These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

CHARACTERIZATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND OIL RECOVERY FOR NOVEL ALCOHOL ETHOXYCARBOXYLATE SURFACTANTS  

SciTech Connect

This semi-annual technical progress report describes work performed at Clark Atlanta University under DOE Grant No. DE-FG26-97FT97278 during the period April 01, 1998 to October 01, 1998 which covers the second six months of the project. Presently work is in progress at the EOR Laboratory, Clark Atlanta University (CAU), to characterize phase and emulsion behavior for a novel, hybrid (ionic/non-ionic), alcohol ethoxycarboxylate surfactant (NEODOX 23-4 from Shell Chemical Company). During this reporting period, salinity scans were completed for 0, 5, 10, 20, 50, 100, 250, 500, 1000, 2000, 3000, 4000, 5000, and 6000 mM salt concentrations at 20, 25, and 30 °C to identify optimal salinity intervals in which all three phases coexist for this surfactant. Temperature scans were also performed at 20 mM salt concentration for various surfactant concentrations ranging from 0 to 60 weight percent at temperatures ranging from 5 to 50 °C to identify optimal surfactant concentration and temperature intervals in which all three phases coexist. This resulted in an "alpha" curve with an interval of temperature in which all three phases coexisted. Presently, temperature scans are being repeated at 100, 250, 500, 1000, and 5000 mM salt concentrations to see whether increase in salt concentration has any effect on the temperature interval. This will provide us better understanding and experimental control of the many variables involved in this research in the future. Following completion of the temperature scans, phase studies will be conducted at CAU, and coreflooding experiments at the facility of our industrial partner, Surtek, Golden, CO.

LEBONE MOETI; RAMANATHAN SAMPATH

1998-11-01

2

CHARACTERIZATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND OIL RECOVERY FOR NOVEL ALCOHOL ETHOXYCARBOXYLATE SURFACTANTS  

SciTech Connect

This final technical report describes work performed under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to August 31, 2001 which covers the total performance period of the project. During this period, detailed information on optimal salinity, temperature, emulsion morphologies, effectiveness for surfactant retention and oil recovery was obtained for an Alcohol Ethoxycarboxylate (AEC) surfactant to evaluate its performance in flooding processes. Tests were conducted on several AEC surfactants and NEODOX (23-4) was identified as the most suitable hybrid surfactant that yielded the best proportion in volume for top, middle, and bottom phases when mixed with oil and water. Following the selection of this surfactant, temperature and salinity scans were performed to identify the optimal salinity and temperature, and the temperature and salinity intervals in which all three phases coexisted. NEODOX 23-4 formed three phases between 4 and 52.5 C. It formed an aqueous rich microemulsion phase at high temperatures and an oleic rich microemulsion phase at low temperatures--a characteristic of the ionic part of the surfactant. The morphology measurement system was set-up successfully at CAU. The best oil/water/surfactant system defined by the above phase work was then studied for emulsion morphologies. Electrical conductivities were measured for middle and bottom phases of the NEODOX 23-4/dodecane/10mM water system and by mixing measured volumes of the middle phase into a fixed volume of the bottom phase and vice versa at room temperature. Electrical conductivity of the mixture decreased as the fraction of volume of the middle phase was increased and vice versa. Also inversion phenomena was observed. These experiments were then repeated for bottom/middle (B/M) and middle/bottom (M/B) conjugate pair phases at 10, 15, 25, 30, 35, 40, and 45 C. Electrical conductivity measurements were then compared with the predictions of the conductivity model developed in this project. The M/B and B/M morphologies and their inversion hysteresis lines conformed to the previously postulated dispersion morphology diagram; that is, within experimental uncertainties, the two emulsion inversion lines in phase volume-temperature space met at a critical point that coincided with the upper critical end point for the phases. Coreflooding measurements were performed by our industrial partner in this project, Surtek, Golden, CO which showed poor hydrocarbon recovery (38.1%) for NEODOX 23-4. It was also found that NEODOX 23-4 surfactant adsorbed too much to the rock (97.1% surfactant loss to the core), a characteristic of the non-ionic part of the surfactant.

Lebone T. Moeti; Ramanathan Sampath

2001-09-28

3

Characterization of Phase and Emulsion Behavior, Surfactant Retention, and Oil Recovery for Novel Alcohol Ethoxycarboxylate Surfactant  

SciTech Connect

Electrical conductivity measurements for middle, bottom, and top phases, as well as bottom/middle, and middle/bottom conjugate pair phases of the NEODOX 23-4/dodecane/10mM water system were continued from the previous reporting period. Electrical conductivity of the mixture decreased as the fraction of volume of the middle phase was increased and vice versa. Also inversion phenomena was observed. Following this, more emulsion studies at various temperatures were progresses. A theoretical model to predict the conductivity measurements using Maxwell equations was developed and sensitivity analyses to test the performance of the model was completed. Surtek, Golden, CO, our industrial partner in this project, investigated the suitability of the surfactant for enhanced oil recovery employing coreflooding techniques and observed lower surfactant and hydrocarbon recovery for NEODOX 23-4.

Moeti, Lebone T.; Sampath, Ramanathan

2002-03-13

4

Characterization of Phase and Emulsion Behavior, Surfactant Retention, and Oil Recovery for Novel Alcohol Ethoxycarboxylate Surfactants  

SciTech Connect

This semi-annual technical progress report describes work performed at Clark Atlanta University under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to April 01, 1998 which covers the first six months of the project. During this reporting period, laboratory space to set up the surfactant characterization measurement system in the Research Science Center was made available. A Ph.D. student in Chemistry was identified and is supported as a Graduate Research Assistant in this project. Her contribution towards this project will form her Ph.D. thesis. The test matrix to perform salinity and temperature scans was established. Supply requests to obtain refined hydrocarbon, surfactant, and crude were processed and supplies obtained. A temperature bath with a control unit to perform temperature scans was obtained on loan from Federal Energy Technology Center, Morgantown, WV. The setting up of the temperature control unit, and associated chiller with water circulation lines is in progress. Tests were conducted on several hybrid surfactants to identify the best surfactants for future experimental work that yield almost equal volumes of top, middle, and bottom phases when mixed with oil and water. The student reviewed the current literature in the subject area, and modeling efforts that were established in previous studies to predict electrical conductivities and inversion phenomena. These activities resulted in one published conference paper, and one student poster paper during this reporting period.

Lebone T. Moeti; Ramanathan Sampath

1998-05-01

5

Surfactant-enhanced cellulose nanocrystal Pickering emulsions.  

PubMed

The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials. PMID:25463186

Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

2015-02-01

6

Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures  

SciTech Connect

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period April 01, 2004 to September 30, 2004 which covers the fourth six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number is used as the model condensate. During this reporting period, work was under way and the electrical conductivity experimental system was set up at the Atlanta University Center. Following the set-up of the emulsion measurement system, the electronic instruments and data acquisition modules involved were tested for proper operation of the system. Then, the conductivity output was normalized with that obtained for 10mM NaCl water. Radial coreflooding experiments with ethanol injection prior to and after water injection were completed to assess the effectiveness of the surfactant flooding in the recovery of condensate by our industrial partner, Surtek, CO, in this reporting period. In Run 1, 10 mM NaCl without ethanol injection recovered 31.5% of the initial ethyl benzene saturation. Injection of ethanol following 10 mM NaCl produced a tertiary ethyl benzene bank with maximum ethyl benzene cuts of 32%. In Run 2, 50 vol% of pure (100%) ethanol was injected and flowed through the Berea sandstone after Ethyl Benzene Saturation. 69% of the initial ethyl benzene was recovered. Results of the radial corefloods are very encouraging. Emulsion conductivity measurements for conjugate pair phases are in progress at Morehouse.

Ramanathan Sampath

2004-09-30

7

Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures  

SciTech Connect

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2002 to April 01, 2003 which covers the first six months of the project. Presently work is in progress to characterize phase and emulsion behavior for condensate/water/ethanol system. Temperature and salinity scans are planned to identify the optimal salinity and temperature, and the temperature and salinity intervals in which all three phases coexist for this system. Test matrix to perform salinity and temperature scans has been established. Supply requests to obtain hydrocarbons, surfactant, etc., were processed and supplies obtained. Current literature in the subject area, and modeling efforts that were established in our previous studies to predict electrical conductivities and inversion phenomena were reviewed. Based on the review a computer model to predict electrical conductivities of the ethylbenzene (that has the equivalent carbon number of the condensate)/water/ethanol system is being developed. These activities resulted in one published conference abstract during this reporting period.

Ramanathan Sampath

2003-03-31

8

Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures  

SciTech Connect

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2003 to March 31, 2004 which covers the third six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number is used as the model condensate. During this reporting period, temperature scans were performed mixing equal volumes of ethylbenzene and 10mM NaCl water with various concentrations of ethanol ranging from 2 to 70 vol%. For the range of temperatures tested (2 to 70 C), results indicate that temperature is invariant and produced a single phase for ethanol concentrations greater than 60 vol%. For ethanol concentrations less than 60 vol%, only two phases were obtained with aqueous rich bottom phase more in volume than that of the ethylbenzene rich top phase. Linear coreflooding experiments were completed by our industrial partner in this project, Surtek, CO, to measure the condensate recovery in flooding processes. It was found about 30% ethylbenzene recovery was obtained by the waterflooding, however, 2wt% ethanol flooding did not produce incremental recovery of the ethylbenzene. Radial coreflooding with ethanol injection prior to water injection is in progress to assess the effectiveness of the surfactant flooding in the recovery of condensate.

Ramanathan Sampath

2004-03-31

9

INVESTIGATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND CONDENSATE RECOVERY FOR CONDENSATE/WATER/ETHANOL MIXTURES  

SciTech Connect

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period April 01, 2003 to September 30, 2003 which covers the second six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. During this reporting period, salinity scans were completed for 0, 5, 10, 20, 50, 100, 250, 500, and 1000 mM salt concentrations at room temperature to identify optimal salinity intervals in which all three phases coexist for this system. Temperature scans are in progress at Morehouse College to identify the optimal temperature, and the temperature intervals in which all three phases coexist for this system. Coreflooding experiments are being conducted by our industrial partner in this project, Surtek, CO, to measure the effectiveness for surfactant retention and condensate recovery in flooding processes. Review of the current literature in the subject area, and modeling efforts that were established in our previous studies to predict electrical conductivities and inversion phenomena was continued from the previous reporting period. Based on the review a computer model to predict electrical conductivities of the ethylbenzene (that has the equivalent carbon number of the condensate)/water/ethanol system is being developed.

Ramanathan Sampath

2003-10-01

10

INVESTIGATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND CONDENSATE RECOVERY FOR CONDENSATE/WATER/ETHANOL MIXTURES  

SciTech Connect

This final technical report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2002 to September 30, 2005, which covers the total performance period of the project. During this period, work was conducted to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number was used as the model condensate. Salinity scans were performed for 0, 5, 10, 20, 50, 100, 250, 500, and 1000 mM salt concentrations at room temperature to identify the optimal salinity and salinity intervals in which all phases coexisted. It was found that only two phases formed, and salinity has no significant effect in the volumes of the phases formed. Experiments were repeated at 30 C and observed salinity has no effect at higher temperatures as well. Following the salinity experiments, measurements were made with 10mM NaCl water for surfactant concentrations from 2 to 70 volume percent at room temperature. It was found that only two phases were formed upto 60 vol% concentration of the surfactant. Above 60 vol% surfactant, the mixture produced only a single phase. Experiments were repeated from 2 to 70 C and observed that temperature has no significant effect on the number of phases formed. At the temperatures and surfactant concentration tested, volume fraction of the aqueous bottom phase was found to be larger than that of the top phase. Electrical conductivity measurements were then conducted for bottom/top, and top/bottom conjugate pair phases of the ethylbenzene/water/ethanol system formed by mixing ethanol at various volume percentages including 2,10,33,and 56% while keeping the volumes of ethylbenzene and water the same in the mixture. Electrical conductivity of the bottom phase decreased as ethanol volume fraction in the mixture increased. Conductivity of the top phase was found small and remained almost the same for variations in ethanol volume fraction in the mixture. Also inversion phenomena was observed. Prediction of the conductivity data obtained was then conducted employing a theoretical model developed in this project based on Maxwell relations. Results of the comparisons for 2, 10, 33, and 56% ethanol volume in the mixture are presented here. A good agreement was obtained between the predicted emulsion conductivities and the measured values. Work was also conducted at Surtek, Golden, CO, our industrial partner in this project, to measure the effectiveness for condensate recovery employing coreflooding techniques. In Run 1 of the radial coreflooding experiments conducted, 10 mM NaCl without ethanol injection recovered 31.5% of the initial ethyl benzene saturation. Injection of ethanol following 10 mM NaCl produced a tertiary ethyl benzene bank with maximum ethyl benzene cuts of 32%. In Run 2, 50 vol% of pure (100%) ethanol was injected and flowed through the Berea sandstone after Ethyl Benzene Saturation. 69% of the initial ethyl benzene was recovered. While 50 vol% of ethanol injection does not make economic sense when injecting a large fraction of a pore volume, injection of sufficient volume to remove water and condensate from around the near well bore area of a gas well could be economic.

Ramanathan Sampath

2005-12-01

11

Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system  

NASA Astrophysics Data System (ADS)

Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

2014-11-01

12

Surface Deposition and Phase Behavior of Oppositely Charged Polyion–Surfactant Ion Complexes. Delivery of Silicone Oil Emulsions to Hydrophobic and Hydrophilic Surfaces  

PubMed Central

The adsorption from mixed polyelectrolyte–surfactant solutions at hydrophobized silica surfaces was investigated by in situ null-ellipsometry, and compared to similar measurements for hydrophilic silica surfaces. Three synthetic cationic copolymers of varying hydrophobicity and one cationic hydroxyethyl cellulose were compared in mixtures with the anionic surfactant sodium dodecylsulfate (SDS) in the absence or presence of a dilute silicone oil emulsion. The adsorption behavior was mapped while stepwise increasing the concentration of SDS to a polyelectrolyte solution of constant concentration. The effect on the deposition of dilution of the bulk solution in contact with the surface was also investigated by gradual replacement of the bulk solution with 1 mM aqueous NaCl. An adsorbed layer remained after complete exchange of the polyelectrolyte/surfactant solution for aqueous NaCl. In most cases, there was a codeposition of silicone oil droplets, if such droplets were present in the formulation before dilution. The overall features of the deposition were similar at hydrophobic and hydrophilic surfaces, but there were also notable differences. SDS molecules adsorbed selectively at the hydrophobized silica surface, but not at the hydrophilic silica, which influenced the coadsorption of the cationic polymers. The largest amount of deposited material after dilution was found for hydrophilic silica and for the least-hydrophobic cationic polymers. For the least-hydrophobic polyions, no significant codeposition of silicone oil was detected at hydrophobized silica after dilution if the initial SDS concentration was high. PMID:21667982

2011-01-01

13

Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction  

NASA Technical Reports Server (NTRS)

Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.

Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.

2001-01-01

14

Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures  

SciTech Connect

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period October 01, 2004 to March 31, 2005 which covers the fifth six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number is used as the model condensate. During this reporting period, electrical conductivity measurements for bottom, and top phases, as well as bottom/top, and top/bottom conjugate pair phases of the ethylbenzene/water/ethanol system were performed for various ethanol volume percentage of the mixtures starting from 2% to 60%. Preliminary findings are that electrical conductivity of the bottom phase decreased as ethanol volume fraction of the mixture increased. Conductivity of the top phase was small and remained almost the same for variations in ethanol volume fraction of the mixture. Conductivity of the emulsion of the conjugate pair phases decreased as the fraction of volume of the top phase was increased and vice versa. Also inversion phenomena was observed. Detailed analyses are in progress including the prediction of conductivity data using the theoretical model already developed in this project.

Ramanathan Sampath

2005-03-31

15

Investigation of Phase and Emulsion Behavior, Surfactant Retention and Condensate Recovery for Condensate/Water/Ethanol Mixtures  

SciTech Connect

This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FG26-02NT15447 during the period April 01, 2005 to September 30, 2005 which covers the sixth six months of the project. Presently work is in progress to characterize phase and emulsion behavior for ethylbenzene/water/ethanol system. Ethylbenzene that has the equivalent carbon number is used as the model condensate. In the last reporting period, electrical conductivity measurements for bottom/top, and top/bottom conjugate pair phases of the ethylbenzene/water/ethanol system were performed for various ethanol volume percentage in the mixture: 2,10,20,33,43,50, and 56. During this reporting period, prediction of electrical conductivity data obtained in the past was conducted employing a theoretical model already developed in this project. Results of the comparisons for 2, and 10% ethanol volume in the mixture are presented here. A good agreement was obtained between the predicted emulsion conductivities and the measured values. To date about 99% of the proposed work has been completed. Conductivity prediction for 56% ethanol volume in the mixture is in progress. Following this prediction, a final report will be developed describing the research activities conducted through the entire project period including results and conclusions.

Ramanathan Sampath

2005-09-30

16

Optimum phase-behavior formulation of surfactant/oil/water systems for the determination of chromium in heavy crude oil and in bitumen-in-water emulsion.  

PubMed

An "oil in water" formulation was optimized to determine chromium in heavy crude oil (HCO) and bitumen-in-water emulsion (Orimulsion-400(R)) samples by transversally heated electrothermal atomic absorption spectrometry (TH-ET AAS) using Zeeman effect background correction. The optimum proportion of the oil-water mixture ratio was 7:3 v/v (70 ml of oil as the internal phase) with a non-ionic surfactant concentration (Intan-100) in the emulsion of 0.2% w/w. Chromium was determined in different crude oil samples after dilution of the emulsions 1:9 v/v with a 0.2% w/w solution of surfactant in order to further reduce the viscosity from 100 to 1.6 cP and at the same time to bring the concentration of chromium within the working range of the ET AAS technique. The calibration graph was linear from 1.7 to 100 mug Cr l(-1). The sensitivity was of 0.0069 s l mug(-1), the characteristic mass (m(o)) was of 5.7 pg per 0.0044 s and the detection limit (3sigma) was of 0.52 mug l(-1). The relative standard deviation of the method, evaluated by replicate analyses of three crude oil samples varied in all cases between 1.5 and 2.6%. Recovery studies were performed on four Venezuelan crude oils, and the average chromium recovery values varied between 95.9-104.8, 90.6-107.6, 95.6-104.0 and 98.8-103.9% for the Cerro Negro, Crudo Hamaca and Boscán crude oils and for the Orimulsión(R)-400, respectively. The results obtained in this work for the Cerro Negro, Crudo Hamaca and Boscán crude oils and for the Orimulsión(R)-400 following the proposed procedure were of 0.448+/-0.008, 0.338+/-0.004 0.524+/-0.021 and 0.174+/-0.008 mg Cr l(-1), respectively, which were in good agreement with the values obtained by a tedious recommended standard procedure (respectively: 0.470+/-0.05, 0.335+/-0.080, 0.570+/-0.021 and 0.173+/-0.009 mg Cr l(-1)). PMID:18969194

Burguera, José L; Avila-Gómez, Rita M; Burguera, Marcela; Antón de Salager, Raquel; Salager, Jean-Louis; Bracho, Carlos L; Burguera-Pascu, Margarita; Burguera-Pascu, Constantin; Brunetto, Rosario; Gallignani, Máximo; Petit de Peña, Yaneita

2003-11-01

17

The jamming elasticity of emulsions stabilized by ionic surfactants.  

PubMed

Oil-in-water emulsions composed of colloidal-scale droplets are often stabilized using ionic surfactants that provide a repulsive interaction between neighboring droplet interfaces, thereby inhibiting coalescence. If the droplet volume fraction is raised rapidly by applying an osmotic pressure, the droplets remain disordered, undergo an ergodic-nonergodic transition, and jam. If the applied osmotic pressure approaches the Laplace pressure of the droplets, then the jammed droplets also deform. Because solid friction and entanglements cannot play a role, as they might with solid particulate or microgel dispersions, the shear mechanical response of monodisperse emulsions can provide critical insight into the interplay of entropic, electrostatic, and interfacial forces. Here, we introduce a model that can be used to predict the plateau storage modulus and yield stress of a uniform charge-stabilized emulsion accurately if the droplet radius, interfacial tension, surface potential, Debye screening length, and droplet volume fraction are known. PMID:24913542

Scheffold, Frank; Wilking, James N; Haberko, Jakub; Cardinaux, Frédéric; Mason, Thomas G

2014-07-28

18

Clusters and inverse emulsions from nanoparticle surfactants in organic solvents.  

PubMed

A method is presented for the synthesis of self-assembling nanoparticle surfactants in nonpolar organic solvents. The method relies on the control of long-range steric repulsion imparted by grafted polystyrene and short-range attraction from short-chain thiol molecules with an alcohol or carboxylic functionality. Similar to water-based nanoparticle surfactants, these oil-dispersed materials are found to cluster in dispersion and also to stabilize oil-water interfaces to form water-in-oil emulsions. The clustering process is characterized with dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), UV-vis spectroscopy, and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) is used to quantify the surface concentration of grafted polymer, which is found to be a parameter of critical importance for the formation of stable clusters. The clustering kinetics and dispersion stability are both affected by the polymer molecular weight, surface concentration, and chemical structure of the thiol molecules that induce particle attraction. Nanometer-sized water-in-oil emulsions are formed by sonication in the presence of nanoparticle surfactants. A large broadening of the optical absorption spectrum in the NIR region is observed because of changes in the collective surface plasmon resonance of the gold particle shell. PMID:25584773

Lombardo, Michael T; Pozzo, Lilo D

2015-02-01

19

The Stability of Aerated Milk Protein Emulsions in the Presence of Small Molecule Surfactants  

Microsoft Academic Search

The effects of milk proteins and small molecular surfactants on oil droplet surface coverage and emul- sion stability were studied in model emulsions, and the results were related to the microstructure and physical properties of ice creams. Emulsions became increasingly more stable during partial coalescence at increased surface coverage as the protein concentra- tion was increased. Model emulsions of 20%

B. M. C. Pelan; K. M. Watts; I. J. Campbell; A. Lips

1997-01-01

20

Effect of oil soluble surfactant in emulsions stabilised by clay particles.  

PubMed

Although surfactants and particles are often mixed together in emulsions, the contribution of each species to the stabilisation of the oil-water interface is poorly understood. We report the results of investigations into the formation of emulsions from solutions of surfactant in oil and aqueous suspensions of laponite. Depending on the salt concentration in the aqueous suspensions, the laponite dispersed as individual disc-shaped particles, 30 nm in diameter, or flocculated into aggregates tens of micrometres in diameter. At the concentrations studied, the flocculated particles alone stabilized oil-in-water emulsions. Synergistic interactions between the particles and octadecylamine at the oil-water interface reduced the average emulsion drop size, while antagonistic interactions with octadecanoic acid enhanced coalescence processes in the emulsions. The state of particle dispersion had dramatic effects on the emulsions formed. Measurements of the oil-water interfacial tension revealed the origins of the interactions between the surfactants and particles. PMID:18452938

Whitby, Catherine P; Fornasiero, Daniel; Ralston, John

2008-07-15

21

Polypyrrole-bearing conductive composite prepared by an inverted emulsion pathway involving nonionic surfactants  

Microsoft Academic Search

Polypyrrole-rubber composites were prepared in two steps using an inverted emulsion pathway. In the first step, an inverted emulsion was generated by dispersing an aqueous solution of FeCl3 (as oxidant and dopant) in an organic solution (six different solvents have been employed) of a host polymer (styrene-butadiene-styrene (SBS), styrene-ethylenebutylene-styrene (SES) or styrene-isoprene-styrene (SIS) and nonionic surfactant (six different surfactants have

Yue Sun; Eli Ruckenstein

1995-01-01

22

Anomalous Pull-Off Forces between Surfactant-Free Emulsion Drops in Different Aqueous Electrolytes  

E-print Network

Anomalous Pull-Off Forces between Surfactant-Free Emulsion Drops in Different Aqueous Electrolytes ABSTRACT: A systematic study of collisions between surfactant-free organic drops in aqueous electrolyte accurate prediction of coalescence at high salt concentration (500 mM). In electrolyte solutions

Chan, Derek Y C

23

Viscoelastic Properties of Protein-Stabilized Emulsions: Effect of Protein-Surfactant Interactions.  

PubMed

Viscoelastic properties of whey protein isolate-stabilized emulsions have been investigated by determining storage and loss moduli of both fresh emulsions and heat-set emulsion gels. Gel strength increases with the increase of protein concentration in the system. The flocculated protein-covered oil droplets behave as active fillers and hence dramatically enhance the gel strength. The presence of water-soluble surfactant Tween 20 induces a dramatic reduction in emulsion gel strength, which is attributable to protein displacement from the oil-water interface. Oil droplets that are fully covered with Tween 20 do not adhere to protein gel matrix and do not contribute to gel strength. The presence of oil-soluble monopalmitin increases the viscous character of fresh emulsions and substantially reduces the modulus of heat-set emulsion gels. The viscoelastic properties of heat-set emulsion gels containing monopalmitin are only slightly frequency-dependent, and these gels can be classified as "strong gels". PMID:10554201

Chen; Dickinson

1998-01-19

24

Emulsion electrospinning of polycaprolactone: influence of surfactant type towards the scaffold properties.  

PubMed

Producing uniform nanofibers in high quality by electrospinning remains a huge challenge, especially using low concentrated polymer solutions. However, emulsion electrospinning assists to produce nanofibers from less concentrated polymer solutions compared to the traditional electrospinning process. The influence of individual surfactants towards the morphology of the emulsion electrospun poly (?-caprolactone)/bovine serum albumin (PCL/BSA) nanofibers were investigated by using (i) non-ionic surfactant sorbitane monooleate (Span80); (ii) anionic sodium dodecyl sulfate (SDS); and (iii) cationic benzyltriethylammonium chloride, and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer Pluronic F108 of different concentrations. The morphology, along with the chemical and mechanical properties of the fibers, was evaluated by field emission scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, water contact angle, and tensile tester. With the addition of surfactants, the electrospinnability of dilute PCL solution was enhanced, with either branched or uniform fibers were obtained. Electrospinning of an emulsion containing 0.4% (w/v) SDS produced the smallest and the most uniform nanofibers (167 ± 39 nm), which was attributed to the high conductivity of the solution. Analysis revealed that the emulsion electrospun nanofibers containing different surfactants and surfactant concentrations differ in fiber morphology and mechanical properties. Results suggest that surfactants have the ability to modulate the fiber morphology via electrostatic and hydrogen bonding, depending on their chemical structure. PMID:25427625

Hu, Jue; Prabhakaran, Molamma P; Ding, Xin; Ramakrishna, Seeram

2015-01-01

25

Physical Properties and Biological Activity of Poly(butyl acrylate–styrene) Nanoparticle Emulsions Prepared with Conventional and Polymerizable Surfactants  

PubMed Central

Recent efforts in our laboratory have explored the use of polyacrylate nanoparticles in aqueous media as stable emulsions for potential applications in treating drug-resistant bacterial infections. These emulsions are made by emulsion polymerization of acrylated antibiotic compounds in a mixture of butyl acrylate and styrene (7:3 w:w) using sodium dodecyl sulfate (SDS) as a surfactant. Prior work in our group established that the emulsions required purification to remove toxicity associated with extraneous surfactant present in the media. This paper summarizes our investigations of poly(butyl acrylate-styrene) emulsions made using anionic, cationic, zwitterionic, and non-charged (amphiphilic) surfactants, as well as attachable surfactant monomers (surfmers), comparing the cytotoxicity and microbiological activity levels of the emulsion both before and after purification. Our results show that the attachment of a polymerizable surfmer onto the matrix of the nanoparticle neither improves nor diminishes cytotoxic or antibacterial effects of the emulsion, regardless of whether the emulsions are purified or not, and that the optimal properties are associated with the use of the non-ionic surfactants versus those carrying anionic, cationic, or zwitterionic charge. Incorporation of an N-thiolated ?-lactam antibacterial agent onto the nanoparticle matrix via covalent attachment endows the emulsion with antibiotic properties against pathogenic bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), without changing the physical properties of the nanoparticles or their emulsions. PMID:19523413

Garay-Jimenez, Julio C.; Gergeres, Danielle; Young, Ashley; Dickey, Sonja; Lim, Daniel V.; Turos, Edward

2009-01-01

26

Isothermal titration calorimetric analysis on solubilization of an octane oil-in-water emulsion in surfactant micelles and surfactant-anionic polymer complexes.  

PubMed

Polymers may alter the ability of surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. In this study, isothermal titration calorimetry (ITC) was used to investigate the solubilization thermodynamics of an octane oil-in-water emulsion in anionic sodium dodecylsulphate (SDS), nonionic polyoxyethylene sorbitan monooleate (Tween 80), cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles and respective complexes formed by these micelles and an anionic polymer (carboxymethyl cellulose). Results indicated that the oil solubilization in single ionic micelles was endothermic, while in nonionic micelles or mixed ionic/nonionic micelles it was exothermic. The addition of carboxymethyl cellulose did not influence the solubilization behavior in these micelles, but affected the solubilization capacities of these systems. The solubilization capacity of cationic micelles or mixed cationic/nonionic micelles was enhanced while that of nonionic or anionic micelles was decreased. Based on the phase separation model, a molecular pathway mechanism driven by enthalpy was proposed for octane solubilization in surfactant micelles and surfactant-polymer complexes. PMID:25454419

Zhang, Hui; Zeeb, Benjamin; Salminen, Hanna; Weiss, Jochen

2015-01-15

27

Comparison of Surfactants Used to Prepare Aqueous Perfluoropentane Emulsions for Pharmaceutical Applications  

PubMed Central

Perfluoropentane (PFP), a highly hydrophobic, non-toxic, non-carcinogenic fluoroalkane, has generated much interest in biomedical applications, including occlusion therapy and controlled drug delivery. For most of these applications, the dispersion within aqueous media of a large quantity of PFP droplets of the proper size is critically important. Surprisingly, the interfacial tension of PFP against water in the presence of surfactants used to stabilize the emulsion has rarely, if ever, been measured. In this study, we report the interfacial tension of PFP in the presence of surfactants used in previous studies to produce emulsions for biomedical applications: polyethylene oxide-co-polylactic acid (PEO-PLA, and polyethylene oxide-co-poly-?-caprolactone (PEO-PCL). Since both of these surfactants are uncharged diblock copolymers that rely on the mechanism of steric stabilization, we also investigate for comparison’s sake use of the small molecule cationic surfactant cetyl trimethyl ammonium bromide (CTAB), and the much larger protein surfactant bovine serum albumin (BSA). The results presented here complement previous reports of the PFP droplet size distribution, and will be useful for determining to what extent the interfacial tension value can be used to control the mean PFP droplet size. PMID:20218695

Kandadai, Madhuvanthi A.; Mohan, Praveena; Lin, Genyao; Butterfield, Anthony; Skliar, Mikhail; Magda, Jules J.

2010-01-01

28

Comparison of surfactants used to prepare aqueous perfluoropentane emulsions for pharmaceutical applications.  

PubMed

Perfluoropentane (PFP), a very hydrophobic, nontoxic, noncarcinogenic fluoroalkane, has generated much interest in biomedical applications, including occlusion therapy and controlled drug delivery. For most of these applications, the dispersion within aqueous media of a large quantity of PFP droplets of the proper size is critically important. Surprisingly, the interfacial tension of PFP against water in the presence of surfactants used to stabilize the emulsion has rarely, if ever, been measured. In this study, we report the interfacial tension of PFP in the presence of surfactants used in previous studies to produce emulsions for biomedical applications: polyethylene oxide-co-polylactic acid (PEO-PLA) and polyethylene oxide-co-poly-epsilon-caprolactone (PEO-PCL). Because both of these surfactants are uncharged diblock copolymers that rely on the mechanism of steric stabilization, we also investigate for comparison's sake the use of the small-molecule cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and the much larger protein surfactant bovine serum albumin (BSA). The results presented here complement previous reports of the PFP droplet size distribution and will be useful for determining to what extent the interfacial tension value can be used to control the mean PFP droplet size. PMID:20218695

Kandadai, Madhuvanthi A; Mohan, Praveena; Lin, Genyao; Butterfield, Anthony; Skliar, Mikhail; Magda, Jules J

2010-04-01

29

Controlling lipolysis through steric surfactants: new insights on the controlled degradation of submicron emulsions after oral and intravenous administration.  

PubMed

In this work we have investigated how steric surfactants influence the metabolic degradation of emulsions (lipolysis). To do so, we have prepared submicron emulsions stabilized with Pluronic F68, Pluronic F127, Myrj 52 or Myrj 59, four non-ionic surfactants with key differences on their structure. Submicron emulsions have been prepared also with mixtures of these surfactants with different proportions between them. Then, in vitro methods have been applied to analyze the lipolysis of these emulsions, both under duodenal and intravenous conditions, to simulate lipolysis after oral and intravenous administration. Our results show that the properties of the surfactant influence dramatically the lipolysis rates observed both under duodenal and intravenous conditions, e.g., intravenous lipolysis was completely blocked when Pluronic F127 was used, while it was almost complete within 6h when using Myrj 52. The reason for this seems to be the steric hindrance that the surfactant produces around the droplet and at the interface. As a result, we can modify the lipolysis patterns by changing some characteristics of the surfactant, or by varying the proportion between two surfactants in a mixture. These findings may be applied in the development of novel strategies to rationally design submicron emulsions as lipophilic drug carriers. PMID:22209995

Wulff-Pérez, Miguel; de Vicente, Juan; Martín-Rodríguez, Antonio; Gálvez-Ruiz, María J

2012-02-28

30

Stable surfactant-free toluene-polyethylene-in-water emulsion prepared by ultrasonication at high temperature.  

PubMed

A toluene-polyethylene (PE) mixture, only partially miscible at room temperature (RT), was ultrasonically dispersed in hot water, followed by immediate cooling to give a highly stable surfactant-free oil-in-water (O/W) emulsion. This temperature effect was correlated with physical gelation of the bulk mixture. Prolonged stabilization was achieved only through dispersion at a temperature (T(d)) above the gelation temperature (T(gel)) of the toluene-low-density PE (LDPE) mixture and subsequent rapid cooling. These stabilized emulsions exhibited characteristics such as a small droplet size with a narrow size distribution, low ?-potential, and round-shaped droplets, which were not observed for the emulsions prepared at T(d) < T(gel) or those at T(d) > T(gel) that had been subjected to slow cooling. From these results, physical gelation through crystallization and modification of the droplet surface by PE were concluded to be essential for the prolonged stability of a surfactant-free toluene emulsion. PMID:22277888

Sakai, Hideki; Kamogawa, Keiji; Sakai, Toshio; Umeda, Taeko; Matsumura, Atsutoshi; Sakai, Kenichi; Abe, Masahiko

2012-01-01

31

Formation and stability studies of multiple (w/o/w) emulsions prepared with newly synthesized rosin-based polymeric surfactants.  

PubMed

The multiple (water-in-oil-in-water, w/o/w) emulsions were prepared using newly synthesized rosin-based polymeric surfactants. The oil phase used was liquid paraffin. These emulsions were evaluated for stability by various methods: conductivity, viscosity, particle size, and visual inspection. The stability studies were carried out at 37 degrees C and 4 degrees C for 1 month. The multiple emulsion prepared with polymer 7 was found to be more stable compared to the emulsions prepared with polymer 2. PMID:11548867

Dhanorkar, V T; Gogte, B B; Dorle, A K

2001-07-01

32

An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion.  

PubMed

Preparation, characterization and drug release behavior of loaded polybutyl adipate (PBA) nanocapsules with penicillin-G are described here. The nanocapsules were produced using a double emulsion solvent evaporation technique, using dichloromethane as an organic solvent and Tween and Span as surfactants. In this process, a mixture of glycerin and water was used instead of the traditional stabilizer system in the preparation of double emulsion. The influence of surfactants on the property of nanocapsules was discussed in detail. The effects of Span and Tween to modify the size of the nanocapsules were different. The mean diameters of penicillin-G loaded nanocapsules ranged from 75 nm to 638 nm and were dependent on the types and content of the surfactants. The encapsulation efficiencies and drug release rates were also affected by the surfactants in the preparation process. It was found that the encapsulation efficiencies of penicillin-G enhanced up to 76.8% with the increase in Span and Tween contents. Increasing Span concentration as an inner surfactant results in the remaining of penicillin-G mostly sealed in the inner aqueous phase and increasing Tween concentration as the outer surfactant enhanced the viscosity of external water phase, which decreased the rate of penicillin-G diffusion from the inner water phase to the outer water phase. Interestingly, the in vitro drug release profiles exhibited a significant burst release, followed by a lag phase of little or no release. Penicillin-G loaded nanocapsules with low concentrations of both surfactants tend to have higher burst release. Under optimum formulation conditions, the encapsulation of penicillin-G can reach up to 60% and the burst release can also fall below 45%. In this case, the fact that the nanocapsules have only 130 nm diameter will be important. PMID:19010570

Khoee, Sepideh; Yaghoobian, Morteza

2009-06-01

33

STABILITY AND RHEOLOGY OF HEAVY CRUDE OIL-IN-WATER EMULSION STABILIZED BY AN ANIONIC NONIONIC SURFACTANT MIXTURE  

Microsoft Academic Search

The stability and rheology of an Egyptian Heavy crude oil-in-water emulsions stabilized by an anionic (TDS) and a nonionic (NPE) surfactants individually or in a mixture have been studied. The study reveals that, the viscosity of the crude oil decreases when it is emulsified with water in the form of an oil-in-water type of emulsion. The stability of the oil-in-water

NEHAL S. AHMED; AMAL M. NASSAR; NAEL N. ZAKI; HUSSEIN K. H. GHARIEB

1999-01-01

34

Emulsions and microemulsions of water and carbon dioxide: Novel surfactants and stabilization mechanisms  

NASA Astrophysics Data System (ADS)

During the last two decades colloid and interface science in the field of supercritical fluid technology has brought enormous potentials in the utilization of supercritical carbon dioxide as an environmentally benign solvent. Liquid or supercritical CO2 exhibits solvent properties that are tunable with pressure, and is essentially nontoxic and nonflammable. Emulsions and microemulsions of water and CO2, whether in the form of water-in-CO 2 (w/c) or CO2-in-water (c/w), offer new possibilities for separations on the basis of polarity, and as media for reactions between polar and nonpolar molecules. For the first time, formation of thermodynamically stable c/w microemulsions was characterized by dynamic light scattering (DLS) technique. High-pressure carbon dioxide swells potassium carboxylate perfluoropolyether (PFPE-K) cylindrical micelles in water, elongating the micelles significantly from 20 up to 80 nm. As the micelles swell to form microemulsions, the solubility of pyrene increases by a factor of ca. 10. It was demonstrated w/c microemulsions may be formed with nonionic hydrocarbon surfactant. Methylated branched tail of the surfactant enhances formation of stable w/c microemulsions as it raises surfactant solubility in CO2, shifts the curvature towards bending about water, and weakens interdroplet interactions by reducing overlap between surfactant tails. As a novel medium for reactions, w/c microemulsions with low water content are utilized for the synthesis of TiO2 nanoparticles via the controlled hydrolysis of titanium tetraisopropoxide. The size of particles could be controlled by adjusting the water-to-surfactant ratio (wo). Based on DLS measurements, the size of TiO2 particles was comparable to that of the microemulsion droplets indicating steric stabilization was sufficient during the rapid hydrolysis. Finally, electrostatic repulsion between water droplets of w/c emulsion was explored as an alternative to the steric stabilization mechanism. Negative zeta-potentials as high as 70 mV are measured for emulsion droplets by microelectrophoresis. Unprecedented crystalline structure of the droplet array with a spacing of several droplet-diameters is identified by microscopy, and investigated in terms of a balance between long-range electrostatic repulsions acting through the low dielectric medium (epsilonr = 1.5 for high pressure CO2) and the gravitational force which tends to decrease inter-droplet distances.

Ryoo, Won Sun

35

Phase and Topological Behavior of Lyotropic Chromonic Liquid Crystals in Double Emulsions  

NASA Astrophysics Data System (ADS)

Lyotropic chromonic liquid crystals, assembled by non-covalent interactions, have fascinating temperature- and concentration-dependent phase behavior. Using water-oil-water double emulsions, we are able control the inner droplet chromonic phase concentration by osmosis through the oil phase. We then study the configurations of the chromonic liquid crystal phases in droplets by varying the oil types, oil soluble surfactants, and inner droplet diameter. We employ polarization microscopy to observe resulting nematic and columnar phases of Sunset Yellow FCF, and we deduce the liquid crystal configuration of both phases within the droplets. Simulations based on Jones matrices confirm droplet appearance, and preliminary observations of chromonic liquid crystal shells in oil-water-oil double emulsions are reported.

Davidson, Zoey S.; Jeong, Joonwoo; Tu, Fuquan; Lohr, Matt; Lee, Daeyeon; Collings, Peter J.; Lubensky, Tom C.; Yodh, A. G.

2013-03-01

36

Evaluation of HLB values of mixed non-ionic surfactants on the stability of oil-in-water emulsion system  

NASA Astrophysics Data System (ADS)

Emulsion oil-in-water was prepared with combination of emulsifiers (non-ionic surfactants) following the HLB (hydrophylic-lipophylic balance) method developed by Griffin. The emulsions were prepared at HLB 10, 11, 12, 13 and 13.6 consisting blend of non-ionic emulsifiers fatty acid ethoxylate with 20 moles bound ethylene oxide and Dehydol LS 1 with 1 mole bound ethylene oxide. A mixture of palm-based methyl ester consisting of C6-10 and C12-18 fatty acid composition was used as palm-based solvent. The physicochemical parameters of the emulsion were characterized by accelerate stability tested at 45°C for two months, measurement of particle size and viscosity test. The result of accelerate test showed that all the emulsion at different HLB were found to be stable in the 2 months observation which assumed to be stable in 1 year of storage. Meanwhile, the particle size measurement data showed that the optimum stable particle size of the emulsion was HLB 12±1. The viscosity test of the emulsion tends to support the data from the particle size and have maximum viscosity 189.89 cP at HLB 12. The obtained results indicate that the optimum stable emulsions can be formulated by a combination of emulsifiers with HLB 12±1 which is compatible with that of required HLB of the oil phase.

Nursakinah, I.; Ismail, A. R.; Rahimi, M. Y.; Idris, A. B.

2013-11-01

37

Explaining the growth behavior of surfactant micelles.  

PubMed

The growth behavior of surfactant micelles has been investigated from a theoretical point of view. It is demonstrated that predictions deduced from the spherocylindrical micelle model, which considers micelles that are only able to grow in the length direction, are inconsistent with experimental measurements. Accordingly, the rise in aggregation numbers above a certain concentration, roughly corresponding to the second critical micelle concentration, appears to be much stronger than predicted by the spherocylindrical micelle model. On the other hand, predictions deduced from the general micelle model, which considers micelles that are able to grow with respect to both width and length, show excellent agreement with experimental observations. The latter theory is based on bending elasticity and it is demonstrated that the associated three parameters spontaneous curvature, bending rigidity and saddle-splay constant may all be determined for a micellar system from experimental measurements of the aggregation number as a function of surfactant concentration. The three parameters turn out to influence the appearance of a micellar growth curve rather differently. In accordance, the location of the second cmc is mainly determined by the saddle-splay constant and the bending rigidity. The shape of the growth curve, when going from the region of weakly growing micelles at low surfactant concentrations to strongly growing micelles above the second cmc, is mainly influenced by the bending rigidity. PMID:25460696

Bergström, L Magnus

2015-02-15

38

An Algorithm for Emulsion Stability Simulations: Account of Flocculation, Coalescence, Surfactant Adsorption and the Process of Ostwald Ripening  

PubMed Central

The first algorithm for Emulsion Stability Simulations (ESS) was presented at the V Conferencia Iberoamericana sobre Equilibrio de Fases y Diseño de Procesos [Luis, J.; García-Sucre, M.; Urbina-Villalba, G. Brownian Dynamics Simulation of Emulsion Stability In: Equifase 99. Libro de Actas, 1st Ed., Tojo J., Arce, A., Eds.; Solucion’s: Vigo, Spain, 1999; Volume 2, pp. 364–369]. The former version of the program consisted on a minor modification of the Brownian Dynamics algorithm to account for the coalescence of drops. The present version of the program contains elaborate routines for time-dependent surfactant adsorption, average diffusion constants, and Ostwald ripening. PMID:19399220

Urbina-Villalba, German

2009-01-01

39

Surfactant kinetics and their importance in nucleation events in (mini)emulsion polymerization revealed by quartz crystal microbalance with dissipation monitoring.  

PubMed

Surfactants are vital components of almost all heterogeneous polymerizations for maintaining colloidal stability, but they also play an important role in the kinetics and mechanism of particle nucleation. Despite many decades of research, the knowledge of adsorption-desorption surfactant kinetics and their application in (mini)emulsion polymerization is largely based on qualitative arguments. In this paper we show that the use of a quartz crystal microbalance with dissipation monitoring can provide quantitative information on both the adsorption equilibrium of ionic and nonionic surfactants, and also the kinetics of adsorption/desorption, that can be applied to the understanding of nucleation processes in (mini)emulsion polymerization. We show that surfactant dynamics and nucleation phenomena in (mini)emulsion polymerization are not dominated by diffusion phenomena linked to molecular size of surfactant as previously thought but rather are driven by the large differences in the rate of surfactant adsorption and desorption at the polymer-water interface. Finally, we show the application of this knowledge to explain the differences between nucleation processes for ionic and nonionic surfactants in emulsion polymerization. PMID:25033420

Ballard, Nicholas; Urrutia, Jone; Eizagirre, Simone; Schäfer, Thomas; Diaconu, Gabriela; de la Cal, José C; Asua, José M

2014-08-01

40

Preparation of CO?/N?-triggered reversibly coagulatable and redispersible polyacrylate latexes by emulsion polymerization using a polymeric surfactant.  

PubMed

We report here a novel approach for making reversibly coagulatable and redispersible polyacrylate latexes by emulsion (co)polymerization of methyl methacrylate (MMA) using a polymeric surfactant, poly(2-(dimethylamino)ethyl methacrylate)(10) -block-poly(methyl methacrylate)(14) . The surfactant was protonated with HCl prior to use. The resulted PMMA latexes were readily coagulated with trace amount of caustic soda. The coagulated latex particles, after washing with deionized water, could be redispersed into fresh water to form stable latexes again by CO(2) bubbling with ultrasonication. The recovered latexes could then be coagulated by N(2) bubbling with gentle heating. These coagulation and redispersion processes were repeatable by the CO(2) /N(2) bubbling. PMID:22488642

Zhang, Qi; Yu, Guoqiang; Wang, Wen-Jun; Li, Bo-Geng; Zhu, Shiping

2012-05-29

41

Surfactant effects on bio-based emulsions used as lubrication fluids  

Technology Transfer Automated Retrieval System (TEKTRAN)

The successful formulation of a lubricating emulsion requires carefully balancing the mixture of base oil, water and a plethora of additives. The factors that affect the performance of lubrication emulsions range from the macroscopic stability to the microscopic surface properties of the base oil. ...

42

Use of a novel surfactant for improving the transportability\\/transportation of heavy\\/viscous crude oils  

Microsoft Academic Search

In this paper, we present the application of a newly designed surfactant molecule for enhancing the flow properties of heavy\\/viscous crude oils. A novel surfactant molecule was designed through an economic processing technique. The rheological behavior of heavy crude oil\\/aqueous solution of surfactant emulsions as well as heavy crude oil\\/surfactant emulsions has been investigated using a programmable viscometer. The effects

Yousef Al-Roomi; Reena George; Ahmed Elgibaly; Ali Elkamel

2004-01-01

43

Characterization of surfactants in an oil-in-water emulsion-based vaccine adjuvant using MS and HPLC-MS: structural analysis and quantification.  

PubMed

Mass spectrometry (MS) and high performance liquid chromatography coupled to mass spectrometry (HPLC-MS) techniques were developed to characterize two surfactants, cetheareth-12 and sorbitan oleate, used to manufacture AF03, an emulsified oil-in-water (O/W) adjuvant. MS was first used to characterize the chemical structure and determine the composition of the two surfactants. The two surfactants appeared as complex products, in particular with respect to the nature of the fatty alcohols and the distribution of the number of ethylene oxides in cetheareth-12, and with respect to the different sorbitan-bound fatty acids (oleic, linoleic and palmitic acids) in sorbitan oleate. Subsequently, once the ions of interest were determined and selected, HPLC-MS was developed and optimized to quantify and to "quality control" the two surfactants as raw materials and as ingredients in the final O/W emulsion bulk and filled products. PMID:22713283

Cotte, Jean-François; Sonnery, Sylvain; Martial, Fabien; Dubayle, Jean; Dalençon, François; Haensler, Jean; Adam, Olivier

2012-10-15

44

Aggregation behavior of nonionic surfactants in ionic liquid mixtures.  

PubMed

We investigated the aggregation behavior of polyoxyethylene (POE)-type nonionic surfactants in ionic liquid mixtures composed of 1-ethyl- and 1-hexyl-3-methylimidazolium tetrafluoroborates (emimBF(4) and hmimBF(4), respectively) by means of (1)H NMR chemical shift analysis and dynamic light-scattering measurements. The surfactants do not aggregate in hmimBF(4), whereas they are essentially immiscible with emimBF(4). That is, the surfactants are highly solvophilic to hmimBF(4), while are highly solvophobic to emimBF(4). In mixtures of emimBF(4) and hmimBF(4) micellization was observed. The critical micelle concentration (cmc) decreased and the mean hydrodynamic diameter of micelles, and hence, the micellar aggregation number, increased with increase in mole fraction of emimBF(4) in the ionic liquid mixture. (1)H NMR chemical shift analysis revealed that hmimBF(4) interacts with surfactant molecules preferentially in the ionic liquid mixture through interaction of hexyl groups with the surfactant hydrocarbon chains. The present work demonstrates that solvent quality can be controlled by mixing two ionic liquids to induce self-aggregation of amphiphilic molecules. PMID:21767849

Inoue, Tohru; Kawashima, Kazuaki; Miyagawa, Yuji

2011-11-01

45

Oscillatory, creep and steady flow behavior of xanthan-thickened oil-in-water emulsions  

SciTech Connect

In the handling, mixing, storage, and pipeline transportation of emulsions, knowledge of rheological properties is required for the design, selection, and operation of the equipment involved. The rheological behavior of xanthan gum-thickened oil-in-water emulsions is studied with a cone-and-plate system using a constant-stress rheometer. Xanthan gum solutions and xanthan-thickened oil-in-water emulsions are strongly shear-thinning and viscoelastic in nature. The effects of polymer and oil concentrations on the rheological behavior of emulsions are investigated. The relative viscosity for the thickened emulsions, at any given oil concentration, increases with an increase in the shear rate, whereas the unthickened emulsions show the opposite trend. The theoretical models give reasonable predictions for the relative viscosity, storage modulus, and loss modulus of xanthan-thickened emulsions. The ratio of storage to loss moduli increases considerably with the increase in polymer and oil concentrations. The creep/recovery experiments confirm that the xanthan-thickened emulsions are highly viscoelastic in nature and that the degree of elasticity increases with the increase in polymer and oil concentrations.

Pal, R. [Univ. of Waterloo, Ontario (Canada). Dept. of Chemical Engineering] [Univ. of Waterloo, Ontario (Canada). Dept. of Chemical Engineering

1995-04-01

46

Solubilization rates of oils in surfactant solutions and their relationship to mass transport in emulsions  

Microsoft Academic Search

Information on solubilization rates of oils in aqueous micellar solutions is reviewed. For ionic surfactants electrostatic repulsion prevents close approach of micelles to the oil–water interface, so that solubilization results from oil molecules dissolving individually in the solution and being taken up by micelles during and\\/or after transport across a diffusion boundary layer to the bulk solution. Experiments with SDS

Alejandro A. Peña; Clarence A. Miller

2006-01-01

47

Theoretical and experimental investigation of the equilibrium and dynamic interfacial behavior of mixed surfactant solutions  

E-print Network

In many commercial applications involving surfactants, the desired properties are controlled by both the equilibrium and the dynamic interfacial behavior. In particular, surfactant adsorption at air-water interfaces causes ...

Mulqueen, Michael (Michael Patrick), 1972-

2001-01-01

48

Renormalized Ising behavior of critical nonionic surfactant solution  

NASA Astrophysics Data System (ADS)

The critical behavior of a nonionic surfactant, heptaethyleneglycol mono-n-tetradecyl ether (C14E7), in an aqueous tetramethylammonium chloride (TMAC) solution was investigated by the combined use of turbidity and light scattering measurements concerning the critical exponents of the isothermal osmotic compressibility and the long-range correlation length. Both the critical exponents and the critical points depend on the TMAC concentration. Critical exponents increase with the increase of salt concentration showing a deviation from the three-dimensional Ising model. The critical behaviors are well described by a continuous change from the three-dimensional Ising model to Fisher's renormalized Ising model.

Kubota, Kenji; Kita, Rio; Dobashi, Toshiaki

1998-07-01

49

Capillary electrophoretic behavior of milk proteins in the presence of non-ionic surfactants.  

PubMed

The electrophoretic behavior of alpha-lactalbumin and beta-lactoglobulins (A and B) in the presence of non-ionic surfactants was studied by capillary electrophoresis (CE), using a poly(ethylene glycol) coated capillary column. The surfactants (Tween 20, Brij 35 and 78) were used as buffer additives. The separation is based on the difference in the strength of protein-surfactant association complexes, which results in a change of the effective electrophoretic mobility. The modification of the electrophoretic mobilities of proteins was observed and this variation permitted the estimation of the interaction between protein and surfactant. The effect of surfactant type and concentration on the migration behavior of protein in CE is discussed. It is found that the retention behavior of the milk proteins (the alpha-lactalbumin and the beta-lactoglobulins) in CE is very different. The pH of the buffer and the surfactant type influence significantly the protein-surfactant interactions. PMID:9544802

Xu, R J; Vidal-Madjar, C; Sébille, B

1998-02-27

50

Phase behavior and oil recovery investigations using mixed and alkaline-enhanced surfactant systems  

SciTech Connect

The results of an evaluation of different mixed surfactant and alkaline-enhanced surfactant systems for enhanced oil recovery are described. Several mixed surfactant systems have been studies to evaluate their oil recovery potential as well as improved adaptability to different ranges of salinity, divalent ion concentrations, and temperature. Several combinations of screening methods were used to help identify potential chemical formulations and determine conditions where particular chemical systems can be applied. The effects of different parameters on the behavior of the overall surfactant system were also studied. Several commercially available surfactants were tested as primary components in the mixtures used in the study. These surfactants were formulated with different secondary as well as tertiary components, including ethoxylated and non-ethoxylated sulfonates and sulfates. Improved salinity and hardness tolerance was achieved for some of these chemical systems. The salinity tolerance of these systems were found to be dependent on the molecular weight, surfactant type, and concentration of the surfactant components.

Llave, F.M.; Gall, B.L.; French, T.R.; Noll, L.A.; Munden, S.A.

1992-03-01

51

Polymerization in emulsion microdroplet reactors  

NASA Astrophysics Data System (ADS)

The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to concentration and micellization of the surfactant. At the same time, the silica solidifies around the surfactant structures, forming equally sized mesoporous particles. The procedure can be tuned to produce well-separated particles or alternatively particles that are linked together. The latter allows us to create 2D or 3D structures with hierarchical porosity. Oil, water, and surfactant liquid mixtures exhibit very complex phase behavior. Depending on the conditions, such mixtures give rise to highly organized structures. A proper selection of the type and concentration of surfactants determines the structuring at the nanoscale level. In this work, we show that hierarchically bimodal nanoporous structures can be obtained by templating silica microparticles with a specially designed surfactant micelle/microemulsion mixture. Tuning the phase state by adjusting the surfactant composition and concentration allows for the controlled design of a system where microemulsion droplets coexist with smaller surfactant micellar structures. The microemulsion droplet and micellar dimensions determine the two types of pore sizes (single nanometers and tens of nanometers). We also demonstrate the fabrication of carbon and carbon/platinum replicas of the silica microspheres using a "lost-wax" approach. Such particles have great potential for the design of electrocatalysts for fuel cells, chromatography separations, and other applications. It was determined that slight variations in microemulsion mixture components (electrolyte concentration, wt% of surfactants, oil to sol ratio, etc.) produces strikingly different pore morphologies and particle surface areas. Control over the size and structure of the smaller micelle-templated pores was made possible by varying the length of the hydrocarbon block within the trimethyl ammonium bromide surfactant and characterized using X-ray diffraction. The effect of emulsion aging was studied by synthesizing particles at progressive time levels from a sample emulsion. It was discovered surface pore size increases after just a few hours, with

Carroll, Nick J.

52

Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters  

PubMed Central

Background: The purpose of this study was to select appropriate surfactants or blends of surfactants to study the ternary phase diagram behavior of newly introduced palm kernel oil esters. Methods: Nonionic surfactant blends of Tween® and Tween®/Span® series were screened based on their solubilization capacity with water for palm kernel oil esters. Tween® 80 and five blends of Tween® 80/Span® 80 and Tween® 80/Span® 85 in the hydrophilic-lipophilic balance (HLB) value range of 10.7–14.0 were selected to study the phase diagram behavior of palm kernel oil esters using the water titration method at room temperature. Results: High solubilization capacity was obtained by Tween® 80 compared with other surfactants of Tween® series. High HLB blends of Tween® 80/Span® 85 and Tween® 80/Span® 80 at HLB 13.7 and 13.9, respectively, have better solubilization capacity compared with the lower HLB values of Tween® 80/Span® 80. All the selected blends of surfactants were formed as water-in-oil microemulsions, and other dispersion systems varied in size and geometrical layout in the triangles. The high solubilization capacity and larger areas of the water-in-oil microemulsion systems were due to the structural similarity between the lipophilic tail of Tween® 80 and the oleyl group of the palm kernel oil esters. Conclusion: This study suggests that the phase diagram behavior of palm kernel oil esters, water, and nonionic surfactants is not only affected by the HLB value, but also by the structural similarity between palm kernel oil esters and the surfactant used. The information gathered in this study is useful for researchers and manufacturers interested in using palm kernel oil esters in pharmaceutical and cosmetic preparation. The use of palm kernel oil esters can improve drug delivery and reduce the cost of cosmetics. PMID:21792294

Mahdi, Elrashid Saleh; Sakeena, Mohamed HF; Abdulkarim, Muthanna F; Abdullah, Ghassan Z; Sattar, Munavvar Abdul; Noor, Azmin Mohd

2011-01-01

53

Effect of Shear Flow on the Phase Behavior of an Aqueous Gelatin-Dextran Emulsion  

E-print Network

Effect of Shear Flow on the Phase Behavior of an Aqueous Gelatin-Dextran Emulsion Y. A. Antonov, P and on a time resolved basis the shear induced morphology in ternary two-phase water-gelatin-dextran mixtures forces of the self-association process of the gelatin. The isothermal phase diagram at a fixed shear rate

54

Project blob: Edible emulsions  

Microsoft Academic Search

Most blobs are emulsions. From a chemistry perspective, emulsions turn two liquid phases into what appears to be one continuous phase through the use of surfactants. This lesson, created by a chemical engineering graduate student, allows the secondary students to observe this phenomenon in the transformation of vinegar, oil, and egg yolks into mayonnaise. The students, juniors at Western Hills

Amina Darwish; Mary Ann Schnieders; Andrea Burrows; Anant Kukreti; Stephen Thiel

2011-01-01

55

Special Effect of -Cyclodextrin on the Aggregation Behavior of Mixed Cationic/Anionic Surfactant Systems  

E-print Network

Special Effect of -Cyclodextrin on the Aggregation Behavior of Mixed Cationic/Anionic Surfactant Controllable aggregate transitions are achieved in this work by adding due amounts of -cyclodextrin ( - CD

Huang, Jianbin

56

PHASE BEHAVIOR OF WATER/PERCHLOROETHYLENE/ANIONIC SURFACTANT SYSTEMS  

EPA Science Inventory

Winsor Type I (o/w), Type II (w/o), and Type III (middle phase) microemulsions have been generated for water and perchloroethylene (PCE) in combination with anionic surfactants and the appropriate electrolyte concentration. The surfactant formulation was a combination of sodium d...

57

Liposomes in Double-Emulsion Globules  

PubMed Central

Tubular liposomes containing a hydrophilic model compound (fluorescein sodium salt, FSS) were entrapped inside the internal aqueous phase (W1) of water-in-oil-in-water (W1/O/W2) double-emulsion globules. Our hypothesis was that the oil membrane of double emulsions can function as a layer of protection to liposomes and their contents and thus better control their release. Liposomes were prepared in bulk, and their release was observed microscopically from individual double-emulsion globules. The liposomes containing FSS were released through external coalescence, and the behavior of this system was monitored visually by capillary video microscopy. Double-emulsion globules were stabilized with Tween 80 as the water-soluble surfactant, with Span 80 as the oil-soluble surfactant, while the oil phase (O) was n-hexadecane. The lipids in the tubular liposomes consist of l-?-phosphatidylcholine and Ceramide-VI. Variations of Tween 80 concentration in the external aqueous phase (W2) and Span 80 concentration in the O phase controlled the release of liposomes from the W1 phase to the W2 phase. The major finding of this work is that the sheer presence of liposomes in the W1 phase is by itself a stabilizing factor for double-emulsion globules. PMID:19958007

Wang, Qing; Tan, Grace; Lawson, Louise B.; John, Vijay T.; Papadopoulos, Kyriakos D.

2010-01-01

58

Modeling the relationship between the main emulsion components and stability, viscosity, fluid behavior, zeta-potential, and electrophoretic mobility of orange beverage emulsion using response surface methodology.  

PubMed

The possible relationships between the main emulsion components (namely, Arabic gum, xanthan gum, and orange oil) and the physicochemical properties of orange beverage emulsion were evaluated by using response surface methodology. The physicochemical emulsion property variables considered as response variables were emulsion stability, viscosity, fluid behavior, zeta-potential, and electrophoretic mobility. The independent variables had the most and least significant ( p < 0.05) effect on viscosity and zeta-potential, respectively. The quadratic effect of orange oil and Arabic gum, the interaction effect of Arabic gum and xanthan gum, and the main effect of Arabic gum were the most significant ( p < 0.05) effects on turbidity loss rate, viscosity, viscosity ratio, and mobility, respectively. The main effect of Arabic gum was found to be significant ( p < 0.05) in all response variables except for turbidity loss rate. The nonlinear regression equations were significantly ( p < 0.05) fitted for all response variables with high R (2) values (>0.86), which had no indication of lack of fit. The results indicated that a combined level of 10.78% (w/w) Arabic gum, 0.56% (w/w) xanthan gum, and 15.27% (w/w) orange oil was predicted to provide the overall optimum region in terms of physicochemical properties studied. No significant ( p > 0.05) difference between the experimental and the predicted values confirmed the adequacy of response surface equations. PMID:17708646

Mirhosseini, Hamed; Tan, Chin Ping; Hamid, Nazimah Sheikh Abdul; Yusof, Salmah

2007-09-19

59

Polyelectrolyte/surfactant mixtures in the bulk and at water/oil interfaces.  

PubMed

Stabilization of emulsions by mixed polyelectrolyte/surfactant systems is a prominent example for the application in modern technologies. The formation of complexes between the polymers and the surfactants depends on the type of surfactant (ionic, non-ionic) and the mixing ratio. The surface activity (hydrophilic-lipophilic balance) of the resulting complexes is an important quantity for its efficiency in stabilizing emulsions. The interfacial adsorption properties observed at liquid/oil interfaces are more or less equivalent to those observed at the aqueous solution/air interface, however, the corresponding interfacial dilational and shear rheology parameters differ quite significantly. The interfacial properties are directly linked to bulk properties, which support the picture for the complex formation of polyelectrolyte/surfactant mixtures, which is the result of electrostatic and hydrophobic interactions. For long alkyl chain surfactants the interfacial behavior is strongly influenced by hydrophobic interactions while the complex formation with short chain surfactants is mainly governed by electrostatic interactions. PMID:24268973

Aidarova, S; Sharipova, A; Krägel, J; Miller, R

2014-03-01

60

Phase and steady shear behavior of dilute carbon black suspensions and carbon black stabilized emulsions.  

PubMed

We use para-amino benzoic acid terminated carbon black (CB) as a model particulate material to study the effect of salt-modulated attractive interactions on phase behavior and steady shear stresses in suspensions and particle-stabilized emulsions. Surprisingly, the suspension displayed a yield stress at a CB volume fraction of ?CB = 0.008. The yield stress scaled with CB concentration with power law behavior; the power law exponent changed abruptly at a critical CB concentration, suggesting a substantial change in network structure. Cryogenic scanning electron microscopy revealed structural differences between the networks found in each scaling regime. Randomly oriented pores with thick CB boundaries were observed in the scaling region above the critical particle concentration, suggesting a strong gel network, and long, oriented pores were found in the scaling region below the critical particle concentration, suggesting a weak network influenced by an induced shear stress. These findings correlate with the existence of gels and transient networks. Transient networks break down under gravitational forces over time periods of 12-24 hours. The yield stresses of CB-gels containing oil emulsion droplets were found to scale with carbon black concentration similar to the CB-gels without oil. These results offer insight into salt-induced attractive colloidal networks and the difference in structure and yield-stress behavior between transient networks and gels. Furthermore, CB offers the ability to stabilize an oil phase in discrete droplets and contain them within a rigid network structure. PMID:25469772

Godfrin, Michael P; Tiwari, Ayush; Bose, Arijit; Tripathi, Anubhav

2014-12-30

61

Effect of Water Content on the Behavior of Surfactants and Hydrophobic Organic Compounds in the Immobilization Zone for Contaminants Retardation  

Microsoft Academic Search

An immobilization zone can be constructed by modifying soils in the vadose zone with surfactants and, thus, can be used to promote retardation of organic contaminants in the subsurface. Column experiments were conducted to investigate the behavior of surfactants and organic contaminants in unsaturated and saturated conditions with different water contents (25%, 50%, 75%, 100%). The transport and sorption behavior

In-Sun Park; Jae-Woo Park; Jong Soo Cho; Inseong Hwang

2003-01-01

62

Re-entrant phase behavior of a concentrated anionic surfactant system with strongly binding counterions.  

PubMed

The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (Nc) --> isotropic (I) --> nematic of disklike micelles (N(D)) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (I') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N(C) to N(D) on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N() and N(D) nematic phases in step shear experiments, they were characterized to be tumbling and flow aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions. PMID:19301881

Ghosh, Sajal Kumar; Rathee, Vikram; Krishnaswamy, Rema; Raghunathan, V A; Sood, A K

2009-08-01

63

Effects of urea on the microstructure and phase behavior of aqueous solutions of polyoxyethylene surfactants  

PubMed Central

Membrane proteins are made soluble in aqueous buffers by the addition of various surfactants (detergents) to form so-called protein-detergent complexes (PDCs). Properties of membrane proteins are commonly assessed by unfolding the protein in the presence of surfactant in a buffer solution by adding urea. The stability of the protein under these conditions is then monitored by biophysical methods such as fluorescence or circular dichroism spectroscopy. Often overlooked in these experiments is the effect of urea on the phase behavior and micellar microstructure of the different surfactants used to form the PDCs. Here the effect of urea on five polyoxyethylene surfactants – n-octylytetraoxyethylene (C8E4), n-octylpentaoxyethylene (C8E5), n-decylhexaoxyethylene (C10E6), n-dodecylhexaoxyethylene (C12E6) and n-dodecyloctaoxylethylene (C12E8) – is explored. The presence of urea increases the critical micelle concentration (CMC) of all surfactants studied, indicating that the concentration of both the surfactant and urea should be considered in membrane protein folding studies. The cloud point temperature of all surfactants studied also increases with increasing urea concentration. Small-angle neutron scattering shows a urea-induced transition from an elongated to a globular shape for micelles of C8E4 and C12E6. In contrast, C8E5 and C12E8 form more globular micelles at room temperature and the micelles remain globular as the urea concentration is increased. The effects of increasing urea concentration on micelle structure are analogous to those of decreasing the temperature. The large changes in micelle structure observed here could also affect membrane protein unfolding studies by changing the structure of the PDC. PMID:21359094

Bianco, Carolina L.; Schneider, Craig S.; Santonicola, Mariagabriella; Lenhoff, Abraham M.; Kaler, Eric W.

2010-01-01

64

Investigation of colloidal properties of modified silicone polymers emulsified by non-ionic surfactants.  

PubMed

Functionalized silicones are a unique class of hybrid materials due to their simultaneous hydrophobic-oleophobic properties, which results in applications in a variety of surface modification techniques. Prior research has shown that changes in surface charge and turbidity of modified silicone emulsions as a function of pH have a marked effect on their performance in coating applications. The emulsion droplet size is also believed to play significant role in such coating applications. In this work, modified silicone polymer emulsions stabilized by non-ionic surfactants were studied using dynamic light scattering (dilute) and electroacoustic (concentrated) spectroscopy to monitor the emulsion droplet size. The dilute and concentrated regime studies showed the emulsion droplet to be in nanometer range with no appreciable change in size as a function of pH. Electroacoustic studies showed a small fraction of droplets to be present in the micron size range. The emulsions were examined using Cryo-TEM technique, and the effect of pH and dilution on hydrophobicity of nanodomains was studied by employing fluorescence spectroscopy. It is shown from pyrene excimer behavior that both the dilution and pH have an effect on emulsion stability with a presence of critical surfactant concentration after which the emulsion was destabilized. It is proposed that the emulsion stability characteristics and the particle size distribution both play a significant role in their ability to impart desired macro and nano surface properties to treated substrates through electrostatic interactions and selective binding. PMID:22796069

Purohit, Parag S; Kulkarni, Ravi; Somasundaran, P

2012-10-01

65

Adsorption and Aggregation behaviors of tetrasiloxane-tailed gemini surfactants with (EO)m spacers.  

PubMed

Adsorption and aggregation behaviors of novel tetrasiloxane-tailed gemini surfactants N,N'-ditetrasiloxane-N,N'-digluconamide oligo ethylene glycol diglycidyl (Si-m-Si, where m is the number of ethylene glycol of 1, 2, and 3) were investigasted using surface tension, bromophenol blue encapsulation, dynamic light scattering (DLS), and transmission electron microscope (TEM) methods. The static surface tension of the aqueous Si-m-Si solutions measured at the critical aggregate concentration (CAC) was observed to be lower than that of traditional hydrocarbon gemini surfactants. This suggests that these newly synthesized gemini surfactants are capable of forming a closely packed monolayer film at the air/aqueous solution interface. With a combination of DLS data, TEM measurements, and bromophenol blue entrapment studies, formations of vesicles in Si-m-Si solutions appear to occur at a concentration well above the CAC. Moreover, the size of vesicles depended on their m values. PMID:23438340

Guoyong, Wang; Wenshan, Qu; Zhiping, Du; Wanxu, Wang; Qiuxiao, Li

2013-03-21

66

Transitional phase inversion of emulsions monitored by in situ near-infrared spectroscopy.  

PubMed

Water-heptane/toluene model emulsions were prepared to study emulsion transitional phase inversion by in situ near-infrared spectroscopy (NIR). The first emulsion contained a small amount of ionic surfactant (0.27 wt % of sodium dodecyl sulfate) and n-pentanol as a cosurfactant. In this emulsion, the study was guided by an inversion coordinate route based on a phase behavior study previously performed. The morphology changes were induced by rising aqueous phase salinity in a "steady-state" inversion protocol. The second emulsion contained a nonionic surfactant (ethoxylated nonylphenol) at a concentration of 3 wt %. A continuous temperature change induced two distinct transitional phase inversions: one occurred during the heating of the system and another during the cooling. NIR spectroscopy was able to detect phase inversion in these emulsions due to differences between light scattered/absorbed by water in oil (W/O) and oil in water (O/W) morphologies. It was observed that the two model emulsions exhibit different inversion mechanisms closely related to different quantities of the middle phases formed during the three-phase behavior of Winsor type III. PMID:23656562

Charin, R M; Nele, M; Tavares, F W

2013-05-21

67

Isotachophoresis with emulsions  

PubMed Central

An experimental study on isotachophoresis (ITP) in which an emulsion is used as leading electrolyte (LE) is reported. The study aims at giving an overview about the transport and flow phenomena occurring in that context. Generally, it is observed that the oil droplets initially dispersed in the LE are collected at the ITP transition zone and advected along with it. The detailed behavior at the transition zone depends on whether or not surfactants (polyvinylpyrrolidon, PVP) are added to the electrolytes. In a system without surfactants, coalescence is observed between the droplets collected at the ITP transition zone. After having achieved a certain size, the droplets merge with the channel walls, leaving an oil film behind. In systems with PVP, coalescence is largely suppressed and no merging of droplets with the channel walls is observed. Instead, at the ITP transition zone, a droplet agglomerate of increasing size is formed. In the initial stages of the ITP experiments, two counter rotating vortices are formed inside the terminating electrolyte. The vortex formation is qualitatively explained based on a hydrodynamic instability triggered by fluctuations of the number density of oil droplets. PMID:24404037

Goet, G.; Baier, T.; Hardt, S.; Sen, A. K.

2013-01-01

68

Role of poly(ethylene glycol) in surfactant-free emulsion polymerization of styrene and methyl methacrylate.  

PubMed

Through zeta potential and surface tension measurements and a series of polymerization experiments, the role of poly(ethylene glycol) (PEG) in the process of surfactant-free polymerization of styrene (St)/methyl methacrylate (MMA) has been investigated experimentally. Nanoscale and stable copolymer particles were formed after an abnormal process, in which the nucleation and growth of particles was different from that in previously proposed mechanisms. It has been observed that PEG can exist in both the monomer and the aqueous phases at high temperature. PEG in the aqueous phase could form copolymer particles with a loose structure, making them prone to enter the monomer phase. Entry of these copolymer particles into the monomer phase would introduce excess PEG. From the ternary phase diagram, a solubility curve could be delineated in the ternary system of PEG/monomer/copolymer. The system used the ternary solubility property to regenerate copolymer particles in the monomer phase, which maintained their morphology until the end of the polymerization. At the end, consumption of the monomer resulted in the volume contraction of the particles, and the surface potential increased. This increasing potential is a driving force to prevent particles from stacking, leading to the formation of nanoscale and stable particles. PMID:23432523

Shi, Yiming; Shan, Guorong; Shang, Yue

2013-03-01

69

Emulsions stabilised solely by colloidal particles  

Microsoft Academic Search

The preparation and properties of emulsions, stabilised solely by the adsorption of solid particles at the oil–water interface, are reviewed especially in the light of our own work with particles of well-controlled surface properties. Where appropriate, comparison is made with the behaviour of surfactant-stabilised emulsions. Hydrophilic particles tend to form oil-in-water (o\\/w) emulsions whereas hydrophobic particles form water-in-oil (w\\/o) emulsions.

Robert Aveyard; Bernard P Binks; John H Clint

2003-01-01

70

Pressure effects on the phase behavior of a propylene/water/surfactant mixture  

SciTech Connect

The phase behavior of the propylene/water/Tergitol 7 surfactant ternary mixture has been examined as a function of pressure at 25.5C. Unlike conventional liquid alkane based systems, a three-phase region is obtained in the absence of added electrolyte. This is likely due to a higher upper critical solution temperature for the propylene/Tergitol 7 binary mixture, in comparison to that for mixtures of various anionic surfactants and liquid alkanes. The effect of increasing pressure is similar to the effect of decreasing temperature or increasing electrolyte concentration, according to the Kahlweit phenomenological model for amphiphile/water/oil phase behavior (as well as models describing effects on interfacial curvature, such as the R ratio). The conductivities of the nominally propylene-continuous upper phases in the systems examined are high enough to suggest electrical percolation, implying the presence of significant volume fractions of micelles in these phases.

Beckman, E.J. (Univ. of Pittsburgh, PA (United States)); Smith, R.D. (Pacific Northwest Labs., Richland, WA (United States))

1991-04-18

71

Influence of layer thickness and composition of cross-linked multilayered oil-in-water emulsions on the release behavior of lutein.  

PubMed

Multilayering and enzymatic cross-linking of emulsions may cause alterations in the release behavior of encapsulated core material due to changes in thickness, porosity and permeability of the membrane. An interfacial engineering technology based on the layer-by-layer electrostatic deposition of oppositively charged biopolymers onto the surfaces of emulsion droplets in combination with an enzymatic treatment was used to generate emulsions with different droplet interfaces to test this hypothesis. Release behavior of primary, secondary (coated) and laccase-treated secondary emulsions carrying lutein, an oxygenated carotenoid, was characterized and studied. Fish gelatin (FG), whey protein isolate (WPI) and dodecyltrimethylammonium bromide (DTAB) were used as primary emulsifiers under acidic conditions (pH 3.5) to facilitate the adsorption of a negatively charged biopolymer (sugar beet pectin). Laccase was added to promote cross-linking of adsorbed beet pectin. The release of lutein-loaded emulsions was investigated and quantified by UV-Vis spectrophotometry. Primary WPI-stabilized emulsions showed a five times higher release of lutein after 48 h than secondary emulsions (pH 3.5). Primary DTAB-stabilized emulsions released 7.2% of encapsulated lutein within the observation period, whereas beet pectin-DTAB-coated emulsions released only 0.13% of lutein. Cross-linking of adsorbed pectin did not significantly decrease release of lutein in comparison to non-cross-linked secondary emulsions. Additionally, release of lutein was also affected by changes in the pH of the surrounding medium. Results suggest that modulating the interfacial properties of oil-in-water emulsion by biopolymer deposition and/or cross-linking may be a useful approach to generate food-grade delivery systems that have specific release-over-time profiles of incorporated active ingredients. PMID:23978837

Beicht, Johanna; Zeeb, Benjamin; Gibis, Monika; Fischer, Lutz; Weiss, Jochen

2013-10-01

72

Impact of fat and water crystallization on the stability of hydrogenated palm oil-in-water emulsions stabilized by a nonionic surfactant.  

PubMed

The influence of (0-40 wt %) sucrose and (0 and 150 mmol/kg) sodium chloride on the physical properties of 20 wt % hydrogenated palm oil-in-water emulsions stabilized by 2 wt % Tween 20 after crystallization of the oil phase only or both the oil and water phases has been examined. Emulsion stability was assessed by differential scanning calorimetry measurements of fat destabilization after cooling-heating cycles and by measurements of mean particle size, percent destabilized fat, and percent free oil obtained from gravitational separation after isothermal storage (at -40 to +37 degrees C). At storage temperatures where the oil phase was partially crystalline and the water was completely liquid, the emulsions were unstable to droplet coalescence and oiling off because of partial coalescence. Both NaCI and sucrose increased the extent of partial coalescence in the emulsions. At storage temperatures where both oil and water crystallized, the emulsions were completely destabilized. The stability of the emulsions to freezing and thawing could be improved somewhat by adding sucrose (>20 wt %). Emulsions stabilized by whey proteins were shown to have better freeze-thaw stability than those stabilized by Tween 20, especially in the presence of sucrose. These results may help formulate food emulsions with improved freeze-thaw stability. PMID:19127730

Thanasukarn, Parita; Pongsawatmanit, Rungnaphar; McClements, D Julian

2006-05-17

73

[Pharmacokinetic study of adriamycin in the emulsion mixed with lipiodol-difference resulting from composition and methods of preparation, and behavior after mesenteric arterial injection in rat].  

PubMed

We experimentally investigated the pharmacokinetics of adriamycin (ADM) in a similar of transcatheter arterial chemoembolization therapy (TAE) of hepatocellular carcinoma using emulsion of lipiodol (Lp) mixed with ADM followed by gelatin sponge, and the difference resulting from composition and method of preparation of the emulsion as well as behavior after mesenteric arterial injection in rat. In in vitro study, the emulsion with iopamidol (iopamiron 300 : IP) was more stable than with amidotrizoic acid (60% Urografin : UG). The highest stability was found in the mixing ratio of Lp. IP and distilled water at 1 : 0.42 : 0.08. Frequent pumping also made the emulsion more stable. But in optimally composed emulsion, pumping 20 or 50 times made no difference in the stability during 30 min. which may be longer than the time from preparation to injection time of the emulsion in clinical application. After injection of the emulsion into the mesenteric artery which may simulate injection into the hepatic artery in hepatocellular carcinoma, the arterial blood flow was suspended. In the peripheral arteries the emulsion separated into two phases of Lp and ADM solution, forming striped pattern, and Lp embolization of the peripheral artery persisted for over 45 min. while ADM extravasated. These findings suggest that after Lp-TAE, Lp maintains an embolizing effect while ADM penetrates into the surrounding tumor tissue, and that this is an underlying mechanism for the anti-cancer effect of Lp-TAE. PMID:1648890

Sakaguchi, H; Uchida, H; Nishimura, Y; Guo, Q Y; Yoshimura, H; Ohishi, H

1991-07-01

74

Interplay between the surface adsorption and solution-phase behavior in dialkyl chain cationic-nonionic surfactant mixtures.  

PubMed

Neutron reflectivity, NR, and surface tension have been used to study the adsorption at the air-solution interface of mixtures of the dialkyl chain cationic surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) and the nonionic surfactants monododecyl triethylene glycol (C12E3), monododecyl hexaethylene glycol (C12E6), and monododecyl dodecaethylene glycol (C12E12). The adsorption behavior of the surfactant mixtures with solution composition shows a marked departure from ideal mixing that is not consistent with current theories of nonideal mixing. For all three binary surfactant mixtures there is a critical composition below which the surface is totally dominated by the cationic surfactant. The onset of nonionic surfactant adsorption (expressed as a mole fraction of the nonionic surfactant) increases in composition as the ethylene oxide chain length of the nonionic cosurfactant increases from E3 to E12. Furthermore, the variation in the adsorption is strongly correlated with the variation in the phase behavior of the solution that is in equilibrium with the surface. The adsorbed amounts of DHDAB and the nonionic cosurfactants have been used to estimate the monomer concentration that is in equilibrium with the surface and are shown to be in reasonable qualitative agreement with the variation in the mixed critical aggregation concentration (cac). PMID:18998711

Tucker, I; Penfold, J; Thomas, R K; Tildesleyt, D J

2009-04-01

75

Oil-in-water emulsion  

SciTech Connect

This patent describes an oil-in-water emulsion composition consisting essentially of 100 parts by weight of a water-insoluble oil, at least 0.05 millimol of a nonionic tertiary surfactant having an HLB number of at least 16, at least 3 millimols of a nonionic primary surfactant having an HLB number of from 13 to 15, from 1 to 5 millimols, per millimol of the primary surfactant, of a nonionic secondary surfactant having an HLB number of from 7 to 9, and at least 10 parts by weight of water.

Narula, D.

1988-11-29

76

BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS  

SciTech Connect

The aim of the project is to develop a knowledge base to help the design of enhanced processes for mobilizing and extracting untrapped oil. We emphasize evaluation of novel surfactant mixtures and obtaining optimum combinations of the surfactants for efficient chemical flooding EOR processes. In this regard, an understanding of the aggregate shape, size and structure is crucial since these properties govern the crude oil removal efficiency. During the three-year period, the adsorption and aggregation behavior of sugar-based surfactants and their mixtures with other types of surfactants have been studied. Sugar-based surfactants are made from renewable resources, nontoxic and biodegradable. They are miscible with water and oil. These environmentally benign surfactants feature high surface activity, good salinity, calcium and temperature tolerance, and unique adsorption behavior. They possess the characteristics required for oil flooding surfactants and have the potential for replacing currently used surfactants in oil recovery. A novel analytical ultracentrifugation technique has been successfully employed for the first time, to characterize the aggregate species present in mixed micellar solution due to its powerful ability to separate particles based on their size and shape and monitor them simultaneously. Analytical ultracentrifugation offers an unprecedented opportunity to obtain important information on mixed micelles, structure-performance relationship for different surfactant aggregates in solution and their role in interfacial processes. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. Four softwares: OptimaTM XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The results have been compared to that from Light Scattering. Based on the tests, Svedberg and SEDFIT analysis were chosen for further studies.

P. Somasundaran

2004-11-20

77

Preparation of poly(N-isopropylacrylamide) emulsion gels and their drug release behaviors.  

PubMed

Stimuli-sensitive drug delivery systems (DDSs) have attracted considerable attention in medical and pharmaceutical fields; thermosensitive DDS dealing with poly(N-isopropylacrylamide) (poly(NIPA)) have been widely studied. Novel NIPA emulsion gels, i.e., NIPA hydrogels containing distributed oil (oleyl alcohol) microdroplets, were synthesized by means of an emulsion-gelation method in which the polymerization of hydrogels in an aqueous phase in an oil-in-water (O/W) emulsion and the loading of a lipophilic drug (indomethacin) dissolved in an oil phase were accomplished simultaneously. The pulsatile (on-off) drug release from the NIPA emulsion gel loading indomethacin to a phosphate buffered saline (PBS) solution was successfully controlled by a temperature swing between 25 degrees C (release off) and 40 degrees C (release on). The mechanism of the pulsatile drug release was discussed in relation to the diffusion rate, distribution ratio, solvent exchange of NIPA hydrogels, and drug release from an NIPA organogel. The mechanism was as follows: the solvent exchange occurred within the NIPA emulsion gel (the NIPA gel-network absorbed oleyl alcohol with indomethacin) at temperatures above the LCST, and the diffusion rate of indomethacin through the solvent-exchanged gel was higher at 40 degrees C than at 25 degrees C. PMID:18790619

Tokuyama, Hideaki; Kato, Yuya

2008-11-15

78

Influence of surfactant amphiphilicity on the phase behavior of IL-based microemulsions.  

PubMed

In this work, we report on the phase behavior of 1-ethyl-3-methyl-imidazolium-ethylsulfate ([emim][etSO(4)])/limonene/polyethylene glycol tert-octylphenyl ether (Triton X-114 or TX-114) microemulsions as a function of ionic liquid (IL) content and temperature. Phase diagrams, conductivity measurements, and small angle X-ray scattering (SAXS) experiments will be presented. A hydrophilic IL, instead of water is used with the goal to enlarge the temperature range on which stable microemulsions can be formed. Indeed, the system shows remarkably large temperature stability, in particular down to -35 °C. We will emphasize on a comparison with a recently published work about microemulsions composed of [emim][etSO(4)], limonene, and Triton X-100 that to some extent are stable at temperatures well below the freezing point of water. The key parameter responsible for the difference in phase behavior, microstructure, and temperature stability is the average repeating number of ethylene oxide units in the surfactant head group, which is smaller for Triton X-114 compared to Triton X-100. Among the fundamental interest, how the amphiphilicity of the surfactant influences the phase diagram and phase behavior of IL-based microemulsions, the exchange of Triton X-100 by Triton X-114 results in one main advantage: along the experimental path the temperature where phase segregation occurs is significantly lowered leading to single phase microemulsions that exist at temperatures beneath 0 °C. PMID:21784427

Harrar, Agnes; Zech, Oliver; Klaus, Angelika; Bauduin, Pierre; Kunz, Werner

2011-10-15

79

Ultrasonic imaging of gravitational separation in emulsions  

Microsoft Academic Search

An ultrasonic imaging technique was developed to monitor gravitational separation in emulsions. A series of 20 wt.% corn oil-in-water emulsions (d32 = 1.32 ?m), stabilized by a non-ionic surfactant, were prepared with different concentrations of xanthan in the aqueous phase (0–0.08 wt.%). Gravitational separation in these emulsions was then measured at 0 and 24 h using ultrasonic imaging. Data is

T. K. Basaran; K. Demetriades; D. J. McClements

1998-01-01

80

Comment on ``Thermal fluctuations of the shapes of droplets in dense and compressed emulsions''  

NASA Astrophysics Data System (ADS)

The quasielastic differential cross section of light scattered from noninteracting emulsion droplets fluctuating in the shape is calculated. The result is compared with the shape fluctuation correlation function measured in the diffusing-wave spectroscopy experiments by Gang, Krall, and Weitz [Phys. Rev. E 52, 6289 (1995)]. Assuming incompressible bulk fluids and the interfacial surfactant layer, we demonstrate that the experiments can be described more precisely than in the original paper. The time behavior of the calculated shape correlation function resembles better the observed one and its amplitude (as distinct from the discussed paper) almost exactly corresponds to the experimental value extrapolated to the zero volume fraction of the droplets in emulsion.

Lisy, V.; Brutovsky, B.

1999-03-01

81

Effect of surfactant and solvent properties on the stacking behavior of non-aqueous suspensions of organically modified clays.  

PubMed

Montmorillonite clay was treated with quaternary ammonium surfactants with 1-3 long chains of 10-18 carbons to form organoclays which can be suspended in non-aqueous solvents. The effects of surfactant chain length, number of long chains, and the properties of the solvent on the colloidal behavior of the surfactant coated clay plates were studied using small-angle X-ray scattering. The scattering data were modeled using a one-dimensional aggregation theory to describe the stacking of the clay plates. The plates self-organize into stacks with a reproducible basal spacing in the range of 30-50 A, and for each surfactant, the basal spacing falls into one of two preferred distances. We interpret this by considering that the surfactant layer on the clay has two strata, one being the polar near-clay headgroup region and the other the nonpolar alkane chain region. Polar solvents will swell the polar stratum preferentially while nonpolar solvents will swell the nonpolar stratum of the surfactant. As the nonpolar stratum is larger than the polar one, the nonpolar solvents increase the basal spacing between the clay plates more than the polar solvents. The number of long chains on the surfactant does not have an effect on the basal spacing, as the density of surfactant molecules on the surface is low enough to allow the unimpeded swelling of the chains. The one-dimensional aggregation theory can be used to determine the number of plates in a stack, but the effect of changing clay particle size or concentration is not as great as would be expected from this theory. This may be due to the formation of large-scale structures in the suspensions which prevent a true equilibrium stack size being attained. PMID:16830994

Connolly, Joan; van Duijneveldt, Jeroen S; Klein, Susanne; Pizzey, Claire; Richardson, Robert M

2006-07-18

82

Kinetic study of aggregation of milk protein and/or surfactant-stabilized oil-in-water emulsions by sedimentation field-flow fractionation.  

PubMed

Milk proteins are able to facilitate the formation and stabilization of oil droplets in food emulsions. This study employed Sedimentation Field-Flow Fractionation (SdFFF) to monitor changes in particle size distribution of freshly prepared emulsions with varying weight contributions of sodium caseinate (SC) and whey protein concentrate (WPC). The effect of the addition of Tween 80 (T) on the initial droplet size was also investigated. The results indicated that emulsifying ability follows the order Tween 80>WPC>SC, with corresponding weight average droplet diameter of 0.319, 0.487 and 0.531?m respectively, when each of the above emulsifiers was used solely. The stability of sodium caseinate emulsions was studied at 30.5 and 80.0°C by measuring the particle size distribution for a period of 70h. Emulsions withstood the temperatures and exhibited an initial increase in particle size distribution caused by heat-induced droplet aggregation, followed by a decrease to approximately the initial droplet size. The rate of droplet aggregation depends on the severity of thermal processing, as revealed by the kinetics of particle aggregation during aging at different temperatures. Comparison of the experimental rate constants found from SdFFF, with those determined theoretically gives invaluable information about the oil droplet stability and the aggregation mechanism. Based on the proposed mechanistic scheme various physicochemical quantities, which are very important in explaining the stability of oil-in-water emulsions, were determined. Finally, the advantages of SdFFF in studying the aggregation of the oil-in-water droplets, in comparison with other methods used for the same purpose, are discussed. PMID:23899382

Kenta, Stella; Raikos, Vassilios; Vagena, Artemis; Sevastos, Dimitrios; Kapolos, John; Koliadima, Athanasia; Karaiskakis, George

2013-08-30

83

Double critical behavior and micellar size effect in the multicomponent surfactant solution  

NASA Astrophysics Data System (ADS)

Multicomponent surfactant system, sodium dodecyl sulfate and butanol in an aqueous NaCl solution, which exhibits a closed-loop type reentrant phase separation, was investigated by light scattering experiments focusing on the double critical behaviors and the finite micellar size effect on the dynamic critical behavior. The loop size decreased with the decrease of NaCl concentration, and the double critical point appeared. Approaching the double critical point, the critical exponents ? for the long-range correlation length ? and ? for the isothermal osmotic compressibility ?T determined by use of the spinodal divergency theory showed a crossover behavior from Fisher's renormalized Ising model values to the doubling of them. ? and ?T formed master curves as a function of ?UL=|(TU-T)(TL-T)|/TUTL, and had the effective critical exponents ?=0.73 and ?=1.41 ascertaining the validity of Fisher's renormalized Ising model. Here, TU and TL are the upper and lower critical solution temperatures, respectively. Dynamic critical behaviors were well explained in a unified manner over the hydrodynamic and critical regions by the modified dynamical droplet model taking the finite micellar size into account, which assumes that the local fluctuations activated thermally behave as the physical clusters with a fractal dimension of df=2.49 and a polydispersity exponent of ?=2.21. The evaluated monomer unit sizes are in good agreement with the micellar sizes obtained independently.

Isojima, T.; Fujii, S.; Kubota, K.; Hamano, K.

2000-09-01

84

Metal ion coordination, conditional stability constants, and solution behavior of chelating surfactant metal complexes.  

PubMed

Coordination complexes of some divalent metal ions with the DTPA (diethylenetriaminepentaacetic acid)-based chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) have been examined in terms of chelation and solution behavior. The headgroup of 4-C12-DTPA contains eight donor atoms that can participate in the coordination of a metal ion. Conditional stability constants for five transition metal complexes with 4-C12-DTPA were determined by competition measurements between 4-C12-DTPA and DTPA, using electrospray ionization mass spectrometry (ESI-MS). Small differences in the relative strength between the coordination complexes of DTPA and 4-C12-DTPA indicated that the hydrocarbon tail only affected the chelating ability of the headgroup to a limited extent. The coordination of Cu(2+) ions was investigated in particular, using UV-visible spectroscopy. By constructing Job's plots, it was found that 4-C12-DTPA could coordinate up to two Cu(2+) ions. Surface tension measurements and NMR diffusometry showed that the coordination of metal ions affected the solution behavior of 4-C12-DTPA, but there were no specific trends between the studied divalent metal complexes. Generally, the effects of the metal ion coordination could be linked to the neutralization of the headgroup charge of 4-C12-DTPA, and the resulting reduced electrostatic repulsions between adjacent surfactants in micelles and monolayers. The pH vs concentration plots, on the other hand, showed a distinct difference between 4-C12-DTPA complexes of the alkaline earth metals and the transition metals. This was explained by the difference in coordination between the two groups of metal ions, as predicted by the hard and soft acid and base (HSAB) theory. PMID:24702119

Svanedal, Ida; Boija, Susanne; Almesåker, Ann; Persson, Gerd; Andersson, Fredrik; Hedenström, Erik; Bylund, Dan; Norgren, Magnus; Edlund, Håkan

2014-04-29

85

Length shortening and surfactant mixing behavior of nonionic/ionic mixed cylindrical micelle  

NASA Astrophysics Data System (ADS)

Cylindrical micelles, which are surfactant self-assembled structures with nm scale, usually grow in length as surfactant concentration increases. Small angle neutron scattering of nonionic/ionic (C 12E 5/DTAB) mixed cylindrical micellar solution showed the shape of aggregates maintained the cylindrical geometry while the micellar length shortened as the fraction of ionic surfactant increased. Unexpectedly, we observed, for the first time, the micellar length shortened as total surfactant concentration increased at constant DTAB mole fraction. This observation suggests that strong non-ideal mixing of the surfactants in the cylindrical micelles, leading to an end-cap energy lowering with increasing concentration, is responsible for the length shortening.

Kim, Sanghyun; Kwon, Su Yong; Moon, Jun hyuk; Kim, Mahn Won

2008-10-01

86

Interfacial layers of complex-forming ionic surfactants with gelatin.  

PubMed

This review is devoted to discussing the results of studies of the influence of low-molecular weight surfactant additions on the composition and properties of gelatin adsorbed layers which are spontaneously created at water/air and water/non-polar-liquid interfaces. The interaction of surfactant with gelatin leads to the formation of complexes of variable content in the bulk of the aqueous phase. The composition content is determined by the component ratio and concentration of the added surfactant. The role of surfactants (anionic, cationic, non-ionic) capable of forming complexes with gelatin due to electrostatic and hydrophobic interactions is considered. Analysis of the interfacial layer properties is based on literature information, as well as the own author's data. These data include the results of measuring thermodynamic properties (interface tension), laws of formation (adsorption kinetics and thickness), and rheological properties of the layers, which are considered to be dependent on gelatin and surfactant concentration, pH, and temperature. The evolution of the interfacial layers' properties (with increasing surfactant concentration) is discussed in connection with the properties and content of gelatin-surfactant complexes appearing in the aqueous phase. Such an approach allows us to explain the main peculiarities of the layers' behavior including their stabilizing activity in relation to bilateral foam and emulsion films. PMID:24970019

Derkach, Svetlana R

2014-05-25

87

Cyclodextrin stabilised emulsions and cyclodextrinosomes.  

PubMed

We report the preparation of o/w emulsions stabilised by microcrystals of cyclodextrin-oil inclusion complexes. The inclusion complexes are formed by threading cyclodextrins from the aqueous phase on n-tetradecane or silicone oil molecules from the emulsion drop surface which grow further into microrods and microplatelets depending on the type of cyclodextrin (CD) used. These microcrystals remain attached on the surface of the emulsion drops and form densely packed layers which resemble Pickering emulsions. The novelty of this emulsion stabilisation mechanism is that molecularly dissolved cyclodextrin from the continuous aqueous phase is assembled into colloid particles directly onto the emulsion drop surface, i.e. molecular adsorption leads to effective Pickering stabilisation. The ?-CD stabilised tetradecane-in-water emulsions were so stable that we used this system as a template for preparation of cyclodextrinosomes. These structures were produced solely through formation of cyclodextrin-oil inclusion complexes and their assembly into a crystalline phase on the drop surface retained its stability after the removal of the core oil. The structures of CD-stabilised tetradecane-in-water emulsions were characterised using optical microscopy, fluorescence microscopy, cross-polarised light microscopy and WETSEM while the cyclodextrinosomes were characterised by SEM. We also report the preparation of CD-stabilised emulsions with a range of other oils, including tricaprylin, silicone oil, isopropyl myristate and sunflower oil. We studied the effect of the salt concentration in the aqueous phase, the type of CD and the oil volume fraction on the type of emulsion formed. The CD-stabilised emulsions can be applied in a range of surfactant-free formulations with possible applications in cosmetics, home and personal care. Cyclodextrinosomes could find applications in pharmaceutical formulations as microencapsulation and drug delivery vehicles. PMID:24043288

Mathapa, Baghali G; Paunov, Vesselin N

2013-11-01

88

Experimental and theoretical approach to aggregation behavior of new di-N-oxide surfactants in an aquatic environment.  

PubMed

A homologous series of new dicephalic type surfactants (N,N-bis3,3'-(dimethylamino)propyl]alkylamide di-N-oxides) were synthesized and their aggregation phenomena were extensively studied. First, the pH-sensitivity of the investigated surfactants was tested in potentiometric titrations. Then, the adsorption isotherms were measured and interpreted using the Gibbs adsorption equation to determine physicochemical properties. The spin probe EPR technique was employed to monitor the micellization behavior of the surfactants, depending on temperature and surfactant concentration. Critical micelle concentrations (CMC) were determined through an analysis of the calculated spin probe rotational correlation times. A greater insight into the local microenvironment of the formed aggregates was gained by analyzing the properties of the immobilized spin probes. In addition, the CMC values were compared with the ones obtained from tensiometry measurements (taking into account the contributions of the various ionic and nonionic surfactant forms). The approximate size of the micellar aggregates was estimated by the dynamic light scattering (DLS) method. Good agreement between the experimental hydrodynamic radii and those predicted using density functional theory (DFT) guaranteed that the subsequently calculated aggregation numbers, representing the number of molecules in a micelle, were close to the real values. Moreover, the theoretical QSAR methods were used to determine the shape of the micelles via the prediction of the critical packing parameter (CPP). PMID:23098238

Lewi?ska, Agnieszka; Witwicki, Maciej; Fr?ckowiak, Renata; Jezierski, Adam; Wilk, Kazimiera A

2012-12-13

89

Microwave-assisted modification on montmorillonite with ester-containing Gemini surfactant and its adsorption behavior for triclosan.  

PubMed

To obtain effective adsorbent that can remove emerging organic pollutant of triclosan (TCS) in aquatic environment, different ester-containing Gemini surfactant-modified MMT (EMMT) were prepared under microwave irradiation. The whole process was rapid, uniform, easy and energy-efficient. The structures and morphology of EMMT were characterized by XRD, TEM, FT-IR, SEM and TGA. The results revealed that the saturated intercalation amount of this surfactant was 0.8 times to cation exchange capacity (CEC) of MMT, and there was electrostatic interaction between ester-containing Gemini surfactant and MMT. In addition, they bound in the ways of intercalation, intercalation-adsorption or adsorption, which relied on the dosage of the surfactant. The surface of EMMT was hydrophobic, rough and fluffy, which contributed to its strong adsorption capacity. The adsorption equilibrium data of EMMT for TCS were fitted to Langmuir and Freundlich isothermal adsorption model. The result showed that Langmuir isothermal adsorption model could describe the adsorption behavior better, the adsorption behavior of TCS on EMMT was confirmed to a surface monolayer adsorption, and notably the theoretical maximum adsorption capacity was up to 133 mg/g. Therefore, this work lays important foundation on developing effective and safe absorbent materials for the treatment of emerging organic pollutants. PMID:24461850

Liu, Bo; Lu, Junxiang; Xie, Yu; Yang, Bin; Wang, Xiaoying; Sun, Runcang

2014-03-15

90

Adsorption and aggregation behavior of tetrasiloxane-tailed surfactants containing oligo(ethylene oxide) methyl ether and a sugar moiety.  

PubMed

Three novel amphiphilic dicephalic (double-headed) surfactants containing oligo(ethylene-oxide)methyl-ether and a sugar moiety TGA-m (m = 1, 2, and 3) that incorporate a tetrasiloxane at the terminus of a hydrocarbon chain were designed and synthesized. Their surface activity and aggregation behavior in aqueous solution were systematically investigated by surface tension, dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques at 298 K. The surface tension measurements provided the critical aggregation concentration (CAC) and the surface tension at the CAC (?(cac)). In addition, with application of the Gibbs adsorption isotherm, the maximum surface excess concentration (?(max)) and the minimum surface area/molecule (A(min)) at the air-water interface were estimated. The effect of EO chain length on the surface activity and aggregation behavior was also investigated. It was found that both the ?(cac) and the CAC were lower than those for reported traditional hydrocarbon surfactants. Aggregates of three surfactants, TGA-m (m = 1, 2, and 3), formed in aqueous solutions could be assigned as spherical vesicles as suggested by analysis using DLS and TEM. Moreover the formation of vesicles can be confirmed by the encapsulation of bromophenol blue. These results indicate that these three surfactants have excellent efficiencies of vesicle formation and surface tension reduction in the aqueous phase. PMID:21413709

Wang, Guoyong; Qu, Wenshan; Du, Zhiping; Cao, Qianyong; Li, Qiuxiao

2011-04-14

91

Mathematical modeling of a water-in-oil emulsion droplet behavior under the microwave impact  

NASA Astrophysics Data System (ADS)

The problem of microwave (MW) electromagnetic radiation impact on a single water-in-oil droplet is considered. The system of heat equations within the droplet and in the surrounding liquid, incompressible Navier-Stokes equations within the droplet and in the surrounding liquid, and equation of state are considered. The formulated problem is solved numerically using TDMA (Tri-diagonal-matrix algorithm), SIMPLE algorithm and VOF method (volume of fluid method for the dynamics of free boundaries) in Euler coordinates. The results in the form of the dependence of the temperature within the droplet and in the surrounding liquid on the time of microwave impact and streamlines thermal convection are represented; dependence of the velocity of droplet's moving on the power of the of the microwave impact is shown. The obtained results can help to establish criteria for the efficient applicable of the microwave method for the water-in-oil emulsions destruction.

Fatkhullina, Y. I.; Musin, A. A.; Kovaleva, L. A.; Akhatov, I. S.

2015-01-01

92

Yielding and flow in adhesive and non-adhesive concentrated emulsions  

E-print Network

The nonlinear rheological response of soft glassy materials is addressed experimentally by focusing on concentrated emulsions where interdroplet attraction is tuned through varying the surfactant content. Velocity profiles are recorded using ultrasonic velocimetry simultaneously to global rheological data in the Couette geometry. Our data show that non-adhesive and adhesive emulsions have radically different flow behaviors in the vicinity of yielding: while the flow remains homogeneous in the non-adhesive emulsion and the Herschel-Bulkley model for a yield stress fluid describes the data very accurately, the adhesive system displays shear localization and does not follow a simple constitutive equation, suggesting that the mechanisms involved in yielding transitions are not universal.

L. Becu; S. Manneville; A. Colin

2006-03-07

93

Low Interfacial Tension Behavior Between Organic Alkali\\/Surfactant\\/Polymer System and Crude Oil  

Microsoft Academic Search

Oil recovery has a great relationship with the interfacial tension (IFT) between displacing fluid and crude oil when using alkali\\/surfactant\\/polymer (ASP) aqueous solution to displace oil in reservoir. Alkali such as sodium hydroxide and sodium carbonate are often used to enhance the applied performances of surfactant and polymer. In this paper, two kinds of organic alkali, triethylamine (TEA) and monoethanolamine

Xiutai Zhao; Yingrui Bai; Zengbao Wang; Xiaosen Shang; Guangmin Qiu; Lifeng Chen

2012-01-01

94

Polysaccharide/Surfactant complexes at the air-water interface - Effect of the charge density on interfacial and foaming behaviors  

E-print Network

The binding of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to a negatively charged natural polysaccharide (pectin) at air-solution interfaces, was investigated on single interfaces and in foams, versus the linear charge densities of the polysaccharide. Beside classical methods to investigate polymer/surfactant systems, we applied, for the first time concerning these systems, the analogy between the small angle neutron scattering by foams and the neutron reflectivity of films to measure in situ film thicknesses of foams. CTAB/pectin foam films are much thicker than that of the pure surfactant foam film but similar for highly and lowly charged pectin/CTAB systems despite the difference in structure of complexes at interfaces. The improvement of the foam properties of CTAB bound to pectin is shown to be directly related to the formation of pectin-CTAB complexes at the air-water interface. However, in opposition to surface activity, there is no specific behavior for the highly charged pectin: foam properties depend mainly upon the bulk charge concentration, while the interfacial behavior is mainly governed by the charge density of pectin. For the highly charged pectin, specific cooperative effects between neighboring charged sites along the chain are thought to be involved in the higher surface activity of pectin/CTAB complexes. A more general behavior can be obtained at lower charge density either by using a lowly charged pectin or by neutralizing the highly charged pectin in decreasing pH. .

Marie-Hélène M. H. Ropers; Bruno Novales; François Boué; Monique A. V. Axelos

2010-05-11

95

Langmuir monolayer behavior of an ion pair amphiphile with a double-tailed cationic surfactant.  

PubMed

The spread or Langmuir monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with a double-tailed cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), at the air/water interface was analyzed with surface pressure-area isotherms, area relaxation curves, and Brewster angle microscope (BAM) images. The surface pressure-area isotherms showed that with increasing the DHDAB molar ratio, X(DHDAB), spread monolayers of HTMA-DS with DHDAB became rigid. In addition, unreasonably small limiting areas per alkyl chain of the molecules in the monolayers were found, especially at X(DHDAB)=0.5, implying the molecular loss from the monolayers at the interface. For spread HTMA-DS/DHDAB monolayers at the interface, a new IPA, DHDA-DS, was proposed to form through the displacement of HTMA(+) from HTMA-DS by DHDA(+), leaving HTMA(+) dissociated. The formation of DHDA-DS and the desorption of dissociated HTMA(+) upon the interface compression were supported by the results obtained from designed monolayer experiments with BAM observations, and were discussed by considering the hydrophilicity, packing efficiency, and headgroup charge characteristic of the species. Moreover, the area relaxation curves of spread HTMA-DS/DHDAB monolayers suggested that the formation of DHDA-DS was strongly related to the improved monolayer stability at the interface, which may have implications for the DHDAB-enhanced physical stability of catanionic vesicles composed of HTMA-DS. PMID:18667294

Li, Wei-Ta; Yang, Yu-Min; Chang, Chien-Hsiang

2008-10-15

96

Physicochemical behaviors of cationic gemini surfactant (14-4-14) based microheterogeneous assemblies.  

PubMed

A comprehensive study of micellization and microemulsion formation of a cationic gemini surfactant (tetramethylene-1,4-bis(dimethyltetradecylammonium bromide; 14-4-14) in the absence or presence of hydrophobically modified polyelectrolyte, sodium carboxymethylcellulose (NaCMC), has been conducted by conductometry, tensiometry, microcalorimetry, and fluorimetry methods at different temperatures. Both critical micelle concentration and degree of ionization of the surfactant have been observed to increase with increasing temperature. The interfacial and thermodynamic parameters were evaluated. The standard Gibbs free energy of micellization (?Gm°) is negative, which decreases with increase in temperature. Larger entropic contribution is observed compared to the enthalpy. The interaction of 14-4-14 with NaCMC produces coacervates which was determined from turbidimetry method. The pseudoternary phase behavior of the microemulsion systems comprising water (or NaCMC as additive), 14-4-14, isopropanol (IP) or n-butanol (Bu) as cosurfactant, and isopropyl myristate (IPM) were studied at 298 K. Phase diagrams reveal that IP derived microemulsions (in the absence of NaCMC) offer a large isotropic region compared to Bu-derived systems at comparable physicochemical conditions. Increasing the concentration of IP or Bu decreases the isotropic region in the phase diagram. NaCMC influences the microemulsion zone, depending upon its concentration, and type of cosurfactant and surfantant/cosurfactant ratio. Dynamic light scattering and conductometric measurements show the size of the droplet, threshold temperature of percolation, scaling parameters, and activation energy of the percolation process of 14-4-14/IP or Bu derived microemulsion systems without/with NaCMC at various physicochemical conditions. Bu exerts a greater effect to reduce ?t than IP as a cosurfactant (in the absence of NaCMC) at comparable ?. On the other hand, IP showed better percolating effect than Bu in the presence of NaCMC. Bu and IP (as cosurfactant) and NaCMC (as additive) influenced the microemulsion droplet size (Dh) to different extents under comparable conditions. Temperature insensitive microemulsions have been reported at the studied temperature range (298–353 K). 14-4-14/IP (1:2)-derived microemulsion showed a fractured surface at fixed ? = 15, where ? is the water and surfactant molar ratio, and temperature (298 K); whereas, large scale mesospheres comprising multiple closely winded nanoslices and spheroid morphology were formed in 14-4-14/IP and 14-4-14/Bu microemulsions, respectively, in the presence of 0.01 g % NaCMC, at comparable conditions. These systems revealed good antimicrobial activity toward the strains of Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria at 298 K, and inhibitory effect was governed by ?, type of cosurfactant, and bacterial strains. PMID:25241843

Das, Sibani; Mukherjee, Indrajyoti; Paul, Bidyut K; Ghosh, Soumen

2014-10-28

97

Adsorption of Cetyldimethylbenzylammonium Chloride on Octane Emulsions Droplets: The Effect of the Presence of Tween 80  

Microsoft Academic Search

The adsorption of the cationic surfactant cetyldimethylbenzylammonium chloride (CDBACl) on octane-in-water emulsion droplets is estimated and the adsorption isotherms are determined. The adsorbed amount of CDBACl is also measured in the presence of the nonionic surfactant Tween 80, at concentrations below and above its critical micellar concentration (CMC). Various combinations are made concerning the preparation of the emulsions and the

Antonis Avranas; Efi Malasidou; Irene Mandrazidou

1998-01-01

98

SODIUM LIGNIN SULFONATE TO STABILIZE HEAVY CRUDE OIL-IN-WATER EMULSIONS FOR PIPELINE TRANSPORTATION  

Microsoft Academic Search

The efficiency of sodium lignin sulfonate (SLS) as an anionic surfactant derived from waste wood pulping industry in stabilizing an Egyptian heavy crude oil (Geisum)-in-water emulsions for pipeline transportation has been investigated. The stability and rheology of the emulsions stabilized by SLS or with a nonionic surfactant nonyl phenol diethylenetriamine formaldehyde ethoxylate (NDFE) individually or in a mixture have been

NAEL N. ZAKI; NEHAL S. AHMED; AMAL M. NASSAR

2000-01-01

99

Study of low energy emulsification of alkyl ketene dimer related to the phase behavior of the system  

Microsoft Academic Search

The main objective of this work was to improve the physicochemical understanding of the emulsification of a hydrophobizing agent for paper, alkyl ketene dimer (AKD), by relating the equilibrium phase behavior to the emulsification process. Emulsions have been formed with a system containing water, a surfactant mixture of alcohol ethoxylate and calcium dodecylbenzene sulphonate, dodecanol and AKD. The phase behavior

K Mohlin; K Holmberg; J Esquena; C Solans

2003-01-01

100

Shear-Induced Deformation of Surfactant Multilamellar Vesicles  

NASA Astrophysics Data System (ADS)

Surfactant multilamellar vesicles (SMLVs) play a key role in the formulation of many industrial products, such as detergents, foodstuff, and cosmetics. In this Letter, we present the first quantitative investigation of the flow behavior of single SMLVs in a shearing parallel plate apparatus. We found that SMLVs are deformed and oriented by the action of shear flow while keeping constant volume and exhibit complex dynamic modes (i.e., tumbling, breathing, and tank treading). This behavior can be explained in terms of an excess area (as compared to a sphere of the same volume) and of microstructural defects, which were observed by 3D shape reconstruction through confocal microscopy. Furthermore, the deformation and orientation of SMLVs scale with radius R in analogy with emulsion droplets and elastic capsules (instead of R3, such as in unilamellar vesicles). A possible application of the physical insight provided by this Letter is in the rationale design of processing methods of surfactant-based systems.

Pommella, Angelo; Caserta, Sergio; Guida, Vincenzo; Guido, Stefano

2012-03-01

101

Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs  

NASA Technical Reports Server (NTRS)

A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

2006-01-01

102

Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS  

NASA Technical Reports Server (NTRS)

A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

2003-01-01

103

Maximizing the stability of pyrolysis oil/diesel fuel emulsions  

Technology Transfer Automated Retrieval System (TEKTRAN)

Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

104

Polymorphic behavior in protein-surfactant mixtures: the water-bovine serum albumin-sodium taurodeoxycholate system.  

PubMed

Mixtures containing water, bovine serum albumin (BSA), and sodium taurodeoxycholate (NaTDC), a component of the bile in mammals, have been investigated in a wide range of composition and pH. Depending on the concentration of both solutes and the pH, solutions, precipitates, and gels are formed. Under spontaneous pH conditions, the transport properties in dilute solutions indicate the occurrence of significant interactions between BSA and the surfactant. Conversely, acidic media favor the formation of nonsoluble protein-surfactant complexes, with subsequent precipitation. The nucleation kinetics of the protein-surfactant complexes in solid form and the related precipitation processes can be slow or fast, depending on the overall solute content and the mole ratio. At high concentrations, a gel, extending on both sides of the charge neutralization line, and two-phase regions are observed. Gels shrink in open air and swell in the presence of excess water. Depending on concentration and temperature, the gels transform from an essentially liquidlike behavior to that peculiar to true gels (when G' > or = G''). The thermal gelation threshold, the temperature above which G' > or = G'', depends on BSA and NaTDC content and is concomitant to moderate heat effects, inferred by differential scanning calorimetry (DSC). The above data also indicate that the protein thermal denaturation in the gel is shifted to higher temperatures compared to water. Such a stabilizing effect is presumably related to the occurrence of both electrostatic and hydrophobic interactions with NaTDC. Water self-diffusion in the gels is slightly slower than that in the bulk and poorly sensitive to composition: it is about 65% the value of neat H2O in a wide concentration range, irrespective of the BSA, or NaTDC, concentration. A peculiar behavior is also observed in 23Na longitudinal and transverse relaxation rates. The T1 and T2 values, measured at 105.75 MHz on BSA-NaTDC gels, indicate that the motions determining the NMR relaxation of the sodium ions in the hydration layer of the protein-surfactant aggregates are not slow, having frequencies comparable with the Larmor one. The above properties, especially the rheological and the spectroscopic ones, are important for understanding the behavior of gels based on protein-surfactant mixtures. PMID:16800527

Orioni, Barbara; Roversi, Mauro; La Mesa, Camillo; Asaro, Fioretta; Pellizer, Giorgio; D'Errico, Gerardino

2006-06-22

105

Influence of hydrophobic alkylated gold nanoparticles on the phase behavior of monolayers of DPPC and clinical lung surfactant.  

PubMed

The effect of hydrophobic alkylated gold nanoparticles (Au NPs) on the phase behavior and structure of Langmuir monolayers of dipalmitoylphosphatidylcholine (DPPC) and Survanta, a naturally derived commercial pulmonary surfactant that contains DPPC as the main lipid component and hydrophobic surfactant proteins SP-B and SP-C, has been investigated in connection with the potential implication of inorganic NPs in pulmonary surfactant dysfunction. Hexadecanethiolate-capped Au NPs (C(16)SAu NPs) with an average core diameter of 2 nm have been incorporated into DPPC monolayers in concentrations ranging from 0.1 to 0.5 mol %. Concentrations of up to 0.2 mol % in DPPC and 16 wt % in Survanta do not affect the monolayer phase behavior at 20 °C, as evidenced by surface pressure-area (?-A) and ellipsometric isotherms. The monolayer structure at the air/water interface was imaged as a function of the surface pressure by Brewster angle microscopy (BAM). In the liquid-expanded/liquid-condensed phase coexistence region of DPPC, the presence of 0.2 mol % C(16)SAu NPs causes the formation of many small, circular, condensed lipid domains, in contrast to the characteristic larger multilobes formed by pure lipid. Condensed domains of similar size and shape to those of DPPC with 0.2 mol % C(16)SAu NPs are formed by compressing Survanta, and these are not affected by the C(16)SAu NPs. Atomic force microscopy images of Langmuir-Schaefer-deposited films support the BAM observations and reveal, moreover, that at high surface pressures (i.e., 35 and 45 mN m(-1)) the C(16)SAu NPs form honeycomb-like aggregates around the polygonal condensed DPPC domains. In the Survanta monolayers, the C(16)SAu NPs were found to accumulate together with the proteins in the liquid-expanded phase around the circular condensed lipid domains. In conclusion, the presence of hydrophobic C(16)SAu NPs in amounts that do not influence the ?-A isotherm alters the nucleation, growth, and morphology of the condensed domains in monolayers of DPPC but not of those of Survanta. Systematic investigations of the effect of the interaction of chemically defined NPs with the lipid and protein components of lung surfactant on the physicochemical properties of surfactant films are pertinent to understanding how inhaled NPs impact pulmonary function. PMID:22118426

Tatur, Sabina; Badia, Antonella

2012-01-10

106

Mixed surfactant systems for enhanced oil recovery  

SciTech Connect

The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

Llave, F.M.; Gall, B.L.; Noll, L.A.

1990-12-01

107

Role of liquid crystal in the emulsification of a gel emulsion with high internal phase fraction.  

PubMed

A gel emulsion with high internal oil phase volume fraction was formed via an inversion process induced by a water-oil ratio change. The process involved the formation of intermediate multiple emulsions prior to inversion. The multiple emulsions contain a liquid crystal formed by the surfactant with water; this was both predicted by the equilibrium phase diagram as well as observed using polarization microscopy. These multiple emulsions were more stable compared to alternative multiple emulsions prepared in the same way with a surfactant that does not form liquid crystals. While the formation of a stable intermediate multiple emulsion may not be a necessary condition for the inversion to occur, the transitional presence of a liquid crystal proved to be a significant factor in the stabilization of the intermediate multiple emulsions. The resulting gel emulsion contained a small fraction of the liquid crystal according to the phase diagram, and it exhibited excellent stability. PMID:19781712

Liu, Yihan; Friberg, Stig E

2009-12-15

108

Adsorption behaviors of cationic surfactants and wettability in polytetrafluoroethylene-solution-air systems.  

PubMed

Measurements of the advancing contact angle (?) and adsorption properties were carried out for aqueous solutions of four cationic surfactants, hexadecanol glycidyl ether ammonium chloride (C(16)PC), Guerbet alcohol hexadecyl glycidyl ether ammonium chloride (C(16)GPC), hexadecanol polyoxyethylene(3) glycidyl ether ammonium chloride(C(16)(EO)(3)PC), and Guerbet alcohol hexadecyl polyoxyethylene(3) glycidyl ether ammonium chloride (C(16)G(EO)(3)PC), on the polytetrafluoroethylene (PTFE) surface using the sessile drop analysis. The obtained results indicate that the contact angle decreases to a minimum with the increasing concentration for all cationic surfactants. Surfactants with branched chain show lower ? values. Moreover, an increase of adhensional tension on the PTFE-water interface has been observed for the four cationic surfactants, and the branched ones have larger increases of adhensional tension. It is very interesting that the sharp decrease of ? appears mainly after critical micelle concentration (cmc) for C(16)GPC, C(16)(EO)(3)PC, and C(16)G(EO)(3)PC, which is quite different from traditional cationic surfactants reported in the literature. Especially for C(16)G(EO)(3)PC, there are two saturated adsorption stages on PTFE surface after cmc (which means the saturated adsorption film at air-solution interface has been formed). In the first saturated stage, the C(16)G(EO)(3)PC molecules are oriented parallel to the PTFE surface with saturated monolayer formed through hydrophobic interaction and hydrogen bond. In the second saturated stage, the hemimicelle has been formed on the PTFE surface, which can be supported by the QCM-D and SPR measurements. PMID:23148857

Liu, Dan-Dan; Xu, Zhi-Cheng; Zhang, Lei; Luo, Lan; Zhang, Lu; Wei, Tian-Xin; Zhao, Sui

2012-12-11

109

Solubilization of octane in electrostatically-formed surfactant-polymer complexes.  

PubMed

Polymers can be used to modulate the stability and functionality of surfactant micelles. The purpose of this study was to investigate the solubilization of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and anionic sodium dodecylsulphate (SDS), nonionic polyoxyethylene sorbitan monooleate (Tween 80) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using dynamic light scattering, microelectrophoresis and turbidity measurements. The results showed that the addition of anionic carboxymethyl cellulose accelerated octane solubilization in cationic CTAB and CTAB-Tween 80 micelles, but did not affect the solubilization behaviors of micelles that were nonionic and anionic. The surfactant-polymer interactions were also studied using isothermal titration calorimetry (ITC) to characterize different physiochemical interaction regions depending on surfactant concentration in surfactant-polymer systems. Upon octane solubilization in CTAB-carboxymethyl cellulose mixtures, shape transitions of polymer-micelle complexes may have taken place that altered light scattering behavior. Based on these results, we suggest a mechanism for oil solubilization in electrostatically-formed surfactant-polymer complexes. PMID:24407654

Zhang, Hui; Zeeb, Benjamin; Salminen, Hanna; Feng, Fengqin; Weiss, Jochen

2014-03-01

110

Nanoscopic surfactant behavior of the porin MspA in aqueous media  

PubMed Central

Summary The mycobacterial porin MspA is one of the most stable channel proteins known to date. MspA forms vesicles at low concentrations in aqueous buffers. Evidence from dynamic light scattering, transmission electron microscopy and zeta-potential measurements by electrophoretic light scattering indicate that MspA behaves like a nanoscale surfactant. The extreme thermostability of MspA allows these investigations to be carried out at temperatures as high as 343 K, at which most other proteins would quickly denature. The principles of vesicle formation of MspA as a function of temperature and the underlying thermodynamic factors are discussed here. The results obtained provide crucial evidence in support of the hypothesis that, during vesicle formation, nanoscopic surfactant molecules, such as MspA, deviate from the principles underlined in classical surface chemistry. PMID:23766950

Wang, Hongwang; Shrestha, Tej B; Troyer, Deryl L

2013-01-01

111

The use of surfactant in the rinse to improve collapse behavior of chemically amplified photoresists  

Microsoft Academic Search

In this study we investigated a production relevant process to reduce pattern collapse by adding a low concentration of surfactant to the final rinse liquid in the resist development process. X-ray lithography was used to print test structures with critical dimensions as small as 70 nm in an experimental EUV photoresist, XP-1449-L-400, generously supplied by Shipley. By controlling the dimensions

Ivan Junarsa; Mark P. Stoykovich; Kenji Yoshimoto; Paul F. Nealey

2004-01-01

112

The coalescence stability of protein-stabilized emulsions estimated by analytical photo-centrifugation.  

PubMed

Various protein solutions were studied in order to quantify the emulsifying activity of proteins, and to explore oil-water interfacial tension, oil particle size analysis, and oil phase separation behaviors in protein-stabilized oil-in-water (O/W) emulsions. Three proteins, bovine serum albumin (BSA), ?-lactoglobulin (?-lg), and ?-casein (?-ca), were employed to disperse hexadecane in various pH and ionic strength solutions in a wide range of oil-water ratios. It was confirmed that the volume mean oil droplet diameter, d(43), changed depending on the oil content, the pH, the ionic strength, and the used protein. In a dilute protein solution (0.01 %) at pH 7, droplet size increased with oil content in so-called surfactant-poor regimes (e.g., above 5%, 10%, and 20% oil content for BSA, ?-lg, and ?-ca emulsion, respectively) but remained constant at ca. 10 mm, 6 mm, and 20 mm, respectively, in lower oil content surfactant-rich regimes. In surfactant-poor regimes, the most important factor determining the oil drop size was the threshold amount of protein adsorption onto the oil-water interface. In surfactant-rich regimes, on the other hand, it is suggested that drop size may be governed mainly by the mechanical strength of protein films covering the oil drops during emulsification, and this was quantified by the critical osmotic pressure, P(CR). In this study, the P(CR) was measured conveniently in the oil phase separation experiments for protein-stabilized emulsions using analytical photo-centrifugal apparatus. The correlation between the P(CR) and oil droplet size prepared by emulsification at different pH and ionic strength media is discussed. PMID:21768743

Cheetangdee, Nopparat; Oki, Mariko; Fukada, Kazuhiro

2011-01-01

113

Phase behavior and properties of reverse vesicles in salt-free catanionic surfactant mixtures.  

PubMed

Salt-free 1:1 cationic/anionic (catanionic) surfactant mixture tetradecyltrimethylammonium laurate (TTAL) could be prepared by mixing equimolar tetradecyltrimethylammonium hydroxide (TTAOH) and lauric acid (LA) in water. Given the condition of suitable range of weight fraction of TTAL in total surfactant, rho=WTTAL/(WTTAL+WLA), and at existence of a small amount of water, it was found that the mixtures of so-obtained TTAL and LA could spontaneously form stable reverse vesicles in various organic solvents including toluene, tert-butylbenzene, and cyclohexane. The reverse vesicle phase shows a blue color against room light and exhibits strong birefringence under polarized microscope. The reverse vesicles are very sensitive to temperature change. Increasing temperature could make the rho values within which reverse vesicles were constructed move to higher values. In organic solvents of alkanes such as n-heptane, reverse vesicles could still form but become unstable upon time and centrifugation. Increasing temperature could accelerate phase separation, and finally a gel-like bottom phase was usually observed. Interestingly, the stable reverse vesicles formed by so-called salt-free catanionic surfactant mixtures still show some resistance against adding inorganic salts. They can trap inorganic ions such as Zn2+ and S2- into their hydrophilic layers. This opens the door for template applications of reverse vesicles to prepare inorganic nanoparticles. PMID:18321090

Li, Hongguang; Hao, Jingcheng; Wu, Zhonghua

2008-03-27

114

Surfactant reduction of cerebral infarct size and behavioral deficit in a rat model of cerebrovascular arterial gas embolism  

PubMed Central

Gas embolism occurs commonly in cardiac and vascular surgery and decompression sickness. The goals of this study were to develop a new in vivo rat model of cerebrovascular arterial gas embolism and to determine the effects of exogenous surfactants on resultant brain infarct volume and accompanying long-term neurological dysfunction using the model. Unilateral cerebral arterial gas embolism was induced in Sprague Dawley rats, including groups receiving intravenous Pluronic F-127 (PF-127) and Oxycyte perflourocarbon surfactant pretreatment. Magnetic resonance imaging (MRI) was performed at 24 and 72 h postembolism to determine infarct volume. The elevated body swing test (EBST), limb-placement test, proprioception forelimb and hindlimb tests, whisker tactile test, and Morris Water Maze test were performed to assess motor behavior, somatosensory deficit, and spatial cognitive function out to 29 days after embolization. A stable stroke model was developed with MRI examination revealing infarction in the ipsilateral cerebral hemisphere. Gas embolized rats had significant cognitive and sensorimotor dysfunction, including approximately threefold increase in Morris Water Maze latency time, ?20% left-sided biasing in EBST performance, 0.5 to 1.5 (mean) point score elevations in the proprioception and whisker tactile tests, and 3.0 point (mean) elevation in the limb-placement test, all of which were persistent throughout the postembolic period. Surfactant prophylaxis with either PF-127 or Oxycyte rendered stroke undetectable by MRI scanning and markedly reduced the postembolic deficits in both cognitive and sensorimotor performance in treated rats, with normalization of EBST and whisker tactile tests within 7 days. PMID:23845977

Armstead, Stephen C.

2013-01-01

115

Phase behavior, rheological property, and transmutation of vesicles in fluorocarbon and hydrocarbon surfactant mixtures.  

PubMed

We present a detailed study of a salt-free cationic/anionic (catanionic) surfactant system where a strongly alkaline cationic surfactant (tetradecyltrimethylammonium hydroxide, TTAOH) was mixed with a single-chain fluorocarbon acid (nonadecafluorodecanoic acid, NFDA) and a hyperbranched hydrocarbon acid [di-(2-ethylhexyl)phosphoric acid, DEHPA] in water. Typically the concentration of TTAOH is fixed while the total concentration and mixing molar ratio of NFDA and DEHPA is varied. In the absence of DEHPA and at a TTAOH concentration of 80 mmol·L(-1), an isotropic L(1) phase, an L(1)/L(?) two-phase region, and a single L(?) phase were observed successively with increasing mixing molar ratio of NFDA to TTAOH (n(NFDA)/n(TTAOH)). In the NFDA-rich region (n(NFDA)/n(TTAOH) > 1), a small amount of excess NFDA can be solubilized into the L(?) phase while a large excess of NFDA eventually leads to phase separation. When NFDA is replaced gradually by DEHPA, the mixed system of TTAOH/NFDA/DEHPA/H(2)O follows the same phase sequence as that of the TTAOH/NFDA/H(2)O system and the phase boundaries remain almost unchanged. However, the viscoelasticity of the samples in the single L(?) phase region becomes higher at the same total surfactant concentration as characterized by rheological measurements. Cryo-transmission electron microscopic (cryo-TEM) observations revealed a microstructural evolution from unilamellar vesicles to multilamellar ones and finally to gaint onions. The size of the vesicle and number of lamella can be controlled by adjusting the molar ratio of NFDA to DEHPA. The dynamic properties of the vesicular solutions have also been investigated. It is found that the yield stress and the storage modulus are time-dependent after a static mixing process between the two different types of vesicle solutions, indicating the occurrence of a dynamic fusion between the two types of vesicles. The microenvironmental changes induced by aggregate transitions were probed by (19)F NMR as well as (31)P NMR measurements. Upon replacement of NFDA by DEHPA, the signal from the (19)F atoms adjacent to the hydrophilic headgroup disappears and that from the (19)F atoms on the main chain becomes sharper. This could be interpreted as an increase of microfluidity in the mixed vesicle bilayers at higher content of DEHPA, whose alkyl chains are expected to have a lower chain melting point. Our results provide basic knowledge on vesicle formation and their structural evolution in salt-free catanionic surfactant systems containing mixed ion pairs, which may contribute to a deeper understanding of the rules governing the formation and properties of surfactant self-assembly. PMID:22646993

Yuan, Zaiwu; Qin, Menghua; Chen, Xiushan; Liu, Changcheng; Li, Hongguang; Hao, Jingcheng

2012-06-26

116

Physicochemical behavior of oil-in-water emulsions: influence of milk protein mixtures, glycerol ester mixtures and fat characteristics  

Microsoft Academic Search

Different emulsions based on two protein mixtures (skim milk powder (SMP) and functional dairy proteins (FDP)), two mono-di-glyceride mixtures (MDG) (saturated and partially unsaturated), three fats (hydrogenated and refined coconut oils and refined palm oil) were studied to investigate the interactions occurring between the oil phase, low molecular weight emulsifiers and proteins. Immediately following the emulsification process, high diameters of

C. Granger; P. Barey; P. Veschambre; M. Cansell

2005-01-01

117

Adsorption and Corrosion Inhibition Behavior of Polyethylene Glycol and Surfactants Additives on Mild Steel in H2SO4  

NASA Astrophysics Data System (ADS)

The adsorption and corrosion inhibition behaviors of polyethylene glycol (PEG) alone and in the presence of surfactants sodium dodecyl benzene sulfonate and cetyltrimethyl ammonium bromide on mild steel in 0.1 M H2SO4 in temperature range of 30-60 °C was investigated using weight loss method, solvent analysis of iron ions, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX), atomic force microscopy (AFM) and determination of kinetic/thermodynamic parameters. The inhibition efficiency (IE) of PEG increased with increasing concentration showing a maximum IE of 86.91% at 30 °C at 25 ppm but decreased with increasing temperature. Inhibiting action of PEG is synergistically enhanced on addition of small amount of surfactants. Surface morphology of the corroded mild steel specimen as evaluated by SEM, EDAX and AFM confirmed the existence of an adsorbed protective film on the mild steel surface. The calculated thermodynamic/kinetic parameters reveal that adsorption process is spontaneous and obey Langmuir adsorption isotherm.

Mobin, M.; Khan, M. A.

2014-01-01

118

The use of surfactant in the rinse to improve collapse behavior of chemically amplified photoresists  

NASA Astrophysics Data System (ADS)

In this study we investigated a production relevant process to reduce pattern collapse by adding a low concentration of surfactant to the final rinse liquid in the resist development process. X-ray lithography was used to print test structures with critical dimensions as small as 70 nm in an experimental EUV photoresist, XP-1449-L-400, generously supplied by Shipley. By controlling the dimensions of the test structures, the in-plane capillary forces that act to deform the resist structures during drying were well-defined and easily varied. Commercially available fluorosurfactants (Zonyl FSK and FSO) from DuPont Chemicals were used at concentrations of 0.1% and 0.01% in water. Using surfactants, the capillary forces that act on the structures were reduced and the critical aspect ratio of collapse (CARC) of the structures was increased by an average of 20 to 30%, from 2.5 to 3.2, allowing industry to meet the SIA roadmap requirements. The use of surfactants in the rinse in conjunction with the test structures provided insight into the fundamental chemical physics of pattern collapse. Using independently measured receding contact angles (?) of the rinse liquid on the resist and the surface tensions (?) of the rinsing solutions, the collapse data could be generalized in terms of the magnitude of the capillary forces that were estimated using classical thermodynamics. The principle conclusion of this study is that the criteria for choosing the optimum rinse liquid to reduce resist collapse is to minimize the magnitude of 2?cos?.

Junarsa, Ivan; Stoykovich, Mark P.; Yoshimoto, Kenji; Nealey, Paul F.

2004-05-01

119

Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery  

SciTech Connect

The goal of this report is to develop improved extraction processes to mobilize and produce the oil left untapped using conventional techniques. Current chemical schemes for recovering the residual oil have been in general less than satisfactory. High cost of the processes as well as significant loss of chemicals by adsorption on reservoir materials and precipitation has limited the utility of chemical-flooding operations. There is a need to develop cost-effective, improved reagent schemes to increase recovery from domestic oil reservoirs. The goal of the report was to develop and evaluate novel mixtures of surfactants for improved oil recovery.

Somasundaran, Prof. P.

2001-02-27

120

Transient behavior of simultaneous flow of gas and surfactant solution in consolidated porous media  

SciTech Connect

The main objective of this experimental research was to investigate the mechanisms of foam generation and propagation in porous media. Results obtained give an insight into the conditions of foam generation and propagation in porous media. The rate of propagation of foam is determined by the rates of lamellae generation, destruction, and trapping. Several of the factors that contribute to foam generation have studied with Chevron Chaser SD1000 surfactant. Interfacial tension (IFT) measurements were performed using a spinning drop apparatus. The IFT of two surfactant samples of different concentrations were measured with dodecane and crude oil from the Huntington Beach Field as a function of temperature and time. Foam was used as an oil-displacing fluid. However, when displacing oil, foam was not any more effective than simultaneous brine and gas injection. A series of experiments was performed to study the conditions of foam generation in Berea sandstone cores. Results show that foam may be generated in sandstone at low flow velocities after extended incubation periods. The effect of pregenerating foam before injection into the sandstone was also studied. The pressure profiles in the core were monitored using three pressure taps along the length of the core. A systematic study of foaming with different fluid velocities and foam qualities provides extensive data for foam flow conditions. 134 refs., 57 figs., 2 tabs.

Baghdikian, S.Y.; Handy, L.L.

1991-07-01

121

Investigation of the Demulsification Efficiency of Some Ethoxylated Polyalkylphenol Formaldehydes Based on Locally Obtained Materials to Resolve Water-in-Oil Emulsions  

Microsoft Academic Search

Fourteen ethoxylated polyalkylphenol formaldehyde surfactants were prepared from locally sourced raw materials. These surfactants were used as demulsifiers to resolve asphltenic crude oil emulsions. Different factors affecting demulsification efficiency such as water:oil ratios, surfactant concentration, surfactant molecular weight, ethylene oxide content, alkyl chain length, and asphaltene content were investigated. From the data obtained it was found that the demulsification efficiency

A. M. Al-Sabagh; M. R. Noor El-Din; S. Abo-El Fotouh; N. M. Nasser

2009-01-01

122

Second-generation perfluorocarbon emulsion blood substitutes.  

PubMed

A novel series of perfluorocarbon (PFC) emulsions, based on perfluorodecalin (C10F18) and stabilised with up to 2.5% (w/v) of lecithin have been produced for evaluation as injectable, temporary respiratory gas-carrying blood substitutes. Some formulations contained 1.0% (w/v) of perfluorodimorpholinopropane (C11F22N2O2) to retard droplet growth through molecular diffusion (Ostwald Ripening). Other emulsions contained novel, amphiphilic fluorinated surfactants, such as, for example, the monocarbamate, C8F17C2H4NHC(O)(CH2CH2O)2Me (designated compound P6), at 0.1% (w/v) to enhance stability. Emulsions were prepared by homogenisation, were steam sterilisable and were stable for > 300 days (25 degrees C). Injection of rats (7.5 ml kg-1 b.w.) with emulsions produced significant (P < 0.05), transient increases in liver and spleen weights. One emulsion inhibited phorbol 12-myristate 13-acetate (PMA)-stimulated, Luminol-enhanced, chemiluminescence of human polymorphonuclear leucocytes (PMNL) in vitro, suggesting possible applications in ischaemic tissues for suppressing PMNL-mediated inflammation. The P6 fluoro-surfactant inhibited spontaneous platelet aggregation in hirudin-anticoagulated human blood in vitro, suggesting possible applications as an anti-thrombotic agent. PMID:10676575

Lowe, K C

2000-01-01

123

Nanoscale and Microscale Iron Emulsions for Treating DNAPL  

NASA Technical Reports Server (NTRS)

This study demonstrated the feasibility of using emulsified nanoscale and microscale iron particles to enhance dehalogenation of (Dense Non-Aqueous Phase Liquid) DNAPL free-phase. The emulsified system consisted of a surfactant-stabilized, biodegradable oil-in-water emulsion with nanoscale or microscale iron particles contained within the emulsion droplets. It was demonstrated that DNAPLs, such as trichloroethene (TCE), diffuse through the oil membrane of the emulsion particle whereupon they reach an aqueous interior and the surface of an iron particle where dehalogenation takes place. The hydrocarbon reaction by-products of the dehalogenation reaction, primarily ethene (no chlorinated products detected), diffuse out of the emulsion droplet. This study also demonstrated that an iron-emulsion system could be delivered in-situ to the DNAPL pool in a soil matrix by using a simulated push well technique. Iron emulsions degraded pure TCE at a rate comparable to the degradation of dissolved phase TCE by iron particles, while pure iron had a very low degradation rate for free-phase TCE. The iron-emulsion systems can be injected into a sand matrix where they become immobilized and are not moved by flowing water. It has been documented that surfactant micelles possess the ability to pull pooled TCE into emulsion droplets where degradation of TCE takes place.

Geiger, Cherie L.

2002-01-01

124

Hydrophobic interactions in associative polymer\\/nonionic surfactant systems: Effects of surfactant architecture and system parameters  

Microsoft Academic Search

Synopsis The rheological behavior of a comb-like associative polymer with pendant hydrophobes in the presence of nonylphenol polyethoxylate NPe nonionic surfactants is examined. In particular, the effects of surfactant concentration, polymer concentration, and surfactant's hydrophilic-lipophilic balance HLB are investigated with the latter being varied by using surfactants with different number of ethoxylate units e = 6, 8, 12, and 15.

Sachin Talwar; Lauriane F. Scanu; Saad A. Khana

2006-01-01

125

Physicochemical behavior of oil-in-water emulsions: influence of milk protein mixtures, glycerol ester mixtures and fat characteristics.  

PubMed

Different emulsions based on two protein mixtures (skim milk powder (SMP) and functional dairy proteins (FDP)), two mono-di-glyceride mixtures (MDG) (saturated and partially unsaturated), three fats (hydrogenated and refined coconut oils and refined palm oil) were studied to investigate the interactions occurring between the oil phase, low molecular weight emulsifiers and proteins. Immediately following the emulsification process, high diameters of fat globules were obtained in FDP-based systems, relevant of an aggregation phenomenon. At this stage, the fat globule size characteristics were dependent on the emulsifier and fat types present in the formulation. In contrast, SMP-based emulsions were characterized by low proportions of aggregated particles regardless the formulations. Ageing (24 h at 4 degrees C) promoted disaggregation in FDP formulations, while SMP emulsions were well stabilized. Just after the homogenization step, less proteins were required to stabilize the globule interface in FDP systems as compared to SMP ones. Only with SMP, the amount of protein load at the fat globule surface was influenced by the oil nature and/or by the emulsifier type. A competitive adsorption of caseins, over whey proteins, was demonstrated in the case of FDP. The ageing period promoted a displacement of the proteins adsorbed at the oil droplet interface, suggesting a disruption of the interfacial protein interactions. This disruption was more marked with SMP than with FDP and, in both cases, was more or less influenced by the emulsifier and oil phase natures. The variations of the viscosity and rheological parameters (elastic and viscous moduli) were not dependent on one specific component of the formulation. PMID:15893224

Granger, C; Barey, P; Veschambre, P; Cansell, M

2005-05-25

126

Pickering interfacial catalysis for biphasic systems: from emulsion design to green reactions.  

PubMed

Pickering emulsions are surfactant-free dispersions of two immiscible fluids that are kinetically stabilized by colloidal particles. For ecological reasons, these systems have undergone a resurgence of interest to mitigate the use of synthetic surfactants and solvents. Moreover, the use of colloidal particles as stabilizers provides emulsions with original properties compared to surfactant-stabilized emulsions, microemulsions, and micellar systems. Despite these specific advantages, the application of Pickering emulsions to catalysis has been rarely explored. This Minireview describes very recent examples of hybrid and composite amphiphilic materials for the design of interfacial catalysts in Pickering emulsions with special emphasis on their assets and challenges for industrially relevant biphasic reactions in fine chemistry, biofuel upgrading, and depollution. PMID:25644631

Pera-Titus, Marc; Leclercq, Loïc; Clacens, Jean-Marc; De Campo, Floryan; Nardello-Rataj, Véronique

2015-02-01

127

pubs.acs.org/Langmuir On the Possible Role of Surface Elasticity in Emulsion Stability  

E-print Network

pubs.acs.org/Langmuir On the Possible Role of Surface Elasticity in Emulsion Stability Daniela to compression of various types of surfactant layers adsorbed at oil-water interfaces. We prepared reasonably

Weeks, Eric R.

128

Experimental Study of Solvent Based Emulsion Injection to Enhance Heavy Oil Recovery  

E-print Network

This study presents the results of nano-particle and surfactant-stabilized solvent-based emulsion core flooding studies under laboratory conditions that investigate the recovery mechanisms of chemical flooding in a heavy oil reservoir. In the study...

Qiu, Fangda

2011-08-08

129

Lipid emulsions of palmitoylrhizoxin: effects of particle size on blood dispositions of emulsion lipid and incorporated compound in rats.  

PubMed

Emulsion formulations of various particle sizes for the highly lipophilic antitumour agent, RS-1541 (13-O-palmitoylrhizoxin), were prepared using dioctanoyldecanoylglycerol (ODO) as lipids and polyoxyethylene-(60)-hydrogenated castor oil (HCO-60) as a surfactant. These emulsions were evaluated as injectable drug carriers and compared with a colloidal solution. Both in vitro and in vivo after i.v. administration, RS-1541 was distributed into lipoproteins from the colloidal solution. When applied as emulsions of various particle sizes (124-419 nm) in vitro, RS-1541 was retained and stabilized within the emulsions. In the in vivo study, however, retention of RS-1541 in the emulsions after i.v. injection depended on their size. The small-particle emulsions (94-112 nm) resulted in long retention, and the large-particle emulsions (415-474 nm) led to short retention. Lipolysis rates of emulsion particles by lipoprotein lipase also depended on their size, indicating rapid lipolysis for small-particle emulsions (133 nm). However, the lipolysis was not such an extensive one, showing 10-30% release of capric acid from ODO within 6 h. Blood dispositions of capric acids approximately paralleled those of RS-1541 after i.v. injection of various particle size emulsions (130-368 nm) to rats, although relatively rapid eliminations of capric acids compared with RS-1541 were observed for the small-particle size emulsions (130 nm). These results suggest that when injected as emulsion formulations, the highly lipophilic antitumour agent, RS-1541, has behaviour similar to that of the emulsion particles in the body, which is dependent on the size of the latter. Thus, by properly selecting the particle size, lipid emulsions consisting of ODO and HCO-60 are expected to be effective and useful DDS carriers for RS-1541. PMID:8743405

Kurihara, A; Shibayama, Y; Yasuno, A; Ikeda, M; Hisaoka, M

1996-05-01

130

CHARACTERISTICS OF SURFACTANTS IN TOXICITY IDENTIFICATION EVALUATIONS  

EPA Science Inventory

The behavior of a number of anionic, nonionic and cationic surfactants in manipulations associated with toxicity identification evaluations was studied. t was found that toxicity of the surfactants could be removed from aqueous samples via aeration, apparently through sublation. ...

131

Celebrating Soft Matter's 10th Anniversary: Stimuli-responsive Pickering emulsion polymerized smart fluids.  

PubMed

The Pickering emulsion process is an important and interesting way of forming hybrid soft matter particles stabilized by solid particles as surfactants instead of the extensive use of conventionally available organic surfactant molecules. This Highlight briefly reviews stimuli-responsive polymer/inorganic hybrid materials fabricated by Pickering emulsion polymerization along with the rheological characteristics of their electrorheological and magnetorheological smart fluids under electric and magnetic fields, respectively. PMID:25515644

Piao, Shang Hao; Kwon, Seung Hyuk; Zhang, Wen Ling; Choi, Hyoung Jin

2015-01-28

132

BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS  

SciTech Connect

The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Surfactant loss by adsorption or precipitation depends to a great extent on the type of surfactant complexes and aggregates formed. Such information as well as techniques to generate the information is lacking currently particularly for surfactant mixtures and surfactant/polymer systems. A novel analytical centrifuge application is explored during the last period to generate information on structures-performance relationship for different surfactant aggregates in solution and, in turn, at interfaces. To use analytical untracentrifuge for surfactant mixtures, information on partial specific volumes of single surfactants and their mixtures is required. Towards this purpose, surface tension and density measurements were performed to determine critical micellar concentrations (cmc), partial specific volumes of n-dodecyl-{beta}-Dmaltoside (DM), nonyl phenol ethoxylated decyl ether (NP-10) and their 1:1 mixtures at 25 C. Durchschlag's theoretical calculation method was adopted to calculate the partial specific volumes. Effects of temperature and mixing, as well as methods used for estimation on micellization and partial specific volumes were studied during the current period. Surface tension results revealed no interaction between the two surfactants in mixed micelles. Partial specific volume measurements also indicated no interaction in mixed micelles. Maximum adsorption density, area per molecule and free energy of micellization were also calculated. Partial specific volumes were estimated by two experimental methods: d{sub {rho}}/dc and V{sub {sigma}}. The difference between the results of using the two methods is within 0.5% deviation. It was found that the partial specific volume is concentration dependent and sensitive to changes in temperature. The information generated in this study will be used for the study of surfactant aggregate mass distribution in mixed systems. Such information will in future be used to identify optimum surfactant.

Prof. P. Somasundaran

2002-09-30

133

Supercritical or compressed CO2 as a stimulus for tuning surfactant aggregations.  

PubMed

Surfactant assemblies have a wide range of applications in areas such as the chemical industry, material science, biology, and enhanced oil recovery. From both theoretical and practical perspectives, researchers have focused on tuning the aggregation behaviors of surfactants. Researchers commonly use solid and liquid compounds such as cosurfactants, acids, salts, and alcohols as stimuli for tuning the aggregation behaviors. However, these additives can present economic and environmental costs and can contaminate or modify the product. Therefore researchers would like to develop effective methods for tuning surfactant aggregation with easily removable, economical, and environmentally benign stimuli. Supercritical or compressed CO(2) is abundant, nontoxic, and nonflammable and can be recycled easily after use. Compressed CO(2) is quite soluble in many liquids, and the solubility depends on pressure and temperature. Therefore researchers can continuously influence the properties of liquid solvents by controlling the pressure or temperature of CO(2). In this Account, we briefly review our recent studies on tuning the aggregation behaviors of surfactants in different media using supercritical or compressed CO(2). Supercritical or compressed CO(2) serves as a versatile regulator of a variety of properties of surfactant assemblies. Using CO(2), we can switch the micellization of surfactants in water, adjust the properties of reverse micelles, enhance the stability of vesicles, and modify the switching transition between different surfactant assemblies. We can also tune the properties of emulsions, induce the formation of nanoemulsions, and construct novel microemulsions. With these CO(2)-responsive surfactant assemblies, we have synthesized functional materials, optimized chemical reaction conditions, and enhanced extraction and separation efficiencies. Compared with the conventional solid or liquid additives, CO(2) shows some obvious advantages as an agent for modifying surfactant aggregation. We can adjust the aggregation behaviors continuously by pressure and can easily remove CO(2) without contaminating the product, and the method is environmentally benign. We can explain the mechanisms for these effects on surfactant aggregation in terms of molecular interactions. These studies expand the areas of colloid and interface science, supercritical fluid science and technology, and chemical thermodynamics. We hope that the work will influence other fundamental and applied research in these areas. PMID:23106121

Zhang, Jianling; Han, Buxing

2013-02-19

134

BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS  

SciTech Connect

The aim of the project is to develop a knowledge base to help with the design of enhanced process for mobilizing and extracting untrapped oil. We emphasize on evaluating novel surfactant mixtures and on obtaining optimum combinations of the surfactants in chemical flooding EOR process. An understanding of the micellar shape and size is crucial since these physical properties directly determine the crude oil removal efficiency. Analytical ultracentrifugation experiments were used to test the multi-micelle model proposed earlier and formulate the relationships between mixed micelle formation and the surfactant structure. Information on partial specific volume of surfactants and their mixtures is required to treat analytical ultracentrifuge data. In the last report, it was noted that the partial specific volumes of the sugar-based surfactants obtained experimentally did not agree with those from theoretical calculations. A scrutiny of partial specific volumes of the four sugar-based surfactants revealed that conformational changes upon micelle formation are responsible for the large deviation. From sedimentation equilibrium experiments, two types of micelles were identified for the nonionic polyethylene surfactant and its mixtures with the sugar-based surfactant, dodecyl maltoside. The average aggregation numbers of n-dodecyl-{beta}-D-maltoside and nonyl phenol ethoxylated decyl ether agreed with those reported in literature using other techniques. Our study displayed, for the first time, that small micelles might coexist with large micelles at high concentrations due to unique structures of the surfactant although classical thermodynamic theory supports only one type of micelle. Initial dynamic light scattering results support the results for the same mixed surfactant system from analytical ultracentrifuge equilibrium technique. The implication of this finding lies in the fact that efficiency of oil recovery will be improved due to the large micellar size, its polymer-like fluidity and possible reduced adsorption on solids.

Prof. P. Somasundaran

2003-03-31

135

Rheology of Monodisperse Emulsions  

NASA Astrophysics Data System (ADS)

We have conducted an extensive investigation of the rheology of monodisperse emulsions which have a uniform droplet size and are highly controllable. Their rheological behavior ranges from purely viscous to highly elastic depending on the degree of deformation of the droplet interfaces. We have made the first measurements of their osmotic pressure and shear elasticity as a function of droplet size, volume fraction, and viscosity from weak to strong droplet compression limits. We find a remarkable similarity in the volume fraction dependence of the shear modulus and the osmotic pressure which has not been previously observed. We attribute this to the coupling of transverse shear and osmotic compression of droplets within the emulsion. Using optical and mechanical techniques, we have measured the linear shear viscoelastic susceptibility of a compressed emulsion over nine orders of magnitude in frequency. To compare with emulsions, which have deformable droplet interfaces, we have measured the frequency dependence of the linear shear viscoelasticity of concentrated hard spheres. This spectrum shows high and low frequency viscous relaxations with a dominant elasticity at intermediate frequencies. We have developed a theory for the observed spectrum which incorporates mode coupling theories of glassy dynamics with diffusional boundary layer theories. This is the first observation of the consequences of the glass transition in the viscoelasticity of hard sphere suspensions and is the first application of mode coupling theory to their rheology. Finally, we have also developed a novel light scattering technique to measure the frequency dependent viscoelastic moduli of complex fluids. This establishes a very general framework connecting the average microscopic motion of particles suspended in a complex fluid to its bulk viscoelasticity. Because optical techniques can measure particle motion over a large temporal dynamic range, we can determine the viscoelasticity over a similarly broad range in frequencies, including high frequencies which are difficult to achieve with mechanical techniques. This optical technique is suitable for concentrated suspensions and for tracer particles suspended in general complex fluids. With it, we have measured the viscoelasticity of monodisperse emulsions, hard sphere suspensions, and polymeric solutions over a greatly extended frequency range.

Mason, Thomas Graves

1995-01-01

136

Lung surfactant.  

PubMed Central

Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

Rooney, S A

1984-01-01

137

Fine-Tuning the Nonequilibrium Behavior of Oppositely Charged Macromolecule/Surfactant Mixtures via the Addition of Nonionic Amphiphiles.  

PubMed

The various commercial applications of oppositely charged polyelectrolytes (P) and ionic surfactants (S) with added nonionic amphiphiles initiated intensive research on the polyion/mixed surfactant interaction. A large group of earlier studies revealed that one of the major effects of the nonionic cosurfactants is the suppression of the associative phase separation of P/S systems. In contrast, recent studies indicated that in the dilute surfactant concentration range the added uncharged amphiphile enhances the precipitation concentration range. In order to rationalize these observations, the mixtures of poly(diallyldimethylammonium chloride) (PDADMAC), sodium dodecyl sulfate (SDS), and dodecyl maltoside (C12G2) are investigated using a variety of experimental methods. It is shown that the nonionic cosurfactant has two distinct and competing impacts on the mixed surfactant binding onto the polyions. The composition dependent variation of the chemical potentials of the amphiphiles determines which of these effects is the dominant one, explaining the seemingly diverse earlier observations and their interpretations. We also demonstrate that the nonionic amphiphile affects considerably the nonequilibrium features of polyion/ionic surfactant complexation. Namely, the presence of the uncharged surfactant can destabilize the colloidal dispersion of P/S nanoparticles formed in the two-phase composition range. However, at the same concentration range highly stable dispersions of polyion/mixed surfactant nanoparticles can be produced through the application of a new two-step solution preparation technique. This method is based on the order of addition effect of the two surfactants which can be utilized in future scientific and industrial applications. PMID:25469711

Fegyver, Edit; Mészáros, Róbert

2014-12-23

138

Comparison of phase behavior between water soluble and insoluble surfactants at the air-water interface  

NASA Astrophysics Data System (ADS)

The surface phase behavior of 2-hydroxyethyl myristate (2-HEM) has been studied in Langmuir monolayers by measuring surface pressure ( ?)-area ( A) isotherms with a film balance and observing monolayer morphology with a Brewster angle microscope (BAM). These results are compared with the phase behavior of 2-hydroxyethyl laurate (2-HEL) in Gibbs monolayers studied by measuring ?-time ( t) curves and observing monolayer morphology. The ?- A isotherms of 2-HEM show a first-order phase transition from a liquid expanded (LE) phase to a liquid condensed (LC) phase in the temperature range between 5 and 35 °C whereas the ?- t curves of 2-HEL represent a similar phase transition in the temperature range between 2 and 25 °C. The critical surface pressure, ?c necessary for the phase transitions increases with increasing temperature in both the cases. The LC domains formed in 2-HEM show circular shapes, which are independent of the temperature. In contrast, the circular domains having stripe texture formed at lower temperatures show a shape transition to fingering domains with uniform brightness at 15 °C. The amphiphile, 2-HEM having 13-carbon chain has higher line tension than 2-HEL that has 11-carbon chain as tail. Thus, for 2-HEM, this high line tension always dominates over other factors giving rise to circular domains at the all studied temperatures.

Hossain, Md. Mufazzal; Iimura, Kenichi; Kato, Teiji

2010-11-01

139

Influence of ionic and nonionic hydrotropes on micellar behavior of a cationic gemini surfactant butanediyl-1,4-bis(dimethylcetylammonium bromide).  

PubMed

Micellization of binary systems of a cationic gemini surfactant butanediyl-1,4-bis(dimethylcetylammonium bromide) (16-4-16) and cationic/nonionic hydrotropes (aniline-hydrochloride, 2-methylanilinehydrochloride, 4-methylanilinehydrochloride, hydroxybenzene, 1,3-benzenediol, benzene-1,2,3-triol) have been studied using a conductometric technique. The critical micelle concentrations (cmc) for different mixing mole fractions at different temperatures have been calculated. To explain and compare the results, theoretical models of Clint, Rubingh and Motomura have been used to obtain the ideal cmc, mixed micelle composition, interaction parameters (?(m)), free energies of micellization, and activity coefficients. The mixtures show nonideal behavior and the interactions between the surfactants and the hydrotropes are synergistic in nature which is confirmed by high negative ?(m) values and low values of the activity coefficients. Thermodynamic parameters were also obtained from the temperature dependence of the cmc values. PMID:21531427

Khan, Iqrar Ahmad; Khanam, Ahmad Jahan; Sheikh, Mohmad Shafi; Kabir-ud-Din

2011-07-15

140

Rheological Behavior of Aqueous Solutions of Cationic Guar in Presence of Oppositely Charged Surfactant  

NASA Astrophysics Data System (ADS)

The cationic guar (CG) is synthesized and the rheological behavior of aqueous solutions of CG in the presence of sodium dodecyl sulfate (SDS) is studied in detail. The steady viscosity measurements show that the zero shear viscosity enhancement can be almost 3 orders of magnitude as the concentration of SDS increases from 0 to 0.043%. The gel-like formation is observed as the concentration of SDS is greater than 0.016%. The oscillatory rheological measurements of CG solutions in the presence of SDS show that the crossover modulus is almost independent of the concentration of SDS whereas the apparent relaxation time increases swiftly upon increasing the concentration of SDS. The experimental results indicate that the strength rather than the number of the cross-links is greatly affected by SDS molecules. The mechanism concerning the effect of SDS upon the rheology of CG solutions can be coined by the two-stage model. Before the formation of cross-links at the critical concentration, the electrostatic interaction between SDS and cationic site of CG chains plays a key role and the SDS molecules bind to CG chains through the electrostatic interaction. After the formation of cross-links at the concentration greater than the critical concentration, the cooperative hydrophobic interaction become dominant and SDS molecules bind to the cross-links through the hydrophobic interaction. The rheological behavior of aqueous solutions of CG in the presence of SDS is chiefly determined by the micelle-like cross-links between CG chains. In fact, the flow activation energy of CG solution, obtained from the temperature dependence of the apparent relaxation time, falls in the range of transferring a hydrophobic tail of SDS from the micelle to an aqueous environment.

Li, Hua-zhen; Yang, Hai-yang; Xie, Yong-jun; Li, Hua-yu; He, Ping-sheng

2010-08-01

141

Recent advances in the combustion of water fuel emulsion  

Microsoft Academic Search

Recent advances in the combustion of water fuel emulsion which consists of base fuel and water doped with or without a trace content of surfactant are reviewed. The focus is on the fundamental mechanism relevant to the micro-explosion phenomena leading to the secondary atomization which is not common to the combustion of pure fuel. Described at first are the kinetic

T. Kadota; H. Yamasaki

2002-01-01

142

Emulsion design to improve the delivery of functional lipophilic components.  

PubMed

The food industry has used emulsion science and technology for many years to create a diverse range of food products, such as milk, cream, soft drinks, nutritional beverages, dressings, mayonnaise, sauces, dips, deserts, ice cream, margarine, and butter. The majority of these food products are conventional oil-in-water (O/W) or water-in-oil (W/O) type emulsions. Recently, there has been increasing interest within the food industry in either improving or extending the functional performance of foods using novel structured emulsions. This article reviews recent developments in the creation of structured emulsions that could be used by the food and other industries, including nanoemulsions, multiple emulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. These structured emulsions can be produced from food-grade [generally recognized as safe (GRAS)] ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals), using simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, production, performance, and potential applications of each type of structured emulsion system are discussed. PMID:22129337

McClements, David Julian

2010-01-01

143

Surface-active properties of lipophilic antioxidants tyrosol and hydroxytyrosol fatty acid esters: a potential explanation for the nonlinear hypothesis of the antioxidant activity in oil-in-water emulsions.  

PubMed

Our group has recently observed a nonlinear tendency in antioxidant capacity of different hydroxytyrosol fatty acid esters in fish oil-in-water emulsions, where a maximum of antioxidant efficiency appeared for hydroxytyrosol octanoate. These results appear to disagree with the antioxidant polar paradox. Because the physical location of the antioxidants in an oil-water interface has been postulated as an important factor in explaining this behavior, we have prepared a series of tyrosol and hydroxytyrosol fatty acid esters with different chain length and studied their surface-active properties in water, because these physicochemical parameters could be directly related to the preferential placement at the interface. We have found that tyrosol and hydroxytyrosol fatty acid esters are relevant surfactants when the right hydrophilic-lipophilic balance (HLB) is attained and, in some cases, as efficient as emulsifiers commonly used in industry, such as Brij 30 or Tween 20. Moreover, a nonlinear dependency of surfactant effectiveness is observed with the increase in chain length of the lipophilic antioxidants. This tendency seems to fit quite well with the reported antioxidant activity in emulsions, and the best antioxidant of the series (hydroxytyrosol octanoate) is also a very effective surfactant. This potential explanation of the nonlinear hypothesis will help in the rational design of antioxidants used in oil-in-water emulsions. PMID:20524658

Lucas, Ricardo; Comelles, Francisco; Alcántara, David; Maldonado, Olivia S; Curcuroze, Melanie; Parra, Jose L; Morales, Juan C

2010-07-14

144

Influence of enzymes and surfactants on the disintegration behavior of cross-linked hard gelatin capsules during dissolution.  

PubMed

Gelatin exhibits cross-linking upon storage at stress conditions. Capsules stored at these conditions fail to show appropriate in vitro dissolution. The aim of this study is to show the effect of surfactants in the medium on the disintegration of the gelatin capsule. This is demonstrated in the presence and absence of the enzymes pancreatin and pepsin, the function of which is to improve the dissolution. Sodium lauryl sulfate (SLS) and Tween 80 are tested as surfactants. When SLS is used in the medium, dissolution is significantly hampered due to the formation of a less soluble precipitate of gelatin. Compared to SLS, Tween 80 shows far better disintegration and solubility results in dissolution media with neutral or low pH. Therefore, it is concluded in this study that Tween 80 is preferred when a surfactant is necessary to comply with sink condition requirements. PMID:16455602

Pennings, F H; Kwee, B L S; Vromans, H

2006-01-01

145

Effects of pressure, temperature and salinity on the multiphase behavior of the surfactant\\/methane and n-decane\\/NaCl brine system  

Microsoft Academic Search

The multiphase behavior of a live model oil system, consisting of a one-component anionic surfactant (n-decane-ortho-dimethyl-benzene\\u000a sulfonate), 44.5 mole% methane and 55.5 mole% n-decane, and NaCl-brine, has been studied at different temperatures, pressures,\\u000a and salinities. The solubilization parameters of oil and water in the middle phase have been determined, and the values were\\u000a adjusted for thermal expansion and compressibility of

T. Austad; H. Hodne; G. Staurland

146

Magnetically Recoverable Efficient Demulsifier for Water-in-Oil Emulsions.  

PubMed

A magnetically recoverable and efficient demulsifier is shown to demulsify surfactant-stable water-in-oil emulsions rapidly. Ferroferric oxide (Fe3 O4 ) particles are firstly coated by amorphous silicon dioxide (SiO2 ), and further functionalized with a commercial dodecyltrimethoxysilane solution (KH-1231). Owing to their paramagnetic properties, the demulsifier particles can be easily recovered with a magnet. Upon addition of demulsifier to emulsions and subsequent sonification, the supernatant becomes completely transparent and no droplets are observed in the micrographs. It was also demonstrated that this demulsifier is effective for emulsions prepared with a variety of oils. Moreover, magnetically recovered demulsifier can be recycled after simple treatment without any decline of efficiency. This work presents a feasible approach for demulsifying water-in-oil emulsions, and has potential value in industry. PMID:25504588

Chen, Yuning; Lin, Xin; Liu, Na; Cao, Yingze; Lu, Fei; Xu, Liangxin; Feng, Lin

2015-02-23

147

Optimization of the flocculation stage in a model system of a food emulsion waste using chitosan as polyelectrolyte  

Microsoft Academic Search

The influence of different factors on the dose of chitosan necessary to neutralize electrical charge and to get flocculation in a model system of a sunflower oil\\/ water emulsion was analyzed. These factors included: ionic strength, pH, size of the drops in the emulsion, concentration of oil and surfactant and type of emulsifier (sodium dodecyl and tetradecyl sulfate). Results showed

A. Pinotti; A. Bevilacqua; N. Zaritzky

1997-01-01

148

Ionic liquids as surfactants  

NASA Astrophysics Data System (ADS)

Problems of self-assembling in systems containing ionic liquids (ILs) are discussed. Main attention is paid to micellization in aqueous solutions of dialkylimidazolium ILs and their mixtures with classical surfactants. Literature data are reviewed, the results obtained by the authors and co-workers are presented. Thermodynamic aspects of the studies and problems of molecular-thermodynamic modeling receive special emphasis. It is shown that the aggregation behavior of dialkylimidazolium ILs is close to that of alkyltrimethylammonium salts (cationic surfactants) though ILs have a higher ability to self-organize, especially as it concerns long-range ordering. Some aspects of ILs applications are outlined where their common features with classical surfactants and definite specificity are of value.

Smirnova, N. A.; Safonova, E. A.

2010-10-01

149

Effect of cationic surfactants on characteristics and colorimetric behavior of polydiacetylene/silica nanocomposite as time-temperature indicator  

NASA Astrophysics Data System (ADS)

Polydiacetylene (PDA)/silica nanocomposites were synthesized by self-assembly method using polymerizable amphiphilic diacetylene monomers, 10,12-pentacosadiynoic acid (PCDA). Addition of cationic surfactants (PDADMAC and CTAB) to PDA/SiO2 nanocomposites induced higher intermolecular force which affected their size, shape and color transition. Pure PDA, PDA/SiO2, PDA/SiO2/PDADMAC and PDA/SiO2/CTAB were investigated by particle size analysis, TEM, SEM, UV-vis spectroscopy and FT-IR. It was found that the PDA/SiO2 nanocomposites exhibited slightly larger particle sizes than those of other samples. The PDA/SiO2 nanocomposites with a core-shell structure were almost regarded as spherical-shaped particles. Cationic surfactants, especially CTAB, presumably affected the particle size and shape of PDA/SiO2 nanocomposites due to the disruption of hydrogen bonding between PDA head group and ammonium group. The colorimetric response of both PDA/SiO2/surfactant and surfactant-free PDA/SiO2 aqueous solutions directly changed in relation to time and temperature; thus they were expected to be applied as a new polymer-based time-temperature indicator (TTI).

Nopwinyuwong, Atchareeya; Kitaoka, Takuya; Boonsupthip, Waraporn; Pechyen, Chiravoot; Suppakul, Panuwat

2014-09-01

150

Polymer-surfactant and protein-surfactant interactions.  

PubMed

The phase behavior and some physicochemical properties of homopolymers (HP) and hydrophobically modified (HMP) polymers, as well as of polyelectrolytes (PE) and proteins (PR), in the presence of aqueous surfactants, or their mixtures, are discussed. Mixing the above components gives rise to the formation of organized phases, whose properties are controlled by polymer and/or surfactant content, temperature, pH, and ionic strength. Depending on the nature, concentration, and net charge of both solutes, molecular solutions, polymer-surfactant complexes, adsorption onto micelles and vesicles, gels, liquid crystalline phases, and precipitates are observed. Such rich polymorphic behavior is the result of a complex balance between electrostatic, excluded volume, van der Waals, and other contributions to overall system stability. It is also modulated by the molecular details and architecture of both the polymer and the surfactant. Different experimental methods allow investigation of the above systems and getting information on the nature of polymer-surfactant interactions (PSI). Surface adsorption and thermodynamic methods, together with investigation of the phase diagrams, give information on the forces controlling PSI and on the existence of different phases. Conductivity, QELS and viscosity allow estimating the size and shape of polymer-surfactant (protein-surfactant) complexes. Optical microscopy, cryo-TEM, AFM, NMR, fluorescence, and relaxation methods give more information on the above systems. Use of the above mixtures in controlling gelation, surface covering, preparing dielectric layers, and drug release is suggested. PMID:15848412

La Mesa, Camillo

2005-06-01

151

Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.  

PubMed

Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills. PMID:24932773

Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

2014-07-23

152

Oil emulsions of fluorosilicone fluids  

SciTech Connect

Emulsions of fluorosilicone fluids in mineral oil are disclosed. These emulsions are stabilized by a polydimethylsiloxane-polybutadiene copolymer or a polydimethylsiloxane-hydrogenated polybutadiene copplymer. The emulsions are an effective foam suppressant for organic liquids, especially crude petroleum.

Keil, J. W.

1985-08-27

153

Fluorescence probing of albumin-surfactant interaction.  

PubMed

Protein-surfactant interactions were studied using bovine serum albumin (BSA) and the three surfactants sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and poly(oxyethylene)isooctyl phenyl ether (TX-100). The surfactants used belong to three broad classes, i.e., anionic, cationic, and nonionic. These categories of surfactants were used to elucidate the mechanism of surfactant binding to BSA, at pH 7. The interactions were followed fluorimetrically using both intrinsic tryptophan (Trp) fluorescence and the fluorescence of an external label. The aggregation behavior of the surfactants were studied in the presence of BSA. Steady-state fluorescence studies indicate that all three surfactants bind to BSA in a cooperative manner. This cooperative binding affects the binding of the external label to BSA. All these effects are also manifested in time-resolved fluorescence studies. The effects of surfactants on acrylamide quenching and energy transfer from Trp in BSA to bound dye provided valuable insights into the structural modification of BSA in presence of surfactants. The surfactant-induced conformational change of BSA was also confirmed by circular dichroism studies. However, among the three categories of surfactants, the nonionic surfactant shows the least interaction with BSA. PMID:15837473

De, Swati; Girigoswami, Agnishwar; Das, Susmita

2005-05-15

154

BEHAVIOR OF SURFACTANT MIXTURE AT SOLID/LIQUID AND OIL/LIQUID INTERFACE IN CHEMICAL FLOODING SYSTEMS  

SciTech Connect

The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analytical ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.

Prof. P. Somasundaran

2002-03-01

155

Influence of thickness in the holographic emulsion composed by rosin and BPB dye  

NASA Astrophysics Data System (ADS)

We analyze diffraction gratings behavior recorded on a phase holographic emulsion. This emulsion is composed with resin and bromophenol blue dye (BPB) they have a diffraction efficiency (?) from 0.22 to 0.615% order, and their thickness are different in the holographic emulsion.

Ibarra, Juan C.; Ortiz-Gutierrez, Mauricio; Olivares-Perez, Arturo; Perez-Cortes, Mario

2004-10-01

156

Phase behavior of cetyltrimethylammonium surfactants with oligo carboxylate counterions mixed with water and decanol: attraction between charged planes or spheres with oligomeric counterions.  

PubMed

Cetyltrimethylammonium surfactants with a range of oligo carboxylate anions bearing 2, 3, or 4 negative charges have been synthesized, and their respective behaviors in binary mixtures with water and in ternary mixtures with added decanol have been investigated. In binary mixtures with water, all surfactants formed nearly spherical micelles at high water contents; however, the interactions between micelles varied strongly with the number of charges in the counterion. Micelles with divalent counterions were generally miscible with water, whereas micelles with tri- or tetravalent counterions demixed in one concentrated and one dilute phase. Addition of decanol resulted in all cases in the appearance of a lamellar phase, and all investigated oligo carboxylate anions (di-, tri-, and tetravalent) gave rise to a strong attraction between the lamellar planes, resulting in a limited swelling (up to 35-40 wt % water) of the lamellar phase in contact with excess water. These experiments confirm the theoretically predicted influence of aggregate geometry (spheres or planes) on the attraction between colloidal aggregates neutralized by multivalent counterions. Further addition of decanol resulted in the appearance of a second birefringent phase in equilibrium with the lamellar phase. SWAXS showed this phase to be lamellar and to display short-range order that disappeared upon heating. This phase is identified as a lamellar gel phase (Lbeta-phase). PMID:17985867

Norrman, Jens; Piculell, Lennart

2007-11-29

157

Improving oral bioavailability of metformin hydrochloride using water-in-oil microemulsions and analysis of phase behavior after dilution.  

PubMed

Microemulsions show significant promise for enhancing the oral bioavailability of biopharmaceutics classification system (BCS) class II drugs, but how about class III drugs remains unclear. Here we employed metformin hydrochloride (MET) as the model drug and prepared drug-loaded water-in-oil (W/O) microemulsions selecting different hydrophile-lipophile balance (HLB) surfactant systems, using HLB 8 as a cut-off. We examined the phase behaviors of microemulsions after dilution and attempted to correlate these behaviors to drug oral bioavailability. ME-A, including a lower content of surfactants (35%), underwent a transition of W/O emulsion and then became a stable O/W emulsion in a light milky appearance; ME-B, in contrast, introducing a higher content of surfactants (45%), still remained transparent or semitransparent upon dilution. Unexpectedly, ME-A showed significantly higher oral bioavailability, which can be reduced by blocking the lymphatic absorption pathway. Comparatively, the AUC of ME-B is lower, close to MET solution. Both microemulsions behaved similarly in intestinal perfusion test because of the dilution before perfusion, lacking of the important phase transition of W/O emulsion. These findings suggest that W/O microemulsions improve oral bioavailability of BCS class III drug by promoting lymphatic absorption. Analyzing the phase behavior of microemulsions after dilution may help predict the drug oral bioavailability and optimize formulations. PMID:25014370

Li, Yuan; Song, Jiaqi; Tian, Ning; Cai, Jie; Huang, Meihong; Xing, Qiao; Wang, Yalong; Wu, Chuanbin; Hu, Haiyan

2014-10-01

158

Phase Behavior and Emulsion Stability of the Aot/Decane/ Water/NaCl System at Very Low Volume Fractions of Oil  

E-print Network

The stability of a ternary system composed of decane/water/Aerosol-OT and salt is revisited. Phase diagrams and emulsions similar in composition to those previously studied by Hofman and Stein [Hofman, 1991] were made. Ac- cording to our results, and contrary to the common experience, these systems exhibit a maximum of stability very close to the balance zone.

Yithanllili Bastidas; Lisset Hernaandez; Issarly Rivas; Kareem Rahn-Chique; German Urbina-Villalba

2014-10-09

159

FAT EMULSION COMPOSITION ALTERS INTAKE AND THE EFFECTS OF BACLOFEN  

PubMed Central

Thickened oil-in-water emulsions are useful model foods in rat studies due to their high acceptance and similarity to foods consumed by humans. Previous work from this laboratory used oil-in-water emulsions thickened with a biopolymer blend containing starch. Intake and effects of baclofen, a GABA-B agonist that decreases fat intake and drug self-administration, were reported, but the contribution of starch was not assessed. In the present study, intake and effects of baclofen were assessed in rats using emulsions prepared with two fat types (32% vegetable shortening, 32% corn oil) and thickened with three biopolymer blends. One biopolymer blend contained starch and the other two did not. Daily 1-h intake of the vegetable shortening emulsion containing starch was significantly greater than the other emulsions. When starch was added to the emulsions originally containing no starch, intake significantly increased. Baclofen generally reduced intake of all emulsions regardless of starch content and stimulated intake of chow. However, effects were more often significant for vegetable shortening emulsions. This report: 1) demonstrates that products used to prepare thickened oil-in-water emulsions have significant effects on rat ingestive behavior, and 2) confirms the ability of baclofen to reduce consumption of fatty foods, while simultaneously stimulating intake of chow. PMID:21855586

Wang, Y; Wilt, DC; Wojnicki, FHE; Babbs, RK; Coupland, JN; Corwin, RLC

2011-01-01

160

Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium  

NASA Astrophysics Data System (ADS)

Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs = 34.10 ?M, T = 50 °C, pH = 3.5, and CCR = 160 mg/L for the congo red system, and Cs = 34.10 ?M, T = 50 °C, pH = 6.1, and CDR80 = 110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model.

Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

2015-02-01

161

Mixtures of mucin and oppositely charged surfactant aggregates with varying charge density. Phase behavior, association, and dynamics.  

PubMed

The nonionic surfactant Tween80 is a commonly used excipient in drug formulations containing an active substance with low aqueous solubility. Model drug vehicles with varying charge density were obtained by mixing Tween80 (PS-80) with the cationic surfactant Tetradecyltrimethylammonium chloride (TTAC), thus forming mixed micelles. The micelles were mixed with the negatively charged polyelectrolyte mucin, which is a component in the protective mucus layer covering epithelial cell linings. Depending on the composition of the mixture, complex-formation could be followed by precipitation. Using X-ray diffraction, it was found that the precipitate contained a lamellar phase with properties sensitive to the proportion of PS-80. Higher amounts of PS-80 were found to oppose phase separation. Further analysis in the one-phase region, or alternatively of the supernatant of two-phase samples, by (1)H NMR, HPLC, and diffusion measurements with PGSE-NMR led to the conclusions that at low proportion of PS-80 aggregates composed of mixed (PS-80 and TTAC) micelles and mucin were formed, whereas increased concentrations of PS-80 favored the dissolution of the precipitate and limited the interactions between mixed micelles and the polymer. PMID:16042429

Lafitte, Géraldine; Thuresson, Krister; Söderman, Olle

2005-08-01

162

Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: process optimization, kinetics and equilibrium.  

PubMed

Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs=34.10 ?M, T=50°C, pH=3.5, and CCR=160 mg/L for the congo red system, and Cs=34.10 ?M, T=50°C, pH=6.1, and CDR80=110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model. PMID:25305604

Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

2015-02-25

163

Front-face fluorescence spectroscopy study of globular proteins in emulsions: influence of droplet flocculation.  

PubMed

Measurement of the intensity (I(MAX)) and/or wavelength (lambda(MAX)) of the maximum in the tryptophan (TRP) emission spectrum using front-face fluorescence spectroscopy (FFFS) can be used to provide information about the molecular environment of proteins in nondiluted emulsions. Many protein-stabilized emulsions in the food industry are flocculated, and therefore, we examined the influence of droplet flocculation on FFFS. Stock oil-in-water emulsions stabilized by bovine serum albumin were prepared by high-pressure valve homogenization (30 wt % n-hexadecane, 0.35 wt % BSA, pH 7). These emulsions were used to create model systems with different degrees of droplet flocculation, either by changing the pH, adding surfactant, or adding xanthan. Emulsions (21 wt % n-hexadecane, 0.22 wt % BSA) with different pH (5 and 7) and molar ratios of Tween 20 to BSA (R = 0-131) were prepared by dilution of the stock emulsion. As the surfactant concentration was increased, the protein was displaced from the droplet surfaces, which caused an increase in both I(MAX) and lambda(MAX), because of the change in TRP environment. The dependence of I(MAX) and lambda(MAX) on surfactant concentration followed a similar pattern in emulsions that were initially flocculated (pH 5) and nonflocculated (pH 7). Relatively small changes in FFFS emission spectra were observed in emulsions (21 wt % n-hexadecane, 0.22 wt % BSA, pH 7) with different levels of depletion flocculation induced by adding xanthan. These results suggested that droplet flocculation did not have a major impact on FFFS. This study shows that FFFS is a powerful technique for nondestructively providing information about the molecular environment of proteins in concentrated and flocculated protein-stabilized emulsions. Nevertheless, in general the suitability of the technique may also depend on protein type and the nature of the physicochemical matrix surrounding the proteins. PMID:12696925

Rampon, V; Genot, C; Riaublanc, A; Anton, M; Axelos, M A V; McClements, D J

2003-04-23

164

Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure.  

PubMed

The initial characteristics of emulsions and the rearrangement of the oil droplets in the film matrix during film drying, which defines its microstructure, has an important role in the physical properties of the emulsion-based films. The objective of this work was to study the effect of the microstructure (two droplet size distributions) and stability (with or without surfactant) of HPMC oil-in-water emulsions over physical properties of HPMC emulsion-based edible films. HPMC was used to prepare sunflower oil-in-water emulsions containing 0.3 or 1.0% (w/w) of oil with or without SDS, as surfactant, using an ultrasonic homogenizer. Microstructure, rheological properties and stability of emulsions (creaming) were measured. In addition, microstructure, coalescence of oil droplets, surface free energy, optical and mechanical properties and water vapor transfer of HPMC films were evaluated. Image analysis did not show differences among droplet size distributions of emulsions prepared at different oil contents; however, by using SDS the droplet size distributions were shifted to lower values. Volume mean diameters were 3.79 and 3.77 ?m for emulsions containing 0.3 and 1.0% without surfactant, respectively, and 2.72 and 2.71 ?m for emulsions with SDS. Emulsions formulated with 1.0% of oil presented higher stability, with almost no change during 5 and 3 days of storage, for emulsions with and without SDS, respectively. Internal and surface microstructure of emulsion-based films was influenced by the degree of coalescence and creaming of the oil droplets. No effect of microstructure over the surface free energy of films was found. The incorporation of oil impaired the optical properties of films due to light scattering of light. Addition of oil and SDS decreased the stress at break of the emulsion-based films. The replace of HPMC by oil and SDS produce a lower "amount" of network structure in the films, leading to a weakening of their structure. The oil content and SDS addition had an effect over the microstructure and physical properties of HPMC-based emulsions which lead to different microstructures during film formation. The way that oil droplets were structured into the film had an enormous influence over the physical properties of HPMC films. PMID:22840052

Zúñiga, R N; Skurtys, O; Osorio, F; Aguilera, J M; Pedreschi, F

2012-10-01

165

Structures of octenylsuccinylated starches: effects on emulsions containing ?-carotene.  

PubMed

Starches with different amylopectin contents and different molecular sizes prepared using acid hydrolysis were hydrophobically modified using octenylsuccinic anhydride (OSA). The OSA-modified starches were used as surfactants to stabilize emulsions of ?-carotene and canola oil dispersed in water. The objective of this study is to investigate the relationship between starch molecular structure and the chemical stability of the emulsified ?-carotene, as well as the colloidal stability of emulsion droplets during storage. The oil droplet size in emulsions was smaller when starch had (a) lower hydrodynamic volume (Vh) and (b) higher amylopectin content. The oxidative stability of ?-carotene was similar across samples, with higher results at increased amylopectin content but higher Vh. Steric hindrance to coalescence provided by adsorbed OSA-modified starches appears to be improved by more rigid molecules of higher degree of branching. PMID:25129720

Sweedman, Michael C; Hasjim, Jovin; Schäfer, Christian; Gilbert, Robert G

2014-11-01

166

DNA interaction with cis- and trans- isomers of photosensitive surfactant  

NASA Astrophysics Data System (ADS)

Interaction between DNA and photosensitive cationic surfactant in a solution is studied. Studies were conducted to examine the impact of the surfactant in its cis- conformation on the size of DNA molecule and also to investigate the phase behavior of the system depending on DNA and surfactant concentration. We conclude that trans- isomer of surfactant requires its smaller concentration to reach the DNA compaction compared with cis- isomer received by UV radiation of solutions. Studies of DNA-surfactant systems were performed by means of spectrophotometry and viscometry. Variation of surfactant concentration enables us to determine the precipitation zone on phase diagram. From the viscosity study it can be indicated that precipitation zone is narrower for UV-radiated surfactant and it shifts to higher surfactant concentration. Also we examine the reversibility of DNA compaction in systems with the surfactant in its trans- form.

Unksov, I. N.; Kasyanenko, N. A.

2014-12-01

167

Semi-solid Sucrose Stearate-Based Emulsions as Dermal Drug Delivery Systems  

PubMed Central

Mild non-ionic sucrose ester surfactants can be employed to produce lipid-based drug delivery systems for dermal application. Moreover, sucrose esters of intermediate lipophilicity such as sucrose stearate S-970 possess a peculiar rheological behavior which can be employed to create highly viscous semi-solid formulations without any further additives. Interestingly, it was possible to develop both viscous macroemulsions and fluid nanoemulsions with the same chemical composition merely by slight alteration of the production process. Optical light microscopy and cryo transmission electron microscopy (TEM) revealed that the sucrose ester led to the formation of an astonishing hydrophilic network at a concentration of only 5% w/w in the macroemulsion system. A small number of more finely structured aggregates composed of surplus surfactant were likewise detected in the nanoemulsions. These discoveries offer interesting possibilities to adapt the low viscosity of fluid O/W nanoemulsions for a more convenient application. Moreover, a simple and rapid production method for skin-friendly creamy O/W emulsions with excellent visual long-term stability is presented. It could be shown by franz-cell diffusion studies and in vitro tape stripping that the microviscosity within the semi-solid formulations was apparently not influenced by their increased macroviscosity: the release of three model drugs was not impaired by the complex network-like internal structure of the macroemulsions. These results indicate that the developed semi-solid emulsions with advantageous application properties are highly suitable for the unhindered delivery of lipophilic drugs despite their comparatively large particle size and high viscosity. PMID:24310496

Klang, Victoria; Schwarz, Julia C.; Matsko, Nadejda; Rezvani, Elham; El-Hagin, Nivine; Wirth, Michael; Valenta, Claudia

2011-01-01

168

Influence of the fat characteristics on the physicochemical behavior of oil-in-water emulsions based on milk proteins-glycerol esters mixtures  

Microsoft Academic Search

Oil-in-water emulsions based on 10% milk protein preparation, 0.3% mono-di-glycerides (MDG) and 8% vegetable oil were prepared for models typifying ice cream formulations. Two MDG (saturated and partially unsaturated) and four fats (oleic oil, hydrogenated and refined coconut oils, refined palm oil) were chosen to investigate the interactions occurring between the oil phase, the MDG and the milk proteins. Influence

C. Granger; P. Barey; N. Combe; P. Veschambre; M. Cansell

2003-01-01

169

Reversible pH- and photocontrollable carbohydrate-based surfactants.  

PubMed

The parallel synthesis and properties of a library of photoswitchable surfactants comprising a hydrophobic butylazobenzene tail-group and a hydrophilic carbohydrate head-group, including the first surfactants to exhibit dual photo- and pH-responsive behavior, is reported. This new generation of surfactants shows varying micelle morphologies, photocontrollable surface tension, and pH-induced aggregation and adsorption. PMID:25212733

Tabor, Rico F; Tan, David D; Han, Sean S; Young, Scott A; Seeger, Zoe L E; Pottage, Matthew J; Garvey, Christopher J; Wilkinson, Brendan L

2014-10-20

170

Favorable Attributes of Alkaline-Surfactant-Polymer Flooding  

Microsoft Academic Search

Summary A laboratory study of the alkaline-surfactant-polymer (ASP) pro- cess was conducted. It was found from phase-behavior studies that for a given synthetic surfactant and crude oil containing naph- thenic acids, optimal salinity depends only on the ratio of the moles of soap formed from the acids to the moles of synthetic surfactant present. Adsorption of anionic surfactants on carbonate

Shunhua Liu; Danhua Leslie Zhang; Wei Yan; Maura Puerto; George Hirasaki; Clarence Miller

2008-01-01

171

Surfactant Concentration Regime in Miniemulsion Polymerization for the Formation of MMA Nanodroplets by High-Pressure Homogenization  

PubMed Central

This article focuses on the adequate surfactant concentration regime in which MMA droplets are stabilized sufficiently against coalescence during high-pressure homogenization but still no diffusion processes from droplets to micelles take place in the polymerization. Monomer miniemulsions with different surfactant concentrations were prepared with different energy inputs. Emulsions result that depend either on the surfactant concentration or on the energy input of the homogenization process. For both cases, the occupancy of the interface is compared as a function of the droplet size. It is shown that the surfactant concentration needed for the stabilization of a specified interface area decreases with increasing droplet size. For the dependence of droplet size on the energy input, it is shown that more surfactant can be applied before emulsion polymerization starts, but the applicable surfactant concentration is lower than the cmc and also depends on droplet size. PMID:21314152

2011-01-01

172

pH-dependent and pH-independent self-assembling behavior of surfactant-like peptides  

NASA Astrophysics Data System (ADS)

Self-assembly of amphiphilic peptides designed during the last years by several research groups leads to a large variety of 3D-structures that already found applications in stabilization of large protein complexes, cell culturing systems etc. In this report, we present synthesis and characterization of two novel families of amphiphilic peptides KAn and KAnW (n=6,5,4) that exhibits clear charge separation controllable by pH of the environment. As the pH changes from acidic to basic, the charge on the ends of the peptide molecule varies eventually leading to reorganization of KAn micelles and even micellar inversion. On contrary, the bulky geometry of the tryptophan residue in KAnW limits the variation of the surfactant parameter and hence largely prevents assembly into spherical or cylindrical micelles while favouring flatter geometries. The studied short peptide families demonstrate formation of ordered aggregates with well-defined secondary structure from short unstructured peptides and provide a simple system where factors responsible for self-assembly can be singled out and studied one by one. The ability to control the shape and structure of peptide aggregates can provide basis for novel designer pH sensitive materials including drug delivery and controlled release systems.

Gurevich, Leonid; Fojan, Peter

2012-02-01

173

Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses.  

PubMed

Nanocelluloses are bio-based nanoparticles of interest as stabilizers for oil-in-water (o/w) Pickering emulsions. In this work, the surface chemistry of nanocelluloses of different length, nanofibrillated cellulose (NFC, long) and cellulose nanocrystals (CNC, short), was successfully tailored by chemical modification with lauroyl chloride (C12). The resulting nanofibers were less hydrophilic than the original and able to stabilize water-in-oil (w/o) emulsions. The combination of the two types of nanocelluloses (C12-modified and native) led to new surfactant-free oil-in-water-in-oil (o/w/o) double emulsions stabilized by nanocellulose at both interfaces. Characterization was performed with respect to droplet size distribution, droplet stability over time, and stability after centrifugation. Nanocellulose-based Pickering emulsions can be designed with a substantial degree of control, as demonstrated by the stability of the chemically tailored NFC double emulsions. Furthermore, it was demonstrated that increased nanofiber length leads to increased stability. PMID:25046221

Cunha, Ana G; Mougel, Jean-Bruno; Cathala, Bernard; Berglund, Lars A; Capron, Isabelle

2014-08-12

174

Surface shear inviscidity of soluble surfactants.  

PubMed

Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 ?N·s/m. This conflicts directly with almost all previous studies, which reported values up to 10(3)-10(4) times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high- and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants. PMID:24563383

Zell, Zachary A; Nowbahar, Arash; Mansard, Vincent; Leal, L Gary; Deshmukh, Suraj S; Mecca, Jodi M; Tucker, Christopher J; Squires, Todd M

2014-03-11

175

Ostwald ripening of water-in-hydrocarbon emulsions.  

PubMed

The purposes of this study are to determine Ostwald ripening rates in water-in-oil (W/O) emulsions and evaluate the potential application of the LSW theory to W/O emulsions. Water-in-oil emulsions were prepared by mixing water and hydrocarbon phases containing Span 83 and homogenizing. n-Heptane, n-decane, n-dodecane, and n-tetradecane were used to obtain a range of solubilities. A linear increase in the cube of the droplet size with time was observed (within the initial period of 1-2 h after emulsion preparation), supporting the LSW theory. Based on this linear relationship, Ostwald ripening rates were determined to be 3.0 x 10(-24), 2.3 x 10(-24), 1.8 x 10(-24), and 5.8 x 10(-25) m3 s(-1) for water-in-heptane, water-in-decane, water-in-dodecane, and water-in-tetradecane emulsions, respectively. These values are in agreement with theoretical predictions calculated using the LSW equation. It was observed that the ripening process gradually slowed, resulting in deviations from the LSW theory. This was attributed to the effect of the interfacial surfactant film through which the dispersed material has to diffuse during Ostwald ripening. This effect is not taken into consideration by the LSW theory. The results showed that Ostwald ripening of W/O emulsions was less sensitive to the nature of oil used and slower compared to O/W emulsions consisting of the same hydrocarbons. PMID:16256672

Jiao, Jim; Burgess, Diane J

2003-08-15

176

Thermal Diffusion Behavior of Nonionic Surfactants in Water Hui Ning, Rio Kita,, Hartmut Kriegs, Jutta Luettmer-Strathmann,| and Simone Wiegand*,  

E-print Network

. Surfactant systems often exhibit interesting physicochemical properties due to the difference in chemical move toward the cold region in a temperature gradient. For C12E6/water at a high surfactant fluid may be driven by composition, temperature, or pressure gradients. For mixtures subject

Luettmer-Strathmann, Jutta

177

Emulsions for interfacial filtration.  

SciTech Connect

We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

2006-11-01

178

TOPICAL REVIEW: Disjoining pressure in thin liquid foam and emulsion films—new concepts and perspectives  

NASA Astrophysics Data System (ADS)

The present review is a topical survey of the disjoining pressure in thin liquid foam and emulsion films from both the experimental and the theoretical points of view. Section 2 deals with the latest research work on experimental techniques with which the disjoining pressure ? in foam, emulsion, and pseudo-emulsion films can be measured. Although a lot of techniques are available, the question of the origin of the charges at the water/air and the water/oil interfaces of films, which are stabilized by non-ionic surfactants, has not yet been answered. We address this question in section 3, reviewing the latest relevant literature. The relevance of structural forces for the disjoining pressure is outlined in section 4, which focuses on films which are stabilized by surfactant/polyelectrolyte mixtures.

Stubenrauch, Cosima; von Klitzing, Regine

2003-07-01

179

Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion  

NASA Astrophysics Data System (ADS)

Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

2014-08-01

180

Simulation of dynamic behavior of surfactants on a hydrophobic surface using periodic-shell boundary molecular dynamics.  

PubMed

The adsorption and aggregation behaviors of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on a hydrophobic graphite surface were examined using a novel molecular dynamics (MD) simulation with the periodic-shell boundary condition (PSBC). Differences in the adsorption behavior of SDS and CTAB molecules were clearly shown on the hydrophobic surface. Unexpectedly, the SDS molecules approached the graphite surface with their hydrophilic head groups. This unexpected approach mode was thought to be due to the aqueous layer on the graphite surface. The hydrophobic moiety of SDS molecules repeatedly adsorbed and desorbed on the graphite surface. In addition, SDS molecules kept moving on the graphite surface; thus, they did not form a stable adsorption layer. In contrast to SDS, the hydrophobic moiety of CTAB molecules approached the graphite surface at the primary step of adsorption. The hydrophobic moieties of CTAB molecules came close to each other, whereas the hydrophilic groups separated from one another. This result suggests that the CTAB molecules form molecular assemblies with a curved structure. The simulation results were consistent with the experimental observations. A clear difference between the adsorption behavior of SDS and CTAB molecules was revealed by MD simulations with PSBC. PMID:21427513

Minami, Daiki; Horikoshi, Satoshi; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

2011-01-01

181

Kinetics of Emulsion Polymerization  

Microsoft Academic Search

As a basis for understanding emulsion polymerization, the kinetics of free radical reactions in isolated loci is discussed subject to the condition that the free radicals are supplied to the loci from an external source. Three cases of interest are considered: that in which the average number of free radicals per locus is small compared with unity, that in which

Wendell V. Smith; Roswell H. Ewart

1948-01-01

182

Novel anhydrous emulsions: formulation as controlled release vehicles.  

PubMed

Novel anhydrous emulsions, which may offer some advantages as depot or reservoir vehicles for lipophilic drugs in controlled delivery systems, were formulated using castor oil as the disperse phase and dimethicone or cyclopentasiloxane as the continuous phase. Among the emulsifiers studied only silicone surfactants (cyclomethicone/dimethicone copolyols) which were miscible in silicone oil stabilized the emulsions. Cyclomethicone/PEG/PPG-18/18 Dimethicone and Cyclopentasiloxane/PEG/PPG-18/18 Dimethicone were more effective in lowering the interfacial tension between castor oil and both dimethicone and cyclopentasiloxane. Emulsions formulated using either of these two surfactants were found to be stable against phase separation and exhibited least globule growth over 168 h. The average particle size was found to be 2-6 microm in these systems formed by probe sonication. Slow release patterns of 3H-dehydroepiandrosterone (DHEA) and 3H-dexamethasone solubilized in the disperse castor oil phase into an aqueous dialyzing medium were observed over 48 h. PMID:15941632

Suitthimeathegorn, Orawan; Jaitely, Vikas; Florence, Alexander T

2005-07-25

183

Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation.  

PubMed

Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation. PMID:25346266

Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Samantha J; He, Jibao; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

2014-11-18

184

Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil.  

PubMed

Cellulose nanofibrils (CNF) were incorporated in water-in-oil (W/O) microemulsions and emulsions, as well as water-in-oil-in-water (W/O/W) multiple emulsions using soybean oil. The addition of CNF to the aqueous phase expanded the composition range to obtain W/O/W emulsions. CNF also increased the viscosity of the continuous phase and reduced the drop size both of which increased the stability and effective viscosity of the emulsions. The effects of oil type and polarity on the properties of the W/O/W emulsions were tested with limonene and octane, which compared to soybean oil produced a smaller emulsion drop size, and thus a higher emulsion viscosity. Overall, CNF are a feasible alternative to conventional polysaccharides as stability enhancers for normal and multiple emulsions that exhibit strong shear thinning behavior. PMID:25617611

Carrillo, Carlos A; Nypelö, Tiina E; Rojas, Orlando J

2015-05-01

185

Diffraction-like effects in a highly concentrated W/O emulsion: a PFG NMR study.  

PubMed

Diffraction-like effects have been observed by applying pulsed field gradient (PFG) nuclear magnetic resonance (NMR) to a highly concentrated water-in-oil (W/O) emulsion, made up of the nonionic surfactant C12E4 [CH3(CH2)11(OCH2CH2)4OH], n-decane, and brine [1 wt% NaCl(aq) solution]. The pulsed field gradient NMR data show one pronounced maximum and the shoulder of a second maximum in the attenuation curve of the NMR signal from water, the so-called Bragg interference peaks. From the diffraction-like peaks, the average distance (center to center) between the emulsion droplets can be obtained, in this case related to the average size of an emulsion droplet. Furthermore, we note that the long-term stability of the emulsion can be followed by pulsed field gradient NMR. PMID:9803929

Håkansson, B; Pons, R; Söderman, O

1998-01-01

186

Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux.  

PubMed

A superhydrophobic-superoleophilic PVDF membrane is fabricated via an inert solvent-induced phase inversion for effective separation of both micrometer and nanometer-sized surfactant-free and surfactant-stabilized water-in-oil emulsions solely driven by gravity, with high separation efficiency (oil purity in filtrate after separation > 99.95 wt%) and high flux, which is several times higher than those of commercial filtration membranes and reported materials with similar permeation properties. PMID:23418068

Zhang, Wenbin; Shi, Zhun; Zhang, Feng; Liu, Xia; Jin, Jian; Jiang, Lei

2013-04-11

187

Removal of pesticides from aqueous solutions using liquid membrane emulsions  

SciTech Connect

Extractive liquid membrane technology is based on a water-in-oil emulsion as the vehicle to effect separation. An aqueous internal reagent phase is emulsified into an organic phase containing a surfactant and optional complexing agents. The emulsion, presenting a large membrane surface area, is then dispersed in an aqueous continuous phase containing the species to be removed. The desired species is transferred from the continuous, phase through the organic liquid membrane and concentrated in the internal reagent phase. Extraction and stripping occur simultaneously rather than sequentially as in conventional solvent extraction. Experiments were conducted to assess the feasibility of using liquid membranes to extract pesticides from rinsewaters typical of those generated by fertilizer/agrichemical dealers. A liquid membrane emulsion containing 10% NaOH as the internal reagent phase was used to extract herbicides from aqueous solution at a continuous phase:emulsion ratio of 5:1. Removals of 2,4-D, MCPA, Carbaryl, Diazinon, and Atrazine were investigated.

Norwood, V.M. III

1991-12-31

188

Removal of pesticides from aqueous solutions using liquid membrane emulsions  

SciTech Connect

Extractive liquid membrane technology is based on a water-in-oil emulsion as the vehicle to effect separation. An aqueous internal reagent phase is emulsified into an organic phase containing a surfactant and optional complexing agents. The emulsion, presenting a large membrane surface area, is then dispersed in an aqueous continuous phase containing the species to be removed. The desired species is transferred from the continuous, phase through the organic liquid membrane and concentrated in the internal reagent phase. Extraction and stripping occur simultaneously rather than sequentially as in conventional solvent extraction. Experiments were conducted to assess the feasibility of using liquid membranes to extract pesticides from rinsewaters typical of those generated by fertilizer/agrichemical dealers. A liquid membrane emulsion containing 10% NaOH as the internal reagent phase was used to extract herbicides from aqueous solution at a continuous phase:emulsion ratio of 5:1. Removals of 2,4-D, MCPA, Carbaryl, Diazinon, and Atrazine were investigated.

Norwood, V.M. III.

1991-01-01

189

Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance  

NASA Astrophysics Data System (ADS)

Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.

Sung, Meagan

190

Theoretical and simulations-based modeling of micellization in linear and branched surfactant systems  

E-print Network

Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of ...

Mendenhall, Jonathan David

2012-01-01

191

Emulsion Ripening through Molecular Exchange at Droplet Contacts.  

PubMed

Two coarsening mechanisms of emulsions are well established: droplet coalescence (fusion of two droplets) and Ostwald ripening (molecular exchange through the continuous phase). Here a third mechanism is identified, contact ripening, which operates through molecular exchange upon droplets collisions. A contrast manipulated small-angle neutron scattering experiment was performed to isolate contact ripening from coalescence and Ostwald ripening. A kinetic study was conducted, using dynamic light scattering and monodisperse nanoemulsions, to obtain the exchange key parameters. Decreasing the concentration or adding ionic repulsions between droplets hinders contact ripening by decreasing the collision frequency. Using long surfactant chains and well-hydrated heads inhibits contact ripening by hindering fluctuations in the film. Contact ripening can be controlled by these parameters, which is essential for both emulsion formulation and delivery of hydrophobic ingredients. PMID:25504340

Roger, Kevin; Olsson, Ulf; Schweins, Ralf; Cabane, Bernard

2015-01-26

192

Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane.  

PubMed

Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water-oil-water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0-fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1-17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. PMID:24930827

Bhowal, Saibal; Priyanka, B S; Rastogi, Navin K

2014-01-01

193

Effect of grafting architecture on the surfactant-like behavior of clay-poly(NiPAAm) nanohybrids.  

PubMed

A new class of clay-polymer nanohybrids was synthesized by grafting poly(N-isopropylacrylamide) (PNiPAAm) on the edge of nanoscale silicate platelets (NSPs) through covalently bonded linkers to form various architectures. The inherent ionic character of NSPs and the organic moieties of isopropyl amide in PNiPAAms impart surface active properties to the nanohybrids. Surface tension and particle size measurements were used to determine the critical micelle concentrations (CMCs) of the nanohybrids. It was found that PNiPAAm brushes grafted onto NSPs with the single-headed linkers are loosely packed and can expand easily in water causing inter-hybrid interactions. In contrast, PNiPAAm brushes grafted onto NSPs with the double-headed linkers may alternatively exhibit intra-hybrid interactions and the hybrids tend to exist in a dispersed state. Consequently, the latter has a higher CMC than the former. In addition, the CMC can be tailored by adjusting the grafting density of the linkers on the NSP surfaces. The densely grafted nanohybrids exhibit close inter-hybrid contact resulting in a lower CMC than that for the sparsely grafted nanohybrids. Molecular simulations were also performed to study the effects of the polymer-grafted architecture and the density of the linkers on the micellar behavior of NSP-PNiPAAm hybrids. The simulation results were found to be in good agreement with the experimental observations. Thus, it is possible to control the surface active properties and aggregation of the clay-PNiPAAm hybrids by manipulating the organic grafting architectures of the silicate platelets. PMID:22939253

Lin, Hsiao-Chu; Hsieh, Bi-Zen; Lin, Yung-Lung; Sheng, Yu-Jane; Lin, Jiang-Jen

2012-12-01

194

On formulating ophthalmic emulsions.  

PubMed

The formulation of dilute, transparent ophthalmic emulsions (eye drops) with long shelf lives is a challenge because of the tendency of the emulsion droplets to aggregate, particularly in the presence of the water-soluble polymers typically used in eye drops. While many functions of eye drops, such as lubricity and residence time in the eye, are promoted by high concentrations of high molecular weight water-soluble polymers, emulsified lipids and drugs aggregate in the eye drop bottle if the polymer concentration is above the critical flocculation concentration (CFC). The purpose is to develop a simple approach to predict the CFC for polymers based on information readily available in the literature. High molecular weight guar was hydrolyzed to give a series of guar samples spanning a wide range of average molecular weights. The CFC values and critical viscosity concentrations were measured as functions guar properties, using electrophoresis, dynamic light scattering and rheology measurements. The higher the guar molecular weight, the lower was the CFC, the maximum concentration that can be tolerated in the eye drop formulation. The guar CFC values were approximately equal to the overlap concentrations where guar molecules start to overlap in solution. We propose that the CFC can be estimated for any water-soluble polymer using the polymer molecular weight and the readily available Mark-Houwink parameters, thus providing a design rule for ophthalmic emulsions. PMID:25016540

Mafi, Roozbeh; Gray, Cameron; Pelton, Robert; Ketelson, Howard; Davis, James

2014-10-01

195

Thermodynamic analysis of the impact of the surfactant-protein interactions on the molecular parameters and surface behavior of food proteins.  

PubMed

This paper reports on the thermodynamics of the interactions between surfactants (anionic, CITREM, SSL; nonionic, PGE; zwitterionic, phospholipids) and food proteins (sodium caseinate, legumin) depending on the chemical structure and molecular state (individual molecules, micelles) of the surfactants and the molecular parameters (conformation, molar mass, charge) of the proteins under changes of pH in the range from 7.2 to 5.0 and temperature from 293 to 323 K. The marked effect of the protein-surfactant interactions on the molecular parameters (the weight-average molar mass, the gyration and hydrodynamic radii) and the thermodynamic affinity of the proteins for an aqueous medium were determined by a combination of static and dynamic laser light scattering. Thermodynamically justified schematic sketches of the molecular mechanisms of the complex formation between like-charged proteins and surfactants have been proposed. In response to the complex formation between the proteins and the surfactants, the more stable and fine foams have been detected generally. PMID:16398504

Semenova, Maria G; Belyakova, Larisa E; Polikarpov, Yurii N; Il'in, Michael M; Istarova, Tatyana A; Anokhina, Maria S; Tsapkina, Elena N

2006-01-01

196

Polyelectrolyte-surfactant complexes of poly[3,5-bis(dimethylaminomethyl)-4-hydroxystyrene]-block-poly(ethylene oxide) and sodium dodecyl sulfate: anomalous self-assembly behavior.  

PubMed

Polyelectrolyte-surfactant complexes (PE-S) formed by double hydrophilic cationic polyelectrolyte poly[3,5-bis(dimethylaminomethyl)-4-hydroxystyrene]-block-poly(ethylene oxide) (NPHOS-PEO) and anionic surfactant sodium dodecyl sulfate (SDS) in acidic aqueous solutions were studied by light scattering, SAXS, and scanning transmission electron microcopy in the environmental mode (wet-STEM) for various stoichiometric ratios between the numbers of SDS anions and dimethylaminomethyl groups of NPHOS in the complex. The obtained results show that the NPHOS-PEO/SDS system behaves differently from other systems of double hydrophilic block polyelectrolyte and oppositely charged ionic surfactant because it forms water-insoluble PE-S for compositions close to the zero net charge of the complex. This phase separation occurs, instead of the PE-S rearrangement to core-shell particles, which is hindered due to conformational rigidity of the NPHOS blocks. For the surfactant amounts below and above the precipitation region, large spherical aggregates and their clusters are present in the solution. SAXS measurements indicate that although the NPHOS-PEO/SDS system does not form the core-shell particles with the NPHOS/SDS core and the PEO shell as other PE-S of double hydrophilic polyelectrolytes, the aggregates contain domains of closely packed surfactant micelles which bind to both NPHOS polyelectrolyte blocks and PEO blocks. PMID:23590563

Hajduová, Jana; Procházka, Karel; Slouf, Miroslav; Angelov, Borislav; Mountrichas, Grigoris; Pispas, Stergios; St?pánek, Miroslav

2013-05-01

197

Changes of the diffraction efficiency due to emulsions thicknesses in holographic gratings  

NASA Astrophysics Data System (ADS)

We analyze the behavior of the diffraction efficiency as a function of the thickness of the relief holographic grating recorded on a phase emulsion composed by rosin and bromophenol blue (BPB) dye. The emulsions thicknesses are mainly due to the rosin quantity deposited on a substrate. We record holographic gratings on each emulsion using the spectral line ? = 457 nm of an argon laser, after this we developed the emulsion with a quick process. The diffraction efficiencies for each grating vary from 0.25% to 0.62%.

Ibarra, J. C.; Ortiz-Gutiérrez, M.; Olivares-Pérez, A.; Obregón-Pulido, G.; Pérez-Cortés, M.

2007-10-01

198

Anisotropic microparticles created by phase separation of polymer blends confined in monodisperse emulsion drops.  

PubMed

Anisotropic microparticles are promising as a new class of colloidal or granular materials due to their advanced functionalities which are difficult to achieve with isotropic particles. However, synthesis of the anisotropic microparticles with a highly controlled size and shape still remains challenging, despite their intense demands. Here, we report a microfluidic approach to create uniform anisotropic microparticles using phase separation of polymer blends confined in emulsion drops. Two different polymers are homogeneously dissolved in organic solvent at low concentration, which is microfluidically emulsified to produce oil-in-water emulsion drops. As the organic solvent diffuses out, small domains are formed in the emulsion drops, which are then merged, forming only two distinct domains. After the drops are fully consolidated, uniform anisotropic microparticles with two compartments are created. The shape of the resulting microparticles is determined by combination of a pair of polymers and type of surfactant. Spherical microparticles with eccentric core and incomplete shell are prepared by consolidation of polystyrene (PS) and poly(lactic acid) (PLA), and microparticles with single crater are formed by consolidation of PS and poly(methyl methacrylate) (PMMA); both emulsions are stabilized with poly(vinyl alcohol) (PVA). With surfactants of triblock copolymer, acorn-shaped Janus microparticles are obtained by consolidating emulsion drops containing PS and PLA. This microfluidic production of anisotropic particles can be further extended to any combination of polymers and colloids to provide a variety of structural and chemical anisotropy. PMID:25549662

Min, Nam Gi; Kim, Bomi; Lee, Tae Yong; Kim, Dahin; Lee, Doh C; Kim, Shin-Hyun

2015-01-27

199

Aggregate and emulsion properties of enzymatically-modified octenylsuccinylated waxy starches.  

PubMed

Sorghum and maize waxy starches were hydrophobically modified with octenylsuccinic anhydride (OSA) and treated with enzymes before being used to emulsify ?-carotene (beta,beta-carotene) and oil in water. Enzyme treatment with ?-amylase resulted in emulsions that were broken (separated) earlier and suffered increased degradation of ?-carotene, whereas treatment with pullulanase had little effect on emulsions. Combinations of surfactants with high and low hydrodynamic volume (V(h)) indicated that there is a relationship between V(h) and emulsion stability. Degree of branching (DB) had little direct influence on emulsions, though surfactants with the highest DB were poor emulsifiers due to their reduced molecular size. Results indicate that V(h) and branch length (including linear components) are the primary influences on octenylsuccinylated starches forming stable emulsions, due to the increased steric hindrance from short amphiphilic branches, consistent with current understanding of electrosteric stabilization. The success of OSA-modified sorghum starch points to possible new products of interest in arid climates. PMID:25037432

Sweedman, Michael C; Schäfer, Christian; Gilbert, Robert G

2014-10-13

200

Fiber coating with surfactant solutions  

NASA Astrophysics Data System (ADS)

When a fiber is withdrawn at low speeds from a pure fluid, the variation in the thickness of the entrained film with imposed fiber velocity is well-predicted by the Landau-Levich-Derjaguin (LLD) equation. However, surfactant additives are known to alter this response. We study the film thickening properties of the protein BSA (bovine serum albumin), the nonionic surfactant Triton X-100, and the anionic surfactant SDS (sodium dodecyl sulfate). For each of these additives, the film thickening factor alpha (the ratio of the measured thickness to the LLD prediction) for a fixed fiber radius varies as a function of the ratio of the surfactant concentration c to the critical micelle concentration (CMC). In the case of BSA, which does not form micelles, the reference value is the concentration at which multilayers form. As a result of Marangoni effects, alpha reaches a maximum as c approaches the CMC from below. However, when the surfactant concentration c exceeds the CMC, the behavior of alpha varies as a consequence of the dynamic surface properties, owing for example to different sorption kinetics of these additives, or possibly surface or bulk rheological effects. For SDS, alpha begins to decrease when c exceeds the CMC and causes the surface to become partially or completely remobilized, which is consistent with the experimental and theoretical results published for studies of slug flows of bubbles and surfactant solutions in a capillary tube and the rise of bubbles in surfactant solutions. However, when the SDS or Triton X-100 surfactant concentration is well above the CMC, we observe that the film thickening parameter alpha increases once again. In the case of SDS we observe a second maximum in the film thickening factor. For all the experiments, transport of monomers to the interface is limited by diffusion and the second maximum in the film thickening factor may be explained as a result of a nonmonotonic change in the stability characteristics of suspended SDS micelles and corresponding changes in the rheology of the solution.

Shen, Amy Q.; Gleason, Blake; McKinley, Gareth H.; Stone, Howard A.

2002-11-01

201

Impact of pNIPAM microgel size on its ability to stabilize Pickering emulsions.  

PubMed

We study the influence of the particle size on the ability of poly(N-isoprolylacrylamide) microgels to stabilize direct oil-in-water Pickering emulsions. The microgel size is varied from 250 to 760 nm, the cross-linking density being kept constant. The emulsion properties strongly depend on the stabilizer size: increasing the particle size induces an evolution from dispersed drops and fluid emulsions toward strongly adhesive drops and flocculated emulsions. In order to get insight into this dependency, we study how particles adsorb at the interface and we determine the extent of their deformation. We propose a correlation between microgel ability to deform and emulsion macroscopic behavior. Indeed, as the microgels size increases, their internal structure becomes more heterogeneous and so does the polymeric interfacial layer they form. The loss of a uniform dense layer favors bridging between neighboring drops, leading to flocculated and therefore less handleable emulsions. PMID:24450736

Destribats, Mathieu; Eyharts, Mayalen; Lapeyre, Véronique; Sellier, Elisabeth; Varga, Imre; Ravaine, Valérie; Schmitt, Véronique

2014-02-25

202

Pharmacokinetics of highly lipophilic antitumor agent palmitoyl rhizoxin incorporated in lipid emulsions in rats.  

PubMed

The effects of i.v. formulations on the pharmacokinetics were examined for two antitumor agents with different lipophilicities: rhizoxin and palmitoyl-rhizoxin (RS-1541). Blood disposition and tissue distributions in rats were evaluated using three formulations: polyethylene glycol 400 (PEG)/dimethylacetamide (DMA) solution, colloidal solution, and lipid emulsions composed of dioctanoyl decanoyl glycerol (ODO) and polyoxyethylene-(60)-hydrogenated castor oil (HCO-60). The effects of emulsion particle size on the pharmacokinetics were also investigated. Rhizoxin rapidly disappeared from the plasma and showed high distribution in the tissues, and in vitro rapidly degraded in the plasma independent of the formulations used. In in vitro plasma, rhizoxin was easily released from the emulsion particles. In contrast to rhizoxin, the pharmacokinetics of RS-1541 with greater lipophilicity changed considerably depending on the formulations. The emulsions showed high and sustained plasma concentrations for RS-1541. RS-1541 was stably incorporated in the emulsion droplets and protected from the degradation when it was applied as an emulsion. Tissue distributions of RS-1541 in rats after an injection as lipid emulsion were strongly affected by the emulsion particle size. Small size emulsions (100-110 nm) showed the highest plasma concentrations of RS-1541, though they were unable to suppress distributions of the drug in peripheral tissues. Emulsions larger than 200 nm (approx.) in size, on the contrary, effectively inhibited the drug from entering the bone marrow, small intestine and other non-reticuloendothelial system (non-RES) organs, where many cytotoxic compounds showed undesired toxicities. These results indicate that the lipid emulsions composed of ODO and HCO-60 could be a promising and effective DDS carrier for RS-1541, which is highly lipophilic and stabilized in the emulsions. This was not the case for rhizoxin, however, which was less lipophilic than palmitoyl analogue RS-1541. The work described herein has demonstrated that by properly selecting the particle size, these lipid emulsions can control the behavior of a drug in the body. PMID:8850317

Kurihara, A; Shibayama, Y; Mizota, A; Yasuno, A; Ikeda, M; Hisaoka, M

1996-02-01

203

Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant.  

PubMed

PhaP or phasin is an amphiphilic protein located on surfaces of microbial storage polyhydroxyalkanoates granules. This study aimed to explore amphiphilic properties of PhaP for possible application as a protein surfactant. Following agents were used to conduct this study as controls including bovine serum albumin, sodium dodecyl sulfate (SDS), Tween 20, sodium oleate, a commercial liquefied detergent together with the same amount of PhaP. Among all these tested control surfactants, PhaP showed the strongest effect to form emulsions with lubricating oil, diesel, and soybean oil, respectively. PhaP emulsion stability study compared with SDS revealed that PhaP had a stronger capability to maintain a very stable emulsion layer after 30 days while SDS lost half and two-thirds of its capacity after 2 and 30 days, respectively. When PhaP was more than 200 ?g/ml in the water, all liquids started to exhibit stable emulsion layers. Similar to SDS, PhaP significantly reduced the water contact angles of water on a hydrophobic film of biaxially oriented polypropylene. PhaP was thermally very stable, it showed ability to form emulsion and to bind to the surface of polyhydroxybutyrate nanoparticles after a 60-?min heating process at 95 °C. It is therefore concluded that PhaP is a protein with thermally stable property for application as natural and environmentally friendly surfactant for food, cosmetic, and pharmaceutical usages. PMID:21590291

Wei, Dai-Xu; Chen, Chong-Bo; Fang, Guo; Li, Shi-Yan; Chen, Guo-Qiang

2011-08-01

204

Mechanism of oil bank formation, coalescence in porous media and emulsion stability. Annual report, June 1979May 1980  

Microsoft Academic Search

This report presents results of a basic study of coalescence phenomena, emulsion formation and stability, and dynamic interfacial properties when crude oils and pure hydrocarbons are contacted with aqueous solutions of surfactant\\/polymer and alkaline agents. These measurements are correlated with each other and with observations on oil bank formation and displacement and recovery efficiency by chemical flooding in microwave monitored

Wasan

1981-01-01

205

Manipulating Hydrophobic Interactions in Associative Polymer Solutions via Surfactant-Cyclodextrin Complexation  

Microsoft Academic Search

Associative polymers in combination with cyclodextrin (CD) provide a potent tool to manipulate the solution rheology of aqueous solutions. In this study, we discuss the viability and scope of employing surfactants in such systems to facilitate a more versatile and effective tailoring of rheological properties. A model hydrophobically modified alkali-soluble emulsion (HASE) polymer is used which forms a transient physical

Sachin Talwar; Jonathon Harding; Saad A. Khan

2008-01-01

206

Emulsion stabilizing properties of pectin  

Microsoft Academic Search

Citrus pectin and beet pectin are able to reduce the interfacial tension between an oil phase and a water phase and can be efficient for the preparation of emulsions. Investigations were made to evaluate the effect of various parameters of pectin on its emulsifying capacity. Orange and rapeseed oils emulsions were prepared with pectin as an emulsifier. They were then

J. Leroux; V. Langendorff; G. Schick; V. Vaishnav; J. Mazoyer

2003-01-01

207

Rubberized asphalt emulsion  

SciTech Connect

A method is described of making a rubberized asphalt composition which comprises the steps of: (a) combining asphalt with a hydrocarbon oil having a flash point of 300/sup 0/F. or more to provide a homogenous asphalt-oil mixture or solution, (b) then combining the asphalt-oil mixture with a particulate rubber at a temperature sufficient to provide a homogenous asphalt-rubber-oil gel, and (c) emulsifying the asphalt-rubber-oil gel by passing the gel, water, and an emulsifying agent through a colloid mill to provide an emulsion.

Wilkes, E.

1986-09-02

208

Influence of nonionic branched-chain alkyl glycosides on a model nano-emulsion for drug delivery systems.  

PubMed

The effect of incorporating new nonionic glycolipid surfactants on the properties of a model water/nonionic surfactant/oil nano-emulsion system was investigated using branched-chain alkyl glycosides: 2-hexyldecyl-?(/?)-D-glucoside (2-HDG) and 2-hexyldecyl-?(/?)-D-maltoside (2-HDM), whose structures are closely related to glycero-glycolipids. Both 2-HDG and 2-HDM have an identical hydrophobic chain (C16), but the former consists a monosaccharide glucose head group, in contrast to the latter which has a disaccharide maltose unit. Consequently, their hydrophilic-lipophilic balance (HLB) is different. The results obtained have shown that these branched-chain alkyl glycosides affect differently the stability of the nano-emulsions. Compared to the model nano-emulsion, the presence of 2-HDG reduces the oil droplet size, whereas 2-HDM modify the properties of the model nano-emulsion system in terms of its droplet size and storage time stability at high temperature. These nano-emulsions have been proven capable of encapsulating ketoprofen, showing a fast release of almost 100% in 24h. Thus, both synthetically prepared branched-chain alkyl glycosides with mono- and disaccharide sugar head groups are suitable as nano-emulsion stabilizing agents and as drug delivery systems in the future. PMID:24384142

Ahmad, Noraini; Ramsch, Roland; Llinàs, Meritxell; Solans, Conxita; Hashim, Rauzah; Tajuddin, Hairul Anuar

2014-03-01

209

Development of eco-friendly submicron emulsions stabilized by a bio-derived gum.  

PubMed

Many traditional organic solvents are being gradually replaced by ecofriendly alternatives. D-Limonene is a terpenic (bio)-solvent that fulfils the requirements to be considered a green solvent. D-Limonene sub-micron emulsions suffer from Ostwald ripening destabilization. In this study, we examined the influence of the addition of a natural gum (rosin gum) to D-limonene in order to prevent Ostwald ripening. This contribution deals with the study of emulsions formulated with a mixture of D-limonene and rosin gum as dispersed phase and Pluronic PE9400 as emulsifier. The procedure followed for the development of these formulations was based on the application of product design principles. This led to the optimum ratio rosin gum/D-limonene and subsequently to the optimum surfactant concentration. The combination of different techniques (rheology, laser diffraction and multiple light scattering) was demonstrated to be a powerful tool to assist in the prediction of the emulsions destabilization process. Not only did the addition of rosin gum highly increase the stability of these emulsions by inhibiting the Ostwald ripening, but it also reduced the emulsions droplet size. Thus, we found that stable sub-micron D-limonene-in-water emulsions have been obtained in the range 3-6 wt% Pluronic PE-9400 by means of a single-step rotor/stator homogenizing process. PMID:25454661

Pérez-Mosqueda, Luis María; Ramírez, Pablo; Trujillo-Cayado, Luis Alfonso; Santos, Jenifer; Muñoz, José

2014-11-01

210

Micro magnetofluidics: droplet manipulation of double emulsions based on paramagnetic ionic liquids.  

PubMed

The ability to control and manipulate discrete fluid droplets by magnetic fields offers new opportunities in microfluidics. A surfactant-free and easy to realize technique for the continuous generation of double emulsion droplets, composed of an organic solvent and a paramagnetic ionic liquid, is applied. The inner phase of the emulsion droplet consists of imidazolium-based ionic liquids with either iron, manganese, nickel or dysprosium containing anions which provide paramagnetic behaviour. The double emulsion droplets are dispersed in a continuous phase of FC-40. All substances - the organic phase, the paramagnetic ionic liquid and the continuous phase -are immiscible. The magnetic properties of ionic liquids allow, through the influence of external magnetic fields, the manipulation of individual emulsion droplets such as capture and release, rotation and distortion. Arrays of magnets allow a coalescence of emulsion droplets and their subsequent mixing by flowing through an alternating permanent magnetic field. In addition, the double emulsion droplets can be split and reunified, or continuously separated into their original phases. PMID:24108233

Misuk, Viktor; Mai, Andreas; Giannopoulos, Konstantinos; Alobaid, Falah; Epple, Bernd; Loewe, Holger

2013-12-01

211

Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations  

DOEpatents

The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

Johnson, Jr., James S. (Oak Ridge, TN); Westmoreland, Clyde G. (Rockwood, TN)

1982-01-01

212

Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations  

DOEpatents

The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

Johnson, J.S. Jr.; Westmoreland, C.G.

1980-08-20

213

Cation exchange, surfactant precipitation, and adsorption in micellar flooding  

Microsoft Academic Search

Typical reservoir rocks are quite complex physically as well as mineralogically. The surface of sand grains available for interactions with injection fluids is a significant fraction of the total surface area, but the reactivity of sand with anionic surfactants is much less than that between clays and surfactants, so the interaction with clays tends to dominate behavior. Salting-out of alkylbenzene

R. D. Jr. Walker; W. E. Ray; M. K. Tham; M. C. Lee

1978-01-01

214

Imperfect dissolution in nonionic block copolymer and surfactant mixtures.  

PubMed

Self-assembled copolymer micelles have been widely explored for numerous applications including cosmetic formulations and detergency, drug delivery, and agriculture. In many of these technologies at least trace amounts of surfactants and detergents are present, yet little is known regarding their effect on the copolymer micelle structure. In this paper we examine the influence of a nonionic micelle-forming surfactant, Triton X-100, on spherical, nonionic polymeric micelles composed of poly(butadiene)-co-poly(polyethylene oxide). Using cryo-TEM we find that relatively small surfactant concentrations (less than 1:1 molar ratio) are sufficient to disrupt the copolymer assemblies, and to yield, via dimerization, mixed polymer-surfactant micelles with characteristic diameters. Saturation of the polymeric micelles is reached with approximately 3 mM surfactant (1:8 mol ratio). Upon saturation, and in high surfactant excess, coexistence of two homogeneous micellar populations is found: saturated polymer-surfactant micelles, and much smaller micelles of pure surfactant. The lack of complete demicellization of the polymeric micelles is explained by packing constraints of the polymer hydrophobic chains by the added surfactant. This behavior is found to be characteristic of polymeric molecules with hydrophobic-to-hydrophilic molecular weight ratio close to, or exceeding, 0.75. We further found that structural transitions in polymer-surfactant mixtures are fast, and the systems reach equilibrium at time scales characteristic to the small molecule, in contrast with the slow equilibration in polymer-polymer mixtures. PMID:19437694

Shimoni, Karin; Danino, Dganit

2009-03-01

215

Biophysical Mimicry of Lung Surfactant Protein B by Random Nylon-3 Copolymers  

E-print Network

Biophysical Mimicry of Lung Surfactant Protein B by Random Nylon-3 Copolymers Michelle T. Dohm as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic evidence that sequence-random copolymers can mimic the in vitro surface-active behavior of lung surfactant

Barron, Annelise E.

216

Interfacial tension of evaporating emulsion droplets containing amphiphilic block copolymers: effects of solvent and polymer composition.  

PubMed

Evaporating droplets of volatile organic solvent containing amphiphilic block copolymers may undergo hydrodynamic instabilities that lead to dispersal of copolymer micelles into the surrounding aqueous phase. As for related phenomena in reactive polymer blends and oil/water/surfactant systems, this process has been ascribed to a nearly vanishing or transiently negative interfacial tension between the water and solvent phases induced by adsorption of copolymer to the interface. In this report, we investigate the influence of the choice of organic solvent and polymer composition for a series of polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock copolymers, by in situ micropipette tensiometry on evaporating emulsion drops. These measurements suggest that the sensitivity to the organic solvent chosen reflects both differences in the bare solvent/water interfacial tension as well as the propensity of the copolymer to aggregate within the organic phase. While instabilities coincident with an approach of the interfacial tension nearly to zero were observed only for copolymers with PEO content greater than 15 wt.%, beyond this point the interfacial behavior and critical concentration needed to trigger surface instability were found to depend only weakly on copolymer composition. PMID:21981970

Zhu, Jintao; Hayward, Ryan C

2012-01-01

217

Synergistic effect of mixed cationic and anionic surfactants on the corrosion inhibitor behavior of mild steel in 3.5% NaCl  

NASA Astrophysics Data System (ADS)

The corrosion inhibition characteristics of cation-rich and anion-rich catanionic mixtures of cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), as corrosion inhibitor of mild steel (MS), in aqueous solution of 3.5% NaCl were investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and scanning electron microscopy (SEM). Solutions of CTAB/SDS mixtures showed more appropriate inhibition properties compared to the solutions of the individual surfactants, due to strong adsorption on the metal surface and formation of a protective film. Potentiodynamic polarization investigations indicated that the inhibitors studied were mixed type inhibitors. Adsorption of the inhibitors on the mild steel surface obeyed the Flory-Huggins adsorption isotherm. Furthermore, the values of the adsorption free energy (?G°ads) in both mixtures decreased compared with a single surfactant which is attributed to stronger interactions in mixtures.

Javadian, Soheila; Yousefi, Ali; Neshati, Jaber

2013-11-01

218

In vitro studies on release and skin permeation of nonivamide from novel oil-in-oil-emulsions.  

PubMed

The purpose of this study was to develop oil-in-oil-emulsions that facilitate long-term treatment for chronic pruritus with capsaicinoids. To this end, oil-in-oil-emulsions, which comprised polydimethyl siloxanes, silicone surfactant and castor oil, were examined. We used nonivamide, a synthetic analogue of capsaicin as the active pharmaceutical ingredient. It was incorporated into castor oil that formed the dispersed phase of the emulsion. We evaluated the influence of formulation variables (nonivamide content, phase volume ratio and viscosity of the silicone oil) on the in vitro release and the permeation of nonivamide. Permeation was found to be controlled by the nonivamide concentration in the dispersed phase and the phase volume ratio. Oil-in-oil-emulsions were found to produce constant permeation rates over a period of 10h. They are thus superior to conventional semisolid formulations as application intervals may be extended. PMID:24095781

Rottke, Michael; Lunter, Dominique Jasmin; Daniels, Rolf

2014-02-01

219

An emulsion polymerization process for soluble and electrically conductive polyaniline  

SciTech Connect

A new emulsion process has been developed for the direct synthesis of the emeraldine salt of polyaniline (PANI) that is soluble in organic solvents. The process entails forming an emulsion composed of water, a water soluble organic solvent (e.g., 2-butoxyethanol), a water insoluble organic acid (e.g., dinonylnaphthalene sulfonic acid) and aniline. Aniline is protonated by the organic acid to form a salt which partitions into the organic phase. As oxidant (ammonium peroxydisulfate) is added, PANI salt forms in the organic phase and remains soluble. As the reaction proceeds, the reaction mixture changes from an emulsion to a two phase system, the soluble PANI remaining in the organic phase. With dinonylnaphthalene sulfonic acid (DNNSA) as the organic acid, the resulting product is truly soluble in organic solvents such as xylene and toluene (not a dispersion), of high molecular weight (M{sub w} > 22,000), film forming and miscible with many polymers such as polyurethanes, epoxies and phenoxy resins. As cast, the polyaniline film is only moderately conductive, (10{sup {minus}5} S/cm), however treatment of the film with surfactants such as benzyltriethylammonium chloride (BTEAC) or low molecular weight alcohols and ketones such as methanol and acetone increases the conductivity 2--3 orders of magnitude.

Kinlen, P.J.; Ding, Y.; Graham, C.R.; Liu, J.; Remsen, E.E.

1998-07-01

220

Stable emulsions formed by self-assembly of interfacial networks of dipeptide derivatives.  

PubMed

We demonstrate the use of dipeptide amphiphiles that, by hand shaking of a biphasic solvent system for a few seconds, form emulsions that remain stable for months through the formation of nanofibrous networks at the organic/aqueous interface. Unlike absorption of traditional surfactants, the interfacial networks form by self-assembly through ?-stacking interactions and hydrogen bonding. Altering the dipeptide sequence has a dramatic effect on the properties of the emulsions formed, illustrating the possibility of tuning emulsion properties by chemical design. The systems provide superior long-term stability toward temperature and salts compared to with sodium dodecyl sulfate (SDS) and can be enzymatically disassembled causing on-demand demulsification under mild conditions. The interfacial networks facilitate highly tunable and stable encapsulation and compartmentalization with potential applications in cosmetics, therapeutics, and food industry. PMID:24896538

Bai, Shuo; Pappas, Charalampos; Debnath, Sisir; Frederix, Pim W J M; Leckie, Joy; Fleming, Scott; Ulijn, Rein V

2014-07-22

221

Molecular simulation of surfactant-assisted protein refolding  

NASA Astrophysics Data System (ADS)

Protein refolding to its native state in vitro is a challenging problem in biotechnology, i.e., in the biomedical, pharmaceutical, and food industry. Protein aggregation and misfolding usually inhibit the recovery of proteins with their native states. These problems can be partially solved by adding a surfactant into a suitable solution environment. However, the process of this surfactant-assisted protein refolding is not well understood. In this paper, we wish to report on the first-ever simulations of surfactant-assisted protein refolding. For these studies, we defined a simple model for the protein and the surfactant and investigated how a surfactant affected the folding behavior of a two-dimensional lattice protein molecule. The model protein and model surfactant were chosen such that we could capture the important features of the folding process and the interaction between the protein and the surfactant, namely, the hydrophobic interaction. It was shown that, in the absence of surfactants, a protein in an "energy trap" conformation, i.e., a local energy minima, could not fold into the native form, which was characterized by a global energy minimum. The addition of surfactants created folding pathways via the formation of protein-surfactant complexes and thus enabled the conformations that fell into energy trap states to escape from these traps and to form the native proteins. The simulation results also showed that it was necessary to match the hydrophobicity of surfactant to the concentration of denaturant, which was added to control the folding or unfolding of a protein. The surfactants with different hydrophobicity had their own concentration range on assisting protein refolding. All of these simulations agreed well with experimental results reported elsewhere, indicating both the validity of the simulations presented here and the potential application of the simulations for the design of a surfactant on assisting protein refolding.

Lu, Diannan; Liu, Zheng; Liu, Zhixia; Zhang, Minlian; Ouyang, Pingkai

2005-04-01

222

Molecular simulation of surfactant-assisted protein refolding.  

PubMed

Protein refolding to its native state in vitro is a challenging problem in biotechnology, i.e., in the biomedical, pharmaceutical, and food industry. Protein aggregation and misfolding usually inhibit the recovery of proteins with their native states. These problems can be partially solved by adding a surfactant into a suitable solution environment. However, the process of this surfactant-assisted protein refolding is not well understood. In this paper, we wish to report on the first-ever simulations of surfactant-assisted protein refolding. For these studies, we defined a simple model for the protein and the surfactant and investigated how a surfactant affected the folding behavior of a two-dimensional lattice protein molecule. The model protein and model surfactant were chosen such that we could capture the important features of the folding process and the interaction between the protein and the surfactant, namely, the hydrophobic interaction. It was shown that, in the absence of surfactants, a protein in an "energy trap" conformation, i.e., a local energy minima, could not fold into the native form, which was characterized by a global energy minimum. The addition of surfactants created folding pathways via the formation of protein-surfactant complexes and thus enabled the conformations that fell into energy trap states to escape from these traps and to form the native proteins. The simulation results also showed that it was necessary to match the hydrophobicity of surfactant to the concentration of denaturant, which was added to control the folding or unfolding of a protein. The surfactants with different hydrophobicity had their own concentration range on assisting protein refolding. All of these simulations agreed well with experimental results reported elsewhere, indicating both the validity of the simulations presented here and the potential application of the simulations for the design of a surfactant on assisting protein refolding. PMID:15847497

Lu, Diannan; Liu, Zheng; Liu, Zhixia; Zhang, Minlian; Ouyang, Pingkai

2005-04-01

223

Turbulent drag reduction in nonionic surfactant solutions  

NASA Astrophysics Data System (ADS)

There are only a few studies on the drag-reducing effect of nonionic surfactant solutions which are nontoxic and biodegradable, while many investigations of cationic surfactant solutions have been performed so far. First, the drag-reducing effects of a nonionic surfactant (AROMOX), which mainly consisted of oleyldimethylamineoxide, was investigated by measuring the pressure drop in the pipe flow at solvent Reynolds numbers Re between 1000 and 60 000. Second, we investigated the drag-reducing effect of a nonionic surfactant on the turbulent boundary layer at momentum-thickness Reynolds numbers Re? from 443 to 814 using two-component laser-Doppler velocimetry and particle image velocimetry systems. At the temperature of nonionic surfactant solutions, T =25 °C, the maximum drag reduction ratio for AROMOX 500 ppm was about 50%, in the boundary layer flow, although the drag reduction ratio was larger than 60% in pipe flow. Turbulence statistics and structures for AROMOX 500 ppm showed the behavior of typical drag-reducing flow such as suppression of turbulence and modification of near-wall vortices, but they were different from those of drag-reducing cationic surfactant solutions, in which bilayered structures of the fluctuating velocity vectors were observed in high activity.

Tamano, Shinji; Itoh, Motoyuki; Kato, Katsuo; Yokota, Kazuhiko

2010-05-01

224

DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS  

SciTech Connect

There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Anionic surfactants (SS-6656, Alfoterra 35, 38, 63,65,68) have been identified which can change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil in the presence of Na{sub 2}CO{sub 3}. All the carbonate surfaces (Lithographic Limestone, Marble, Dolomite and Calcite) show similar behavior with respect to wettability alteration with surfactant 4-22. Anionic surfactants (5-166, Alfoterra-33 and Alfoterra-38 and Alfoterra-68), which lower the interfacial tension with a West Texas crude oil to very low values (<10{sup -2} nM/m), have also been identified. Plans for the next quarter include conducting wettability, mobilization, and imbibition studies.

Kishore K. Mohanty

2004-01-01

225

Modeling selected emulsions and double emulsions as memristive systems.  

PubMed

The recent development in basic and applied science and engineering of finely dispersed systems is presented in general, but more attention has been paid to the liquid-liquid finely dispersed systems or to the particular emulsions and double emulsions. The selected systems for theoretical and experimental research were emulsions and double emulsions that appeared in the pilot plant for extraction of uranium from wet phosphoric acid. The objective of this research was to try to provide a new or different approach to elaborate the complex phenomena that occur at developed liquid-liquid interfaces. New concepts were introduced, the first is a concept of an entity, and the corresponding classification of finely dispersed systems and the second concept consider the introduction of an almost forgotten basic electrodynamics element memristor, and the corresponding memristive systems. Based on these concepts a theory of electroviscoelasticity was proposed and experimentally corroborated using the selected representative liquid-liquid system. Also, it is shown that the droplet, and/or droplet-film structure, that is, selected emulsion and/or double emulsion may be considered as the particular example of memristive systems. PMID:22482789

Spasic, Aleksandar M; Jovanovic, Jovan M; Jovanovic, Mica

2012-06-15

226

Silicone/vegetable oil Janus emulsion: Topological stability versus interfacial tensions and relative oil volumes.  

PubMed

Several aspects were studied of the formation and destabilization in bulk of silicone/vegetable oil, SO/VO, Janus emulsions, stabilized by Tween 80. In the formation of the emulsions, it was unexpectedly found that the dispersions tended to contain both single and flocculated drops irrespective of the emulsification intensity. Microscopy of the emulsions with no cover glass revealed flocculated drops of a large (200-500?m) central SO drop with many small VO drops attached. Applying a cover glass did not significantly change the drop size; instead two-oil Janus drops of well-defined contact angle were found. The emulsions showed rapid creaming irrespective of the preparation method, but a few days storage did not significantly change the drop size in the creamed layer, nor was separation of the oils detected. The total interfacial free energy of the Janus drops at equilibrium was compared to the two relevant alternatives; engulfed and separate drops. The Janus drop free energies were found less for all volume ratios of the oils, when the surfactant concentrations in the aqueous phase was sufficient to prevent spreading of VO on SO. Changing the surfactant concentration to bring the interfacial tensions closer to the critical value for spreading gave declining interfacial free energy difference to that of engulfed drops. PMID:25443127

Leonardi, G R; Perrechil, F A; Silveira, L P; Brunca, H O; Friberg, S E

2014-10-14

227

Thermocapillary Motion in an Emulsion  

NASA Technical Reports Server (NTRS)

The phenomenological model for the motion of an emulsion or a gas-liquid mixture exposed to thermocapillary forces and micro-acceleration is formulated. The analytical and numerical investigation of one-dimensional flows for these media is fulfilled, the structure of discontinuous motion is studied. The stability conditions of a space-uniform state and of the interface between an emulsion and a pure liquid are obtained.

Pukhnachov, Vladislav V.; Voinov, Oleg V.

1996-01-01

228

Effect of water on interfacial chemical properties of nonionic surfactants in hydrophobic ionic liquid bmimPF6.  

PubMed

We studied the effect of water addition on interfacial properties and aggregate behavior of nonionic surfactants (polyoxyethylene alkyl ether; CnEm) in an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate; bmimPF?). When a small amount of water was added to mixtures of CnEm and bmimPF?, two breaking points (cac1, cac2) were observed in the surface tension/CnEm concentration plots, suggesting the formation of two kinds of aggregates. This two-step aggregate formation was also confirmed by the fluorescence probe method using pyrene. The particle size of the aggregates measured by dynamic light scattering (DLS) was around 200 nm at cac1, and decreased to 4 nm above cac2. These results, together with freeze-fracture TEM observations, showed that the aggregate formed at cac1 was water in bmimPF? emulsions, which then transformed to micelles solubilizing water in the palisade layer above cac2. This concentration-dependent aggregate formation was supported thermodynamically by studying the dependence of cacs on temperature and alkyl and POE chain lengths of the surfactant. PMID:23728327

Misono, Takeshi; Aburai, Kenichi; Endo, Takeshi; Sakai, Kenichi; Abe, Masahiko; Sakai, Hideki

2013-01-01

229

ADSORPTION OF SURFACTANTS  

EPA Science Inventory

Adsorption of surfactants on particles affects their distribution, fate, and effects in natural waters. xperiments were conducted to study the properties of surfactant (charge and structure), solution [H+], [Ca2+], and [Na+]), and sorbent (e.g., organic carbon and cation exchange...

230

Experimental Evaluation of Surfactant Application to Improve Oil Recovery  

E-print Network

The objective of this research was to identify high performance surfactant formulations and design efficient core floods for a limestone reservoir with high salinity formation brine. Microemulsion phase behavior experiments ...

Liu, Zhijun

2011-09-16

231

Rheological characterization of O/W emulsions incorporated with neutral and charged polysaccharides.  

PubMed

The effects of polysaccharides, including xyloglucan from Hymenaea courbaril (XG), galactomannans from Schizolobium parahybae (GMSP) and Mimosa scabrella (GMMS), xanthan gum (XT), sodium hyaluronate (HNa) and Fucogel(®) (FG), on the rheological behavior of cosmetic emulsions were evaluated. These incorporations gave rise to six emulsified systems, denoted XGE, GMSPE, GMMSE, XTE, HNaE and FGE, respectively. The emulsion consistency was found to follow the trend GMSPE>XGE>HNaE>FGE>XTE>GMMSE. In general, the addition of polysaccharides increased the viscoelastic properties of the emulsions and decreased the creep compliance. The neutral polysaccharides (GMSPE, GMMSE) led to better stability of the emulsions after storing for 20 days relative to charged polymers. It was found that polysaccharides XG, GMSP and GMMS, which come from the seeds of native Brazilian plant species, might be used to modify the flow properties and stabilities of oil-water emulsions. PMID:23465929

Vianna-Filho, Ricardo Padilha; Petkowicz, Carmen Lúcia Oliveira; Silveira, Joana Léa Meira

2013-03-01

232

The onset of microscale tipstreaming with soluble nonionic surfactants  

NASA Astrophysics Data System (ADS)

Surfactants play a significant role in the formation of emulsion droplets in microfluidic devices. At specific concentrations and flow rates, tipstreaming is observed and micron-scale droplets are formed. To date, the role of the surfactant itself is not well understood. The timescales for surfactant mass transport including diffusion, adsorption, and desorption can all be significant in determining the local, instantaneous surface concentration. In this talk, we present microfluidic tipstreaming experiments using nonionic CiEj surfactants in which the hydrophobic tail length varies. We show that tipstreaming occurs only when adsorption is rapid enough for surfactant to adsorb but viscous stresses are strong enough to maintain a surface tension gradient. The experiments indicate that the allowable surface coverage for tipstreaming is very small, even though the bulk concentration is greater than the critical micelle concentration. We use a one-dimensional kinetic-limited transport model to demonstrate that small surface coverages can lead to highly nonlinear effects like tipstreaming at these length and time scales.

Anna, Shelley; Alvarez, Nicolas; Lee, Wingki; Walker, Lynn

2010-11-01

233

Mixtures of cationic copolymers and oppositely charged surfactants: effect of polymer charge density and ionic strength on the adsorption behavior at the silica-aqueous interface.  

PubMed

This study addresses polymer-surfactant interactions at solid-liquid interfaces and how these can be manipulated by modulating the association between ionic surfactant and oppositely charged polymer, with a particular focus on electrostatic interactions. For this purpose, the interaction of a series of cationic copolymers of vinylpyrrolidone and quaternized vinylimidazol with sodium dodecyl sulfate (SDS) at the silica-aqueous interface was followed by in situ ellipsometry. To reveal the nature of the interaction, we performed measurements for different copolyion charge densities, in the absence and presence of added salt. The path-dependence of the interaction was studied by comparing the adsorption under two different conditions, adsorption from premixed solutions and sequential addition of surfactant to the polymer solution, but the same end state. The reversibility of the adsorption process was studied by following the effect of dilution on the adsorbed layer. All copolyions adsorbed to both silica and hydrophobized silica, revealing the importance of both hydrophobic and electrostatic attractive interactions. On both types of surface, an increase in adsorbed amount was found on lowering the fraction of charged units. An increased ionic strength gave an increased adsorbed amount in all cases, but especially on hydrophobic surfaces. The adsorbed amount on silica from mixtures of the copolyions with SDS peaked at an SDS concentration corresponding closely to the concentration of cationic charges of the different polyions. Around the region of charge equivalence, there was also a phase separation in the bulk. At higher concentrations of SDS, a redissolution in the bulk, and a decrease in adsorbed amount, occurred as a result of excess SDS binding to the complexes. For the most highly charged polyions, we observed a decrease in adsorbed amount, and a shift in the adsorption maxima to lower SDS concentrations, with increasing ionic strength. PMID:22301772

Mohr, Andreas; Nylander, Tommy; Piculell, Lennart; Lindman, Björn; Boyko, Volodymyr; Bartels, Frank Wilko; Liu, Yaqian; Kurkal-Siebert, Vandana

2012-03-01

234

Physicochemical studies on the interaction of gelatin with cationic surfactants alkyltrimethylammonium Bromides (ATABs) with special focus on the behavior of the hexadecyl homologue.  

PubMed

The interaction of a denatured interfacially active protein, gelatin (G) (at pH 9, above its isoelectric pH 4.84, and ionic strength mu=0.005), with a cationic amphiphile, hexadecyl (or cetyl) trimethylammonium bromide, CTAB, has been elaborately studied using a variety of techniques. Two types of protein-surfactant complexes at a concentration below the normal critical micellar concentration (cmc) were formed in solution. The first, G-CTAB (monomer) combined complex (GS(n)(I)) adsorbed at the air/solution interface, followed by its gradual transformation to the poor interfacially active second G-CTAB (aggregate) complex (GS(m)(B)) at a critical aggregation concentration (cac) of the interacting oppositely charged surfactant. In the higher concentration range, upon completion of GS(m)(B) formation, coacervation (association of GS(m)(B)) led to add turbidity. With increasing addition of CTAB, the coacervates became disintegrated and ultimately remained dissolved in the free micellar solution of CTAB. The above features were studied using the techniques of tensiometry, conductometry, turbidimetry, fluorimetry, and microcalorimetry. The interaction features were prominent at [G] >or= 0.05 g %, and several of these were either marginal or absent at [G]<0.05 g %. The denatured protein was found to form viscous as well as gel-forming consistencies at higher [G] and at lower temperature. A temperature variation study on the interaction of G with CTAB has revealed that enhanced interaction takes place at higher temperature. The effect of [G] on its interaction with cationic surfactants of varying chain length in the alkyltrimethylammonium bromide (ATAB) series has been also studied; a similar interactional profile as that of CTAB has been exhibited by octadecyltrimethylammonium bromide; however, the lower homologues (dodecyl- and tetradecyl-) of ATAB have offered different profiles. It has been found that the ATABs with higher alkyl chain lengths were more interactive with negatively charged G than their lower homologues. Quantification of the results in terms of different transition points, counterion binding of the protein-bound surfactant aggregates and free micelles, the enthalpy of binding interactions and energetics of ATAB micellization, and so forth have been studied. The results have been rationalized in terms of an interaction model. PMID:18461905

Mitra, Debolina; Bhattacharya, Subhas C; Moulik, Satya P

2008-05-29

235

An enzyme containing microemulsion based on skin friendly oil and surfactant as decontamination medium for organo phosphates: phase behavior, structure, and enzyme activity.  

PubMed

The present contribution presents a microemulsion system containing cosmetic oil and sugar surfactant and the enzyme diisopropyl fluorophosphatase (DFPase) as active agent for the decontamination of human skin. The bicontinuous structure and the physical properties of the microemulsion are characterized by dynamic light scattering and small angle neutron scattering. The DFPase from the squid Loligo vulgaris is catalyzing the hydrolysis of highly toxic organophosphates. The effect of the enzyme on the structure of the microemulsion is investigated. Moreover, the enzyme/microemulsion system is also studied with respect to its activity using nuclear magnetic resonance spectroscopy leading to promising results. A fast decomposition of the nerve agent sarin is achieved. PMID:24183440

Stehle, Ralf; Schulreich, Christoph; Wellert, Stefan; Gäb, Jürgen; Blum, Marc-Michael; Kehe, Kai; Richardt, Andras; Lapp, Alain; Hellweg, Thomas

2014-01-01

236

Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes  

PubMed Central

Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model. PMID:24958621

Nakamura, Kazuho; Matsumoto, Kanji

2013-01-01

237

Microencapsulation of hemoglobin in liposomes using a double emulsion, film dehydration/rehydration approach.  

PubMed

A double emulsion, film dehydration/rehydration approach was developed for encapsulation of hemoglobin (Hb) at high concentration in liposomes. The liposome-encapsulated Hb (LEH) membrane was formulated to contain either phosphatidylinositol (PI) or polyethyleneglycol phosphatidylethanolamine (PEG-PE) along with partially hydrogenated egg-PC, cholesterol, and alpha-tocopherol in a molar ratio of 0.1:1:1:0.02, respectively. The methods introduced in this study followed a multi-step procedure. First, a primary emulsion of Hb in organic solvent containing dissolved lipids was formed. Next, the emulsion was dispersed into an aqueous continuous phase to form a water-in-oil-in-water type double emulsion. Other than the lipids noted above, no surfactants were used in this system. The double emulsion was then converted to LEH by the following steps: evaporating the organic solvent; dehydrating the water to form a dry, thin Hb-lipid film; rehydrating the film in Hb solution to form the LEH; reducing the size of the LEH using 'microfluidization' i.e., high pressure/hydrodynamic shear; and lastly washing the down-sized LEH in buffer. Physico-chemical properties of the model LEH were measured, including oxygen content, encapsulated Hb concentration, oxygen affinity and cooperativity, vesicular size distribution, viscosity, and stability. The suitability of LEH prepared in this manner as a red blood cell substitute was shown using continuous isovolemic exchange transfusion techniques in a small animal model: clearance, efficacy and acute toxicity were evaluated. PMID:7841175

Zheng, S; Zheng, Y; Beissinger, R L; Fresco, R

1994-12-30

238

Flow of oil-in-water emulsions through orifice and venturi meters  

SciTech Connect

The applicability of conventional orifice and venturi meters to monitor the flow rate of oil/water emulsions was investigated. The discharge coefficients were determined for various unstable and surfactant-stabilized oil-in-water emulsions using a single orifice and a single venturi. The oil concentration was varied over a wide range of 0-84.32 vol %. The metering results indicate that orifice and venturi meters are feasible flow measuring devices for emulsions. The usual calibration curves of discharge coefficient versus Reynolds number (obtained from single-phase Newtonian fluids) are valid for the stable emulsions, both Newtonian and non-Newtonian. In the latter case, one needs to use the generalized Reynolds number instead of the conventional one. The orifice and venturi discharge coefficients for the unstable emulsions tend to deviate from the single-phase curves at low values of Reynolds number although the agreement is good at high Reynolds numbers. Based on the experimental data, empirical expressions for the orifice and venturi discharge coefficients are given.

Pal, R. (Univ. of Waterloo (Canada). Department of Chemical Engineering)

1993-06-01

239

How emulsion composition and structure affect sensory perception of low-viscosity model emulsions  

Microsoft Academic Search

The oral residence time of low-viscosity emulsions, like milk, is relatively short. Despite this short residence time, people can easily perceive differences between these emulsions. Our research is dedicated to unravel the oral behaviour of emulsions in relation to sensory perception. The aim of this study is to thoroughly evaluate the sensory perception of low-viscosity emulsions in relation to a

Monique H. Vingerhoeds; René A. de Wijk; Franklin D. Zoet; Ronald R. Nixdorf; George A. van Aken

2008-01-01

240

Metathesis depolymerizable surfactants  

DOEpatents

A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

Jamison, Gregory M. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Loy, Douglas A. (Tucson, AZ); Simmons, Blake A. (San Francisco, CA); Long, Timothy M. (Evanston, IL); McElhanon, James R. (Manteca, CA); Rahimian, Kamyar (Albuquerque, NM); Staiger, Chad L. (Albuquerque, NM)

2008-04-15

241

Self-Assembly of Gemini Surfactants  

NASA Astrophysics Data System (ADS)

The self-assembly behavior of Gemini (dimeric or twin-tail) dicarboxylate disodium surfactants is studied using molecular dynamics simulations. This gemini architecture, in which two single tailed surfactants are joined through a flexible hydrophobic linker, has been shown to exhibit concentration-dependent aqueous self-assembly into lyotropic phases including hexagonal, gyroid, and lamellar morphologies. Our simulations reproduce the experimentally observed phases at similar amphiphile concentrations in water, including the unusual ability of these surfactants to form gyroid phases over unprecedentedly large amphiphile concentration windows. We demonstrate quanitative agreement between the predicted and experimentally observed domain spacings of these nanostructured materials. Through careful conformation analyses of the surfactant molecules, we show that the gyroid phase is electrostatically stabilized related to the lamellar phase. By starting with a lamellar phase, we show that decreasing the charge on the surfactant headgroups by carboxylate protonation or use of a bulkier tetramethyl ammonium counterion in place of sodium drives the formation of a gyroid phase.

Yethiraj, Arun; Mondal, Jagannath; Mahanthappa, Mahesh

2013-03-01

242

Surfactant-mediated modulation of hydrophobic interactions in associative polymer solutions containing cyclodextrin.  

PubMed

The ability of nonionic surfactants to modulate the rheological characteristics of comblike hydrophobically modified associative polymer solutions containing cyclodextrin (CD) is examined. Addition of either alpha- or beta-CD to these polymers results in a marked decrease in solution viscosity and viscoelastic properties because of the encapsulation of the polymer hydrophobes by CD. Nonionic surfactants, introduced to such a system, alter the hydrophobic interactions by competing with the polymer hydrophobes for complexation with the CDs. In this regard, nonylphenol ethoxylates (NPe) with different ethylene oxide chain lengths, which determine the hydrophilic-lipophilic balance (HLB) of the surfactant, are used. Our results reveal that the extent and rate of recovery of zero shear viscosity as well as dynamic moduli are strongly influenced by the type of CD (alpha versus beta) as well as the HLB of the surfactant. For polymer solutions containing alpha-CD, recovery is observed solely in the presence of a low-HLB surfactant (NP6 and NP8). Additionally, in the case of NP6, the viscosity increases monotonically above the original hydrophobically modified alkali-soluble emulsion viscosity with surfactant addition, whereas for that of a higher HLB surfactant (NP15), the viscosity shows no appreciable change. In the case of beta-CD, on the other hand, a complete recovery as well as further enhancement of rheological properties is achieved using the above surfactants. However, the trends of viscosity modulation are dissimilar for different surfactants as we witness a monotonous increase in the case of NP6 while a maximum in viscosity is observed in the presence of NP8 and NP15. The contrasting observations can be explained in terms of varying affinities of alpha- and beta-CDs to bind with NP surfactants and the existence of different micellar structures in solution as governed by surfactant HLB. These results are further confirmed by UV/vis spectroscopy and cloud point measurements. PMID:19072321

Talwar, Sachin; Harding, Jonathon; Oleson, Keith R; Khan, Saad A

2009-01-20

243

Effect of salts on formation and stability of vitamin E-enriched mini-emulsions produced by spontaneous emulsification.  

PubMed

Emulsion-based delivery systems are being utilized to incorporate lipophilic bioactive components into various food, personal care, and pharmaceutical products. This study examined the influence of inorganic salts (NaCl and CaCl2) on the formation, stability, and properties of vitamin E-enriched emulsions prepared by spontaneous emulsification. These emulsions were simply formed by titration of a mixture of vitamin E acetate (VE), carrier oil (MCT), and nonionic surfactant (Tween 80) into an aqueous salt solution with continuous stirring. Salt type and concentration (0-1 N NaCl or 0-0.5 N CaCl2) did not have a significant influence on the initial droplet size of the emulsions. On the other hand, the isothermal and thermal stabilities of the emulsions depended strongly on salt levels. The cloud point of the emulsions decreased with increasing salt concentration, which was attributed to accelerated droplet coalescence in the presence of salts. Dilution (2-6 times) of the emulsions with water appreciably improved their thermal stability by increasing their cloud point, which was mainly attributed to the decrease in aqueous phase salt levels. The isothermal storage stability of the emulsions also depended on salt concentration; however, increasing the salt concentration decreased the rate of droplet growth, which was the opposite of its effect on thermal stability. Potential physicochemical mechanisms for these effects are discussed in terms of the influence of salt ions on van der Waals and electrostatic interactions. This study provides important information about the effect of inorganic salts on the formation and stability of vitamin E emulsions suitable for use in food, personal care, and pharmaceutical products. PMID:25343750

Saberi, Amir Hossein; Fang, Yuan; McClements, David Julian

2014-11-19

244

A Surface Force Study of Polymer-Surfactant Mixtures  

NASA Astrophysics Data System (ADS)

We study the interactions between a cationic modified guar and Sodium Dodecyl Sulfate (SDS). The bulk properties have been investigated by rheology and spectrofluorimetry. A Surface Force Apparatus (SFA) was used to determine the structure of the adsorbed polymer-surfactant layer. The bulk behavior is typical of a polymer-surfactant solution where the polymer and the surfactant bear opposite charges. For low enough SDS concentrations, the surfactant and the polymer mix in a single phase. A two phase region is reached at charge equivalence and redissolution of a very low viscosity solution by charge inversion is observed for higher SDS concentrations. At the mica surface, the cationic polymer adsorbs in a configuration with thickness of the order of 250 nm. When SDS is added, the change in both the layer thickness and the forces profile indicate a strong structural modification upon increasing surfactant concentration of the adsorbed layer.

Marques, Carlos; Anthony, O.; Richetti, P.

1997-03-01

245

Aqueous Gemini Surfactant Self-Assembly into Complex Lyotropic Phases  

NASA Astrophysics Data System (ADS)

In spite of the potentially wide-ranging applications of aqueous bicontinuous lyotropic liquid crystals (LLCs), the discovery of amphiphiles that reliably form these non-constant mean curvature morphologies over large phase windows remains largely serendipitous. Recent work has established that cationic gemini surfactants exhibit a pronounced tendency to form bicontinuous cubic (e.g. gyroid) phases as compared to their parent single-tail amphiphiles. The universality of this phenomenon in other surfactant systems remains untested. In this paper, we will report the aqueous LLC phase behavior of a new class of anionic gemini surfactants derived from long chain carboxylic acids. Our studies show that these new surfactants favor the formation of non-constant mean curvature gyroid and primitive (``Plumber's Nightmare'') structures over amphiphile concentration windows up to 20 wt% wide. Based on these observations, we will discuss insights gained into the delicate force balance governing the self-assembly of these surfactants into aqueous bicontinuous LLCs.

Mahanthappa, Mahesh; Sorenson, Gregory

2012-02-01

246

Aggregation behavior of sodium dioctylsulfosuccinate in aqueous ethylene glycol medium. A case of hydrogen bonding between surfactant and solvent and its manifestation in the surface tension isotherm.  

PubMed

The dependence of critical micelle concentration (cmc) of sodium dioctylsulfosuccinate (AOT) on the amount of ethylene glycol (EG) in water + EG medium was reported to be unusual and different from that of other surfactants to the extent that the cmc of AOT in EG is lower than in water. It is yet to be understood why AOT behaves so in water + EG medium, although AOT is known to have some special properties. Hence in the present study cmc of AOT in water + EG medium in the range from 0 to 100% (by weight) EG is measured by using surface tension and fluorescence emission methods. In contrast to what was reported, this study revealed that with respect to EG amount the cmc of AOT follows the general trend and AOT has higher cmc in EG than in water. On the other hand, it was surprisingly found that a break in the surface tension isotherm occurs in the premicellar region when the amount of EG exceeds 50% rendering a bisigmoidal shape to the surface tension isotherm. UV spectral study showed that AOT and EG undergo hydrogen bonding in the premicellar region when the EG amount is ?50% and this hydrogen bonding becomes less on adding NaCl. The density functional theory calculations also showed formation of hydrogen bonds between EG and AOT through the sulfonate group of AOT providing thereby support to the experimental findings. The calculations predicted a highly stable AOT-EG-H(2)O trimer complex with a binding energy of -37.93 kcal mol(-1). The present system is an example, which is first of its kind, of a case where hydrogen bonding with surfactant and solvent molecules results in a surface tension break. PMID:23072621

Das, D; Dey, J; Chandra, A K; Thapa, U; Ismail, K

2012-11-13

247

Surfactant Templated Polyacrylamide Gels  

NASA Astrophysics Data System (ADS)

The controlled modification of gel structure by using surfactant self-assemblies as templates provides new opportunities in the development of novel materials. Polyacrylamide gels were synthesized in the presence of tetradecyltrimethylammonium bromide (TTAB) surfactant. Small-angle X-ray scattering (SAXS) results indicate that acrylamide monomer does not prevent the self-assembly of TTAB surfactants. Dynamic rheology measurements indicated a transition from an isotropic micellar phase to a hexagonal columnar phase occurred about 10% higher TTAB concentration in the presence of acrylamide (the transition occurs at 35% (by weight) for TTAB in buffer solution). The presence of surfactant during the gelation profoundly affected the final gel structure. Real time rheology measurements showed evidence of a demixing of the polymer and the surfactant phase in gels formed in the presence of high TTAB concentration (> 30% by weight) leading to the formation of highly macroporous gels. Bulk structure characterization using SAXS showed that TTAB micelles were separated by about 10 nm in gels synthesized in the presence of low and moderate TTAB concentration (< 30%). Protein separation on gels templated by TTAB surfactants showed significant improvements over conventional gels.

Chakrapani, Mukundan; van Winkle, D. H.; Rill, R. L.

2003-03-01

248

Protein-surfactant interaction: differences between fluorinated and hydrogenated surfactants.  

PubMed

The interactions of proteins with fluorinated/hydrogenated surfactants were investigated by circular dichroism and turbidity measurement. Pairs of fluorinated and hydrogenated surfactants with similar critical micelle concentrations (cmc), including sodium perfluorooctanoate/sodium decylsulfate and lithium perfluorononanoate/sodium dodecylsulfate were compared in view of their interactions with proteins including BSA, lysozyme, beta-lactoglobulin and ubiquitin. It was found that fluorinated surfactants exhibited stronger interactions with proteins than hydrogenated ones, which, however, depended on the structures of both proteins and surfactant molecules. If the proteins are very stable, or the surfactant-protein interactions are very strong, such differences between the two kinds of surfactants might be indistinguishable. PMID:18308521

Lu, Run-Chao; Cao, Ao-Neng; Lai, Lu-Hua; Xiao, Jin-Xin

2008-06-15

249

Hemolysis and antihemolysis induced by amino acid-based surfactants.  

PubMed

Surfactants have the special ability to interact with the lipid bilayer of cell membranes. The red blood cell is one of the most used cellular membrane models to study the mechanisms underlying surfactant-induced osmotic cell resistance. To increase our knowledge regarding the mechanisms of surfactant membrane interaction, we studied the action of five lysine-derivative anionic and three arginine-derivative cationic amino acid-based surfactants on hypotonic hemolysis. Results showed two different antihemolytic behaviors among amino acid-based surfactants, both related to the maximal protective concentration. How the physico-chemical properties and structure of these compounds determine the protection against hypotonic hemolysis is discussed in detail. We found a good correlation between the CMC and the concentrations resulting in maximum protection against hypotonic hemolysis for the cationic surfactants, but no correlation for the anionic surfactants. In the case of lysine derivative surfactants, which only differ in their counterions, the counterion is implicated in the differences in the antihemolytic potency and the hemolytic activities of this. PMID:17293064

Sánchez, Lourdes; Martínez, Verónica; Infante, M Rosa; Mitjans, Montserrat; Vinardell, M Pilar

2007-03-01

250

Emulsion Droplet Combustion in Microgravity: Water/Heptane Emulsions  

NASA Technical Reports Server (NTRS)

This presentation reviews a series of experiments to further examine parametric effects on sooting processes of droplet flames in microgravity. The particular focus is on a fuel droplet emulsified with water, specifically emulsions of n-heptane as the fuel-phase and water as the dispersed phase. Water was selected as the additive because of its anticipated effect on soot formation, and the heptane fuel phase was chosen to theoretically reduce the likelihood of microexplosions because its boiling point is nearly the same as that of water: 100 C for water and 98 C for heptane. The water content was varied while the initial droplet diameter was kept within a small range. The experiments were carried out in microgravity to reduce the effects of buoyancy and to promote spherical symmetry in the burning process. Spherically symmetric droplet burning is a convenient starting point for analysis, but experimental data are difficult to obtain for this situation as evidenced by the fact that no quantitative data have been reported on unsupported emulsion droplet combustion in a convection-free environment. The present study improves upon past work carried out on emulsion droplet combustion in microgravity which employed emulsion droplets suspended from a fiber. The fiber can be instrusive to the emulsion droplet burning process as it can promote coalescence of the dispersed water phase and heterogeneous nucleation on the fiber. Prior work has shown that the presence of water in liquid hydrocarbons can have both beneficial and detrimental effects on the combustion process. Water is known to reduce soot formation and radiation heat transfer to combustor walls Gollahalli (1979) reduce flame temperatures and thereby NOx emissions, and encourage secondary droplet atomization or microexplosion. Water also tends to retard ignition and and promote early extinction. The former effect restricted the range of water volume fractions as discussed below.

Avedisian, C. Thomas

1997-01-01

251

Rheological investigations on the creaming of depletion-flocculated emulsions.  

PubMed

Preventing creaming or sedimentation by the addition of thickeners is an important industrial challenge. We study the effect of the addition of a "free" nonadsorbing polymer (xanthan gum) on the stability against creaming of sterically stabilized O/W emulsions. Therefore, we analyze our samples using microscopy and rheological measurements. At low xanthan concentrations, the emulsions cream. However, above a certain concentration a three-dimensional network of droplets is formed, which can prevent creaming. We attribute the formation of this structure to depletion attraction. The rheological behavior of an emulsion that is macroscopically stable should be elastic, while it should be viscous for a creaming emulsion. In order to distinguish between stable and unstable samples, we measure their relaxation time by mechanical rheology and find a good correlation to the visual observation. However, the measured relaxation times are much shorter than the time-scales, on which we observe creaming. We hypothesize that the measured relaxation time is related to the droplet-droplet interaction. This determines the frequency at which microscopic rearrangements occur, which weaken the network structure prior to creaming. Based on this interpretation, the relaxation time gives direct access to the microstructural processes involved in creaming. We therefore suggest using it as a predictive parameter of creaming stability. PMID:22554128

Aben, Simon; Holtze, Christian; Tadros, Tharwat; Schurtenberger, Peter

2012-05-29

252

Mechanism of Solubilization of Single Walled Carbon Nanotubes using Surfactants  

NASA Astrophysics Data System (ADS)

Recently, there have been several reports of SWNTs dispersed in water with the aid of cationic, anionic and non-ionic surfactants. The mechanism for such surfactant induced dispersion and unbundling remains unexplained. We have used neutron scattering measurements (small and intermediate angle)to elucidate the mechanism of such solubilization. In particular, we have investigated the changes in the micellization behavior of the surfactants in the presence of the SWNTs and in conjunction with UV-Vis-Near IR and fluoroscence measurements have elucidated the mechanism of such dispersions by sodium dodecyl sulfate.

Yurekli, Koray; Mitchell, Cynthia; Krishnamoorti, Ramanan

2004-03-01

253

Novel emulsions stabilized by pH and temperature sensitive microgels  

NASA Astrophysics Data System (ADS)

Poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAM-MAA) microgel particles in aqueous solution exhibit a volume phase transition that can be induced by changes of either pH or temperature. In the swollen state, these microgels self-assemble at an octanol-water interface and can be used to stabilize surfactant-free oil-in-water emulsions. This stabilizing efficiency is retained even in the collapsed state, provided that the microgels are fully charged. At very low charge (low pH), on the other hand, the microgels migrate completely into the oil phase, and the emulsion breaks. In an intermediate regime of practical interest the emulsion stability can be tuned by small adjustments of pH or temperature. Because of this unprecedented stability control, we believe that such stimulus-responsive charged microgels have a great potential for applications in the field of cosmetic or pharmaceutical formulations. Conceptually they belong to a new class of emulsifiers combining properties of both classical surfactants and solid particles.

Ngai, To; Auweter, Helmut; Behrens, Sven

2006-03-01

254

Novel synthesis of macroporous poly(N-isopropylacrylamide) hydrogels using oil-in-water emulsions.  

PubMed

Porous N-isopropylacrylamide (NIPA) hydrogels having a unique structure, that is, spherelike cavities distributed randomly and a homogeneous network in the gel phase, were successfully synthesized by means of an emulsion templating method; this method involves the synthesis of NIPA gels in an oil-in-water (O/W) emulsion by free radical copolymerization with a cross-linker, followed by washing (removal) of the dispersed oil as a pore template (porogen). The synthesis conditions, O/W volume ratio, amount of added surfactant, and monomer concentration affect the internal pore structure, equilibrium swelling, and swelling/shrinking kinetics. A porous hydrogel swollen at 10 degrees C has a pore diameter distribution in the range of 1-40 microm, which was observed with a scanning electron microscope. Scanning electron micrographs and swelling degree reveal that the pore size and porosity can be adjusted by varying the O/W volume ratios and surfactant amounts. The porous hydrogels show very rapid swelling/shrinking in accordance with the temperature swing. The fast response is attributed to the convection flow of water through the macropores. In addition to a faster response gel, the emulsion templating method can yield potentially intelligent gels in which the pores function as spaces for reaction, separation, and storage. PMID:17880115

Tokuyama, Hideaki; Kanehara, Akifumi

2007-10-23

255

Rheology and stability of acidified food emulsions treated with high pressure.  

PubMed

The stability and rheology of acidified model oil-in-water emulsions (pH 3.6 +/- 0.1) were evaluated before and after high-pressure treatments. Varying concentrations of canola oil (0-50% w/w), whey protein isolate, polysorbate 60, soy lecithin (0.1-1.5% w/w each), and xanthan (0.0-0.2% w/w) were chosen. Exposure to high pressures (up to 800 MPa for 5 min at 30 degrees C) did not significantly affect the equivalent surface mean diameter D[3,2], flow behavior, and viscoelasticity of the whey protein isolate and polysorbate 60-stabilized emulsions. Pressure treatments had negligible effects on emulsion stability in these systems, except when xanthan (0.2% w/w) was present in which pressure improved the stability of polysorbate 60-stabilized emulsions. Soy lecithin-stabilized emulsions had larger mean particles sizes and lower emulsion volume indices than the others, indicating potential instability, and application of pressure further destabilized these emulsions. PMID:12696942

Arora, Akshay; Chism, Grady W; Shellhammer, Thomas H

2003-04-23

256

Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes.  

PubMed

Cellulose nanocrystals (CNCs) from ramie fibers are studied as stabilizers of oil-in-water emulsions. The phase behavior of heptane and water systems is studied, and emulsions stabilized by CNCs are analyzed by using drop sizing (light scattering) and optical, scanning, and freeze-fracture electron microscopies. Water-continuous Pickering emulsions are produced with cellulose nanocrystals (0.05-0.5 wt%) grafted with thermo-responsive poly(NIPAM) brushes (poly(NIPAM)-g-CNCs). They are observed to be stable during the time of observation of 4 months. In contrast, unmodified CNCs are unable to stabilize heptane-in-water emulsions. After emulsification, poly(NIPAM)-g-CNCs are observed to form aligned, layered structures at the oil-water interface. The emulsions stabilized by poly(NIPAM)-g-CNCs break after heating at a temperature above the LCST of poly(NIPAM), which is taken as indication of the temperature responsiveness of the brushes installed on the particles and thus the responsiveness of the Pickering emulsions. This phenomenon is further elucidated via rheological measurements, in which viscosities of the Pickering emulsions increase on approach of the low critical solution temperature of poly(NIPAM). The effect of temperature can be counterbalanced with the addition of salt which is explained by the reduction of electrostatic and steric interactions of poly(NIPAM)-g-CNCs at the oil-water interface. PMID:22204973

Zoppe, Justin O; Venditti, Richard A; Rojas, Orlando J

2012-03-01

257

Structure Formation in Micro-Confined Polymeric Emulsions  

NSDL National Science Digital Library

In the present work, we present results of concentrated solutions under shear, with particular emphasis on the case that the emulsion is microconfined. When the size of a typical droplet is comparable to the gap width between the shearing plates, we observe interesting non-equilibrium pattern formation of the collective behavior. We present three results in which spontaneous structures emerge in the system; string formation, the pearl necklace structure and droplet layering.

Pathak, J. A.

2002-01-01

258

Effect of arabic gum and xanthan gum on the stability of pesticide in water emulsion.  

PubMed

The effect of arabic gum (AG) and xanthan gum (XG) on the physicochemical properties of 2% pesticide avermyctin in water emulsions was systematically investigated by measuring creaming stability, droplet size, zeta potential, and rheology. Addition of AG and XG had significant influence on the physicochemical properties of emulsions. Emulsions showed high stability throughout the storage time in the AG concentration range of 0-0.14%. In contrast, addition of XG induced the apparent creaming of emulsion as the XG concentration increased from 0.011 to 0.15%, which might be well explained by the depletion flocculation of droplets. The droplet diameter increased progressively with increasing AG concentration; however, it sharply grew initially with XG concentration and reached a maximum, followed by a gradual decrease. Zeta potential increased gradually as AG concentration was lower than 0.081%, followed by a slight decrease, whereas it reduced dramatically as XG concentration increased from 0.011 to 0.040% and then remained almost unchanged. In the AG concentration range of 0-0.14%, the emulsion exhibited typical Newtonian flow behavior and the viscosity decreased a little. The XG emulsion exhibited Newtonian flow behavior at low XG concentrations (?0.019%), whereas, non-Newtonian flow behavior was displayed at relatively high XG concentrations (>0.019%), wherein viscosity value and yield value increased gradually as XG concentration increased. In addition, the curves of shear stress versus shear rate for XG emulsion and solution were well fitted by a power law model and the Herschel-Bulkley model; the Herschel-Bulkley model fitted much better. The present study would provide useful information for the reasonable application of AG and XG in making stable pesticide emulsion. PMID:21226518

Zhang, Xiaoguang; Liu, Jiexiang

2011-02-23

259

Relationships between the properties of self-emulsifying pellets and of the emulsions used as massing liquids for their preparation.  

PubMed

Self-emulsifying pellets were prepared using microcrystalline cellulose, emulsions of caprylic/capric triglyceride, and three Cremophors (ELP, RH40, and RH60) at 1.5 and 2.3 weight ratios, and two drugs (furosemide and propranolol) of different lipophilicity. Droplet size, zeta potential (?) and viscosity of emulsions, and pellet size, shape, friability, tensile strength, disintegration, and drug migration in pellets were determined. Evaluation of reconstituted emulsions was based on droplet size and ?. Factorial design and 3-way ANOVA was applied to estimate the significance of the effects of the drug, surfactant and oil/surfactant ratio. It was found that droplet size, viscosity and ? of emulsions, and size, shape, and friability of pellets were affected by the studied factors and were significant interactions between their effects on pellet size and friability. Migration of drug towards the pellet surface was higher for the less lipophilic furosemide and higher oil content. Linear relationships were found between the emulsion viscosity and the shape parameters of the pellets (for the aspect ratio R (2)?=?0.796 for furosemide and R (2)?=?0.885 for propranolol and for the shape factor, e R R (2)?=?0.740 and R (2)?=?0.960, respectively). For all the formulations examined, an exponential relationship was found between migration (M%) and the product of viscosity (?) and solubility of drug in oil/surfactant mixture (S) (M%?=?98.1e-0.016 [?•S], R (2)?=?0.856), which may be useful in formulation work. PMID:25212898

Nikolakakis, Ioannis; Panagopoulou, Athanasia; Salis, Andrea; Malamataris, Stavros

2015-02-01

260

The emulsion chamber technology experiment  

NASA Technical Reports Server (NTRS)

Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

Gregory, John C.

1992-01-01

261

Synthesis and Characterization of Silica\\/Poly (Methyl Methacrylate) Nanocomposite Latex Particles through Emulsion Polymerization Using a Cationic Azo Initiator  

Microsoft Academic Search

Following a previous work (J. L. Luna-Xavier et al., Colloid Polym. Sci.279, 947 (2001)), silica–poly (methyl methacrylate) (PMMA) nanocomposite latex particles have been synthesized in emulsion polymerization using a cationic initiator, 2,2?-azobis (isobutyramidine) dihydrochloride (AIBA), and a nonionic polyoxyethylenic surfactant (NP30). Silica beads with diameters of 68, 230, and 340 nm, respectively, were used as the seed. Coating of the

José-Luiz Luna-Xavier; Alain Guyot; Elodie Bourgeat-Lami

2002-01-01

262

Hydrophobically Modified Associative Polymer Solutions: Rheology and Microstructure in the Presence of Nonionic Surfactants  

Microsoft Academic Search

We report on the rheology and morphology of a hydrophobically modified alkali-swellable emulsion (HASE) polymer solubilized in alkaline media containing nonionic surfactants. The HASE polymer consists of complex alkylaryl hydrophobes composed of oligomeric nonylphenol condensates attached to a poly(ethyl acrylate-co-methacrylic acid) backbone. The complex linear viscoelastic response of the polymer in alkaline solution suggests an unentangled network with an appreciable

Robert J. English; Jonathan H. Laurer; Richard J. Spontak; Saad A. Khan

2002-01-01

263

Pharmacoeconomics of Surfactant Therapy  

PubMed Central

Surfactant therapy has become an integral part of the standard of care for treating premature infants with respiratory distress syndrome (RDS). Institutions that routinely treat this patient population have to select a surfactant based upon clinical and pharmacoeconomic considerations. Pharmacoeconomic studies have established the cost-effectiveness of individual agents based on a variety of factors, including length of hospitalization, mortality odds ratio, and other direct medical costs. These studies evaluated infants with weights between 600 and 2000 grams and survival periods between 28 days and 1 year. With the cost-effectiveness of surfactants already established as being far superior to no treatment, trials have evolved to compare the available surfactants. Two studies have supported the cost-effectiveness of beractant compared to colfosceril or calfactant. Two others demonstrated lower resource utilization associated with poractant alfa as compared to beractant or calfactant. Evolving treatment approaches in the management of neonatal RDS, such as recent data suggesting continuous positive airway pressure as an alternative to mechanical ventilation for respiratory support, have defined the need to further evaluate the impact of such strategies upon surfactant and resource utilization. PMID:23118652

Barbarello-Andrews, Liza; Marsh, Wallace

2006-01-01

264

Synthesis of organic rectorite with novel Gemini surfactants for copper removal  

NASA Astrophysics Data System (ADS)

Three novel Gemini surfactants were used to prepare organic rectorite (OREC) under microwave irradiation, in comparison with single-chain surfactant ester quaternary ammonium salt (EQAS) and cetyltrimethyl ammonium bromide (CTAB). The structure and morphology of OREC were characterized by XRD, BET, FT-IR, TEM and TGA. The removal of Cu2+ on OREC from aqueous solution was performed. The results reveal that Gemini surfactants modified REC had larger interlayer distance and higher surface area than single-chain surfactants EQAS and CTAB, and the increasing amount or chain length of Gemini surfactants led to larger layer spacing and higher adsorption capacities. The adsorption behavior of Gemini surfactant modified REC can be better described by Freundlich adsorption isotherm model, with a maximum adsorption capacity of 15.16 mg g-1. The desorption and regeneration experiments indicate good reuse property of Gemini modified REC adsorbent. Therefore, this study may widen the utilization of Gemini surfactants modified layered silicates.

Han, Guocheng; Han, Yang; Wang, Xiaoying; Liu, Shijie; Sun, Runcang

2014-10-01

265

Oil-in-water emulsions stabilized by sodium caseinate: Influence of pH, high-pressure homogenization and locust bean gum addition  

Microsoft Academic Search

The effect of pH, addition of a thickening agent (locust bean gum) or high-pressure homogenization on the stability of oil-in-water emulsions added by sodium caseinate (Na-CN) was evaluated. For this purpose, emulsions were characterized by visual analysis, microstructure and rheological measurements. Most of the systems were not stable, showing phase separation a few minutes after emulsion preparation. However, creaming behavior

F. A. Perrechil; R. L. Cunha

2010-01-01

266

Enhancement of aqueous stability of allyl isothiocyanate using nanoemulsions prepared by an emulsion inversion point method.  

PubMed

Allyl isothiocyanate (AITC), an organosulfur compound in cruciferous vegetables, is a natural antimicrobial and potential chemopreventive agent. However, the instability of AITC in aqueous systems restrains its applications. In this study, oil-in-water AITC nanoemulsion was prepared by the emulsion inversion point (EIP) method, aiming at improving the aqueous stability of AITC. The optimal hydrophilic-lipophilic balance (HLBop) value of surfactants containing Tween 80 and Span 80 was established at 11.0-13.0, yielding nanodroplets with diameters of 137-215nm. The mechanism of droplet formation within the HLPop region was discussed in terms of the possible structure of adsorbed surfactant layers at the oil-water interface in multiple emulsion droplets. In a 6.5-month storage test, the droplet sizes and the count rates (intensity of scattered light) of nanoemulsions decreased only slightly by 4-13% (depending on surfactant-to-oil ratio), even in highly diluted status, indicating the desirable stability of the nanoemulsions. Moreover, the nanoemulsion demonstrated superior protection against AITC degradation (78% remaining after 60d at 30°C), compared with protein nanoparticles as well as non-encapsulated aqueous dispersion. This work shows for the first time that AITC can be formulated into nanoemulsions and thus obtains satisfactory aqueous solubility and chemical stability. PMID:25454435

Li, Ying; Teng, Zi; Chen, Pei; Song, Yingying; Luo, Yangchao; Wang, Qin

2015-01-15

267

Aqueous dual-tailed surfactants simulated on the alumina surface.  

PubMed

Atomistic molecular dynamics (MD) simulations were used to compare the morphology of aqueous surfactant self-assembled aggregates on a flat alumina substrate. The substrate was modeled using the CLAYFF force field, and it was considered fully protonated. Three ionic surfactants were considered, all with a sulfate headgroup. The first surfactant was the single-tailed, widely studied sodium dodecyl sulfate (SDS), for which previous simulation results are available on several substrates. The results obtained for this surfactant were used for benchmarking the behavior of two dual-tailed surfactants. These latter surfactants have equal structure, except that in one case both linear tails are composed by seven fully protonated carbon atoms [CH3(CH2)6CHOSO3(CH2)6CH3(-), 2H7], whereas in the other, one tail is composed by seven fully protonated carbon atoms and the other tail is composed by seven fully fluorinated carbon atoms [CF3(CF2)6CHOSO3(CH2)6CH3(-), H7F7]. Our results suggest that preferential interactions lead to surfactant aggregates for H7F7 that differ compared to both those obtained for SDS and 2H7. Although molecular-level geometric structural differences can be invoked to explain differences between H7F7 and SDS aggregates, those between H7F7 and 2H7 aggregates can only be ascribed to atomic-scale interactions. Because as the adsorbed amount of surfactant increases, the self-assembled surfactant aggregates change, suggesting that the substrate on which adsorption occurs effectively evolves as adsorption progresses, compared to bare alumina. The morphological differences observed in our simulations coupled with molecular-level microphase separation might explain, in part, the unusual retrograde adsorption isotherm that has been observed experimentally for H7F7 surfactants on alumina. PMID:25089638

Liu, Zhen; Yu, Jian-Guo; O'Rear, Edgar A; Striolo, Alberto

2014-08-14

268

New surfactant for hydrate anti-agglomeration in hydrocarbon flowlines and seabed oil capture.  

PubMed

Anti-agglomeration is a promising solution for gas hydrate risks in deepsea hydrocarbon flowlines and oil leak captures. Currently ineffectiveness at high water to oil ratios limits such applications. We present experimental results of a new surfactant in rocking cell tests, which show high efficiency at a full range of water to oil ratios; there is no need for presence of the oil phase. We find that our surfactant at a very low concentration (0.2 wt.% of water) keeps the hydrate particles in anti-agglomeration state. We propose a mechanism different from the established water-in-oil emulsion theory in the literature that the process is effective without the oil phase. There is no need to emulsify the water phase in the oil phase for hydrate anti-agglomeration; with oil-in-water emulsion and without emulsion hydrate anti-agglomeration is presented in our research. We expect our work to pave the way for broad applications in offshore natural gas production and seabed oil capture with very small quantities of an eco-friendly surfactant. PMID:23660023

Sun, Minwei; Firoozabadi, Abbas

2013-07-15

269

Aggregate transitions in mixtures of anionic sulfonate gemini surfactant with cationic ammonium single-chain surfactant.  

PubMed

Aggregation behaviors in mixtures of an anionic gemini surfactant 1,3-bis(N-dodecyl-N-propanesulfonate sodium)-propane (C(12)C(3)C(12)(SO(3))(2)) and a cationic single-chain surfactant cetyltrimethylammonium bromide (CTAB) have been investigated in aqueous solutions at pH 9.5 by turbidity, rheology, isothermal titration microcalorimetry (ITC), cryogenic transmission electron microscopy, and dynamic light scattering. Reversible aggregate transitions from spherical micelles to wormlike micelles, vesicles, and back to wormlike micelles and spherical micelles are successfully realized through fine regulation over the mixing ratio of surfactants, i.e., the anionic/cationic charge ratio. The five aggregate regions display distinguished phase boundaries so that the aggregate regions can be well controlled. From thermodynamic aspect, the ITC curves clearly reflect all the aggregate transitions and the related interaction mechanism. The self-assembling ability of the C(12)C(3)C(12)(SO(3))(2)/CTAB mixtures are significantly improved compared with both individual surfactants. Micelle growth from spherical to long wormlike micelles takes place at a relative low total concentration, i.e., 2.0 mM. The wormlike micelle solution at 10 mM or higher shows high viscosity and shear thinning property. Moreover, the C(12)C(3)C(12)(SO(3))(2)/CTAB mixtures do not precipitate even at 1:1 charge ratio and relative high concentration. It suggests that applying gemini surfactant should be an effective approach to improve the solubility of anionic/cationic surfactant mixtures and in turn may promote applications of the surfactant mixtures. PMID:23205820

Tian, Maozhang; Zhu, Linyi; Yu, Defeng; Wang, Yingxiong; Sun, Shufeng; Wang, Yilin

2013-01-10

270

Steroidal Compounds in Commercial Parenteral Lipid Emulsions  

PubMed Central

Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction. PMID:23016123

Xu, Zhidong; Harvey, Kevin A.; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P.; Siddiqui, Rafat A.

2012-01-01

271

Transdermal delivery of an anti-cancer drug via w/o emulsions based on alkyl polyglycosides and lecithin: design, characterization, and in vivo evaluation of the possible irritation potential in rats.  

PubMed

The purpose of this work was to develop w/o emulsions that could be safely used to promote transdermal delivery of 5-fluorouracil (5-FU). Two pseudo-ternary phase diagrams comprising oleoyl-macrogol glycerides, water, and a surfactant/co-surfactant (S/CoS) mixture of lecithin, ethanol, and either coco glucoside or decyl glucoside were investigated for their potential to develop promising 5-FU emulsions. Six systems were selected and subjected to thermodynamic stability tests; heat-cool cycles, centrifugation, and finally freeze-thaw cycles. All systems passed the challenges and were characterized for transmission electron microscopy, droplet size, rheological behavior, pH, and transdermal permeation through newly born mice skin in Franz diffusion cells. The systems had spherical droplets ranging in diameter from 1.81 to 2.97 ?m, pH values ranging from 7.50 to 8.49 and possessed Newtonian flow. A significant (P<0.05) increase in 5-FU permeability parameters as steady-state flux, permeability coefficient was achieved with formula B5 comprising water (5% w/w), S/CoS mixture of lecithin/ethanol/decyl glucoside (14.67:12.15:18.18% w/w, respectively) and oleoyl-macrogol glycerides (50% w/w). When applied to shaved rat skin, this system was well tolerated with only moderate skin irritation that was recovered within 12 h. Indeed, minor histopathologic changes were observed after 5-day treatment. Further studies should be carried out, in the future, to investigate the potentiality of this promising system to promote transdermal delivery of 5-FU through human skin. PMID:21152999

ElMeshad, Aliaa Nabil; Tadros, Mina Ibrahim

2011-03-01

272

Stretching properties of xanthan, carob, modified guar and celluloses in cosmetic emulsions.  

PubMed

The filament stretching properties of various polysaccharides (including xanthan, carob, hydroxypropyl guar, hydroxypropylmethyl and hydroxyethyl celluloses) were investigated and compared to synthetic polymers generally used as texturing agents in cosmetic emulsions. The stretchability was examined by sensory evaluation as "the amount of sample that strings rather than breaks when fingers are separated". Different behaviors were evidenced: the xanthan emulsion showed the highest stretchability, followed by the hydroxypropyl guar and hydroxyethyl cellulose emulsions while the synthetic polymers presented stretching properties to a much lesser extent. The instrumental characterization of the stretchability was conducted at a controlled speed and recorded with a camera using a texture analyzer. The maximum stretchable length at 40mm/s was highly significantly correlated to the sensory Stringiness, thus allowing a good predictability of this attribute. Finally, this method was applied to aqueous solutions to better understand the role of the polymers in emulsion and to validate the measurement on a wider range of products. PMID:23499107

Gilbert, Laura; Loisel, Vincent; Savary, Géraldine; Grisel, Michel; Picard, Céline

2013-04-01

273

Preparation and characterization of narrow sized (o/w) magnetic emulsion  

NASA Astrophysics Data System (ADS)

The preparation of well-defined (o/w) magnetic emulsions from an organic ferrofluid is reported. The ferrofluid synthesis is first described and a complete characterization is achieved by using numerous techniques. The ferrofluid is found to be composed of superparamagnetic maghemite nanoparticles, with a diameter below 10 nm, stabilized in octane by a surrounding oleic acid layer. This magnetic fluid is then emulsified in aqueous media in order to obtain stable ferrofluid droplets. The use of a couette mixer and a size sorting step under magnetic field allowed to produce magnetic emulsion with a narrow size distribution. Morphology and chemical composition of the magnetic emulsion are investigated. Magnetic properties of both ferrofluid and magnetic emulsion are also compared and discussed. In particular, it is showed that the superparamagnetic behavior is still observed after the emulsification process.

Montagne, F.; Mondain-Monval, O.; Pichot, C.; Mozzanega, H.; Ela??ssari, A.

2002-09-01

274

Hydroxyapatite-armored poly(?-caprolactone) microspheres and hydroxyapatite microcapsules fabricated via a Pickering emulsion route.  

PubMed

Hydroxyapatite (HAp) nanoparticle-armored poly(?-caprolactone) (PCL) microspheres were fabricated via a "Pickering-type" emulsion solvent evaporation method in the absence of any molecular surfactants. It was clarified that the interaction between carbonyl/carboxylic acid groups of PCL and the HAp nanoparticles at an oil-water interface played a crucial role in the preparation of the stable Pickering-type emulsions and the HAp nanoparticle-armored microspheres. The HAp nanoparticle-armored PCL microspheres were characterized in terms of size, size distribution, morphology, and chemical compositions using scanning electron microscopy, laser diffraction, energy dispersive X-ray microanalysis, and thermogravimetric analysis. The presence of HAp nanoparticles at the surface of the microspheres was confirmed by scanning electron microscopy and energy dispersive X-ray microanalysis. Pyrolysis of the PCL cores led to the formation of the corresponding HAp hollow microcapsules. PMID:22364710

Fujii, Syuji; Okada, Masahiro; Nishimura, Taiki; Maeda, Hayata; Sugimoto, Tatsuya; Hamasaki, Hiroyuki; Furuzono, Tsutomu; Nakamura, Yoshinobu

2012-05-15

275

Saponins: a renewable and biodegradable surfactant from its microwave-assisted extraction to the synthesis of monodisperse lattices.  

PubMed

Synthetic surfactants are widely used in emulsion polymerization, but it is increasingly desirable to replace them with naturally derived molecules with a reduced environmental burden. This study demonstrates the use of saponins as biodegradable and renewable surfactants for emulsion polymerization. This chemical has been extracted from soapnuts by microwave assisted extraction and characterized in terms of surfactant properties prior to emulsion polymerization. The results in terms of particle size distribution and morphology control have been compared to those obtained with classical nonionic (NP40) or anionic (SDS) industrial surfactants. Microwave-extracted saponins were able to lead to latexes as stable as standard PS latex, as shown by the CMC and CCC measurements. The saponin-stabilized PS particles have been characterized in terms of particle size and distribution by Dynamic Light Scattering and Asymmetrical Flow Field Flow Fractionation. Monomodal and monodispersed particles ranging from 250 to 480 nm in terms of diameter with a particle size distribution below 1.03 have been synthesized. PMID:24443771

Schmitt, C; Grassl, B; Lespes, G; Desbrières, J; Pellerin, V; Reynaud, S; Gigault, J; Hackley, V A

2014-03-10

276

Molecular dynamics for surfactant-assisted protein refolding.  

PubMed

Surfactants are widely used to refold recombinant proteins that are produced as inclusion bodies in E. Coli. However, the microscopic details of the surfactant-assisted protein refolding processes are yet to be uncovered. In the present work, the authors aim to provide insights into the effect of hydrophobic interactions of a denatured protein with surfactant molecules on the refolding kinetics and equilibrium by using the Langevin dynamics for coarse-grained models. The authors have investigated the folding behavior of a beta-barrel protein in the presence of surfactants of different hydrophobicities and concentrations. It is shown that the protein folding process follows a "collapse-rearrangement" mechanism, i.e., the denatured protein first falls into a collapsed state before acquiring the native conformation. In comparison with the protein folding without surfactants, the protein-surfactant hydrophobic interactions promote the collapse of a denatured protein and, consequently, the formation of a hydrophobic core. However, the surfactants must be released from the hydrophobic core during the rearrangement step, in which the native conformation is formed. The simulation results can be qualitatively reproduced by experiments. PMID:17313243

Lu, Diannan; Liu, Zheng; Wu, Jianzhong

2007-02-14

277

Molecular dynamics for surfactant-assisted protein refolding  

NASA Astrophysics Data System (ADS)

Surfactants are widely used to refold recombinant proteins that are produced as inclusion bodies in E. Coli. However, the microscopic details of the surfactant-assisted protein refolding processes are yet to be uncovered. In the present work, the authors aim to provide insights into the effect of hydrophobic interactions of a denatured protein with surfactant molecules on the refolding kinetics and equilibrium by using the Langevin dynamics for coarse-grained models. The authors have investigated the folding behavior of a ?-barrel protein in the presence of surfactants of different hydrophobicities and concentrations. It is shown that the protein folding process follows a "collapse-rearrangement" mechanism, i.e., the denatured protein first falls into a collapsed state before acquiring the native conformation. In comparison with the protein folding without surfactants, the protein-surfactant hydrophobic interactions promote the collapse of a denatured protein and, consequently, the formation of a hydrophobic core. However, the surfactants must be released from the hydrophobic core during the rearrangement step, in which the native conformation is formed. The simulation results can be qualitatively reproduced by experiments.

Lu, Diannan; Liu, Zheng; Wu, Jianzhong

2007-02-01

278

SURFACTANT AND METAL SORPTION STUDIES BY FUNCTIONALIZED MEMBRANES AND QUARTZ CRYSTAL MICROBALANCE  

Microsoft Academic Search

Functionalized membranes provide an elegant platform for selective separations and sorptions. In this dissertation, application of functionalized membranes for surfactant and metal sorption studies are discussed. Sorption behavior of surfactants is also studied using quartz crystal microbalance (QCM) and other techniques.\\u000aAdsorption of the ethoxylated surfactants on polymeric materials (cotton and polyester) and model gold surface was quantified from a

Abhay R. Ladhe

2008-01-01

279

Effect of Molecular Weight on the Interfacial Dilational Viscoelasticity of Anionic Polyelectrolyte\\/Surfactant Systems  

Microsoft Academic Search

In this article, the effect of molecular weight on the interfacial tension and interfacial dilational viscoelasticity of polystyrene sulfonate\\/surfactant adsorption films at the water-octane interface have been studied by spinning drop method and oscillating barriers method respectively. The experimental results show that different interfacial behaviors can be observed in different type of polyelectrolyte\\/surfactant systems. PSS\\/cationic surfactant CTAB systems show the

Hong-Bo Fang; Hua Zong; Lei-Ting Mao; Lu Zhang; Guo-Zhu Cui; Sui Zhao; Jia-Yong Yu

2010-01-01

280

Experiment S009: Nuclear Emulsion  

NASA Technical Reports Server (NTRS)

The first exposure on a spacecraft of a nuclear emulsion apparatus designed to collect 1000 high quality tracks of heavy nuclei under a negligible thickness of matter (0.07 g/sq cm) is described. The cosmic ray detector consisted of a stack of nuclear emulsions that were designed to register at least 400 heavy nuclei tracks for each 10 hours of useful exposure. The spacecraft had to be oriented in a heads-up attitude during the 10-hour period to eliminate atmospheric albedo particles. The results are as follows: (1) a definite odd-even effect, with low abundances for elements of atomic number 7, 9, and 11; (2) a ratio O/C approximately 0.9; (3) Ne/C, Mg/C, and Si/C ratios between 0.2 and 0.3; (4) an abundance gap in the region 15 less than or equal to Z less than or equal to 19; and (5) a ratio (20 less than or equal to Z less than or equal to 28)/C 0.2, with a large concentration at Z = 26. These results are indicative that successful exposures of nuclear emulsions were obtained on the Gemini 11 mission.

Odell, F. W.; Shapiro, M. M.; Silberberg, R.; Stiller, B.; Tsao, C. H.; Durgaprasad, N.; Fichtel, C. E.; Guss, D. E.; Reames, D. V.

1971-01-01

281

Diseases of pulmonary surfactant homeostasis.  

PubMed

Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

Whitsett, Jeffrey A; Wert, Susan E; Weaver, Timothy E

2015-01-24

282

Diseases of Pulmonary Surfactant Homeostasis  

PubMed Central

Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

2015-01-01

283

Active Emulsions: Synchronization of Chemical Oscillators  

NASA Astrophysics Data System (ADS)

We explore the dynamical behavior of emulsions consisting of nanoliter volume droplets of the oscillatory Belousov-Zhabotinsky (BZ) reaction separated by a continuous oil phase. Some of the aqueous BZ reactants partition into the oil leading to chemical coupling of the drops. We use microfluidics to vary the size, composition and topology of the drops in 1D and 2D. Addition of a light sensitive catalyst to the drops and illumination with a computer projector allows each drop to be individually perturbed. A variety of synchronous regimes are found that systematically vary with the coupling strength and whether coupling is dominated by activatory or inhibitory species. In 1D we observe in- and anti-phase oscillations, stationary Turing patterns in which drops stop oscillating, but form spatially periodic patterns of drops in the oxidized and reduced states, and more complex combinations of stationary and oscillatory drops. In 2D, the attractors are more complex and vary with network topology and coupling strength. For hexagonal lattices as a function of increasing coupling strength we observe right and left handed rotating oscillations, mixed oscillatory and Turing states and finally full Turing states. Reaction -- diffusion models based on a simplified description of the BZ chemistry and diffusion of messenger species reproduce a number of the experimental results. For a range of parameters, a simplified phase oscillator model provides an intuitive understanding of the complex synchronization patterns. [4pt] ``Coupled oscillations in a 1D emulsion of Belousov--Zhabotinsky droplets,'' Jorge Delgado, Ning Li, Marcin Leda, Hector O. Gonzalez-Ochoa, Seth Fraden and Irving R. Epstein, Soft Matter, 7, 3155 (2011).

Fraden, Seth

2012-02-01

284

[Biophysical mechanisms of toxicity of fluorocarbon emulsions].  

PubMed

Intravenous administration of emulsions of some perfluorochemicals (PFCs) are followed by lung gas-exchange alterations, lung inflation and animal death. The emulsion toxicity can be caused by both low aggregation stability of the emulsion in the blood stream and appearance of the additional gas pressure in alveoli as a result of difference in the rates of alveolar gas and PFC vapor diffusion. Theoretical and experimental analysis shows that (1) absence of emulsion particle aggregation into blood stream, (2) low pressure of saturated vapors of PFC phase and (3) relatively low rate of PFC expiration from the organism are essential conditions for the creation of a safe fluorocarbon blood substitutes. PMID:7981282

Obratsov, V V; Tarakhovski?, Iu S; Ponomarchuk, V V; Sklifas, A N

1994-01-01

285

Controlled Generation of Double Emulsions in Air  

PubMed Central

This communication describes the controlled generation of double emulsions in the gas phase, which was carried out using an integrated emitter in a PDMS (poly(dimethylsiloxane)) microfluidic chip. The integrated emitter was formed using a molding approach, in which metal wires with desirable diameters were used as emitter molds. The generation of double emulsions in air was achieved with electrohydrodynamics actuation, which offers controllable force exerting on the double emulsions. We developed this capability for future integration of droplet microfluidics with mass spectrometry (MS), where each aqueous droplet in the microchannel is introduced into the gas phase as a double emulsion for subsequent ionization and MS analysis. PMID:23767768

liu, Dingsheng; Hakimi, Bejan; Volny, Michael; Rolfs, Joelle; Chen, Xudong; Turecek, Frantisek; Chiu, Daniel T.

2013-01-01

286

Experimental and modeling studies showing the effect of lipid type and level on flavor release from milk-based liquid emulsions.  

PubMed

The purpose of this work was to study two key parameters of the lipid phase that influence flavor release-lipid level and lipid type-and to relate the results to a mass balance partition coefficient-based mathematical model. Release of 10 volatile compounds from milk-based emulsions at 10, 25, and 50 degrees C was monitored by 1-min headspace sampling with a solid-phase microextraction fiber, followed by GC-MS analysis. As compared to the observations for milk fat, changing to a lipophilic lipid (medium-chain triglycerides, MCT) and adding a monoglyceride-based surfactant did not influence the volatiles release. However, increasing the solid fat content was found to increase the release. At 25 degrees C, and even more so at 10 degrees C, concurrent with an increase in their solid fat content, hydrogenated palm fat emulsions showed increased flavor release over that observed for emulsions made with coconut oil, coconut oil with surfactant, milk fat, and MCT. However, at 50 degrees C, when hydrogenated palm fat emulsions had zero solid fat content, there was no difference in flavor release from that observed for milk fat emulsions. Varying milk fat at nine levels between 0 and 4.5% showed a systematic dependence of the release on the lipid level, dependent on compound lipophilicity. Close correlations were found between the experimental and model predictions with lipid level and percent liquid lipid as variables. PMID:12502406

Roberts, Deborah D; Pollien, Philippe; Watzke, Brigitte

2003-01-01

287

A non-ionic surfactant vesicle-in-water-in-oil (v/w/o) system: potential uses in drug and vaccine delivery.  

PubMed

An aqueous dispersion of niosomes (non-ionic surfactant vesicles) emulsified in an external oil phase forms the vesicle-in-water-in-oil (v/w/o) system described in this paper. The properties of the surfactant used to form the vesicles, the surfactant or surfactant mixture used to stabilize the emulsion and the nature of the oil phase can be changed to provide systems of different capacities for drug or antigen and different release characteristics. The same nonionic surfactant is used as the principle amphipile to form the niosomes and to stabilize the w/o emulsion, thus promoting stability by decreasing transfer of surfactant between the stabilizing monolayers and the vesicle bilayers. The in vitro release of carboxyfluoroscein and 5-fluorouracil encapsulated within the niosomes of the v/w/o system has been investigated, the nature of the oil phase and surfactant-oil interactions being important in determining the rate of solute release. Initial studies of the system in vivo, as an adjuvant for tetanus toxoid, using cottonseed oil as the external oil phase, showed enhanced immunological activity over the free antigen or vesicles. PMID:7773616

Yoshioka, T; Skalko, N; Gursel, M; Gregoriadis, G; Florence, A T

1995-01-01

288

Monte Carlo simulation of mixed nonionic Brij surfactants in water.  

PubMed

Nonionic surfactants such as the Brij® series are important in the preparation of transdermal drug nanodelivery products using nanoemulsions because of their low toxicity and low irritancy. Here, Monte Carlo (MC) simulation was used to examine the physical behavior of the model deterministic system by using sampling procedures. Metropolis MC simulations were run on three mixtures of two different nonionic surfactants, Brij92 and Brij96, with different compositions in aqueous solution. The system was simulated in the canonical ensemble with constant temperature, volume and number of molecules. Hence, the acceptance ratio for single atom moves of the mixed surfactants increased as the concentration of surfactants increased from 0.494 to 0.591. The lowest total energy for the mixed surfactant systems was -99,039 kcal mol(-1) due to the interaction between all molecules in the system simulated. The physicochemical properties of models such as the radius of gyration and radial distribution function, were also determined. These observations indicate that the behavior and physicochemical of mixed surfactant and PKOEs nanoemulsion systems were described adequately during the simulation. PMID:25381172

Yahya, Ruzanna; Karjiban, Roghayeh Abedi; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul; Girardi, Mauricio

2014-11-01

289

Electric field mediated breakdown of thin liquid films separating microscopic emulsion droplets  

NASA Astrophysics Data System (ADS)

The authors present a microfluidic technique for electrically induced breakup of thin films formed between microscopic emulsion droplets. The method involves creating a stationary film at the intersection of two microchannels etched onto a glass substrate. After stabilizing the film, a ramped potential is applied across it. The electrical stresses developed at the film interfaces lead to its rupture above a threshold potential. The potential difference at which the film ruptures assesses the film stability. This approach is employed to demonstrate how surfactant (lecithin) adsorption imparts stability to an ultrathin oil film formed between two water droplets.

Mostowfi, Farshid; Khristov, Khristo; Czarnecki, Jan; Masliyah, Jacob; Bhattacharjee, Subir

2007-04-01

290

Simple, helical peptoid analogs of lung surfactant protein B.  

PubMed

The helical, amphipathic surfactant protein, SP-B, is a critical element of pulmonary surfactant and hence is an important therapeutic molecule. However, it is difficult to isolate from natural sources in high purity. We have created and studied three different, nonnatural analogs of a bioactive SP-B fragment (SP-B(1-25)), using oligo-N-substituted glycines (peptoids) with simple, repetitive sequences designed to favor the formation of amphiphilic helices. For comparison, a peptide with a similar repetitive sequence previously shown to be a good SP mimic was also studied, along with SP-B(1-25) itself. Surface pressure-area isotherms, surfactant film phase morphology, and dynamic adsorption behavior all indicate that the peptoids are promising mimics of SP-B(1-25). The extent of biomimicry appears to correlate with peptoid helicity and lipophilicity. These biostable oligomers could serve in a synthetic surfactant replacement to treat respiratory distress syndrome. PMID:15664517

Seurynck, Shannon L; Patch, James A; Barron, Annelise E

2005-01-01

291

Influence of binary surfactant mixtures on the rheology of associative polymer solutions.  

PubMed

Hydrophobically modified alkali-soluble emulsion polymers (HASE) are a class of comblike associative polymers that can impart high viscosities to aqueous solutions. The rheology of HASE solutions can be tuned by the addition of surfactants, such as nonylphenol ethoxylates (NP e), where e is the length of the hydrophilic (ethoxylate) chain. While previous studies have considered individual surfactants, our focus here is on binary surfactant mixtures. We find that equimolar NP4-NP12 mixtures significantly enhance the zero-shear viscosities of HASE solutions as compared to equivalent amounts of NP8, especially at high overall surfactant concentrations. Dynamic rheological measurements suggest that the higher viscosities are due to increases in the lifetime of hydrophobic junctions in the polymer-surfactant network. In contrast to the above results, equimolar NP4-NP8 mixtures are rheologically identical to equivalent solutions of NP6. The differences between the two sets of mixtures are further correlated with cloud point measurements and thereby with the overall hydrophilic-lipophilic balance (HLB) of the surfactant system. PMID:18613708

Talwar, Sachin; Scanu, Lauriane; Raghavan, Srinivasa R; Khan, Saad A

2008-08-01

292

Self-assembly behavior of lipids at an oil-water interface  

NASA Astrophysics Data System (ADS)

The hydrophilic and hydrophobic properties of lipid molecules enable them to organize into large structures when dissolved in water or in oil. Under certain conditions and with the right they can organize into micellar or into lamellar phases under certain conditions and with the right system composition. The equilibrium phase of lipids have been well studied. In this work we observe the behavior of lipids at an oil-water interface, and we investigate the molecular assembly that can result in the presence of lipids at an oil-water interface. We have established that lipids can be used as a surfactant to stabilize water droplets in oil, and we have developed a new method, a reverse emulsion technique, that allows us to use these emulsions to assemble unilamellar vesicles with a high encapsulation yield. The vesicle bilayer is formed from the assembly of two monolayers formed independently and we have proven that this technique offers the possibility to directly assemble asymmetric bilayer. Because the encapsulated phase remains contained at all time by a surfactant layer the reactivity of the molecules initially encapsulated can be preserved. We have demonstrated using fluorescence measurement that the vesicles formed can be used as micro-reactor where reactive molecules can be encapsulated and their activity remotely triggered. This technique is not limited to lipids and we have demonstrated that the process can also be applied to other amphiphilic molecules such as polymers or synthetic surfactants. In addition, we have used dynamic light scattering to study the size of the inverted emulsion stabilized with lipids as a function of the shear applied to the suspension. We have established that a water drop injected in an alkane solution such as dodecane lead to the spontaneous formation of emulsion droplet. Moreover we have demonstrated that the spontaneous emulsification is due to the swelling of a lyotropic semi-crystalline phase which forms at the dodecane-water interface. We have observed by optical microscopy that large droplet composed of lipid and water grow at the interface and lead to the formation of onion like assembly in dodecane.

Pautot, Sophie

293

Nanostructure of electrically conducting polyaniline prepared by a novel emulsion polymerization process  

SciTech Connect

A soluble polyaniline (PANI) salt with moderate conductivity was synthesized by a novel emulsion polymerization process. The conductivity of the processed PANI films can be substantially increased by treating the polymer films with surfactants or with low molecular weight alcohols. Transmission electron microscopy (TEM) images of thin polymer films revealed the existence of small islands of conducting PANI embedded in a non-conducting, dopant matrix. The conductivity of the PANI films is affected by the spatial distribution and the connectivity of these small islands. The conductivity enhancement observed upon treatment with surfactants is due to self-assembly of conducting PANI molecules into an interconnected network morphology. In the case of alcohol treatment the film conductivity is enhanced due to extraction of excess dopant phase and the subsequent densification of PANI islands to form highly conducting pathways.

Liu, J.; Kinlen, P.J.; Graham, C.R.

1998-07-01

294

Adsorption of surfactants and polymers at interfaces  

NASA Astrophysics Data System (ADS)

Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge density. In practical systems the adsorption phenomena were found to be far more complex. Electrostatic and hydrogen bonding interactions play a major role in the adsorption of cationic polyelectrolytes on cellulosic substrates. Cationic and underivatized guar gum macromolecules form complexes with fines and dissolved and colloidal carbohydrates which are then retained on the cellulose fibers. The extent of the adsorption and association depends on the charge and nature of all the components present in pulp suspensions.

Rojas, Orlando Jose

295

Inversion of particle-stabilized emulsions of partially miscible liquids by mild drying of modified silica particles.  

PubMed

Using a system of modified silica particles and mixtures of water and 2,6-lutidine to form particle-stabilized emulsions, we show that subtle alterations to the hydration of the particle surface can cause major shifts in emulsion structure. We use fluorescence confocal microscopy, solid state nuclear magnetic resonance (NMR) and thermo-gravimetric analysis (TGA) to explore this sensitivity, along with other shifts caused by modifications to the silica surface chemistry. The silica particles are prepared by a variant of the Stöber procedure and are modified by the inclusion of 3-(aminopropyl)triethoxysilane and the dye fluorescein isothiocyanate. Treatment prior to emulsification consists of gently drying the particles under carefully controlled conditions. In mixtures of water and 2,6-lutidine of critical composition, the particles stabilize droplet emulsions and bijels. Decreasing particle hydration yields an inversion of the emulsions from lutidine-in-water (L/W) to water-in-lutidine (W/L), with bijels forming around inversion. So dependent is the emulsion behavior on particle hydration that microscopic differences in drying within a particle sample can cause differences in the wetting behavior of that sample, which helps to stabilize multiple emulsions. The formation of bijels at emulsion inversion is also crucially dependent on the surface modification of the silica. PMID:21507417

White, Kathryn A; Schofield, Andrew B; Wormald, Philip; Tavacoli, Joseph W; Binks, Bernard P; Clegg, Paul S

2011-07-01

296

Effect of Ionic Strength on Oil Removal from Stainless Steel in the Presence of Ionic Surfactant  

Microsoft Academic Search

Contact angles of oil droplets on solid surfaces provide useful insight into surfactant cleaning behavior. Contact angles of hexadecane and MAR?TEMP 355, an industrial quench oil, on stainless steel were measured for ionic surfactant solutions as a function of ionic strength. The ionic strength of sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB) solutions was modified by the

Alison N. Davis; Samuel A. Morton III; Robert M. Counce; David W. DePaoli

2006-01-01

297

Contribution of molecular pathways in the micellar solubilization of monodisperse emulsion droplets.  

PubMed

It is often proposed that oil solubilization in anionic and nonionic micelles proceeds by different mechanisms, with diffusion of the oil molecule thought to control the former, and the latter interfacially controlled. In order to investigate this hypothesis, the effect of aqueous phase viscosity, salt, and surfactant concentration during the solubilization process was studied. The progressive decrease in average droplet size of nearly monodisperse emulsions during solubilization in SDS or Tween 20 micellar solutions was monitored by light scattering, and the change in turbidity was measured by UV-vis spectrophotometer. The solubilization rates were analyzed using a population balance approach to calculate the mass transfer coefficients. Increasing the aqueous viscosity by adding sucrose reduced the mass transfer coefficients of n-tetradecane and n-dodecane but had a smaller effect on n-hexadecane. The strong dependence of the solubilization rate for the shorter chain length alkanes on aqueous viscosity supported a mechanism in which the oil undergoes molecular diffusion before being taken up by micelles. The dependence of the solubilization kinetics on surfactant concentration appeared consistent with this mechanism but yielded a slower micellar uptake rate than previously predicted theoretically. As the solute chain length increased in nonionic surfactant solutions, an interfacial mechanism mediated by micelles appeared to contribute substantially to the overall rate. Addition of salt only slightly increased the solubilization rate of n-hexadecane in SDS solutions and, thus, indicated a weak role of electrostatic interactions for ionic surfactants on the overall mechanism. PMID:18324848

Ariyaprakai, Suwimon; Dungan, Stephanie R

2008-04-01

298

Electrophoretic separations in poly(dimethylsiloxane) microchips using a mixture of ionic and zwitterionic surfactants.  

PubMed

The use of mixtures of ionic and zwitterionic surfactants in poly(dimethylsiloxane) (PDMS) microchips is reported. The effect of surfactant concentration on electroosmotic flow (EOF) was studied for a single anionic surfactant (sodium dodecyl sulfate, SDS), a single zwitterionic surfactant (N-tetradecylammonium-N,N-dimethyl-3-ammonio-1-propanesulfonate, TDAPS), and a mixed SDS/TDAPS surfactant system. SDS increased the EOF as reported previously while TDAPS showed an initial increase in EOF followed by a reduction at higher concentrations. When TDAPS was added to a solution containing SDS, the EOF decreased in a concentration-dependent manner. The EOF for all three surfactant systems followed expected pH trends, with increasing EOF at higher pH. The mixed surfactant system allowed tuning of the EOF across a range of pH and concentration conditions. After establishing the EOF behavior, the adsorption/desorption kinetics were measured and showed a slower adsorption/desorption rate for TDAPS than SDS. Finally, the separation and electrochemical detection of model catecholamines in buffer and reduced glutathione in red blood cell lysate using the mixed surfactant system were explored. The mixed surfactant system provided shorter analysis times and/or improved resolution when compared to the single surfactant systems. PMID:22222982

Guan, Qian; Noblitt, Scott D; Henry, Charles S

2012-01-01

299

Electrophoretic separations in poly(dimethylsiloxane) microchips using mixtures of ionic, nonionic and zwitterionic surfactants.  

PubMed

The use of surfactant mixtures to affect both EOF and separation selectivity in electrophoresis with PDMS substrates is reported, and capacitively coupled contactless conductivity detection is introduced for EOF measurement on PDMS microchips. First, the EOF was measured for two nonionic surfactants (Tween 20 and Triton X-100), mixed ionic/nonionic surfactant systems (SDS/Tween 20 and SDS/Triton X-100), and finally for the first time, mixed zwitterionic/nonionic surfactant systems (TDAPS/Tween 20 and TDAPS/Triton X-100). EOF for the nonionic surfactants decreased with increasing surfactant concentration. The addition of SDS or TDAPS to a nonionic surfactant increased EOF. After establishing the EOF behavior, the separation of model catecholamines was explored to show the impact on separations. Similar analyte resolution with greater peak heights was achieved with mixed surfactant systems containing Tween 20 and TDAPS relative to the single surfactant system. Finally, the detection of catecholamine release from PC12 cells by stimulation with 80 mM K(+) was performed to demonstrate the usefulness of mixed surfactant systems to provide resolution of biological compounds in complex samples. PMID:23019105

Guan, Qian; Noblitt, Scott D; Henry, Charles S

2012-09-01

300

Biodegradation of nonionic surfactants  

Microsoft Academic Search

This paper discusses the biodegradability of alcohol-based nonionics measured by the recommended legislative test procedures\\u000a and how the results obtained are affected by the chemical structure of the surfactant, and thus provides guidance on the selection\\u000a of materials. More detailed studies on the biodegradation of alcohol ethoxylates during the activated sludge sewage treatment\\u000a process are also reported. Examination of a

R. R. Birch

1984-01-01

301

Stable emulsions with thermally responsive microstructure and rheology using poly(ethylene oxide) star polymers as emulsifiers.  

PubMed

Poly(ethylene oxide) star polymers (PEO stars) were prepared by atom transfer radical polymerization of 2000 molecular weight PEO methacrylate macromonomer with divinylbenzene as a crosslinking co-monomer. With an average of 460 arms per star, these PEO stars had a 12 nm radius of gyration that is consistent with a dense polymer core surrounded by an extended PEO corona. The PEO stars were extremely efficient emulsifiers, stabilizing cyclohexane-in-water or xylene-in-water emulsions against coalescence for several months at aqueous phase concentrations as low as 0.008 wt% or 0.01 wt%, respectively. Consistent with their emulsifying performance, PEO star adsorption decreased interfacial tension by approximately 22 mN/m and imparted significant dilatational elasticity to the xylene/water interface. PEO stars were thermally responsive, displaying a cloud point upon heating in water that was tuned by addition of kosmotropic electrolytes, and they in turn produced xylene-in-water emulsions that were thermally responsive in terms of the dispersion state of the emulsion droplets and the emulsion rheology. Emulsions prepared at room temperature mainly had non-flocculated droplets. Heating such an emulsion above the cloud point temperature triggered droplet flocculation, but not coalescence, that in turn was associated with increased viscous and elastic moduli of the emulsion measured after cooling back to room temperature. Emulsions that initially were homogenized above the cloud point temperature and then cooled showed neither droplet flocculation nor rheological thickening relative to emulsions that were prepared and held at room temperature. A mechanism based on the bridging behavior of PEO stars adsorbed at the droplet/water interface is postulated to explain this thermal response of the emulsion microstructure. PMID:23266031

Saigal, Trishna; Yoshikawa, Alex; Kloss, Dennis; Kato, Masanari; Golas, Patricia Lynn; Matyjaszewski, Krzysztof; Tilton, Robert D

2013-03-15

302

Biodegradability of bacterial surfactants.  

PubMed

This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production. PMID:21053055

Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

2011-06-01

303

Cocoa particles for food emulsion stabilisation.  

PubMed

Emulsifying properties of cocoa particles have been investigated in systems containing purified sunflower oil (PSO) and water at varying pH, concentration and source of cocoa particles including cocoa powders (CP), cocoa fibre (CF) and cocoa mass (CM). The effect of cocoa particle source, pH and cocoa particle concentration on emulsion stability was evaluated by following changes in characteristic droplet diameter. Size distributions acquired on the emulsions and aqueous cocoa particle suspensions overlapped. Based on cryo-SEM imaging of the emulsions, isolation of cocoa particle fines and a process of washing the cocoa particles to remove any water soluble molecules, it was concluded that the cocoa particle fines not captured by the small angle laser diffraction method employed for sizing, act as Pickering particles. This research has demonstrated a universal nature of a natural food particle to stabilise oil-in-water emulsions not requiring particle modification or adjusting of the solution properties of the emulsion phases. PMID:23851644

Gould, Joanne; Vieira, Josélio; Wolf, Bettina

2013-09-01

304

Solution and interfacial behavior of modified silicone polymers and their interactions with solid substrates  

NASA Astrophysics Data System (ADS)

Surface treatment is very important step in many applications such as fabric finishing, coatings, cosmetics and personal care. Silicone polymers are a class of organic/inorganic materials that show unique properties such as weak intermolecular forces and high flexibility enabling even a very high molecular weight chain to achieve optimal orientation on surfaces. Material properties such as softness, repellency, bounciness and friction can therefore be tailored by using appropriately modified silicone polymers. Despite wide applications, the underlying mechanisms of material modification are unknown and tailoring silicones for applications remains mostly empirical. Thus the objective of this research is to understand the solution and interfacial behavior of functionalized silicone polymers, which govern their performance in material modification. Modified silicones are simultaneously hydrophobic and oleophobic in nature and due to this nearly universal non-compatibility, the studies of these polymers present unusual challenges. Due to this incompatible nature, the functionalized silicone polymers were emulsified into O/W emulsions to study their solution and interfacial properties. The colloidal properties such as electrokinetic and droplet distribution of these emulsions are assumed to play an important role in the observed surface and physical properties of solid substrates (in present study, cellulosic substrates) as well the stability of emulsions itself. To understand the effects of modified silicones on cellulosic substrates a variety of techniques such as frictional analysis, scanning electron microscopy and atomic force microscopy that can probe from macro to nano level were used. It is hypothesized that the size distribution and charge of silicone emulsions as well as the physiochemical conditions such as pH, control silicone conformation which in turn affect the modification of the substrate properties. With bimodal droplet distribution of silicone emulsions, the nano-sized droplets can penetrate deeper into the substrate to provide bounciness, whereas macro-sized droplets can coat the top layer leading to friction reduction. It was observed that at pH 5.5 the silicone treatment resulted in charge reversal of fibers as opposed to treatment at pH 9.5. On a macroscopic scale 20% reduction in frictional coefficient of the fabric was observed after treatment with quaternized (cationically modified) silicones as compared to untreated fibers. It was also observed using AFM that the fibrils treated with quaternized silicones are uniform, well stacked and smoother than the untreated fibers. Spectroscopic analysis of treated fibers using Raman spectroscopy indicated a decrease in fiber stress as a function of modification of silicone polymer and the interaction pH. It is concluded that the protonated amine functional silicone (below pH 7) as well as the quaternized silicone interacts with the negatively charged cellulose fibers primarily through electrostatic interactions. It is proposed that this initial surface coating is a uniform thin film which allows further deposition of polymer from the emulsion. It was observed that at high pH the zetapotential of silicone emulsions decreases drastically and the nano emulsions turn turbid. It is proposed that the observed electrophoretic and nephelometric behavior at high pH is due to flocculation of nanosized droplets to micron size, which eventually leads to droplets coalescing and emulsion destabilization. It is also postulated that the nano emulsion possess a critical dilution concentration (CDC), above which dilution leads to rapid coalescence. This critical dilution phase was further confirmed through polarity parameter and excimer formation studies which show significantly different polymer and surfactant microstructures near the CDC. Hence it is concluded that the observed surface properties of the substrate obtained above the CDC are significantly different than those below the CDC. The results reveal the vital role of physiochemical parameters such as pH, droplet size,

Purohit, Parag

305

Dilution of protein-surfactant complexes: A fluorescence study  

PubMed Central

Dilution of protein–surfactant complexes is an integrated step in microfluidic protein sizing, where the contribution of free micelles to the overall fluorescence is reduced by dilution. This process can be further improved by establishing an optimum surfactant concentration and quantifying the amount of protein based on the fluorescence intensity. To this end, we study the interaction of proteins with anionic sodium dodecyl sulfate (SDS) and cationic hexadecyl trimethyl ammonium bromide (CTAB) using a hydrophobic fluorescent dye (sypro orange). We analyze these interactions fluourometrically with bovine serum albumin, carbonic anhydrase, and beta-galactosidase as model proteins. The fluorescent signature of protein–surfactant complexes at various dilution points shows three distinct regions, surfactant dominant, breakdown, and protein dominant region. Based on the dilution behavior of protein–surfactant complexes, we propose a fluorescence model to explain the contribution of free and bound micelles to the overall fluorescence. Our results show that protein peak is observed at 3 mM SDS as the optimum dilution concentration. Furthermore, we study the effect of protein concentration on fluorescence intensity. In a single protein model with a constant dye quantum yield, the peak height increases with protein concentration. Finally, addition of CTAB to the protein–SDS complex at mole fractions above 0.1 shifts the protein peak from 3 mM to 4 mM SDS. The knowledge of protein–surfactant interactions obtained from these studies provides significant insights for novel detection and quantification techniques in microfluidics. PMID:23868358

Azadi, Glareh; Chauhan, Anuj; Tripathi, Anubhav

2013-01-01

306

Structural characterization of surfactant aggregates adsorbed in cylindrical silica nanopores.  

PubMed

The self-assembly of nonionic surfactants in the cylindrical pores of SBA-15 silica with a pore diameter of 8 nm was studied by small-angle neutron scattering (SANS) at different solvent contrasts. The alkyl ethoxylate surfactants C(10)E(5) and C(12)E(5) exhibit strong aggregative adsorption in the pores as indicated by the sigmoidal shape of the adsorption isotherms. The SANS intensity profiles can be represented by a sum of two terms, one accounting for diffuse scattering from surfactant aggregates in the pores and the other for Bragg scattering from the pore lattice of the silica matrix. The Bragg reflections are analyzed with a form factor model in which the radial density profile of the surfactant in the pore is approximated by a two-step function. Diffuse scattering is represented by a Teubner-Strey-type scattering function which indicates a preferred distance between adsorbed surface aggregates in the pores. Our results suggest that adsorption starts with formation of discrete surface aggregates which increase in number and eventually merge to interconnected patches as the plateau value of the adsorption isotherm is approached. A grossly different behavior, viz. formation of micelles as in solution, is found for the maltoside surfactant C(10)G(2), in agreement with the observed weak adsorption of this surfactant in SBA-15. PMID:21476556

Shin, Tae Gyu; Müter, Dirk; Meissner, Jens; Paris, Oskar; Findenegg, Gerhard H

2011-05-01

307

Dilution of protein-surfactant complexes: a fluorescence study.  

PubMed

Dilution of protein-surfactant complexes is an integrated step in microfluidic protein sizing, where the contribution of free micelles to the overall fluorescence is reduced by dilution. This process can be further improved by establishing an optimum surfactant concentration and quantifying the amount of protein based on the fluorescence intensity. To this end, we study the interaction of proteins with anionic sodium dodecyl sulfate (SDS) and cationic hexadecyl trimethyl ammonium bromide (CTAB) using a hydrophobic fluorescent dye (sypro orange). We analyze these interactions fluourometrically with bovine serum albumin, carbonic anhydrase, and beta-galactosidase as model proteins. The fluorescent signature of protein-surfactant complexes at various dilution points shows three distinct regions, surfactant dominant, breakdown, and protein dominant region. Based on the dilution behavior of protein-surfactant complexes, we propose a fluorescence model to explain the contribution of free and bound micelles to the overall fluorescence. Our results show that protein peak is observed at 3 mM SDS as the optimum dilution concentration. Furthermore, we study the effect of protein concentration on fluorescence intensity. In a single protein model with a constant dye quantum yield, the peak height increases with protein concentration. Finally, addition of CTAB to the protein-SDS complex at mole fractions above 0.1 shifts the protein peak from 3 mM to 4 mM SDS. The knowledge of protein-surfactant interactions obtained from these studies provides significant insights for novel detection and quantification techniques in microfluidics. PMID:23868358

Azadi, Glareh; Chauhan, Anuj; Tripathi, Anubhav

2013-09-01

308

MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY  

SciTech Connect

The aim of this project is to delineate the role of mineralogy of reservoir rocks in determining interactions between reservoir minerals and externally added reagents (surfactants/polymers) and its effect on critical solid-liquid and liquid-liquid interfacial properties such as adsorption, wettability and interfacial tension in systems relevant to reservoir conditions. Previous studies have suggested that significant surfactant loss by precipitation or adsorption on reservoir minerals can cause chemical schemes to be less than satisfactory for enhanced oil recovery. Both macroscopic adsorption, wettability and microscopic orientation and conformation studies for various surfactant/polymer mixtures/reservoir rocks systems were conducted to explore the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this period, the adsorption of mixed system of n-dodecyl-{beta}-D-maltoside (DM) and dodecyl sulfonate (C{sub 12}SO{sub 3}Na) has been studied. The effects of solution pH, surfactant mixing ratio and different salts on surfactant adsorption on alumina have been investigated in detail. Along with these adsorption studies, changes in mineral wettability due to the adsorption of the mixtures were determined under relevant conditions to identify the nano-structure of the adsorbed layers. Solution properties of C{sub 12}SO{sub 3}Na/DM mixtures were also studied to identify surfactant interactions that affect the mixed aggregate formation in solution. Adsorption of SDS on gypsum and limestone suggested stronger surfactant/mineral interaction than on alumina, due to the precipitation of surfactant by dissolved calcium ions. The effects of different salts such as sodium nitrate, sodium sulfite and sodium chloride on DM adsorption on alumina have also been determined. As surfactant hemimicelles at interface and micelles in solution have drastic effects on oil recovery processes, their microstructures in solutions and at mineral/solution interfaces were investigated by monitoring micropolarity of the aggregates using fluorescence technique. Compositional changes of the aggregates in solution were observed with the increase in surfactant concentration. The importance of this lies in that the resulting polarity/hydrophobicity change of the mixed micelles will affect the adsorption of surfactant mixtures on reservoir minerals, surfactant/oil emulsion formation and wettability, as a result, the oil release efficiency of the chemical flooding processes in EOR.

P. Somasundaran

2005-04-30

309

Pickering emulsions stabilized by soft microgels: influence of the emulsification process on particle interfacial organization and emulsion properties.  

PubMed

This work reports a new evidence of the versatility of soft responsive microgels as stabilizers for Pickering emulsions. The organization of microgels at the oil-water interface is a function of the preparation pathway. The present results show that emulsification energy can be used as a trigger to modify microgel deformation at the oil-water interface and their packing density: high shear rates bring strong flattening of the microgels, whereas low shear rates lead to dense monolayers, where the microgels are laterally compressed. As a consequence, the resulting emulsions have opposite behavior in terms of flocculation, which arises from bridging between neighboring drops and is strongly dependent on their surface coverage. This strategy can be applied to any microgel which can sufficiently adsorb at low shear rates, i.e. small microgels or lightly cross-linked ones. The control of the organization of microgels at the interface does not only modify emulsion end-use properties but also constitutes a new tool for the development of Janus-type microgels, obtained by chemical modification of the adsorbed microgels. PMID:24050149

Destribats, Mathieu; Wolfs, Mélanie; Pinaud, Florent; Lapeyre, Véronique; Sellier, Elisabeth; Schmitt, Véronique; Ravaine, Valérie

2013-10-01

310

Single-chain surfactant monolayer on carbon paste electrode and its application for the studies on the direct electron transfer of hemoglobin.  

PubMed

A variety of single-chain surfactants with different charge properties and tail lengths can spontaneously adsorb on the hydrophobic surface of carbon paste electrode and form stable monolayers on the electrode surface. Hemoglobin (Hb) was successfully immobilized on these surfactant monolayers to form stable protein-surfactant composite films regardless of the charge and the tail length of surfactants. The resulting surface-confined Hb exhibited well-defined direct electron-transfer behaviors in all positively, neutrally and negatively charged surfactant films, suggesting the important role of hydrophobic interactions in the adsorption of Hb on surfactant films. When the density of surfactant monolayers was controlled to be the same, Hb was found to possess a better direct electron-transfer behavior on monolayers of cationic surfactants with a longer tail length. This, in combination with the tunneling effect in the direct electron transfer of Hb on surfactant films, demonstrated that the adsorption of Hb on surfactant monolayers may be mainly achieved by the partial intercalation of Hb in the loose structures of surfactant films through hydrophobic interactions between the alkane chains of surfactants and the hydrophobic regions of Hb. The native conformation of Hb adsorbed on these surfactant films was proved to be unchanged, reflected by the unaltered ultraviolet-visible (UV-vis) and reflection-absorption infrared (RAIR) spectra, and by the catalytic activity toward hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) in comparison with the free Hb molecules. PMID:18938113

Xu, Yanxia; Hu, Chengguo; Hu, Shengshui

2009-02-01

311

Synthesis and characterization ofpH-degradable nonionic surfactants and their applications in microemulsions  

NASA Astrophysics Data System (ADS)

The objective of this research is to synthesize pH-degradable surfactants and investigate their use in water-in-oil microemulsion based protein extraction. Water-in-oil microemulsions (w/o-ME's) are nanometer sized aqueous droplets dispersed in apolar solvents due to the action of surfactants. Microemulsion based protein extraction (MPE) is a quick, simple and selective method for the recovery of biornolecules. There are however four problems that limit MPE (using commercially available surfactants), namely, protein inactivation, slow or incomplete recovery of proteins, a limit to solubilization of the protein, and complete separation of the protein from the surfactant. There have been a number of approaches to solve these problems. However, this is the first approach to help resolve these issues using degradable surfactants. Degradable surfactants are capable of splitting into non-surface active species when subjected to certain conditions depending upon their structure. Using degradable surfactants would help resolve some of these problems. After completion of the extraction process, the surfactant can be subject to conditions so that it becomes 'surface-inactive' and this would help separation of the surfactant from the protein. In addition the use of nonionic surfactants also contributes positively since nonionic surfactants bind less strongly as compared to ionic surfactants. The surfactants synthesized during the course of this research comprised of polyethylene glycol (helps protein activity) as the hydrophile and a cyclic ketal as the hydrophobe. The cyclic ketal structure is susceptible to hydrolysis in the presence of mild acids. Three different surfactant systems were synthesized, with the same headgroup but different tail groups. All of them formed water-in-oil microemulsions in isooctane. The surfactants hydrolyzed (in pH 5 buffer) in an apparent zeroth order process. This is the only known research where an organic oil-soluble cleavable surfactant was synthesized, two enzymes, lysozyme and alpha-chymotrypsin (concentrations as high as 10 mg) could be solubilized in the microemulsions, and subsequently released within an hour with retention in enzyme activity. The phase behavior of the surfactant systems and the size of the microemulsions were also characterized and found to be consistent with that of commercially available nonionic surfactants.

Iyer, Maithili Ananth

2002-03-01

312

Theoretical and Simulations-Based Modeling of Micellization in Linear and Branched Surfactant Systems  

NASA Astrophysics Data System (ADS)

Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of surfactant concentration, including: (i) formation of surfactant monolayers at surfaces and interfaces, and (ii) self-assembly into finite aggregates (micelles) in the bulk solution beyond the critical micelle concentration (cmc). This concentration-dependent phase behavior induces changes in solution properties. For example, the surface activity of surfactants can decrease the surface tension, and self-assembly in bulk solution can lead to changes in viscosity, equivalent conductivity, solubilization capacity, and other bulk properties. These effects make surfactants quite attractive and unique for use in product formulations, where they are utilized as detergents, dispersants, emulsifiers, solubilizers, surface and interfacial tension modifiers, and in other contexts. The specific chemical structure of the surfactant head and tail is essential in determining the overall performance properties of a surfactant in aqueous media. The surfactant tail drives the self-assembly process through the hydrophobic effect, while the surfactant head imparts a certain extent of solubility to the surfactant in aqueous solution through preferential interactions with the hydrogen-bonding network of water. The interplay between these two effects gives rise to the particular phase diagram of a surfactant, including the specific cmc at which micelles begin to form. In addition to serving as a quantitative indicator of micelle formation, the cmc represents a limit to surface monolayer formation, and hence to surface and interfacial tension reduction, because surfactant adsorption at interfaces remains approximately constant beyond the cmc. In addition, the cmc represents the onset of changes in bulk solution properties. This Thesis is concerned with the prediction of cmc's and other micellization properties for a variety of linear and branched surfactant chemical architectures which are commonly encountered in practice. Single-component surfactant solutions are investigated, in order to clarify the specific contributions of the surfactant head and tail to the free energy of micellization, a quantity which determines the cmc and all other aspects of micellization. First, a molecular-thermodynamic (MT) theory is presented which makes use of bulk-phase thermodynamics and a phenomenological thought process to describe the energetics related to the formation of a micelle from its constituent surfactant monomers. Second, a combined computer-simulation/molecular-thermodynamic (CSMT) framework is discussed which provides a more detailed quantification of the hydrophobic effect using molecular dynamics simulations. A novel computational strategy to identify surfactant head and tail using an iterative dividing surface approach, along with simulated micelle results, is proposed. Force-field development for novel surfactant structures is also discussed. Third, a statistical-thermodynamic, single-chain, mean-field theory for linear and branched tail packing is formulated, which enables quantification of the specific energetic penalties related to confinement and constraint of surfactant tails within micelles. Finally, these theoretical and simulations-based strategies are used to predict the micellization behavior of 55 linear surfactants and 28 branched surfactants. Critical micelle concentration and optimal micelle properties are reported and compared with experiment, demonstrating good agreement across a range of surfactant head and tail types. In particular, the CSMT framework is found to provide improved agreement with experimental cmc's for the branched surfactants considered. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

Mendenhall, Jonathan D.

313

Monodisperse Double Emulsions Generated from a Microcapillary Device  

Microsoft Academic Search

Double emulsions are highly structured fluids consisting of emulsion drops that contain smaller droplets inside. Although double emulsions are potentially of commercial value, traditional fabrication by means of two emulsification steps leads to very ill-controlled structuring. Using a microcapillary device, we fabricated double emulsions that contained a single internal droplet in a core- shell geometry. We show that the droplet

A. S. Utada; E. Lorenceau; P. D. Kaplan; H. A. Stone; D. A. Weitz

2005-01-01

314

Reverse micelles-mediated transport of lipase in liquid emulsion membrane for downstream processing.  

PubMed

This work deals with the downstream processing of lipase (EC 3.1.1.3, from Aspergillus niger) using liquid emulsion membrane (LEM) containing reverse micelles for the first time. The membrane phase consisted of surfactants [cetyltrimethylammonium bromide (CTAB) and Span 80] and cosolvents (isooctane and paraffin light oil). The various process parameters for the extraction of lipase from aqueous feed were optimized to maximize activity recovery and purification fold. The mechanism of lipase transport through LEM consisted of three steps namely solubilization of lipase in reverse micelles, transportation of reverse micelles loaded with lipase through the liquid membrane, and release of the lipase into internal aqueous phase. The results showed that the optimum conditions for activity recovery (78.6%) and purification (3.14-fold) were feed phase ionic strength 0.10 M NaCl and pH 9.0, surfactants concentration (Span 80 0.18 M and CTAB 0.1 M), volume ratio of organic phase to internal aqueous phase 0.9, ratio of membrane emulsion to feed volume 1.0, internal aqueous phase concentration 1.0 M KCl and pH 7.0, stirring speed 450 rpm, and contact time 15 min. This work indicated the feasibility of LEM for the downstream processing of lipase. PMID:23011754

Bhavya, S G; Priyanka, B S; Rastogi, Navin K

2012-01-01

315

Drops deformation and magnetic permeability of a ferrofluid emulsion  

E-print Network

In the paper the novel soft magnetic composite system is investigated. A ferrofluid emulsion studied demonstrates the strong magnetic properties which are atypical for commonly known emulsions. Interaction of ferrofluid emulsions with a magnetic field is considered. Structural transformations in these media, such as deformation of emulsion microdroplets and emulsion inversion, are studied. The changes in the relative permeability of emulsion associated with structural transformations are investigated. The theory of the observed phenomena is developed, and the feasibility of effectively controlling the magnetic properties of ferrofluid emulsions by applying a magnetic field is demonstrated.

Arthur Zakinyan; Yury Dikansky

2011-04-17

316

Squalene and squalane emulsions as adjuvants.  

PubMed

Microfluidized squalene or squalane emulsions are efficient adjuvants, eliciting both humoral and cellular immune responses. Microfluidization stabilizes the emulsions and allows sterilization by terminal filtration. The emulsions are stable for years at ambient temperature and can be frozen. Antigens are added after emulsification so that conformational epitopes are not lost by denaturation and to facilitate manufacture. A Pluronic block copolymer can be added to the squalane or squalene emulsion. Soluble antigens administered in such emulsions generate cytotoxic T lymphocytes able to lyse target cells expressing the antigen in a genetically restricted fashion. Optionally a relatively nontoxic analog of muramyl dipeptide (MDP) or another immunomodulator can be added; however, the dose of MDP must be restricted to avoid systemic side effects in humans. Squalene or squalane emulsions without copolymers or MDP have very little toxicity and elicit potent antibody responses to several antigens in nonhuman primates. They could be used to improve a wide range of vaccines. Squalene or squalane emulsions have been administered in human cancer vaccines, with mild side effects and evidence of efficacy, in terms of both immune responses and antitumor activity. PMID:10525443

Allison, A C

1999-09-01

317

DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS  

SciTech Connect

There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Alfoterra-38 (0.05 wt%), Alfoterra-35 (0.05 wt%), SS-6656 (0.05 wt%), and DTAB (1 wt%) altered the wettability of the initially oil-wet calcite plate to an intermediate/water-wet state. Low IFT ({approx}10{sup -3} dynes/cm) is obtained with surfactants 5-166, Alfoterra-33 and Alfoterra-38. Plans for the next quarter include conducting wettability and mobilization studies.

Kishore K. Mohanty

2003-10-01

318

Physico-chemical characterization of Intralipid emulsions.  

PubMed

Fat emulsions containing soy triacylglycerols (100-300 g/l) and egg-yolk phospholipids (12 g/l) are often used for intravenous feeding. Previous studies have shown that these emulsions contain chylomicron-like emulsion particles of diameters of 300-400 nm and excess phospholipids aggregated as vesicles (liposomes), which remain in the infranatant upon floatation of the emulsion particles by ultracentrifugation. This work is devoted to the characterization of the commercial lipid emulsions commonly denoted Intralipids, with special emphasis on the presently ill-defined liposomes. The lipid particles composing commercial lipid emulsions (10%, 20% and 30% Intralipids, Kabivitrum Nutrition) were characterized by the combined use of physical and chemical methods. Each of the emulsions was fractionated by ultracentrifugation in saline into a 'cream' layer which floats to the top of the dispersion upon ultracentrifugation and a relatively transparent infranatant. The cream layer contains large emulsion particles of diameters ranging from 300 to 400 nm, in agreement with theoretical considerations based on their chemical composition as determined by chemical analysis. The infranatants contain about 1 g/l triacylglycerols in addition to phospholipids (from 7.2 g/l in 10% Intralipid to 2.4 g/l in 30% Intralipid) in the form of smaller particles of 70-100 nm diameter. Cryo-transmission electron microscopy shows that the infranatants contain vesicles (mostly unilamellar) at the side of residual small emulsion particles. This conclusion is also consistent with the distribution of phospholipids between outer and inner lamellae, as determined by 31P-NMR. PMID:1742317

Rotenberg, M; Rubin, M; Bor, A; Meyuhas, D; Talmon, Y; Lichtenberg, D

1991-11-27

319

Vorticity alignment and negative normal stresses in sheared attractive emulsions.  

PubMed

Attractive emulsions near the colloidal glass transition are investigated by rheometry and optical microscopy under shear. We find that (i) the apparent viscosity eta drops with increasing shear rate, then remains approximately constant in a range of shear rates, then continues to decay; (ii) the first normal stress difference N1 transitions sharply from nearly zero to negative in the region of constant shear viscosity; and (iii) correspondingly, cylindrical flocs form, align along the vorticity, and undergo a log-rolling movement. An analysis of the interplay between steric constraints, attractive forces, and composition explains this behavior, which seems universal to several other complex systems. PMID:14995347

Montesi, Alberto; Peña, Alejandro A; Pasquali, Matteo

2004-02-01

320

ADSORPTION OF SURFACTANT ON CLAYS  

EPA Science Inventory

Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

321

Surfactant monitoring by foam generation  

DOEpatents

A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

Mullen, Ken I. (Los Alamos, NM)

1997-01-01

322

NATURAL SURFACTANTS IN PAPER RECYCLING  

EPA Science Inventory

The objective of this project is to introduce new types of surfactants based on renewable materials (sugar surfactants) for use in ink removal from recycled paper. By applying green chemistry approaches we not only will solve an important industry and environmental problem but...

323

Manipulating Hydrophobic Interactions in Associative Polymer Solutions via Surfactant-Cyclodextrin Complexation  

NASA Astrophysics Data System (ADS)

Associative polymers in combination with cyclodextrin (CD) provide a potent tool to manipulate the solution rheology of aqueous solutions. In this study, we discuss the viability and scope of employing surfactants in such systems to facilitate a more versatile and effective tailoring of rheological properties. A model hydrophobically modified alkali-soluble emulsion (HASE) polymer is used which forms a transient physical network of intra- and inter-molecular hydrophobic junctions in solution arising from the interactions between hydrophobic groups grafted on the polymer backbone. The presence of these hydrophobic junctions significantly enhances the solution rheological properties with both the steady state viscosity and dynamic moduli exhibiting an increase by several orders of magnitude. The ability of nonionic surfactants to modulate and recover the hydrophobic interactions in these polymer solutions in the presence of cyclodextrin is examined. The presence of either a- or ?-CD results in a dramatic decrease in viscosity and viscoelastic properties of the HASE polymer solution resulting from the encapsulation of polymer hydrophobes by CDs. Addition of nonionic surfactants to such systems promotes a competition between CDs and surfactant molecules to complex with polymer hydrophobes thereby altering the hydrophobic interactions. In this regard, nonylphenol ethoxylates (NPe) with different ethylene oxide (EO) chain lengths, which determine the surfactant hydrophilic-lipophilic balance (HLB), are used.

Talwar, Sachin; Harding, Jonathon; Khan, Saad A.

2008-07-01

324

Solubility of volatile anesthetics in plasma substitutes, albumin, intravenous fat emulsions, perfluorochemical emulsion, and aqueous solutions  

Microsoft Academic Search

Using the gas chromatographic headspace sampling technique, we determined the solubility of volatile anesthetics (halothane,\\u000a enflurane, isoflurane, and sevoflurane) in plasma substitutes, albumin solution, intravenous fat emulsions, perfluorochemical\\u000a FC-43 emulsion, and aqueous solutions at 37°C. The order of magnitude of ? value (liquid\\/gas partition coefficients) was halothane\\u000a >enflurane>isoflurane> sevoflurane in all the parenteral infusion fluids except the perfluorochemical emulsion (FC-43).

Jaes Chol Shim; Yoshiroh Kaminoh; Chikara Tashiro; Yoshikazu Miyamoto; Hee Koo Yoo

1996-01-01

325

4-nitrophenol removal from aqueous solutions by emulsion liquid membranes using type I facilitation.  

PubMed

Nitrophenols are common organic pollutants that enter the environment during the manufacture and processing of a variety of industrial products. The removal of 4-nitrophenol (4NP) from aqueous solutions by emulsion liquid membranes using the type I facilitated transport mechanism is investigated in this paper. The liquid membrane consisted of kerosene as the organic diluent, sorbitan monooleate as the emulsifying agent and sodium hydroxide as the stripping agent. The most important operational variables governing the emulsion stability and the 4NP removal process--such as the stripper agent and surfactant concentrations, the volume ratios of membrane phase/internal phase and emulsion phase/feed phase and stirring speed - were studied and the optimal conditions of the removal process were experimentally determined. Apparent initial permeabilities of the transport process in the different operational conditions were also obtained. Ninety-eight per cent of4NP was removed in 10 minutes and an apparent initial permeability of 1.2986 min(-1) was obtained in those optimal conditions. PMID:24350486

León, G; Guzmán, M A; Miguel, B

2013-01-01

326

40 CFR 428.20 - Applicability; description of the emulsion crumb rubber subcategory.  

Code of Federal Regulations, 2010 CFR

...Applicability; description of the emulsion crumb rubber subcategory. 428...MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428...Applicability; description of the emulsion crumb rubber subcategory....

2010-07-01

327

Transient Exposure of Pulmonary Surfactant to Hyaluronan Promotes Structural and Compositional Transformations into a Highly Active State*  

PubMed Central

Pulmonary surfactant is a lipid-protein complex that lowers surface tension at the respiratory air-liquid interface, stabilizing the lungs against physical forces tending to collapse alveoli. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome where naturally occurring surfactant-inhibitory agents such as serum, meconium, or cholesterol reach the lung. We analyzed the effect of hyaluronan (HA) on the structure and surface behavior of pulmonary surfactant to understand the mechanism for HA-promoted surfactant protection in the presence of inhibitory agents. In particular, we found that HA affects structural properties such as the aggregation state of surfactant membranes and the size, distribution, and order/packing of phase-segregated lipid domains. These effects do not require a direct interaction between surfactant complexes and HA and are accompanied by a compositional reorganization of large surfactant complexes that become enriched with saturated phospholipid species. HA-exposed surfactant reaches very high efficiency in terms of rapid and spontaneous adsorption of surfactant phospholipids at the air-liquid interface and shows significantly improved resistance to inactivation by serum or cholesterol. We propose that physical effects pertaining to the formation of a meshwork of interpenetrating HA polymer chains are responsible for the changes in surfactant structure and composition that enhance surfactant function and, thus, resistance to inactivation. The higher resistance of HA-exposed surfactant to inactivation persists even after removal of the polymer, suggesting that transient exposure of surfactant to polymers like HA could be a promising strategy for the production of more efficient therapeutic surfactant preparations. PMID:23983120

Lopez-Rodriguez, Elena; Cruz, Antonio; Richter, Ralf P.; Taeusch, H. William; Pérez-Gil, Jesús

2013-01-01

328

Preparation of amphiphilic glycopolymers with flexible long side chain and their use as stabilizer for emulsion polymerization.  

PubMed

A glycomonomer was synthesized from poly(ethylene glycol) methacrylate (PEGMA). The terminal hydroxyl moieties were activated with ester groups and subsequently the glucosamine was incorporated forming urethane linkages. The obtained glycomonomer was copolymerized with methyl acrylate by free radical polymerization varying the initial feed composition to produce different amphiphilic glycopolymers. The glycopolymers were then characterized and compared with the homologous glycopolymers based on 2-{[(D-glucosamin-2-N-yl)carbonyl]oxy}ethyl methacrylate. Both series of glycopolymers were used in emulsion polymerization of methyl acrylate as stabilizers without the addition of any cosurfactant. Although high conversions were not achieved with any of the employed surfactant, the glycopolymers provide good colloidal stability, spherical, monodisperse and small latex particles in comparison with the surfactant-free emulsion polymerization. The latex particles stabilized with the glycosurfactant based on PEGMA, containing a flexible spacer between the backbone and the glucosamine, lead to smooth films whereas the short side chain surfactant from 2-hydroxyethyl methacrylate (HEMA), with higher glass transition temperature, restricts the coalescence of particles and, therefore, the film formation. Moreover, the surface bioactivity of these polymer coatings was examined by analyzing their specific interaction with the lectin, Concanavalin A, Canavalia ensiformis. The specific and successful binding to the Concanavalin A was demonstrated by fluorescence microscopy for both series being more intense with increasing amount of glycounits in the glycopolymer stabilizers. Interestingly, the incorporation of a flexible spacer in the glycopolymer structures enhances the binding activity. PMID:24407696

Alvárez-Paino, Marta; Juan-Rodríguez, Rafael; Cuervo-Rodríguez, Rocío; Muñoz-Bonilla, Alexandra; Fernández-García, Marta

2014-03-01

329

Interfacial shear rheology of protein-surfactant layers.  

PubMed

The shear rheology of adsorbed or spread layers at air/liquid and liquid/liquid phase boundaries is relevant in a wide range of technical applications such as mass transfer, monolayers, foaming, emulsification, oil recovery, or high speed coating. Interfacial shear rheological properties can provide important information about interactions and molecular structure in the interfacial layer. A variety of measuring techniques have been proposed in the literature to measure interfacial shear rheological properties and have been applied to pure protein or mixed protein adsorption layers at air/water or oil/water interfaces. Such systems play for example an important role as stabilizers in foams and emulsions. The aim of this contribution is to give a literature overview of interfacial shear rheological studies of pure protein and protein/surfactant mixtures at liquid interfaces measured with different techniques. Techniques which utilize the damping of waves, spectroscopic or AFM techniques and all micro-rheological techniques will not discuss here. PMID:18823871

Krägel, J; Derkatch, S R; Miller, R

2008-12-01

330

Multi-body coalescence in Pickering emulsions  

NASA Astrophysics Data System (ADS)

Particle-stabilized Pickering emulsions have shown unusual behaviours such as the formation of non-spherical droplets and the sudden halt of coalescence between individual droplets. Here we report another unusual behaviour of Pickering emulsions—the simultaneous coalescence of multiple droplets in a single event. Using latex particles, silica particles and carbon nanotubes as model stabilizers, we show that multi-body coalescence can occur in both water-in-oil and oil-in-water emulsions. The number of droplets involved in the nth coalscence event equals four times the corresponding number of the tetrahedral sequence in close packing. Furthermore, coalescence is promoted by repulsive latex and silica particles but inhibited by attractive carbon nanotubes. The revelation of multi-body coalescence is expected to help better understand Pickering emulsions in natural systems and improve their designs in engineering applications.

Wu, Tong; Wang, Haitao; Jing, Benxin; Liu, Fang; Burns, Peter C.; Na, Chongzheng

2015-01-01

331

Aging properties of Kodak type 101 emulsions  

NASA Technical Reports Server (NTRS)

Aging tests for several batches of Kodak type 101 emulsion show that storage conditions significantly influence how well the film will maintain its sensitometric properties, with sensitivity and density increasing to a maximum during this period. Any further aging may result in higher fog levels and sensitivity loss. It is noted that storage in an environment free of photographically active compounds allows film property optimization, and that film batches with different sensitivities age differently. Emulsions with maximum 1700-A sensitivity are 2.5 times faster than those at the low end of the sensitivity scale. These sensitive emulsions exhibit significantly accelerated changes in aging properties. Their use in space applications requires careful consideration of time and temperature profiles, encouraging the use of less sensitive emulsions when the controllability of these factors is limited.

Dohne, B.; Feldman, U.; Neupert, W.

1984-01-01

332

Multi-body coalescence in Pickering emulsions.  

PubMed

Particle-stabilized Pickering emulsions have shown unusual behaviours such as the formation of non-spherical droplets and the sudden halt of coalescence between individual droplets. Here we report another unusual behaviour of Pickering emulsions-the simultaneous coalescence of multiple droplets in a single event. Using latex particles, silica particles and carbon nanotubes as model stabilizers, we show that multi-body coalescence can occur in both water-in-oil and oil-in-water emulsions. The number of droplets involved in the nth coalscence event equals four times the corresponding number of the tetrahedral sequence in close packing. Furthermore, coalescence is promoted by repulsive latex and silica particles but inhibited by attractive carbon nanotubes. The revelation of multi-body coalescence is expected to help better understand Pickering emulsions in natural systems and improve their designs in engineering applications. PMID:25581366

Wu, Tong; Wang, Haitao; Jing, Benxin; Liu, Fang; Burns, Peter C; Na, Chongzheng

2015-01-01

333

Use of amine oxide surfactants for chemical flooding EOR (enhanced oil recovery)  

SciTech Connect

The use of amine oxides with and without alcohols as cosolvents, and in combination with other surfactants as mixed micellar formulations for enhanced oil recovery by surfactant flooding was investigated. Amine oxides are a salt-tolerant class of surfactants that produce low interfacial tension and can develop viscosity without the addition of polymers. These salt-tolerant formulations generate three-phase regions with hydrocarbons over a broad salinity range, develop moderate solubilization, and produce low interfacial tensions, however oil recovery from amine oxide-alcohol phase behavior optimized formulations was directly dependent upon the quantity of surfactant injected. The large pore volume and high concentration of surfactant required prohibits their economic use as the primary surfactant in chemical flooding EOR. Dimethylalkylamine oxides are useful as cosurfactants and viscosifiers in formulations with other surfactants for chemical flooding EOR but the use of ethoxylated and propoxylated amine oxides should be avoided due to the decomposition of these amine oxides under reservoir conditions. Phase behavior, phase inversion temperatures, and viscosity scans have been correlated with surfactant structures to provide a guide for amine oxide applications in chemical flooding. 36 refs., 5 figs., 6 tabs.

Olsen, D.K.

1989-11-01

334

Small-angle neutron scattering study of the structure of mixed micellar solutions based on nonionic and two cationic surfactants  

NASA Astrophysics Data System (ADS)

The aggregation in mixed water systems based on nonionic surfactant, i.e., heptaethylene glycol monotetradecyl ether (C14E7), and cationic surfactants, i.e., cetyltrimethylammonium bromide (CTAB) and cetyltrimethylammonium chloride (CTAC), has been investigated using the small-angle neutron scattering method. The preliminary results of the study of the behavior of C14E7 aqueous solutions (for a concentration of 0.17%) when adding various small amounts of classical cationic surfactants (CTAB and CTAC) have been presented.

Rajewska, A.; Medrzycka, K.; Hallmann, E.

2014-01-01

335

Sticky superhydrophobic filter paper developed by dip-coating of fluorinated waterborne epoxy emulsion  

NASA Astrophysics Data System (ADS)

A superhydrophobic and superoleophilic coating for oil filter paper was synthesized based on waterborne bisphenol-A novolac epoxy emulsion. The benzoic acid (BA) and maleic anhydride (MA) were used as modification agents to give the epoxy resin hydrophilic groups (carboxyl) and Cdbnd C double bonds. And the fluorinated waterborne epoxy emulsion was prepared by free radical solution polymerization of dodecafluoroheptyl methacrylate (DFMA) monomer. The covalent bound low free energy fluorinated chains in the monomer reduce the surface energy of solidification polymers sufficiently to give rise to superhydrophobic behavior while conserving superoleophilicity. Surfaces prepared show a sticky property, which exhibits a static water contact angle of 152° for a 5 ?L droplet that does not slid off even when the sample is held upside down. This synthetic emulsion is simple and convenient as impregnating agent for filter paper, which can be considered as a suitable candidate for various substrates such as cotton textiles, E-glass and artificial fiber, and so on.

Huang, Xiangxuan; Wen, Xiufang; Cheng, Jiang; Yang, Zhuoru

2012-09-01

336

Effect of fat nature and aroma compound hydrophobicity on flavor release from complex food emulsions.  

PubMed

Complex food emulsions containing either hydrogenated palm kernel oil (vegetable fat) or anhydrous milk fat (animal fat) were flavored by using different aroma compounds. The fats differed by their fatty acid and triacylglycerol compositions and by their melting behavior, while the aroma compounds (ethyl butanoate, ethyl hexanoate, methyl hexanoate, mesifurane, linalool, diacetyl, cis-3-hexen-1-ol, and gamma-octalactone) differed by their hydrophobicity. Application of differential scanning calorimetry to fat samples in bulk and emulsified forms indicated differences in the ratio of solid-to-liquid between temperatures ranging from 10 to 35 degrees C. Solid-phase microextraction coupled with GC-MS analysis indicated that flavor release from food emulsions containing animal or vegetable fat differed depending on both the fat nature and flavor compound hydrophobicity. The release of diacetyl was higher for emulsions containing animal fat, whereas the release of esters was higher for emulsions containing vegetable fat. The release of cis-3-hexenol, linalool, gamma-octalactone, and mesifurane (2,5-dimethyl-4-methoxy-(2H)-furan-3-one) was very similar for the two fatty systems. The above results were discussed not only in terms of aroma compound hydrophobicity, but also in terms of structural properties of the emulsions as affected by the lipid source. PMID:15453696

Relkin, Perla; Fabre, Marjorie; Guichard, Elisabeth

2004-10-01

337

Crossover between entropic and interfacial elasticity and osmotic pressure in uniform disordered emulsions.  

PubMed

We develop a simple predictive model of the osmotic pressure ? and linear shear elastic modulus G of uniform disordered emulsions that includes energetic contributions from entropy and interfacial deformation. This model yields a smooth crossover between an entropically dominated G ? kBT/a(3) for droplet volume fractions ? below a jamming threshold for spheres, ?c, and an interfacially dominated G ? ?/a for ? above ?c, where a and ? are the undeformed radius and interfacial tension, respectively, of a droplet and T is the temperature. We show that this model reduces to the known ?-dependent jamming behavior G(?) ? (?/a)?(? - ?c) as T ? 0 for ? > ?c of disordered uniform emulsions, and it also produces the known divergence for disordered hard spheres G(?) ? (kBT/a(3))?/(?c - ?) for ? < ?c when ? ? ?. We compare predictions of this model to data for disordered uniform microscale emulsion droplets, corrected for electrostatic repulsions. The smooth crossover captures the observed trends in G and ? below ?c better than existing analytic models of disordered emulsions, which do not make predictions below ?c. Moreover, the model predicts that entropic contributions to the shear modulus can become more significant for nanoemulsions as compared to microscale emulsions. PMID:25111129

Mason, Thomas G; Scheffold, Frank

2014-09-28

338

Phase and foam behavior study of CO{sub 2}-based foams at reservoir temperature and pressure. Final report, August 20, 1990--July 15, 1993  

SciTech Connect

A major objective of the Enhanced Oil Recovery Program at Morgantown Energy Technology Center (METC) is to develop technologies based on CO{sub 2}, foams, emulsions, or other fluid dispersions that will alleviate viscous fingering and mobility control problems that severely limit the production of oil by miscible CO{sub 2}, flooding. In this project, data on the phase behavior of a model surfactant/water system were generated both to help in modeling work for phase behavior and dispersion morphologies and to provide an efficient experimental methodology for determination of these data from flow calorimetric measurements. The project consists of two separate but compatible subtasks, the results of which are described in detail in the two parts of the main body of this report.

Whiting, W.B.; Lim, K.H.

1993-10-01

339

Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide.  

PubMed

Brownian diffusion of fluorescent microspheres (0.21, 0.5, and 0.89 microm diameter) in conjunction with confocal microscopy has been used to monitor the microrheology of phase-separated regions in a protein-stabilized oil-in-water emulsion containing various low concentrations of a nonadsorbing polysaccharide, xanthan gum. The sensitivity and reliability of the technique has been demonstrated in test experiments on (i) aqueous glycerol solutions and (ii) concentrated surfactant-stabilized emulsions (30-60 vol % oil, 1-2 wt % Tween 20). From particle tracking measurements on the caseinate-stabilized emulsions (30 vol % oil, 1.4 wt % sodium caseinate, pH 7) containing xanthan (0.03-0.07 wt %), the apparent viscosity in the oil-droplet-rich regions has been estimated to be up to 10(3) times higher than that in the phase-separated xanthan-rich regions. This means that our previously determined shape relaxation times for xanthan-containing blobs in the same systems can be attributed to the dominant viscoelasticity of the surrounding regions of concentrated oil droplets and not to the rheology of the xanthan-rich blobs themselves. These data provide clear and unequivocal evidence for the dominant role of the interconnected depletion-flocculated network of oil droplets in the physicochemical mechanism by which hydrocolloid thickeners control the creaming instability of concentrated oil-in-water emulsions. PMID:16649786

Moschakis, Thomas; Murray, Brent S; Dickinson, Eric

2006-05-01

340

Surfactant and salinity influences on associative thickener aqueous solution rheology  

Microsoft Academic Search

The rheological behavior of a series of associative polymers are studied in aqueous solutions containing sodium dodecyl sulfate (SDS) and an octylphenol adduct containing an average of 10 oxyethylene units (C8H17C6H4O(EO)10H). Three associative polymer families are examined: Hydrophobically-modified, alkali-swellable emulsion (HASE); hydrophobically-modified hydroxyethyl cellulose (HMHEC); and hydrophobically-modified, ethoxylated urethanes (HEUR). At a critical concentration, the addition of SDS to HASE

J. Philip Kaczmarski; Ming-Ren Tarng; Zeying Ma; J. Edward Glass

1999-01-01

341

Pulmonary surfactant for neonatal respiratory disorders.  

PubMed

Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations. PMID:12640270

Merrill, Jeffrey D; Ballard, Roberta A

2003-04-01

342

Control of particle size by feed composition in the nanolatexes produced via monomer-starved semicontinuous emulsion copolymerization.  

PubMed

Conventional batch and semicontinuous emulsion copolymerizations often produce large particles whose size cannot be easily correlated with the comonomer feed compositions, and are to some degree susceptible to composition drift. In contrast, we found that copolymer nanolatexes made via semicontinuous monomer-starved emulsion copolymerizations are featured with an average nanoparticle size being controlled by the feed composition, a high conversion achieved, and a high degree of particle composition uniformity. This was achieved because the rate of particle growth, during nucleation, was controlled by the rate of comonomer addition, and the copolymer composition, surfactant parking area on the particles, and nucleation efficiency determined by the comonomer feed composition. Two model systems, methyl methacrylate/styrene and vinyl acetate/butyl acrylate, with significant differences in water solubility were studied. Monomers were added to the aqueous solution of sodium dodecylsulfate and potassium persulfate at a low rate to achieve high instantaneous conversions. PMID:25617612

Sajjadi, Shahriar

2015-05-01

343

High- and low-molecular-mass microbial surfactants.  

PubMed

Microorganisms synthesize a wide variety of high- and low-molecular-mass bioemulsifiers. The low-molecular-mass bioemulsifiers are generally glycolipids, such as trehalose lipids, sophorolipids and rhamnolipids, or lipopeptides, such as surfactin, gramicidin S and polymyxin. The high-molecular-mass bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins or complex mixtures of these biopolymers. The low-molecular-mass bioemulsifiers lower surface and interfacial tensions, whereas the higher-molecular-mass bioemulsifiers are more effective at stabilizing oil-in-water emulsions. Three natural roles for bioemulsifiers have been proposed: (i) increasing the surface area of hydrophobic water-insoluble growth substrates; (ii) increasing the bioavailability of hydrophobic substrates by increasing their apparent solubility or desorbing them from surfaces; (iii) regulating the attachment and detachment of microorganisms to and from surfaces. Bioemulsifiers have several important advantages over chemical surfactants, which should allow them to become prominent in industrial and environmental applications. The potential commercial applications of bioemulsifiers include bioremediation of oil-polluted soil and water, enhanced oil recovery, replacement of chlorinated solvents used in cleaning-up oil-contaminated pipes, vessels and machinery, use in the detergent industry, formulations of herbicides and pesticides and formation of stable oil-in-water emulsions for the food and cosmetic industries. PMID:10499255

Rosenberg, E; Ron, E Z

1999-08-01

344

Tunable optofluidic microlasers based on optically stretched emulsion droplets  

NASA Astrophysics Data System (ADS)

We introduce tunable optofluidic microlasers based on optically stretched, dye-doped emulsion droplets confined in a dual-beam optical trap. Optically trapped microdroplets of oil emulsified in water and stained with fluorescent dye act as active ultrahigh-Q optical resonant cavities hosting whispering gallery modes (WGMs) which enable dye lasing with low threshold pump powers. In order to achieve tunable dye lasing, the droplets are pumped with a pulsed green laser beam and simultaneously stretched by light in the dual-beam trap. For a given stretching power, the magnitude of the droplet deformation is dictated by the interfacial tension between the droplet and the host liquid which is adjustable by adding surfactants. Increase of power of the dual-beam trap causes a directly proportional change of the droplet stretching deformation. Subsequently, resonant path lengths of different WGMs propagating in the droplet are modified, leading to shifts in the corresponding microlaser emission wavelenghts. Using this technique, we present all-optical, almost reversible spectral tuning of the lasing WGMs and show that the direction of wavelength tuning depends on the position of the pump beam focus on the droplet, consistent with the deformation of originally spherical droplet towards a prolate spheroid. In addition, we study the effects of changes of the droplet and immersion medium temperature on the spectral position of lasing WGMs and demonstrate that droplet heating leads to red-tuning of the droplet lasing wavelength.

Aas, Mehdi; Jonáš, Alexandr; Kiraz, Alper; Brzobohatvý, Oto; Ježek, Jan; Pilát, Zden?k.; Zemánek, Pavel

2013-09-01

345

Mechanical characterization of diblock copolymer ``armored'' emulsion droplets  

NASA Astrophysics Data System (ADS)

There has been an increased interest in block copolymer vesicles due to a plethora of possible application ranging from targeted drug delivery to cosmetically active agents. In this regard, understanding the physics of the block copolymer vesicle and its morphology is critical to the rational development of these technologies. As a step towards more complex vesicle structures, we describe experiments in which we carefully examine the interface and morphology of polystyrene-b-polyethyleneoxide (PS-PEO) emulsion drops. In our study, PS-PEO acts as a surfactant and at the toluene-water interface creates a monolayer, inhibiting drop recombination and minimizing interfacial energies. Our experiments are conducted in a water cell where the buoyant force is exploited to push drops against a thin sheet of mica. The shape of the drops is measured using an upright confocal microscope and compared with a Bashforth-Adams model in order to examine the mechanical response to the buoyant force. We observe unique dynamics as the drops buckle at short timescales trapping a small pocket of fluid which slowly drains away. Furthermore, the influence of polymer concentration, changes in pH and block copolymer architecture on the morphology and dynamics of the droplets is examined.

Rozairo, Damith P.; Croll, Andrew B.

2013-03-01

346

Surfactants: Helping Molecules Get Along  

NSDL National Science Digital Library

Students learn about the basics of molecules and how they interact with each other. They learn about the idea of polar and non-polar molecules and how they act with other fluids and surfaces. Students acquire a conceptual understanding of surfactant molecules and how they work on a molecular level. They also learn of the importance of surfactants, such as soaps, and their use in everyday life. Through associated activities, students explore how surfactant molecules are able to bring together two substances that typically do not mix, such as oil and water. This lesson and its associated activities are easily scalable for grades 3-12.

2014-09-18

347

Formulation parameters and release mechanism of theophylline loaded ethyl cellulose microspheres: effect of different dual surfactant ratios.  

PubMed

Altering the combined hydrophilic-lipophilic balance (CHLB), by varying the ratio of dual surfactants, on formulation parameters and in vitro drug release of ethyl cellulose microspheres was examined. Theophylline, a xanthine bronchodilator was used to model controlled release owing to its narrow therapeutic index. Microspheres were prepared using different ratios of dual surfactant in an emulsion-solvent evaporation process. Drug loading, encapsulation efficiency, particle size distribution, and geometric mean diameters were evaluated. Drug release was evaluated using several kinetic models including zero and first order, Higuchi square root, and Hixson-Crowell. Microspheres presented as mostly spherical particles and diffusional drug release was affected by microsphere construction. For this novel, dual surfactant system the microsphere matrix is a hydrophobic polymer and the release rate may be modulated with variation in ratio of dual surfactants. Dissolution data followed the Higuchi model and supports the formation of a monolithic microsphere matrix that releases theophylline by Fickian diffusion. Dual surfactants for preparation of microspheres are an inadequately studied research area that offers another means to modulate particle size and drug release. For the current study microspheres prepared with surfactant ratios of Span 65: Tween 40 between 3:1 and 2:1 provided the best control of size and drug release. PMID:21991996

Thakare, Mohan; Israel, Bridgette; Garner, Solomon T; Ahmed, Hisham; Garner, Pamela; Elder, Deborah; Price, James C; Capomacchia, Anthony C

2013-01-01

348

Interaction of bovine serum albumin with gemini surfactants.  

PubMed

The interactions between bovine serum albumin and cationic gemini surfactants were investigated as a function of concentration, under different pH conditions. The investigation deals with dielectric relaxation, dynamic light scattering, zeta-potential, circular dichroism, and UV spectroscopy. The interactive behavior of the anionic form is quite different from the cationic species. It indicates that protein-surfactant interactions are mostly electrostatic in nature and depend on the state of charge of bovine serum albumin. The results indicate the presence of both hydrophobic and electrostatic contributions in the interactions of gemini with bovine serum albumin. Comparison of dynamic light scattering, dielectric relaxation, electrophoretic mobility, and optical circular dichroism allows drawing some preliminary hypotheses on the different contributions to surfactant binding and supports former studies on the formation of complexes between the bovine serum albumin and the above species. PMID:20362296

Tardioli, Silvia; Bonincontro, Adalberto; La Mesa, Camillo; Muzzalupo, Rita

2010-07-01

349

Behavior of cationic surfactants and short-chain alcohols in mixed surface layers at water-air and polymer-water interfaces with regard to polymer wettability II. Wettability of polymers.  

PubMed

The wettability of polytetrafluoroethylene (PTFE) and polymethylmethacrylate (PMMA) by aqueous solutions of cetyltrimethylammonium bromide (CTAB) mixtures with short-chain alcohols such as methanol, ethanol, and propanol, as well as for 1-hexadecylpyridinium bromide (CPyB) with the same alcohols, was studied on the basis of advancing contact-angle measurements by the sessile drop method over a wide range of alcohol and cationic surfactant concentrations where they can be present in solution in monomeric or aggregated form. It should be noted that the contact angles for aqueous solution mixtures of cationic surfactants with propanol on PTFE surfaces were measured earlier and presented in our previous paper. From the obtained contact-angle values the relationships between cos theta and surface tension of the solutions (gamma(LV)) and that between adhesion tension and gamma(LV) were considered. The relationship between the cos theta and the reciprocal of gamma(LV) was also discussed. From these relationships the critical surface tension of PTFE and PMMA wetting and the correlation between the adsorption of cationic surfactant and alcohol mixtures at water-air and polymer-water interfaces were deduced. On the basis of the contact angles and components and parameters of the surface tension of surfactants, alcohols, and polymers also the Gibbs and Guggenheim-Adam isotherm of adsorption and the effective concentration of alcohols and surfactants at polymer-water interfaces were calculated. Next, the work of adhesion of solution to polymer surface with regard to the surface monolayer composition was discussed. The analysis of the contact angles with regard to adsorption of surfactants and alcohols at polymer-water and water-air interfaces allowed us to conclude that the PTFE wetting depends only on the contribution of the acid-base interactions to the surface tension of aqueous solutions of cationic surfactant and alcohol mixtures, and the adhesion work of solution to its surface only slightly depends on the concentration and composition of solution, in contrast to PMMA. The critical surface tension of PTFE wetting is close to its surface tension determined for liquids in which the surface tension is two times or more higher than that of PTFE, but for PMMA it is considerably lower than its surface tension and even the Lifshitz-van der Waals component of this tension. PMID:20656293

Zdziennicka, Anna; Ja?czuk, Bronis?aw

2010-10-15

350

Atrazine and Diuron partitioning within a soil-water-surfactant system  

NASA Astrophysics Data System (ADS)

The interaction between pesticide and soil and water is even more complex in the presence of surfactants. In this study, batch equilibrium was employed to study the sorption of surfactants and the partitioning behaviors of Atrazine and Diuron within a soil-water-surfactant system. Five soils and four surfactants (nonionic Triton- 100, cationic Benzalkonium Chloride (BC), anionic Linear Alkylbenzenesulfonate (LAS), and anionic Sodium Dodecyl Sulfate (SDS)) were used. All surfactant sorption isotherms exhibited an initial linear increase at low surfactant concentrations but reached an asymptotic value as the surfactant concentrations increased. Among the surfactants, BC had the highest sorption onto all soils, followed by Triton-100 and then by LAS and SDS, implying that the nature of the charge significantly influences surfactant sorption. Sorption of either Triton-100 or BC was highly correlated with soil Cation Exchange Capacity (CEC) while that of LAS and SDS was complicated by the presence of Ca2+ and Mg2+ in the aqueous phase and the CEC sites. Both LAS and SDS formed complexes with Ca2+ and Mg2+, resulting in a significant decrease in the detergency of the surfactants. At high surfactant concentrations and with micelles present in the aqueous phase, the micelles formed a more competitive partitioning site for the pesticides, resulting in less pesticide sorbed to the soil. At low Triton-100 and BC concentration, the sorption of the surfactants first resulted in less Atrazine sorption but more Diuron sorption, implying competition between the surfactants and Atrazine, which serves as an indirect evidence that there is a different sorption mechanism for Atrazine. Atrazine is a weak base and it protonates and becomes positively charged near particle surfaces where the pH is much lower than in the bulk solution. The protonated Atrazine may then be held on the CEC sites via electrostatic attraction. Triton-100, LAS and SDS sorbed on the soil showed similar sequestration efficiency for Atrazine and Diuron while BC sorbed on the soils with lower CECs showed much higher Atrazine and Diuron sequestration efficiency than the other surfactants, suggesting that the sorbed BC on these soils with less CEC forms bulk-like partitioning media more easily than the soils with higher CECs. These results significantly improve our understanding of partitioning of pesticides within soil-water-surfactant systems. These findings can serve to improve the pesticide removal efficiency of soil washing systems. Also, our results show that by studying the effect of surfactants on pesticide sorption can serve as a new method to study pesticide sorption mechanisms.

Wang, P.; Keller, A.

2006-12-01

351

Partitioning of non-ionic surfactants between water and non-aqueous phase liquids (NAPLs) of chlorinated organics  

NASA Astrophysics Data System (ADS)

Due to the hydrophobic nature, chlorinated organic compounds penetrate soil and groundwater to form non-aqueous phase liquids (NAPLs). At the sites contaminated with such NAPLs, thus, surfactants are applied to increase the aqueous solubility of chlorinated organics via micellar solubilization. However, a portion of surfactants can be partitioned into NAPL phases by forming reverse micelles within them. Consequently, lesser amounts of surfactants are available for the micellar solubilization of chlorinated organics in the aqueous phase. In this study, we investigated the partitioning behavior of non-ionic surfactants (Tween 20, Tween 40, Tween 80, and Triton X-100) between water and a NAPL phase consisting of tetrachloroethylene (PCE), trichloroethylene (TCE), or chloroform (CF). According to the experimental results, the partitioning of surfactants in the water-NAPL systems was found to follow linear or Langmuir-type isotherms. Regardless of type of surfactants, the partitioning loss of surfactants into NAPLs became greater with the more hydrophilic (i.e., the lower water-NAPL interfacial tension) chlorinated organics: PCE < TCE < CF. Notably, the partitioning of all Tween surfactants into the NAPLs consisting of the least hydrophilic PCE was minimal. The partitioning behavior among different surfactants was somewhat complicated. The partitioning extent into CF-NAPLs increased in the order of Tween 20 < Tween 40 < Tween 80 << Triton X-100, suggesting that the greater partitioning occurred with the more hydrophobic (i.e., the lower hydrophilic-lipophilic balance, HLB) surfactant. Consistent with this postulation, the surfactant partitioning into PCE-NAPLs showed the similar trend. In case of TCE-NAPLs, however, the more hydrophobic Tween 40 was partitioned to a less extent than Tween 20. Therefore, the specific interaction of a NAPL-surfactant pair as well as their individual properties should be considered when selecting an effective surfactant for the remediation of a NAPL-contaminated site.

KANG, S.; Jeong, H. Y.

2013-12-01

352

Study of the Formation and Solution Properties of Worm-Like Micelles Formed Using Both N-Hexadecyl-N-Methylpiperidinium Bromide-Based Cationic Surfactant and Anionic Surfactant  

PubMed Central

The viscoelastic properties of worm-like micelles formed by mixing the cationic surfactant N-hexadecyl-N-methylpiperidinium bromide (C16MDB) with the anionic surfactant sodium laurate (SL) in aqueous solutions were investigated using rheological measurements. The effects of sodium laurate and temperature on the worm-like micelles and the mechanism of the observed shear thinning phenomenon and pseudoplastic behavior were systematically investigated. Additionally, cryogenic transmission electron microscopy images further ascertained existence of entangled worm-like micelles. PMID:25296131

Yan, Zhihu; Dai, Caili; Feng, Haishun; Liu, Yifei; Wang, Shilu

2014-01-01

353

Analysis of electrical property changes of skin by oil-in-water emulsion components  

PubMed Central

Synopsis ObjectivesAs the ‘Dry Skin Cycle’ produces continuous deterioration, cosmetic xerosis (flaky, dry skin) is one of the major concerns to most consumers. The purpose of this study was to investigate the moisturizing effect of oil-in-water (O/W) emulsion components. There are numerous types of oils, waxes, polyols and surfactants used as ingredients in skincare products. However, the moisturizing effect of each ingredient and understanding each use to make an effective moisturizing products are still not well understood. Methods To provide answers to these questions, we investigated the moisturizing effect of widely used 41 components (four different classes) in a simple O/W emulsion using capacitance methods. 106 different single oils, and combinations of oil with oil, wax, humectants, and surfactant were formulated and tested. Results In this study, we found that most of the O/W emulsion components had hydration effects on the skin. (i) The average relative water content increase (RWCI) rate of a single oil-based emulsion was 11.8 ± 5.2% (SE) and 7.9 ± 6.0% (SE) at 3 and 6 h, respectively. (ii) An oil combination emulsion showed an average RWCI rate similar to that of a single oil-based emulsion, 12.6 ± 6.0% (SE) and 12.1 ± 6.4% (SE) at 3 and 6 h, respectively (iii) A combination of waxes with oil showed an average RWCI rate of 16 ± 5.6% (SE) and 12.4 ± 4.5% (SE) at 3 and 6 h, respectively. (iv) Humectant combinations showed the highest average RWCI rate 28 ± 7.3% (SE) and 22.2 ± 7.5% (SE) at 3 and 6 h, respectively (v) Surfactant combinations had an average RWCI of 10.8 ± 4.5% (SE) and 6.0 ± 4.0% (SE) at 3 and 6 h, respectively. Conclusion Interestingly, it was difficult to find moisturizing power differences among samples in the same group. Only the humectants group showed significant differences among samples. Glycerine and urea showed significant skin hydration effects compared with other humectants. We also found a significant moisturizing effect by analysing the chemical functional groups; amide class had a higher hydration effect than betaines and disaccharides in humectants combination. Résumé Objectif Puisque le «cycle de la peau sèche” produit une détérioration continue, la xérose cosmétique (squameuse, peau sèche) est l’une des préoccupations majeures pour la plupart des consommateurs. Le but de cette étude était d’étudier l’effet hydratant des composants d’émulsions H / E. Il existe de nombreux types d’huiles, des cires, de polyols, et des tensioactifs utilisés comme ingrédients dans les produits de soins de la peau. Cependant, l’effet hydratant de chaque ingrédient et de leur utilisation dans des produits hydratants efficaces ne sont pas encore bien compris. MethodesPour apporter des réponses à ces questions, nous avons étudié l’effet hydratant des 41 éléments (4 classes différentes) largement utilisés dans une émulsion simple O/W en utilisant des méthodes de capacitance. 106 huiles individuelles différentes et des combinaisons d’huile avec de l’huile, de la cire, des humectants, et de tensioactifs ont été formulées et testées. ResultatsDans cette étude, nous avons constaté que la plupart des composants des émulsions huile-dans-eau (H/E) possédaient des effets d’hydratation de la peau. (i) Le taux moyen d’augmentation d’eau (RWCI = relative water content increase) d’une émulsion à base d’une seule huile était de 11,8 ± 5,2% (SE) et de 7,9 ± 6,0% (SE) à 3 et 6 h, respectivement. (ii) Une émulsion de combinaison d’huile montrait une RWCI similaire à celle d

Jeong, CB; Han, JY; Cho, JC; Suh, KD; Nam, GW

2013-01-01

354

Surfactant micelles: model systems for flow instabilities of complex fluids.  

PubMed

Complex fluids such as emulsions, colloidal gels, polymer or surfactant solutions are all characterized by the existence of a "microstructure" which may couple to an external flow on time scales that are easily probed in experiments. Such a coupling between flow and microstructure usually leads to instabilities under relatively weak shear flows that correspond to vanishingly small Reynolds numbers. Wormlike micellar surfactant solutions appear as model systems to study two examples of such instabilities, namely shear banding and elastic instabilities. Focusing on a semidilute sample we show that two-dimensional ultrafast ultrasonic imaging allows for a thorough investigation of unstable shear-banded micellar flows. In steady state, radial and azimuthal velocity components are recovered and unveil the original structure of the vortical flow within an elastically unstable high shear rate band. Furthermore thanks to an unprecedented frame rate of up to 20,000 fps, transients and fast dynamics can be resolved, which paves the way for a better understanding of elastic turbulence. PMID:24756478

Perge, Christophe; Fardin, Marc-Antoine; Manneville, Sébastien

2014-04-01

355

Spontaneous surface self-assembly in protein-surfactant mixtures: interactions between hydrophobin and ethoxylated polysorbate surfactants.  

PubMed

The synergistic interactions between certain ethoxylated polysorbate nonionic surfactants and the protein hydrophobin result in spontaneous self-assembly at the air-water interface to form layered surface structures. The surface structures are characterized using neutron reflectivity. The formation of the layered surface structures is promoted by the hydrophobic interaction between the polysorbate alkyl chain and the hydrophobic patch on the surface of the globular hydrophobin and the interaction between the ethoxylated sorbitan headgroup and hydrophilic regions of the protein. The range of the ethoxylated polysorbate concentrations over which the surface ordering occurs is a maximum for the more hydrophobic surfactant polyoxyethylene(8) sorbitan monostearate. The structures at the air-water interface are accompanied by a profound change in the wetting properties of the solution on hydrophobic substrates. In the absence of the polysorbate surfactant, hydrophobin wets a hydrophobic surface, whereas the hydrophobin/ethoxylated polysorbate mixtures where multilayer formation occurs result in a significant dewetting of hydrophobic surfaces. The spontaneous surface self-assembly for hydrophobin/ethoxylated polysorbate surfactant mixtures and the changes in surface wetting properties provide a different insight into protein-surfactant interactions and potential for manipulating surface and interfacial properties and protein surface behavior. PMID:24738908

Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Cox, Andrew R; Hedges, Nick; Webster, John R P

2014-05-01

356

SCREENING METHODS FOR SELECTION OF SURFACTANT FORMULATIONS FOR IOR FROM FRACTURED CARBONATE RESERVOIRS  

SciTech Connect

This topical report presents details of the laboratory work performed to complete Task 1 of this project; developing rapid screening methods to assess surfactant performance for IOR (Improved Oil Recovery) from fractured carbonate reservoirs. The desired outcome is to identify surfactant formulations that increase the rate and amount of aqueous phase imbibition into oil-rich, oil-wet carbonate reservoir rock. Changing the wettability from oil-wet to water-wet is one key to enhancing this water-phase imbibition process that in turn recovers additional oil from the matrix portion of a carbonate reservoir. The common laboratory test to evaluate candidate surfactant formulations is to measure directly the aqueous imbibition rate and oil recovery from small outcrop or reservoir cores, but this procedure typically requires several weeks. Two methods are presented here for the rapid screening of candidate surfactant formulations for their potential IOR performance in carbonate reservoirs. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite power is pre-treated to make the surface oil-wet. The next step is to add the pre-treated powder to a test tube and add a candidate aqueous surfactant formulation; the greater the percentage of the calcite that now sinks to the bottom rather than floats, the more effective the surfactant is in changing the solids to become now preferentially water-wet. Results from the screening test generally are consistent with surfactant performance reported in the literature.

William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu; Seung Soon Jang

2005-07-01

357

Colloidal stability of hydrophobic nanoparticles in ionic surfactant solutions: definition of the critical dispersion concentration.  

PubMed

The dispersion stability diagrams of hydrophobic boehmite nanoparticles in aqueous n-alkyltrimethylammonium bromide solutions (alkyl chain lengths 10-16) were studied over a wide range of particle and surfactant concentrations. The surfactant molecules adsorb tail-on on the particle surface, which provides the colloidal stability through electrostatic repulsion. In the stable region of each diagram, bimodal particle size distributions (50 and 500 nm) are found at lower surfactant concentration, which give way to monomodal distributions (50 nm) at higher concentration. This deagglomeration is connected with the cmc of the surfactants and can be explained by a desorption of counterions from the self-assembled surfactant layer. The desorption is caused by changes in the counterion concentration upon micellization. At low particle concentrations, the transition from the intermediate to the stable region, that is, the disappearance of the precipitate, occurs at a constant surfactant concentration. This concentration is introduced as the "critical dispersion concentration" (cdc), this being the lowest required concentration of a surfactant that is necessary to disperse the hydrophobic particles. The logarithm of the cdc shows a linear dependence on the surfactant chain length, thus a cmc-analogous behavior. The ratio cdc/cmc decreases with increasing surfactant chain length, indicating that long-chain surfactants are more efficient in dispersing nanoparticles than are their lower homologues. The existence of a system-specific critical cdc/cmc ratio, beyond which stable dispersions cannot be obtained, is proposed, which explains the disability of short-chain surfactants to disperse colloids. PMID:19146423

Dederichs, Thomas; Möller, Martin; Weichold, Oliver

2009-02-17

358

A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material.  

PubMed

A novel sodium N-fatty acyl amino acid (SFAAA) surfactant was synthesized using pupa oil and pupa protein hydrolysates (PPH) from a waste product of the silk industry. The aliphatic acids from pupa oil were modified into N-fatty acyl chlorides by thionyl chloride (SOCl2). SFAAA was synthesized using acyl chlorides and PPH. GC-MS analysis showed fatty acids from pupa oil consist mainly of unsaturated linolenic and linoleic acids and saturated palmitic and stearic acids. SFAAA had a low critical micelle concentration, great efficiency in lowering surface tension and strong adsorption at an air/water interface. SFAAA had a high emulsifying power, as well as a high foaming power. The emulsifying power of PPH and SFAAA in an oil/water emulsion was better with ethyl acetate as the oil phase compared to n-hexane. The environment-friendly surfactant made entirely from silkworm pupae could promote sustainable development of the silk industry. PMID:24651079

Wu, Min-Hui; Wan, Liang-Ze; Zhang, Yu-Qing

2014-01-01

359

Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993  

SciTech Connect

In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

Wasan, D.T.

1994-08-01

360

Liquid Fuel Emulsion Jet-in-Crossflow Penetration and Dispersion Under High Pressure Conditions  

NASA Astrophysics Data System (ADS)

The current work focuses on the jet-in-crossflow penetration and dispersion behavior of water-in-oil emulsions in a high pressure environment. Both fuel injection strategies of using a water-in-oil emulsion and a jet-in-crossflow have demonstrated unique benefits in improving gas turbine performance from an emissions and efficiency standpoint. A jet-in-crossflow is very practical for use in gas turbine engines, rocket propulsion, and aircraft engines since it utilizes already available crossflow air to atomize fuel. Injecting water into a combustion chamber in the form of a water-in-oil emulsion allows for pollutant emissions reduction while reducing efficiency loses that may result from using a separate water or steam injection circuit. Dispersion effects on oil droplets are expected, therefore investigating the distribution of both oil and water droplets in the crossflow is an objective in this work. Understanding the synchronization and injection behavior of the two strategies is of key interest due to their combined benefits. A water-to-oil ratio and an ambient pressure parameter are developed for emulsion jet-in-crossflow trajectories. To this end, a total of 24 emulsion jet-in-crossflow tests were performed with varying ambient pressures of 2-8 atm and momentum flux ratios of 50, 85, and 120. Sobel edge filtering was applied to each averaged image obtained from a high speed video of each test case. Averaged and filtered images were used to resolve top and bottom edges of the trajectory in addition to the overall peak intensity up to 40 mm downstream of the injection point. An optimized correlation was established and found to differ from literature based correlations obtained under atmospheric pressure conditions. Overall it was found that additional parameters were not necessary for the top edge and peak intensity correlations, but a need for a unique emulsion bottom edge and width trajectory correlation was recognized. In addition to investigating emulsion jet-in-crossflow trajectory correlations, a unique Dual Planar Laser Induced Fluorescence (Dual-PLIF) method was applied for the first time on emulsions at elevated pressure conditions. From the Dual-PLIF results, qualitative observations provided insight into the unique dispersion of oil and water concentrations within a cross-sectional plane down stream of the jet-in-crossflow injection.

Gomez, Guillermo Andres

361

Factors affecting the emulsifying and rheological properties of gum acacia in beverage emulsions  

Microsoft Academic Search

Gum acacia, a natural hydrocolloid, is extensively used as an emulsifier\\/stabilizer in beverage emulsions. Factors that may affect emulsion formation, emulsion stability and viscosity of the emulsion concentrate were studied to assess their significance, including proximal composition of the gum (protein content and mineral content), gum processing prior to emulsion preparation (pasteurization and demineralization), and pH of the dilute emulsion.

R. A Buffo; G. A Reineccius; G. W Oehlert

2001-01-01

362

Perspectives of phase changes and reversibility on a case of emulsion inversion.  

PubMed

The conventional treatment of catastrophic inversion is based on a two-phase model of oil-in-water (O/W) or water-in-oil (W/O). The present investigation takes a closer look at the process of inversion with focus on its relation to the detailed phase changes in the system. It is found that phase behavior inserts a decisive call for when the inversion starts and completes, even for an inversion seemingly brought by a simple change of water-to-oil ratio. The phases involved also play a critical role in the fine details of the emulsion structure, during both emulsification and evaporation. The presence of liquid crystal is instrumental in the inversion process as substantiated by the observation that its presence coincides with the presence of the intermediate multiple emulsions during emulsification. Multiple emulsions also appear during evaporation, though the mechanism of their formation is different from that during emulsification. The temporary stability of the multiple emulsions during both emulsification and evaporation is affected by the presence of the liquid crystal. It had been well established that the phase behavior plays a decisive role in transitional inversions and that the transformation to the inverse state is a gradual one. This is apparently also the case with the catastrophic inversion investigated here. PMID:20866094

Liu, Yihan; Friberg, Stig E

2010-10-19

363

Adsorption of protein-surfactant complexes at the water/oil interface.  

PubMed

Interfacial tension measurements have been performed at the water/hexane interface on mixtures of the bovine milk protein ?-lactoglobulin and positively charged cationic surfactants (alkytrimethylammonium bromides). The addition of surfactants with different chain lengths leads to the formation of protein-surfactant complexes with different adsorption properties as compared to those of the single protein. In this study, the formation of complexes has been observed clearly for protein-long chain surfactant (TTAB and CTAB) mixtures, which has shown in addition to specific electrostatic interactions the relevance of hydrophobic interactions between surfactant molecules and the protein. The modeling of interfacial tension data by using a mixed adsorption model provides a quantitative understanding of the mixture behavior. Indeed, the value of the adsorption constant of the protein obtained in the presence of surfactants has strongly varied as compared to the single protein. Actually, this parameter which represents the affinity of the molecule for the interface is representative of the hydrophobic character of the compound and so of its surface activity. Even if a more hydrophobic and more surface active protein-surfactant complex has been formed, the replacement of this complex from the interface by surfactants close to their cmc was observed. PMID:21188992

Pradines, Vincent; Fainerman, Valentin B; Aksenenko, Eugene V; Krägel, Jürgen; Wüstneck, Rainer; Miller, Reinhard

2011-02-01

364

Stability of protein formulations: investigation of surfactant effects by a novel EPR spectroscopic technique.  

PubMed

Surfactants are known to stabilize proteins and are often employed as additives in protein formulations. We have developed a method to study the interaction of these formulation additives with proteins by using the partitioning behavior of a spin label. In protein-free formulations, 16-doxyl stearic acid partitions into micelles above the critical micelle concentration (CMC) of the surfactant and gives rise to composite electron paramagnetic resonance (EPR) spectra composed of spectra from "free" label and "rotationally hindered" label. We compute the fraction of micelle-associated label by factor analysis and generate a label partition curve. When protein is added to the formulation, surfactant-protein aggregates form at concentrations below the surfactant's CMC. Partitioning of the label into these aggregates causes the EPR spectrum to reflect hindered rotation of the label at lower surfactant concentrations than in the protein-free solutions. A simple model of label partitioning shows that these partitioning shifts can be correlated to the surfactant:protein binding stoichiometry. We have studied the interactions of various non-ionic surfactants like Brij and Tween with recombinant human growth hormone and recombinant human interferon-gamma and obtained corresponding binding stoichiometries. These binding stoichiometries match those obtained by other techniques. This technique offers a new method for estimating the protein:surfactant binding stoichiometries. PMID:7724484

Bam, N B; Randolph, T W; Cleland, J L

1995-01-01

365

Understanding the structure of hydrophobic surfactants at the air/water interface from molecular level.  

PubMed

Understanding the behavior of fluorocarbon surfactants at the air/water interface is crucial for many applications, such as lubricants, paints, cosmetics, and fire-fighting foams. In this study, molecular dynamics (MD) simulations were employed to investigate the microscopic properties of non-ionic fluorocarbon surfactants at the air/water interface. Several properties, including the distribution of head groups, the distribution probability of the tilt angle between hydrophobic tails with respect to the xy plane, and the order parameter of surfactants, were computed to probe the structure of hydrophobic surfactants at the air/water interface. The effects of the monomer structure on interfacial phenomena of non-ionic surfactants were investigated as well. It is observed that the structure of fluorocarbon surfactants at the air/water interface is more ordered than that of hydrocarbons, which is dominated by the van der Waals interaction between surfactants and water molecules. However, replacing one or two CF2 with one or two CH2 group does not significantly influence the interfacial structure, suggesting that hydrocarbons may be promising alternatives to perfluorinated surfactants. PMID:25358083

Zhang, Li; Liu, Zhipei; Ren, Tao; Wu, Pan; Shen, Jia-Wei; Zhang, Wei; Wang, Xinping

2014-11-25

366

High pressure-resistant nonincendive emulsion explosive  

DOEpatents

An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

Ruhe, Thomas C. (Duquesne, PA); Rao, Pilaka P. (Baghlingampalli, IN)

1994-01-01

367

Physical properties of phase-change emulsions.  

PubMed

Phase-change emulsions (PCE) are important in a variety of applications, from ultrasound imaging to the explosive material used in the mining industry, but until now there has been no adequate theory to describe their activation properties. The PCE consists of a low-boiling-point liquid, known as the volatile phase, dispersed in an aqueous phase. The volatile phase boils as a result of an increase in the temperature of the emulsion. The volume of the emulsion will increase during this phase transition, with the transition temperature and final volume of the emulsion highly dependent on the initial radius of the liquid droplets. Here a description of the change in boiling point and freezing point of the volatile phase, as well as the volume change of a droplet in the emulsion as a function of the initial droplet radius, is presented. The influence of volatile phase solubility, liquid-liquid interfacial tension, and final temperature are explored, accounting for the influence of confinement on the properties of the volatile phase. Beyond this, a means by which the diffusivity of the gas in the continuous liquid phase can be measured is derived. PMID:17073477

Evans, Drew R; Parsons, Drew F; Craig, Vincent S J

2006-11-01

368

Surfactant-Enhanced Benard Convection on an Evaporating Drop  

NASA Astrophysics Data System (ADS)

Surfactant effects on an evaporating drop are studied experimentally. Using a fluorescent probe, the distribution and surface phase of the surfactant is directly imaged throughout the evaporation process. From these experiments, we identify conditions in which surfactants promote surface tension-driven Benard instabilities in aqueous systems. The drops under study contain finely divided particles, which act as tracers in the flow, and form well-defined patterns after the drop evaporates. Two flow fields have been reported in this system. The first occurs because the contact line becomes pinned by solid particles at the contact line region. In order for the contact line to remain fixed, an outward flow toward the ring results, driving further accumulation at the contact ring. A ‘coffee ring’ of particles is left as residue after the drop evaporates[1]. The second flow is Benard convection, driven by surface tension gradients on the drop[2,3]. In our experiments, an insoluble monolayer of pentadecanoic acid is spread at the interface of a pendant drop. The surface tension is recorded, and the drop is deposited on a well-defined solid substrate. Fluorescent images of the surface phase of the surfactant are recorded as the drop evaporates. The surfactant monolayer assumes a variety of surface states as a function of the area per molecule at the interface: surface gaseous, surface liquid expanded, and surface liquid condensed phases[4]. Depending upon the surface state of the surfactant as the drop evaporates, transitions of residue patterns left by the particles occur, from the coffee ring pattern to Benard cells to irregular patterns, suggesting a strong resistance to outward flow are observed. The occurrence of Benard cells on a surfactant-rich interface occurs when the interface is in LE-LC coexistence. Prior research concerning surfactant effects on this instability predict that surfactants are strongly stabilizing[5]. The mechanisms for this change in behavior are discussed. References: [1]R. D. Deegan,, PRE 61,475 (2000). [2]M. Maillard et al., J. Phys. Chem. B 104, 11871 (2000). [3]H. Wang et al. Langmuir 15, 957 (2001). [4]B. G. Moore et al., J. Phys. Chem. 94, 4588 (1990). [5]J. C. Berg & A. Acrivos, Chem. Eng. Sci. 20,737 (1965).

Nguyen, Van X.; Stebe, Kathleen J.

2001-11-01

369

21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524.802 ...ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications...milligrams (mg) enrofloxacin and 10 mg silver sulfadiazine. (b) Sponsor ....

2013-04-01

370

21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524.802 ...ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications...milligrams (mg) enrofloxacin and 10 mg silver sulfadiazine. (b) Sponsor ....

2011-04-01

371

21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524.802 ...ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications...milligrams (mg) enrofloxacin and 10 mg silver sulfadiazine. (b) Sponsor ....

2012-04-01

372

Biomimicry of surfactant protein C.  

PubMed

Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design considerations but makes use of a non-natural, poly-N-substituted glycine or "peptoid" scaffold to circumvent the difficulties associated with SP-C. By incorporating unique biomimetic side chains in a non-natural backbone, the peptoid mimic captures both SP-C's hydrophobic patterning and its helical secondary structure. Despite the differences in structure, both SP-C33 and the SP-C peptoid mimic capture many requisite features of SP-C. In a surfactant environment, these analogues also replicate many of the key surface activities necessary for a functional biomimetic surfactant therapy while overcoming the difficulties associated with the natural protein. With improved stability, greater production potential, and elimination of possible pathogenic contamination, these biomimetic surfactant formulations offer not only the potential to improve the treatment of respiratory distress syndrome but also the opportunity to treat other respiratory-related disorders. PMID:18834153

Brown, Nathan J; Johansson, Jan; Barron, Annelise E

2008-10-01

373

Detector developing for directional dark matter search with nuclear emulsion  

NASA Astrophysics Data System (ADS)

We are planing the directional dark matter search experiment with nuclear emulsion. Recoiled atoms inside of the emulsion fly several hundred nm, and it is too short to detect with usual emulsion. Fine crystal emulsion was needed to detect such tracks. We developed new method to produce them and succeeded to make crystals small as 20 nm at the minimum size. We also study several methods to improve sensitivity and reduce background noise to survey very interesting cross section region.

Asada, T.; Naka, T.; Kuwabara, K.; Katsuragawa, T.; Yoshimoto, M.; Hakamata, K.; Ishikawa, M.; Nakamura, M.; Sato, O.; Nakano, T.

2013-12-01

374

Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters.  

PubMed

The influence of both the nature of the surfactant and surfactant concentration on the processes of droplet break-up and coalescence in the formation of decane-in-water nano-emulsions in a high-pressure homogenizer was investigated. Emulsions were produced using a Christison Scientific M110-S microfluidiser with an impinging jet high-shear chamber. For all six surfactants studied (Tween 20, Tween 80, Brij 96v, sucrose monolaurate, sucrose monomyristate and sucrose monopalmate), the droplet size decreased with increasing surfactant concentration reaching a limiting droplet size at a surfactant concentration of 15 mM. The limiting droplet size for the different surfactants used were; Tween 20 (approximately 250+/-30 nm), Tween 80 (approximately 320+/-40 nm), Brij 96v (approximately 200+/-20 nm) and the three sucrose monoesters had very similar sizes of approximately 250+/-20 nm. A hydrophobic fluorescent dye (1-undecylpyrene) was used to establish the extent of competition between droplet break-up and coalescence in the emulsification process. For all the emulsifiers studied, droplet coalescence in the process reduced as the amount of emulsifier increased, becoming zero at concentrations of about 15 mM, i.e. the same concentration as that required to produce the limiting minimum droplet size. This shows that in the emulsification process droplet size is determined by both break-up and re-coalescence events, and at lower surfactant concentrations (<15 mM) that the final droplet size is probably a consequence of multiple break-up events. Emulsion stability over 200 h was investigated by measuring changes in the droplet size using dynamic light scattering. The increase in droplet volume was shown to be linear with respect to time, indicating an Ostwald ripening process. The observed ripening rate for the three sucrose monoesters (monopalmitate, monomyristate and monolaurate) was approximately 20 nm(3) s(-1), which is the ripening rate calculated using the Lifshitz-Slesov-Wagner (LSW) theory. This ripening rate is the change in radius that results from movement of the oil through the continuous phase, taking into account the oil solubility in water and the diffusion coefficient of the decane-in-water. The ripening rate for Brij 96v was about three times larger than the calculated rate and there is an indication that the ripening rate increases slightly with increasing surfactant concentration, indicating that some enhancement due to the presence of micelles has occurred. With Tween 80 and 20 the ripening rates were 20 and 40 times, respectively, larger than those calculated using the solubility and diffusion coefficients. The increased rate has been shown to be first order with respect to the surfactant concentration indicating micelle mediated ripening. It is hypothesized that an optimum formulation for the sub-micron emulsion with these types of surfactant, will balance surfactant concentration to minimize droplet size during processing while aiming to minimize or prevent Ostwald ripening. PMID:19589533

Henry, John V L; Fryer, Peter J; Frith, William J; Norton, Ian T

2009-10-01

375

Combustion Study of Stabilized Water-in-Diesel Fuel Emulsion  

Microsoft Academic Search

An experimental investigation has been carried out to produce a stable diesel\\/water emulsion fuel and use it in a diesel engine under different operating and design conditions. The emulsion stayed stable for up to 30% water in diesel for up to one week and 20% water in diesel for four weeks. The physical properties of the stable W\\/D emulsions in

M. Y. E. Selim; M. T. Ghannam

2009-01-01

376

Mixtures of hydrogenated and fluorinated lactobionamide surfactants with cationic surfactants: study of hydrogenated and fluorinated chains miscibility through potentiometric techniques.  

PubMed

The work reported herein deals with the aqueous behavior of hydrocarbon and/or fluorocarbon ionic and nonionic surfactants mixtures. These mixtures were studied using potentiometric techniques in NaBr (0.1 mol L-1) aqueous solution as well as in pure water. Mixed micelles were formed from a cationic surfactant (dodecyl or tetradecyltrimethylammonium bromide respectively called DTABr or TTABr) and neutral lactobionamide surfactants bearing a hydrogenated dodecyl chain (H12Lac) or a fluorinated chain (CF3-(CF2)5-(CH2)2- or CF3-(CF2)7-(CH2)2-). We showed that concentrations of ionic and nonionic surfactants in the monomeric form as well as the composition of the mixed micelles can be specified thanks to a potentiometric technique. The complete characterization does not request any model of micellization a priori. The activities of the micellar phase constituents, as well as the free enthalpies of mixing, were calculated. The subsequent interpretation only relies on the experimental characterization. Comparison of the behaviors of the various systems with a model derived from the regular solution theory reveals the predominant part of electrostatic interactions in the micellization phenomenon. It also appears that the energy of interaction between hydrogenated and fluorinated chains is unfavorable to mixing and is of much lower magnitude than the electric charges interactions. PMID:17935362

Peyre, Véronique; Patil, Sandeep; Durand, Grégory; Pucci, Bernard

2007-11-01

377

Influence of droplet deformability on the coalescence rate of emulsions  

NASA Astrophysics Data System (ADS)

In this article the influence of deformation on the coalescence rates of oil-in-water (O/W) emulsions is analyzed. Calculations for doublets and many-particles systems were performed based on a Brownian dynamics algorithm. Extensional and bending energies were included in order to quantify the effect of the changes in the surface geometry on the coalescence rates. Also, the hydrodynamic resistance due to the flat film was included through a correction to the diffusion coefficient in the lubrication limit. Results of two particles calculations were compared with previous analytical evaluations of the coalescence time in absence of highly repulsive barriers [Danov , Langmuir 9, 1731 (1993)]. Lifetime of doublets was calculated as a function of the particle radius from 100 nm to 100?m . It was found that the doublets lifetime strongly depends on the interplay between the potential of interaction between the droplets and the hydrodynamic resistance. Depending on the repulsive barrier either a monotonous increase of the lifetime with the droplet size or a maximum value is observed. Finally, the evolution of O/W emulsions with a volume fraction of ?=0.10 was studied. For these many-particle systems, the results show a sensitive dependence of the aggregation behavior on the interfacial tension. The procedure reported here allows us to include Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO forces and the film drainage velocity of many different systems.

Toro-Mendoza, Jhoan; Lozsan, Aileen; Garcia-Sucre, Maximo; Castellanos S., Aly J.; Urbina-Villalba, German

2010-01-01

378

Nonionic surfactants from poly(ethylene terephthalate) waste: II. Effect of temperature, salinity, pH-value, and solvents on the demulsification efficiency  

Microsoft Academic Search

The effect of temperature, NaCl concentration (salinity), pH-value, and solvents on the demulsification efficiency of the demulsifiers synthesized from poly(ethylene terephthalate) waste [polyoxyethylenated glycolized product of PET (POGP)] in breaking synthetic water-in-benzene emulsions stabilized by petroleum asphaltenes have been investigated. The demulsification efficiency of the studied polymeric surfactants was found to increase as the temperature was raised and the salinity

Abdel-Azim A. Abdel-Azim; Mohamed A. Mekewi; Shaban R. Gouda

2002-01-01

379

Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions  

Microsoft Academic Search

The inhibitive action of the four surfactants, cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate, sodium oleate and polyoxyethylene sorbitan monooleate (TWEEN-80), on the corrosion behavior of copper was investigated in aerated 0.5 moldm?3 H2SO4 solutions, by means of electrochemical impedance spectroscopy. These surfactants acted as the mixed-type inhibitors and lowered the corrosion reactions by blocking the copper surface through electrostatic adsorption

Houyi Ma; Shenhao Chen; Bingsheng Yin; Shiyong Zhao; Xiangqian Liu

2003-01-01

380

Foamability of Detergent Solutions Prepared with Different Types of Surfactants and Waters  

Microsoft Academic Search

In the development of new detergent products, it is important to test the foaming behavior of different types of surfactants.\\u000a Different types and concentrations of surfactant solutions prepared with three types of water are expected to present differences\\u000a in their foamability. In this study, foam volumes produced by cetyl trimethyl ammonium bromide (CTAB; C19H42BrN), Tween 80® (T80; C64H124O26) and sodium

Maria Helena Amaral; José das Neves; Ângela Z. Oliveira; M. Fernanda Bahia

2008-01-01

381

Surfactant therapy and spontaneous diuresis.  

PubMed

The effect of artificial surfactant therapy on renal function and the onset of spontaneous diuresis was prospectively evaluated in 19 infants with hyaline membrane disease in a double-blind, controlled study. Twelve infants were in the surfactant group; seven infants received placebo (0.9% saline solution). There was no difference in the time of onset of spontaneous diuresis (as defined by output greater than or equal to 80% of intake). The glomerular filtration rate, determined by endogenous creatinine clearance, was also similar in the surfactant- and placebo-treated infants during the first 3 days of life. The fractional excretion of sodium was significantly higher in the placebo group at 24 hours and 36 hours. Infants in the placebo group had a higher negative sodium balance than those in the surfactant group. Ventilatory status improved significantly soon after surfactant treatment, as evidenced by improvement in the alveolar/arterial oxygen pressure ratio and by a lower mean airway pressure. These data suggest that ventilatory status can be improved without diuresis; the factors that regulate diuresis are multiple and not fully understood. PMID:2646416

Bhat, R; John, E; Diaz-Blanco, J; Ortega, R; Fornell, L; Vidyasagar, D

1989-03-01

382

Colloids and Surfaces A: Physicochem. Eng. Aspects 251 (2004) 5358 Nano-emulsion formation by emulsion phase inversion  

E-print Network

that is generally achieved by high-shear stirring, high-pressure homogenizers, or ultra- sound generators. The highColloids and Surfaces A: Physicochem. Eng. Aspects 251 (2004) 53­58 Nano-emulsion formation 2004 Abstract The droplet size distribution of an emulsion governs emulsion properties such as long

Kühnle, Angelika

383

Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System  

E-print Network

Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System Hugh I peroxide and ozone (O3) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung of a model lung surfactant system subjected to oxidative stress. Introduction The cardiopulmonary system

Goddard III, William A.

384

Functional properties of protein fractions of channel catfish (Ictalurus punctatus) and their effects in an emulsion system.  

PubMed

This study demonstrated the feasibility of producing soluble protein (CFSP) and insoluble protein (CFISP) fractions from catfish muscle protein. CFSP and CFISP contained 60.6% and 73.8% protein and 8.6% and 20.3% fat, respectively. Both CFSP and CFISP contained essential amino acids. Differences were observed between physicochemical properties of the 2 protein fractions, including nitrogen solubility, emulsion stability, and fat adsorption capacity. The flow and viscoelastic properties of the emulsions prepared with CFSP and CFISP were investigated using a rheometer. The power law model and the Casson model were used to determine the flow behavior index (n), consistency index (K), and yield stress. Emulsion containing CFSP (ECFSP) had a higher?K?value than emulsion containing CFISP (ECFISP). Both ECFSP and ECFISP emulsions exhibited pseudoplastic behavior and viscoelastic characteristics. The?G' (an elastic or storage modulus) and?G? (a viscous or loss modulus) values for ECFSP were higher than ECFISP. Catfish muscle tissue can be easily separated into soluble and insoluble protein powders that have desirable functional properties. PMID:21535828

Yin, Huaixia; Wan, Yuting; Pu, Jianing; Bechtel, Peter J; Sathivel, Subramaniam

2011-04-01

385

SURFACTANT ENHANCED PHOTO-OXIDATION OF WASTEWATERS  

EPA Science Inventory

Initial research projects using the nonionic surfactant Brij-35 established that this surfactant could successfully adsolublize aromatic organic pollutants such as anthracene, naphthalene, benzoic acid, chlorophenol, and benzene onto the surface of TiO2 par...

386

Surfactant for Pediatric Acute Lung Injury  

PubMed Central

Synopsis This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is on reviewing clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS, including the multifaceted pathology of inflammatory lung injury, the effectiveness of surfactant delivery in injured lungs, and composition-based activity differences among clinical exogenous surfactant preparations. PMID:18501754

Willson, Douglas F.; Chess, Patricia R.; Notter, Robert H.

2008-01-01

387

Molecular mobility in the monolayers of foam films stabilized by porcine lung surfactant.  

PubMed Central

Certain physical properties of a range of foam film types that are believed to exist in vivo in the lung have been investigated. The contribution of different lung surfactant components found in porcine lung surfactant to molecular surface diffusion in the plane of foam films has been investigated for the first time. The influence of the type and thickness of black foam films, temperature, electrolyte concentration, and extract composition on surface diffusion has been studied using the fluorescence recovery after photobleaching technique. Fluorescent phospholipid probe molecules in foam films stabilized by porcine lung surfactant samples or their hydrophobic extracts consisting of surfactant lipids and hydrophobic lung surfactant proteins, SP-B and SP-C, exhibited more rapid diffusion than observed in films of its principal lipid component alone, L-alpha-phosphatidylcholine dipalmitoyl. This effect appears to be due to contributions from minor lipid components present in the total surfactant lipid extracts. The minor lipid components influence the surface diffusion in foam films both by their negative charge and by lowering the phase transition temperature of lung surfactant samples. In contrast, the presence of high concentrations of the hydrophillic surfactant protein A (SP-A) and non-lung-surfactant proteins in the sample reduced the diffusion coefficient (D) of the lipid analog in the adsorbed layer of the films. Hysteresis behavior of D was observed during temperature cycling, with the cooling curve lying above the heating curve. However, in cases where some surface molecular aggregation and surface heterogeneity were observed during cooling, the films became more rigid and molecules at the interfaces became immobilized. The thickness, size, capillary pressure, configuration, and composition of foam films of lung surfactant prepared in vitro support their investigation as realistic structural analogs of the surface films that exist in vivo in the lung. Compared to other models currently in use, foam films provide new opportunities for studying the properties and function of physiologically important alveolar surface films. Images FIGURE 1 FIGURE 2 PMID:8913597

Lalchev, Z I; Todorov, R K; Christova, Y T; Wilde, P J; Mackie, A R; Clark, D C

1996-01-01

388

Hydrophobic Surfactant Proteins and Their Analogues  

Microsoft Academic Search

Lung surfactant is a complex mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C and SP-D). Its major function in the lung alveolus is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film enriched in surfactant lipids, hence preventing cellular collapse during respiration. Surfactant therapy using bovine or porcine

Frans J. Walther; Alan J. Waring; Mark A. Sherman; Joseph A. Zasadzinski; Larry M. Gordon

2007-01-01

389

Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature.  

PubMed

Nanoemulsions are particularly suitable as a platform in the development of delivery systems for lipophilic functional agents. This study shows that transparent orange oil nanoemulsions can be fabricated using an isothermal low-energy method (spontaneous emulsification), which offers the advantage of fabricating flavor oil delivery systems using rapid and simple processing operations. Orange oil nanoemulsions were formed spontaneously by titration of a mixture of orange oil, carrier oil [medium-chain triglyceride (MCT)], and non-ionic surfactant (Tween) into an aqueous solution (5 mM citrate buffer at pH 3.5) with continuous stirring. The oil/emulsion ratio content was kept constant (10 wt %), while the surfactant/emulsion ratio (SER) was varied (2.5-20 wt %). Oil-phase composition (orange oil/MCT ratio), SER, and surfactant type all had an appreciable effect on nanoemulsion formation and stability. Transparent nanoemulsions could be formed under certain conditions: 20% surfactant (Tween 40, 60, or 80) and 10% oil phase (4-6% orange oil + 6-4% MCT). Surfactant type and oil-phase composition also affected the thermal stability of the nanoemulsions. Most of the nanoemulsions broke down after thermal cycling (from 20 to 90 °C and back to 20 °C); however, one system remained transparent after thermal cycling: 20% Tween 80, 5% orange oil, and 5% MCT. The mean droplet size of these nanoemulsions increased over time, but the droplet growth rate was reduced appreciably after dilution. These results have important implications for the design and utilization of nanoemulsions as delivery systems in the food and other industries. PMID:24564878

Chang, Yuhua; McClements, David Julian

2014-03-12

390

Na-caseinate/oil/water systems: emulsion morphology diagrams.  

PubMed

The concentrated (dispersed phase 50-70 wt%) composition space of Na-caseinate, a family of milk proteins, stabilised emulsions was investigated for three different oils: soybean oil, palm olein and tetradecane with pH 6.8 phosphate buffer continuous phase. The variation of emulsion stability and microstructure were explored using static light scattering, diffusion nuclear magnetic resonance, cryo-scanning electron microscopy, rheology and the time varying macroscopic phase separation of the emulsions. For soybean oil and palm olein a rich diversity of emulsion microstructures and stabilities are realised. Five emulsion domains, each having a different microstructure and macroscopic stability have been identified within the composition space probed. For the lowest concentrations of emulsifier bridging flocculation is evident and emulsions are of low stability. Increasing Na-caseinate concentration leads to an increased stability and the existence of distinct individual oil droplets, visualised using cryo-scanning electron microscopy. Further increases in Na-caseinate concentration reduce emulsion stability due to depletion flocculation. Na-caseinate self-assembly is then initiated. At sufficiently high Na-caseinate and/or oil concentrations the continuous phase of the emulsion is a three-dimensional protein network and emulsion stability is again enhanced. At the limits of the emulsion composition space a gel-like paste is formed. The diversity of emulsion microstructure is reduced when tetradecane is the discrete phase. Na-caseinate self-assembly is limited and there is no evidence for formation of a protein network. PMID:22709624

Tan, Hui Lin; McGrath, Kathryn M

2012-09-01

391

Behaviorism  

ERIC Educational Resources Information Center

Early forms of psychology assumed that mental life was the appropriate subject matter for psychology, and introspection was an appropriate method to engage that subject matter. In 1913, John B. Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the…

Moore, J.

2011-01-01

392

Improved physical stability and injectability of non-aqueous in situ PLGA microparticle forming emulsions.  

PubMed

The goal of this study was to obtain physically stable non-aqueous in situ forming microparticle (ISM) emulsions capable of forming biodegradable microparticles upon injection. ISM emulsions consist of a biocompatible organic PLGA solution dispersed in a continuous oil phase prepared in a two-syringe/connector system prior to administration. A variety of parenteral approved excipients were tested for a stability-enhancing effect and possible stabilization mechanisms evaluated. Glycerol monostearate (GMS) showed superior stabilizing potential prolonging the emulsion stability from a few minutes to more than 12h. Flow behavior analysis, differential scanning calorimetry, polarized light- and Cryo-electron microscopy revealed, that the stabilization was caused by an immediate, more than 5-fold viscosity increase in the continuous phase after emulsification and by a stabilized interface through a liquid crystalline GMS layer around the polymer solution droplets. Despite the viscosity increase the injectability of the stabilized ISM emulsion was improved by about 30% compared to the corresponding highly viscous PLGA solution (in situ implant) due to a pronounced shear thinning of the GMS containing oil phase. The injectability improvement allows a faster administration or enables the use of thinner needles and hence reduced patient discomfort. PMID:22677417

Voigt, M; Koerber, M; Bodmeier, R

2012-09-15

393

Topical delivery of acetyl hexapeptide-8 from different emulsions: Influence of emulsion composition and internal structure.  

PubMed

Acetyl hexapeptide-8 (AH-8) is a well-known component of anti-aging products and was recently explored as a promising topical treatment of blepharospasm. Although AH-8 appears in a variety of cosmetic products, its skin penetration is sparsely studied and controversially discussed. Therefore, the aim of the present study was to investigate the influence of the vehicle type on the AH-8 delivery to the skin. Besides skin permeation experiments with Franz type diffusion cells, the spatial distribution of AH-8 in the stratum corneum after a real in-use application was investigated by in vitro tape stripping on porcine ear skin. By applying LC-MS/MS for quantification of AH-8, we demonstrated that a multiple water-in-oil-in-water (W/O/W) emulsion can significantly increase penetration of AH-8 into porcine skin compared to simple O/W and W/O emulsions. The internal structure of the developed multiple emulsion was confirmed by electron microscopic investigations and NMR self diffusion studies. In general, a clear superiority of water-rich W/O/W and O/W emulsions over an oil-rich W/O emulsion in terms of dermal delivery of AH-8 was found. This enhanced delivery of AH-8 could be explained by an increased absorption of the water-rich emulsions into the skin, confirmed by combined ATR-FTIR and tape stripping experiments. PMID:25497319

Hoppel, Magdalena; Reznicek, Gottfried; Kählig, Hanspeter; Kotisch, Harald; Resch, Günter P; Valenta, Claudia

2015-02-20

394

Lipid Injectable Emulsions: Pharmacopeial and Safety Issues  

Microsoft Academic Search

Abstract  Lipid injectable emulsions have been routinely used in patients worldwide for over 40 years as a nutritional supplement in patients requiring parenteral nutrition. They can be given as a separate infusion or added into total parenteral nutrition admixtures. Despite such broad use, no pharmacopeial standards exist with respect to the optimal pharmaceutical characteristics of the formulation. Several attempts to establish

David F. Driscoll