams to levels much below those possible by equilibrium-limited solvent extraction. Utilizing an emulsion liquid membrane within a hollow-fiber contactor retains the advantages of emulsion-liquid-membrane extraction, namely, simultaneous extraction and stripping, while eliminating problems encountered in dispersive contacting methods, such as swelling and leakage of the liquid membrane. Mathematical models for extraction in hollow-fiber contactors were developed. The models satisfactorily predict the outcome of both simple solvent extraction and emulsion-liquid-membrane extraction of copper by LIX 84 in a hollow-fiber contactor over a wide range of conditions. Emulsion-liquid-membrane extraction performs exceptionally well when the extraction is close to equilibrium limit. It is also capable of extracting a solute f/rom very dilute solutions. Stability of the liquid membrane is not crucial when used in hollow-fiber contactors; the surfactant in liquid membrane can be reduced or even eliminated without severely impairing the performance.

  17. Apparatus for treating tar sands emulsion

    SciTech Connect

    Bialek, R.F.

    1985-02-12

    Method and apparatus are claimed for treating an oil-in-water, such as a bitumen-in-water emulsion, by premixing the emulsion for a sufficient period of time to permit it to become fully intermixed with emulsion breaking diluents and other additive materials. The modified, bitumen-containing emulsion stream is circulated through a premixer. At least a part of the emulsion stream is recirculated therein to intermix with fresh incoming emulsion flow. Thereafter the now more thoroughly intermixed emulsion, together with the various diluents and additives, is in better condition to be introduced to a separator unit for affecting a quiescent separation of water from the bitumen.

  18. Preparation of Pickering emulsions stabilized by metal organic frameworks using oscillatory woven metal micro-screen.

    PubMed

    Sabouni, R; Gomaa, H G

    2015-06-14

    Uniform Pickering emulsions stabilized by metal organic frameworks (MOFs) MIL-101 and ZIF-8 nanoparticles (NPs) were successfully prepared using an oscillatory woven metal microscreen (WMMS) emulsification system in the presence and the absence of surfactants. The effects of operating and system parameters including the frequency and amplitude of oscillation, the type of nano-particle and/or surfactant on the droplet size and coefficient of variance of the prepared emulsions are investigated. The results showed that both the hydrodynamics of the system and the hydrophobic/hydrophilic nature of the NP influenced the interfacial properties of the oil-water interface during droplet formation and after detachment, which in turn affected the final droplet size and distribution. Comparison between the measured and predicted droplet size using a simple torque balance (TB) model is discussed. PMID:25953152

  19. Responsiveness of emulsions stabilized by lactoferrin nano-particles to simulated intestinal conditions.

    PubMed

    Meshulam, Dafna; Lesmes, Uri

    2014-01-01

    There is an upsurge of interest in the use of nano-particles to fabricate emulsions and modulate their functionality, with particular emphasis on modulating emulsion digestive fate. Food grade nano-particles formed through controlled processing and electrostatic biopolymer interactions are yet to be systematically studied for their ability to stabilize emulsions and modulate emulsion digestibility. This study focused on the responsiveness of emulsions stabilized by lactoferrin (LF) nano-particles (NPs) and dietary fibers to key digestive parameters. Compared to native LF, LF-NPs comprised emulsion exhibited elevated creaming rates as evident from accelerated stability tests performed by analytical centrifugation. The electrostatic deposition of alginate or carrageenan onto the LF-NPs significantly improved the stability of the corresponding emulsions. Further, the use of various nano-particles showed to have both beneficial and deleterious effects on emulsion responsiveness to pH (2.0 < pH < 10.0), CaCl2 (0-40 mM) and bile (0-25 mg mL(-1)). Simulated pH-stat lipolysis experiments show that the use of LF or LF-NPs had no marked effect on lipolysis. Intriguingly, the use of LF-NPs and alginate reduced emulsion lipolysis by 14% while the use of LF-NPs and carrageenan increased lipolysis by 10%. Microscopy images as well as droplet characterization in terms of size and charge indicate that the altered emulsion responsiveness may be due to physical differences in emulsion properties (e.g. droplet size) and overall organization during digestion (e.g. aggregation vs. coalescence). Overall, this study's insights could prospectively be used to harness protein nano-particles to tweak emulsion behavior during digestion. PMID:24247725

  20. LNAPL Removal from Unsaturated Porous Media using Surfactant Infiltration

    SciTech Connect

    Zhong, Lirong; Oostrom, Martinus

    2012-11-19

    A series of unsaturated column experiments was performed to evaluate light non-aqueous phase liquid (LNAPL) fate and removal during surfactant solution infiltration. Surfactant-LNAPL phase behavior tests were conducted to optimize the remedial solutions. Packed sand and site sediment columns were first processed to establish representative LNAPL smear zone under unsaturated conditions. Infiltration of low-concentration surfactant was then applied in a stepwise flush mode, with 0.3 column pore volume (PV) of solution in each flush. The influence of infiltrated surfactant solution volume and pH on LNAPL removal was assessed. A LNAPL bank was observed at the very front of the first surfactant infiltration in each column, indicating that a very low surfactant concentration is needed to reduce the LNAPL-water interfacial tension sufficiently enough to mobilize trapped LNAPL under unsaturated conditions. More LNAPL was recovered as additional steps of surfactant infiltration were applied. Up to 99% LNAPL was removed after six infiltration steps, with less than 2.0 PV of total surfactant solution application, suggesting surfactant infiltration may be an effective method for vadose zone LNAPL remediation. The influence of pH tested in this study (3.99~10.85) was insignificant because the buffering capacity of the sediment kept the pH in the column higher than the zero point charge, pHzpc, of the sediment and therefore the difference between surfactant sorption was negligible.

  1. Nano-assembly of Surfactants with Interfacial Drug-Interactive Motifs as Tailor-Designed Drug Carriers

    PubMed Central

    Gao, Xiang; Huang, Yixian; Makhov, Alexander M.; Epperly, Michael; Lu, Jianqin; Grab, Sheila; Zhang, Peijun; Rohan, Lisa; Xie, Xiang-qun (Sean); Wipf, Peter; Greenberger, Joel; Li, Song

    2012-01-01

    PEGylated lipopeptide surfactants carrying drug-interactive motifs specific for a peptide-nitroxide antioxidant, JP4-039, were designed and constructed to facilitate the solubilization of this drug candidate as micelles and emulsion nanoparticles. A simple screening process based on the ability that prevents the formation of crystals of JP4-039 in aqueous solution was used to identify agents that have potential drug-interactive activities. Several protected lysine derivatives possessing this activity were identified, of which ?-Fmoc-?-tBoc lysine is the most potent, followed by ?-Cbz- and ?-iso-butyloxycarbonyl-?-tBoc-lysine. Using polymer-supported liquid-phase synthesis approach, a series of synthetic lipopeptide surfactants with PEG head group, varied numbers and geometries of ?-Fmoc or ?-Cbz-lysyl groups located at interfacial region as the drug-interactive domains, and oleoyl chains as the hydrophobic tails were synthesized. All ?-Fmoc-lysyl-containing lipopeptide surfactants were able to solubilize JP4-039 as micelles, with enhanced solubilizing activity for surfactants with increased numbers of ?-Fmoc groups. The PEGylated lipopeptide surfactants with ?-Fmoc-lysyl groups alone tend to form filamentous or worm-like micelles. The presence of JP4-039 transformed ?-Fmoc-containing filamentous micelles into dots and bar-like mixed micelles with substantially reduced sizes. Fluorescence quenching and NMR studies revealed that the drug and surfactant molecules were in a close proximity in the complex. JP4-039-loaded emulsion carrying ?-Cbz-containing surfactants demonstrated enhanced stability over drug loaded emulsion without lipopeptide surfactants. JP4-039-emulsion showed significant mitigation effect on mice exposed to a lethal dose of radiation. PEGylated lipopeptides with an interfacially located drug-interactive domain are therefore tailor-designed formulation materials potentially useful for drug development. PMID:23244299

  2. Estimation hydrophilic-lipophilic balance number of surfactants

    NASA Astrophysics Data System (ADS)

    Pawignya, Harsa; Prasetyaningrum, Aji; Dyartanti, Endah R.; Kusworo, Tutuk D.; Pramudono, Bambang

    2016-02-01

    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination of HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.

  3. Synergistic effect of mixed cationic and anionic surfactants on the corrosion inhibitor behavior of mild steel in 3.5% NaCl

    NASA Astrophysics Data System (ADS)

    Javadian, Soheila; Yousefi, Ali; Neshati, Jaber

    2013-11-01

    The corrosion inhibition characteristics of cation-rich and anion-rich catanionic mixtures of cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), as corrosion inhibitor of mild steel (MS), in aqueous solution of 3.5% NaCl were investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and scanning electron microscopy (SEM). Solutions of CTAB/SDS mixtures showed more appropriate inhibition properties compared to the solutions of the individual surfactants, due to strong adsorption on the metal surface and formation of a protective film. Potentiodynamic polarization investigations indicated that the inhibitors studied were mixed type inhibitors. Adsorption of the inhibitors on the mild steel surface obeyed the Flory-Huggins adsorption isotherm. Furthermore, the values of the adsorption free energy (?Gads) in both mixtures decreased compared with a single surfactant which is attributed to stronger interactions in mixtures.

  4. An emulsion polymerization process for soluble and electrically conductive polyaniline

    SciTech Connect

    Kinlen, P.J.; Ding, Y.; Graham, C.R.; Liu, J.; Remsen, E.E.

    1998-07-01

    A new emulsion process has been developed for the direct synthesis of the emeraldine salt of polyaniline (PANI) that is soluble in organic solvents. The process entails forming an emulsion composed of water, a water soluble organic solvent (e.g., 2-butoxyethanol), a water insoluble organic acid (e.g., dinonylnaphthalene sulfonic acid) and aniline. Aniline is protonated by the organic acid to form a salt which partitions into the organic phase. As oxidant (ammonium peroxydisulfate) is added, PANI salt forms in the organic phase and remains soluble. As the reaction proceeds, the reaction mixture changes from an emulsion to a two phase system, the soluble PANI remaining in the organic phase. With dinonylnaphthalene sulfonic acid (DNNSA) as the organic acid, the resulting product is truly soluble in organic solvents such as xylene and toluene (not a dispersion), of high molecular weight (M{sub w} > 22,000), film forming and miscible with many polymers such as polyurethanes, epoxies and phenoxy resins. As cast, the polyaniline film is only moderately conductive, (10{sup {minus}5} S/cm), however treatment of the film with surfactants such as benzyltriethylammonium chloride (BTEAC) or low molecular weight alcohols and ketones such as methanol and acetone increases the conductivity 2--3 orders of magnitude.

  5. Cation selectivity in a toluene emulsion membrane system

    SciTech Connect

    Izatt, R.M.; Dearden, D.V.; Witt, E.R.; McBride, D.W. Jr.; Christensen, J.J.

    1984-01-01

    Metal separations from various mixtures of alkali metal, alkaline earth metal, Cu/sup 2 +/, Zn/sup 2 +/, Ag/sup +/, Tl/sup +/, and Pb/sup 2 +/ nitrates were studied using an emulsion membrane system. The membrane consisted of a water-in-oil emulsion composed of 0.050 M Li/sub 4/P/sub 2/O/sub 7/ in H/sub 2/O and 0.020 M dicyclohexano-18-crown-6 (DC18C6) in toluene with sorbitan monooleate serving as surfactant. The emulsion was placed into an aqueous source phase solution of the metal nitrates of interest. Of the cations studied, Pb/sup 2 +/ was transported most rapidly and selectively. The selectivity of the system for particular cations is governed by the relative M/sup n+/-DC18C6 and M/sup n+/-P/sub 2/O/sub 7//sup 4 -/ complex stabilities. Formation of a sufficiently stable M/sup n+/-DC18C6 complex is necessary to partition cations into the toluene membrane, and formation of a more stable M/sup n+/-P/sub 2/O/sub 7//sup 4 -/ complex is necessary to strip cations from the membrane into the receiving phase. 17 references, 2 figures, 6 tables.

  6. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2004-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Anionic surfactants (SS-6656, Alfoterra 35, 38, 63,65,68) have been identified which can change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil in the presence of Na{sub 2}CO{sub 3}. All the carbonate surfaces (Lithographic Limestone, Marble, Dolomite and Calcite) show similar behavior with respect to wettability alteration with surfactant 4-22. Anionic surfactants (5-166, Alfoterra-33 and Alfoterra-38 and Alfoterra-68), which lower the interfacial tension with a West Texas crude oil to very low values (<10{sup -2} nM/m), have also been identified. Plans for the next quarter include conducting wettability, mobilization, and imbibition studies.

  7. Turbulent drag reduction in nonionic surfactant solutions

    NASA Astrophysics Data System (ADS)

    Tamano, Shinji; Itoh, Motoyuki; Kato, Katsuo; Yokota, Kazuhiko

    2010-05-01

    There are only a few studies on the drag-reducing effect of nonionic surfactant solutions which are nontoxic and biodegradable, while many investigations of cationic surfactant solutions have been performed so far. First, the drag-reducing effects of a nonionic surfactant (AROMOX), which mainly consisted of oleyldimethylamineoxide, was investigated by measuring the pressure drop in the pipe flow at solvent Reynolds numbers Re between 1000 and 60 000. Second, we investigated the drag-reducing effect of a nonionic surfactant on the turbulent boundary layer at momentum-thickness Reynolds numbers Re? from 443 to 814 using two-component laser-Doppler velocimetry and particle image velocimetry systems. At the temperature of nonionic surfactant solutions, T =25 C, the maximum drag reduction ratio for AROMOX 500 ppm was about 50%, in the boundary layer flow, although the drag reduction ratio was larger than 60% in pipe flow. Turbulence statistics and structures for AROMOX 500 ppm showed the behavior of typical drag-reducing flow such as suppression of turbulence and modification of near-wall vortices, but they were different from those of drag-reducing cationic surfactant solutions, in which bilayered structures of the fluctuating velocity vectors were observed in high activity.

  8. SURFACTANTS AND SUBSURFACE REMEDIATION

    EPA Science Inventory

    Because of the limitations of pump-and-trat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the application...

  9. SURFACTANTS IN LUBRICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  10. ADSORPTION OF SURFACTANTS

    EPA Science Inventory

    Adsorption of surfactants on particles affects their distribution, fate, and effects in natural waters. xperiments were conducted to study the properties of surfactant (charge and structure), solution [H+], [Ca2+], and [Na+]), and sorbent (e.g., organic carbon and cation exchange...

  11. Comparative effects of different cosurfactants on sterile prednisolone acetate ocular submicron emulsions stability and release.

    PubMed

    Ibrahim, Shaimaa S; Awad, Gehanne A S; Geneidi, Ahmed; Mortada, Nahed D

    2009-03-01

    Pluronic F68 is a nonionic, thermogelling block copolymer showing a high dehydration resistance during autoclaving due to its high cloud point (>100 degrees C). Tween 80 (with cloud point of 72.5 degrees C), is a polyoxyethylene-based cosurfactant, susceptible to temperature because of a decrease in its solubility by temperature increase. This study was done to explore whether or not, when compared with Tween 80, Pluronic F68 could be used blindly as a suitable cosurfactant for the preparation of terminally sterilized ocular submicron emulsions containing a lipid soluble drug, prednisolone acetate (PA). Various oils of variable viscosities were also tried. The results proved that no prediction can be made based on previously known physico-chemical properties alone and that emulsion stability depends on the contribution of the various emulsion components including: oil, surfactant and cosurfactant, in addition to the drug properties. PMID:19157802

  12. Rheology and flow of water-in-oil emulsions in porous media

    SciTech Connect

    Woo, R.; Jackson, C.; Maini, B.B.

    1995-12-31

    The objective of this study was to determine the effects of injected drop size distribution, volume fraction of the dispersed phase, and emulsifier concentration on the flow of water-in-oil emulsions in porous media. Experiments were conducted with a model emulsion system comprising a synthetic mineral oil, deionized water, and a non-ionic surfactant. Bulk rheological properties of the emulsions were measured with a Couette flow viscometer. The drop size distributions were measured from optical micrographs using an image analysis technique. Flow tests were carried out in a sand pack. A microwave attenuation technique was employed to measure in situ water saturation. Experimental data collected in the flow tests included: measurements of pressure drop across the sand pack at different flow rates; in situ water saturation at a fixed location in the sand pack; and changes in the drop size distribution resulting from the flow through a porous medium.

  13. Molecular simulation of surfactant-assisted protein refolding

    NASA Astrophysics Data System (ADS)

    Lu, Diannan; Liu, Zheng; Liu, Zhixia; Zhang, Minlian; Ouyang, Pingkai

    2005-04-01

    Protein refolding to its native state in vitro is a challenging problem in biotechnology, i.e., in the biomedical, pharmaceutical, and food industry. Protein aggregation and misfolding usually inhibit the recovery of proteins with their native states. These problems can be partially solved by adding a surfactant into a suitable solution environment. However, the process of this surfactant-assisted protein refolding is not well understood. In this paper, we wish to report on the first-ever simulations of surfactant-assisted protein refolding. For these studies, we defined a simple model for the protein and the surfactant and investigated how a surfactant affected the folding behavior of a two-dimensional lattice protein molecule. The model protein and model surfactant were chosen such that we could capture the important features of the folding process and the interaction between the protein and the surfactant, namely, the hydrophobic interaction. It was shown that, in the absence of surfactants, a protein in an "energy trap" conformation, i.e., a local energy minima, could not fold into the native form, which was characterized by a global energy minimum. The addition of surfactants created folding pathways via the formation of protein-surfactant complexes and thus enabled the conformations that fell into energy trap states to escape from these traps and to form the native proteins. The simulation results also showed that it was necessary to match the hydrophobicity of surfactant to the concentration of denaturant, which was added to control the folding or unfolding of a protein. The surfactants with different hydrophobicity had their own concentration range on assisting protein refolding. All of these simulations agreed well with experimental results reported elsewhere, indicating both the validity of the simulations presented here and the potential application of the simulations for the design of a surfactant on assisting protein refolding.

  14. Invert emulsion well servicing fluids

    SciTech Connect

    Carnicom, W.M.

    1982-03-13

    An invert emulsion well servicing fluid containing an oleaginous phase, an aqueous phase, an invert emulsifier and an effective amount of a solid, particulate polyolefin having a density of about 0.90 gms/cc or greater.

  15. Self-nanoemulsifying drug delivery system of nifedipine: impact of hydrophilic-lipophilic balance and molecular structure of mixed surfactants.

    PubMed

    Weerapol, Yotsanan; Limmatvapirat, Sontaya; Nunthanid, Jurairat; Sriamornsak, Pornsak

    2014-04-01

    A simple but novel mixed surfactant system was designed to fabricate a self-nanoemulsifying drug delivery system (SNEDDS) based on hydrophilic-lipophilic balance (HLB) value. The impacts of HLB and molecular structure of surfactants on the formation of SNEDDS were investigated. After screening various oils and surfactants, nifedipine (NDP)-loaded liquid SNEDDS was formulated with Imwitor() 742 as oil and Tween()/Span() or Cremophor()/Span() as mixed surfactant. Droplet size of the emulsions obtained after dispersing SNEDDS containing Tween()/Span() in aqueous medium was independent of the HLB of a mixed surfactant. The use of the Cremophor()/Span() blend gave nanosized emulsion at higher HLB. The structure of the surfactant was found to influence the emulsion droplet size. Solid SNEDDS was then prepared by adsorbing NDP-loaded liquid SNEDDS comprising Cremophor() RH40/Span() 80 onto Aerosil() 200 or Aerosil() R972 as inert solid carrier. Solid SNEDDS formulations using higher amounts (30-50% w/w) of Aerosil() 200 exhibited good flow properties with smooth surface and preserved the self-emulsifying properties of liquid SNEDDS. Differential scanning calorimetry and X-ray diffraction studies of solid SNEDDS revealed the transformation of the crystalline structure of NDP due to its molecular dispersion state. In vitro dissolution study demonstrated higher dissolution of NDP from solid SNEDDS compared with NDP powder. PMID:24452500

  16. Phytosterol colloidal particles as Pickering stabilizers for emulsions.

    PubMed

    Liu, Fu; Tang, Chuan-He

    2014-06-01

    Water-insoluble phytosterols were developed into a kind of colloidal particle as Pickering stabilizers for emulsions by a classic anti-solvent method using 100% ethanol as the organic phase to solubilize the phytosterols and whey protein concentrate (WPC) as the emulsifier. The colloidal particles in the dispersion, with morphology of stacked platelet-like sheets, had a mean diameter of 44.7 and 24.7 μm for the volume- and surface-averaged sizes, respectively. The properties and stability of the emulsions stabilized by these colloidal particles were highly dependent upon the applied total solid concentration (c; in the dispersion) and oil fraction (ø). The results indicated that (1) at a low c value (<1.0%, w/v) the emulsions were susceptible to phase separation, even at a low ø of 0.2, (2) at low ø values (e.g., 0.2 or 0.3) and a relatively high c value (1.0%, w/v, or above), a severe droplet flocculation occurred for the emulsions, and (3) when both c and ø were appropriately high, a kind of self-supporting gel-like emulsions could be formed. More interestingly, a phase inversion of the emulsions from the oil-in-water to water-in-oil type was observed, upon the ø increasing from 0.2 to 0.6 (especially at high c values, e.g., 3.0%, w/v). The elaborated Pickering emulsions stabilized by the phytosterol colloidal particles with a gel-like behavior would provide a candidate to act as a novel delivery system for active ingredients. PMID:24848560

  17. Breaking oil-in-water emulsions stabilized by yeast.

    PubMed

    Furtado, Guilherme F; Picone, Carolina S F; Cuellar, Maria C; Cunha, Rosiane L

    2015-04-01

    Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2 h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil. PMID:25791419

  18. Advances in reactive surfactants.

    PubMed

    Guyot, A

    2004-05-20

    The study of reactive surfactants and their applications in the synthesis of latexes for waterborne coatings has been recently boosted by two successive European programmes, involving all together eight academic and five industrial laboratories. The most significant results were obtained using surfactants derived from maleic and related anhydrides, or both nonionic and anionic reactive polymeric surfactants. Such surfactants are able to improve the stability of styrenic and acrylic latexes vs. various constraints, such as electrolyte addition, freeze-thawing tests or extraction with alcohol or acetone. The properties of films used in waterborne coatings are also improved in case of water exposure (less water uptake, dimensional stability), as well as improved weatherability, and blocking properties. Formulations for woodstain varnishes, metal coating of printing inks, based on the use of simple polymerizable surfactants, are now in the market. PMID:15072924

  19. Long-term stability of crystal-stabilized water-in-oil emulsions.

    PubMed

    Ghosh, Supratim; Pradhan, Mamata; Patel, Tejas; Haj-Shafiei, Samira; Rousseau, Drick

    2015-12-15

    The impact of cooling rate and mixing on the long-term kinetic stability of wax-stabilized water-in-oil emulsions was investigated. Four cooling/mixing protocols were investigated: cooling from 45C to either 25C or 4C with/without stirring and two cooling rates - slow (1C/min) and fast (5C/min). The sedimentation behaviour of the emulsions was significantly affected by cooling protocol. Stirring was critical to the stability of all emulsions, with statically-cooled (no stirring) emulsions suffering from extensive aqueous phase separation. Emulsions stirred while cooling showed sedimentation of a waxy emulsion layer leaving a clear oil layer at the top, with a smaller separation and droplet size distribution at 4C compared to 25C, indicating the importance of the amount of crystallized wax on emulsion stability. Light microscopy revealed that crystallized wax appeared both on the droplet surface and in the continuous phase, suggesting that stirring ensured dispersibility of the water droplets during cooling as the wax was crystallizing. Wax crystallization on the droplet surface provided stability against droplet coalescence while continuous phase wax crystals minimized inter-droplet collisions. The key novel aspect of this research is in the simplicity to tailor the spatial distribution of wax crystals, i.e., either at the droplet surface or in the continuous phase via use of a surfactant and judicious stirring and/or cooling. Knowledge gained from this research can be applied to develop strategies for long-term storage stability of crystal-stabilized W/O emulsions. PMID:26343977

  20. Interfacial properties of pulmonary surfactant layers.

    PubMed

    Wstneck, R; Perez-Gil, J; Wstneck, N; Cruz, A; Fainerman, V B; Pison, U

    2005-12-14

    The composition of the pulmonary surfactant and the border conditions of normal human breathing are relevant to characterize the interfacial behavior of pulmonary layers. Based on experimental data methods are reviewed to investigate interfacial properties of artificial pulmonary layers and to explain the behavior and interfacial structures of the main components during compression and expansion of the layers observed by epifluorescence and scanning force microscopy. Terms like over-compression, collapse, and formation of the surfactant reservoir are discussed. Consequences for the viscoelastic surface rheological behavior of such layers are elucidated by surface pressure relaxation and harmonic oscillation experiments. Based on a generalized Volmer isotherm the interfacial phase transition is discussed for the hydrophobic surfactant proteins, SP-B and SP-C, as well as for the mixtures of dipalmitoylphosphatidylcholine (DPPC) with these proteins. The behavior of the layers depends on both the oligomerisation state and the secondary structure of the hydrophobic surfactant proteins, which are controlled by the preparation of the proteins. An example for the surface properties of bronchoalveolar porcine lung washings of uninjured, injured, and Curosurf treated lavage is discussed in the light of surface behavior. An outlook summarizes the present knowledge and the main future development in this field of surface science. PMID:16120435

  1. Thermocapillary Motion in an Emulsion

    NASA Technical Reports Server (NTRS)

    Pukhnachov, Vladislav V.; Voinov, Oleg V.

    1996-01-01

    The phenomenological model for the motion of an emulsion or a gas-liquid mixture exposed to thermocapillary forces and micro-acceleration is formulated. The analytical and numerical investigation of one-dimensional flows for these media is fulfilled, the structure of discontinuous motion is studied. The stability conditions of a space-uniform state and of the interface between an emulsion and a pure liquid are obtained.

  2. Numerical analysis of electromagnetic cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Plyasheshnikov, A. V.; Vorobyev, K. V.

    1985-01-01

    A new calculational scheme of the Monte Carlo method assigned for the investigation of the development of high and extremely high energy electromagnetic cascades (EMC) in the matter was elaborated. The scheme was applied to the analysis of angular and radial distributions of EMC electrons in the atmosphere. By means of this scheme the EMC development in dense medium is investigated and some preliminary data are presented on the behavior of EMC in emulsion chambers. The results of more detailed theoretical analysis of the EMC development in emulsion chambers are discussed.

  3. Self-assembly formation of palm-based esters nano-emulsion: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Abdul Rahman, Mohd. Basyaruddin; Huan, Qiu-Yi; Tejo, Bimo A.; Basri, Mahiran; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Abdul

    2009-10-01

    Palm-oil esters (POEs) are unsaturated and non-ionic esters that can be prepared by enzymatic synthesis from palm oil. Their nano-emulsion properties possess great potential to act as drug carrier for transdermal drug delivery system. A ratio of 75:5:20 (water/POEs/Span20) was chosen from homogenous region in the phase diagram of our previous experimental work to undergo molecular dynamics simulation. A 15 ns molecular dynamics simulation of nano-emulsion system (water/POEs/Span20) was carried out using OPLS-AA force field. The aggregations of the oil and surfactant molecules are observed throughout the simulation. After 8 ns of simulation, the molecules start to aggregate to form one spherical micelle where the POEs molecules are surrounded by the non-ionic surfactant (Span20) molecules with an average size of 4.2 0.05 nm. The size of the micelle and the ability of palm-based nano-emulsion to self-assemble suggest that this nano-emulsion can potentially use in transdermal drug delivery system.

  4. Silicone/vegetable oil Janus emulsion: topological stability versus interfacial tensions and relative oil volumes.

    PubMed

    Leonardi, G R; Perrechil, F A; Silveira, L P; Brunca, H O; Friberg, S E

    2015-07-01

    Several aspects were studied of the formation and destabilization in bulk of silicone/vegetable oil, SO/VO, Janus emulsions, stabilized by Tween 80. In the formation of the emulsions, it was unexpectedly found that the dispersions tended to contain both single and flocculated drops irrespective of the emulsification intensity. Microscopy of the emulsions with no cover glass revealed flocculated drops of a large (200-500 ?m) central SO drop with many small VO drops attached. Applying a cover glass did not significantly change the drop size; instead two-oil Janus drops of well-defined contact angle were found. The emulsions showed rapid creaming irrespective of the preparation method, but a few days storage did not significantly change the drop size in the creamed layer, nor was separation of the oils detected. The total interfacial free energy of the Janus drops at equilibrium was compared to the two relevant alternatives; engulfed and separate drops. The Janus drop free energies were found less for all volume ratios of the oils, when the surfactant concentrations in the aqueous phase was sufficient to prevent spreading of VO on SO. Changing the surfactant concentration to bring the interfacial tensions closer to the critical value for spreading gave declining interfacial free energy difference to that of engulfed drops. PMID:25443127

  5. Water Vapor Sorption and Diffusion in Secondary Dispersion Barrier Coatings: A Critical Comparison with Emulsion Polymers.

    PubMed

    Liu, Yang; Soer, Willem-Jan; Scheerder, Jrgen; Satgurunathan, Guru; Keddie, Joseph L

    2015-06-10

    The conventional method for synthesizing waterborne polymer colloids is emulsion polymerization using surfactants. An emerging method is the use of secondary dispersions (SD) of polymers in water, which avoids the addition of any surfactant. Although there are numerous studies of the water barrier properties (sorption, diffusion, and permeability) of waterborne emulsion (Em) polymer coatings, the properties of SD coatings, in comparison, have not been thoroughly investigated. Here, dynamic water vapor sorption analysis is used to compare the equilibrium sorption isotherms of the two forms of styrene-acrylate copolymers (Em and SD) with the same monomer composition. From an analysis of the kinetics of vapor sorption, the diffusion coefficient of water in the polymer coatings is determined. The combined effects of particle boundaries and surfactant addition were investigated through a comparison of the properties of SD and Em coatings to those of (1) solvent-cast polymer coatings (of the same monomer composition), (2) Em polymers that underwent dialysis to partially remove the water-soluble species, and (3) SD polymers with added surfactants. The results reveal that both the particle boundaries and the surfactants increase vapor sorption. The diffusion coefficients of water are comparable in magnitude in all of the polymer systems but are inversely related to water activity because of molecular clustering. Compared to all of the other waterborne polymer systems, the SD barrier coatings show the lowest equilibrium vapor sorption and permeability coefficients at high relative humidities as well as the lowest water diffusion coefficient at low humidities. These barrier properties make SD coatings an attractive alternative to conventional emulsion polymer coatings. PMID:25985183

  6. Use of surfactants for the remediation of contaminated soils: a review.

    PubMed

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-03-21

    Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation. PMID:25528485

  7. Lubrication mechanisms for oil-in-water Emulsions{copyright}

    SciTech Connect

    Schmid, S.R.; Wilson, W.R.D.

    1996-02-01

    Numerous analyses and experiments regarding emulsions have been conducted, and seemingly contradictory nations of remulsion behavior claimed. Theoretical approaches include plate-out, dynamic concentration and mixture theory. Experimental observers report great disparities in film thicknesses and film thickness dependence on emulsion properties such as base oil characteristics and process variables such as rolling speed. This paper surveys the published research and attempts to reconcile apparent contradictions from different researchers. Different lubrication mechanisms of oil-in-water emulsions are identified and described, all of which are highly dependent on speed effects. At low speeds, plate-out is found to be the chief lubricating mechanisms. As speed increases, the plated oil film is starved, leading to a decrease in film thickness. At even higher speeds, which are typical of most engineering applications, dynamic concentration of oil is the prevalent mechanism. Ultimately, mixture theory becomes useful at very high speeds. 36 refs., 10 figs., 2 tabs.

  8. Bubble motion in aqueous surfactant solutions

    SciTech Connect

    Liao, Y.; McLaughlin, J.B.

    2000-04-15

    This paper presents the results of numerical simulations of the unsteady motion of a single bubble that is released or injected into water. The governing equations are solved with a finite difference method using an adaptive boundary-fitted coordinate system. Results are shown for bubbles in the size range 0.72 to 1.5 mm. The effects of surfactants on the motion and shape of the bubble are investigated. When the surfactant concentration is sufficiently small, the bubble attains a maximum velocity before slowing down to its steady-state velocity. Although the steady-state velocity is nearly independent of surfactant concentration, the maximum velocity can be comparable to steady-state velocity in pure water. This behavior is observed even when the bubble is allowed to equilibrate prior to releasing it. The formation of an immobilized surfactant cap is observed soon after the bubble is released. The effect of the injection velocity on the bubble velocity profile is investigated. The effects of the sorption rate constants and the bulk surfactant concentration on the behavior of the bubble are investigated. The feasibility of using experimental measurements and simulations of unsteady bubble velocities to estimate sorption rate constants is discussed.

  9. Metal separation using emulsion liquid membranes

    SciTech Connect

    Izatt, R.M.; Dearden, D.V.; McBride, D.W. Jr.; Oscarson, J.L.; Lamb, J.D.; Christensen, J.J.

    1983-01-01

    Emulsion membrane systems consisting of an aqueous metal salt source phase, a toluene membrane containing the macrocyclic ligand dicyclohexano-18-crown-6 (DC18C6) (0.02 M) and the surfactant sorbitan monooleate (3% v/v), and an aqueous 0.05 M Li/sub 4/P/sub 2/O/sub 7/ receiving phase were studied with respect to the disappearance of metal from the source phase as a function of time. The salts Pb(NO/sub 3/)/sub 2/, Sr(NO/sub 3/)/sub 2/, TlNO/sub 3/, and LiNO/sub 3/ were studied both singly and in mixtures of Pb(NO/sub 3/)/sub 2/ with each of the other salts. In all mixtures studied, Pb/sup 2 +/ was transported first, followed by the second cation (except Li/sup +/ which was not transported). An excess of a second salt with a common anion enhanced the transport of Pb/sup 2 +/. Modeling of these systems was discussed. Source phases containing basic (pH 11) K(Al(OH)/sub 4/) solutions were studied using the same membrane and a 0.15 M H/sub 3/PO/sub 4/ receiving phase. K/sup +/ and Al(III) (as aluminate anion) were both found to transport in this system, but no transport of Al(III) and little transport of K/sup +/ were detected when DC18C6 was absent.

  10. Molecular simulations of droplet coalescence in oil/water/surfactant systems

    NASA Astrophysics Data System (ADS)

    Rekvig, Live; Frenkel, Daan

    2007-10-01

    We report a molecular simulation study of the mechanism by which droplets covered with a surfactant monolayer coalesce. We study a model system where the rate-limiting step in coalescence is the rupture of the surfactant film. Our simulations allow us to focus on the stages at the core of the coalescence process: the initial rupture of the two surfactant monolayers, the rearrangement of the surfactant molecules to form a channel connecting the two droplets, and the expansion of the radius of the resulting channel. For our numerical study, we made use of the dissipative particle dynamics method. We used a coarse-grained description of the oil, water, and surfactant molecules. The rupture of the surfactant film is a rare event on the molecular time scale. To enhance the sampling of the rupture of the surfactant film, we used forward flux sampling (FFS). FFS not only allows us to estimate coalescence rates, it also provides insight into the molecular structure and free energy of the "transition" state. For an oil-water-oil film without surfactant, the rupture rate decreases exponentially with increasing film thickness. The critical state is different in thin and thick films: Thin films break following a large enough thickness fluctuation. Thicker films break only after a sufficiently large hole fluctuationthey can heal. Next, we designed surfactant molecules with positive, zero, and negative natural curvatures. For a water film between two surfactant-covered oil droplets, the rupture rate is highest when the surfactant has a negative natural curvature, lowest when it has zero natural curvature, and lying in between when it has a positive natural curvature. This nonmonotonic variation with curvature stems from two effects: First, the surfactants with a large absolute value of the natural curvature have lower interfacial tension and bending rigidity. This promotes the interfacial fluctuations required to nucleate a channel. Second, the sign of the natural curvature determines whether there is a critical channel radius at which the channel free energy has a maximum. The latter is in agreement with the hole-nucleation theory of Kabalnov and Wennerstrm [Langmuir 12, 276 (1996)]. Our simulations seriously overestimate the relative stability of surfactant free emulsions. We argue that this is due to the fact that our model does not allow for nanobubble formation and capillary evaporationprocesses that are presumably of key importance in the coalescence of surfactant-free emulsions.

  11. Molecular simulations of droplet coalescence in oil/water/surfactant systems.

    PubMed

    Rekvig, Live; Frenkel, Daan

    2007-10-01

    We report a molecular simulation study of the mechanism by which droplets covered with a surfactant monolayer coalesce. We study a model system where the rate-limiting step in coalescence is the rupture of the surfactant film. Our simulations allow us to focus on the stages at the core of the coalescence process: the initial rupture of the two surfactant monolayers, the rearrangement of the surfactant molecules to form a channel connecting the two droplets, and the expansion of the radius of the resulting channel. For our numerical study, we made use of the dissipative particle dynamics method. We used a coarse-grained description of the oil, water, and surfactant molecules. The rupture of the surfactant film is a rare event on the molecular time scale. To enhance the sampling of the rupture of the surfactant film, we used forward flux sampling (FFS). FFS not only allows us to estimate coalescence rates, it also provides insight into the molecular structure and free energy of the "transition" state. For an oil-water-oil film without surfactant, the rupture rate decreases exponentially with increasing film thickness. The critical state is different in thin and thick films: Thin films break following a large enough thickness fluctuation. Thicker films break only after a sufficiently large hole fluctuation-they can heal. Next, we designed surfactant molecules with positive, zero, and negative natural curvatures. For a water film between two surfactant-covered oil droplets, the rupture rate is highest when the surfactant has a negative natural curvature, lowest when it has zero natural curvature, and lying in between when it has a positive natural curvature. This nonmonotonic variation with curvature stems from two effects: First, the surfactants with a large absolute value of the natural curvature have lower interfacial tension and bending rigidity. This promotes the interfacial fluctuations required to nucleate a channel. Second, the sign of the natural curvature determines whether there is a critical channel radius at which the channel free energy has a maximum. The latter is in agreement with the hole-nucleation theory of Kabalnov and Wennerstrom [Langmuir 12, 276 (1996)]. Our simulations seriously overestimate the relative stability of surfactant free emulsions. We argue that this is due to the fact that our model does not allow for nanobubble formation and capillary evaporation-processes that are presumably of key importance in the coalescence of surfactant-free emulsions. PMID:17919037

  12. The effect of stabilizer on the mechanical response of double-emulsion-templated polymersomes.

    PubMed

    Jang, Woo-Sik; Park, Seung Chul; Kim, Miju; Doh, Junsang; Lee, Daeyeon; Hammer, Daniel A

    2015-02-01

    Recent studies have shown that polymersomes templated by microfluidic double-emulsion possess several advantages such as high monodispersity and encapsulation efficiency compared with those generated based on thin-film rehydration and electroformation. Stabilizers, including bovine serum albumin (BSA) and polyvinyl alcohol (PVA), have been used to enhance the formation and stability of double emulsions that are used as templates for the generation of polymersomes. In this work, the effect of stabilizers on the mechanical response of double-emulsion-templated polymersomes using micropipette aspiration is investigated. It is demonstrated that the existence of stabilizers results in the inelastic response in poly-mersomes in the early stage of solvent removal. However, aged polymersomes that have little residual solvent show elastic behavior. Polymersomes prepared from PVA-stabilized double emulsions have noticeably lower area expansion moduli than polymersomes prepared from stabilizer-free and BSA-stabilized double emulsions, suggesting that PVA is incorporated in the bilayer membrane of polymersomes. PMID:25515004

  13. Kenaf as a deep-bed filter medium to remove oil from oil-in-water emulsions

    SciTech Connect

    Varghese, B.K.; Cleveland, T.G.

    1998-10-01

    This study investigated the feasibility of deep-bed filtration using kenaf (agricultural fiber) media for the removal of oil from oil-in-waste emulsions. Continuous flow, constant pressure filtrations were conducted using surfactant stabilized emulsions. Removal of oil and grease varied from 70 to 95% for 500 mg/L oil-in-water emulsion stabilized by surfactants. Oil removal was better for larger oil drops, finer media particles, higher filtration pressure, lower pH, cationic surfactant, and deeper media. Moisture contents and heating values of the spent media were determined. Moisture content decreased with increasing filtration pressure and decreasing particle size of the media. Heating values of the spent media increased with the volume of emulsion filtered. Heating values were high enough to produce surplus energy after accounting for the energy required for driving out the moisture. The results indicated that it may be possible to dispose of the spent medium by combustion without further drying and extract net energy in the process.

  14. Effect of water on interfacial chemical properties of nonionic surfactants in hydrophobic ionic liquid bmimPF6.

    PubMed

    Misono, Takeshi; Aburai, Kenichi; Endo, Takeshi; Sakai, Kenichi; Abe, Masahiko; Sakai, Hideki

    2013-01-01

    We studied the effect of water addition on interfacial properties and aggregate behavior of nonionic surfactants (polyoxyethylene alkyl ether; CnEm) in an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate; bmimPF?). When a small amount of water was added to mixtures of CnEm and bmimPF?, two breaking points (cac1, cac2) were observed in the surface tension/CnEm concentration plots, suggesting the formation of two kinds of aggregates. This two-step aggregate formation was also confirmed by the fluorescence probe method using pyrene. The particle size of the aggregates measured by dynamic light scattering (DLS) was around 200 nm at cac1, and decreased to 4 nm above cac2. These results, together with freeze-fracture TEM observations, showed that the aggregate formed at cac1 was water in bmimPF? emulsions, which then transformed to micelles solubilizing water in the palisade layer above cac2. This concentration-dependent aggregate formation was supported thermodynamically by studying the dependence of cacs on temperature and alkyl and POE chain lengths of the surfactant. PMID:23728327

  15. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Loy, Douglas A. (Tucson, AZ); Simmons, Blake A. (San Francisco, CA); Long, Timothy M. (Evanston, IL); McElhanon, James R. (Manteca, CA); Rahimian, Kamyar (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  16. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, October 1--December 30, 1994

    SciTech Connect

    Wasan, D.T.

    1994-12-31

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested. The problem of characterizing emulsions in porous media is very important in enhanced oil recovery applications. This is usually accomplished by externally added or insitu generated surfactants that sweep the oil out of the reservoir. Emulsification of the trapped oil is one of the mechanisms of recovery. The ability to detect emulsions in the porous medium is therefore crucial to designing profitable flood systems. The capability of microwave dielectric techniques to detect emulsions in porous medium is demonstrated by mathematical modelling and by experiments. This quarter the dielectric properties of porous media are shown to be predicted adequately by treating it an an O/W type dispersion of sand grains in water. Dielectric measurements of emulsion flow in porous media show that dielectric techniques may be applied to determine emulsion characteristics in porous media. The experimental observations were confirmed by theoretical analysis.

  17. Self-Assembly of Nanoparticle Surfactants

    NASA Astrophysics Data System (ADS)

    Lombardo, Michael T.

    Self-assembly utilizes non-covalent forces to organize smaller building blocks into larger, organized structures. Nanoparticles are one type of building block and have gained interest recently due to their unique optical and electrical properties which have proved useful in fields such as energy, catalysis, and advanced materials. There are several techniques currently used to self-assemble nanoparticles, each with its own set of benefits and drawbacks. Here, we address the limited number of techniques in non-polar solvents by introducing a method utilizing amphiphilic gold nanoparticles. Grafted polymer chains provide steric stabilization while small hydrophilic molecules induce assembly through short range attractive forces. The properties of these self-assembled structures are found to be dependent on the polymer and small molecules surface concentrations and chemistries. These particles act as nanoparticle surfactants and can effectively stabilize oil-water interfaces, such as in an emulsion. In addition to the work in organic solvent, similar amphiphilic particles in aqueous media are shown to effectively stabilize oil-in-water emulsions that show promise as photoacoustic/ultrasound theranostic agents.

  18. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes

    PubMed Central

    Nakamura, Kazuho; Matsumoto, Kanji

    2013-01-01

    Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model. PMID:24958621

  19. Micromixers to produce cosmetic emulsions.

    PubMed

    Tromeur, M; Mah, C; Schwesinger, N; Tranchant, J-F

    2003-04-01

    In the cosmetics industry, emulsions play a key-role in active solubilization and texture/efficacy optimization. However, depending on their physico-chemical properties, the active ingredients are often more stable in a single phase: for example, Vitamin A is more stable in an oily phase than in a water phase. We have developed a special mixing device which produces an emulsion in the body of the pump, immediately before application on the skin. The mixing unit consists of two silicon chips. Each chip has several Y-shaped microchannels and intersections etched on its upper surface. When the two etched surfaces are bonded together, they produce series of interconnecting micromixing elements which permit the repeat mixing of the two phases, thus producing an extremely homogenous emulsion. These micromixers require carefully designed formulae in which the physico-chemical properties of each raw material are essential to obtain a spontaneous emulsion. This device has been incorporated into a spray pack and optimized to deliver the spontaneous emulsion when finger pressure is applied. PMID:18494875

  20. Aural barotrauma and surfactant.

    PubMed

    Hills, B A

    1983-11-01

    The concept is introduced that surfactant may be present in the Eustachian tubes as a release agent which would be adsorbed to tissue surfaces to facilitate their separation in maintaining aeration of the middle ear. PMID:6651732

  1. Waterflooding employing amphoteric surfactants

    SciTech Connect

    Stournas, S.

    1980-08-05

    Process for the recovery of oil from a subterranean oil reservoir involving the injection into the reservoir of an aqueous solution of an amphoteric surfactant having an inner quaternary ammonium group linked to a terminal sulfonate or carboxylate group is described. The amphoteric surfactants may be employed in relatively low concentrations within the range of 0.0005 to 0.1% by weight and injected in a slug of at least 0.5 pv. The apparatus may be applied in situations in which the reservoir waters and/or the waters employed in formulating the surfactant solution contain relatively high amounts of divalent metal ions. Specifically described amphoteric surfactants include hydrocarby dialkyl or dihydroxyalkyl ammonium alkane sulfonates and carboxylates in which the hydrocarbyl group contains from 8 to 26 carbon atoms. 29 claims.

  2. Phosphine oxide surfactants revisited.

    PubMed

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (CnDMPO) and alkyl diethyl (CnDEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties. PMID:26869216

  3. Food grade duplex emulsions designed and stabilised with different osmotic pressures.

    PubMed

    Pawlik, Aleksandra; Cox, Philip W; Norton, Ian T

    2010-12-01

    In this study we have investigated the production of food grade W(1)/O/W(2) duplex emulsions with salt partitioned into one water phase but not the other. Investigations were carried out with and without balancing osmotic pressures with glucose. A stable 30% primary W(1)/O emulsions containing salt could be produced with more than or equal to 2% polyglycerol polyricinoleate (PGPR) in the oil phase. We suggest that the addition of salt strengthens the interactions between surfactant molecules in the adsorbed film. This is supported by interfacial viscosity and elasticity measurements both of which increased on addition of salt and the fact that in the presence of salt the emulsion was more stable. These simple emulsions were then processed to construct duplex emulsions. When osmotic pressures were balanced with glucose there was still a release of salt in storage. The extent and rate of release was proportional to glucose concentration. This effect was followed over a period of 60days. These data suggest that the release is driven by the chemical potential difference between the two water compartments rather than the unbalanced osmotic pressures. These observations are explained in the context of a water structuring effect from the added glucose, which lowers the interfacial tension of oil-water interface and thus facilitates micellar transport of hydrated salt ions across the oil layer. PMID:20828706

  4. Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan.

    PubMed

    Lemarchand, Caroline; Couvreur, Patrick; Vauthier, Christine; Costantini, Dominique; Gref, Ruxandra

    2003-03-18

    Oil-in-water nanoemulsions were prepared using a series of synthetic graft copolymers with a backbone of dextran (DEX) and a number of side chains of poly-epsilon-caprolactone (PCL). In this paper, we focus on the o/w emulsion stabilizing abilities of these novel PCL-DEX copolymers, using a recently developed optical analyzer (Turbiscan). The main advantage of Turbiscan is to detect the destabilization phenomena in non-diluted emulsion, much earlier than the naked eye's operator, especially in the case of an opaque and concentrated system. This study shows that PCL-DEX copolymers successfully stabilized ethyl acetate-in-water emulsions, even in the absence of additional surfactants, whereas they were not efficient in stabilizing methylene chloride-in-water emulsions which coalesced fast and irreversibly. The ethyl acetate-in-water emulsion stabilizing ability of PCL-DEX seemed to be related to the localization of their blocks with regard to the oil-water interface. PMID:12615414

  5. Starch nanocrystal stabilized Pickering emulsion polymerization for nanocomposites with improved performance.

    PubMed

    Haaj, Sihem Bel; Thielemans, Wim; Magnin, Albert; Boufi, Sami

    2014-06-11

    Latex/starch nanocrystal (SNC) nanocomposite dispersions were successfully synthesized via a one-step surfactant-free Pickering emulsion polymerization route using SNC as the sole stabilizer. The effect of the SNC content, initiator type and comonomer on the particle size, colloidal stability, and film properties were investigated. Both HCl and H2SO4-hydrolysed starch nanocrystals, each bearing different surface charges, were used as Pickering emulsion stabilizing nanoparticles. SNCs from HCl hydrolysis were found to provide a better stabilization effect, giving rise to a polymer dispersion with a lower average particle size. The mechanistic aspects of the Pickering emulsion polymerization were also discussed. Nanocomposites formed by film-casting the polymer Pickering emulsions showed better mechanical properties and optical transparency than those obtained by blending the polymer emulsion with a nanocrystal dispersion, showing the one-pot route to nanocomposite precursors to be doubly advantageous. Therefore, this in situ polymerization technique not only facilitates the use of SNC nanoparticles, it also provides a valuable nanocomposite with enhanced mechanical properties and high transparency level. PMID:24871664

  6. Measurement of emulsion flow in porous media: Improvements in heavy oil recovery

    NASA Astrophysics Data System (ADS)

    Bryan, J.; Wang, J.; Kantzas, A.

    2009-02-01

    Many heavy oil and bitumen reservoirs in the world are too small or thin for thermal enhanced oil recovery methods to be economic. In these fields, novel methods of less energy intensive, non-thermal technologies are required. Previous experience has shown that the injection of low concentrations of aqueous alkali-surfactant solutions into the reservoir can significantly improve the oil recovery, beyond that of waterflooding. This is due to the in-situ formation of emulsions, which plug off the water channels and lead to improved sweep efficiency in the reservoir. The proper control of these floods requires methods for monitoring the formation and effect of these emulsions. In this paper, the results of laboratory core floods are interpreted to demonstrate how the pressure and flow response can be related to the formation of these emulsions. A new technique (low field NMR) is also used to directly measure W/O emulsions in porous media. Finally, a numerical study is performed in order to demonstrate how the in-situ formation of emulsions can be simply represented in simulation software.

  7. Flow of oil-in-water emulsions through orifice and venturi meters

    SciTech Connect

    Pal, R. . Department of Chemical Engineering)

    1993-06-01

    The applicability of conventional orifice and venturi meters to monitor the flow rate of oil/water emulsions was investigated. The discharge coefficients were determined for various unstable and surfactant-stabilized oil-in-water emulsions using a single orifice and a single venturi. The oil concentration was varied over a wide range of 0-84.32 vol %. The metering results indicate that orifice and venturi meters are feasible flow measuring devices for emulsions. The usual calibration curves of discharge coefficient versus Reynolds number (obtained from single-phase Newtonian fluids) are valid for the stable emulsions, both Newtonian and non-Newtonian. In the latter case, one needs to use the generalized Reynolds number instead of the conventional one. The orifice and venturi discharge coefficients for the unstable emulsions tend to deviate from the single-phase curves at low values of Reynolds number although the agreement is good at high Reynolds numbers. Based on the experimental data, empirical expressions for the orifice and venturi discharge coefficients are given.

  8. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement.

    PubMed

    Rao, Jiajia; McClements, David Julian

    2010-06-01

    Nanoemulsions are finding increasing utilization in the food and beverage industry to encapsulate and protect lipophilic functional components. Low-intensity methods, such as the phase inversion temperature (PIT) approach, are of particular interest for forming food-grade nanoemulsions because of their ease of formation and relatively low energy costs. Nevertheless, this type of emulsion tends to be highly unstable to droplet coalescence after preparation. In this study, we develop a potential solution to this problem using model water/surfactant (Brij 30, C(12)E(4))/oil (tetradecane) systems. The PIT and system morphology were determined by monitoring the temperature dependence of the electrical conductivity, turbidity, and microstructure of the emulsions. Nanoemulsions were formed by holding water/surfactant/oil mixtures at their PIT and then rapidly cooling them. The influence of storage temperature on emulsion stability was investigated, which indicated that the optimum temperature (13 degrees C) was about 27 degrees C lower than the PIT (approximately 40 degrees C). Higher storage temperatures resulted in an increase in droplet growth rate due to coalescence, while lower temperatures led to gelation. Nanoemulsions that were relatively stable to coalescence could be formed at ambient temperatures by adding either Tween 80 (0.2 wt %) or SDS (0.1 wt %) to displace the Brij 30 from the droplet surfaces. We propose that these surfactants increase nanoemulsion stability by changing the optimum curvature of the interfacial layer, as well as by increasing the repulsive interactions (steric or electrostatic) between the droplets. This study may lead to a novel approach to create stable nanoemulsion-based delivery systems that are suitable for utilization within the food industry. PMID:20476765

  9. A practicable process for phenol removal with liquid surfactant membrane permeation column

    SciTech Connect

    Kataoka, Takeshi; Osaki, Katsuhiko; Nishiki, Tadaaki

    1997-05-01

    A practicable liquid surfactant membrane process for phenol removal is proposed with a stirred countercurrent column used as the liquid membrane contact equipment. The constituents of liquid membranes, such as internal aqueous phase and surfactant, the type of column, and the operating conditions for efficient and continuous performance of the liquid surfactant membrane process, have been examined. When NaOH solution was used as the internal aqueous phase and ECA4360J was used as the surfactant, the W/O emulsion was stable for the duration of column operation. More than 97% phenol could be removed from the feed solution. Nearly complete demulsification was also achieved by gentle agitation with an electrostatic demulsifier.

  10. Adsorption at the biocompatible ?-pinene-water interface and emulsifying properties of two eco-friendly surfactants.

    PubMed

    Trujillo-Cayado, Luis Alfonso; Ramrez, Pablo; Alfaro, Mara Carmen; Ruz, Manuela; Muoz, Jos

    2014-10-01

    In this contribution, we provide an accurate characterization at the ?-pinene/water interface of two commercial polyoxytheylene glycerol ester surfactants which differ in the number of ethylene oxide (EO) groups, comprising a systematic analysis of interfacial pressure isotherms, dynamic curves, interfacial rheology and emulsifying properties. Polyoxyethylene glycerol esters derived from cocoa oil are non-ionic surfactants obtained from a renewable source which fulfill the environmental and toxicological requirements to be used as eco-friendly emulsifying agents. ?-Pinene is a renewable biosolvent completely insoluble in water, which could find numerous applications. Interfacial rheology and equilibrium interfacial pressure data fitted a rigorous reorientation model that assumes that the surfactant molecules, when adsorbed at the interface, can acquire two orientations. The surfactant with the highest number of EO groups (Levenol C201) turned out to be more surface active at the ?-pinene/water interface. In addition, the surfactant with the lowest number of EO groups (Levenol H&B) is solubilized into the adjacent oil phase. Slightly concentrated ?-pinene emulsions were obtained using both surfactants. Nevertheless, more stable ?-pinene emulsions with smaller droplet sizes and lower polidispersity were obtained when Levenol C201 was used as emulsifier instead of Levenol H&B. The systematic characterization presented in this work provides important new findings on the interfacial and emulsifying properties of polyoxytheylene glycerol ester surfactants, which can be applied in the rational development of new biocompatible products. PMID:25129697

  11. Surfactant effects on SF6 hydrate formation.

    PubMed

    Lee, Bo Ram; Lee, Ju Dong; Lee, Hyun Ju; Ryu, Young Bok; Lee, Man Sig; Kim, Young Seok; Englezos, Peter; Kim, Myung Hyun; Kim, Yang Do

    2009-03-01

    Sulfur hexafluoride (SF(6)) has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate or collect it from waste gas streams. One separation method is through hydrate crystal formation. In this study, SF(6) hydrate was formed in aqueous surfactant solutions of 0.00, 0.01, 0.05, 0.15 and 0.20 wt% to investigate the effects of surfactants on the hydrate formation rates. Three surfactants, Tween 20 (Tween), sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS), were tested in a semi-batch stirred vessel at the constant temperature and pressures of 276.2 K and 0.78 MPa, respectively. All surfactants showed kinetic promoter behavior for SF(6) hydrate formation. It was also found that SF(6) hydrate formation proceeded in two stages with the second stage being the most rapid. In situ Raman spectroscopy analysis revealed that the increased gas consumption rate with the addition of surfactant was possibly due to the increased gas filling rate in the hydrate cavity. PMID:19058810

  12. Self-Assembly of Gemini Surfactants

    NASA Astrophysics Data System (ADS)

    Yethiraj, Arun; Mondal, Jagannath; Mahanthappa, Mahesh

    2013-03-01

    The self-assembly behavior of Gemini (dimeric or twin-tail) dicarboxylate disodium surfactants is studied using molecular dynamics simulations. This gemini architecture, in which two single tailed surfactants are joined through a flexible hydrophobic linker, has been shown to exhibit concentration-dependent aqueous self-assembly into lyotropic phases including hexagonal, gyroid, and lamellar morphologies. Our simulations reproduce the experimentally observed phases at similar amphiphile concentrations in water, including the unusual ability of these surfactants to form gyroid phases over unprecedentedly large amphiphile concentration windows. We demonstrate quanitative agreement between the predicted and experimentally observed domain spacings of these nanostructured materials. Through careful conformation analyses of the surfactant molecules, we show that the gyroid phase is electrostatically stabilized related to the lamellar phase. By starting with a lamellar phase, we show that decreasing the charge on the surfactant headgroups by carboxylate protonation or use of a bulkier tetramethyl ammonium counterion in place of sodium drives the formation of a gyroid phase.

  13. Chitosan-Based Conventional and Pickering Emulsions with Long-Term Stability.

    PubMed

    Wang, Xiao-Yan; Heuzey, Marie-Claude

    2016-02-01

    Chitosan-based conventional and Pickering oil-in-water (O/W) emulsions with very fine droplet size (volume average diameter, dv, as low as 1.7 ?m) and long-term stability (up to 5 months) were ultrasonically generated at different pH values without the addition of any surfactant or cross-linking agent. The ultrasonication treatment was found to break and disperse chitosan agglomerates effectively (particularly at pH ? 4.5) and also reduce the chitosan molecular weight, benefiting its emulsification properties. The emulsion stability and emulsion type could be controlled by chitosan solution pH. Increasing pH from 3.5 to 5.5 led to the formation of conventional emulsions with decreasing droplet size (dv from 14 to 2.1 ?m) and increasing emulsion stability (from a few days to 2 months). These results can be explained by the increase of dynamic interfacial pressure, which results from the conformation transition of chitosan molecules from an extended state to a more flexible structure as pH increases. At pH = 6.5 (the acid dissociation constant (pKa) of chitosan), the chitosan molecules self-assembled into well-dispersed nanoparticles (dv = 82.1 nm) with the assistance of ultrasonication, which resulted in a Pickering emulsion with the smallest droplet size (dv = 1.7 ?m) and highest long-term stability (up to 5 months) because of the presence of chitosan solid nanoparticles at the oil/water interface. The key originality of this study is the elucidation of the role of pH in the formation of conventional and Pickering chitosan-based O/W emulsions with the assistance of ultrasonication. Our results suggest that chitosan possesses great potential to be used as an effective pH-controlled emulsifier and stabilizer without the need of other additives. PMID:26743171

  14. A comparison of viscosity-concentration relationships for emulsions.

    PubMed

    Bullard, Jeffrey W; Pauli, Adam T; Garboczi, Edward J; Martys, Nicos S

    2009-02-01

    Differential effective medium theory (D-EMT) has been used by a number of investigators to derive expressions for the shear viscosity of a colloidal suspension or an emulsion as a function of the volume fraction of the dispersed phase. Pal and Rhodes [R. Pal, E. Rhodes, J. Rheol. 33 (7) (1989) 1021-1045] used D-EMT to derive a viscosity-concentration expression for non-Newtonian emulsions, in which variations among different oil-water emulsions were accommodated by fitting the value of an empirical solvation factor by matching the volume fraction at which the ratio of each emulsion was experimentally observed to have a viscosity 100 times greater than that of the pure solvent. When the particles in suspension have occluded volume due to solvation or flocculation, we show that the application of D-EMT to the problem becomes more ambiguous than these investigators have indicated. In addition, the resulting equations either do not account for the limiting behavior near the critical concentration, that is, the concentration at which the viscosity diverges, or they incorporate this critical behavior in an ad hoc way. We suggest an alternative viscosity-concentration equation for emulsions, based on work by Bicerano and coworkers [J. Bicerano, J.F. Douglas, D.A. Brune, J. Macromol. Sci., Rev. Macromol. Chem. Phys. C 39 (4) (1999) 561-642]. This alternative equation has the advantages that (1) its parameters are more closely related to physical properties of the suspension and (2) it recovers the correct limiting behavior both in the dilute limit and near the critical concentration for rigid particles. In addition, the equation can account for the deformability of flexible particles in the semidilute regime. The proposed equation is compared to the equation proposed by Pal and Rhodes. PMID:18995865

  15. Fractional crystallization of oil droplets in O/W emulsions dispersed by Synperonic F127.

    PubMed

    Avendao-Gmez, Juan Ramn; Balmori-Ramrez, Heberto; Durn-Pramo, Enrique

    2012-08-15

    The aim of this works is to study an oil-in-water emulsion stabilized with a triblock copolymer Synperonic F127 which presents a double size distribution of oil droplets. The emulsions were studied experimentally by means of differential scanning calorimetry (DSC) and dynamic light scattering (DLS). The DSC analysis was carried out focusing on the cooling behavior of the emulsion. The cooling thermograms of the oil-in-water emulsion revealed two crystallization peaks with Gaussian profile; the interesting characteristic is that both peaks are separated in temperature. In accordance to previous works for a single oil dispersed within an aqueous phase, the DSC technique must show a single Gaussian peak of crystallization attributable to a size distribution of droplets. In the present case of emulsions stabilized with 1 g/L of Synperonic F127, the aggregation behavior of triblock as a function of temperature allows to produce an emulsion with a double size droplet distribution. Comparison with emulsions stabilized with 2 and 4 wt% of non-ionic Tween 20 are also presented. PMID:22652588

  16. Effect of salts on formation and stability of vitamin E-enriched mini-emulsions produced by spontaneous emulsification.

    PubMed

    Saberi, Amir Hossein; Fang, Yuan; McClements, David Julian

    2014-11-19

    Emulsion-based delivery systems are being utilized to incorporate lipophilic bioactive components into various food, personal care, and pharmaceutical products. This study examined the influence of inorganic salts (NaCl and CaCl2) on the formation, stability, and properties of vitamin E-enriched emulsions prepared by spontaneous emulsification. These emulsions were simply formed by titration of a mixture of vitamin E acetate (VE), carrier oil (MCT), and nonionic surfactant (Tween 80) into an aqueous salt solution with continuous stirring. Salt type and concentration (0-1 N NaCl or 0-0.5 N CaCl2) did not have a significant influence on the initial droplet size of the emulsions. On the other hand, the isothermal and thermal stabilities of the emulsions depended strongly on salt levels. The cloud point of the emulsions decreased with increasing salt concentration, which was attributed to accelerated droplet coalescence in the presence of salts. Dilution (2-6 times) of the emulsions with water appreciably improved their thermal stability by increasing their cloud point, which was mainly attributed to the decrease in aqueous phase salt levels. The isothermal storage stability of the emulsions also depended on salt concentration; however, increasing the salt concentration decreased the rate of droplet growth, which was the opposite of its effect on thermal stability. Potential physicochemical mechanisms for these effects are discussed in terms of the influence of salt ions on van der Waals and electrostatic interactions. This study provides important information about the effect of inorganic salts on the formation and stability of vitamin E emulsions suitable for use in food, personal care, and pharmaceutical products. PMID:25343750

  17. Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: vitamin E, vitamin D, and lemon oil.

    PubMed

    Ziani, Khalid; Fang, Yuan; McClements, David Julian

    2012-09-15

    The fabrication and stability of surfactant-based colloidal delivery systems (microemulsions and emulsions) suitable for encapsulation of lipophilic active agents (vitamins and flavours) was investigated. An emulsion titration method was used to study the influence of surfactant type (Tween 20, 60 and 80) and oil type (Vitamin E, vitamin D(3) and lemon oil) on the incorporation of lipophilic components into surfactant micelles. Oil-in-water emulsions were formed and then different amounts were titrated into surfactant micelle solutions. The influence of surfactant-to-oil ratio (SOR) and oil type on the formation of colloidal dispersions was examined using dynamic light scattering and turbidity measurements. SOR, oil type, and surfactant type had a pronounced influence on the nature of the colloidal dispersions formed. Microemulsions could not be formed using vitamin D or E in 1% Tween solutions, due to the relatively large size of the lipophilic molecules relative to the hydrophobic interior of the surfactant micelles. On the other hand, microemulsions could be formed from lemon oil at relatively high SORs. There was not a major impact of non-ionic surfactant type (Tween 20, 60 or 80) on the formation and properties of the colloidal dispersions. However, Tween 20 micelles did appear to be able to solubilise less lemon oil than Tween 60 or 80 micelles, presumably due to their smaller dimensions. This study provides useful information for the rational design of food grade colloidal delivery systems for encapsulating flavour oils, oil-soluble vitamins, and other functional lipids for application in foods and beverages. PMID:23107734

  18. Aqueous Gemini Surfactant Self-Assembly into Complex Lyotropic Phases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Sorenson, Gregory

    2012-02-01

    In spite of the potentially wide-ranging applications of aqueous bicontinuous lyotropic liquid crystals (LLCs), the discovery of amphiphiles that reliably form these non-constant mean curvature morphologies over large phase windows remains largely serendipitous. Recent work has established that cationic gemini surfactants exhibit a pronounced tendency to form bicontinuous cubic (e.g. gyroid) phases as compared to their parent single-tail amphiphiles. The universality of this phenomenon in other surfactant systems remains untested. In this paper, we will report the aqueous LLC phase behavior of a new class of anionic gemini surfactants derived from long chain carboxylic acids. Our studies show that these new surfactants favor the formation of non-constant mean curvature gyroid and primitive (``Plumber's Nightmare'') structures over amphiphile concentration windows up to 20 wt% wide. Based on these observations, we will discuss insights gained into the delicate force balance governing the self-assembly of these surfactants into aqueous bicontinuous LLCs.

  19. Extraction of lanthanoids by liquid surfactant membranes

    SciTech Connect

    Teramoto, M.; Sakuramoto, T.; Koyama, T.; Matsuyama, H.; Miyake, Y.

    1986-05-01

    Separation and concentration of lanthanoids such as La/sup 3 +/, Nd/sup 3 +/, Sm/sup 3 +/, Eu/sup 3 +/, Gd/sup 3 +/, Dy/sup 3 +/, and Yb/sup 3 +/ were carried out using liquid surfactant membranes containing 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester as a carrier. Under the condition of sufficiently high distribution ratio, more than 98% of these metal ions was extracted within 5 min even if the volume ratio of W/O emulsion to the external aqueous phase was as low as 1/32. The ratio of the concentration of metal ions in the internal aqueous phase to that in the external feed phase reached about 50,000 within 20 min. In the conventional solvent extraction of Yb/sup 3 +/, the aggregates of metal-carrier complexes, which were insoluble in the organic membrane phase, were formed at high loading ratio. In the extraction of Yb/sup 3 +/ by liquid surfactant membranes, however, formation of such aggregates was suppressed because both extraction and stripping occurred simultaneously on both sides of the membranes. The rate of interfacial reaction between lanthanoids and the carrier was remarkably reduced by the presence of the emulsifier, and the forward reaction rate was represented by r/sub f/ = k/sub f/(Ln/sup 3 +/)((HR)/sub 2/)/sup 3//(H/sup +/)/sup 3/ where ((HR)/sub 2/) is the concentration of the dimer of the carrier. The rate of the extraction by liquid surfactant membranes was satisfactorily simulated by a proposed permeation model, i.e., a multilayer shell model.

  20. Development and Assessment of Oil-in-Water Emulsions for Encapsulation of Reactive Iron Particles for Subsurface Delivery

    NASA Astrophysics Data System (ADS)

    Berge, N. D.; Taghavy, A.; Ramsburg, A.

    2007-12-01

    Reactive iron particles hold promise for use in the destruction of contaminants in the subsurface environment. Application of these nano- to submicron-scale particles, however, may be limited by poor subsurface transport and non-uniform distribution of the reactive material. Delivery issues are particularly important when evaluating the efficacy of iron-based technologies for treatment of dense non-aqueous phase liquid (DNAPL) source zones. Current approaches for the delivery of reactive iron particles within DNAPL source zones are hindered by particle agglomeration, flow bypassing, and presence of non-target reactions. Encapsulation of the reactive particles within an oil-in-water emulsion is a novel approach that may overcome these limitations. Development of kinetically-stable, iron-laden, oil-in-water emulsions commenced by identifying surfactant-based coatings to increase the stability of commercially-available iron particles within non-polar organic phases (e.g., soy oil). A phase inversion technique was employed to disperse approximately 10% wt of the iron-laden, organic phase within a continuous aqueous phase containing nonionic emulsifiers. Emulsions were designed to ensure emulsifier proportions yielded hydrophilic-lipophilic balances affiliated with oil-in-water emulsions. Micrographs of the oil-in-water emulsions suggest that the average diameter of the oil droplets is approximately one micrometer. The presence of iron within oil droplets was confirmed in the micrographs and supported by an absence of iron agglomeration within the continuous phase. Bulk characteristics of each emulsion (density and viscosity) were used in conjunction with interfacial tension measurements in total trapping number analyses to assess the propensity of these emulsions to mobilize an entrapped trichloroethene (TCE)-DNAPL. Results suggest that the emulsions described herein should not cause significant mobilization of entrapped TCE-DNAPL in fine-to-medium grain sandy media. Column experiments are being conducted to evaluate the transport of these emulsions through sandy media. Preliminary results from experiments with iron-free emulsions suggest conductivity reductions occurring during emulsion flushing are not the result of extensive pore-clogging but rather are due to viscosity changes (emulsion viscosities range from 2 to 10 cP). Current efforts are focused on assessing and comparing both transport and reaction of commercially available iron particles and iron-laden emulsions within sandy porous media.

  1. Emulsion Droplet Combustion in Microgravity: Water/Heptane Emulsions

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1997-01-01

    This presentation reviews a series of experiments to further examine parametric effects on sooting processes of droplet flames in microgravity. The particular focus is on a fuel droplet emulsified with water, specifically emulsions of n-heptane as the fuel-phase and water as the dispersed phase. Water was selected as the additive because of its anticipated effect on soot formation, and the heptane fuel phase was chosen to theoretically reduce the likelihood of microexplosions because its boiling point is nearly the same as that of water: 100 C for water and 98 C for heptane. The water content was varied while the initial droplet diameter was kept within a small range. The experiments were carried out in microgravity to reduce the effects of buoyancy and to promote spherical symmetry in the burning process. Spherically symmetric droplet burning is a convenient starting point for analysis, but experimental data are difficult to obtain for this situation as evidenced by the fact that no quantitative data have been reported on unsupported emulsion droplet combustion in a convection-free environment. The present study improves upon past work carried out on emulsion droplet combustion in microgravity which employed emulsion droplets suspended from a fiber. The fiber can be instrusive to the emulsion droplet burning process as it can promote coalescence of the dispersed water phase and heterogeneous nucleation on the fiber. Prior work has shown that the presence of water in liquid hydrocarbons can have both beneficial and detrimental effects on the combustion process. Water is known to reduce soot formation and radiation heat transfer to combustor walls Gollahalli (1979) reduce flame temperatures and thereby NOx emissions, and encourage secondary droplet atomization or microexplosion. Water also tends to retard ignition and and promote early extinction. The former effect restricted the range of water volume fractions as discussed below.

  2. Choline alkylsulfates--new promising green surfactants.

    PubMed

    Klein, Regina; Kellermeier, Matthias; Touraud, Didier; Müller, Eva; Kunz, Werner

    2013-02-15

    In this work we show how a new promising green and highly water-soluble surfactant can be designed based on recent progress in the knowledge of counterion-headgroup binding and crystallization behavior. The result is the combination of a most classical surfactant anion, dodecylsulfate (DS), with choline (Ch), a natural green cation. The advantage of the physiological metabolite choline is its bulky structure that prevents ChDS from easy crystallization and thus leads to a considerable lowering of the Krafft point down to 0°C. The counterion-headgroup binding is reflected by the aqueous phase behavior of ChDS. Conductivity, surface tension, and cryo-TEM measurements allow the characterization of the dilute micellar region, while the penetration scan technique enables the establishment of a preliminary aqueous phase diagram. In addition, the influence of different mono- and divalent salts on the solubility of ChDS is investigated. The results are compared to the alkali sulfate and alkylcarboxylate homologs, and reveal that ChDS is less sensitive towards addition of salts than, for instance, choline carboxylates due to an increased counterion-headgroup association. Further, cytotoxicity tests on HeLa and SK-Mel 28 cells are presented and compared to other surfactants, showing that ChDS is no more harmful than its sodium counterpart SDS. Taken together, our findings highlight that the harmless green cation choline is of great potential for the design of new surfactants. PMID:23200100

  3. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  4. Controlling molecular transport in minimal emulsions.

    PubMed

    Gruner, Philipp; Riechers, Birte; Semin, Benot; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of 'minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions. PMID:26797564

  5. Controlling molecular transport in minimal emulsions

    NASA Astrophysics Data System (ADS)

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of `minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions.

  6. Microwave emulsion treater with internal coalescer

    SciTech Connect

    Wolf, N.O.; Seidner, D.S.

    1989-08-01

    This patent describes an improvement in a microwave-based emulsion treating system comprising a microwave energy source and a microwave energy applicator having an inlet for an oil and water emulsion to be treated with microwave energy and an outlet for discharge of treated oil and water. The improvement comprising a coalescer medium having a dielectric constant at 2450 MHz of from about 0.1 to about 15 and a loss factor of less than 2 positioned inside the applicator for contacting the emulsion simultaneously with treatment of the emulsion by microwave energy wherein the emulsion contacts the coalescer medium while the emulsion contains the most heat energy from the microwave source to enhance separation of the water from the emulsion.

  7. Controlling molecular transport in minimal emulsions

    PubMed Central

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of ‘minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions. PMID:26797564

  8. The emulsion chamber technology experiment

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

  9. Nature of the Intermicellar Interactions in Ethoxylated Polysorbate Surfactants with High Degrees of Ethoxylation.

    PubMed

    Penfold, J; Thomas, R K; Li, P X; Tucker, I; Petkov, J; Petkova, R E

    2016-02-01

    Ethoxylated polysorbate Tween nonionic surfactants are extensively used as foam and emulsion stabilizers and in aqueous solution form globular micelles. The ethoxylated polysorbate surfactants with higher degrees of ethoxylation than the Tween surfactants exhibit some interesting self-assembly properties. Small-angle neutron scattering, SANS, measurements have revealed intermicellar interactions which are more pronounced than the hard-sphere excluded volume interactions normally associated with nonionic surfactant micelles. The interactions are interpreted as arising from the partial charge on the ether oxygen of the ethylene oxide groups. This gives rise to an effective net negative charge on the micelles, which has been determined from the SANS data and zeta potential measurements. For degrees of ethoxylation of ⩽20, the effect is relatively small. The interaction increases with increasing ethoxylation such that for a degree of ethoxylation of 50 the interaction is comparable to that of ionic surfactant micelles. Unlike the intermicellar interaction in ionic surfactant micellar solutions, which results from the charge on the micelle arising from the partial binding of counterions, the interaction between ethoxthylated polysorbate surfactant micelles is unaffected by the addition of electrolyte. PMID:26785290

  10. A multi-headed surfactant as an efficient tool in solubilization of dimyristoylphosphatidycholine (DMPC) vesicles.

    PubMed

    Wang, Wei; Lu, Wensheng

    2013-02-01

    In this study, the solubilization of DMPC (dimyristoylphosphatidycholine) vesicles by a novel multi-headed surfactant, C18N3, is reported. The headgroup of the surfactant contains two types of amine groups, which are protonated at different pH values. The protonation of the headgroup has significant effect on the solubilization process. The penetration of the surfactant into a DMPC monolayer was measured at different initial surface pressures and at different pH values. A linear relationship was found between the initial surfactant pressure (?) and the increase of the surfactant pressure (??). Furthermore, turbidity titration shows that at low pH, the phase behavior with increasing surfactant concentration in the DMPC solution is similar to conventional ionic surfactants. This can be explained by the three-stage model. TEM images at different C18N3 concentrations confirmed the process of solubilization of DMPC vesicles, and small aggregates were observed at 1 mmol/L C18N3. However, at higher pH, where the headgroup is deprotonated, the surfactant was not able to solubilize the DMPC vesicles. TEM images shows a coexistence of vesicles and a lamellar phase. The surfactant/lipid ratio of the multi-headed surfactant at pH 4 and 7 was compared to conventional nonionic surfactants with the same cross-sectional area of the headgroup, and a much lower ratio was observed for the new surfactant. PMID:23104037

  11. Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper(II).

    PubMed

    Zhan, Yanhui; Lin, Jianwei; Li, Jia

    2013-04-01

    A novel composite material, i.e., surfactant-modified hydroxyapatite/zeolite composite, was used as an adsorbent to remove humic acid (HA) and copper(II) from aqueous solution. Hydroxyapatite/zeolite composite (HZC) and surfactant-modified HZC (SMHZC) were prepared and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscope. The adsorption of HA and copper(II) on SMHZC was investigated. For comparison purposes, HA adsorption onto HZC was also investigated. SMHZC exhibited much higher HA adsorption capacity than HZC. The HA adsorption capacity for SMHZC decreased slightly with increasing pH from 3 to 8 but decreased significantly with increasing pH from 8 to 12. The copper(II) adsorption capacity for SMHZC increased with increasing pH from 3 to 6.5. The adsorption kinetic data of HA and copper(II) on SMHZC obeyed a pseudo-second-order kinetic model. The adsorption of HA and copper(II) on SMHZC took place in three different stages: fast external surface adsorption, gradual adsorption controlled by both film and intra-particle diffusions, and final equilibrium stage. The equilibrium adsorption data of HA on SMHZC better fitted to the Langmuir isotherm model than the Freundlich isotherm model. The equilibrium adsorption data of copper(II) on SMHZC could be described by the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. The presence of copper(II) in solution enhanced HA adsorption onto SMHZC. The presence of HA in solution enhanced copper(II) adsorption onto SMHZC. The mechanisms for the adsorption of HA on SMHZC at pH 7 may include electrostatic attraction, organic partitioning, hydrogen bonding, and Lewis acid-base interaction. The mechanisms for the adsorption of copper(II) on SMHZC at pH 6 may include surface complexation, ion exchange, and dissolution-precipitation. The obtained results indicate that SMHZC can be used as an effective adsorbent to simultaneously remove HA and copper(II) from water. PMID:22961484

  12. Drug nanoparticles by emulsion-freeze-drying via the employment of branched block copolymer nanoparticles.

    PubMed

    Wais, Ulrike; Jackson, Alexander W; Zuo, Yanming; Xiang, Yu; He, Tao; Zhang, Haifei

    2016-01-28

    A large percentage of drug compounds exhibit low water solubility and hence low bioavailability and therapeutic efficacy. This may be addressed by preparation of drug nanoparticles, leading to enhanced dissolution rate and direct use for treatment. Various methods have been developed to produce drug nanocrystals, including wet milling, homogenization, solution precipitation, emulsion diffusion, and the recently developed emulsion freeze-drying. The drawback for these methods may include difficult control in particles size, use of surfactants & polymer, and low ratio of drug to stabilizer. Here, biocompatible branched block copolymer nanoparticles with lightly-crosslinked hydrophobic core and hydrophilic surface groups are synthesized by the direct monomer-to-particle methodology, characterized, and then used as scaffold polymer/surfactant to produce drug nanoparticles via the emulsion-freeze-drying approach. This method can be used for model organic dye and different poorly water-soluble drugs. Aqueous drug nanoparticle dispersions can be obtained with high ratio of drug to stabilizer and relatively uniform nanoparticle sizes. PMID:26704935

  13. Recovery of kraft lignin from pulping wastewater via emulsion liquid membrane process.

    PubMed

    Ooi, Zing-Yi; Harruddin, Norlisa; Othman, Norasikin

    2015-01-01

    Kraft lignin (KL) is a renewable source of many valuable intermediate biochemical products currently derived from petroleum. An excessive of lignin comes from pulping wastewater caused an adverse pollution problems hence affecting human and aquatic life. A comprehensive study pertaining to emulsion liquid membrane (ELM) extraction of lignin from pulping wastewater was presented. ELM formulation contains Aliquat 336 as carrier, kerosene as diluent, sodium bicarbonate (NaHCO3 ) as stripping agent and Span 80 as surfactant. The emulsion stability was investigated at different surfactant concentrations, homogenizer speed and emulsification time. Modifier (2-ethyl-1-hexanol) was added to avoid segregation of third phase while improving the emulsion stability. At optimum conditions, 95% and 56% of lignin were extracted and recovered, respectively at 10 min of extraction time, 0.007 M of Aliquat 336, 0.1 M of NaHCO3 and 1:5 of treat ratio. Additional of modifier was contributed to highest recovery up to 98%. The ELM process was found to be equally feasible and quite effective in the recovery of KL from real pulping wastewater. Therefore, ELM process provides a promising alternative technology to recover KL from pulping wastewater while solving the environmental problems simultaneously. PMID:26101101

  14. Platinum nanoparticles from size adjusted functional colloidal particles generated by a seeded emulsion polymerization process.

    PubMed

    Vogel, Nicolas; Ziener, Ulrich; Manzke, Achim; Plettl, Alfred; Ziemann, Paul; Biskupek, Johannes; Weiss, Clemens K; Landfester, Katharina

    2011-01-01

    The benefits of miniemulsion and emulsion polymerization are combined in a seeded emulsion polymerization process with functional seed particles synthesized by miniemulsion polymerization. A systematic study on the influence of different reaction parameters on the reaction pathway is conducted, including variations of the amount of monomer fed, the ratio of initiator to monomer and the choice of surfactant and composition of the continuous phase. Critical parameters affecting the control of the reaction are determined. If carefully controlled, the seeded emulsion polymerization with functional seed particles yields monodisperse particles with adjustable size and functionalities. Size-adjusted platinum-acetylacetonate containing latex particles with identical seed particles and varied shell thicknesses are used to produce arrays of highly ordered platinum nanoparticles with different interparticle distances but identical particle sizes. For that, a self-assembled monolayer of functional colloids is prepared on a solid substrate and subsequently treated by oxygen plasma processing in order to remove the organic constituents. This step, however, leads to a saturated state of a residual mix of materials. In order to determine parameters influencing this saturation state, the type of surfactant, the amount of precursor loading and the size of the colloids are varied. By short annealing at high temperatures platinum nanoparticles are generated from the saturated state particles. Typically, the present fabrication method delivers a maximum interparticle distance of about 260 nm for well-defined crystalline platinum nanoparticles limited by deformation processes due to softening of the organic material during the plasma applications. PMID:22003452

  15. Effect of the addition of oxybenzone or octyl-methoxycinnamate on particle size of submicron emulsions.

    PubMed

    Marti-Mestres, G; Nielloud, F; Fortun, R; Fernandez, C; Maillols, H

    2000-03-01

    The formulation of sunscreen products requires understanding of the solubilization of these products in different vehicles to obtain aesthetic preparations and to evaluate long-term stability. For this study, two different ultraviolet (UV) filters were selected: oxybenzone (powder) and octyl-methoxycinnamate (liquid). First, the solubility of these UV filters was tested using a three-component simplex-centroid design strategy. The mixtures were prepared with three oily phases used in this field of cosmetics: liquid paraffin, isopropyl myristate, and coconut oil. A phase diagram method was used to carry out a systematic study of submicron oil-in-water emulsions. Phase diagrams were produced by diluting fixed binary mixtures with water. The surfactant consisted of polyoxyethylene-20-sorbitan monostearate/sorbitan monostearate (50/50, w/w). The oily phase contained equal quantities of each oil studied. From this water/surfactant/oil ternary system, we selected two reference emulsions with receptively 75/5/20 and 68/7/25 proportions. Photon correlation spectroscopy (PCS) was used to investigate the influence of these two UV filters at several concentrations on droplet size and distribution of the oil droplets in the material. All emulsions were stored and checked every month for 6 months. PMID:10738653

  16. Platinum nanoparticles from size adjusted functional colloidal particles generated by a seeded emulsion polymerization process

    PubMed Central

    Vogel, Nicolas; Ziener, Ulrich; Manzke, Achim; Plettl, Alfred; Ziemann, Paul; Biskupek, Johannes; Weiss, Clemens K

    2011-01-01

    Summary The benefits of miniemulsion and emulsion polymerization are combined in a seeded emulsion polymerization process with functional seed particles synthesized by miniemulsion polymerization. A systematic study on the influence of different reaction parameters on the reaction pathway is conducted, including variations of the amount of monomer fed, the ratio of initiator to monomer and the choice of surfactant and composition of the continuous phase. Critical parameters affecting the control of the reaction are determined. If carefully controlled, the seeded emulsion polymerization with functional seed particles yields monodisperse particles with adjustable size and functionalities. Size-adjusted platinum-acetylacetonate containing latex particles with identical seed particles and varied shell thicknesses are used to produce arrays of highly ordered platinum nanoparticles with different interparticle distances but identical particle sizes. For that, a self-assembled monolayer of functional colloids is prepared on a solid substrate and subsequently treated by oxygen plasma processing in order to remove the organic constituents. This step, however, leads to a saturated state of a residual mix of materials. In order to determine parameters influencing this saturation state, the type of surfactant, the amount of precursor loading and the size of the colloids are varied. By short annealing at high temperatures platinum nanoparticles are generated from the saturated state particles. Typically, the present fabrication method delivers a maximum interparticle distance of about 260 nm for well-defined crystalline platinum nanoparticles limited by deformation processes due to softening of the organic material during the plasma applications. PMID:22003452

  17. Introducing diffusing wave spectroscopy as a process analytical tool for pharmaceutical emulsion manufacturing.

    PubMed

    Reufer, Mathias; Machado, Alexandra H E; Niederquell, Andreas; Bohnenblust, Katharina; Müller, Beat; Völker, Andreas Charles; Kuentz, Martin

    2014-12-01

    Emulsions are widely used for pharmaceutical, food, and cosmetic applications. To guarantee that their critical quality attributes meet specifications, it is desirable to monitor the emulsion manufacturing process. However, finding of a suitable process analyzer has so far remained challenging. This article introduces diffusing wave spectroscopy (DWS) as an at-line technique to follow the manufacturing process of a model oil-in-water pharmaceutical emulsion containing xanthan gum. The DWS results were complemented with mechanical rheology, microscopy analysis, and stability tests. DWS is an advanced light scattering technique that assesses the microrheology and in general provides information on the dynamics and statics of dispersions. The obtained microrheology results showed good agreement with those obtained with bulk rheology. Although no notable changes in the rheological behavior of the model emulsions were observed during homogenization, the intensity correlation function provided qualitative information on the evolution of the emulsion dynamics. These data together with static measurements of the transport mean free path (l*) correlated very well with the changes in droplet size distribution occurring during the emulsion homogenization. This study shows that DWS is a promising process analytical technology tool for development and manufacturing of pharmaceutical emulsions. PMID:25302803

  18. Effects of emulsion gels containing bioactive compounds on sensorial, technological, and structural properties of frankfurters.

    PubMed

    Pintado, T; Herrero, A M; Ruiz-Capillas, C; Triki, M; Carmona, P; Jiménez-Colmenero, F

    2016-03-01

    Emulsion gels prepared with olive oil, chia, and cold gelling agents (transglutaminase, alginate, or gelatin) were used as fat replacers in reduced-fat frankfurter formulation. Nutritional advantages, sensory analysis, technological properties, and microbiological populations of frankfurters were evaluated along with their lipid structural characteristics over chilled storage. Frankfurters with emulsion gels showed significant improvements in fat content (lower saturated fatty acid, higher mono- and polyunsaturated fatty acid contents) and had good fat and water-binding properties. The presence of an emulsion gel reduced lightness and redness, but increased yellowness. Textural behavior of samples was significantly affected by the presence of emulsion gels and by storage. Sensory properties were not affected by the incorporation of emulsion gels, and all frankfurters were judged acceptable. Attenuated total reflectance-Fourier transform infrared spectroscopy results showed that samples with emulsion gels involve more lipid-protein interactions. Frankfurters with emulsion gels showed good stability to oxidation during storage and contained lower levels of microorganism than reduced-fat control at 85 days. PMID:25788169

  19. Amphoteric water-in-oil self-inverting polymer emulsion

    SciTech Connect

    Lipowski, S. A.; Miskel Jr., J. J.

    1985-03-19

    An amphoteric water-in-oil self-inverting polymer emulsion is prepared which contains a copolymer of a nonionic vinyl monomer and an amphoteric vinyl monomer or a terpolymer of (1) a nonionic vinyl monomer, an anionic vinyl monomer and a cationic vinyl monomer in the aqueous phase, a hydrocarbon oil for the oil phase, a water-in-oil emulsifying agent and an inverting surfactant. An example of a copolymer is a copolymer of a nonionic vinyl monomer such as acrylamide or methacrylamide and an amphoteric vinyl monomer such as a reaction product of dimethylaminoethyl methacrylate and monochloroacetic acid. An example of a terpolymer is a terpolymer of a nonionic vinyl monomer such as acrylamide or methacrylamide, an anionic vinyl monomer such as sodium acrylate and a cationic vinyl monomer such as a triethyl ammonium ethyl methacrylate methosulfate salt. The emulsion is useful in papermaking, treatment of sewage and industrial wastes, drilling muds and secondary and tertiary recovery of petroleum by water flooding.

  20. Relationships between the properties of self-emulsifying pellets and of the emulsions used as massing liquids for their preparation.

    PubMed

    Nikolakakis, Ioannis; Panagopoulou, Athanasia; Salis, Andrea; Malamataris, Stavros

    2015-02-01

    Self-emulsifying pellets were prepared using microcrystalline cellulose, emulsions of caprylic/capric triglyceride, and three Cremophors (ELP, RH40, and RH60) at 1.5 and 2.3 weight ratios, and two drugs (furosemide and propranolol) of different lipophilicity. Droplet size, zeta potential (?) and viscosity of emulsions, and pellet size, shape, friability, tensile strength, disintegration, and drug migration in pellets were determined. Evaluation of reconstituted emulsions was based on droplet size and ?. Factorial design and 3-way ANOVA was applied to estimate the significance of the effects of the drug, surfactant and oil/surfactant ratio. It was found that droplet size, viscosity and ? of emulsions, and size, shape, and friability of pellets were affected by the studied factors and were significant interactions between their effects on pellet size and friability. Migration of drug towards the pellet surface was higher for the less lipophilic furosemide and higher oil content. Linear relationships were found between the emulsion viscosity and the shape parameters of the pellets (for the aspect ratio R (2)?=?0.796 for furosemide and R (2)?=?0.885 for propranolol and for the shape factor, e R R (2)?=?0.740 and R (2)?=?0.960, respectively). For all the formulations examined, an exponential relationship was found between migration (M%) and the product of viscosity (?) and solubility of drug in oil/surfactant mixture (S) (M%?=?98.1e-0.016 [?S], R (2)?=?0.856), which may be useful in formulation work. PMID:25212898

  1. A Solvothermal Route Decorated on Different Substrates: Controllable Separation of an Oil/Water Mixture to a Stabilized Nanoscale Emulsion.

    PubMed

    Zhang, Weifeng; Liu, Na; Cao, Yingze; Chen, Yuning; Xu, Liangxin; Lin, Xin; Feng, Lin

    2015-12-01

    A facile solvothermal route is developed to fabricate polydivinylbenzene (PDVB) and decorate the polymer onto porous substrates. "Controllable" separation can be realized by selecting substrates with different pore sizes. The PDVB-modified mesh shows superhydrophobicity/superoleophilicity, and can be used for oil/seawater mixture separation, while the PDVB-modified membrane exhibits high hydrophobicity/superoleophilicity, and is able to separate surfactant stabilized nanoscale water-in-oil emulsions. PMID:26489016

  2. Determination of zinc in edible oils by flow injection FAAS after extraction induced by emulsion breaking procedure.

    PubMed

    Bakircioglu, Dilek; Topraksever, Nukte; Kurtulus, Yasemin Bakircioglu

    2014-05-15

    A new procedure using extraction induced by emulsion breaking (EIEB) procedure has been developed for extraction/preconcentration of zinc in various edible oils (canola oil, corn oil, hazelnut oil, olive oil, and sunflower oil) prior to its determination by the single line flow injection (FI) flame atomic absorption spectrometry (FAAS). Several parameters affecting the extraction efficiency of the procedure were investigated including the type and concentrations of surfactant, the concentration of HNO3, and the other operational conditions (emulsion breaking time and temperature). The limits of detection of 1.1 and 1.0 ?g L(-1) were observed for zinc when aqueous standard and oil-based standards were added to the emulsions for calibration, respectively. The proposed procedure of combining EIEB and single line FI-FAAS can be regarded as a new procedure for the determination of zinc in edible oil samples. PMID:24423524

  3. Role of interfacial protein membrane in oxidative stability of vegetable oil substitution emulsions applicable to nutritionally modified sausage.

    PubMed

    Jiang, Jiang; Xiong, Youling L

    2015-11-01

    The potential health risk associated with excessive dietary intake of fat and cholesterol has led to a renewed interest in replacing animal fat with nutritionally-balanced unsaturated oil in processed meats. However, as oils are more fluid and unsaturated than fats, one must overcome the challenge of maintaining both physical and chemical (oxidative) stabilities of prepared emulsions. Apart from physical entrapments, an emulsion droplet to be incorporated into a meat protein gel matrix (batter) should be equipped with an interactive protein membrane rather than a small surfactant, and the classical DLVO stabilization theory becomes less applicable. This review paper describes the steric effects along with chemical roles (radical scavenging and metal ion chelation) of proteins and their structurally modified derivatives as potential interface-building materials for oxidatively stable meat emulsions. PMID:26008711

  4. Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water.

    PubMed

    Schuch, Anna; Deiters, Philipp; Henne, Julius; Köhler, Karsten; Schuchmann, Heike P

    2013-07-15

    We investigate breakup of W/O/W double emulsion droplets at high viscosity ratios and coalescence of inner water droplets dependent on the dispersed phase content (DPC) of the inner emulsion. The rheological analyses of the inner emulsions confirm the behavior expected from literature - increasing viscosity with increasing DPC and elastic behavior for high DPC. The resulting droplet sizes seem to be influenced only by the viscosity ratio calculated using the viscosity of the inner emulsion. An influence of the elastic properties of the inner emulsions could not be observed. Moreover, breakup of double emulsion droplets seems to follow the same rules as breakup of Newtonian droplets. In the second part of the paper we focus on the release of water from double emulsions by coalescence. A direct correlation between resulting double emulsion droplet sizes and encapsulation efficiency was found for each system. The initial inner dispersed phase content has a big influence on the release rate. This can partly be explained by the influence of the dispersed phase content on collision rate. Moreover, it was found that for high internal phase concentrations inner droplets coalesce with each other. The so formed bigger inner droplets seem to increase the overall release rate. PMID:23643254

  5. Effect of surfactant for magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Haracz, S.; Hilgendorff, M.; Rybka, J. D.; Giersig, M.

    2015-12-01

    For different medical applications nanoparticles (NPs) with well-defined magnetic properties have to be used. Coating ligand can change the magnetic moment on the surface of nanostructures and therefore the magnetic behavior of the system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four different kinds of surfactants. The surface anisotropy and the magnetic moment of the system were changed due to the presence of the surfactant on the surface of iron oxide NPs.